Depletion force induced collective motion of microtubules driven by kinesin
NASA Astrophysics Data System (ADS)
Inoue, Daisuke; Mahmot, Bulbul; Kabir, Arif Md. Rashedul; Farhana, Tamanna Ishrat; Tokuraku, Kiyotaka; Sada, Kazuki; Konagaya, Akihiko; Kakugo, Akira
2015-10-01
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02213d
Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species
Kastman, Erik K.; Kamelamela, Noelani; Norville, Josh W.; Cosetta, Casey M.; Dutton, Rachel J.
2016-01-01
ABSTRACT Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ. Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. PMID:27795388
Wolfe, Benjamin E.; Button, Julie E.; Santarelli, Marcela; Dutton, Rachel J.
2014-01-01
SUMMARY Tractable microbial communities are needed to bridge the gap between observations of patterns of microbial diversity and mechanisms that can explain these patterns. We developed cheese rinds as model microbial communities by characterizing in situ patterns of diversity and by developing an in vitro system for community reconstruction. Sequencing of 137 different rind communities across 10 countries revealed 24 widely distributed and culturable genera of bacteria and fungi as dominant community members. Reproducible community types formed independent of geographic location of production. Intensive temporal sampling demonstrated that assembly of these communities is highly reproducible. Patterns of community composition and succession observed in situ can be recapitulated in a simple in vitro system. Widespread positive and negative interactions were identified between bacterial and fungal community members. Cheese rind microbial communities represent an experimentally tractable system for defining mechanisms that influence microbial community assembly and function. PMID:25036636
Non-linear molecular pattern classification using molecular beacons with multiple targets.
Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak
2013-12-01
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.
2012-01-01
The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285
Biotic Interactions Shape the Ecological Distributions of Staphylococcus Species.
Kastman, Erik K; Kamelamela, Noelani; Norville, Josh W; Cosetta, Casey M; Dutton, Rachel J; Wolfe, Benjamin E
2016-10-18
Many metagenomic sequencing studies have observed the presence of closely related bacterial species or genotypes in the same microbiome. Previous attempts to explain these patterns of microdiversity have focused on the abiotic environment, but few have considered how biotic interactions could drive patterns of microbiome diversity. We dissected the patterns, processes, and mechanisms shaping the ecological distributions of three closely related Staphylococcus species in cheese rind biofilms. Paradoxically, the most abundant species (S. equorum) is the slowest colonizer and weakest competitor based on growth and competition assays in the laboratory. Through in vitro community reconstructions, we determined that biotic interactions with neighboring fungi help resolve this paradox. Species-specific stimulation of the poor competitor by fungi of the genus Scopulariopsis allows S. equorum to dominate communities in vitro as it does in situ Results of comparative genomic and transcriptomic experiments indicate that iron utilization pathways, including a homolog of the S. aureus staphyloferrin B siderophore operon pathway, are potential molecular mechanisms underlying Staphylococcus-Scopulariopsis interactions. Our integrated approach demonstrates that fungi can structure the ecological distributions of closely related bacterial species, and the data highlight the importance of bacterium-fungus interactions in attempts to design and manipulate microbiomes. Decades of culture-based studies and more recent metagenomic studies have demonstrated that bacterial species in agriculture, medicine, industry, and nature are unevenly distributed across time and space. The ecological processes and molecular mechanisms that shape these distributions are not well understood because it is challenging to connect in situ patterns of diversity with mechanistic in vitro studies in the laboratory. Using tractable cheese rind biofilms and a focus on coagulase-negative staphylococcus (CNS) species, we demonstrate that fungi can mediate the ecological distributions of closely related bacterial species. One of the Staphylococcus species studied, S. saprophyticus, is a common cause of urinary tract infections. By identifying processes that control the abundance of undesirable CNS species, cheese producers will have more precise control on the safety and quality of their products. More generally, Staphylococcus species frequently co-occur with fungi in mammalian microbiomes, and similar bacterium-fungus interactions may structure bacterial diversity in these systems. Copyright © 2016 Kastman et al.
Dynamic interneuron-principal cell interplay leads to a specific pattern of in vitro ictogenesis.
Lévesque, Maxime; Chen, Li-Yuan; Hamidi, Shabnam; Avoli, Massimo
2018-07-01
Ictal discharges induced by 4-aminopyridine in the in vitro rodent entorhinal cortex present with either low-voltage fast or sudden onset patterns. The role of interneurons in initiating low-voltage fast onset ictal discharges is well established but the processes leading to sudden onset ictal discharges remain unclear. We analysed here the participation of interneurons (n = 75) and principal cells (n = 13) in the sudden onset pattern by employing in vitro tetrode wire recordings in the entorhinal cortex of brain slices from Sprague-Dawley rats. Ictal discharges emerged from a background of frequently occurring interictal spikes that were associated to a specific interneuron/principal cell interplay. High rates of interneuron firing occurred 12 ms before interictal spike onset while principal cells fired later during low interneuron firing. In contrast, the onset of sudden ictal discharges was characterized by increased firing from principal cells 627 ms before ictal onset whereas interneurons increased their firing rates 161 ms before ictal onset. Our data show that sudden onset ictogenesis is associated with frequently occurring interictal spikes resting on the interplay between interneurons and principal cells while ictal discharges stem from enhanced principal cell firing leading to increased interneuron activity. These findings indicate that specific patterns of interactions between interneurons and principal cells shape interictal and ictal discharges with sudden onset in the rodent entorhinal cortex. We propose that specific neuronal interactions lead to the generation of distinct onset patterns in focal epileptic disorders. Copyright © 2018 Elsevier Inc. All rights reserved.
The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.
de Curtis, Marco; Librizzi, Laura; Uva, Laura
2016-02-15
Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.
Steingruber, Mirjam; Kraut, Alexandra; Socher, Eileen; Sticht, Heinrich; Reichel, Anna; Stamminger, Thomas; Amin, Bushra; Couté, Yohann; Hutterer, Corina; Marschall, Manfred
2016-01-01
The human cytomegalovirus (HCMV)-encoded cyclin-dependent kinase (CDK) ortholog pUL97 associates with human cyclin B1 and other types of cyclins. Here, the question was addressed whether cyclin interaction of pUL97 and additional viral proteins is detectable by mass spectrometry-based approaches. Proteomic data were validated by coimmunoprecipitation (CoIP), Western blot, in vitro kinase and bioinformatic analyses. Our findings suggest that: (i) pUL97 shows differential affinities to human cyclins; (ii) pUL97 inhibitor maribavir (MBV) disrupts the interaction with cyclin B1, but not with other cyclin types; (iii) cyclin H is identified as a new high-affinity interactor of pUL97 in HCMV-infected cells; (iv) even more viral phosphoproteins, including all known substrates of pUL97, are detectable in the cyclin-associated complexes; and (v) a first functional validation of pUL97-cyclin B1 interaction, analyzed by in vitro kinase assay, points to a cyclin-mediated modulation of pUL97 substrate preference. In addition, our bioinformatic analyses suggest individual, cyclin-specific binding interfaces for pUL97-cyclin interaction, which could explain the different strengths of interactions and the selective inhibitory effect of MBV on pUL97-cyclin B1 interaction. Combined, the detection of cyclin-associated proteins in HCMV-infected cells suggests a complex pattern of substrate phosphorylation and a role of cyclins in the fine-modulation of pUL97 activities. PMID:27548200
A rapid co-culture stamping device for studying intercellular communication.
Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P; Nordon, Robert E; Warkiani, Majid Ebrahimi
2016-10-18
Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.
A rapid co-culture stamping device for studying intercellular communication
NASA Astrophysics Data System (ADS)
Hassanzadeh-Barforoushi, Amin; Shemesh, Jonathan; Farbehi, Nona; Asadnia, Mohsen; Yeoh, Guan Heng; Harvey, Richard P.; Nordon, Robert E.; Warkiani, Majid Ebrahimi
2016-10-01
Regulation of tissue development and repair depends on communication between neighbouring cells. Recent advances in cell micro-contact printing and microfluidics have facilitated the in-vitro study of homotypic and heterotypic cell-cell interaction. Nonetheless, these techniques are still complicated to perform and as a result, are seldom used by biologists. We report here development of a temporarily sealed microfluidic stamping device which utilizes a novel valve design for patterning two adherent cell lines with well-defined interlacing configurations to study cell-cell interactions. We demonstrate post-stamping cell viability of >95%, the stamping of multiple adherent cell types, and the ability to control the seeded cell density. We also show viability, proliferation and migration of cultured cells, enabling analysis of co-culture boundary conditions on cell fate. We also developed an in-vitro model of endothelial and cardiac stem cell interactions, which are thought to regulate coronary repair after myocardial injury. The stamp is fabricated using microfabrication techniques, is operated with a lab pipettor and uses very low reagent volumes of 20 μl with cell injection efficiency of >70%. This easy-to-use device provides a general strategy for micro-patterning of multiple cell types and will be important for studying cell-cell interactions in a multitude of applications.
Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara
2017-08-01
The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.
Maggini, Valentina; De Leo, Marinella; Mengoni, Alessio; Gallo, Eugenia Rosaria; Miceli, Elisangela; Reidel, Rose Vanessa Bandeira; Biffi, Sauro; Pistelli, Luisa; Fani, Renato; Firenzuoli, Fabio; Bogani, Patrizia
2017-12-05
The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.
Accogli, Gianluca; Douet, Cécile; Ambruosi, Barbara; Martino, Nicola Antonio; Uranio, Manuel Filioli; Deleuze, Stefan; Dell'Aquila, Maria Elena; Desantis, Salvatore; Goudet, Ghylène
2014-12-01
Glycoprotein oligosaccharides play major roles during reproduction, yet their function in gamete interactions is not fully elucidated. Identification and comparison of the glycan pattern in cumulus-oocyte complexes (COCs) from species with different efficiencies of in vitro spermatozoa penetration through the zona pellucida (ZP) could help clarify how oligosaccharides affect gamete interactions. We compared the expression and localization of 12 glycosidic residues in equine and porcine in vitro-matured (IVM) and preovulatory COCs by means of lectin histochemistry. The COCs glycan pattern differed between animals and COC source (IVM versus preovulatory). Among the 12 carbohydrate residues investigated, the IVM COCs from these two species shared: (a) sialo- and βN-acetylgalactosamine (GalNAc)-terminating glycans in the ZP; (b) sialylated and fucosylated glycans in cumulus cells; and (c) GalNAc and N-acetylglucosamine (GlcNAc) glycans in the ooplasm. Differences in the preovulatory COCs of the two species included: (a) sialoglycans and GlcNAc terminating glycans in the equine ZP versus terminal GalNAc and internal GlcNAc in the porcine ZP; (b) terminal galactosides in equine cumulus cells versus terminal GlcNAc and fucose in porcine cohorts; and (c) fucose in the mare ooplasm versus lactosamine and internal GlcNAc in porcine oocyte cytoplasm. Furthermore, equine and porcine cumulus cells and oocytes contributed differently to the synthesis of ZP glycoproteins. These results could be attributed to the different in vitro fertilization efficiencies between these two divergent, large-animal models. © 2014 Wiley Periodicals, Inc.
Mannino, Robert G.; Myers, David R.; Ahn, Byungwook; Wang, Yichen; Margo Rollins; Gole, Hope; Lin, Angela S.; Guldberg, Robert E.; Giddens, Don P.; Timmins, Lucas H.; Lam, Wilbur A.
2015-01-01
Investigating biophysical cellular interactions in the circulation currently requires choosing between in vivo models, which are difficult to interpret due in part to the hemodynamic and geometric complexities of the vasculature; or in vitro systems, which suffer from non-physiologic assumptions and/or require specialized microfabrication facilities and expertise. To bridge that gap, we developed an in vitro “do-it-yourself” perfusable vasculature model that recapitulates in vivo geometries, such as aneurysms, stenoses, and bifurcations, and supports endothelial cell culture. These inexpensive, disposable devices can be created rapidly (<2 hours) with high precision and repeatability, using standard off-the-shelf laboratory supplies. Using these “endothelialized” systems, we demonstrate that spatial variation in vascular cell adhesion molecule (VCAM-1) expression correlates with the wall shear stress patterns of vascular geometries. We further observe that the presence of endothelial cells in stenoses reduces platelet adhesion but increases sickle cell disease (SCD) red blood cell (RBC) adhesion in bifurcations. Overall, our method enables researchers from all disciplines to study cellular interactions in physiologically relevant, yet simple-to-make, in vitro vasculature models. PMID:26202603
Ghalayini, Mohamed; Magnan, Mélanie; Glodt, Jérémy; Pintard, Coralie; Dion, Sara; Denamur, Erick; Tenaillon, Olivier
2017-01-01
Though microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin resistant strain 536, in the digestive tract of streptomycin treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the non-random associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that “evolve and sequence” approach coupled to an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment. PMID:27661780
Della Coletta, Amanda Manoel; Bachiega, Tatiana Fernanda; de Quaglia e Silva, Juliana Carvalho; Soares, Ângela Maria Victoriano de Campos; De Faveri, Julio; Marques, Silvio Alencar; Marques, Mariângela Esther Alencar; Ximenes, Valdecir Farias; Dias-Melicio, Luciane Alarcão
2015-01-01
Paracoccidioidomycosis (PCM) is a systemic mycosis, endemic in most Latin American countries, especially in Brazil. It is caused by the thermo-dimorphic fungus of the genus Paracoccidioides (Paracoccidioides brasiliensis and Paracoccidioides lutzii). Innate immune response plays a crucial role in host defense against fungal infections, and neutrophils (PMNs) are able to combat microorganisms with three different mechanisms: phagocytosis, secretion of granular proteins, which have antimicrobial properties, and the most recent described mechanism called NETosis. This new process is characterized by the release of net-like structures called Neutrophil Extracellular Traps (NETs), which is composed of nuclear (decondensed DNA and histones) and granular material such as elastase. Several microorganisms have the ability of inducing NETs formation, including gram-positive and gram-negative bacteria, viruses and some fungi. We proposed to identify NETs in tegumentary lesions of patients with PCM and to analyze the interaction between two strains of P. brasiliensis and human PMNs by NETs formation in vitro. In this context, the presence of NETs in vivo was evidenced in tegumentary lesions of patients with PCM by confocal spectrum analyzer. Furthermore, we showed that the high virulent P. brasiliensis strain 18 (Pb18) and the lower virulent strain Pb265 are able to induce different patterns of NETs formation in vitro. The quantification of extracellular DNA corroborates the idea of the ability of P. brasiliensis in inducing NETs release. In conclusion, our data show for the first time the identification of NETs in lesions of patients with PCM and demonstrate distinct patterns of NETs in cultures challenged with fungi in vitro. The presence of NETs components both in vivo and in vitro open new possibilities for the detailed investigation of immunity in PCM. PMID:26327485
Moreno, F Javier; Mackie, Alan R; Mills, E N Clare
2005-12-14
Interactions with food components may alter the resistance of food proteins to digestion, a property thought to play an important role in determining allergenic properties. The kinetics of breakdown of the bovine milk allergen alpha-lactalbumin during in vitro gastrointestinal digestion was found to be altered by interactions with physiologically relevant levels of phosphatidylcholine (PC), a surfactant that is abundant both in milk and is actively secreted by the stomach. Breakdown during gastric digestion was slowed in the presence of PC and accompanied by small alterations in the profile of resulting peptides, with little effect being observed during subsequent duodenal digestion. alpha-Lactalbumin was found to unfold at gastric (acid) pH, giving a CD spectrum similar to that obtained for the partially folded state it is known to adopt at pH values below its isoelectric point. Fluorescence polarization studies performed at low pH indicated that this partially unfolded form of the protein was able to penetrate into the PC vesicles. These interactions are probably responsible for the slowing of gastric digestion by reducing the accessibility of the protein to pepsin. These findings show that interactions with other food components, such as lipids, may alter the rate of breakdown of food proteins in the gastrointestinal tract. It underlines the importance of the food matrix in affecting patterns of food allergen digestion and hence presentation to the immune system and that in vitro digestion systems used for assessing digestibility of allergens must take account of surfactants.
A microscopic evaluation of collagen-bilirubin interactions: in vitro surface phenomenon.
Usharani, N; Jayakumar, G C; Rao, J R; Chandrasekaran, B; Nair, B U
2014-02-01
This study is carried out to understand the morphology variations of collagen I matrices influenced by bilirubin. The characteristics of bilirubin interaction with collagen ascertained using various techniques like XRD, CLSM, fluorescence, SEM and AFM. These techniques are used to understand the distribution, expression and colocalization patterns of collagen-bilirubin complexes. The present investigation mimic the in vivo mechanisms created during the disorder condition like jaundice. Fluorescence technique elucidates the crucial role played by bilirubin deposition and interaction during collagen organization. Influence of bilirubin during collagen fibrillogenesis and banding patterns are clearly visualize using SEM. As a result, collagen-bilirubin complex provides different reconstructed patterns because of the influence of bilirubin concentration. Selectivity, specificity and spatial organization of collagen-bilirubin are determined through AFM imaging. Consequently, it is observed that the morphology and quantity of the bilirubin binding to collagen varied by the concentrations and the adsorption rate in protein solutions. Microscopic studies of collagen-bilirubin interaction confirms that bilirubin influence the fibrillogenesis and alter the rate of collagen organization depending on the bilirubin concentration. This knowledge helps to develop a novel drug to inhibit the interface point of interaction between collagen and bilirubin. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Mechanosensing is critical for axon growth in the developing brain
Pillai, Eva K.; Sheridan, Graham K.; Svoboda, Hanno; Viana, Matheus; da F. Costa, Luciano; Guck, Jochen; Holt, Christine E.; Franze, Kristian
2016-01-01
During nervous system development, neurons extend axons along well-defined pathways. The current understanding of axon pathfinding is based mainly on chemical signalling. However, growing neurons interact not only chemically but also mechanically with their environment. Here we identify mechanical signals as important regulators of axon pathfinding. In vitro, substrate stiffness determined growth patterns of Xenopus retinal ganglion cell (RGC) axons. In vivo atomic force microscopy revealed striking stiffness gradient patterns in the embryonic brain. RGC axons grew towards the tissue’s softer side, which was reproduced in vitro in the absence of chemical gradients. To test the importance of mechanical signals for axon growth in vivo, we altered brain stiffness, blocked mechanotransduction pharmacologically, and knocked down the mechanosensitive ion channel Piezo1. All treatments resulted in aberrant axonal growth and pathfinding errors, suggesting that local tissue stiffness–read out by mechanosensitive ion channels–is critically involved in instructing neuronal growth in vivo. PMID:27643431
Simas, C J A; Silva, D P H; Ponte, C G G; Castello-Branco, L R R; Antas, P R Z
2011-09-02
Mononuclear cells have been implicated in the primary inflammatory response against mycobacteria. Yet, little is known about the interaction of Mycobacterium bovis bacillus Calmette-Guerin (BCG) with human monocytes. Here, we investigated the potential of BCG Moreau strain to induce in vitro specific cell-death utilizing a flow cytometry approach that revealed an increase in apoptosis events in BCG-stimulated monocytes from healthy adults. We also detected a concomitant release of interleukin 1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α), but not metalloproteinase (MMP)-9. In addition, annexin V-propidium iodide double staining demonstrated an enhancement of monocytes necrosis, but not apoptosis, following BCG Moreau strain stimulation of umbilical vein cells from naïve, neonate. This pattern was paralleled by different pro-inflammatory cytokine levels, as well as MMP-9 induction when compared to the adults. Our findings support the hypothesis that BCG induces distinct cell-death patterns during the maturation of the immune system and that this pattern might set the stage for a subsequent antimycobacterial immune response that might have profound effects during vaccination. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ghosh, Ayan Kumar; Saini, Savita; Das, Sushmita; Mandal, Abhishek; Sardar, Abul Hasan; Ansari, Md Yousuf; Abhishek, Kumar; Kumar, Ajay; Singh, Ruby; Verma, Sudha; Equbal, Asif; Ali, Vahab; Das, Pradeep
2017-05-01
Exploration of metabolons as viable drug target is rare in kinetoplastid biology. Here we present a novel protein-protein interaction among Glucose-6-phosphate dehydrogenase (LdG6PDH) and Trypanothione reductase (LdTryR) of Leishmania donovani displaying interconnection between central glucose metabolism and thiol metabolism of this parasite. Digitonin fractionation patterns observed through immunoblotting indicated localisation of both LdG6PDH and LdTryR in cytosol. In-silico and in-vitro interaction observed by size exclusion chromatography, co-purification, pull-down assay and spectrofluorimetric analysis revealed LdG6PDH and LdTryR physically interact with each other in a NADPH dependent manner. Coupled enzymatic assay displayed that NADPH generation was severely impaired by addition of Sb III , As III and Te IV extraneously, which hint towards metalloid driven structural changes of the interacting proteins. Co-purification patterns and pull-down assays also depicted that metalloids (Sb III , As III and Te IV ) hinder the in-vitro interaction of these two enzymes. Surprisingly, metalloids at sub-lethal concentrations induced the in-vivo interaction of LdG6PDH and LdTryR, as analyzed by pull-down assays and fluorescence microscopy signifying protection against metalloid mediated ROS. Inhibition of LdTryR by thioridazine in LdG6PDH -/- parasites resulted in metalloid induced apoptotic death of the parasites due to abrupt fall in reduced thiol content, disrupted NADPH/NADP + homeostasis and lethal oxidative stress. Interestingly, clinical isolates of L.donovani resistant to SAG exhibited enhanced interaction between LdG6PDH and LdTryR and showed cross resistivity towards As III and Te IV . Thus, our findings propose the metabolon of LdG6PDH and LdTryR as an alternate therapeutic target and provide mechanistic insight about metalloid resistance in Visceral Leishmaniasis. Copyright © 2017. Published by Elsevier Inc.
Preparation and characterization of safe microparticles based on xylan.
Cartaxo da Costa Urtiga, Silvana; Aquino Azevedo de Lucena Gabi, Camilla; Rodrigues de Araújo Eleamen, Giovanna; Santos Souza, Bartolomeu; Pessôa, Hilzeth de Luna Freire; Marcelino, Henrique Rodrigues; Afonso de Moura Mendonça, Elisângela; Egito, Eryvaldo Sócrates Tabosa do; Oliveira, Elquio Eleamen
2017-10-01
This work describes the preparation and evaluation of safe xylan-based microparticles prepared by cross-linking polymerization using sodium trimetaphosphate. The resulting microparticles were evaluated for morphology, particle size, polymer-cross-link agent interaction, and in vitro toxicity. The microparticles showed narrow monodisperse size distributions with their mean sizes being between 3.5 and 12.5 µm in dried state. FT-IR analyzes confirmed the interaction between sodium trimetaphosphate and xylan during the cross-linking process with formation of phosphate ester bonds. Additionally, the X-ray diffraction patterns and FT-IR analyzes suggested that little or no cross-linking agent remained inside the microparticles. Furthermore, the in-vitro studies using Artemia salina and human erythrocytes revealed that the microparticles are not toxic. Therefore, the overall results suggest that these xylan microparticles can be used as a platform for new drug delivery system.
Wang, Shoei-Shen; Chou, Nai-Kuan; Chung, Tze-Wen
2009-12-01
Accelerated thrombolysis by pressure-driven permeation has been demonstrated in in vitro and in vivo animal models by using plasminogen activators (PAs) encapsulated liposomes or PEG microparticles. Recent reports have also described acceleration of thrombolysis using tissue type PA (t-PA) encapsulated in PLGA nanoparticles (NPs) coated with chitosan (CS) or CS-GRGD by interactions between the NPs and blood clots. However, the permeation through and dissolving patterns in thrombolysis with the aforementioned microparticles or NPs, which may be clinically relevant to the recovery status of the posttreatments, have not been reported. Therefore, this work studied such phenomena in thrombolysis with t-PA encapsulated in NPs. The t-PA solution and the NPs exhibited distinctly different permeation patterns of dissolved clots. Plasma permeates through clots showed a stream flow or burst flow phenomena when lyzed with NPs shelled with CS or CS-GRGD, respectively, whereas a diffusion pattern was observed in those lyzed with t-PA solution. At the outlet position of clots, the clots dissolved with PLGA/CS and PLGA/CS-GRGD NPs revealed extremely rough surfaces to a depth of 100 mum, indicating that a cross-permeation direction of clot lysis occurred, while those dissolved with t-PA solution showed slightly rough surfaces to a depth of 12 mum. Permeation through and clot dissolution patterns of thrombolysis with t-PA encapsulated in NPs shelled with CS or CS-GRGD distinctly differed from those dissolved with t-PA solutions in this in vitro thrombolysis model, These findings may be relevant to posttreatment of patients with conventional PA thrombolysis. Copyright 2008 Wiley Periodicals, Inc.
Curran, Judith M; Chen, Rui; Stokes, Robert; Irvine, Eleanor; Graham, Duncan; Gubbins, Earl; Delaney, Deany; Amro, Nabil; Sanedrin, Raymond; Jamil, Haris; Hunt, John A
2010-03-01
The development of homogenously nano-patterned chemically modified surfaces that can be used to initiate a cellular response, particularly stem cell differentiation, in a highly controlled manner without the need for exogenous biological factors has never been reported, due to that fact that precisely defined and reproducible systems have not been available that can be used to study cell/material interactions and unlock the potential of a material driven cell response. Until now material driven stem cell (furthermore any cell) responses have been variable due to the limitations in definition and reproducibility of the underlying substrate and the lack of true homogeneity of modifications that can dictate a cellular response at a sub-micron level that can effectively control initial cell interactions of all cells that contact the surface. Here we report the successful design and use of homogenously molecularly nanopatterned surfaces to control initial stem cell adhesion and hence function. The highly specified nano-patterned arrays were compared directly to silane modified bulk coated substrates that have previously been proven to initiate mesenchymal stem cell (MSC) differentiation in a heterogenous manner, the aim of this study was to prove the efficiency of these previously observed cell responses could be enhanced by the incorporation of nano-patterns. Nano-patterned surfaces were prepared by Dip Pen Nanolithography (DPN) to produce arrays of 70 nm sized dots separated by defined spacings of 140, 280 and 1000 nm with terminal functionalities of carboxyl, amino, methyl and hydroxyl and used to control cell growth. These nanopatterned surfaces exhibited unprecedented control of initial cell interactions and will change the capabilities for stem cell definition in vitro and then cell based medical therapies. In addition to highlighting the ability of the materials to control stem cell functionality on an unprecedented scale this research also introduces the successful scale-up of DPN and the novel chemistries and systems to facilitate the production of homogeneously patterned substrates (5 mm2) that are applicable for use in in vitro cell conditions over prolonged periods for complete control of material driven cell responses.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Guan, Tianzhu; Yu, Hansong; Li, Zhuolin; Wang, Yongzhi; Wang, Yongjun; Zhang, Tiehua
2018-02-01
The binding of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to mouse peroxisome proliferator-activated receptor α ligand binding domain (mPPARα-LBD) was examined by a combination of in vitro investigation and in silico simulation. Fluorescence polarization (FP) assay showed that halogenated BPAs could bind to mPPARα-LBD* as the affinity ligands. The calculated electrostatic potential (ESP) illustrated the different charge distributions of halogenated BPAs with altered halogenation patterns. As electron-attracting substituents, halogens decrease the positive electrostatic potential and thereby have a significant influence on the electrostatic interactions of halogenated BPAs with mPPARα-LBD*. The docking results elucidated that hydrophobic and hydrogen-bonding interactions may also contribute to stabilize the binding of the halogenated BPAs to their receptor molecule. Comparison of the calculated binding energies with the experimentally determined affinities yielded a good correlation (R 2 =0.6659) that could provide a rational basis for designing environmentally benign chemicals with reduced toxicities. This work can potentially be used for preliminary screening of halogenated BPAs. Copyright © 2017 Elsevier B.V. All rights reserved.
Eom, Dae Seok; Inoue, Shinya; Patterson, Larissa B; Gordon, Tiffany N; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M
2012-01-01
The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation.
Patterson, Larissa B.; Gordon, Tiffany N.; Slingwine, Rebecca; Kondo, Shigeru; Watanabe, Masakatsu; Parichy, David M.
2012-01-01
The zebrafish adult pigment pattern has emerged as a useful model for understanding the development and evolution of adult form as well as pattern-forming mechanisms more generally. In this species, a series of horizontal melanophore stripes arises during the larval-to-adult transformation, but the genetic and cellular bases for stripe formation remain largely unknown. Here, we show that the seurat mutant phenotype, consisting of an irregular spotted pattern, arises from lesions in the gene encoding Immunoglobulin superfamily member 11 (Igsf11). We find that Igsf11 is expressed by melanophores and their precursors, and we demonstrate by cell transplantation and genetic rescue that igsf11 functions autonomously to this lineage in promoting adult stripe development. Further analyses of cell behaviors in vitro, in vivo, and in explant cultures ex vivo demonstrate that Igsf11 mediates adhesive interactions and that mutants for igsf11 exhibit defects in both the migration and survival of melanophores and their precursors. These findings identify the first in vivo requirements for igsf11 as well as the first instance of an immunoglobulin superfamily member functioning in pigment cell development and patterning. Our results provide new insights into adult pigment pattern morphogenesis and how cellular interactions mediate pattern formation. PMID:22916035
Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature
Prabhakarpandian, Balabhaskar; Shen, Ming-Che; Pant, Kapil; Kiani, Mohammad F.
2011-01-01
Cell-fluid and cell-cell interactions are critical components of many physiological and pathological conditions in the microvasculature. Similarly, particle-cell interactions play an important role in targeted delivery of therapeutics to tissue. Development of in vitro fluidic devices to mimic these microcirculatory processes has been a critical step forward in our understanding of the inflammatory process, development of nano-particulate drug carriers, and developing realistic in vitro models of the microvasculature and its surrounding tissue. However, widely used parallel plate flow based devices and assays have a number of important limitations for studying the physiological conditions in vivo. In addition, these devices are resource hungry and time consuming for performing various assays. Recently developed, more realistic, microfluidic based devices have been able to overcome many of these limitations. In this review, an overview of the fluidic devices and their use in studying the effects of shear forces on cell-cell and cell-particle interactions is presented. In addition, use of mathematical models and Computational Fluid Dynamics (CFD) based models for interpreting the complex flow patterns in the microvasculature are highlighted. Finally, the potential of 3D microfluidic devices and imaging for better representing in vivo conditions under which cell-cell and cell-particle interactions take place are discussed. PMID:21763328
Vecchiarelli, Anthony G.; Li, Min; Mizuuchi, Michiyo; Mizuuchi, Kiyoshi
2014-01-01
The E. coli Min system forms a cell-pole-to-cell-pole oscillator that positions the divisome at mid-cell. The MinD ATPase binds the membrane and recruits the cell division inhibitor MinC. MinE interacts with and releases MinD (and MinC) from the membrane. The chase of MinD by MinE creates the in vivo oscillator that maintains a low level of the division inhibitor at mid-cell. In vitro reconstitution and visualization of Min proteins on a supported lipid bilayer has provided significant advances in understanding Min patterns in vivo. Here we studied the effects of flow, lipid composition, and salt concentration on Min patterning. Flow and no-flow conditions both supported Min protein patterns with somewhat different characteristics. Without flow, MinD and MinE formed spiraling waves. MinD and, to a greater extent MinE, have stronger affinities for anionic phospholipid. MinD-independent binding of MinE to anionic lipid resulted in slower and narrower waves. MinE binding to the bilayer was also more susceptible to changes in ionic strength than MinD. We find that modulating protein diffusion with flow, or membrane binding affinities with changes in lipid composition or salt concentration, can differentially affect the retention time of MinD and MinE, leading to spatiotemporal changes in Min patterning. PMID:24930948
On the influence of surface patterning on tissue self-assembly and mechanics.
Coppola, Valerio; Ventre, Maurizio; Natale, Carlo F; Rescigno, Francesca; Netti, Paolo A
2018-04-28
Extracellular matrix assembly and composition influence the biological and mechanical functions of tissues. Developing strategies to control the spatial arrangement of cells and matrix is of central importance for tissue engineering-related approaches relying on self-assembling and scaffoldless processes. Literature reports demonstrated that signals patterned on material surfaces are able to control cell positioning and matrix orientation. However, the mechanisms underlying the interactions between material signals and the structure of the de novo synthesized matrix are far from being thoroughly understood. In this work, we investigated the ordering effect provided by nanoscale topographic patterns on the assembly of tissue sheets grown in vitro. We stimulated MC3T3-E1 preosteoblasts to produce and assemble a collagen-rich matrix on substrates displaying patterns with long- or short-range order. Then, we investigated microstructural features and mechanical properties of the tissue in uniaxial tension. Our results demonstrate that patterned material surfaces are able to control the initial organization of cells in close contact to the surface; then cell-generated contractile forces profoundly remodel tissue structure towards mechanically stable spatial patterns. Such a remodelling effect acts both locally, as it affects cell and nuclear shape and globally, by affecting the gross mechanical response of the tissue. Such an aspect of dynamic interplay between cells and the surrounding matrix must be taken into account when designing material platform for the in vitro generation of tissue with specific microstructural assemblies. Copyright © 2018 John Wiley & Sons, Ltd.
Comparison of experimental models for predicting laser-tissue interaction from 3.8-micron lasers
NASA Astrophysics Data System (ADS)
Williams, Piper C. M.; Winston, Golda C. H.; Randolph, Don Q.; Neal, Thomas A.; Eurell, Thomas E.; Johnson, Thomas E.
2004-07-01
The purpose of this study was to evaluate the laser-tissue interactions of engineered human skin and in-vivo pig skin following exposure to a single 3.8 micron laser light pulse. The goal of the study was to determine if these tissues shared common histologic features following laser exposure that might prove useful in developing in-vitro and in-vivo experimental models to predict the bioeffects of human laser exposure. The minimum exposure required to produce gross morphologic changes following a four microsecond, pulsed skin exposure for both models was determined. Histology was used to compare the cellular responses of the experimental models following laser exposure. Eighteen engineered skin equivalents (in-vitro model), were exposed to 3.8 micron laser light and the tissue responses compared to equivalent exposures made on five Yorkshire pigs (in-vivo model). Representative biopsies of pig skin were taken for histologic evaluation from various body locations immediately, one hour, and 24 hours following exposure. The pattern of epithelial changes seen following in-vitro laser exposure of the engineered human skin and in-vivo exposure of pig skin indicated a common histologic response for this particular combination of laser parameters.
Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.
Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya
2016-04-12
To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.
New Patterns of Activity in a Pair of Interacting Excitatory-Inhibitory Neural Fields
NASA Astrophysics Data System (ADS)
Folias, S. E.; Ermentrout, G. B.
2011-11-01
In this Letter, we study stationary bump solutions in a pair of interacting excitatory-inhibitory (E-I) neural fields in one dimension. We demonstrate the existence of localized bump solutions of persistent activity that can be maintained by the pair of interacting layers when a stationary bump is not supported by either layer in isolation—a scenario which may be relevant as a mechanism for the persistent activity associated with working memory in the prefrontal cortex and may explain why bumps are not seen in in vitro slice preparations. Furthermore, we describe a new type of stationary bump solution arising from a pitchfork bifurcation which produces a stationary bump in each layer with a spatial offset that increases with the bifurcation parameter.
Macrogenomic engineering via modulation of the scaling of chromatin packing density.
Almassalha, Luay M; Bauer, Greta M; Wu, Wenli; Cherkezyan, Lusik; Zhang, Di; Kendra, Alexis; Gladstein, Scott; Chandler, John E; VanDerway, David; Seagle, Brandon-Luke L; Ugolkov, Andrey; Billadeau, Daniel D; O'Halloran, Thomas V; Mazar, Andrew P; Roy, Hemant K; Szleifer, Igal; Shahabi, Shohreh; Backman, Vadim
2017-11-01
Many human diseases result from the dysregulation of the complex interactions between tens to thousands of genes. However, approaches for the transcriptional modulation of many genes simultaneously in a predictive manner are lacking. Here, through the combination of simulations, systems modelling and in vitro experiments, we provide a physical regulatory framework based on chromatin packing-density heterogeneity for modulating the genomic information space. Because transcriptional interactions are essentially chemical reactions, they depend largely on the local physical nanoenvironment. We show that the regulation of the chromatin nanoenvironment allows for the predictable modulation of global patterns in gene expression. In particular, we show that the rational modulation of chromatin density fluctuations can lead to a decrease in global transcriptional activity and intercellular transcriptional heterogeneity in cancer cells during chemotherapeutic responses to achieve near-complete cancer cell killing in vitro. Our findings represent a 'macrogenomic engineering' approach to modulating the physical structure of chromatin for whole-scale transcriptional modulation.
Modulation of trichloroethylene in vitro metabolism by different drugs in human.
Cheikh Rouhou, Mouna; Haddad, Sami
2014-08-01
Toxicological interactions with drugs have the potential to modulate the toxicity of trichloroethylene (TCE). Our objective is to identify metabolic interactions between TCE and 14 widely used drugs in human suspended hepatocytes and characterize the strongest using microsomal assays. Changes in concentrations of TCE and its metabolites were measured by headspace GC-MS. Results with hepatocytes show that amoxicillin, cimetidine, ibuprofen, mefenamic acid and ranitidine caused no significant interactions. Naproxen and salicylic acid showed to increase both TCE metabolites levels, whereas acetaminophen, carbamazepine and erythromycin rather decreased them. Finally, diclofenac, gliclazide, sulphasalazine and valproic acid had an impact on the levels of only one metabolite. Among the 14 tested drugs, 5 presented the most potent interactions and were selected for confirmation with microsomes, namely naproxen, salicylic acid, acetaminophen, carbamazepine and valproic acid. Characterization in human microsomes confirmed interaction with naproxen by competitively inhibiting trichloroethanol (TCOH) glucuronidation (Ki=2.329 mM). Inhibition of TCOH formation was also confirmed for carbamazepine (partial non-competitive with Ki=70 μM). Interactions with human microsomes were not observed with salicylic acid and acetaminophen, similar to prior results in rat material. For valproic acid, interactions with microsomes were observed in rat but not in human. Inhibition patterns were shown to be similar in human and rat hepatocytes, but some differences in mechanisms were noted in microsomal material between species. Next research efforts will focus on determining the adequacy between in vitro observations and the in vivo situation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Delinasios, John G; Angeli, Flora; Koumakis, George; Kumar, Shant; Kang, Wen-Hui; Sica, Gigliola; Iacopino, Fortunata; Lama, Gina; Lamprecht, Sergio; Sigal-Batikoff, Ina; Tsangaris, George T; Farfarelos, Christos D; Farfarelos, Maria C; Vairaktaris, Eleftherios; Vassiliou, Stavros; Delinasios, George J
2015-04-01
to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Ramos, Patricia Karla Santos; Brito, Maysa de Vasconcelos; Silveira, Fernando Tobias; Salgado, Cláudio Guedes; De Souza, Wanderley; Picanço-Diniz, Cristovam Wanderley; Picanço-Diniz, José Antonio Junior
2014-07-01
In the present study, we assessed morphological changes and cytokine production after in vitro interaction with causative agents of American cutaneous leishmaniasis and compared the microglia and macrophage immune responses. Cultures of microglia and macrophages infected with stationary-phase promastigotes of Leishmania (Viannia) shawi, Leishmania (Viannia) braziliensis or Leishmania (Leishmania) amazonensis were evaluated 24, 48 and 72 h after interaction. Macrophages only presented the classical phagocytic process while microglia also displayed large cytoplasmic projections similar to the ruffles described in macropinocytosis. In the macrophage cultures, the percentage of infected cells increased over time, in a fashion that was dependent on the parasite species. In contrast, in microglial cells as the culture time progressed, there was a significant reduction in the percentage of infected cells independent of parasite species. Measurements of cytokines in macrophage cultures 48 h after interactions revealed distinct expression patterns for different parasites, whereas in microglial cultures they were similar for all Leishmania tested species. Taken together, our results suggest that microglia may have a higher phagocytic ability and cytotoxic potential than macrophages for all investigated species. The robust response of microglia against all parasite species may suggest microglia have an important role in the defence against cerebral leishmaniasis.
Organ Polarity in Arabidopsis. NOZZLE Physically Interacts with Members of the YABBY Family1
Sieber, Patrick; Petrascheck, Michael; Barberis, Alcide; Schneitz, Kay
2004-01-01
Plant lateral organs exhibit proximal-distal and adaxial-abaxial polarity. In Arabidopsis, abaxial cell fate is regulated in part by putative transcription factors of the YABBY family, such as FILAMENTOUS FLOWER (FIL) and INNER NO OUTER (INO), by a mechanism that currently is not fully understood. NOZZLE (NZZ) encodes a plant-specific nuclear protein. Genetic evidence has shown that NZZ is involved in the positive feedback regulation of INO, thereby acting both as a temporal and spatial repressor of INO transcription. This mechanism allows the ovule primordium to complete its proximal-distal organization, prior to the onset of adaxial-abaxial development in the chalaza. During our study, we isolated FIL in a yeast two-hybrid screen using NZZ as bait. In vitro pull-down experiments confirmed the NZZ-FIL interaction. NZZ also bound INO and YABBY3, suggesting that NZZ generally interacts with YABBY proteins in vitro. The polar-charged region of NZZ was necessary and sufficient to bind to the zinc finger of INO and to interact with its C terminus carrying the high mobility group-like domain. We suggest that NZZ coordinates proximal-distal patterning and adaxial-abaxial polarity establishment in the developing ovule by directly binding to INO. PMID:15299139
NASA Astrophysics Data System (ADS)
Raos, B. J.; Simpson, M. C.; Doyle, C. S.; Murray, A. F.; Graham, E. S.; Unsworth, C. P.
2018-06-01
Objective. Recent literature suggests that astrocytes form organized functional networks and communicate through transient changes in cytosolic Ca2+. Traditional techniques to investigate network activity, such as pharmacological blocking or genetic knockout, are difficult to restrict to individual cells. The objective of this work is to develop cell-patterning techniques to physically manipulate astrocytic interactions to enable the study of Ca2+ in astrocytic networks. Approach. We investigate how an in vitro cell-patterning platform that utilizes geometric patterns of parylene-C on SiO2 can be used to physically isolate single astrocytes and small astrocytic networks. Main results. We report that single astrocytes are effectively isolated on 75 × 75 µm square parylene nodes, whereas multi-cellular astrocytic networks are isolated on larger nodes, with the mean number of astrocytes per cluster increasing as a function of node size. Additionally, we report that astrocytes in small multi-cellular clusters exhibit spatio-temporal clustering of Ca2+ transients. Finally, we report that the frequency and regularity of Ca2+ transients was positively correlated with astrocyte connectivity. Significance. The significance of this work is to demonstrate how patterning hNT astrocytes replicates spatio-temporal clustering of Ca2+ signalling that is observed in vivo but not in dissociated in vitro cultures. We therefore highlight the importance of the structure of astrocytic networks in determining ensemble Ca2+ behaviour.
Sivakamavalli, Jeyachandran; Tripathi, Sunil Kumar; Singh, Sanjeev Kumar; Vaseeharan, Baskaralingam
2015-01-01
Lipopolysaccharide and β-1,3 glucan-binding protein (LGBP) is a family of pattern-recognition transmembrane proteins (PRPs) which plays a vital role in the immune mechanism of crustaceans in adverse conditions. Fenneropenaeus indicus LGBP-deduced amino acid has conserved potential recognition motif for β-1,3 linkages of polysaccharides and putative RGD (Arg-Gly-Asp) cell adhesion sites for the activation of innate defense mechanism. In order to understand the stimulating activity of β-1,3 glucan (β-glucan) and its interaction with LGBP, a 3D model of LGBP is generated. Molecular docking is performed with this model, and the results indicate Arg71 with strong hydrogen bond from RGD domain of LGBP. Moreover, from the docking studies, we also suggest that Arg34, Lys68, Val135, and Ala146 in LGBP are important amino acid residues in binding as they have strong bonding interaction in the active site of LGBP. In our in vitro studies, yeast agglutination results suggest that shrimp F. indicus LGBP possesses sugar binding and recognition sites in its structure, which is responsible for agglutination reaction. Our results were synchronized with the already reported evidence both in vivo and in vitro experiments. This investigation may be valuable for further experimental investigation in the synthesis of novel immunomodulator.
Oral cancer radiotherapy affects enamel microhardness and associated indentation pattern morphology
Seyedmahmoud, R.; Thiagarajan, G.; Gorski, J. P.; Reed Edwards, R.; McGuire, J. D.
2017-01-01
Objectives The aim of this study is to determine the effects of in vitro and in vivo high-dose radiotherapy on microhardness and associated indentation pattern morphology of enamel. Materials and methods The inner, middle, and outer microhardness of enamel was evaluated using three experimental groups: control (non-radiated); in vitro irradiated; in vivo irradiated. In vitro specimens were exposed to simulated radiotherapy, and in vivo specimens were extracted teeth from oral cancer patients previously treated with radiotherapy. Indentations were measured via SEM images to calculate microhardness values and to assess the mechanomorphological properties of enamel before and after radiotherapy. Results Middle and outer regions of enamel demonstrated a significant decrease in microhardness after in vitro and in vivo irradiation compared to the control group (p < 0.05). Two indentation patterns were observed: pattern A—presence of microcracks around indent periphery, which represents local dissipation of deformation energy; pattern B—clean, sharp indents. The percentage of clean microindentation patterns, compared to controls, was significantly higher following in vitro and in vivo irradiation in all enamel regions. The highest percentage of clean microindentations (65%) was observed in the in vivo irradiated group in the inner region of enamel near the dentin-enamel junction. Conclusions For the first time, this study shows that in vitro and in vivo irradiation alters enamel microhardness. Likewise, the indentation pattern differences suggest that enamel may become more brittle following in vitro and in vivo irradiation. Clinical relevance The mechanomorphological property changes of enamel following radiation may be a contributory component of pathologic enamel delamination following oral cancer radiotherapy. PMID:29151196
Rethinking pattern formation in reaction-diffusion systems
NASA Astrophysics Data System (ADS)
Halatek, J.; Frey, E.
2018-05-01
The present theoretical framework for the analysis of pattern formation in complex systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present a new theoretical approach to characterize dynamical states arbitrarily far from (global) equilibrium. We show that reaction-diffusion systems that are driven by locally mass-conserving interactions can be understood in terms of local equilibria of diffusively coupled compartments. Diffusive coupling generically induces lateral redistribution of the globally conserved quantities, and the variable local amounts of these quantities determine the local equilibria in each compartment. We find that, even far from global equilibrium, the system is well characterized by its moving local equilibria. We apply this framework to in vitro Min protein pattern formation, a paradigmatic model for biological pattern formation. Within our framework we can predict and explain transitions between chemical turbulence and order arbitrarily far from global equilibrium. Our results reveal conceptually new principles of self-organized pattern formation that may well govern diverse dynamical systems.
Knecht, Hans; Johnson, Nathalie A; Haliotis, Tina; Lichtensztejn, Daniel; Mai, Sabine
2017-07-01
In classical Hodgkin's lymphoma (cHL), specific changes in the 3D telomere organization cause progression from mononuclear Hodgkin cells (H) to multinucleated Reed-Sternberg cells (RS). In a post-germinal center B-cell in vitro model, permanent latent membrane protein 1 (LMP1) expression, as observed in Epstein-Barr virus (EBV)-associated cHL, results in multinuclearity and complex chromosomal aberrations through downregulation of key element of the shelterin complex, the telomere repeat binding factor 2 (TRF2). Thus, we hypothesized that the three-dimensional (3D) telomere-TRF2 interaction was progressively disturbed during transition from H to RS cells. To this end, we developed and applied for the first time a combined quantitative 3D TRF2-telomere immune fluorescent in situ hybridization (3D TRF2/Telo-Q-FISH) technique to monolayers of primary H and RS cells, and adjacent benign internal control lymphocytes of lymph node biopsy suspensions from diagnostic lymph node biopsies of 14 patients with cHL. We show that H and RS cells are characterized by two distinct patterns of disruption of 3D telomere-TRF2 interaction. Disruption pattern A is defined by massive attrition of telomere signals and a considerable increase of TRF2 signals not associated with telomeres. This pattern is restricted to EBV-negative cHL. Disruption pattern B is defined by telomere de-protection due to an impressive loss of TRF2 signals, physically linked to telomeres. This pattern is typical of, but is not restricted to, LMP1+EBV-associated cHL. In the disruption pattern B group, so-called 'ghost' end-stage RS cells, void of both TRF2 and telomere signals, were identified, whether or not associated with EBV. Our findings demonstrate that two molecularly disparate mechanisms converge on the level of 3D telomere-TRF2 interaction in the formation of RS cells.
Co-culture of Gastric Organoids and Immortalized Stomach Mesenchymal Cells.
Bertaux-Skeirik, Nina; Centeno, Jomaris; Feng, Rui; Schumacher, Michael A; Shivdasani, Ramesh A; Zavros, Yana
2016-01-01
Three-dimensional primary epithelial-derived gastric organoids have recently been established as an important tool to study gastric development, physiology, and disease. Specifically, mouse-derived fundic gastric organoids (mFGOs) co-cultured with Immortalized Stomach Mesenchymal Cells (ISMCs) reflect expression patterns of mature fundic cell types seen in vivo, thus allowing for long-term in vitro studies of gastric epithelial cell physiology, regeneration, and bacterial-host interactions. Here, we describe the development and culture of mFGOs, co-cultured with ISMCs.
Phasic spike patterning in rat supraoptic neurones in vivo and in vitro
Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth
2004-01-01
In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047
Oocyte cryopreservation and in vitro culture affect calcium signalling during human fertilization.
Nikiforaki, D; Vanden Meerschaut, F; Qian, C; De Croo, I; Lu, Y; Deroo, T; Van den Abbeel, E; Heindryckx, B; De Sutter, P
2014-01-01
What are the precise patterns of calcium oscillations during the fertilization of human oocytes matured either in vivo or in vitro or aged in vitro and what is the effect of cryopreservation? Human oocytes matured in vivo exhibit a specific pattern of calcium oscillations, which is affected by in vitro maturation, in vitro ageing and cryopreservation. Oscillations in cytoplasmic calcium concentration are crucial for oocyte activation and further embryonic development. While several studies have described in detail the calcium oscillation pattern during fertilization in animal models, studies with human oocytes are scarce. This was a laboratory-based study using human MII oocytes matured in vivo or in vitro either fresh or after cryopreservation with slow freezing or vitrification. Altogether, 205 human oocytes were included in the analysis. In vivo and in vitro matured human oocytes were used for this research either fresh or following vitrification/warming (V/W) and slow freezing/thawing (F/T). Human oocytes were obtained following written informed consent from patients undergoing ovarian hyperstimulation. For the calcium pattern analysis, oocytes were loaded with the ratiometric calcium indicator fluorescent dye Fura-2. Following ICSI using sperm from a single donor, intracellular calcium was measured for 16 h at 37°C under 6% CO(2). The calcium oscillation parameters were calculated for all intact oocytes that showed calcium oscillations and were analyzed using the Mann-Whitney U-test. Human in vivo MII oocytes display a specific pattern of calcium oscillations following ICSI. This pattern is significantly affected by in vitro ageing, with the calcium oscillations occurring over a longer period of time and with a lower frequency, shorter duration and higher amplitude (P < 0.05). In vitro matured oocytes from the GV and MI stage exhibit a different pattern of calcium oscillations with calcium transients being of lower frequency and shorter duration compared with in vivo matured MII. In MI oocytes that reached the MII stage within 3 h the calcium oscillations additionally appear over a longer period of time (P < 0.05). In vivo MII oocytes show a different calcium oscillation pattern following V/W with calcium oscillations occurring over a longer period of time, with a higher amplitude and a lower frequency (P < 0.05). In vitro matured oocytes, either from the GV or the MI stage, also display an altered pattern of calcium oscillations after V/W and the parameters that were similarly affected in all these oocyte groups are the frequency and the amplitude of the calcium transients. Slow freezing/thawing differentially affects the calcium oscillation pattern of in vitro matured and in vitro aged oocytes. The relationship between a specific pattern of calcium oscillations and subsequent human embryonic development could not be evaluated since the calcium indicator used and the high-intensity excitation light impair development. Furthermore, all oocytes were derived from stimulated cycles and immature oocytes were denuded prior to in vitro maturation. Our data show for the first time how calcium signalling during human fertilization is affected by oocyte in vitro maturation, in vitro ageing as well as V/W and slow freezing/thawing. The analysis of calcium oscillations could be used as an oocyte quality indicator to evaluate in vitro culture and cryopreservation techniques of human oocytes. This work was supported by a clinical research mandate from the Flemish Foundation of Scientific Research (FWO-Vlaanderen, FWO09/ASP/063) to F.V.M, a fundamental clinical research mandate from the FWO-Vlaanderen (FWO05/FKM/001) to P.D.S and a Ghent University grant (KAN-BOF E/01321/01) to B.H. The authors have no conflict of interest to declare.
NASA Astrophysics Data System (ADS)
Evans, Conor
2015-03-01
Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.
Sugiyama, Akifumi; Manter, Daniel K.; Vivanco, Jorge M.
2013-01-01
Plant roots constantly secrete compounds into the soil to interact with neighboring organisms presumably to gain certain functional advantages at different stages of development. Accordingly, it has been hypothesized that the phytochemical composition present in the root exudates changes over the course of the lifespan of a plant. Here, root exudates of in vitro grown Arabidopsis plants were collected at different developmental stages and analyzed using GC-MS. Principle component analysis revealed that the composition of root exudates varied at each developmental stage. Cumulative secretion levels of sugars and sugar alcohols were higher in early time points and decreased through development. In contrast, the cumulative secretion levels of amino acids and phenolics increased over time. The expression in roots of genes involved in biosynthesis and transportation of compounds represented in the root exudates were consistent with patterns of root exudation. Correlation analyses were performed of the in vitro root exudation patterns with the functional capacity of the rhizosphere microbiome to metabolize these compounds at different developmental stages of Arabidopsis grown in natural soils. Pyrosequencing of rhizosphere mRNA revealed strong correlations (p<0.05) between microbial functional genes involved in the metabolism of carbohydrates, amino acids and secondary metabolites with the corresponding compounds released by the roots at particular stages of plant development. In summary, our results suggest that the root exudation process of phytochemicals follows a developmental pattern that is genetically programmed. PMID:23383346
Anyan, Morgen E.; Amiri, Aboutaleb; Harvey, Cameron W.; Tierra, Giordano; Morales-Soto, Nydia; Driscoll, Callan M.; Alber, Mark S.; Shrout, Joshua D.
2014-01-01
Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility. The role these appendages play when not facilitating motility or attachment, however, is unclear. Here we discern a passive intercellular role of TFP during flagellar-mediated swarming of P. aeruginosa that does not require TFP extension or retraction. We studied swarming at the cellular level using a combination of laboratory experiments and computational simulations to explain the resultant patterns of cells imaged from in vitro swarms. Namely, we used a computational model to simulate swarming and to probe for individual cell behavior that cannot currently be otherwise measured. Our simulations showed that TFP of swarming P. aeruginosa should be distributed all over the cell and that TFP−TFP interactions between cells should be a dominant mechanism that promotes cell−cell interaction, limits lone cell movement, and slows swarm expansion. This predicted physical mechanism involving TFP was confirmed in vitro using pairwise mixtures of strains with and without TFP where cells without TFP separate from cells with TFP. While TFP slow swarm expansion, we show in vitro that TFP help alter collective motion to avoid toxic compounds such as the antibiotic carbenicillin. Thus, TFP physically affect P. aeruginosa swarming by actively promoting cell−cell association and directional collective motion within motile groups to aid their survival. PMID:25468980
Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
Jaskoll, T; Luo, W; Snead, M L
1998-01-01
It is well known that the process of branching morphogenesis requires epithelial-mesenchymal interactions. One outstanding model for the study of tissue interactions during branching morphogenesis is the embryonic mouse submandibular gland (SMG). Although it has been clearly demonstrated that the branching pattern is dependent on interactions between the epithelium and the surrounding mesenchyme, little is known about the molecular mechanism underlying the branching process. One group of transcription factors that likely participates in the control of epithelial-mesenchymal inductive interactions are the Msx-class of homeodomain-containing proteins. In this paper, we focus on Msx-2 because its developmental expression is correlated with inductive interactions, suggesting that Msx-2 may play a functional role during cell-cell interactions. We demonstrate the expression of Msx-2 mRNA and protein to be primarily in the branching epithelia with progressive embryonic (E13 to E15) SMG development and, to a lesser extent, in the mesenchyme. We also show that Msx-2 is expressed by embryonic SMG primordia cultured under defined conditions. In addition, to begin to delineate a functional role for Msx-2, we employed an experimental strategy by using exogenous glucocorticoid (CORT) treatment of embryonic SMGs in vitro and in vivo to significantly enhance branching morphogenesis and evaluate the effect of CORT treatment on embryonic SMG Msx-2 expression. A marked increase in Msx-2 transcripts and protein is detected with in vitro and in vivo CORT treatment. Our studies indicate that one mechanism of CORT regulation of salivary gland morphogenesis is likely through the modulation of Msx-2 gene expression.
Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar
2013-01-01
Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110
Applegate, Matthew B.; Coburn, Jeannine; Partlow, Benjamin P.; Moreau, Jodie E.; Mondia, Jessica P.; Marelli, Benedetto; Kaplan, David L.; Omenetto, Fiorenzo G.
2015-01-01
Light-induced material phase transitions enable the formation of shapes and patterns from the nano- to the macroscale. From lithographic techniques that enable high-density silicon circuit integration, to laser cutting and welding, light–matter interactions are pervasive in everyday materials fabrication and transformation. These noncontact patterning techniques are ideally suited to reshape soft materials of biological relevance. We present here the use of relatively low-energy (< 2 nJ) ultrafast laser pulses to generate 2D and 3D multiscale patterns in soft silk protein hydrogels without exogenous or chemical cross-linkers. We find that high-resolution features can be generated within bulk hydrogels through nearly 1 cm of material, which is 1.5 orders of magnitude deeper than other biocompatible materials. Examples illustrating the materials, results, and the performance of the machined geometries in vitro and in vivo are presented to demonstrate the versatility of the approach. PMID:26374842
In vitro receptivity of carbonate rocks to endolithic lichen-forming aposymbionts.
Favero-Longo, Sergio E; Borghi, Alessandro; Tretiach, Mauro; Piervittori, Rosanna
2009-10-01
Sterile cultured isolates of lichen-forming aposymbionts have not yet been used to investigate lichen-rock interactions under controlled conditions. In this study mycobionts and photobiont of the endolithic lichens Bagliettoa baldensis and Bagliettoa marmorea were isolated and inoculated with coupons of one limestone and four marbles commonly employed in the Cultural Heritage framework. After one year of incubation, microscopic observations of polished cross-sections were performed to verify if the typical colonization patterns observed in the field may be reproduced in vitro and to evaluate the receptivity of the five lithotypes to endolithic lichens. The mycobionts of the two species developed both on the surface of and within all the lithotypes, showing different penetration pathways which depend on mineralogical and structural features and highlight different receptivity. By contrast, algae inoculated with the coupons did not penetrate them. Observations suggest that the hyphal penetration along intrinsic discontinuities of rocks is a relatively fast phenomenon when these organisms are generally considered as slow-growing. Samples from limestone outcrops and abandoned marble quarries, colonized by the same species or other representatives of Verrucariaceae, showed penetration pathways intriguingly similar to those reproduced in vitro and highlighted that lichen-driven erosion processes only increase the availability of hyphal passageways after a long-term colonization. These results show that in vitro incubation of sterile cultured lichen-forming ascomycetes with rock coupons is a practicable experimental system to investigate the lichen-rock interactions under controlled conditions and, together with analysis in situ, may support decisions on conservative treatments of historical and cultural significant stone substrata.
Antitumor activity of Ru(III) complexes carrying beta-diketonato ligands in vitro and in vivo.
Arandjelovic, S S; Bjelogrlic, K S; Malesevic, N N; Tesic, Lj Z; Radulovic, S S
2009-01-01
To investigate the antitumor activity of two newly synthesized ruthenium(III) [Ru(III)] compounds carrying bidentate ligands: (acac)-acetylacetonate, [Ru(acac)3), and (tfac)-trifluoroacetylacetonate [Ru(tfac)3]. The activity of ruthenium(III) analogues was evaluated on HeLa, B16, and Femx cell lines for cytotoxicity in vitro using MTT assay, and inhibition on tumor invading ability in vitro using cell migration and invasion assays, whereas inhibition of tumor growth in vivo was estimated on advanced B16 murine melanoma model. Both compounds were also investigated in combinations with cisplatin, oxaliplatin, or poly ADP-ribose polymerase- 1 (PARP-1) inhibitor, in order to determine the pattern of mutual interactions. Applied as single drugs, Ru(tfac)3 showed high cytotoxic activity against HeLa and Femx cell lines, while Ru(acac)3 did not reach the IC50 on any of the cell lines tested. In combinations, Ru(acac)3 with cisplatin gained synergistic interaction, antagonistic with oxaliplatin, and of different kind with (PARP-1) inhibitor in concentration-and cell line-dependent manner. Ru(acac)3 exhibited inhibition of HeLa cell migration and gelatinolytic activity of MMP-2 and MMP-9. Ru(tfac)3 complexes did not induce significant reduction of melanoma growth in vivo, whereas Ru(acac)3 did, but the latter failed to contribute in lifespan improvement. The investigated ruthenium complexes showed different levels of antitumor activity in vitro and in vivo, implicating on different mechanisms of their action as well as diverse perspectives in cancer treatment.
NASA Astrophysics Data System (ADS)
Patel, R. N.; Singh, Yogendra Pratap
2018-02-01
The mixed ligand oxovanadium(IV) complex [VO(L1)(L2)] [L1 = N'-[(Z)-phenyl(pyridin-2-yl)methylidene]benzohydrazide and L2 = Benzohydrazide] has been synthesized in aerobic condition. The complex was characterized by elemental analysis spectroscopic (UV-vis, IR, epr) and electrochemical methods. X-ray diffraction pattern was also used to characterize this complex, which has a distorted octahedral structure. Single crystal diffraction analysis reveals that Csbnd H⋯π (aryl/metal chelate rings) interactions contribute to the stabilization of the crystal structure in given dimension. The room temperature magnetic susceptibility data shows paramagnetic nature of the complex. The complex was also tested for in-vitro antidiabetic activity. Moderate α-glucosidase inhibition is shown by this complex, which may be considered as α-glucosidase inhibitors.
Global Profiling of hnRNP A2/B1-RNA Binding on Chromatin Highlights LncRNA Interactions.
Nguyen, Eric D; Balas, Maggie M; Griffin, April M; Roberts, Justin T; Johnson, Aaron M
2018-06-23
Long noncoding RNAs (lncRNAs) often carry out their functions through associations with adaptor proteins. We recently identified heterogeneous ribonucleoprotein (hnRNP) A2/B1 as an adaptor of the human HOTAIR lncRNA. hnRNP A2 and B1 are splice isoforms of the same gene. The spliced version of HOTAIR preferentially associates with the B1 isoform, which we hypothesize contributes to RNA-RNA matching between HOTAIR and transcripts of target genes in breast cancer. Here we used enhanced cross-linking immunoprecipitation (eCLIP) to map the direct interactions between A2/B1 and RNA in breast cancer cells. Despite differing by only twelve amino acids, the A2 and B1 splice isoforms associate preferentially with distinct populations of RNA in vivo. Through cellular fractionation experiments we characterize the pattern of RNA association in chromatin, nucleoplasm, and cytoplasm. We find that a majority of interactions occur on chromatin, even those that do not contribute to co-transcriptional splicing. A2/B1 binding site locations on multiple RNAs hint at a contribution to the regulation and function of lncRNAs. Surprisingly, the strongest A2/B1 binding site occurs in a retained intron of HOTAIR, which interrupts an RNA-RNA interaction hotspot. In vitro eCLIP experiments highlight additional exonic B1 binding sites in HOTAIR which also surround the RNA-RNA interaction hotspot. Interestingly, a version of HOTAIR with the intron retained is still capable of making RNA-RNA interactions in vitro through the hotspot region. Our data further characterize the multiple functions of a repurposed splicing factor with isoform-biased interactions, and highlight that the majority of these functions occur on chromatin-associated RNA.
Capillarity Guided Patterning of Microliquids.
Kang, Myeongwoo; Park, Woohyun; Na, Sangcheol; Paik, Sang-Min; Lee, Hyunjae; Park, Jae Woo; Kim, Ho-Young; Jeon, Noo Li
2015-06-01
Soft lithography and other techniques have been developed to investigate biological and chemical phenomena as an alternative to photolithography-based patterning methods that have compatibility problems. Here, a simple approach for nonlithographic patterning of liquids and gels inside microchannels is described. Using a design that incorporates strategically placed microstructures inside the channel, microliquids or gels can be spontaneously trapped and patterned when the channel is drained. The ability to form microscale patterns inside microfluidic channels using simple fluid drain motion offers many advantages. This method is geometrically analyzed based on hydrodynamics and verified with simulation and experiments. Various materials (i.e., water, hydrogels, and other liquids) are successfully patterned with complex shapes that are isolated from each other. Multiple cell types are patterned within the gels. Capillarity guided patterning (CGP) is fast, simple, and robust. It is not limited by pattern shape, size, cell type, and material. In a simple three-step process, a 3D cancer model that mimics cell-cell and cell-extracellular matrix interactions is engineered. The simplicity and robustness of the CGP will be attractive for developing novel in vitro models of organ-on-a-chip and other biological experimental platforms amenable to long-term observation of dynamic events using advanced imaging and analytical techniques. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Van der Heyden, C; Allizard, F; Sire, J-Y; Huysseune, A
2005-09-01
A technique for organotypic in vitro culture with serum-free medium was tested for its appropriateness to mimic normal odontogenesis in the cichlid fish Hemichromis bimaculatus and the zebrafish Danio rerio. Serial semithin sections were observed by light microscopy to collect data on tooth patterning and transmission electron microscopy was used to compare cellular and extracellular features of tooth germs developing in vitro with the situation in vivo. Head explants of H. bimaculatus from 120 h post-fertilization (hPF) to 8.5 days post-fertilization (dPF) and of zebrafish from 45 hPF to 79 hPF and adults kept in culture for 3, 4 or 7 days revealed that tooth germs developed in vitro from explants in which the buccal or pharyngeal epithelium was apparently undifferentiated and, when present at the time of explantation, they continued their development up to a stage of attachment. In addition, the medium allowed the morphogenesis and cytodifferentiation of the tooth germs similar to that observed in vivo and the establishment of a dental pattern (place and order of tooth appearance and of attachment) that mimicked that in vivo. Organotypic culture in serum-free conditions thus provides us with the means of studying epithelial-mesenchymal interactions during tooth development in teleost fish and of analysing the genetic control of either mandibular or pharyngeal tooth development and replacement in these polyphyodont species. Importantly, it allows heads from embryonically lethal (zebrafish) mutants or from early lethal knockdown experiments to develop beyond the point at which the embryos normally die. Such organotypic culture in serum-free conditions could therefore become a powerful tool in developmental studies and open new perspectives for craniofacial research.
Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B.; Waskiewicz, Andrew Jan
2007-01-01
Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro, and that this interaction is required for both the eng2a overexpression phenotype and Engrailed’s role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube. PMID:16959235
Erickson, Timothy; Scholpp, Steffen; Brand, Michael; Moens, Cecilia B; Waskiewicz, Andrew Jan
2007-01-15
Pbx proteins are a family of TALE-class transcription factors that are well characterized as Hox co-factors acting to impart segmental identity to the hindbrain rhombomeres. However, no role for Pbx in establishing more anterior neural compartments has been demonstrated. Studies done in Drosophila show that Engrailed requires Exd (Pbx orthologue) for its biological activity. Here, we present evidence that zebrafish Pbx proteins cooperate with Engrailed to compartmentalize the midbrain by regulating the maintenance of the midbrain-hindbrain boundary (MHB) and the diencephalic-mesencephalic boundary (DMB). Embryos lacking Pbx function correctly initiate midbrain patterning, but fail to maintain eng2a, pax2a, fgf8, gbx2, and wnt1 expression at the MHB. Formation of the DMB is also defective as shown by a caudal expansion of diencephalic epha4a and pax6a expression into midbrain territory. These phenotypes are similar to the phenotype of an Engrailed loss-of-function embryo, supporting the hypothesis that Pbx and Engrailed act together on a common genetic pathway. Consistent with this model, we demonstrate that zebrafish Engrailed and Pbx interact in vitro and that this interaction is required for both the eng2a overexpression phenotype and Engrailed's role in patterning the MHB. Our data support a novel model of midbrain development in which Pbx and Engrailed proteins cooperatively pattern the mesencephalic region of the neural tube.
Vélez, Jessica M.; Tschaplinski, Timothy J.; Vilgalys, Rytas; ...
2017-04-07
Here, we examined variation in growth rate, patterns of nitrogen utilization, and competitive interactions of Atractiellarhizophila isolates from the roots of Populus hosts. Atractiella grew significantly faster on media substituted with inorganic nitrogen sources and slower in the presence of another fungal genus. In order to determine plausible causal mechanisms we used metabolomics to explore competitive interactions between Atractiella strains and Fusarium oxysporum or Leptosphaerulina chartarum. Metabolomic screening of potential microbial inhibitors showed increased levels of glycosides produced in vitro by Atractiella when grown with a different fungal genus, relative to when grown alone. Overall, our results suggest Atractiella ismore » a poor competitor with other fungi via direct routes e.g. faster growth rates, but may utilize chemical interactions and possibly nitrogen sources to defend itself, and niche partition its way to abundance in the plant host root and rhizosphere.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vélez, Jessica M.; Tschaplinski, Timothy J.; Vilgalys, Rytas
Here, we examined variation in growth rate, patterns of nitrogen utilization, and competitive interactions of Atractiellarhizophila isolates from the roots of Populus hosts. Atractiella grew significantly faster on media substituted with inorganic nitrogen sources and slower in the presence of another fungal genus. In order to determine plausible causal mechanisms we used metabolomics to explore competitive interactions between Atractiella strains and Fusarium oxysporum or Leptosphaerulina chartarum. Metabolomic screening of potential microbial inhibitors showed increased levels of glycosides produced in vitro by Atractiella when grown with a different fungal genus, relative to when grown alone. Overall, our results suggest Atractiella ismore » a poor competitor with other fungi via direct routes e.g. faster growth rates, but may utilize chemical interactions and possibly nitrogen sources to defend itself, and niche partition its way to abundance in the plant host root and rhizosphere.« less
Sukhodolets, Karen E.; Hickman, Alison B.; Agarwal, Sunita K.; Sukhodolets, Maxim V.; Obungu, Victor H.; Novotny, Elizabeth A.; Crabtree, Judy S.; Chandrasekharappa, Settara C.; Collins, Francis S.; Spiegel, Allen M.; Burns, A. Lee; Marx, Stephen J.
2003-01-01
Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. PMID:12509449
Tran, T H T; Boudry, C; Everaert, N; Théwis, A; Portetelle, D; Daube, G; Nezer, C; Taminiau, B; Bindelle, J
2016-02-01
Adding mucus to in vitro fermentation models of the large intestine shows that some genera, namely lactobacilli, are dependent on host-microbiota interactions and that they rely on mucosal layers to increase their activity. This study investigated whether this dependence on mucus is substrate dependent and to what extent other genera are impacted by the presence of mucus. Inulin and cellulose were fermented in vitro by a fecal inoculum from pig in the presence or not of mucin beads in order to compare fermentation patterns and bacterial communities. Mucins increased final gas production with inulin and shifted short-chain fatty acid molar ratios (P < 0.001). Quantitative real-time PCR analyses revealed that Lactobacillus spp. and Bifidobacterium spp. decreased with mucins, but Bacteroides spp. increased when inulin was fermented. A more in-depth community analysis indicated that the mucins increased Proteobacteria (0.55 vs 0.25%, P = 0.013), Verrucomicrobia (5.25 vs 0.03%, P = 0.032), Ruminococcaceae, Bacteroidaceae and Akkermansia spp. Proteobacteria (5.67 vs 0.55%, P < 0.001) and Lachnospiraceae (33 vs 10.4%) were promoted in the mucus compared with the broth, while Ruminococcaceae decreased. The introduction of mucins affected many microbial genera and fermentation patterns, but from PCA results, the impact of mucus was independent of the fermentation substrate. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yan, Miling; Pamp, Sünje J; Fukuyama, Julia; Hwang, Peter H; Cho, Do-Yeon; Holmes, Susan; Relman, David A
2013-12-11
The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and noncarriers at three nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, and competitive interactions were only evident at sites with ciliated pseudostratified columnar epithelium. In vitro cocultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and noncarriers. Copyright © 2013 Elsevier Inc. All rights reserved.
Yan, Miling; Pamp, Sünje J.; Fukuyama, Julia; Hwang, Peter H.; Cho, Do-Yeon; Holmes, Susan; Relman, David A.
2013-01-01
Summary The indigenous microbiota of the nasal cavity plays important roles in human health and disease. Patterns of spatial variation in microbiota composition may help explain Staphylococcus aureus colonization, and reveal interspecies and species-host interactions. To assess the biogeography of the nasal microbiota, we sampled healthy subjects, representing both S. aureus carriers and non-carriers, at 3 nasal sites (anterior naris, middle meatus, and sphenoethmoidal recess). Phylogenetic compositional and sparse linear discriminant analyses revealed communities that differed according to site epithelium type and S. aureus culture-based carriage status. Corynebacterium accolens and C. pseudodiphtheriticum were identified as the most important microbial community determinants of S. aureus carriage, with competitive interactions evident only at sites with ciliated pseudostratified columnar epithelium. In vitro co-cultivation experiments provided supporting evidence of interactions among these species. These results highlight spatial variation in nasal microbial communities and differences in community composition between S. aureus carriers and non-carriers. PMID:24331461
PPKs mediate direct signal transfer from phytochrome photoreceptors to transcription factor PIF3
Ni, Weimin; Xu, Shou-Ling; González-Grandío, Eduardo; ...
2017-05-11
Upon light-induced nuclear translocation, phytochrome (phy) sensory photoreceptors interact with, and induce rapid phosphorylation and consequent ubiquitin-mediated degradation of, transcription factors, called PIFs, thereby regulating target gene expression and plant development. Nevertheless, the biochemical mechanism of phy-induced PIF phosphorylation has remained ill-defined. Here in this paper we identify a family of nuclear protein kinases, designated Photoregulatory Protein Kinases (PPK1–4; formerly called MUT9-Like Kinases (MLKs)), that interact with PIF3 and phyB in a light-induced manner in vivo. Genetic analyses demonstrate that the PPKs are collectively necessary for the normal light-induced phosphorylation and degradation of PIF3. PPK1 directly phosphorylates PIF3 in vitro,more » with a phosphosite pattern that strongly mimics the light-induced pattern in vivo. These data establish that the PPKs are directly involved in catalysing the photoactivated-phy-induced phosphorylation of PIF3 in vivo, and thereby are critical components of a transcriptionally centred signalling hub that pleiotropically regulates plant growth and development in response to multiple signalling pathways.« less
Electrical receptive fields of retinal ganglion cells: Influence of presynaptic neurons
Apollo, Nicholas V.; Garrett, David J.
2018-01-01
Implantable retinal stimulators activate surviving neurons to restore a sense of vision in people who have lost their photoreceptors through degenerative diseases. Complex spatial and temporal interactions occur in the retina during multi-electrode stimulation. Due to these complexities, most existing implants activate only a few electrodes at a time, limiting the repertoire of available stimulation patterns. Measuring the spatiotemporal interactions between electrodes and retinal cells, and incorporating them into a model may lead to improved stimulation algorithms that exploit the interactions. Here, we present a computational model that accurately predicts both the spatial and temporal nonlinear interactions of multi-electrode stimulation of rat retinal ganglion cells (RGCs). The model was verified using in vitro recordings of ON, OFF, and ON-OFF RGCs in response to subretinal multi-electrode stimulation with biphasic pulses at three stimulation frequencies (10, 20, 30 Hz). The model gives an estimate of each cell’s spatiotemporal electrical receptive fields (ERFs); i.e., the pattern of stimulation leading to excitation or suppression in the neuron. All cells had excitatory ERFs and many also had suppressive sub-regions of their ERFs. We show that the nonlinearities in observed responses arise largely from activation of presynaptic interneurons. When synaptic transmission was blocked, the number of sub-regions of the ERF was reduced, usually to a single excitatory ERF. This suggests that direct cell activation can be modeled accurately by a one-dimensional model with linear interactions between electrodes, whereas indirect stimulation due to summated presynaptic responses is nonlinear. PMID:29432411
Moroncini, Francesca; Mazzoni, Serena; Belicchi, Marzia Laura Chiara; Villa, Chiara; Erratico, Silvia; Colombo, Elena; Calcaterra, Francesca; Brambilla, Lucia; Torrente, Yvan; Albertini, Gianni; Della Bella, Silvia
2014-01-01
Spatiotemporal interactions play important roles in tissue development and function, especially in stem cell-seeded bioscaffolds. Cells interact with the surface of bioscaffold polymers and influence material-driven control of cell differentiation. In vitro cultures of different human progenitor cells, that is, endothelial colony-forming cells (ECFCs) from a healthy control and a patient with Kaposi sarcoma (an angioproliferative disease) and human CD133+ muscle-derived stem cells (MSH 133+ cells), were seeded onto polyglycolic acid–polylactic acid scaffolds. Three-dimensional (3D) images were obtained by X-ray phase-contrast microtomography (micro-CT) and processed with the Modified Bronnikov Algorithm. The method enabled high spatial resolution detection of the 3D structural organization of cells on the bioscaffold and evaluation of the way and rate at which cells modified the construct at different time points from seeding. The different cell types displayed significant differences in the proliferation rate. In conclusion, X-ray synchrotron radiation phase-contrast micro-CT analysis proved to be a useful and sensitive tool to investigate the spatiotemporal pattern of progenitor cell organization on a bioscaffold. PMID:23879738
Zumoffen, C M; Gil, R; Caille, A M; Morente, C; Munuce, M J; Ghersevich, S A
2013-05-01
Is lactoferrin (LF) (detected in oviductal secretion) able to bind to oocytes and sperm and modulate gamete interaction? LF binds to zona pellucida (ZP) and spermatozoa (depending upon the capacitation stage and acrosome status) and inhibits gamete interaction in vitro. Proteins from human oviductal tissue secretion modulate gamete interaction and parameters of sperm function in vitro and some of them bind to sperm, but they remain to be isolated and identified. Proteins were isolated from human oviductal tissue secretion using their sperm membrane binding ability. One of the isolated proteins was identified as human LF and immunolocalized in tubal tissues. LF expression was analyzed in native oviductal fluid and oviduct epithelial cells (at different phases of the menstrual cycle: proliferative, periovulatory and secretory). In addition, the LF binding sites on spermatozoa (at different capacitation and acrosome reaction stages) and on ZP and the dose-dependent effect of LF on gamete interaction were investigated. All experiments were performed at least three times. Tubal tissues obtained from premenopausal patients (scheduled for hysterectomy, n = 23) were cultured in DMEM/Ham's F12 medium and conditioned media (CM) were collected. Motile spermatozoa were obtained by swim-up from normozoospermic semen samples from healthy donors (n = 4). An affinity chromatography with sperm membrane extracts was used to isolate proteins from CM. Isolated proteins were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophresis and further identified by nano liquid chromatography tandem mass spectrometry peptide sequencing. The presence of LF in oviductal tissue was investigated by immunohistochemistry and immunofluorescence and was detected in native oviductal fluid and oviduct epithelial cells homogenates by western blot. LF binding sites on gametes were investigated by incubating gametes with the protein coupled to fluorescein isothiocyanate (FITC). The acrosome reaction was assessed with Pisum sativum agglutinin conjugated with rhodamine. The effect of increasing concentrations of LF (0.1-100 µg/ml) on gamete interaction was evaluated by a sperm-ZP binding assay, using human oocytes donated by women undergoing IVF procedures. A protein isolated by the affinity column was identified as human LF. LF was immunolocalized in human oviductal tissue and detected in oviductal fluid and oviduct epithelial cell homogenates. In the latter case, LF expression was highest at the periovulatory phase of the menstrual cycle (P < 0.01). Different LF binding patterns were observed on spermatozoa depending upon capacitation stage and if the acrosome reaction had occurred. Unstained sperm were most prevalent before capacitation, but after incubation for 6 h under capacitating conditions and in acrosome-reacted sperm LF binding was observed, mainly localized in the equatorial segment and post-acrosomal region of the sperm head. LF binding studies on ZP showed homogenous staining. LF caused a dose-dependent significant inhibition of sperm-ZP interaction, and the effect was already significant (P < 0.01) with the lowest LF concentration used. This study has investigated the effect of LF only on human gamete interaction in vitro and thus has some limitations. Further investigations of the potential mechanisms involved in LF action both on gamete function in vitro and in vivo in animal models are needed to confirm the role of this protein in the reproductive process. The present data indicate that human oviductal LF expression is cycle dependent and inhibited gamete interaction in vitro. No previous data were available about potential direct effects of LF on gamete interaction. It could be thought that the protein is involved in the regulation of the reproductive process, perhaps contributing to prevent polyspermy. Thus, further research is needed to clarify the potential role of LF in the regulation of the fertilization process. This study was supported by grants from FONCYT (PICT 01095, S.A.G., M.J.M) and SECyT UNR (PIDBIO238, S.A.G). The authors have no conflict of interest to declare.
Li, Xiao Ming; Sang, Ya Lin; Zhao, Xiang Yu; Zhang, Xian Sheng
2013-01-01
In angiosperms, successful pollen-pistil interactions are the prerequisite and guarantee of subsequent fertilization and seed production. Recent profile analyses have helped elucidate molecular mechanisms underlying these processes at both transcriptomic and proteomic levels, but the involvement of miRNAs in pollen-pistil interactions is still speculative. In this study, we sequenced four small RNA libraries derived from mature pollen, in vitro germinated pollen, mature silks, and pollinated silks of maize (Zea mays L.). We identified 161 known miRNAs belonging to 27 families and 82 novel miRNAs. Of these, 40 conserved and 16 novel miRNAs showed different expression levels between mature and germinated pollen, and 30 conserved and eight novel miRNAs were differentially expressed between mature and pollinated silks. As candidates for factors associated with pollen-silk (pistil) interactions, expression patterns of the two sets of differentially expressed miRNAs were confirmed by stem-loop real-time RT-PCR. Transcript levels of 22 predicted target genes were also validated using real-time RT-PCR; most of these exhibited expression patterns contrasting with those of their corresponding miRNAs. In addition, GO analysis of target genes of differentially expressed miRNAs revealed that functional categories related to auxin signal transduction and gene expression regulation were overrepresented. These results suggest that miRNA-mediated auxin signal transduction and transcriptional regulation have roles in pollen-silk interactions. The results of our study provide novel information for understanding miRNA regulatory roles in pollen-pistil interactions.
Bhattacherjee, Abhishek; Dhara, Kaliprasanna; Chakraborti, Abhay Sankar
2017-09-01
Non- enzymatic glycation, also known as Maillard reaction, is one of the most important and investigated reactions in biochemistry. Maillard reaction products (MRPs) like protein-derived advanced glycation end products (AGEs) are often referred to cause pathophysiological complications in human systems. On contrary, several MRPs are exogenously used as antioxidant, antimicrobial and flavouring agents. In the preset study, we have shown that argpyrimidine, a well-established AGE, interacts with bovine serum albumin (BSA) and glucose individually in standard BSA-glucose model system and successfully inhibits glycation of the protein. Bimolecular interaction of argpyrimidine with glucose or BSA has been studied independently. Chromatographic purification, different spectroscopic studies and molecular modeling have been used to evaluate the nature and pattern of interactions. Binding of argpyrimidine with BSA prevents incorporation of glucose inside the native protein. Argpyrimidine can also directly entrap glucose. Both these interactions may be associated with the antiglycation potential of argpyrimidine, indicating a beneficial function of an AGE. Copyright © 2017 Elsevier B.V. All rights reserved.
Estimating Likelihood of Fetal In Vivo Interactions Using In Vitro HTS Data (Teratology meeting)
Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug intera...
Membrane Driven Spatial Organization of GPCRs
NASA Astrophysics Data System (ADS)
Mondal, Sayan; Johnston, Jennifer M.; Wang, Hao; Khelashvili, George; Filizola, Marta; Weinstein, Harel
2013-10-01
Spatial organization of G-protein coupled receptors (GPCRs) into dimers and higher order oligomers has been demonstrated in vitro and in vivo. The pharmacological readout was shown to depend on the specific interfaces, but why particular regions of the GPCR structure are involved, and how ligand-determined states change them remains unknown. Here we show why protein-membrane hydrophobic matching is attained upon oligomerization at specific interfaces from an analysis of coarse-grained molecular dynamics simulations of the spontaneous diffusion-interaction of the prototypical beta2-adrenergic (β2AR) receptors in a POPC lipid bilayer. The energy penalty from mismatch is significantly reduced in the spontaneously emerging oligomeric arrays, making the spatial organization of the GPCRs dependent on the pattern of mismatch in the monomer. This mismatch pattern is very different for β2AR compared to the highly homologous and structurally similar β1AR, consonant with experimentally observed oligomerization patterns of β2AR and β1AR. The results provide a mechanistic understanding of the structural context of oligomerization.
Meireles, Elaine A.; Carneiro, Cíntia N. B.; DaMatta, Renato A.; Samuels, Richard I.; Silva, Carlos P.
2009-01-01
Scanning electron microscopy images were taken of starch granules from different sources following exposure in vivo and in vitro to gut α-amylases isolated from Tenebrio molitor L. (Coleoptera: Tenebrionidae) and Zabrotes subfasciatus Boheman (Coleoptera: Bruchidae). One α-amylase was isolated from whole larval midguts of T. molitor using non-denaturing SDS-PAGE, while two other α-amylase fractions were isolated from whole larval midguts of Z. subfasciatus using hydrophobic interaction chromatography., Digested starch granules from larvae fed on maize, potato or wheat were isolated from midgut contents. Combinations of starch granules with isolated α-amylases from both species showed similar patterns of granule degradation. In vitro enzymatic degradation of maize starch granules by the three different α-amylase fractions began by creating small holes and crater-like areas on the surface of the granules. Over time, these holes increased in number and area resulting in extensive degradation of the granule structure. Granules from potato did not show formation of pits and craters on their surface, but presented extensive erosion in their interior. For all types of starch, as soon as the interior of the starch granule was reached, the inner layers of amylose and amylopectin were differentially hydrolyzed, resulting in a striated pattern. These data support the hypothesis that the pattern of starch degradation depends more on the granule type than on the α-amylase involved. PMID:19619014
Fibroblast growth factor receptor signaling in kidney and lower urinary tract development
Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M.
2015-01-01
Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans. PMID:26293980
Fibroblast growth factor receptor signaling in kidney and lower urinary tract development.
Walker, Kenneth A; Sims-Lucas, Sunder; Bates, Carlton M
2016-06-01
Fibroblast growth factor receptors (FGFRs) and FGF ligands are highly expressed in the developing kidney and lower urinary tract. Several classic studies showed many effects of exogenous FGF ligands on embryonic renal tissues in vitro and in vivo. Another older landmark publication showed that mice with a dominant negative Fgfr fragment had severe renal dysplasia. Together, these studies revealed the importance of FGFR signaling in kidney and lower urinary tract development. With the advent of modern gene targeting techniques, including conditional knockout approaches, several publications have revealed critical roles for FGFR signaling in many lineages of the kidney and lower urinary tract at different stages of development. FGFR signaling has been shown to be critical for early metanephric mesenchymal patterning, Wolffian duct patterning including induction of the ureteric bud, ureteric bud branching morphogenesis, nephron progenitor survival and nephrogenesis, and bladder mesenchyme patterning. FGFRs pattern these tissues by interacting with many other growth factor signaling pathways. Moreover, the many genetic Fgfr and Fgf animal models have structural defects mimicking numerous congenital anomalies of the kidney and urinary tract seen in humans. Finally, many studies have shown how FGFR signaling is critical for kidney and lower urinary tract patterning in humans.
Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U
2010-06-21
Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.
Ma, Qingsu; Zhang, Huijuan; Zheng, Xiaowei; Huo, Yujia; Lu, Feng
2017-04-04
To study the effect of amphipathic helix characteristics of FtsZ (236-245) domain on FtsZ assembly and interaction of FtsZ with FtsA in Escherichia coli strains. We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis, and purified targeted proteins using affinity chromatography. QN23-QN29 strains were constructed by linear DNA homologous recombination and P1 transduction. We observed cellular localization patterns of FtsZ and its mutants in E. coli by living cell imaging experiments, examined membrane binding properties of FtsZ mutants by membrane proteins isolation and Western blot analysis, and analyzed interaction of FtsZ/FtsZ* with FtsA by Co-immunoprecipitation and far Western blot. Native gel separation and in vitro polymerization experiments were done to check effects of FtsZ point mutation on FtsZ assembly. Yfp-labeled FtsZE237A/K and FtsZE241A/K mutant proteins failed to localize in E. coli strains, assemble into functional Z-ring structure, and had decreased function of FtsZ (wt). In vitro experiments showed that E237A/K and E241A/K mutations of FtsZ decreased the polymerization efficiency of FtsZ monomer, weakened FtsZ*-FtsA interaction and changed membrane binding properties of FtsZ. FtsZ E237 and E241 are critical amino acids that affect the amphipathic helix characteristics of FtsZ (236-245) domain, FtsZ assembly and FtsZ-FtsA interaction in E. coli strains.
Sääf, Annika M.; Halbleib, Jennifer M.; Chen, Xin; Yuen, Siu Tsan; Leung, Suet Yi
2007-01-01
Posttranslational mechanisms are implicated in the development of epithelial cell polarity, but little is known about the patterns of gene expression and transcriptional regulation during this process. We characterized temporal patterns of gene expression during cell–cell adhesion-initiated polarization of cultured human Caco-2 cells, which develop structural and functional polarity resembling enterocytes in vivo. A distinctive switch in gene expression patterns occurred upon formation of cell–cell contacts. Comparison to gene expression patterns in normal human colon and colon tumors revealed that the pattern in proliferating, nonpolarized Caco-2 cells paralleled patterns seen in human colon cancer in vivo, including expression of genes involved in cell proliferation. The pattern switched in polarized Caco-2 cells to one more closely resembling that in normal colon tissue, indicating that regulation of transcription underlying Caco-2 cell polarization is similar to that during enterocyte differentiation in vivo. Surprisingly, the temporal program of gene expression in polarizing Caco-2 cells involved changes in signaling pathways (e.g., Wnt, Hh, BMP, FGF) in patterns similar to those during migration and differentiation of intestinal epithelial cells in vivo, despite the absence of morphogen gradients and interactions with stromal cells characteristic of enterocyte differentiation in situ. The full data set is available at http://microarray-pubs.stanford.edu/CACO2. PMID:17699589
Pattern Learning, Damage and Repair within Biological Neural Networks
NASA Astrophysics Data System (ADS)
Siu, Theodore; Fitzgerald O'Neill, Kate; Shinbrot, Troy
2015-03-01
Traumatic brain injury (TBI) causes damage to neural networks, potentially leading to disability or even death. Nearly one in ten of these patients die, and most of the remainder suffer from symptoms ranging from headaches and nausea to convulsions and paralysis. In vitro studies to develop treatments for TBI have limited in vivo applicability, and in vitro therapies have even proven to worsen the outcome of TBI patients. We propose that this disconnect between in vitro and in vivo outcomes may be associated with the fact that in vitro tests assess indirect measures of neuronal health, but do not investigate the actual function of neuronal networks. Therefore in this talk, we examine both in vitro and in silico neuronal networks that actually perform a function: pattern identification. We allow the networks to execute genetic, Hebbian, learning, and additionally, we examine the effects of damage and subsequent repair within our networks. We show that the length of repaired connections affects the overall pattern learning performance of the network and we propose therapies that may improve function following TBI in clinical settings.
Using a patterned grating structure to create lipid bilayer platforms insensitive to air bubbles.
Han, Chung-Ta; Chao, Ling
2015-01-07
Supported lipid bilayers (SLBs) have been used for various biosensing applications. The bilayer structure enables embedded lipid membrane species to maintain their native orientation, and the two-dimensional fluidity is crucial for numerous biomolecular interactions to occur. The platform integrated with a microfluidic device for reagent transport and exchange has great potential to be applied with surface analytical tools. However, SLBs can easily be destroyed by air bubbles during assay reagent transport and exchange. Here, we created a patterned obstacle grating structured surface in a microfluidic channel to protect SLBs from being destroyed by air bubbles. Unlike all of the previous approaches using chemical modification or adding protection layers to strengthen lipid bilayers, the uniqueness of this approach is that it uses the patterned obstacles to physically trap water above the bilayers to prevent the air-water interface from directly coming into contact with and peeling the bilayers. We showed that our platform with certain grating geometry criteria can provide promising protection to SLBs from air bubbles. The required obstacle distance was found to decrease when we increased the air-bubble movement speed. In addition, the interaction assay results from streptavidin and biotinylated lipids in the confined SLBs suggested that receptors at the SLBs retained the interaction ability after air-bubble treatment. The results showed that the developed SLB platform can preserve both high membrane fluidity and high accessibility to the outside environment, which have never been simultaneously achieved before. Incorporating the built platforms with some surface analytical tools could open the bottleneck of building highly robust in vitro cell-membrane-related bioassays.
D'Antò, Vincenzo; Cantile, Monica; D'Armiento, Maria; Schiavo, Giulia; Spagnuolo, Gianrico; Terracciano, Luigi; Vecchione, Raffaela; Cillo, Clemente
2006-03-01
Homeobox-containing genes play a crucial role in odontogenesis. After the detection of Dlx and Msx genes in overlapping domains along maxillary and mandibular processes, a homeobox odontogenic code has been proposed to explain the interaction between different homeobox genes during dental lamina patterning. No role has so far been assigned to the Hox gene network in the homeobox odontogenic code due to studies on specific Hox genes and evolutionary considerations. Despite its involvement in early patterning during embryonal development, the HOX gene network, the most repeat-poor regions of the human genome, controls the phenotype identity of adult eukaryotic cells. Here, according to our results, the HOX gene network appears to be active in human tooth germs between 18 and 24 weeks of development. The immunohistochemical localization of specific HOX proteins mostly concerns the epithelial tooth germ compartment. Furthermore, only a few genes of the network are active in embryonal retromolar tissues, as well as in ectomesenchymal dental pulp cells (DPC) grown in vitro from adult human molar. Exposure of DPCs to cAMP induces the expression of from three to nine total HOX genes of the network in parallel with phenotype modifications with traits of neuronal differentiation. Our observations suggest that: (i) by combining its component genes, the HOX gene network determines the phenotype identity of epithelial and ectomesenchymal cells interacting in the generation of human tooth germ; (ii) cAMP treatment activates the HOX network and induces, in parallel, a neuronal-like phenotype in human primary ectomesenchymal dental pulp cells. 2005 Wiley-Liss, Inc.
SUMOylation of phytochrome-B negatively regulates light-induced signaling in Arabidopsis thaliana
Sadanandom, Ari; Ádám, Éva; Orosa, Beatriz; Viczián, András; Klose, Cornelia; Zhang, Cunjin; Josse, Eve-Marie; Kozma-Bognár, László; Nagy, Ferenc
2015-01-01
The red/far red light absorbing photoreceptor phytochrome-B (phyB) cycles between the biologically inactive (Pr, λmax, 660 nm) and active (Pfr; λmax, 730 nm) forms and functions as a light quality and quantity controlled switch to regulate photomorphogenesis in Arabidopsis. At the molecular level, phyB interacts in a conformation-dependent fashion with a battery of downstream regulatory proteins, including PHYTOCHROME INTERACTING FACTOR transcription factors, and by modulating their activity/abundance, it alters expression patterns of genes underlying photomorphogenesis. Here we report that the small ubiquitin-like modifier (SUMO) is conjugated (SUMOylation) to the C terminus of phyB; the accumulation of SUMOylated phyB is enhanced by red light and displays a diurnal pattern in plants grown under light/dark cycles. Our data demonstrate that (i) transgenic plants expressing the mutant phyBLys996Arg-YFP photoreceptor are hypersensitive to red light, (ii) light-induced SUMOylation of the mutant phyB is drastically decreased compared with phyB-YFP, and (iii) SUMOylation of phyB inhibits binding of PHYTOCHROME INTERACTING FACTOR 5 to phyB Pfr. In addition, we show that OVERLY TOLERANT TO SALT 1 (OTS1) de-SUMOylates phyB in vitro, it interacts with phyB in vivo, and the ots1/ots2 mutant is hyposensitive to red light. Taken together, we conclude that SUMOylation of phyB negatively regulates light signaling and it is mediated, at least partly, by the action of OTS SUMO proteases. PMID:26283376
Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators
Whittington, Miles A.; Kopell, Nancy J.
2015-01-01
The dynamical behavior of the cortex is extremely complex, with different areas and even different layers of a cortical column displaying different temporal patterns. A major open question is how the signals from different layers and different brain regions are coordinated in a flexible manner to support function. Here, we considered interactions between primary auditory cortex and adjacent association cortex. Using a biophysically based model, we show how top-down signals in the beta and gamma regimes can interact with a bottom-up gamma rhythm to provide regulation of signals between the cortical areas and among layers. The flow of signals depends on cholinergic modulation: with only glutamatergic drive, we show that top-down gamma rhythms may block sensory signals. In the presence of cholinergic drive, top-down beta rhythms can lift this blockade and allow signals to flow reciprocally between primary sensory and parietal cortex. SIGNIFICANCE STATEMENT Flexible coordination of multiple cortical areas is critical for complex cognitive functions, but how this is accomplished is not understood. Using computational models, we studied the interactions between primary auditory cortex (A1) and association cortex (Par2). Our model is capable of replicating interaction patterns observed in vitro and the simulations predict that the coordination between top-down gamma and beta rhythms is central to the gating process regulating bottom-up sensory signaling projected from A1 to Par2 and that cholinergic modulation allows this coordination to occur. PMID:26558772
Lun, Z R; Desser, S S
1996-01-01
The patterns of random amplified fragments and molecular karyotypes of 12 isolates of anuran trypanosomes continuously cultured in vitro were compared by random amplified polymorphic DNA (RAPD) analysis and pulsed field gradient gel electrophoresis (PFGE). The time interval between preparation of two series of samples was one year. Changes were not observed in the number and size of sharp, amplified fragments of DNA samples from both series examined with the ten primers used. Likewise, changes in the molecular karyotypes were not detected between the two samples of these isolates. These results suggest that the molecular karyotype and the RAPD patterns of the anuran trypanosomes remain stable after being cultured continuously in vitro for one year.
In vitro colony interactions among species of Trichoderma with inference toward biological control.
Jimmy L. Reaves
1994-01-01
Colony interactions among 15 isolates representing seven species of Trichoderma were evaluated in vitro. Interactions characterized by zones of inhibition, demarcation lines, ridges of conidia, overgrowth, intermingling, anastomosis, and hyphal coiling in self-pairings and intraspecific and interspecific pairings of the seven species were recorded...
Genomic Mining of Prokaryotic Repressors for Orthogonal Logic Gates
Stanton, Brynne C.; Nielsen, Alec A.K.; Tamsir, Alvin; Clancy, Kevin; Peterson, Todd; Voigt, Christopher A.
2014-01-01
Genetic circuits perform computational operations based on interactions between freely diffusing molecules within a cell. When transcription factors are combined to build a circuit, unintended interactions can disrupt its function. Here, we apply “part mining” to build a library of 73 TetR-family repressors gleaned from prokaryotic genomes. The operators of a subset were determined using an in vitro method and this information was used to build synthetic promoters. The promoters and repressors were screened for cross-reactions. Of these, 16 were identified that both strongly repress their cognate promoter (5- to 207-fold) and do not interact with other promoters. Each repressor:promoter pair was converted to a NOT gate and characterized. Used as a set of 16 NOR gates, there are >1054 circuits that could be built by changing the pattern of input and output promoters. This represents a large set of compatible gates that can be used to construct user-defined circuits. PMID:24316737
Semiempirical prediction of protein folds
NASA Astrophysics Data System (ADS)
Fernández, Ariel; Colubri, Andrés; Appignanesi, Gustavo
2001-08-01
We introduce a semiempirical approach to predict ab initio expeditious pathways and native backbone geometries of proteins that fold under in vitro renaturation conditions. The algorithm is engineered to incorporate a discrete codification of local steric hindrances that constrain the movements of the peptide backbone throughout the folding process. Thus, the torsional state of the chain is assumed to be conditioned by the fact that hopping from one basin of attraction to another in the Ramachandran map (local potential energy surface) of each residue is energetically more costly than the search for a specific (Φ, Ψ) torsional state within a single basin. A combinatorial procedure is introduced to evaluate coarsely defined torsional states of the chain defined ``modulo basins'' and translate them into meaningful patterns of long range interactions. Thus, an algorithm for structure prediction is designed based on the fact that local contributions to the potential energy may be subsumed into time-evolving conformational constraints defining sets of restricted backbone geometries whereupon the patterns of nonbonded interactions are constructed. The predictive power of the algorithm is assessed by (a) computing ab initio folding pathways for mammalian ubiquitin that ultimately yield a stable structural pattern reproducing all of its native features, (b) determining the nucleating event that triggers the hydrophobic collapse of the chain, and (c) comparing coarse predictions of the stable folds of moderately large proteins (N~100) with structural information extracted from the protein data bank.
Mínguez-Alarcón, Lidia; Gaskins, Audrey J.; Chiu, Yu-Han; Souter, Irene; Williams, Paige L.; Calafat, Antonia M.; Hauser, Russ; Chavarro, Jorge E.
2016-01-01
Experimental data in rodents suggest that the effects of bisphenol A (BPA) on oocyte development may be modified by dietary methyl donors. Whether the same interaction exists in humans is unknown. We evaluated whether intake of methyl donors modified the associations between urinary BPA concentrations and treatment outcomes among 178 women who underwent 248 IVF cycles at a fertility center in Boston between 2007 and 2012. Participants completed a validated food frequency questionnaire and provided up to two urine samples per treatment cycle. High urinary BPA concentrations were associated with a 66% lower probability of implantation (p=0.007) among women who consumed <400μg/day of food folate, but not among women consuming ≥400μg/day (21% higher probability of implantation, p=0.18) (p,interaction=0.04). A similar pattern was observed for probability of clinical pregnancy (p,interaction=0.07) and live birth (p,interaction=0.16). These results are consistent with previous animal data but further evaluation in other human populations is needed. PMID:27423903
Venkatakrishnan, K; Obach, R S; Rostami-Hodjegan, A
2007-01-01
Among drugs that cause pharmacokinetic drug-drug interactions, mechanism-based inactivators of cytochrome P450 represent several of those agents that cause interactions of the greatest magnitude. In vitro inactivation kinetic data can be used to predict the potential for new drugs to cause drug interactions in the clinic. However, several factors exist, each with its own uncertainty, that must be taken into account in order to predict the magnitude of interactions reliably. These include aspects of in vitro experimental design, an understanding of relevant in vivo concentrations of the inactivator, and the extent to which the inactivated enzyme is involved in the clearance of the affected drug. Additionally, the rate of enzyme degradation in vivo is also an important factor that needs to be considered in the prediction of the drug interaction magnitudes. To address mechanism-based inactivation for new drugs, various in vitro experimental approaches have been employed. The selection of approaches for in vitro kinetic characterization of inactivation as well as in vitro-in vivo extrapolation should be guided by the purpose of the exercise and the stage of drug discovery and development, with an increase in the level of sophistication throughout the research and development process.
Ju, Yuan; Li, Zicheng; Deng, Yong; Tong, Aiping; Zhou, Liangxue; Luo, Youfu
2016-01-01
The protease β-secretase plays a critical role in the synthesis of pathogenic amyloid-β in Alzheimer's disease. In this study, pharmacophore constructed from receptor-ligand complex was used to screen Chemdiv and Zinc database and the resulting hits were subjected to docking experiments using LiandFit and CDOCKER programs. Molecules with high consensus scores and good interaction patterns in docking programs were retained. Drug-likeness assay including Lipinski's rule of five and ADMET properties filters were further used to identify BACE1 inhibitor. Finally, 13 compounds with novel scaffolds were selected and, considering of the nature of relative high LogP value of many marketed AD drugs, three of them with top 3 predicted LogP value were evaluated for their IC50 values in vitro by BACE1 enzymatic activity study. We believe that compound 13 with an IC50 value of 136 µM can be a lead compound with great potential in BACE1 inhibition and increasing activity by subsequently structure modification or optimization. At the same time, we found that the interaction between the residues Asp228, Asp32 of BACE1 and ligands is significant through analyzing the binding mode of 13 candidate compounds.
Yano, Junko; Palmer, Glen E.; Eberle, Karen E.; Peters, Brian M.; Vogl, Thomas; McKenzie, Andrew N.
2014-01-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9−/− mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways. PMID:24478092
Yano, Junko; Palmer, Glen E; Eberle, Karen E; Peters, Brian M; Vogl, Thomas; McKenzie, Andrew N; Fidel, Paul L
2014-02-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects women worldwide. Animal and clinical studies suggest that the immunopathogenic inflammatory condition of VVC is initiated by S100 alarmins in response to C. albicans, which stimulate polymorphonuclear neutrophil (PMN) migration to the vagina. The purpose of this study was to extend previous in vitro data and determine the requirement for the alarmin S100A8 in the PMN response and to evaluate pattern recognition receptors (PRRs) that initiate the response. For the former, PMN migration was evaluated in vitro or in vivo in the presence or absence of S100 alarmins initiated by several approaches. For the latter, vaginal epithelial cells were evaluated for PRR expression and C. albicans-induced S100A8 and S100A9 mRNAs, followed by evaluation of the PMN response in inoculated PRR-deficient mice. Results revealed that, consistent with previously reported in vitro data, eukaryote-derived S100A8, but not prokaryote-derived recombinant S100A8, induced significant PMN chemotaxis in vivo. Conversely, a lack of biologically active S100A8 alarmin, achieved by antibody neutralization or by using S100A9(-/-) mice, had no effect on the PMN response in vivo. In PRR analyses, whereas Toll-like receptor 4 (TLR4)- and SIGNR1-deficient vaginal epithelial cells showed a dramatic reduction in C. albicans-induced S100A8/S100A9 mRNAs in vitro, inoculated mice deficient in these PRRs showed PMN migration similar to that in wild-type controls. These results suggest that S100A8 alarmin is sufficient, but not necessary, to induce PMN migration during VVC and that the vaginal PMN response to C. albicans involves PRRs in addition to SIGNR1 and TLR4, or other induction pathways.
Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing
2014-01-01
The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations.
Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing
2014-01-01
The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations. PMID:25275510
Chareza, Sarah; Slavkovic Lukic, Dragana; Liu, Yang; Räthe, Ann-Mareen; Münk, Carsten; Zabogli, Elisa; Pistello, Mauro; Löchelt, Martin
2012-03-15
Defined host-encoded feline APOBEC3 (feA3) cytidine deaminases efficiently restrict the replication and spread of exogenous retroviruses like Feline Immunodeficiency Virus (FIV) and Feline Foamy Virus (FFV) which developed different feA3 counter-acting strategies. Here we characterize the molecular interaction of FFV proteins with the diverse feA3 proteins. The FFV accessory protein Bet is the virus-encoded defense factor which is shown here to bind all feA3 proteins independent of whether they restrict FFV, a feature shared with FIV Vif that induces degradation of all feA3s including those that do not inactivate FIV. In contrast, only some feA3 proteins bind to FFV Gag, a pattern that in part reflects the restriction pattern detected. Additionally, one-domain feA3 proteins can homo- and hetero-dimerize in vitro, but a trans-dominant phenotype of any of the low-activity feA3 forms on FFV restriction by one of the highly-active feA3Z2 proteins was not detectable. Copyright © 2012 Elsevier Inc. All rights reserved.
Suman, Julie D; Laube, Beth L; Dalby, Richard
2006-01-01
This research investigated the impact of the full range of in vitro spray characterization tests described in the FDA Draft Bioequivalence Guidance on nasal deposition pattern, pharmacokinetics, and biological response to nicotine administered by two aqueous nasal spray pumps in human volunteers. Nicotine was selected as a model drug (even though it is not locally acting) based on its ability to alter cardiac function and available plasma assay. Significant differences in pump performance-including mean volume diameters, spray angle, spray width, and ovality ratios-were observed between the two pumps. There were no significant differences in deposition pattern, or pharmacokinetic or pharmacodynamic response to the nasally administered nicotine. Although there were statistical differences in the in vitro tests between the two pumps, these differences did not result in significant alterations in the site of droplet deposition within the nose, the rate and extent of nicotine absorption, or the physiologic response it induced. These results suggest that current measures of in vitro performance, particularly spray angle and spray pattern (ovality), may not be clinically relevant. Additional research is needed to define what spray pump characteristics are likely to produce differences in deposition pattern and drug response.
Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction
Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika; ...
2016-01-19
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less
Multi-omics approach identifies molecular mechanisms of plant-fungus mycorrhizal interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter E.; Sreedasyam, Avinash; Trivedi, Geetika
In mycorrhizal symbiosis, plant roots form close, mutually beneficial interactions with soil fungi. Before this mycorrhizal interaction can be established however, plant roots must be capable of detecting potential beneficial fungal partners and initiating the gene expression patterns necessary to begin symbiosis. To predict a plant root – mycorrhizal fungi sensor systems, we analyzed in vitro experiments of Populus tremuloides (aspen tree) and Laccaria bicolor (mycorrhizal fungi) interaction and leveraged over 200 previously published transcriptomic experimental data sets, 159 experimentally validated plant transcription factor binding motifs, and more than 120-thousand experimentally validated protein-protein interactions to generate models of pre-mycorrhizal sensormore » systems in aspen root. These sensor mechanisms link extracellular signaling molecules with gene regulation through a network comprised of membrane receptors, signal cascade proteins, transcription factors, and transcription factor biding DNA motifs. Modeling predicted four pre-mycorrhizal sensor complexes in aspen that interact with fifteen transcription factors to regulate the expression of 1184 genes in response to extracellular signals synthesized by Laccaria. Predicted extracellular signaling molecules include common signaling molecules such as phenylpropanoids, salicylate, and, jasmonic acid. Lastly, this multi-omic computational modeling approach for predicting the complex sensory networks yielded specific, testable biological hypotheses for mycorrhizal interaction signaling compounds, sensor complexes, and mechanisms of gene regulation.« less
Discriminating toxicant classes by mode of action. 1. (Eco)toxicity profiles.
Nendza, Monika; Wenzel, Andrea
2006-05-01
Predictive toxicology, particularly quantitative structure-activity relationships (QSARs), require classification of chemicals by mode of action (MOA). MOA is, however, not a constant property of a compound but it varies between species and may change with concentration and duration of exposure. A battery of MOA-specific in-vitro and low-complexity assays, featuring biomolecular targets for major classes of environmental pollutants, provides characteristic responses for (1.) classification of chemicals by MOA, (2.) identification of (eco)toxicity profiles of chemicals, (3.) identification of chemicals with specific MOAs, (4.) indication of most sensitive species, (5.) identification of chemicals that are outliers in QSARs and (6.) selection of appropriate QSARs for predictions. Chemicals covering nine distinct modes of toxic action (non-polar non-specific toxicants (n=14), polar non-specific toxicants (n=18), uncouplers of oxidative phosphorylation (n=25), inhibitors of photosynthesis (n=15), inhibitors of acetylcholinesterase (n=14), inhibitors of respiration (n=3), thiol-alkylating agents (n=9), reactives (irritants) (n=8), estrogen receptor agonists (n=9)) were tested for cytotoxicity in the neutralred assay, oxygen consumption in isolated mitochondria, oxygen production in algae, inhibition of AChE, reaction with GSH and activity in the yeast estrogen receptor assay. Data on in-vivo aquatic toxicity (LC50, EC50) towards fish, daphnids, algae and bacteria were collected from the literature for reasons of comparison and reference scaling. In the MOA-specific in-vitro test battery, most test chemicals are specifically active at low concentrations, though multiple effects do occur. Graphical and statistical evaluation of the individual classes versus MOA 1 (non-polar non-specific toxicants) identifies interactions related to predominant MOA. Discriminant analyses (DA) on subsets of the data revealed correct classifications between 70% (in-vivo data) and >90% (in-vitro data). Functional similarity of chemical substances is defined in terms of their (eco)toxicity profiles. Within each MOA class, the compounds share some properties related to the rate-limiting interactions, e.g., steric fit to the target site and/or reactivity with target biomolecules, revealing a specific pattern (fingerprint) of characteristic effects. The successful discrimination of toxicant classes by MOA is based on comprehensive characterization of test chemicals' properties related to interactions with target sites. The suite of aquatic in-vivo tests using fish, daphnids, algae and bacteria covers most acute effects, whilst long-term (latent) impacts are generally neglected. With the MOA-specific in-vitro test battery such distinctions are futile, because it focuses on isolated targets, i.e. it indicates the possible targets of a chemical regardless of the timescale of effects. The data analysis indicates that the in-vitro battery covers most effects in vivo and moreover provides additional aspects of the compounds' MOA. Translating in-vitro effects to in-vivo toxicity requires combining physiological and chemical knowledge about underlying processes. Comparison of the specific in-vitro effects of a compound with the respective sensitivities of aquatic organisms indicates particularly sensitive species. Classifications of toxicants by MOA based on physicochemical descriptors provides insight to interactions and directs to mechanistic QSARs.
Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro
Roopun, Anita K.; LeBeau, Fiona E.N.; Rammell, James; Cunningham, Mark O.; Traub, Roger D.; Whittington, Miles A.
2010-01-01
Acetylcholine is the primary neuromodulator involved in cortical arousal in mammals. Cholinergic modulation is involved in conscious awareness, memory formation and attention – processes that involve intercommunication between different cortical regions. Such communication is achieved in part through temporal structuring of neuronal activity by population rhythms, particularly in the beta and gamma frequency ranges (12–80 Hz). Here we demonstrate, using in vitro and in silico models, that spectrally identical patterns of beta2 and gamma rhythms are generated in primary sensory areas and polymodal association areas by fundamentally different local circuit mechanisms: Glutamatergic excitation induced beta2 frequency population rhythms only in layer 5 association cortex whereas cholinergic neuromodulation induced this rhythm only in layer 5 primary sensory cortex. This region-specific sensitivity of local circuits to cholinergic modulation allowed for control of the extent of cortical temporal interactions. Furthermore, the contrasting mechanisms underlying these beta2 rhythms produced a high degree of directionality, favouring an influence of association cortex over primary auditory cortex. PMID:20407636
Drulis-Kawa, Zuzanna; Dorotkiewicz-Jach, Agata; Gubernator, Jerzy; Gula, Grzegorz; Bocer, Tomasz; Doroszkiewicz, Wlodzimierz
2009-02-09
The interactions between cationic liposomal formulations (PC:Chol:DOTAP 3:4:3) and 23 Pseudomonas aeruginosa strains were tested. The study was undertaken because different antimicrobial results had been obtained by the authors for Pseudomonas aeruginosa strains and liposomal antibiotics (Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz, W., Kozubek, A., 2006. The comparison of in vitro antimicrobial activity of liposomes containing meropenem and gentamicin. Cell. Mol. Biol. Lett., 11, 360-375; Drulis-Kawa, Z., Gubernator, J., Dorotkiewicz-Jach, A., Doroszkiewicz W., Kozubek, A., 2006. In vitro antimicrobial activity of liposomal meropenem against Pseudomonas aeruginosa strains. Int. J. Pharm., 315, 59-66). The experiments evaluate the roles of the bacterial outer-membrane structure, especially outer-membrane proteins and LPS, and envelope properties (hydrophobicity and electrostatic potential) in the interactions/fusion process between cells and lipid vesicles. The interactions were examined by fluorescent microscopy using PE-rhodamine-labelled liposomes. Some of the strains exhibited red-light emission (fusion with vesicles or vesicles surrounding the cell) and some showed negative reaction (no red-light emission). The main aim of the study was to determine what kinds of bacterial structure or envelope properties have a major influence on the fusion process. Negatively charged cells and hydrophobic properties promote interaction with cationic lipid vesicles, but no specific correlation was noted for the tested strains. A similar situation concerned LPS structure, where parent strains and their mutants possessing identical ladder-like band patterns in SDS-PAGE analysis exhibited totally different results with fluorescent microscopy. Outer-membrane protein analysis showed that an 18-kDA protein occurred in the isolates showing fusion with rhodamine-labelled vesicles and, conversely, strains lacking the 18-kDA protein exhibited no positive reaction (red emission). This suggests that even one protein may be responsible for favouring stronger interactions between Pseudomonas aeruginosa cells and cationic liposomal formulations (PC:Chol:DOTAP 3:4:3).
Jaroch, Karol; Jaroch, Alina; Bojko, Barbara
2018-01-05
For ethical and cost-related reasons, use of animals for the assessment of mode of action, metabolism and/or toxicity of new drug candidates has been increasingly scrutinized in research and industrial applications. Implementation of the 3 "Rs" 1 ; rule (Reduction, Replacement, Refinement) through development of in silico or in vitro assays has become an essential element of risk assessment. Physiologically based pharmacokinetic (PBPK 2 ) modeling is the most potent in silico tool used for extrapolation of pharmacokinetic parameters to animal or human models from results obtained in vitro. Although, many types of in vitro assays are conducted during drug development, use of cell cultures is the most reliable one. Two-dimensional (2D) cell cultures have been a part of drug development for many years. Nowadays, their role is decreasing in favor of three-dimensional (3D) cell cultures and co-cultures. 3D cultures exhibit protein expression patterns and intercellular junctions that are closer to in vivo states in comparison to classical monolayer cultures. Co-cultures allow for examinations of the mutual influence of different cell lines. However, the complexity and high costs of co-cultures and 3D equipment exclude such methods from high-throughput screening (HTS). 3 In vitro absorption, distribution, metabolism, and excretion assessment, as well as drug-drug interaction (DDI), are usually performed with the use of various cell culture based assays. Progress in in silico and in vitro methods can lead to better in vitro-in vivo extrapolation (IVIVE 4 ) outcomes and have a potential to contribute towards a significant reduction in the number of laboratory animals needed for drug research. As such, concentrated efforts need to be spent towards the development of an HTS in vitro platform with satisfactory IVIVE features. Copyright © 2017 Elsevier B.V. All rights reserved.
Gelatin-based laser direct-write technique for the precise spatial patterning of cells.
Schiele, Nathan R; Chrisey, Douglas B; Corr, David T
2011-03-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell-cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research.
Dubayle, Jean; Vialle, Sandrine; Schneider, Diane; Pontvianne, Jérémy; Mantel, Nathalie; Adam, Olivier; Guy, Bruno; Talaga, Philippe
2015-03-10
Recently, several virus studies have shown that protein glycosylation play a fundamental role in the virus-host cell interaction. Glycosylation characterization of the envelope proteins in both insect and mammalian cell-derived dengue virus (DENV) has established that two potential glycosylation residues, the asparagine 67 and 153 can potentially be glycosylated. Moreover, it appears that the glycosylation of these two residues can influence dramatically the virus production and the infection spreading in either mosquito or mammalian cells. The Sanofi Pasteur tetravalent dengue vaccine (CYD) consists of four chimeric viruses produced in mammalian vero cells. As DENV, the CYDs are able to infect human monocyte-derived dendritic cells in vitro via C-type lectins cell-surface molecules. Despite the importance of this interaction, the specific glycosylation pattern of the DENV has not been clearly documented so far. In this paper, we investigated the structure of the N-linked glycans in the four CYD serotypes. Using MALDI-TOF analysis, the N-linked glycans of CYDs were found to be a mix of high-mannose, hybrid and complex glycans. Site-specific N-glycosylation analysis of CYDs using nanoLC-ESI-MS/MS demonstrates that both asparagine residues 67 and 153 are glycosylated. Predominant glycoforms at asparagine 67 are high mannose-type structures while mainly complex- and hybrid-type structures are detected at asparagine 153. In vitro studies have shown that the immunological consequences of infection by the CYD dengue viruses 1-4 versus the wild type parents are comparable in human monocyte-derived dendritic cells. Our E-protein glycan characterizations of CYD are consistent with those observations from the wild type parents and thus support in vitro studies. In addition, these data provide new insights for the role of glycans in the dengue virus-host cell interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Long, Amanda J.; Annes, William F.; Witcher, Jennifer W.; Knadler, Mary Pat; Ayan-Oshodi, Mosun A.; Mitchell, Malcolm I.; Leese, Phillip; Hillgren, Kathleen M.
2017-01-01
Despite peptide transporter 1 (PEPT1) being responsible for the bioavailability for a variety of drugs, there has been little study of its potential involvement in drug-drug interactions. Pomaglumetad methionil, a metabotropic glutamate 2/3 receptor agonist prodrug, utilizes PEPT1 to enhance absorption and bioavailability. In vitro studies were conducted to guide the decision to conduct a clinical drug interaction study and to inform the clinical study design. In vitro investigations determined the prodrug (LY2140023 monohydrate) is a substrate of PEPT1 with Km value of approximately 30 µM, whereas the active moiety (LY404039) is not a PEPT1 substrate. In addition, among the eight known PEPT1 substrates evaluated in vitro, valacyclovir was the most potent inhibitor (IC50 = 0.46 mM) of PEPT1-mediated uptake of the prodrug. Therefore, a clinical drug interaction study was conducted to evaluate the potential interaction between the prodrug and valacyclovir in healthy subjects. No effect of coadministration was observed on the pharmacokinetics of the prodrug, valacyclovir, or either of their active moieties. Although in vitro studies showed potential for the prodrug and valacyclovir interaction via PEPT1, an in vivo study showed no interaction between these two drugs. PEPT1 does not appear to easily saturate because of its high capacity and expression in the intestine. Thus, a clinical interaction at PEPT1 is unlikely even with a compound with high affinity for the transporter. PMID:27895114
Zhang, Xuecheng; Dong, Yuanqiu; Yu, Jigang; Tu, Xiaoming
2014-01-01
Merozoite surface protein 2 (MSP2), one of the most abundant proteins on the merozoite surface of Plasmodium falciparum, is recognized to be important for the parasite's invasion into the host cell and is thus a promising malaria vaccine candidate. However, mediated mainly by its conserved N-terminal 25 residues (MSP21-25), MSP2 readily forms amyloid fibril-like aggregates under physiological conditions in vitro, which impairs its potential as a vaccine component. In addition, there is evidence that MSP2 exists in aggregated forms on the merozoite surface in vivo. To elucidate the aggregation mechanism of MSP21-25 and thereby understand the behavior of MSP2 in vivo and find ways to avoid the aggregation of relevant vaccine in vitro, we investigated the effects of agitation, pH, salts, 1-anilinonaphthalene-8-sulfonic acid (ANS), trimethylamine N-oxide dihydrate (TMAO), urea, and sub-micellar sodium dodecyl sulfate (SDS) on the aggregation kinetics of MSP21-25 using thioflavin T (ThT) fluorescence. The results showed that MSP21-25 aggregation was accelerated by agitation, while repressed by acidic pHs. The salts promoted the aggregation in an anion nature-dependent pattern. Hydrophobic surface-binding agent ANS and detergent urea repressed MSP21-25 aggregation, in contrast to hydrophobic interaction strengthener TMAO, which enhanced the aggregation. Notably, sub-micellar SDS, contrary to its micellar form, promoted MSP21-25 aggregation significantly. Our data indicated that hydrophobic interactions are the predominant driving force of the nucleation of MSP21-25 aggregation, while the elongation is controlled mainly by electrostatic interactions. A kinetic model of MSP21-25 aggregation and its implication were also discussed.
Adhesion mechanisms in embryogenesis and in cancer invasion and metastasis.
Thiery, J P; Boyer, B; Tucker, G; Gavrilovic, J; Valles, A M
1988-01-01
Cell-substratum and cell-cell adhesion mechanisms contribute to the development of animal form. The adhesive status of embryonic cells has been analysed during epithelial-mesenchymal cell interconversion and in cell migrations. Clear-cut examples of the modulation of cell adhesion molecules (CAMs) have been described at critical periods of morphogenesis. In chick embryos the three primary CAMs (N-CAM. L-CAM and N-cadherin) present early in embryogenesis are expressed later in a defined pattern during morphogenesis and histogenesis. The axial mesoderm derived from gastrulating cells expresses increasing amounts of N-cadherin and N-CAM. During metamerization these two adhesion molecules become abundant at somitic cell surfaces. Both CAMs are functional in an in vitro aggregation assay; however, the calcium-dependent adhesion molecule N-cadherin is more sensitive to perturbation by specific antibodies. Neural crest cells which separate from the neural epithelium lose their primary CAMs in a defined time-sequence. Adhesion to fibronectins via specific surface receptors becomes a predominant interaction during the migratory process, while some primary and secondary CAMs are expressed de novo during the ontogeny of the peripheral nervous system. In vitro, different fibronectin functional domains have been identified in the attachment, spreading and migration of neural crest cells. The fibronectin receptors which transduce the adhesive signals play a key role in the control of cell movement. All these results have prompted us to examine whether similar mechanisms operate in carcinoma cell invasion and metastasis. In vitro, rat bladder transitional carcinoma cells convert reversibly into invasive mesenchymal cells. A rapid modulation of adhesive properties is found during the epithelial-mesenchymal carcinoma cell interconversion. The different model systems analysed demonstrate that a limited repertoire of adhesion molecules, expressed in a well-defined spatiotemporal pattern, is involved in tissue formation and in key processes of tumour spread.
Valkiūnas, Gediminas; Palinauskas, Vaidas; Ilgūnas, Mikas; Bernotienė, Rasa; Iezhova, Tatjana A
2014-04-01
Recent in vitro experimental studies reported the complex patterns of haemosporidian (Haemosporida) between-lineage interactions, which prevent mixing of lineages during simultaneous sexual process. Numerous anomalous ookinetes have been observed; these are not involved in sporogony. Massive development of such ookinetes might influence parasite transmission but is insufficiently investigated. The simultaneous sexual process of several lineages is a common phenomenon in vectors due to high prevalence of haemosporidian co-infections in wildlife. It remains unclear if the number of anomalous ookinetes changes during dual-infection sporogony in comparison with the single-infection process. We calculated proportions of the anomalous and normal ookinetes, which developed during single-infection (control) and dual-infection experiments in vitro conditions. Three mitochondrial cytochrome b lineages belonging to three Haemoproteus spp. (Haemosporida, Haemoproteidae) were isolated from naturally infected passerine birds. Sexual process and ookinete development were initiated in vitro by mixing blood containing mature gametocytes of two different parasites; the following experiments were performed: (1) Haemoproteus tartakovskyi (lineage hSISKIN1) × Haemoproteus lanii (lineage hRBS4) and (2) Haemoproteus belopolskyi (hHIICT3) × H. lanii (hRBS4). Genetic difference between lineages was 5.0-5.9%. Normal and anomalous ookinetes developed in all control and dual-infection experiments. The number of anomalous ookinetes markedly decreased, and normal ookinetes increased in all dual-infection experiments in comparison with those in controls, except for H. belopolskyi, in which proportion of the anomalous and normal ookinetes did not change. This study shows that simultaneous sexual process of two genetically distant lineages of haemosporidian parasites might increase the efficiency of reproductive cells, resulting in the development of a greater number of normal ookinetes. The marked increase of the number of normal ookinetes, which is involved in sporogony, indicates the success of sporogony in dual infections. Some haemosporidian lineages might benefit from simultaneous sporogony. Widespread avian Haemoproteus spp. are convenient and laboratory-friendly organisms for in vitro experimental research addressing between-lineage interaction in parasites during the sexual process.
Blanco-Pérez, Marta; Pérez-Cañamás, Miryam; Ruiz, Leticia; Hernández, Carmen
2016-01-01
Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions. PMID:27043436
Blanco-Pérez, Marta; Pérez-Cañamás, Miryam; Ruiz, Leticia; Hernández, Carmen
2016-01-01
Cap-independent translational enhancers (CITEs) have been identified at the 3´-terminal regions of distinct plant positive-strand RNA viruses belonging to families Tombusviridae and Luteoviridae. On the bases of their structural and/or functional requirements, at least six classes of CITEs have been defined whose distribution does not correlate with taxonomy. The so-called TED class has been relatively under-studied and its functionality only confirmed in the case of Satellite tobacco necrosis virus, a parasitic subviral agent. The 3´-untranslated region of the monopartite genome of Pelargonium line pattern virus (PLPV), the recommended type member of a tentative new genus (Pelarspovirus) in the family Tombusviridae, was predicted to contain a TED-like CITE. Similar CITEs can be anticipated in some other related viruses though none has been experimentally verified. Here, in the first place, we have performed a reassessment of the structure of the putative PLPV-TED through in silico predictions and in vitro SHAPE analysis with the full-length PLPV genome, which has indicated that the presumed TED element is larger than previously proposed. The extended conformation of the TED is strongly supported by the pattern of natural sequence variation, thus providing comparative structural evidence in support of the structural data obtained by in silico and in vitro approaches. Next, we have obtained experimental evidence demonstrating the in vivo activity of the PLPV-TED in the genomic (g) RNA, and also in the subgenomic (sg) RNA that the virus produces to express 3´-proximal genes. Besides other structural features, the results have highlighted the key role of long-distance kissing-loop interactions between the 3´-CITE and 5´-proximal hairpins for gRNA and sgRNA translation. Bioassays of CITE mutants have confirmed the importance of the identified 5´-3´ RNA communication for viral infectivity and, moreover, have underlined the strong evolutionary constraints that may operate on genome stretches with both regulatory and coding functions.
Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L
2008-01-02
Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions.
Xi, Zhiyong; Gavotte, Laurent; Xie, Yan; Dobson, Stephen L
2008-01-01
Background Intracellular Wolbachia bacteria are obligate, maternally-inherited, endosymbionts found frequently in insects and other invertebrates. The success of Wolbachia can be attributed in part to an ability to alter host reproduction via mechanisms including cytoplasmic incompatibility (CI), parthenogenesis, feminization and male killing. Despite substantial scientific effort, the molecular mechanisms underlying the Wolbachia/host interaction are unknown. Results Here, an in vitro Wolbachia infection was generated in the Drosophila S2 cell line, and transcription profiles of infected and uninfected cells were compared by microarray. Differentially-expressed patterns related to reproduction, immune response and heat stress response are observed, including multiple genes that have been previously reported to be involved in the Wolbachia/host interaction. Subsequent in vivo characterization of differentially-expressed products in gonads demonstrates that Angiotensin Converting Enzyme (Ance) varies between Wolbachia infected and uninfected flies and that the variation occurs in a sex-specific manner. Consistent with expectations for the conserved CI mechanism, the observed Ance expression pattern is repeatable in different Drosophila species and with different Wolbachia types. To examine Ance involvement in the CI phenotype, compatible and incompatible crosses of Ance mutant flies were conducted. Significant differences are observed in the egg hatch rate resulting from incompatible crosses, providing support for additional experiments examining for an interaction of Ance with the CI mechanism. Conclusion Wolbachia infection is shown to affect the expression of multiple host genes, including Ance. Evidence for potential Ance involvement in the CI mechanism is described, including the prior report of Ance in spermatid differentiation, Wolbachia-induced sex-specific effects on Ance expression and an Ance mutation effect on CI levels. The results support the use of Wolbachia infected cell cultures as an appropriate model for predicting in vivo host/Wolbachia interactions. PMID:18171476
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huberman, E.
1977-01-01
Treatment of experimental animals with chemical carcinogens, including some polycyclic hydrocarbons, can result in the formation of malignant tumors. The process whereby some chemicals induce malignancy is as yet unknown. However, in a model system using mammalian cells in culture, it was possible to show that the chemical carcinogens induce malignant transformation rather than select for pre-existing tumor cells. In the process of the in vitro cell transformation, the normal cells, which have an oriented pattern of cell growth, a limited life-span in vitro, and are not tumorigenic, are converted into cells that have a hereditary random pattern of cellmore » growth, the ability to grow continuously in culture, and the ability to form tumors in vivo. This stable heritable phenotype of the transformed cells is similar to that of cells derived from spontaneous or experimentally induced tumors. Such stable heritable phenotype changes may arise from alteration in gene expression due to a somatic mutation after interaction of the carcinogen with cellular DNA. In the present experiments we have shown that metabolically activated carcinogenic polycyclic hydrocarbons which have been shown to bind to cellular DNA induce somatic mutations at different genetic loci in mammalian cells and that there is a relationship between the degree of mutant induction and the degree of carcinogenicity of the different hydrocarbons tested.« less
Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix
2015-01-15
Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.
Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development
Kazemian, Majid; Pham, Hannah; Wolfe, Scot A.; Brodsky, Michael H.; Sinha, Saurabh
2013-01-01
Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein–protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action. PMID:23847101
Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
Kazemian, Majid; Pham, Hannah; Wolfe, Scot A; Brodsky, Michael H; Sinha, Saurabh
2013-09-01
Regulation of eukaryotic gene transcription is often combinatorial in nature, with multiple transcription factors (TFs) regulating common target genes, often through direct or indirect mutual interactions. Many individual examples of cooperative binding by directly interacting TFs have been identified, but it remains unclear how pervasive this mechanism is during animal development. Cooperative TF binding should be manifest in genomic sequences as biased arrangements of TF-binding sites. Here, we explore the extent and diversity of such arrangements related to gene regulation during Drosophila embryogenesis. We used the DNA-binding specificities of 322 TFs along with chromatin accessibility information to identify enriched spacing and orientation patterns of TF-binding site pairs. We developed a new statistical approach for this task, specifically designed to accurately assess inter-site spacing biases while accounting for the phenomenon of homotypic site clustering commonly observed in developmental regulatory regions. We observed a large number of short-range distance preferences between TF-binding site pairs, including examples where the preference depends on the relative orientation of the binding sites. To test whether these binding site patterns reflect physical interactions between the corresponding TFs, we analyzed 27 TF pairs whose binding sites exhibited short distance preferences. In vitro protein-protein binding experiments revealed that >65% of these TF pairs can directly interact with each other. For five pairs, we further demonstrate that they bind cooperatively to DNA if both sites are present with the preferred spacing. This study demonstrates how DNA-binding motifs can be used to produce a comprehensive map of sequence signatures for different mechanisms of combinatorial TF action.
A structural view of egg coat architecture and function in fertilization.
Monné, Magnus; Jovine, Luca
2011-10-01
Species-restricted interaction between gametes at the beginning of fertilization is mediated by the extracellular coat of the egg, a matrix of cross-linked glycoprotein filaments called the zona pellucida (ZP) in mammals and the vitelline envelope in nonmammals. All egg coat subunits contain a conserved protein-protein interaction module-the "ZP domain"-that allows them to polymerize upon dissociation of a C-terminal propeptide containing an external hydrophobic patch (EHP). Recently, the first crystal structures of a ZP domain protein, sperm receptor ZP subunit zona pellucida glycoprotein 3 (ZP3), have been reported, giving a glimpse of the structural organization of the ZP at the atomic level and the molecular basis of gamete recognition in vertebrates. The ZP module is divided in two related immunoglobulin-like domains, ZP-N and ZP-C, that contain characteristic disulfide bond patterns and, in the case of ZP-C, also incorporate the EHP. This segment lies at the interface between the two domains, which are connected by a long loop carrying a conserved O-glycan important for binding to sperm in vitro. The structures explain several apparently contradictory observations by reconciling the variable disulfide bond patterns found in different homologues of ZP3 as well as the multiple ZP3 determinants alternatively involved in gamete interaction. These findings have implications for our understanding of ZP subunit biogenesis; egg coat assembly, architecture, and interaction with sperm; structural rearrangements leading to postfertilization hardening of the ZP and the block to sperm binding; and the evolutionary origin of egg coats.
CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions.
Galetin, Aleksandra; Ito, Kiyomi; Hallifax, David; Houston, J Brian
2005-07-01
The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo interactions with azole inhibitors (increase in area under the curve ranged from 1.2 to 24, 50% in the range of potent inhibition). In addition to midazolam, testosterone, and nifedipine, quinidine was explored as a more "pragmatic" substrate due to its kinetic properties and specificity toward CYP3A4 in comparison with CYP3A5. Ki estimates obtained in human liver microsomes under standardized in vitro conditions for each of the four probes were used to determine the validity of substrate substitution in CYP3A4 drug-drug interaction prediction. Detailed inhibitor-related (microsomal binding, depletion over incubation time) and substrate-related factors (cooperativity, contribution of other metabolic pathways, or renal excretion) were incorporated in the assessment of the interaction potential. All four CYP3A4 probes predicted 69 to 81% of the interactions with azoles within 2-fold of the mean in vivo value. Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction. Further investigations with a wider range of inhibitors are required to substantiate these findings.
The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.
Horton, R. W.; Lowther, S.; Chivers, J.; Jenner, P.; Marsden, C. D.; Testa, B.
1988-01-01
1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2850059
Jang, Minjeong; Koh, Ilkyoo; Lee, Seok Jae; Cheong, Jae-Ho; Kim, Pilnam
2017-01-27
Gastric cancer (GC) is a common aggressive malignant tumor with high incidence and mortality worldwide. GC is classified into intestinal and diffuse types according to the histo-morphological features. Because of distinctly different clinico-pathological features, new cancer therapy strategies and in vitro preclinical models for the two pathological variants of GC is necessary. Since extracellular matrix (ECM) influence the biological behavior of tumor cells, we hypothesized that GC might be more similarly modeled in 3D with matrix rather than in 2D. Herein, we developed a microfluidic-based a three-dimensional (3D) in vitro gastric cancer model, with subsequent drug resistance assay. AGS (intestinal type) and Hs746T (diffuse type) gastric cancer cell lines were encapsulated in collagen beads with high cellular viability. AGS exhibited an aggregation pattern with expansive growth, whereas Hs746T showed single-cell-level infiltration. Importantly, in microtumor models, epithelial-mesenchymal transition (EMT) and metastatic genes were upregulated, whereas E-cadherin was downregulated. Expression of ß-catenin was decreased in drug-resistant cells, and chemosensitivity toward the anticancer drug (5-FU) was observed in microtumors. These results suggest that in vitro microtumor models may represent a biologically relevant platform for studying gastric cancer cell biology and tumorigenesis, and for accelerating the development of novel therapeutic targets.
A Nanoscale Interface Promoting Molecular and Functional Differentiation of Neural Cells
NASA Astrophysics Data System (ADS)
Posati, Tamara; Pistone, Assunta; Saracino, Emanuela; Formaggio, Francesco; Mola, Maria Grazia; Troni, Elisabetta; Sagnella, Anna; Nocchetti, Morena; Barbalinardo, Marianna; Valle, Francesco; Bonetti, Simone; Caprini, Marco; Nicchia, Grazia Paola; Zamboni, Roberto; Muccini, Michele; Benfenati, Valentina
2016-08-01
Potassium channels and aquaporins expressed by astrocytes are key players in the maintenance of cerebral homeostasis and in brain pathophysiologies. One major challenge in the study of astrocyte membrane channels in vitro, is that their expression pattern does not resemble the one observed in vivo. Nanostructured interfaces represent a significant resource to control the cellular behaviour and functionalities at micro and nanoscale as well as to generate novel and more reliable models to study astrocytes in vitro. However, the potential of nanotechnologies in the manipulation of astrocytes ion channels and aquaporins has never been previously reported. Hydrotalcite-like compounds (HTlc) are layered materials with increasing potential as biocompatible nanoscale interface. Here, we evaluate the effect of the interaction of HTlc nanoparticles films with primary rat neocortical astrocytes. We show that HTlc films are biocompatible and do not promote gliotic reaction, while favouring astrocytes differentiation by induction of F-actin fibre alignment and vinculin polarization. Western Blot, Immunofluorescence and patch-clamp revealed that differentiation was accompanied by molecular and functional up-regulation of both inward rectifying potassium channel Kir 4.1 and aquaporin 4, AQP4. The reported results pave the way to engineering novel in vitro models to study astrocytes in a in vivo like condition.
What is the correlation of in vivo wear and damage patterns with in vitro TDR motion response?
Kurtz, Steven M.; Patwardhan, Avinash; MacDonald, Daniel; Ciccarelli, Lauren; van Ooij, André; Lorenz, Mark; Zindrick, Michael; O’Leary, Patrick; Isaza, Jorge; Ross, Raymond
2008-01-01
Background Context Total disc replacements (TDRs) have been used to reduce pain and preserve motion. However, the comparison of polyethylene wear following long-term implantation to those tested using an in vitro model had not yet been investigated. Purpose The purpose of this study was to correlate wear and damage patterns in retrieved TDRs with motion patterns observed in a clinically validated in vitro lumbar spine model. We also sought to determine whether one-sided wear and motion patterns were associated with greater in vivo wear. Study Design This two-part study combined the evaluation of retrieved total disc replacements with a biomechanical study using human lumbar spines. Patient Sample 38 CHARITÉ lumbar artificial discs were retrieved from 32 patients (24 female, 75%) after 7.3 years average implantation (range: 1.8 to 16.1y). The components were implanted at L2/L3 (n=1), L3/L4 (n=2), L4/L5 (n=20), and L5/S1 (n=15). All the implants were removed due to intractable back pain and/or facet degeneration. In addition, they were removed due to subsidence (n=10), anterior migration (n=3), core dislocation (n=2), lateral subluxation (n=1), endplate loosening (n = 2), and osteolysis (n=1). In parallel, 7 new implants were evaluated at L4-L5 and 13 implants at L5-S1 in an in vitro lumbar spine model. Outcome Measures Retrieval analysis included evaluation of clinical data, dimensional measurements and assessment of the extent and severity of PE surface damage mechanisms. In vitro testing involved the observation of motion patterns during physiological loading. Methods For the retrievals, each side of the PE core was independently analyzed at the rim and dome for the presence of machining marks, wear, and fracture. 35 cores were further analyzed using MicroCT to determine whether the wear was one-sided, or symmetrically distributed. For the in vitro study the new implants were tested under physiologic loads (flexion-extension with a compressive follower preload) using a validated cadaveric lumbar spine model. The center of the prosthesis was 2 mm posterior to the mid-point of the vertebral body endplate in mid-sagittal plane. Motion patterns of the in vitro-tested implants were tracked using sequential video-flouroscopy. Results Substantial variability was observed in the wear patterns of the retrievals. 15/35 retrieved cores (43%) displayed one-sided wear patterns. The median dome penetration was 0.2 mm (range: 0.06 to 0.9 mm) and the median penetration rate was 0.04 mm/y (range: 0.01 to 0.2 mm/y). No significant difference in penetration or penetration rate was observed between retrievals with one-sided and symmetric wear patterns (p >0.05). Significant correlations were observed between implantation time and penetration (rho = 0.46, p = 0.004) and penetration rate (rho = −0.48, p = 0.003). In the in vitro study, there was clear visual evidence of motion at both articulations in 8/20 implantations. In additional 8/20 cases, there was some evidence of motion at both articulations; however, the predominant motion occurred at the top articulation. In 4/20 implantations motion could be visually detected only at the top articulation. Core entrapment and pinching was observed in 7/20 cases as the segment was extended, and was associated with visual evidence of core bending or deformation in 5/20 cases. PMID:18317190
NASA Astrophysics Data System (ADS)
Altman, Michael B.
The increasing prevalence of intensity modulated radiation therapy (IMRT) as a treatment modality has led to a renewed interest in the potential for interaction between prolonged treatment time, as frequently associated with IMRT, and the underlying radiobiology of the irradiated tissue. A particularly relevant aspect of radiobiology is cell repair capacity, which influences cell survival, and thus directly relates to the ability to control tumors and spare normal tissues. For a single fraction of radiation, the linear quadratic (LQ) model is commonly used to relate the radiation dose to the fraction of cells surviving. The LQ model implies a dependence on two time-related factors which correlate to radiobiological effects: the duration of radiation application, and the functional form of how the dose is applied over that time (the "temporal pattern of applied dose"). Although the former has been well studied, the latter has not. Thus, the goal of this research is to investigate the impact of the temporal pattern of applied dose on the survival of human cells and to explore how the manipulation of this temporal dose pattern may be incorporated into an IMRT-based radiation therapy treatment planning scheme. The hypothesis is that the temporal pattern of applied dose in a single fraction of radiation can be optimized to maximize or minimize cell kill. Furthermore, techniques which utilize this effect could have clinical ramifications. In situations where increased cell kill is desirable, such as tumor control, or limiting the degree of cell kill is important, such as the sparing of normal tissue, temporal sequences of dose which maximize or minimize cell kill (temporally "optimized" sequences) may provide greater benefit than current clinically used radiation patterns. In the first part of this work, an LQ-based modeling analysis of effects of the temporal pattern of dose on cell kill is performed. Through this, patterns are identified for maximizing cell kill for a given radiation pattern by concentrating the highest doses in the middle of a fraction (a "Triangle" pattern), or minimizing cell kill by placing the highest doses near the beginning and end (a "V-shaped" pattern). The conditions under which temporal optimization effects are most acute are also identified: irradiation of low alpha/beta tissues, long fraction durations, and high doses/fx. An in vitro study is then performed which verifies that the temporal effects and trends predicted by the modeling study are clearly manifested in human cells. Following this a phantom which could allow similar in vitro radiobiological experiments in a 3-dimensional clinically-based environment is designed, created, and dosimetrically assessed using TLDs, film, and biological assay-based techniques. The phantom is found to be a useful and versatile tool for such experiments. A scheme for utilizing the phantom in a clinical treatment environment is then developed. This includes a demonstration of prototype methods for optimizing the temporal pattern of applied dose in clinical IMRT plans to manipulate tissue-dependent effects. Looking toward future experimental validation of such plans using the phantom, an analysis of the suitability of biological assays for use in phantom-based in vitro experiments is performed. Finally, a discussion is provided about the steps necessary to integrate temporal optimization into in vivo experiments and ultimately into a clinical radiation therapy environment. If temporal optimization is ultimately shown to have impact in vivo, the successful implementation of the methods developed in this study could enhance the efficacy and care of thousands of patients receiving radiotherapy.
Gevorkyan-Airapetov, Lada; Zohary, Keren; Popov-Celeketic, Dusan; Mapa, Koyeli; Hell, Kai; Neupert, Walter; Azem, Abdussalam; Mokranjac, Dejana
2009-02-20
The TIM23 complex is the major translocase of the mitochondrial inner membrane responsible for the import of essentially all matrix proteins and a number of inner membrane proteins. Tim23 and Tim50, two essential proteins of the complex, expose conserved domains into the intermembrane space that interact with each other. Here, we describe in vitro reconstitution of this interaction using recombinantly expressed and purified intermembrane space domains of Tim50 and Tim23. We established two independent methods, chemical cross-linking and surface plasmon resonance, to track their interaction. In addition, we identified mutations in Tim23 that abolish its interaction with Tim50 in vitro. These mutations also destabilized the interaction between the two proteins in vivo, leading to defective import of preproteins via the TIM23 complex and to cell death at higher temperatures. This is the first study to describe the reconstitution of the Tim50-Tim23 interaction in vitro and to identify specific residues of Tim23 that are vital for the interaction with Tim50.
Mínguez-Alarcón, Lidia; Gaskins, Audrey J; Chiu, Yu-Han; Souter, Irene; Williams, Paige L; Calafat, Antonia M; Hauser, Russ; Chavarro, Jorge E
2016-10-01
Experimental data in rodents suggest that the effects of bisphenol A (BPA) on oocyte development may be modified by dietary methyl donors. Whether the same interaction exists in humans is unknown. We evaluated whether intake of methyl donors modified the associations between urinary BPA concentrations and treatment outcomes among 178 women who underwent 248 IVF cycles at a fertility center in Boston between 2007 and 2012. Participants completed a validated food frequency questionnaire and provided up to two urine samples per treatment cycle. High urinary BPA concentrations were associated with a 66% lower probability of implantation (p=0.007) among women who consumed <400μg/day of food folate, but not among women consuming ≥400μg/day (21% higher probability of implantation, p=0.18) (p,interaction=0.04). A similar pattern was observed for probability of clinical pregnancy (p,interaction=0.07) and live birth (p,interaction=0.16). These results are consistent with previous animal data but further evaluation in other human populations is needed. Copyright © 2016 Elsevier Inc. All rights reserved.
Bandyra, Katarzyna J; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F; De Lay, Nicholas R
2016-03-01
In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3'-to-5' exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3' ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. © 2016 Bandyra et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Bandyra, Katarzyna J.; Sinha, Dhriti; Syrjanen, Johanna; Luisi, Ben F.; De Lay, Nicholas R.
2016-01-01
In all bacterial species examined thus far, small regulatory RNAs (sRNAs) contribute to intricate patterns of dynamic genetic regulation. Many of the actions of these nucleic acids are mediated by well-characterized chaperones such as the Hfq protein, but genetic screens have also recently identified the 3′-to-5′ exoribonuclease polynucleotide phosphorylase (PNPase) as an unexpected stabilizer and facilitator of sRNAs in vivo. To understand how a ribonuclease might mediate these effects, we tested the interactions of PNPase with sRNAs and found that the enzyme can readily degrade these nucleic acids in vitro but, nonetheless, copurifies from cell extracts with the same sRNAs without discernible degradation or modification to their 3′ ends, suggesting that the associated RNA is protected against the destructive activity of the ribonuclease. In vitro, PNPase, Hfq, and sRNA can form a ternary complex in which the ribonuclease plays a nondestructive, structural role. Such ternary complexes might be formed transiently in vivo, but could help to stabilize particular sRNAs and remodel their population on Hfq. Taken together, our results indicate that PNPase can be programmed to act on RNA in either destructive or stabilizing modes in vivo and may form complex, protective ribonucleoprotein assemblies that shape the landscape of sRNAs available for action. PMID:26759452
Cell-cell interaction in blood flow in patients with coronary heart disease (in vitro study)
NASA Astrophysics Data System (ADS)
Malinova, Lidia I.; Simonenko, Georgy V.; Denisova, Tatyana P.; Tuchin, Valery V.
2007-02-01
Blood cell-cell and cell-vessel wall interactions are one of the key patterns in blood and vascular pathophysiology. We have chosen the method of reconstruction of pulsative blood flow in vitro in the experimental set. Blood flow structure was studied by PC integrated video camera with following slide by slide analysis. Studied flow was of constant volumetric blood flow velocity (1 ml/h). Diameter of tube in use was comparable with coronary arteries diameter. Glucose solution and unfractured heparin were used as the nonspecial irritants of studied flow. Erythrocytes space structure in flow differs in all groups of patients in our study (men with stable angina pectoris (SAP), myocardial infarction (MI) and practically healthy men (PHM). Intensity of erythrocytes aggregate formation was maximal in patients with SAP, but time of their "construction/deconstruction" at glucose injection was minimal. Phenomena of primary clotting formation in patients with SAP of high function class was reconstructed under experimental conditions. Heparin injection (10 000 ED) increased linear blood flow velocity both in patients with SAP, MI and PHP but modulated the cell profile in the flow. Received data correspond with results of animal model studies and noninvasive blood flow studies in human. Results of our study reveal differences in blood flow structure in patients with coronary heart disease and PHP under irritating conditions as the possible framework of metabolic model of coronary blood flow destabilization.
NASA Astrophysics Data System (ADS)
Schmidt, Thomas P.; Perna, Anna M.; Fugmann, Tim; Böhm, Manja; Jan Hiss; Haller, Sarah; Götz, Camilla; Tegtmeyer, Nicole; Hoy, Benjamin; Rau, Tilman T.; Neri, Dario; Backert, Steffen; Schneider, Gisbert; Wessler, Silja
2016-03-01
The cell adhesion protein and tumour suppressor E-cadherin exhibits important functions in the prevention of gastric cancer. As a class-I carcinogen, Helicobacter pylori (H. pylori) has developed a unique strategy to interfere with E-cadherin functions. In previous studies, we have demonstrated that H. pylori secretes the protease high temperature requirement A (HtrA) which cleaves off the E-cadherin ectodomain (NTF) on epithelial cells. This opens cell-to-cell junctions, allowing bacterial transmigration across the polarised epithelium. Here, we investigated the molecular mechanism of the HtrA-E-cadherin interaction and identified E-cadherin cleavage sites for HtrA. Mass-spectrometry-based proteomics and Edman degradation revealed three signature motifs containing the [VITA]-[VITA]-x-x-D-[DN] sequence pattern, which were preferentially cleaved by HtrA. Based on these sites, we developed a substrate-derived peptide inhibitor that selectively bound and inhibited HtrA, thereby blocking transmigration of H. pylori. The discovery of HtrA-targeted signature sites might further explain why we detected a stable 90 kDa NTF fragment during H. pylori infection, but also additional E-cadherin fragments ranging from 105 kDa to 48 kDa in in vitro cleavage experiments. In conclusion, HtrA targets E-cadherin signature sites that are accessible in in vitro reactions, but might be partially masked on epithelial cells through functional homophilic E-cadherin interactions.
In vitro cell and tissue models for studying host-microbe interactions: a review.
Bermudez-Brito, Miriam; Plaza-Díaz, Julio; Fontana, Luis; Muñoz-Quezada, Sergio; Gil, Angel
2013-01-01
Ideally, cell models should resemble the in vivo conditions; however, in most in vitro experimental models, epithelial cells are cultivated as monolayers, in which the establishment of functional epithelial features is not achieved. To overcome this problem, co-culture experiments with probiotics, dendritic cells and intestinal epithelial cells and three-dimensional models attempt to reconcile the complex and dynamic interactions that exist in vivo between the intestinal epithelium and bacteria on the luminal side and between the epithelium and the underlying immune system on the basolateral side. Additional models include tissue explants, bioreactors and organoids. The present review details the in vitro models used to study host-microbe interactions and explores the new tools that may help in understanding the molecular mechanisms of these interactions.
Rathore, Mangal S; Jha, Bhavanath
2016-03-01
The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.
Expression and in vitro regulation of integrins by normal human urothelial cells.
Southgate, J; Kennedy, W; Hutton, K A; Trejdosiewicz, L K
1995-08-01
Integrins are thought to be essential adhesion receptors for the maintenance of tissue histioarchitecture. The purpose of this study was to determine integrin expression patterns in the human stratified transitional epithelium of the urinary tract (urothelium). In situ expression patterns were compared with in vitro expression, using a normal cell culture model system in which the effects of cell stratification can be studied independently of differentiation. By immunohistological criteria, the urothelia of bladder, ureter and renal pelvis expressed alpha 2 beta 1 and alpha 3 beta 1 integrins in all layers at intercellular junctions, and cytoplasmically in the lower strata. By contrast, alpha 6 beta 4 and occasionally alpha v beta 4 were expressed only by basal cells and localised to the basal lamina. These expression patterns were unaltered in specimens where an inflammatory cell infiltrate was present. In long-term cultures of normal urothelial cells maintained in a low-Ca++ serum-free medium, the monolayer cultures expressed alpha 2 beta 1, alpha 3 beta 1 and alpha 5 beta 1 integrins at intercellular junctions and in cytoplasmic inclusions, whereas alpha 6 beta 4 was distributed in a random pattern over the substratum. Increasing exogenous Ca++ concentrations induced cell stratification and desmosome formation, but not cytodifferentiation. Under these conditions, alpha 6 beta 4 became cell-, rather than substratum-associated, localising particularly to filopodia and lamellipodia. Quantitation of integrin expression by flow cytometry confirmed increased surface expression of alpha 6 beta 4 in high Ca++ media, and also of alpha 3 and alpha 5, but not alpha 2, subunits. These results suggest that alpha 2 beta 1 and alpha 3 beta 1 integrins, although differentially regulated, are mainly involved in homotypic cell-cell interactions and the maintenance of a stratified morphology, whereas alpha 6 beta 4 is the principal integrin involved in substratum adhesion.
Clark, Sherrie G; Haubert, Kathyrn; Beebe, David J; Ferguson, C Edward; Wheeler, Matthew B
2005-11-01
Efforts to improve the in vitro embryo production process in pigs have included modifying culture medium and number of spermatozoa inseminated in order to reduce the incidence of polyspermy. Polyspermy is a pathological condition which results in aberrant embryonic development. The microchannels are designed to more closely mimic the function of the oviduct and create a flow pattern of spermatozoa past the oocytes similar to the pattern in the oviduct. In vitro fertilization of porcine oocytes in the microchannels has produced a higher incidence of monospermic penetration (p<0.05) as compared to the oocytes fertilized in the traditional microdrop system with comparable penetration and male pronucleus formation rates. Additionally, cleavage rates of the embryos as well as development to the blastocyst stage are similar. Here we demonstrate that the biomimetic microchannel in vitro fertilization system can reduce polyspermy and, therefore, increase the number of potentially viable embryos without reducing the overall in vitro production efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter
2013-03-01
Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, CA.
Amor, N; Geris, L; Vander Sloten, J; Van Oosterwyck, H
2011-02-01
Surface microroughness can induce contact osteogenesis (bone formation initiated at the implant surface) around oral implants, which may result from different mechanisms, such as blood platelet-biomaterial interactions and/or interaction with (pre-)osteoblast cells. We have developed a computational model of implant endosseous healing that takes into account these interactions. We hypothesized that the initial attachment and growth factor release from activated platelets is crucial in achieving contact osteogenesis. In order to investigate this, a computational model was applied to an animal experiment [7] that looked at the effect of surface microroughness on endosseous healing. Surface-specific model parameters were implemented based on in vitro data (Lincks et al. Biomaterials 1998;19:2219-32). The predicted spatio-temporal patterns of bone formation correlated with the histological data. It was found that contact osteogenesis could not be predicted if only the osteogenic response of cells was up-regulated by surface microroughness. This could only be achieved if platelet-biomaterial interactions were sufficiently up-regulated as well. These results confirmed our hypothesis and demonstrate the added value of the computational model to study the importance of surface-mediated events for peri-implant endosseous healing. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells
Schiele, Nathan R.; Chrisey, Douglas B.
2011-01-01
Laser direct-writing provides a method to pattern living cells in vitro, to study various cell–cell interactions, and to build cellular constructs. However, the materials typically used may limit its long-term application. By utilizing gelatin coatings on the print ribbon and growth surface, we developed a new approach for laser cell printing that overcomes the limitations of Matrigel™. Gelatin is free of growth factors and extraneous matrix components that may interfere with cellular processes under investigation. Gelatin-based laser direct-write was able to successfully pattern human dermal fibroblasts with high post-transfer viability (91% ± 3%) and no observed double-strand DNA damage. As seen with atomic force microscopy, gelatin offers a unique benefit in that it is present temporarily to allow cell transfer, but melts and is removed with incubation to reveal the desired application-specific growth surface. This provides unobstructed cellular growth after printing. Monitoring cell location after transfer, we show that melting and removal of gelatin does not affect cellular placement; cells maintained registry within 5.6 ± 2.5 μm to the initial pattern. This study demonstrates the effectiveness of gelatin in laser direct-writing to create spatially precise cell patterns with the potential for applications in tissue engineering, stem cell, and cancer research. PMID:20849381
Cario, Elke; Brown, Dennis; McKee, Mary; Lynch-Devaney, Kathryn; Gerken, Guido; Podolsky, Daniel K.
2002-01-01
Commensal-associated molecular patterns, the major products of nonpathogenic bacteria, are present at high concentrations at the apical surface of the intestinal epithelium. However, the nature of the interaction of commensal-associated molecular patterns with the lumenal surface of the epithelium has not been defined. We have recently demonstrated that intestinal epithelial cells constitutively express several Toll-like receptors (TLRs) in vitro and in vivo that seem to be the key receptors responsible for immune cell activation in response to various bacterial products. In this study we characterize the subcellular distribution of two major TLRs, TLR2 and TLR4, and their ligand-specific dynamic regulation in the model human intestinal epithelial cell line T84. Immunocytochemical studies indicate that TLR2 and TLR4 are constitutively expressed at the apical pole of differentiated T84 cells. After stimulation with lipopolysaccharide or peptidoglycan, TLRs selectively traffic to cytoplasmic compartments near the basolateral membrane. Thus, we demonstrate that TLRs are positioned at the apical pole where they are poised to monitor the sensitive balance of the lumenal microbial array. The results of this dynamic epithelial surveillance can then be conveyed to the underlying cell populations of the lamina propria via these innate immune pattern recognition receptors. PMID:11786410
Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas
2009-01-01
Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744
Interaction of D-LSD with binding sites in brain: a study in vivo and in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ebersole, B.L.J.
The localization of (/sup 3/H)-d-lysergic acid diethylamide ((/sup 3/H)LSD) binding sites in the mouse brain was compared in vivo and in vitro. Radioautography of brain sections incubated with (/sup 3/H)LSD in vitro revealed substantial specific (/sup 3/H)LSD binding in cortical layers III-IV and areas CA1 and dentate gyrus in hippocampus. In contrast, in brain sections from animals that received (/sup 3/H)LSD in vivo, binding in hippocampus was scant and diffuse, although the pattern of labeling in cortex was similar to that seen in vitro. The low specific binding in hippocampus relative to cortex was confirmed by homogenate filtration studies ofmore » brain areas from mice that received injections of (/sup 3/H)LSD. Time-course studies established that peak specific binding at ten minutes was the same in cortex and hippocampus. At all times, binding in hippocampus was about one-third of that in cortex; in contrast, the concentration of free (/sup 3/H)LSD did not vary between regions. This finding was unexpected, because binding studies in vitro in membrane preparations indicated that the density and affinity of (/sup 3/H)LSD binding sites were similar in both brain regions. Saturation binding studies in vivo showed that the lower amount of (/sup 3/H)LSD binding in hippocampus was attributable to a lower density of sites labeled by (/sup 3/H)LSD. The pharmacological identify of (/sub 3/H)LSD binding sites in vivo may be relevant to the hallucinogenic properties of LSD and of other related hallucinogens.« less
The G-Box Transcriptional Regulatory Code in Arabidopsis1[OPEN
Shepherd, Samuel J.K.; Brestovitsky, Anna; Dickinson, Patrick; Biswas, Surojit
2017-01-01
Plants have significantly more transcription factor (TF) families than animals and fungi, and plant TF families tend to contain more genes; these expansions are linked to adaptation to environmental stressors. Many TF family members bind to similar or identical sequence motifs, such as G-boxes (CACGTG), so it is difficult to predict regulatory relationships. We determined that the flanking sequences near G-boxes help determine in vitro specificity but that this is insufficient to predict the transcription pattern of genes near G-boxes. Therefore, we constructed a gene regulatory network that identifies the set of bZIPs and bHLHs that are most predictive of the expression of genes downstream of perfect G-boxes. This network accurately predicts transcriptional patterns and reconstructs known regulatory subnetworks. Finally, we present Ara-BOX-cis (araboxcis.org), a Web site that provides interactive visualizations of the G-box regulatory network, a useful resource for generating predictions for gene regulatory relations. PMID:28864470
2011-01-01
Background The skeletal elements of vertebrate embryonic limbs are prefigured by rod- and spot-like condensations of precartilage mesenchymal cells. The formation of these condensations depends on cell-matrix and cell-cell interactions, but how they are initiated and patterned is as yet unresolved. Results Here we provide evidence that galectins, β-galactoside-binding lectins with β-sandwich folding, play fundamental roles in these processes. We show that among the five chicken galectin (CG) genes, two, CG-1A, and CG-8, are markedly elevated in expression at prospective sites of condensation in vitro and in vivo, with their protein products appearing earlier in development than any previously described marker. The two molecules enhance one another's gene expression but have opposite effects on condensation formation and cartilage development in vivo and in vitro: CG-1A, a non-covalent homodimer, promotes this process, while the tandem-repeat-type CG-8 antagonizes it. Correspondingly, knockdown of CG-1A inhibits the formation of skeletal elements while knockdown of CG-8 enhances it. The apparent paradox of mutual activation at the gene expression level coupled with antagonistic roles in skeletogenesis is resolved by analysis of the direct effect of the proteins on precartilage cells. Specifically, CG-1A causes their aggregation, whereas CG-8, which has no adhesive function of its own, blocks this effect. The developmental appearance and regulation of the unknown cell surface moieties ("ligands") to which CG-1A and CG-8 bind were indicative of specific cognate- and cross-regulatory interactions. Conclusion Our findings indicate that CG-1A and CG-8 constitute a multiscale network that is a major mediator, earlier-acting than any previously described, of the formation and patterning of precartilage mesenchymal condensations in the developing limb. This network functions autonomously of limb bud signaling centers or other limb bud positional cues. PMID:21284876
In Vitro Synergistic Interaction between Amphotericin B and Micafungin against Scedosporium spp.
Yustes, Clara; Guarro, Josep
2005-01-01
The in vitro interaction between amphotericin B and micafungin against 36 isolates of Scedosporium spp. has been evaluated using checkerboard assays and the minimal effective concentration endpoint. Synergy was found for 82.4% of Scedosporium prolificans isolates and for 31.6% of Scedosporium apiospermum isolates. Antagonism was not observed. PMID:16048969
Salilew-Wondim, Dessie; Saeed-Zidane, Mohammed; Hoelker, Michael; Gebremedhn, Samuel; Poirier, Mikhaël; Pandey, Hari Om; Tholen, Ernst; Neuhoff, Christiane; Held, Eva; Besenfelder, Urban; Havlicek, Vita; Rings, Franca; Fournier, Eric; Gagné, Dominic; Sirard, Marc-André; Robert, Claude; Gad, Ahmed; Schellander, Karl; Tesfaye, Dawit
2018-06-01
Aberrant DNA methylation patterns of genes required for development are common in in vitro produced embryos. In this regard, we previously identified altered DNA methylation patterns of in vivo developed blastocysts from embryos which spent different stages of development in vitro, indicating carryover effects of suboptimal culture conditions on epigenetic signatures of preimplantation embryos. However, epigenetic responses of in vivo originated embryos to suboptimal culture conditions are not fully understood. Therefore, here we investigated DNA methylation patterns of in vivo derived bovine embryos subjected to in vitro culture condition before, during or after major embryonic genome activation (EGA). For this, in vivo produced 2-, 8- and 16-cell stage embryos were cultured in vitro until the blastocyst stage and blastocysts were used for genome-wide DNA methylation analysis. The 2- and 8-cell flushed embryo groups showed lower blastocyst rates compared to the 16-cell flush group. This was further accompanied by increased numbers of differentially methylated genomic regions (DMRs) in blastocysts of the 2- and 8-cell flush groups compared to the complete in vivo control ones. Moreover, 1623 genomic loci including imprinted genes were hypermethylated in blastocyst of 2-, 8- and 16-cell flushed groups, indicating the presence of genomic regions which are sensitive to the in vitro culture at any stage of embryonic development. Furthermore, hypermethylated genomic loci outnumbered hypomethylated ones in blastocysts of 2- and 16-cell flushed embryo groups, but the opposite occurred in the 8-cell group. Moreover, DMRs which were unique to blastocysts of the 2-cell flushed group and inversely correlated with corresponding mRNA expression levels were involved in plasma membrane lactate transport, amino acid transport and phosphorus metabolic processes, whereas DMRs which were specific to the 8-cell group and inversely correlated with corresponding mRNA expression levels were involved in several biological processes including regulation of fatty acids and steroid biosynthesis processes. In vivo embryos subjected to in vitro culture before and during major embryonic genome activation (EGA) are prone to changes in DNA methylation marks and exposure of in vivo embryos to in vitro culture during the time of EGA increased hypomethylated genomic loci in blastocysts.
Savelieva, Ekaterina M; Oslovsky, Vladimir E; Karlov, Dmitry S; Kurochkin, Nikolay N; Getman, Irina A; Lomin, Sergey N; Sidorov, Georgy V; Mikhailov, Sergey N; Osolodkin, Dmitry I; Romanov, Georgy A
2018-05-01
Biological effects of hormones in both plants and animals are based on high-affinity interaction with cognate receptors resulting in their activation. The signal of cytokinins, classical plant hormones, is perceived in Arabidopsis by three homologous membrane receptors: AHK2, AHK3, and CRE1/AHK4. To study the cytokinin-receptor interaction, we used 25 derivatives of potent cytokinin N 6 -benzyladenine (BA) with substituents in the purine heterocycle and/or in the side chain. The study was focused primarily on individual cytokinin receptors from Arabidopsis. The main in planta assay system was based on Arabidopsis double mutants retaining only one isoform of cytokinin receptors and harboring cytokinin-sensitive reporter gene. Classical cytokinin biotest with Amaranthus seedlings was used as an additional biotest. In parallel, the binding of ligands to individual cytokinin receptors was assessed in the in vitro test system. Quantitative comparison of results of different assays confirmed the partial similarity of ligand-binding properties of receptor isoforms. Substituents at positions 8 and 9 of adenine moiety, elongated linker up to 4 methylene units, and replacement of N 6 by sulfur or oxygen have resulted in the suppression of cytokinin activity of the derivative toward all receptors. Introduction of a halogen into position 2 of adenine moiety, on the contrary, often increased the ligand activity, especially toward AHK3. Features both common and distinctive of cytokinin receptors in Arabidopsis and Amaranthus were revealed, highlighting species specificity of the cytokinin perception apparatus. Correlations between the extent to which a compound binds to a receptor in vitro and its ability to activate the same receptor in planta were evaluated for each AHK protein. Interaction patterns between individual receptors and ligands were rationalized by structure analysis and molecular docking in sensory modules of AHK receptors. The best correlation between docking scores and specific binding was observed for AHK3. In addition, receptor-specific ligands have been discovered with unique properties to predominantly activate or block distinct cytokinin receptors. These ligands are promising for practical application and as molecular tools in the study of the cytokinin perception by plant cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jang, Yun Hee; Lee, Jeong Hwan; Kim, Jeong-Kook
2008-12-01
We examined the effect of (+)-ABA on the in vitro interaction of rice FCA and FY homologs, OsFCA and OsFY. From this analysis, we found no disruption of the OsFCA-OsFY complexes by ABA treatment. This result prompted us to examine the effect of ABA on the FCA-FY interaction. In these experiments, we could not reproduce the inhibitory effect of (+)-ABA on the interaction between FCA and FY. Based on these combined results, we believe that the inhibitory effect of (+)-ABA on the FCA-FY interaction should be cautiously reconsidered.
ERIC Educational Resources Information Center
McAdoo, John Lewis
The purpose of this study was to examine the verbal and nonverbal interaction patterns of black parents and their preschool children. Three types of verbal interaction patterns were observed between the parent and child: nurturant, non-nurturant, and restrictive. Patterns of nonverbal interaction were also observed. Also studied were patterns of…
A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast
Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.
2013-01-01
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963
NASA Astrophysics Data System (ADS)
Leterrier, Jean-François; Eyer, Joël; Weiss, Dieter G.; Lindén, Monica
1991-05-01
In order to explore the molecular nature and the regulation of dense cytomatrix which interconnects MT, NF and membranous organelles in neurons (9), the interactions between NF, MT and each of these cytoskelatal elements with brain mitochondria were investigated in vitro using biochemical and viophysical methods. From these studies, the following conclusions were drawn: 1- Pure NF form in vitro a highly viscous gel, dependent upon the phosphorylation state of the side arms of the NF-H and M subunits which might participate directly to the interactions since antibodies specific of these phosphorylated sites inhibited efficiently the NF gelation. This process is modulated by both ATP hydrolysis and soluble molecules from nervous tissue and it might reflect the highly controled organization of NF bundles in axons. 2- In contrast with NF, low viscosity levels were detected in MT suspensions. However, the occurrence of weak interactions between MT were deduced from studies with taxol, ATP, AMP-PNP and Mg ions, which affected the viscosity and the organization of MT in vitro, possibly through MAPs mediated interactions. 3- Mitochondria associated permanently in vitro to few MT through cross-bridges involving MAPs, which bind to specific sites on the outer membrane (17). In addition, brain mitochondria (and not liver mitochondria) interact with NF in an ATP-dependent manner, through thin cross-bridges possibly involving the NF-H and M subunits since these molecules, when purified, compete efficiently with MAPs for the binding to membrane sites. These results suggest the participation of structure MAPs and of NF-H and M subunits in the spatial organization MT and NF and in anchoring mitochondria to the cytomatrix.
NASA Astrophysics Data System (ADS)
Varghese, Susheel John; Johny, Sojimol K.; Paul, David; Ravi, Thengungal Kochupappy
2011-07-01
The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37 ± 0.5 °C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out.
Defeu Soufo, Hervé Joël; Reimold, Christian; Linne, Uwe; Knust, Tobias; Gescher, Johannes; Graumann, Peter L
2010-02-16
We show that translation initiation factor EF-Tu plays a second important role in cell shape maintenance in the bacterium Bacillus subtilis. EF-Tu localizes in a helical pattern underneath the cell membrane and colocalizes with MreB, an actin-like cytoskeletal element setting up rod cell shape. The localization of MreB and of EF-Tu is interdependent, but in contrast to the dynamic MreB filaments, EF-Tu structures are more static and may serve as tracks for MreB filaments. In agreement with this idea, EF-Tu and MreB interact in vivo and in vitro. Lowering of the EF-Tu levels had a minor effect on translation but a strong effect on cell shape and on the localization of MreB, and blocking of the function of EF-Tu in translation did not interfere with the localization of MreB, showing that, directly or indirectly, EF-Tu affects the cytoskeletal MreB structure and thus serves two important functions in a bacterium.
Design of biomimetic cellular scaffolds for co-culture system and their application
Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun
2017-01-01
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell–cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment. PMID:29081966
Design of biomimetic cellular scaffolds for co-culture system and their application.
Kook, Yun-Min; Jeong, Yoon; Lee, Kangwon; Koh, Won-Gun
2017-01-01
The extracellular matrix of most natural tissues comprises various types of cells, including fibroblasts, stem cells, and endothelial cells, which communicate with each other directly or indirectly to regulate matrix production and cell functionality. To engineer multicellular interactions in vitro, co-culture systems have achieved tremendous success achieving a more realistic microenvironment of in vivo metabolism than monoculture system in the past several decades. Recently, the fields of tissue engineering and regenerative medicine have primarily focused on three-dimensional co-culture systems using cellular scaffolds, because of their physical and biological relevance to the extracellular matrix of actual tissues. This review discusses several materials and methods to create co-culture systems, including hydrogels, electrospun fibers, microfluidic devices, and patterning for biomimetic co-culture system and their applications for specific tissue regeneration. Consequently, we believe that culture systems with appropriate physical and biochemical properties should be developed, and direct or indirect cell-cell interactions in the remodeled tissue must be considered to obtain an optimal tissue-specific microenvironment.
Aufan, M Rifqi; Sumi, Yang; Kim, Semin; Lee, Jae Young
2015-10-28
Electrically conducting biomaterials have gained great attention in various biomedical studies especially to influence cell and tissue responses. In addition, wrinkling can present a unique topography that can modulate cell-material interactions. In this study, we developed a simple method to create wrinkle topographies of conductive polypyrrole (wPPy) on soft polydimethylsiloxane surfaces via a swelling-deswelling process during and after PPy polymerization and by varying the thickness of the PPy top layers. As a result, various features of wPPy in the range of the nano- and microscales were successfully obtained. In vitro cell culture studies with NIH 3T3 fibroblasts and PC12 neuronal cells indicated that the conductive wrinkle topographies promote cell adhesion and neurite outgrowth of PC12 cells. Our studies help to elucidate the design of the surface coating and patterning of conducting polymers, which will enable us to simultaneously provide topographical and electrical signals to improve cell-surface interactions for potential tissue-engineering applications.
Llanos, Ricardo J; Barrera, Daniel; Valz-Gianinet, Jorge N; Miceli, Dora C
2006-10-01
We describe the morphological and biochemical changes in Bufo arenarum coelomic egg envelopes (CE) following passage through the oviduct. In this species, the transformation of the CE into the vitelline envelope (VE) leads to the acquisition of fertilizability and involves the cleavage of a glycoprotein component. Electrophoretic patterns indicate that a pars recta oviductal protease selectively hydrolyzes in vitro the 84 and the 55 kDa glycoproteins of the CE. During the CE to VE transformation, the relative concentrations of gp48, 42 and 39 kDa also change. In in vitro tests, sperm binding to envelope glycoprotein occurs when they are exposed to VE but not when treated with CE, and VE labeled glycoproteins bind to the head and mid piece of the sperm. The gp39 VE component has 100% identity with internal domains of the sequence deduced from ovarian cDNA for the homologous zona pellucida glycoprotein type C (ZPC) protein precursor in B. arenarum. The effects of trypsin as a substitute for oviductal protease were also examined. Trypsin selectively attacks the 84 and the 55 kDa glycoproteins without hydrolyzing other components and renders coelomic eggs fertilizable in a jelly water preparation. Therefore, trypsin can mimic in vitro the biological action of the oviductal protease. However, it does not wholly mimic the biological action of the oviduct which, in B. arenarum at least, exceeds a mere proteolytic effect. This fact was verified by the lower fertility rates and the abnormal embryo development found when trypsin-treated coelomic eggs were fertilized in vitro. 2006 Wiley-Liss, Inc.
Díaz-Martínez, Miriam; Nava-Cedillo, Alejandro; Guzmán-López, José Alfredo; Escobar-Guzmán, Rocío; Simpson, June
2012-04-01
Genetic variation in three forms of asexually propagated Agave tequilana Weber var. 'Azul' plants namely offsets, bulbils and in vitro cultured individuals was studied by AFLP analysis. Low levels of variation were observed between mother plants and offsets and a higher level between mother plant and bulbils. Families obtained from commercial plantations showed lower levels of variation in comparison to families grown as ornamentals. No variation was observed between the original explant and four generations of in vitro cultured plants. Epigenetic variation was also studied by analyzing changes in methylation patterns between mother plants and offspring in each form of asexual reproduction. Offsets and bulbils showed an overall decrease in methylation whereas in vitro cultured plants showed patterns specific to each generation: Generations 1 and 4 showed overall demethylation whereas Generations 2 and 3 showed increased methylation. Analysis of ESTs associated with transposable elements revealed higher proportions of ESTs from Ty1-copia-like, Gypsy and CACTA transposable elements in cDNA libraries obtained from pluripotent tissue suggesting a possible correlation between methylation patterns, expression of transposable element associated genes and somaclonal variation. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Brood size modifications affect plumage bacterial assemblages of European starlings.
Lucas, Françoise S; Moureau, Benoit; Jourdie, Violaine; Heeb, Philipp
2005-02-01
During reproduction, birds face trade-offs between time and energy devoted to parental effort and traits associated with self-maintenance. We manipulated brood sizes to investigate the effects of such trade-offs on feather bacterial densities and the structure of bacterial assemblages on feathers in adult European starlings, Sturnus vulgaris, and in vitro feather degradation. As predicted by a trade-off between parental effort and self-maintenance, we found that birds with enlarged broods had more free-living bacteria on their feathers than birds with reduced broods. Furthermore, we found a significant interaction between brood manipulation and original brood size on free-living bacterial densities suggesting that the trade-off is mediated by the adults' initial reproductive investment. In contrast, brood size manipulations had no significant effect on densities of attached bacteria. Using ribosomal intergenic spacer analysis (RISA), we demonstrated that brood manipulations significantly modified the structure (band pattern) of feather-degrading bacterial assemblages, but had no significant effect on their richness (number of bands) or the in vitro feather degradation. In vitro feather degradation varied in relation to the premanipulation brood size and positively with the richness of the feather degrading bacterial community. Besides brood manipulation effect, we found that ecological factors and individual traits, such as the age, the nest location or the capture date, shaped bacterial assemblages and feather degradation capacities.
Peter Christoper, G.V.; Vijaya Raghavan, C.; Siddharth, K.; Siva Selva Kumar, M.; Hari Prasad, R.
2013-01-01
In the current study zidovudine loaded PLGA nanoparticles were prepared, coated and further investigated for its effectiveness in brain targeting. IR and DSC studies were performed to determine the interaction between excipients used and to find out the nature of drug in the formulation. Formulations were prepared by adopting 23 factorial designs to evaluate the effects of process and formulation variables. The prepared formulations were subjected for in vitro and in vivo evaluations. In vitro evaluations showed particle size below 100 nm, entrapment efficiency of formulations ranges of 28–57%, process yield of 60–76% was achieved and drug release for the formulations were in the range of 50–85%. The drug release from the formulations was found to follow Higuchi release pattern, n–value obtained after Korsemeyer plot was in the range of 0.56–0.78. In vivo evaluations were performed in mice after intraperitoneal administration of zidovudine drug solution, uncoated and coated formulation. Formulation when coated with Tween 80 achieved a higher concentration in the brain than that of the drug in solution and of the uncoated formulation. Stability studies indicated that there was no degradation of the drug in the formulation after 90 days of preparation when stored in refrigerated condition. PMID:24648825
Tariq, V N; Scott, E M; McCain, N E
1995-01-01
Interactions between six compounds (econazole, miconazole, amphotericin B, nystatin, nikkomycin Z, and ibuprofen) were investigated for their antifungal activities against Candida albicans by using pair combinations in an in vitro decimal assay for additivity based on disk diffusion. Additive interactions were observed between miconazole and econazole, amphotericin B and nystatin, and amphotericin B and ibuprofen, while an antagonistic interaction was observed between econazole and amphotericin B. Synergistic interactions were recorded for the combinations of econazole and ibuprofen, econazole and nikkomycin Z, and ibuprofen and nikkomycin Z. PMID:8592989
Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana.
Dortay, Hakan; Mehnert, Nijuscha; Bürkle, Lukas; Schmülling, Thomas; Heyl, Alexander
2006-10-01
The signal of the plant hormone cytokinin is perceived by membrane-located sensor histidine kinases and transduced by other members of the plant two-component system. In Arabidopsis thaliana, 28 two-component system proteins (phosphotransmitters and response regulators) act downstream of three receptors, transmitting the signal from the membrane to the nucleus and modulating the cellular response. Although the principal signaling mechanism has been elucidated, redundancy in the system has made it difficult to understand which of the many components interact to control the downstream biological processes. Here, we present a large-scale interaction study comprising most members of the Arabidopsis cytokinin signaling pathway. Using the yeast two-hybrid system, we detected 42 new interactions, of which more than 90% were confirmed by in vitro coaffinity purification. There are distinct patterns of interaction between protein families, but only a few interactions between proteins of the same family. An interaction map of this signaling pathway shows the Arabidopsis histidine phosphotransfer proteins as hubs, which interact with members from all other protein families, mostly in a redundant fashion. Domain-mapping experiments revealed the interaction domains of the proteins of this pathway. Analyses of Arabidopsis histidine phosphotransfer protein 5 mutant proteins showed that the presence of the canonical phospho-accepting histidine residue is not required for the interactions. Interaction of A-type response regulators with Arabidopsis histidine phosphotransfer proteins but not with B-type response regulators suggests that their known activity in feedback regulation may be realized by interfering at the level of Arabidopsis histidine phosphotransfer protein-mediated signaling. This study contributes to our understanding of the protein interactions of the cytokinin-signaling system and provides a framework for further functional studies in planta.
Jamontt, J M; Molleman, A; Pertwee, R G; Parsons, M E
2010-06-01
Cannabis is taken as self-medication by patients with inflammatory bowel disease for symptomatic relief. Cannabinoid receptor agonists decrease inflammation in animal models of colitis, but their effects on the disturbed motility is not known. (-)-Cannabidiol (CBD) has been shown to interact with Delta(9)-tetrahydrocannabinol (THC) in behavioural studies, but it remains to be established if these cannabinoids interact in vivo in inflammatory disorders. Therefore the effects of CBD and THC alone and in combination were investigated in a model of colitis. The 2,4,6-trinitrobenzene sulphonic acid (TNBS) model of acute colitis in rats was used to assess damage, inflammation (myeloperoxidase activity) and in vitro colonic motility. Sulphasalazine was used as an active control drug. Sulphasalazine, THC and CBD proved beneficial in this model of colitis with the dose-response relationship for the phytocannabinoids showing a bell-shaped pattern on the majority of parameters (optimal THC and CBD dose, 10 mg.kg(-1)). THC was the most effective drug. The effects of these phytocannabinoids were additive, and CBD increased some effects of an ineffective THC dose to the level of an effective one. THC alone and in combination with CBD protected cholinergic nerves whereas sulphasalazine did not. In this model of colitis, THC and CBD not only reduced inflammation but also lowered the occurrence of functional disturbances. Moreover the combination of CBD and THC could be beneficial therapeutically, via additive or potentiating effects.
NASA Astrophysics Data System (ADS)
Burkhardt, Melanie A.; Waser, Jasmin; Milleret, Vincent; Gerber, Isabel; Emmert, Maximilian Y.; Foolen, Jasper; Hoerstrup, Simon P.; Schlottig, Falko; Vogel, Viola
2016-02-01
Low correlations of cell culture data with clinical outcomes pose major medical challenges with costly consequences. While the majority of biomaterials are tested using in vitro cell monocultures, the importance of synergistic interactions between different cell types on paracrine signalling has recently been highlighted. In this proof-of-concept study, we asked whether the first contact of surfaces with whole human blood could steer the tissue healing response. This hypothesis was tested using alkali-treatment of rough titanium (Ti) surfaces since they have clinically been shown to improve early implant integration and stability, yet blood-free in vitro cell cultures poorly correlated with in vivo tissue healing. We show that alkali-treatment, compared to native Ti surfaces, increased blood clot thickness, including platelet adhesion. Strikingly, blood clots with entrapped blood cells in synergistic interactions with fibroblasts, but not fibroblasts alone, upregulated the secretion of major factors associated with fast healing. This includes matrix metalloproteinases (MMPs) to break down extracellular matrix and the growth factor VEGF, known for its angiogenic potential. Consequently, in vitro test platforms, which consider whole blood-implant interactions, might be superior in predicting wound healing in response to biomaterial properties.
Smolders, Sophie Marie-Thérèse; Swinnen, Nina; Kessels, Sofie; Arnauts, Kaline; Smolders, Silke; Le Bras, Barbara; Rigo, Jean-Michel; Legendre, Pascal; Brône, Bert
2017-07-01
Microglia, the immune cells of the central nervous system, take part in brain development and homeostasis. They derive from primitive myeloid progenitors that originate in the yolk sac and colonize the brain mainly through intensive migration. During development, microglial migration speed declines which suggests that their interaction with the microenvironment changes. However, the matrix-cell interactions allowing dispersion within the parenchyma are unknown. Therefore, we aimed to better characterize the migration behavior and to assess the role of matrix-integrin interactions during microglial migration in the embryonic brain ex vivo. We focused on microglia-fibronectin interactions mediated through the fibronectin receptor α5β1 integrin because in vitro work indirectly suggested a role for this ligand-receptor pair. Using 2-photon time-lapse microscopy on acute ex vivo embryonic brain slices, we found that migration occurs in a saltatory pattern and is developmentally regulated. Most importantly, there is an age-specific function of the α5β1 integrin during microglial cortex colonization. At embryonic day (E) 13.5, α5β1 facilitates migration while from E15.5, it inhibits migration. These results indicate a developmentally regulated function of α5β1 integrin in microglial migration during colonization of the embryonic brain. © 2017 Wiley Periodicals, Inc.
Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.
Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J
2014-08-01
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas
2008-10-01
Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.
Yoshida, Kenta; Zhao, Ping; Zhang, Lei; Abernethy, Darrell R; Rekić, Dinko; Reynolds, Kellie S; Galetin, Aleksandra; Huang, Shiew-Mei
2017-09-01
Evaluation of drug-drug interaction (DDI) risk is vital to establish benefit-risk profiles of investigational new drugs during drug development. In vitro experiments are routinely conducted as an important first step to assess metabolism- and transporter-mediated DDI potential of investigational new drugs. Results from these experiments are interpreted, often with the aid of in vitro-in vivo extrapolation methods, to determine whether and how DDI should be evaluated clinically to provide the basis for proper DDI management strategies, including dosing recommendations, alternative therapies, or contraindications under various DDI scenarios and in different patient population. This article provides an overview of currently available in vitro experimental systems and basic in vitro-in vivo extrapolation methodologies for metabolism- and transporter-mediated DDIs. Published by Elsevier Inc.
Atomic Layer Deposition for the Modification and Creation of Nanomaterials
NASA Astrophysics Data System (ADS)
Needham, Erinn Christine
Atomic layer deposition (ALD) is a vapor-phase technique for the conformal deposition of material with sub-nanometer precision, making it an ideal process for modifying and even creating nanomaterials. The focus of this dissertation is the study of how ALD precursors interact with organic materials, namely polymers, to create selectively deposited nano-scale patterns and how ALD coatings modify biological responses to nanomaterials, namely carbon nanotubes (CNT), after inhalation. Nanoscale patterning is vital to the semiconductor industry. With features becoming smaller and more complex with each passing year, new techniques are required to meet the needs of the industry. The ability to selectively pattern a material onto a wafer is of particular interest for the replacement of costly etching steps. In the first half of this dissertation, a method for the selective deposition of nano-scale patterns is presented. Patterned polymers were used as sacrificial sponges to soak up ALD precursors for the creation of metal-oxide features. Meanwhile, deposition in areas without polymer was limited to the monolayer regime. Following infiltration, the saturated polymer was burned away and the precursor oxidized to form a metal oxide reproduction of the polymer pattern. Determining the reaction between the ALD precursor, trimethylaluminum, and polymer, poly(methyl methacrylate), helped to achieve patterning by informing the proper selection of reactor temperature as well as exposure and purge times. Using this technique, features from tens of nanometers to tens of microns were patterned uniformly and simultaneously across a 150 mm wafer. Finally, this technique was extended to pattern two different materials using only one patterned polymer layer. ALD was first used to deposit a metal oxide were there was no polymer. By selecting ALD precursors that do not react within or on top of the polymer, selective deposition of the first material was achieved. Following this, the polymer was infiltrated as before to selectively deposit the second material. By patterning two materials from one patterned polymer, no pattern alignment between materials is necessary. The reaction mechanism determined for this system can be applied and expanded to other vapor-phase metal-organic interactions with polymers. The ability to make and align nanoscale features is critically important for manufacturing improved semiconductor devices. The second half of this dissertation focuses on how modification of CNT affects biological response in a material-dependent manner. CNT have unique physical and chemical properties that lead to applications in many areas including: electronics, high-strength materials, filtration and drug delivery. By surface-modifying these materials, a whole new realm of applications appears. Despite the benefits these coatings may provide (e.g., photocatalytic properties and increased conductivity) they can also alter the toxicological response to MWCNT. In rodent models, the inhalation of MWCNT can lead to inflammation and fibrosis. Here, we observed that ZnO coatings on MWCNT led to an acute inflammatory response but did not change the fibrotic response in mice following inhalation. The contribution of ZnO coating dissolution was still unknown following the in vivo study with mice. Alumina, ZnO and aluminum-doped ZnO (AZO) coatings on MWCNT were studied in vitro using various cell lines to determine the contribution of ions to toxicity. AZO is less soluble than ZnO and composed only of previously-characterized materials. We discovered that the concentration of Zn2+ in solution correlated with levels of cytotoxicity in vitro and differences in dissolution between AZO and ZnO coatings led to differences in pro-inflammatory cytokine release. This knowledge can assist with the toxicological assessment of other pure and composite nanomaterials and lead to the creation of safer nanomaterials.
Duarte, Ana Rita C; Maniglio, Devid; Sousa, Nuno; Mano, João F; Reis, Rui L; Migliaresi, Claudio
2017-01-26
This study investigated the preparation of ordered patterned surfaces and/or microspheres from a natural-based polymer, using the breath figure and reverse breath figure methods. Poly(D,L-lactic acid) and starch poly(lactic acid) solutions were precipitated in different conditions - namely, polymer concentration, vapor atmosphere temperature and substrate - to evaluate the effect of these conditions on the morphology of the precipitates obtained. The possibility of fine-tuning the properties of the final patterns simply by changing the vapor atmosphere was also demonstrated here using a range of compositions of the vapor phase. Porous films or discrete particles are formed when the differences in surface tension determine the ability of polymer solution to surround water droplets or methanol to surround polymer droplets, respectively. In vitro cytotoxicity was assessed applying a simple standard protocol to evaluate the possibility to use these materials in biomedical applications. Moreover, fluorescent microscopy images showed a good interaction of cells with the material, which were able to adhere on the patterned surfaces after 24 hours in culture. The development of patterned surfaces using the breath figure method was tested in this work for the preparation of both poly(lactic acid) and a blend containing starch and poly(lactic acid). The potential of these films to be used in the biomedical area was confirmed by a preliminary cytotoxicity test and by morphological observation of cell adhesion.
Varghese, Susheel John; Johny, Sojimol K; Paul, David; Ravi, Thengungal Kochupappy
2011-07-01
The in vitro protein binding of retinoic acid isomers (isotretinoin and tretinoin) and the antihypertensive drugs (amlodipine and telmisartan) was studied by equilibrium dialysis method. In this study, free fraction of drugs and the % of binding of drugs in the mixture to bovine serum albumin (BSA) were calculated. The influence of retinoic acid isomers on the % of protein binding of telmisartan and amlodipine at physiological pH (7.4) and temperature (37±0.5°C) was also evaluated. The in vitro displacement interaction study of drugs telmisartan and amlodipine on retinoic acid isomers and also interaction of retinoic acid isomers on telmisartan and amlodipine were carried out. Copyright © 2011 Elsevier B.V. All rights reserved.
In vitro bioassays can identify environmental samples contaminated with bioactive chemicals that interact with steroid receptors and provide a cumulative, effect-based measurement of contamination. We measured in vitro estrogen (ER), androgen (AR), and glucocorticoid receptor (GR...
Selective PEGylation of Parylene-C/SiO2 Substrates for Improved Astrocyte Cell Patterning.
Raos, B J; Doyle, C S; Simpson, M C; Graham, E S; Unsworth, C P
2018-02-09
Controlling the spatial distribution of glia and neurons in in vitro culture offers the opportunity to study how cellular interactions contribute to large scale network behaviour. A recently developed approach to cell-patterning uses differential adsorption of animal-serum protein on parylene-C and SiO 2 surfaces to enable patterning of neurons and glia. Serum, however, is typically poorly defined and generates reproducibility challenges. Alternative activation methods are highly desirable to enable patterning without relying on animal serum. We take advantage of the innate contrasting surface chemistries of parylene-C and SiO 2 to enable selective bonding of polyethylene glycol SiO 2 surfaces, i.e. PEGylation, rendering them almost completely repulsive to cell adhesion. As the reagents used in the PEGylation protocol are chemically defined, the reproducibility and batch-to-batch variability complications associated with the used of animal serum are avoided. We report that PEGylated parylene-C/SiO 2 substrates achieve a contrast in astrocyte density of 65:1 whereas the standard serum-immersion protocol results in a contrast of 5.6:1. Furthermore, single-cell isolation was significantly improved on PEGylated substrates when astrocytes were grown on close-proximity parylene-C nodes, whereas isolation was limited on serum-activated substrates due tolerance for cell adhesion on serum-adsorbed SiO 2 surfaces.
Zhou, Yu; Wang, Liyun; Park, Sung-Soo; Martin, Bronwen; Wang, Rui; Becker, Kevin G.; Wood, William H.; Zhang, Yongqing; Peers, Chris; Maudsley, Stuart
2011-01-01
The central nervous system normally functions at O2 levels which would be regarded as hypoxic by most other tissues. However, most in vitro studies of neurons and astrocytes are conducted under hyperoxic conditions without consideration of O2-dependent cellular adaptation. We analyzed the reactivity of astrocytes to 1, 4 and 9% O2 tensions compared to the cell culture standard of 20% O2, to investigate their ability to sense and translate this O2 information to transcriptional activity. Variance of ambient O2 tension for rat astrocytes resulted in profound changes in ribosomal activity, cytoskeletal and energy-regulatory mechanisms and cytokine-related signaling. Clustering of transcriptional regulation patterns revealed four distinct response pattern groups that directionally pivoted around the 4% O2 tension, or demonstrated coherent ascending/decreasing gene expression patterns in response to diverse oxygen tensions. Immune response and cell cycle/cancer-related signaling pathway transcriptomic subsets were significantly activated with increasing hypoxia, whilst hemostatic and cardiovascular signaling mechanisms were attenuated with increasing hypoxia. Our data indicate that variant O2 tensions induce specific and physiologically-focused transcript regulation patterns that may underpin important physiological mechanisms that connect higher neurological activity to astrocytic function and ambient oxygen environments. These strongly defined patterns demonstrate a strong bias for physiological transcript programs to pivot around the 4% O2 tension, while uni-modal programs that do not, appear more related to pathological actions. The functional interaction of these transcriptional ‘programs’ may serve to regulate the dynamic vascular responsivity of the central nervous system during periods of stress or heightened activity. PMID:21738745
Liu, Hang; Fan, Huanhuan; Cao, Rong; Blanchard, Christopher; Wang, Min
2016-11-01
A nonthermal processing technology, high hydrostatic pressure (HHP) treatment, was investigated to assess its influence on the physicochemical properties and in vitro digestibility of sorghum starch (SS). There was no change in the 'A'-type crystalline pattern of SS after the pressure treatments at 120-480MPa. However, treatment at 600MPa produced a pattern similar to 'B'-type crystalline. HHP treatment also resulted in SS granules with rough surfaces. Measured amylose content, water absorption capacity, alkaline water retention, pasting temperature and thermostability increased with increasing pressure levels, while the oil absorption capacity, swelling power, relative crystallinity and viscosity decreased. Compared with native starch, HHP-modified SS samples had lower in vitro hydrolysis, reduced amount of rapidly digestible starch, as well as increased levels of slowly digestible starch and resistant starch. These results indicate that HHP treatment is an effective modification method for altering in vitro digestibility and physicochemical properties of SS. Copyright © 2016 Elsevier B.V. All rights reserved.
Van Oss, S. Branden; Shirra, Margaret K.; Bataille, Alain R.; ...
2016-11-10
The five-subunit yeast Paf1 Complex (Paf1C) regulates all stages of transcription and is critical for the monoubiquitylation of histone H2B (H2Bub), a modification that broadly influences chromatin structure and eukaryotic transcription. Here we show that the histone modification domain (HMD) of Paf1C subunit Rtf1 directly interacts with the ubiquitin conjugase Rad6 and stimulates H2Bub independently of transcription. We present the crystal structure of the Rtf1 HMD and use site-specific, in vivo crosslinking to identify a conserved Rad6 interaction surface. Utilizing ChIP-exo analysis, we define the localization patterns of the H2Bub machinery at high resolution and demonstrate the importance of Paf1Cmore » in targeting the Rtf1 HMD, and thereby H2Bub, to its appropriate genomic locations. Finally, we observe HMD-dependent stimulation of H2Bub in a transcription-free, reconstituted in vitro system. Taken together, our results argue for an active role for Paf1C in promoting H2Bub and ensuring its proper localization in vivo.« less
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca
2018-01-01
Abstract The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases. PMID:29718412
T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures.
Schaffter, Samuel W; Green, Leopold N; Schneider, Joanna; Subramanian, Hari K K; Schulman, Rebecca; Franco, Elisa
2018-06-01
The use of proteins that bind and catalyze reactions with DNA alongside DNA nanostructures has broadened the functionality of DNA devices. DNA binding proteins have been used to specifically pattern and tune structural properties of DNA nanostructures and polymerases have been employed to directly and indirectly drive structural changes in DNA structures and devices. Despite these advances, undesired and poorly understood interactions between DNA nanostructures and proteins that bind DNA continue to negatively affect the performance and stability of DNA devices used in conjunction with enzymes. A better understanding of these undesired interactions will enable the construction of robust DNA nanostructure-enzyme hybrid systems. Here, we investigate the undesired disassembly of DNA nanotubes in the presence of viral RNA polymerases (RNAPs) under conditions used for in vitro transcription. We show that nanotubes and individual nanotube monomers (tiles) are non-specifically transcribed by T7 RNAP, and that RNA transcripts produced during non-specific transcription disassemble the nanotubes. Disassembly requires a single-stranded overhang on the nanotube tiles where transcripts can bind and initiate disassembly through strand displacement, suggesting that single-stranded domains on other DNA nanostructures could cause unexpected interactions in the presence of viral RNA polymerases.
In vitro drug interaction of levocetirizine and diclofenac: Theoretical and spectroscopic studies.
Abo Dena, Ahmed S; Abdel Gaber, Sara A
2017-06-15
Levocetirizine dihydrochloride is known to interact with some anti-inflammatory drugs. We report here a comprehensive integrated theoretical and experimental study for the in vitro drug interaction between levocetirizine dihydrochloride (LEV) and diclofenac sodium (DIC). The interaction of the two drugs was confirmed by the molecular ion peak obtained from the mass spectrum of the product. Moreover, FTIR and 1 HNMR spectra of the individual drugs and their interaction product were inspected to allocate the possible sites of interaction. In addition, quantum mechanical DFT calculations were performed to search for the interaction sites and to verify the types of interactions deduced from the spectroscopic studies such as charge-transfer and non-bonding π-π interactions. It was found that the studied drugs interact with each other in aqueous solution via four types of interactions, namely, ion-pair formation, three weak hydrogen bonds, non-bonding π-π interactions and charge-transfer from DIC to LEV. Copyright © 2017 Elsevier B.V. All rights reserved.
Dresser, George K; Urquhart, Brad L; Proniuk, Julianne; Tieu, Alvin; Freeman, David J; Arnold, John Malcolm; Bailey, David G
2017-10-01
Grapefruit can augment oral medication bioavailability through irreversible (mechanism-based) inhibition of intestinal CYP3A4. Supplementary data from our recent coffee-drug interaction clinical study showed some subjects had higher area under the plasma drug concentration - time curve (AUC) and plasma peak drug concentration (Cmax) of the CYP3A4 probe felodipine compared to aqueous control. It was hypothesized that coffee might interact like grapefruit in responsive individuals. Beans from six geographical locations were consistently brewed into coffee that was separated chromatographically to a methanolic fraction for in vitro inhibition testing of CYP3A4 metabolism of felodipine at 1% coffee strength. The effect of simultaneous incubation and 10-min preincubation with coffee fractions determined whether coffee had direct and mechanism-based inhibitory activity. A subsequent five-way randomized balanced controlled crossover clinical study evaluated the clinical pharmacokinetic interaction with single-dose felodipine. Grapefruit juice, water, or three of the in vitro tested coffees were ingested at 300 mL alone 1 h before and then with felodipine. In vitro, all six coffees decreased felodipine metabolism for both simultaneous and preincubation exposure compared to corresponding control. Five coffees demonstrated mechanism-based inhibition. Grapefruit increased felodipine AUC 0-8 (25 vs. 13 ng.h/mL, P < 0.001) and Cmax (5.8 vs. 2.7 ng/mL, P < 0.001) and decreased dehydrofelodipine/felodipine AUC 0-8 ratio (0.84 vs. 1.29, P < 0.001), while the three coffees caused no change in these parameters compared to water. Despite high in vitro potency of CYP3A4 inhibition, the coffees did not cause a clinical pharmacokinetic interaction possibly from insufficient amount of inhibitor(s) in coffee reaching intestinal CYP3A4 during the absorption phase of felodipine. The results of this study highlight the need for follow-up clinical testing when in vitro results indicate the possibility of an interaction. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.
Kim, Soo-Jin; Toshimoto, Kota; Yao, Yoshiaki; Yoshikado, Takashi; Sugiyama, Yuichi
2017-09-01
Quantitative analysis of transporter- and enzyme-mediated complex drug-drug interactions (DDIs) is challenging. Repaglinide (RPG) is transported into the liver by OATP1B1 and then is metabolized by CYP2C8 and CYP3A4. The purpose of this study was to describe the complex DDIs of RPG quantitatively based on unified physiologically based pharmacokinetic (PBPK) models using in vitro K i values for OATP1B1, CYP3A4, and CYP2C8. Cyclosporin A (CsA) or gemfibrozil (GEM) increased the blood concentrations of RPG. The time profiles of RPG and the inhibitors were analyzed by PBPK models, considering the inhibition of OATP1B1 and CYP3A4 by CsA or OATP1B1 inhibition by GEM and its glucuronide and the mechanism-based inhibition of CYP2C8 by GEM glucuronide. RPG-CsA interaction was closely predicted using a reported in vitro K i,OATP1B1 value in the presence of CsA preincubation. RPG-GEM interaction was underestimated compared with observed data, but the simulation was improved with the increase of f m,CYP2C8 . These results based on in vitro K i values for transport and metabolism suggest the possibility of a bottom-up approach with in vitro inhibition data for the prediction of complex DDIs using unified PBPK models and in vitro f m value of a substrate for multiple enzymes should be considered carefully for the prediction. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lee, Ju Seok; Chen, Junghuei; Deaton, Russell; Kim, Jin-Woo
2014-01-01
Genetic material extracted from in situ microbial communities has high promise as an indicator of biological system status. However, the challenge is to access genomic information from all organisms at the population or community scale to monitor the biosystem's state. Hence, there is a need for a better diagnostic tool that provides a holistic view of a biosystem's genomic status. Here, we introduce an in vitro methodology for genomic pattern classification of biological samples that taps large amounts of genetic information from all genes present and uses that information to detect changes in genomic patterns and classify them. We developed a biosensing protocol, termed Biological Memory, that has in vitro computational capabilities to "learn" and "store" genomic sequence information directly from genomic samples without knowledge of their explicit sequences, and that discovers differences in vitro between previously unknown inputs and learned memory molecules. The Memory protocol was designed and optimized based upon (1) common in vitro recombinant DNA operations using 20-base random probes, including polymerization, nuclease digestion, and magnetic bead separation, to capture a snapshot of the genomic state of a biological sample as a DNA memory and (2) the thermal stability of DNA duplexes between new input and the memory to detect similarities and differences. For efficient read out, a microarray was used as an output method. When the microarray-based Memory protocol was implemented to test its capability and sensitivity using genomic DNA from two model bacterial strains, i.e., Escherichia coli K12 and Bacillus subtilis, results indicate that the Memory protocol can "learn" input DNA, "recall" similar DNA, differentiate between dissimilar DNA, and detect relatively small concentration differences in samples. This study demonstrated not only the in vitro information processing capabilities of DNA, but also its promise as a genomic pattern classifier that could access information from all organisms in a biological system without explicit genomic information. The Memory protocol has high potential for many applications, including in situ biomonitoring of ecosystems, screening for diseases, biosensing of pathological features in water and food supplies, and non-biological information processing of memory devices, among many.
Keogh, John P; Kunta, Jeevan R
2006-04-01
Regulatory interest is increasing for drug transporters generally and P-glycoprotein (Pgp) in particular, primarily in the area of drug-drug interactions. To aid in both identifying and discharging the potential liabilities associated with drug-transporter interactions, the pharmaceutical industry has a growing requirement for routine and robust non-clinical assays. An assay was designed, optimised and validated to determine the in vitro inhibitory potency of new chemical entities (NCEs) towards human Pgp-mediated transport. [3H]-Digoxin was established as a suitable probe substrate by investigating its characteristics in the in vitro system (MDCKII-MDR1 cells grown in 24-multiwell inserts). The inhibitory potencies (apparent IC50) of known Pgp inhibitors astemizole, GF120918, ketoconazole, itraconazole, quinidine, verapamil and quinine were determined over at least a 1000-fold concentration range. Validation was carried out using manual and automatic techniques. [3H]-Digoxin was found to be stable and have good mass balance in the system. In contrast to [A-->B] transport, [3H]-digoxin [B-->A] transport rates were readily measured with good reproducibility. There was no evidence of saturation of transport up to 10 microM digoxin and 30 nM digoxin was selected for routine assay use, reflecting clinical therapeutic concentrations. IC50 values ranged over approximately 100-fold with excellent reproducibility. Results from manual and automated versions were in close agreement. This method is suitable for routine use to assess the in vitro inhibitory potency of NCEs on Pgp-mediated digoxin transport. Comparison of IC50 values against clinical interaction profiles for the probe inhibitors indicated the in vitro assay is predictive of clinical digoxin-drug interactions mediated via Pgp.
Venkatakrishnan, Karthik; Obach, R Scott
2005-06-01
Attempts at predicting drug-drug interactions perpetrated by paroxetine from in vitro data have utilized reversible enzyme inhibition models and have been unsuccessful to date, grossly underpredicting interaction magnitude. Recent data have provided evidence for mechanism-based inactivation of CYP2D6 by paroxetine. We have predicted the pharmacokinetic consequences of CYP2D6 inactivation by paroxetine from in vitro inactivation kinetics (kinact 0.17 min(-1), unbound KI 0.315 microM), in vivo inhibitor concentrations, and an estimated CYP2D6 degradation half-life of 51 h, using a mathematical model of mechanism-based inhibition. The model-predicted accumulation ratio of paroxetine was 5 times that expected from single-dose kinetics and in excellent agreement with the observed 5- to 6-fold greater accumulation. Magnitudes of interactions produced by paroxetine (20-30 mg/day) with desipramine, risperidone, perphenazine, atomoxetine, (S)-metoprolol, and (R)-metoprolol were predicted, considering the contribution of CYP2D6 to their oral clearance. Predicted fold-increases in victim drug AUC were 5-, 6-, 5-, 6-, 4-, and 6-fold, respectively, and are in reasonable agreement with observed values of 5-, 6-, >7-, 7-, 5-, and 8-fold, respectively. Failure to consider microsomal binding in vitro adversely affected predictive accuracy. Simulation of the sensitivities of these predictions to model inputs suggests a 2-fold underprediction of interaction magnitude when a CYP2D6 degradation half-life of 14 h (reported for rat CYP3A) is used. In summary, the scaling model for mechanism-based inactivation successfully predicted the pharmacokinetic consequences of CYP2D6 inactivation by paroxetine from in vitro data.
A Comparison of Interaction Patterns in an Open Space and a Fixed Plan School. Final Report.
ERIC Educational Resources Information Center
Montgomery County School System, Christiansburg, VA.
This study investigates interaction patterns that occur in an open plan and in a traditional plan school. The objectives of the study were: (1) to investigate some interaction patterns among members of the school populations, (2) to investigate some interaction patterns between the school population and the available physical resources, (3) to…
The interaction of substituted benzamides with brain benzodiazepine binding sites in vitro.
Horton, R W; Lowther, S; Chivers, J; Jenner, P; Marsden, C D; Testa, B
1988-08-01
1. The interaction of substituted benzamides with brain benzodiazepine (BDZ) binding sites was examined by their ability to displace [3H]-flunitrazepam ([3H]-FNM) from specific binding sites in bovine cortical membranes in vitro. 2. Clebopride, Delagrange 2674, Delagrange 2335 and BRL 20627 displayed concentration-dependent displacement of [3H]-FNM with IC50 values of 73 nM, 132 nM, 7.7 microM and 5.9 microM, respectively. Other substituted benzamides including metoclopramide, sulpiride, tiapride, sultopride and cisapride were inactive at 10(-5) M. 3. Inhibition by clebopride and Delagrange 2674 of [3H]-FNM binding was apparently competitive and readily reversible. 4. In the presence of gamma-aminobutyric acid (GABA), the ability of diazepam and Delagrange 2674 to displace [3H]-Ro 15-1788 binding was increased 3.6 and 1.6 fold respectively, compared to the absence of GABA, while ethyl beta-carboline-3-carboxylate (beta CCE) and clebopride were less potent in the presence of GABA. 5. Diazepam was 30 fold less potent at displacing [3H]-Ro 15-1788 in membranes that had been photoaffinity labelled with FNM than in control membranes, whereas the potency of beta CCE did not differ. Clebopride and Delagrange 2674 showed a less than two fold loss of potency in photoaffinity labelled membranes. 6. The pattern of binding of clebopride and Delagrange 2674 in these in vitro tests is similar to that found previously with partial agonists or antagonists at BDZ binding sites. 7. Clebopride and Delagrange 2674 inhibited [3H]-FNM binding with similar potency in rat cerebellar and hippocampal membranes, suggesting they have no selectivity for BDZ1 and BDZ2 binding sites. 8. Clebopride and Delagrange 2674 are structurally dissimilar to other BDZ ligands and represent another chemical structure to probe brain BDZ binding sites.
Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M
2018-04-26
Animals living in groups compete for food resources and face food conflicts. These conflicts are affected by social factors (e.g. competition level) and behavioural strategies (e.g. avoidance). This study aimed to deepen our understanding of the complex interactions between social factors and behavioural strategies affecting feeding and social interaction patterns in animals. We focused on group-housed growing pigs, Sus scrofa, which typically face conflicts around the feeder, and of which patterns in various competitive environments (i.e. pig:feeder ratio) have been documented soundly. An agent-based model was developed to explore how interactions among social factors and behavioural strategies can affect various feeding and social interaction patterns differently under competitive situations. Model results show that pig and diet characteristics interact with group size and affect daily feeding patterns (e.g. feed intake and feeding time) and conflicts around the feeder. The level of competition can cause a turning point in feeding and social interaction patterns. Beyond a certain point of competition, meal-based (e.g. meal frequency) and social interaction patterns (e.g. displacements) are determined mainly by behavioural strategies. The average daily feeding time can be used to predict the group size at which this turning point occurs. Under the model's assumptions, social facilitation was relatively unimportant in the causation of behavioural patterns in pigs. To validate our model, simulated patterns were compared with empirical patterns in conventionally housed pigs. Similarities between empirical and model patterns support the model results. Our model can be used as a tool in further research for studying the effects of social factors and group dynamics on individual variation in feeding and social interaction patterns in pigs, as well as in other animal species. Copyright © 2018 Elsevier Inc. All rights reserved.
Lee, Yong-Seung; Lee, Seunghyung; Lee, Sang-Hee; Yang, Boo-Keun; Park, Choon-Keun
2015-08-01
This study was undertaken to examine the effect of cholesterol-loaded-cyclodextrin (CLC) on boar sperm viability and spermatozoa cryosurvival during boar semen cryopreservation, and methyl-β-cyclodextrin (MBCD) was treated for comparing with CLC. Boar semen treated with CLC and MBCD before freezing process to monitor the effect on survival and capacitation status by flow cytometry with appropriate fluorescent probes. Sperm viability was higher in 1.5mg CLC-treated sperm (76.9±1.01%, P<0.05) than un-treated and MBCD-treated sperm before cryopreservation (58.7±1.31% and 60.3±0.31%, respectively). For CTC patterns, F-pattern was higher in CLC treated sperm than MBCD-treated sperm, for B-pattern was higher in CLC-treated sperm than fresh sperm (P<0.05). For AR pattern (an acrosome-reacted sperm) was lower in CLC-treated sperm than MBCD-treated sperm (P<0.05). Moreover, we examined in vitro development of porcine oocytes after in vitro fertilization using CLC-treated frozen-thawed semen, in which CLC treatment prior to freezing and thawing increased the development of oocytes to blastocyst stage in vitro. In conclusion, CLC could protect the viability of spermatozoa from cryodamage prior to cryopreservation in boar semen. Copyright © 2015 Elsevier B.V. All rights reserved.
Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro
Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.
2012-01-01
Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042
A method for determination of equine hoof strain patterns using photoelasticity: an in vitro study.
Dejardin, L M; Arnoczky, S P; Cloud, G L
1999-05-01
During impact, equine hooves undergo viscoelastic deformations which may result in potentially harmful strains. Previous hoof strain studies using strain gauges have been inconclusive due to arbitrary gauge placement. Photoelastic stress analysis (PSA) is a full-field technique which visually displays strains over entire loaded surfaces. This in vitro study identifies normal hoof strain patterns using PSA. Custom-made photoelastic plastic sheets were applied to the hoof surface. The hooves were axially loaded (225 kg) under level and varus/valgus conditions. Strain patterns were video-recorded through a polariscope. Strains were concentrated between middle and distal thirds of the hoof wall regardless of the loading conditions. This strain distribution appears to result from the differential expansion of the hoof wall under load. Increasing load resulted in higher strains and asymmetric loading resulted in an ipsilateral increase in strain magnitudes without altering strain locations. This study shows that PSA is a reliable method with which to evaluate hoof strains in vitro and is sensitive enough to reflect subtle load-related strain alterations.
Ramanathan, Ragu; Ghosal, Anima; Ramanathan, Lakshmi; Comstock, Kate; Shen, Helen; Ramanathan, Dil
2018-05-01
Evaluation of HPLC-high-resolution mass spectrometry (HPLC-HRMS) full scan with polarity switching for increasing throughput of human in vitro cocktail drug-drug interaction assay. Microsomal incubates were analyzed using a high resolution and high mass accuracy Q-Exactive mass spectrometer to collect integrated qualitative and quantitative (qual/quant) data. Within assay, positive-to-negative polarity switching HPLC-HRMS method allowed quantification of eight and two probe compounds in the positive and negative ionization modes, respectively, while monitoring for LOR and its metabolites. LOR-inhibited CYP2C19 and showed higher activity for CYP2D6, CYP2E1 and CYP3A4. Overall, LC-HRMS-based nontargeted full scan quantitation allowed to improve the throughput of the in vitro cocktail drug-drug interaction assay.
Disordered Actomyosin Is Sufficient to Promote Cooperative and Telescopic Contractility
NASA Astrophysics Data System (ADS)
Murrell, Michael; Linsmeier, Ian; Banerjee, Shiladitya; Kim, Tae Yoon; Jung, Wonyeong; Oakes, Patrick
While the molecular interactions between myosin motors and F-actin are well known, the relationship between F-actin organization and myosin-mediated force generation remains poorly understood. Here, we explore the accumulation of myosin-induced stresses within a 2D biomimetic model of the actomyosin cortex, where myosin activity is controlled spatially and temporally using light. By controlling the geometry and the duration of myosin activation, we show that contraction of disordered actomyosin is highly cooperative, telescopic with the activation area and generates a pattern of mechanical stresses consistent with those observed in contractile cells. We quantitatively reproduce these properties using an in vitro isotropic model of the actomyosin cytoskeleton, and explore the physical origins of telescopic contractility in disordered networks using agent-based simulations. NSF CMMI-1525316.
Passalacqua, Thais G; Torres, Fábio A E; Nogueira, Camila T; de Almeida, Leticia; Del Cistia, Mayara L; dos Santos, Mariana B; Dutra, Luis A; Bolzani, Vanderlan da Silva; Regasini, Luis O; Graminha, Márcia A S; Marchetto, Reinaldo; Zottis, Aderson
2015-09-01
The enzyme glycerol-3-phosphate dehydrogenase (G3PDH) from Leishmania species is considered as an attractive target to design new antileishmanial drugs and a previous in silico study reported on the importance of chalcones to achieve its inhibition. Here, we report the identification of a synthetic chalcone in our in vitro assays with promastigote cells from Leishmania amazonensis, its biological activity in animal models, and docking followed by molecular dynamics simulation to investigate the molecular interactions and structural patterns that are crucial to achieve the inhibition complex between this compound and G3PDH. A molecular fragment of this natural product derivative can provide new inhibitors with increased potency and selectivity. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tansey, William P.; Herr, Winship
1995-11-01
The TATA box-binding protein (TBP) interacts in vitro with the activation domains of many viral and cellular transcription factors and has been proposed to be a direct target for transcriptional activators. We have examined the functional relevance of activator-TBP association in vitro to transcriptional activation in vivo. We show that alanine substitution mutations in a single loop of TBP can disrupt its association in vitro with the activation domains of the herpes simplex virus activator VP16 and of the human tumor suppressor protein p53; these mutations do not, however, disrupt the transcriptional response of TBP to either activation domain in vivo. Moreover, we show that a region of VP16 distinct from its activation domain can also tightly associate with TBP in vitro, but fails to activate transcription in vivo. These data suggest that the ability of TBP to interact with activation domains in vitro is not directly relevant to its ability to support activated transcription in vivo.
Abu-Huwaij, Rana; Obaidat, Rana M; Sweidan, Kamal; Al-Hiari, Yusuf
2011-03-01
Bilayer nicotine mucoadhesive patches were prepared and evaluated to determine the feasibility of the formulation as a nicotine replacement product to aid in smoking cessation. Nicotine patches were prepared using xanthan gum or carbopol 934 as a mucoadhesive polymers and ethyl cellulose as a backing layer. The patches were evaluated for their thickness, weight and content uniformity, swelling behavior, drug-polymers interaction, adhesive properties, and drug release. The physicochemical interactions between nicotine and the polymers were investigated by Fourier transform infrared (FTIR) spectroscopy. Mucoadhesion was assessed using two-arm balance method, and the in vitro release was studied using the Franz cell. FTIR revealed that there was an acid base interaction between nicotine and carbopol as well as nicotine and xanthan. Interestingly, the mucoadhesion and in vitro release studies indicated that this interaction was strong between the drug and carbopol whereas it was weak between the drug and xanthan. Loading nicotine concentration to non-medicated patches showed a significant decrease in the mucoadhesion strength of carbopol patches and no significant effect on the mucoadhesion strength of xanthan patches. In vitro release studies of the xanthan patches showed a reasonable fast initial release profile followed by controlled drug release over a 10-h period. © 2010 American Association of Pharmaceutical Scientists
Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds
Georgiev, Georgi As.; Yokoi, Norihiko; Nencheva, Yana; Peev, Nikola; Daull, Philippe
2017-01-01
Cationorm® (CN) cationic nanoemulsion was demonstrated to enhance tear film (TF) stability in vivo possibly via effects on tear film lipid layer (TFLL). Therefore the interactions of CN with human meibum (MGS) and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i) CN inclusion (at fixed MGS content) increased film elasticity and thickness and that (ii) CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF. PMID:28718823
Aldolase sequesters WASP and affects WASP/Arp2/3-stimulated actin dynamics.
Ritterson Lew, Carolyn; Tolan, Dean R
2013-08-01
In addition to its roles in sugar metabolism, fructose-1,6-bisphosphate aldolase (aldolase) has been implicated in cellular functions independent from these roles, termed "moonlighting functions." These moonlighting functions likely involve the known aldolase-actin interaction, as many proteins with which aldolase interacts are involved in actin-dependent processes. Specifically, aldolase interacts both in vitro and in cells with Wiskott-Aldrich Syndrome Protein (WASP), a protein involved in controlling actin dynamics, yet the function of this interaction remains unknown. Here, the effect of aldolase on WASP-dependent processes in vitro and in cells is investigated. Aldolase inhibits WASP/Arp2/3-dependent actin polymerization in vitro. In cells, knockdown of aldolase results in a decreased rate of cell motility and cell spreading, two WASP-dependent processes. Expression of exogenous aldolase rescues these defects. Whether these effects of aldolase on WASP-dependent processes were due to aldolase catalysis or moonlighting functions is tested using aldolase variants defective in either catalytic or actin-binding activity. While the actin-binding deficient aldolase variant is unable to inhibit actin polymerization in vitro and is unable to rescue cell motility defects in cells, the catalytically inactive aldolase is able to perform these functions, providing evidence that aldolase moonlighting plays a role in WASP-mediated processes. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Basheer, Loai; Schultz, Keren; Kerem, Zohar
2016-08-01
Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme’s binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs.
Mezquita, C; Teng, C S
1978-01-01
To probe the structural change in the genome of the differentiating germ cell of the maturing rooster testis, the chromatin from nuclei at various stages of differentiation were transcribed with prokaryotic RNA polymerase from Escherichia coli or with eukaryotic RNA polymerase II from wheat germ. The transcription was performed under conditions of blockage of RNA chain reinitiation in vitro with rifampicin or rifampicin AF/013. With the E. coli enzyme, the changes in (1) the titration curve for the enzyme-chromatin interaction, (2) the number of initiation sites, (3) the rate of elongation of RNA chains, and (4) the kinetics of the formation of stable initiation complexes revealed the unmasking of DNA in elongated spermatids and the masking of DNA in spermatozoa. In both cases the stability of the DNA duplex in the initiation region for RNA synthesis greatly increased. In contrast with the E. coli enzyme, the wheat-germ RNA polymerase II was relatively inefficient at transcribing chromatin of elongated spermatids. Such behaviour can be predicted if unmasked double-stranded DNA is present in elongated spermatids. PMID:346018
Mahmoudian, Alireza; Markham, Philip F; Noormohammadi, Amir H; Devlin, Joanne M; Browning, Glenn F
2013-01-01
Infectious laryngotracheitis virus (ILTV) causes severe respiratory disease in poultry throughout the world. Recently the role of glycoprotein G (gG) in ILTV pathogenesis has been investigated and it has been shown to have chemokine-binding activity. An ILTV vaccine candidate deficient in gG has been developed and the deletion has been shown to alter the host's immune response to the virus. To understand the effect of the gG gene on transcription of other viral genes, the global expression profile of 72 ILTV genes in gG-deleted and wild-type ILTVs were investigated both in vivo and in vitro using quantitative reverse transcription-polymerase chain reaction. Several genes were differentially expressed in the different viruses in LMH cell cultures or in the tracheas of infected birds, and the expression of a number of genes, including ICP27, gC, gJ, Ul7 and UL40, differed significantly both in vivo and in vitro, suggesting that they had direct or indirect roles in virulence. This study has provided insights into the interactions between gG and other ILTV genes that may have a role in virulence.
Nanotechnology Enhanced Functional Assays of Actomyosin Motility - Potentials and Challenges
NASA Astrophysics Data System (ADS)
Månsson, A.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Montelius, L.
Muscle contraction occurs as a result of force-producing interactions between the contractile proteins myosin II and actin with the two proteins highly ordered in the filament lattice of the muscle sarcomere. In contrast to this wellordered structure, most in vitro studies are performed with the contractile proteins in a disordered arrangement. Here we first review the existing in vitro motility assays and then consider how they can be improved by the use of nanotechnology. As a basis for such improvement we describe our recent work where we used chemically and topographically patterned surfaces to achieve selective localization of actomyosin motor function to predetermined areas of sub-micrometer dimensions. We also describe guidance and unidirectional actin filament sliding on nanosized tracks and suggest how such tracks can be combined with 1. microfluidics-based rapid solution exchange and 2. application of electromagnetic forces of well-defined orientation, thus simulating the lifting of a weight by actomyosin. As a related issue we discuss the usefulness of nanotechnology based assay systems for miniaturized highthroughput drug screening systems with molecular motors as drug targets. Finally, we consider the potentials and challenges in using nanotechnology to reconstruct the most essential aspects of cellular order within the muscle sarcomere.
Interaction of alphamangostin and curcumin with dihydroartemisinin as antimalaria in vitro
NASA Astrophysics Data System (ADS)
Tjahjani, S.; Syafruddin; Tjokropranoto, R.
2018-03-01
To overcome malarial resistance tendency against the ACT (artemisinin-based combination therapy), several galenic preparations of Garciniamangostana L-rind and alphamangostin as the major xanthone in this rind have been studied, and they had antimalarial activity and showed its synergistic effect with artemisinin in vitro. Curcumin as anactive component of turmeric is also potentially to have antimalarial activity. This study aimed to evaluate the activity as antimalarial of curcumin and dihydroartemisinin, an active metabolite of all artemisinin derivates, and also to study the mechanism of action of aphamangostin, curcumin, and dihydroartemisinin as antimalaria.The interaction between them each other as the antimalarial in vitro was also investigated. The antimalarial activity was studied in in vitro 3D7 Plasmodium falciparum cultivation incubated with these compounds to look for the IC50 and ΣFIC50 of them. The mechanism of action of these compounds was observed electron microscopically. The result of this promising study showed that these compounds were active antimalaria agents which inhibited hemozoin formation and there is synergistic antimalarial activity interaction between alphamangostin and dihydroartemisinin.
Sager, Jennifer E; Lutz, Justin D; Foti, Robert S; Davis, Connie; Kunze, Kent L; Isoherranen, Nina
2014-01-01
Fluoxetine and its circulating metabolite norfluoxetine present a complex multiple inhibitor system that causes reversible or time-dependent inhibition of CYP2D6, CYP3A4, and CYP2C19 in vitro. While significant inhibition of all three enzymes in vivo is predicted, midazolam and lovastatin AUCs were unaffected by two week dosing of fluoxetine whereas dextromethorphan AUC was increased by 27-fold and omeprazole AUC by 7.1-fold. This observed discrepancy between in vitro risk assessment and in vivo DDI profile was rationalized by time-varying dynamic pharmacokinetic models that incorporated circulating concentrations of fluoxetine and norfluoxetine enantiomers, mutual inhibitor-inhibitor interactions and CYP3A4 induction. The dynamic models predicted all DDIs with less than 2-fold error. This study demonstrates that complex drug-drug interactions that involve multiple mechanisms, pathways and inhibitors with their metabolites can be predicted and rationalized via characterization of all the inhibitory species in vitro. PMID:24569517
Huang, Cheng-Kuang; Donald, Athene
2015-01-01
Since the dawn of in vitro cell cultures, how cells interact and proliferate within a given external environment has always been an important issue in the study of cell biology. It is now well known that mammalian cells typically exhibit a three-phase sigmoid spreading on encountering a substrate. To further this understanding, we examined the influence of cell shape towards the second rapid expansion phase of spreading. Specifically, 3T3 fibroblasts were seeded onto silicon elastomer films made from polydimethylsiloxane (PDMS), and micro-contact printed with fibronectin stripes of various dimensions. PDMS is adopted in our study for its biocompatibility, its ease in producing very smooth surfaces, and in the fabrication of micro-contact printing stamps. The substrate patterns are compared with respect to their influence on cell spreading over time. Our studies reveal, during the early rapid expansion phase, 3T3 fibroblasts are found to spread radially following a law; meanwhile, they proliferated in a lengthwise fashion on the striped patterns, following a law. We account for the observed differences in kinetics through a simple geometric analysis which predicted similar trends. In particular, a t2 law for radial spreading cells, and a t1 law for lengthwise spreading cells. PMID:25551146
Araoka, Hideki; Baba, Masaru; Okada, Chikako; Abe, Masahiro; Kimura, Muneyoshi; Yoneyama, Akiko
2017-05-01
The aim of this study was to evaluate the in vitro effects and clinical efficacies of trimethoprim-sulfamethoxazole (SXT) combined with other antimicrobial agents against Stenotrophomonas maltophilia. In vitro analysis was conducted on 89 S. maltophilia strains isolated from blood and the respiratory tract between June 2012 and October 2014. Levofloxacin (LVX), ticarcillin-clavulanic acid (TIM), and minocycline (MIN) were selected for an examination of their effects when individually combined with SXT by the checkerboard method. In addition, 29 S. maltophilia bacteremia cases were reviewed and the clinical efficacies of SXT-based combination therapies were analyzed. SXT+LVX showed synergy in 21, no interactions in 61, and antagonism in 7. SXT+TIM showed synergy in 71, and no interactions in 18. SXT+MIN showed synergy in 10, and no interactions in 79. The review of clinical data indicated that a combination of SXT+fluoroquinolone was not associated with improved prognosis compared with monotherapy. The in vitro data indicated that SXT+TIM had beneficial microbiological effects and was not antagonistic. Our in vitro and clinical data analyses do not support the routine use of SXT+fluoroquinolone combination therapy for S. maltophilia infection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
1982-01-01
The spontaneous expression of ecotropic murine leukemia virus (MuLV) in spleen cells of BALB/c, C57BL/6 (B6), and derivative mice was examined as a function of age. The patterns of spontaneous virus induction in vivo correlate with the patterns of virus induction in vitro, which result from the action of two loci, Inc-l and Inb-l (7). Whereas mice carrying Inc-l or Inb-l have similar phenotypes in vitro, they have significantly different phenotypes in vivo. Mice of the Inb-l+/+ genotype, e.g., B6, rarely expressed MuLV, and the titer of MuLV recovered from rare MuLV-positive mice of this genotype was usually low. Mice of the Inc-l+/+ genotype, e.g., BALB/c, expressed low amounts of MuLV early in life, however, from 6-12 mo of age approximately one- half of the Inc-l+/+ mice expressed virus, frequently of high titer. Equal numbers of N-tropic and B-tropic MuLV were recovered from Inb-l+ mice, but predominantly N-tropic MuLV was recovered from Inc-l+ mice. Strains that carry dominant (+) alleles at both Inc-l and Inb-l show higher titers of MuLV earlier in life than strains that carry only Inc- l or Inb-l. The presence of dominant alleles at both loci results in the appearance of predominantly N-tropic virus early in life. These results demonstrate that the principal determinants of spontaneous virus expression in these low leukemic strains of mice are the In loci or genes linked to them. A further inference that can be drawn from these studies is that the appearance of B-tropic virus is by no means a random process but rather results from predictable patterns of MuLV expression and alteration. PMID:6284854
Fang, Linchuan; Hou, Yanlin; Wang, Lijun; Xin, Haiping; Wang, Nian; Li, Shaohua
2014-10-01
High and low resveratrol (Res) contents in two cultivars are correlated with the expression abundance of Myb14 , which could directly activate transcriptional expression of stilbene synthase gene ( STS ). Resveratrol (3,5,4'-trihydroxystilbene) is one of the natural polyphenols produced by secondary metabolism in some plants. Stilbene synthase (STS) is the key enzyme for the final step of precursor formation of resveratrol (Res) in grapevines. In this study, we found that Res contents in ripe berry skin were completely different in two grape cultivars, namely, 'Z168' (Vitis monticola × Vitis riparia) with high-Res and 'Jingzaojing' (Vitis vinifera) with low-Res. Moreover, the level of expression of STS gene was higher in the ripe berry skin of 'Z168' than in that of 'Jingzaojing'. To further investigate the underlying mechanisms, we conducted a co-expression analysis through transcriptomic data. We confirmed that Myb14, an R2R3 Myb transcription factor, is the direct regulator of STS by binding to Box-L5 motif. Moreover, the expression pattern of Myb14 is associated with the variation of Res content. To test this prediction, we conducted a number of experiments in vivo and in vitro. The expression patterns of Myb14 and STS in grapevine leaves were identical under a series of stimulus. Myb14 showed higher expression in the ripe berry skin of 'Z168' than in that of 'Jingzaojing'. Yeast one-hybrid assay indicated that grapevine Myb14 could interact with the promoter of STS in vitro, and the transient overexpression of Myb14 promoted the expression of STS. Furthermore, co-expressing 35S::Myb14 in transgenic Arabidopsis could activate GUS expression promoted by STS promoter. Thus, Myb14 is the direct activator of STS, and its expression pattern is associated with Res content variation in grapes.
Luethi, Dino; Liechti, Matthias E
2018-05-29
Pharmacological profiles of new psychoactive substances (NPSs) can be established rapidly in vitro and provide information on potential psychoactive effects in humans. The present study investigated whether specific in vitro monoamine transporter and receptor interactions can predict effective psychoactive doses in humans. We correlated previously assessed in vitro data of stimulants and psychedelics with human doses that are reported on the Internet and in books. For stimulants, dopamine and norepinephrine transporter inhibition potency was positively correlated with human doses, whereas serotonin transporter inhibition potency was inversely correlated with human doses. Serotonin 5-hydroxytryptamine-2A (5-HT2A) and 5-HT2C receptor affinity was significantly correlated with psychedelic doses, but 5-HT1A receptor affinity and 5-HT2A and 5-HT2B receptor activation potency were not. The rapid assessment of in vitro pharmacological profiles of NPSs can help to predict psychoactive doses and effects in humans and facilitate the appropriate scheduling of NPSs.
Raman spectroscopy of biomedical polyethylenes.
Pezzotti, Giuseppe
2017-06-01
With the development of three-dimensional Raman algorithms for local mapping of oxidation and plastic strain, and the ability to resolve molecular orientation patterns with microscopic spatial resolution, there is an opportunity to re-examine many of the foundations on which our understanding of biomedical grade ultra-high molecular weight polyethylenes (UHMWPEs) are based. By implementing polarized Raman spectroscopy into an automatized tool with an improved precision in non-destructively resolving Euler angles, oxidation levels, and microscopic strain, we become capable to make accurate and traceable measurements of the in vitro and in vivo tribological responses of a variety of commercially available UHMWPE bearings for artificial hip and knee joints. In this paper, we first review the foundations and the main algorithms for Raman analyses of oxidation and strain of biomedical polyethylene. Then, we critically re-examine a large body of Raman data previously collected on different polyethylene joint components after in vitro testing or in vivo service, in order to shed new light on an area of particular importance to joint orthopedics: the microscopic nature of UHMWPE surface degradation in the human body. A complex scenario of physical chemistry appears from the Raman analyses, which highlights the importance of molecular-scale phenomena besides mere microstructural changes. The availability of the Raman microscopic probe for visualizing oxidation patterns unveiled striking findings related to the chemical contribution to wear degradation: chain-breaking and subsequent formation of carboxylic acid sites preferentially occur in correspondence of third-phase regions, and they are triggered by emission of dehydroxylated oxygen from ceramic oxide counterparts. These findings profoundly differ from more popular (and simplistic) notions of mechanistic tribology adopted in analyzing joint simulator data. Statement of Significance This review was dedicated to the theoretical and experimental evaluation of the commercially available biomedical polyethylene samples by Raman spectroscopy with regard to their molecular textures, oxidative patterns, and plastic strain at the microscopic level in the three dimensions of the Euclidean space. The main achievements could be listed, as follow: (i) visualization of molecular patterns at the surface of UHMWPE bearings operating against metallic components; (ii) differentiation between wear and creep deformation in retrievals; (iii) non-destructive mapping of oxidative patterns; and, (iv) the clarification of chemical interactions between oxide/non-oxide ceramic heads and advanced UHMWPE liners. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Varma, Manthena V S; Lai, Yurong; Kimoto, Emi; Goosen, Theunis C; El-Kattan, Ayman F; Kumar, Vikas
2013-04-01
Quantitative prediction of complex drug-drug interactions (DDIs) is challenging. Repaglinide is mainly metabolized by cytochrome-P-450 (CYP)2C8 and CYP3A4, and is also a substrate of organic anion transporting polypeptide (OATP)1B1. The purpose is to develop a physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics and DDIs of repaglinide. In vitro hepatic transport of repaglinide, gemfibrozil and gemfibrozil 1-O-β-glucuronide was characterized using sandwich-culture human hepatocytes. A PBPK model, implemented in Simcyp (Sheffield, UK), was developed utilizing in vitro transport and metabolic clearance data. In vitro studies suggested significant active hepatic uptake of repaglinide. Mechanistic model adequately described repaglinide pharmacokinetics, and successfully predicted DDIs with several OATP1B1 and CYP3A4 inhibitors (<10% error). Furthermore, repaglinide-gemfibrozil interaction at therapeutic dose was closely predicted using in vitro fraction metabolism for CYP2C8 (0.71), when primarily considering reversible inhibition of OATP1B1 and mechanism-based inactivation of CYP2C8 by gemfibrozil and gemfibrozil 1-O-β-glucuronide. This study demonstrated that hepatic uptake is rate-determining in the systemic clearance of repaglinide. The model quantitatively predicted several repaglinide DDIs, including the complex interactions with gemfibrozil. Both OATP1B1 and CYP2C8 inhibition contribute significantly to repaglinide-gemfibrozil interaction, and need to be considered for quantitative rationalization of DDIs with either drug.
Novel approach of fragment-based lead discovery applied to renin inhibitors.
Tawada, Michiko; Suzuki, Shinkichi; Imaeda, Yasuhiro; Oki, Hideyuki; Snell, Gyorgy; Behnke, Craig A; Kondo, Mitsuyo; Tarui, Naoki; Tanaka, Toshimasa; Kuroita, Takanobu; Tomimoto, Masaki
2016-11-15
A novel approach was conducted for fragment-based lead discovery and applied to renin inhibitors. The biochemical screening of a fragment library against renin provided the hit fragment which showed a characteristic interaction pattern with the target protein. The hit fragment bound only to the S1, S3, and S3 SP (S3 subpocket) sites without any interactions with the catalytic aspartate residues (Asp32 and Asp215 (pepsin numbering)). Prior to making chemical modifications to the hit fragment, we first identified its essential binding sites by utilizing the hit fragment's substructures. Second, we created a new and smaller scaffold, which better occupied the identified essential S3 and S3 SP sites, by utilizing library synthesis with high-throughput chemistry. We then revisited the S1 site and efficiently explored a good building block attaching to the scaffold with library synthesis. In the library syntheses, the binding modes of each pivotal compound were determined and confirmed by X-ray crystallography and the library was strategically designed by structure-based computational approach not only to obtain a more active compound but also to obtain informative Structure Activity Relationship (SAR). As a result, we obtained a lead compound offering synthetic accessibility as well as the improved in vitro ADMET profiles. The fragments and compounds possessing a characteristic interaction pattern provided new structural insights into renin's active site and the potential to create a new generation of renin inhibitors. In addition, we demonstrated our FBDD strategy integrating highly sensitive biochemical assay, X-ray crystallography, and high-throughput synthesis and in silico library design aimed at fragment morphing at the initial stage was effective to elucidate a pocket profile and a promising lead compound. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kraemer, William J; Fragala, Maren S; van Henegouwen, Wendy R H Beijersbergen; Gordon, Scott E; Bush, Jill A; Volek, Jeff S; Triplett, N Travis; Dunn-Lewis, Courtenay; Comstock, Brett A; Szivak, Tunde K; Flanagan, Shawn D; Hooper, David R; Luk, Hui-Ying; Mastro, Andrea M
2013-04-01
Proenkephalin Peptide F [107-140] is an enkephalin-containing peptide found predominantly within the adrenal medulla, co-packaged with epinephrine within the chromaffin granules. In vivo studies indicate that Peptide F has classic opioid analgesia effects; in vitro studies suggest potential immune cell interactions. In this investigation we examined patterns of Peptide F concentrations in different bio-compartments of the blood at rest and following sub-maximal cycle exercise to determine if Peptide F interacts with the white blood cell (WBC) bio-compartment during aerobic exercise. Eight physically active men (n=8) performed sub-maximal (80-85% V˙O2peak) cycle ergometer exercise for 30 min. Plasma Peptide F and WBC Peptide F immunoreactivity were examined pre-exercise, mid-exercise and immediately post-, 5-min post-, 15-min post-, 30-min post- and 60-min post-exercise and at similar time-points during a control condition (30 min rest). Peptide F concentrations significantly (p<0.05) increased at 5 and 60 min post-exercise, compared to pre-exercise concentrations. No significant increases in Peptide F concentrations in the WBC fraction were observed during or after exercise. However, a significant decrease was observed at 30 min post-exercise. An ultradian pattern of Peptide F distribution was apparent during rest. Furthermore, concentrations of T cells, B cells, NK cells, and total WBCs demonstrated significant changes in response to aerobic exercise. Data indicated that Peptide F was bound in significant molar concentrations in the WBC fraction and that this biocompartment may be one of the tissue targets for binding interactions. These data indicate that Peptide F is involved with immune cell modulation in the white blood circulatory biocompartment of blood. Copyright © 2013. Published by Elsevier Inc.
Polge, Cécile; Ramirez, Sacnicte; Michelland, Sylvie; Sève, Michel; Vertommen, Didier; Rider, Mark; Lentze, Nicolas; Auerbach, Daniel; Schlattner, Uwe
2013-01-01
AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions. PMID:23741294
Pietrowski, D; Graw, J
1997-10-01
In a previous report we demonstrated the in vitro interaction of alpha-crystallin with an element downstream of the transcriptional initiation site (DOTIS) of the murine gamma E-crystallin promoter (Pietrowski et al., 1994, Gene 144, 171-178). The aim of the present study was to investigate the influence of phosphorylation on this particular interaction. We could demonstrate that the autophosphorylation of alpha-crystallin leads to a complete loss of interaction with the DOTIS element, however, PKA-dependent phosphorylation of alpha-crystallin is without effect on the interaction. It is hypothesized that the autophosphorylation of alpha-crystallin might be involved in regulatory mechanisms of the murine gamma D/E/F-crystallin gene expression.
Wille, Timo; Thiermann, Horst; Worek, Franz
2011-04-25
The simultaneous use of the repellent DEET, pyridostigmine, and organophosphorus pesticides has been assumed as a potential cause for the Gulf War Illness and combinations have been tested in different animal models. However, human in vitro data on interactions of DEET with other compounds are scarce and provoked the present in vitro study scrutinizing the interactions of DEET, pyridostigmine and pesticides with human acetylcholinesterase (hAChE) and butyrylcholinesterase (hBChE). DEET showed to be a weak and reversible inhibitor of hAChE and hBChE. The IC(50) of DEET was calculated to be 21.7mM DEET for hAChE and 3.2mM DEET for hBChE. The determination of the inhibition kinetics of pyridostigmine, malaoxon and chlorpyrifos oxon with hAChE in the presence of 5mM DEET resulted in a moderate reduction of the inhibition rate constant k(i). The decarbamoylation velocity of pyridostigmine-inhibited hAChE was not affected by DEET. In conclusion, the in vitro investigation of interactions between human cholinesterases, DEET, pyridostigmine, malaoxon and chlorpyrifos oxon showed a weak inhibition of hAChE and hBChE by DEET. The inhibitory potency of the tested cholinesterase inhibitors was not enhanced by DEET and it did not affect the regeneration velocity of pyridostigmine-inhibited AChE. Hence, this in vitro study does not give any evidence of a synergistic effect of the tested compounds on human cholinesterases. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Mackenzie, I C; Gao, Z
2001-04-01
Keratinocyte growth factor (KGF) is a stromally derived growth factor of the fibroblast growth factor (FGF) family with paracrine effects targeted to influence the growth and differentiation of epithelia. Regional and temporal changes in KGF expression play important roles in the development and maintenance of epithelial structures and in epithelial wound healing. Differing patterns of expression of KGF by fibroblasts in the gingival region could therefore be related to the observed regional variation in the differentiation and behavior of gingival epithelia. The in vitro and in vivo patterns of expression of KGF mRNA in human gingival and periodontal fibroblasts were examined using reverse transcription polymerase chain reactions (RT-PCR) and in situ hybridization with digoxigenin-labeled riboprobes. The patterns observed for human gingiva were compared with those for human skin and for murine tissues. Gingival and periodontal fibroblasts showed expression of KGF transcripts in vitro, and the degree of expression was markedly influenced by the presence of retinoic acid, an agent known to influence patterns of epithelial differentiation. Sections of human and murine gingiva and skin showed regionally variable expression of transcripts with the cells expressing KGF in the subepithelial, rather than the deeper, connective tissues and periodontium. The results point to a role of KGF in the maintenance of normal growth and differentiation of gingival epithelia. A lack of KGF expression by periodontal fibroblasts in vivo is expected to hinder apical epithelial migration and thus stabilize the epithelial attachment. The effects of retinoic acid (RA) on KGF expression in vitro provide an indirect mechanism by which RA may regulate the growth and differentiation of gingival epithelia.
Dental Cell Sheet Biomimetic Tooth Bud Model
Monteiro, Nelson; Smith, Elizabeth E.; Angstadt, Shantel; Zhang, Weibo; Khademhosseini, Ali
2016-01-01
Tissue engineering and regenerative medicine technologies offer promising therapies for both medicine and dentistry. Our long-term goal is to create functional biomimetic tooth buds for eventual tooth replacement in humans. Here, our objective was to create a biomimetic 3D tooth bud model consisting of dental epithelial (DE) – dental mesenchymal (DM) cell sheets (CSs) combined with biomimetic enamel organ and pulp organ layers created using GelMA hydrogels. Pig DE or DM cells seeded on temperature-responsive plates at various cell densities (0.02, 0.114 and 0.228 cells 106/cm2) and cultured for 7, 14 and 21 days were used to generate DE and DM cell sheets, respectively. Dental CSs were combined with GelMA encapsulated DE and DM cell layers to form bioengineered 3D tooth buds. Biomimetic 3D tooth bud constructs were cultured in vitro, or implanted in vivo for 3 weeks. Analyses were performed using micro-CT, H&E staining, polarized light (Pol) microscopy, immunofluorescent (IF) and immunohistochemical (IHC) analyses. H&E, IHC and IF analyses showed that in vitro cultured multilayered DE-DM CSs expressed appropriate tooth marker expression patterns including SHH, BMP2, RUNX2, tenascin and syndecan, which normally direct DE-DM interactions, DM cell condensation, and dental cell differentiation. In vivo implanted 3D tooth bud constructs exhibited mineralized tissue formation of specified size and shape, and SHH, BMP2 and RUNX2and dental cell differentiation marker expression. We propose our biomimetic 3D tooth buds as models to study optimized DE-DM cell interactions leading to functional biomimetic replacement tooth formation. PMID:27565550
Tan, Boon Hooi; Ahemad, Nafees; Pan, Yan; Palanisamy, Uma Devi; Othman, Iekhsan; Yiap, Beow Chin; Ong, Chin Eng
2018-04-01
Many dietary supplements are promoted to patients with osteoarthritis (OA) including the three naturally derived compounds, glucosamine, chondroitin and diacerein. Despite their wide spread use, research on interaction of these antiarthritic compounds with human hepatic cytochrome P450 (CYP) enzymes is limited. This study aimed to examine the modulatory effects of these compounds on CYP2C9, a major CYP isoform, using in vitro biochemical assay and in silico models. Utilizing valsartan hydroxylase assay as probe, all forms of glucosamine and chondroitin exhibited IC 50 values beyond 1000 μM, indicating very weak potential in inhibiting CYP2C9. In silico docking postulated no interaction with CYP2C9 for chondroitin and weak bonding for glucosamine. On the other hand, diacerein exhibited mixed-type inhibition with IC 50 value of 32.23 μM and K i value of 30.80 μM, indicating moderately weak inhibition. Diacerein's main metabolite, rhein, demonstrated the same mode of inhibition as diacerein but stronger potency, with IC 50 of 6.08 μM and K i of 1.16 μM. The docking of both compounds acquired lower CDOCKER interaction energy values, with interactions dominated by hydrogen and hydrophobic bondings. The ranking with respect to inhibition potency for the investigated compounds was generally the same in both in vitro enzyme assay and in silico modeling with order of potency being diacerein/rhein > various glucosamine/chondroitin forms. In vitro-in vivo extrapolation of inhibition kinetics (using 1 + [I]/K i ratio) demonstrated negligible potential of diacerein to cause interaction in vivo, whereas rhein was predicted to cause in vivo interaction, suggesting potential interaction risk with the CYP2C9 drug substrates. Copyright © 2018 John Wiley & Sons, Ltd.
Corallo, Diana; Schiavinato, Alvise; Trapani, Valeria; Moro, Enrico; Argenton, Francesco; Bonaldo, Paolo
2013-11-01
The notochord is a transient and essential structure that provides both mechanical and signaling cues to the developing vertebrate embryo. In teleosts, the notochord is composed of a core of large vacuolated cells and an outer layer of cells that secrete the notochord sheath. In this work, we have identified the extracellular matrix glycoprotein Emilin3 as a novel essential component of the zebrafish notochord sheath. The development of the notochord sheath is impaired in Emilin3 knockdown embryos. The patterning activity of the notochord is also affected by Emilin3, as revealed by the increase of Hedgehog (Hh) signaling in Emilin3-depleted embryos and the decreased Hh signaling in embryos overexpressing Emilin3 in the notochord. In vitro and in vivo experiments indicate that Emilin3 modulates the availability of Hh ligands by interacting with the permissive factor Scube2 in the notochord sheath. Overall, this study reveals a new role for an EMILIN protein and reinforces the concept that structure and function of the notochord are strictly linked.
Networks within networks: The neuronal control of breathing
Garcia, Alfredo J.; Zanella, Sebastien; Koch, Henner; Doi, Atsushi; Ramirez, Jan-Marino
2013-01-01
Breathing emerges through complex network interactions involving neurons distributed throughout the nervous system. The respiratory rhythm generating network is composed of micro networks functioning within larger networks to generate distinct rhythms and patterns that characterize breathing. The pre-Bötzinger complex, a rhythm generating network located within the ventrolateral medulla assumes a core function without which respiratory rhythm generation and breathing cease altogether. It contains subnetworks with distinct synaptic and intrinsic membrane properties that give rise to different types of respiratory rhythmic activities including eupneic, sigh, and gasping activities. While critical aspects of these rhythmic activities are preserved when isolated in in vitro preparations, the pre-Bötzinger complex functions in the behaving animal as part of a larger network that receives important inputs from areas such as the pons and parafacial nucleus. The respiratory network is also an integrator of modulatory and sensory inputs that imbue the network with the important ability to adapt to changes in the behavioral, metabolic, and developmental conditions of the organism. This review summarizes our current understanding of these interactions and relates the emerging concepts to insights gained in other rhythm generating networks. PMID:21333801
Fontes, Gizele Cardoso; Calado, Verônica Maria Araújo; Rossi, Alexandre Malta; da Rocha-Leão, Maria Helena Miguez
2013-01-01
The aim of this study was to characterize the penicillin-loaded microbeads composed of alginate and octenyl succinic anhydride (OSA) starch prepared by ionotropic pregelation with calcium chloride and to evaluate their in vitro drug delivery profile. The beads were characterized by size, scanning electron microscopy (SEM), zeta potential, swelling behavior, and degree of erosion. Also, the possible interaction between penicillin and biopolymers was investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The SEM micrograph results indicated a homogeneous drug distribution in the matrix. Also, based on thermal analyses (TGA/DSC), interactions were detected between microbead components. Although FTIR spectra of penicillin-loaded microbeads did not reveal the formation of new chemical entities, they confirmed the chemical drug stability. XRD patterns showed that the incorporated crystalline structure of penicillin did not significantly alter the primarily amorphous polymeric network. In addition, the results confirmed a prolonged penicillin delivery system profile. These results imply that alginate and OSA starch beads can be used as a suitable controlled-release carrier for penicillin. PMID:23862146
Step-By-Step In Vitro Mutagenesis: Lessons From Fucose-Binding Lectin PA-IIL.
Mrázková, Jana; Malinovská, Lenka; Wimmerová, Michaela
2017-01-01
Site-directed mutagenesis is a powerful technique which is used to understand the basis of interactions between proteins and their binding partners, as well as to modify these interactions. Methods of rational design that are based on detailed knowledge of the structure of a protein of interest are often used for preliminary investigations of the possible outcomes which can result from the practical application of site-directed mutagenesis. Also, random mutagenesis can be used in tandem with site-directed mutagenesis for an examination of amino acid "hotspots."Lectins are sugar-binding proteins which, among other functions, mediate the recognition of host cells by a pathogen and its adhesion to the host cell surface. Hence, lectins and their binding properties are studied and engineered using site-directed mutagenesis.In this chapter, we describe a site-directed mutagenesis method used for investigating the sugar binding pattern of the PA-IIL lectin from the pathogenic bacterium Pseudomonas aeruginosa. Moreover, procedures for the production and purification of PA-IIL mutants are described, and several basic methods for characterizing the mutants are discussed.
In-vitro susceptibility of 400 isolates of Neisseria gonorrhoeae in Vancouver, 1982-84.
Bowie, W R; Shaw, C E; Chan, D G; Jones, H D; Black, W A
1986-01-01
Consecutive isolates of Neisseria gonorrhoeae obtained at a sexually transmitted disease clinic in Vancouver between June 1982 and June 1984 were tested for in-vitro susceptibility to eight antimicrobial agents. Of the 400 isolates 6 (1.5%) were penicillinase-producing N. gonorrhoeae, and for 25 (6.2%) the minimum inhibitory concentrations (MICs) of penicillin were 1.0 to 4.0 micrograms/ml. Ceftriaxone sodium was the most active agent. The MICs were higher than those reported in a Canadian study in 1973-74, except for tetracycline hydrochloride. The patterns of susceptibility of the isolates to one antimicrobial agent correlated significantly with those to each other agent, although the relation was weakest for trimethoprim-sulfamethoxazole and spectinomycin. The results reinforce the need to evaluate local in-vitro susceptibility patterns, especially since the proportion of isolates with relative and absolute resistance to penicillin is increasing. PMID:3091234
Recognition of anaerobic bacterial isolates in vitro using electronic nose technology.
Pavlou, A; Turner, A P F; Magan, N
2002-01-01
Use of an electronic nose (e.nose) system to differentiation between anaerobic bacteria grown in vitro on agar media. Cultures of Clostridium spp. (14 strains) and Bacteroides fragilis (12 strains) were grown on blood agar plates and incubated in sampling bags for 30 min before head space analysis of the volatiles. Qualitative analyses of the volatile production patterns was carried out using an e.nose system with 14 conducting polymer sensors. Using data analysis techniques such as principal components analysis (PCA), genetic algorithms and neural networks it was possible to differentiate between agar blanks and individual species which accounted for all the data. A total of eight unknowns were correctly discriminated into the bacterial groups. This is the first report of in vitro complex volatile pattern recognition and differentiation of anaerobic pathogens. These results suggest the potential for application of e.nose technology in early diagnosis of microbial pathogens of medical importance.
Yan, S Q; Cao, H; Gu, C L; Gao, G P; Ni, L L; Tao, H H; Shao, T; Xu, Y Q; Tao, F B
2018-04-10
Objective: To explore the interaction effect between mother's educational level and preschoolers' dietary pattern on attention-deficit/hyperactivity disorder (ADHD). Methods: In 2014, there were 16 439 children aged 3-6 years old from 91 kindergartens in Ma'anshan municipality of China. A semi-quantitative food frequency questionnaire and the 10-item Chinese version of the Conners' Abbreviated Symptom Questionnaire (C-ASQ) were administered to assess the usual dietary intake and symptoms on ADHD. Social-demographic information was collected through questionnaires. Unconditional logistic regression was used to analyze the multiplication interaction effect between mother's educational level and preschoolers' dietary pattern on ADHD. Excel software was used to analyze the additive interaction effect of mother's educational level and preschoolers'dietary pattern on ADHD. Results: Results showed that factors as: mother's low educational level[a OR =1.31 (1.13-1.52)], scores related to preschoolers in the top quintile of "food processing" [a OR =1.31 (1.16-1.48)] and "snack" [a OR =1.45 (1.29-1.63)]patterns showed greater odds while preschoolers in the top quintile of "vegetarian" [a OR =0.80 (0.71-0.90)]showed less odds for having ADHD symptoms. Both multiplication and additive interactions were observed between mothers with less education. The processed dietary patterns ( OR =1.17, 95% CI : 1.11-1.25), relative excess risk of interaction ( RERI ), attributable proportion ( AP ) and the interaction index ( SI ) appeared as 0.21, 0.13 and 1.47, respectively. Multiplication interaction was observed between levels of mother's low education and the snack dietary pattern ( OR =1.21, 95% CI : 1.14-1.29), with RERI , AP and SI as 0.49, 0.26 and 2.36, respectively. However, neither multiplication interaction or additive interaction was noticed between levels of mother's low education and the vegetarian dietary pattern ( OR =0.97, 95% CI : 0.92-1.03), with RERI , AP and SI as 0.09, 0.05 and 1.15, respectively. Conclusions: Levels of mother's low education presented a risk factor for ADHD symptoms in preschool children. Both multiplication interaction and additive interaction were observed between mother's low education levels and the processed dietary pattern. Multiplication interaction was noticed between mother's education levels and the snack dietary pattern but not with the vegetarian dietary pattern.
Microscale architecture in biomaterial scaffolds for spatial control of neural cell behavior
NASA Astrophysics Data System (ADS)
Meco, Edi; Lampe, Kyle J.
2018-02-01
Biomaterial scaffolds mimic aspects of the native central nervous system (CNS) extracellular matrix (ECM) and have been extensively utilized to influence neural cell (NC) behavior in in vitro and in vivo settings. These biomimetic scaffolds support NC cultures, can direct the differentiation of NCs, and have recapitulated some native NC behavior in an in vitro setting. However, NC transplant therapies and treatments used in animal models of CNS disease and injury have not fully restored functionality. The observed lack of functional recovery occurs despite improvements in transplanted NC viability when incorporating biomaterial scaffolds and the potential of NC to replace damaged native cells. The behavior of NCs within biomaterial scaffolds must be directed in order to improve the efficacy of transplant therapies and treatments. Biomaterial scaffold topography and imbedded bioactive cues, designed at the microscale level, can alter NC phenotype, direct migration, and differentiation. Microscale patterning in biomaterial scaffolds for spatial control of NC behavior has enhanced the capabilities of in vitro models to capture properties of the native CNS tissue ECM. Patterning techniques such as lithography, electrospinning and 3D bioprinting can be employed to design the microscale architecture of biomaterial scaffolds. Here, the progress and challenges of the prevalent biomaterial patterning techniques of lithography, electrospinning, and 3D bioprinting are reported. This review analyzes NC behavioral response to specific microscale topographical patterns and spatially organized bioactive cues.
Sodium butyrate improves the cloned yak embryo viability and corrects gene expression patterns.
Xiong, Xian-rong; Lan, Dao-liang; Li, Jian; Wang, Yong; Zhong, Jin-cheng
2015-02-01
Interspecies somatic cell nuclear transfer (iSCNT), a powerful tool in basic scientific research, has been used widely to increase and preserve the population of endangered species. Yak (Bos grunniens) is one of these species. Development to term of interspecies cloned yak embryos has not been achieved, possibly due to abnormal epigenetic reprogramming. Previous studies have demonstrated that treatment of intraspecies cloned embryos with (NaBu) significantly improves nuclear-cytoplasmic reprogramming and viability in vitro. Therefore, in this study, we evaluated the effect of optimal NaBu concentration and exposure time on preimplantation development of yak iSCNT embryos and on the expression patterns of developmentally important genes. The results showed that 8-cell rate, blastocyst formation rate and total cell number increased significantly compared with their untreated counterparts when yak iSCNT embryos were treated with 5 nM NaBu for 12 h after activation, but that the 2-cell stage embryo rate was not significantly different. The treatment of NaBu also increased significantly the expression levels of Oct-4 and decreased the expression levels of HDAC-2, Dnmt-1 and IGF-1; the expression patterns of these genes were more similar to that of their bovine-yak in vitro fertilization (BY-IVF) counterparts. The results described above indicated that NaBu treatment improved developmental competence in vitro and 'corrected' the gene expression patterns of yak iSCNT embryos.
de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain
2016-01-01
Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542
Guo, Zhong; Johnston, Wayne; Kovtun, Oleksiy; Mureev, Sergey; Bröcker, Cornelia; Ungermann, Christian; Alexandrov, Kirill
2013-01-01
Biochemical and structural analysis of macromolecular protein assemblies remains challenging due to technical difficulties in recombinant expression, engineering and reconstitution of multisubunit complexes. Here we use a recently developed cell-free protein expression system based on the protozoan Leishmania tarentolae to produce in vitro all six subunits of the 600 kDa HOPS and CORVET membrane tethering complexes. We demonstrate that both subcomplexes and the entire HOPS complex can be reconstituted in vitro resulting in a comprehensive subunit interaction map. To our knowledge this is the largest eukaryotic protein complex in vitro reconstituted to date. Using the truncation and interaction analysis, we demonstrate that the complex is assembled through short hydrophobic sequences located in the C-terminus of the individual Vps subunits. Based on this data we propose a model of the HOPS and CORVET complex assembly that reconciles the available biochemical and structural data. PMID:24312556
Jin, J; Guo, N; Zhang, J; Ding, Y; Tang, X; Liang, J; Li, L; Deng, X; Yu, L
2010-09-01
To evaluate the interaction of fluconazole (FLC) and honokiol (HNK) in vitro and vivo against azole-resistant (azole-R) clinical isolates of Candida albicans. A checkerboard microdilution method was used to study the in vitro interaction of FLC and HNK in 24 azole-R clinical isolates of C. albicans. In vivo antifungal activity was performed to further analyse the interaction between FLC and HNK. In the in vitro study, synergism was observed in all 24 FLC-resistant strains tested as determined by fractional inhibitory concentration index (FICI), and in 22 strains by Delta E models. No antagonistic activity was observed in any of the strains tested. These positive interactions were also confirmed by using the time-killing test for the selected strain C. albicans YL371, which shows strong susceptible to the combination of HNK and FLC. In the in vivo study, the mice with candidiasis were treated successfully by a combination therapy of HNK with FLC, the results showed a decrease of the colony forming unit in infected and treated animals compared to the controls, at the conditions of the treatment used in this study. Synergistic activity of HNK and FLC against clinical isolates of FLC-resistant C. albicans was observed in vitro and in vivo. This report might provide a potential therapeutic method to overcome the problem of drug-resistance in C. albicans.
Basheer, Loai; Schultz, Keren; Kerem, Zohar
2016-01-01
Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme’s binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs. PMID:27530542
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus . However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus . For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus . Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host-pathogen interaction studies.
Hellmann, Anna-Maria; Lother, Jasmin; Wurster, Sebastian; Lutz, Manfred B.; Schmitt, Anna Lena; Morton, Charles Oliver; Eyrich, Matthias; Czakai, Kristin; Einsele, Hermann; Loeffler, Juergen
2017-01-01
Aspergillus fumigatus is the main cause of invasive fungal infections occurring almost exclusively in immunocompromised patients. An improved understanding of the initial innate immune response is key to the development of better diagnostic tools and new treatment options. Mice are commonly used to study immune defense mechanisms during the infection of the mammalian host with A. fumigatus. However, little is known about functional differences between the human and murine immune response against this fungal pathogen. Thus, we performed a comparative functional analysis of human and murine dendritic cells (DCs), macrophages, and polymorphonuclear cells (PMNs) using standardized and reproducible working conditions, laboratory protocols, and readout assays. A. fumigatus did not provoke identical responses in murine and human immune cells but rather initiated relatively specific responses. While human DCs showed a significantly stronger upregulation of their maturation markers and major histocompatibility complex molecules and phagocytosed A. fumigatus more efficiently compared to their murine counterparts, murine PMNs and macrophages exhibited a significantly stronger release of reactive oxygen species after exposure to A. fumigatus. For all studied cell types, human and murine samples differed in their cytokine response to conidia or germ tubes of A. fumigatus. Furthermore, Dectin-1 showed inverse expression patterns on human and murine DCs after fungal stimulation. These specific differences should be carefully considered and highlight potential limitations in the transferability of murine host–pathogen interaction studies. PMID:29270175
Khan, Rais Ahmad; Usman, Mohammad; Dhivya, Rajakumar; Balaji, Perumalsamy; Alsalme, Ali; AlLohedan, Hamad; Arjmand, Farukh; AlFarhan, Khalid; Akbarsha, Mohammad Abdulkader; Marchetti, Fabio; Pettinari, Claudio; Tabassum, Sartaj
2017-03-24
New copper(I) complexes [CuCl(PPh 3 )(L)] (1: L = L A = 4-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane; (2: L = L B = 3-carboxyphenyl)bis(3,5-dimethylpyrazolyl)methane) were prepared and characterised by elemental analysis and various spectroscopic techniques such as FT-IR, NMR, UV-Vis, and ESI-MS. The molecular structures of complexes 1 and 2 were analyzed by theoretical B3LYP/DFT method. Furthermore, in vitro DNA binding studies were carried out to check the ability of complexes 1 and 2 to interact with native calf thymus DNA (CT-DNA) using absorption titration, fluorescence quenching and circular dichroism, which is indicative of more avid binding of the complex 1. Moreover, DNA mobility assay was also conducted to study the concentration-dependent cleavage pattern of pBR322 DNA by complex 1, and the role of ROS species to have a mechanistic insight on the cleavage pattern, which ascertained substantial roles by both hydrolytic and oxidative pathways. Additionally, we analyzed the potential of the interaction of complex 1 with DNA and enzyme (Topo I and II) with the aid of molecular modeling. Furthermore, cytotoxic activity of complex 1 was tested against HepG2 cancer cell lines. Thus, the potential of the complex 1 is promising though further in vivo investigations may be required before subjecting it to clinical trials.
ERIC Educational Resources Information Center
Pham, Thach; Thalathoti, Vijay; Dakich, Eva
2014-01-01
This study examines the frequency and pattern of interpersonal interactions between the learners and instructors of an online English language learning course offered at a Vietnamese university. The paper begins with a review of literature on interaction type, pattern and model of interaction followed by a brief description of the online…
Inferring consistent functional interaction patterns from natural stimulus FMRI data
Sun, Jiehuan; Hu, Xintao; Huang, Xiu; Liu, Yang; Li, Kaiming; Li, Xiang; Han, Junwei; Guo, Lei
2014-01-01
There has been increasing interest in how the human brain responds to natural stimulus such as video watching in the neuroimaging field. Along this direction, this paper presents our effort in inferring consistent and reproducible functional interaction patterns under natural stimulus of video watching among known functional brain regions identified by task-based fMRI. Then, we applied and compared four statistical approaches, including Bayesian network modeling with searching algorithms: greedy equivalence search (GES), Peter and Clark (PC) analysis, independent multiple greedy equivalence search (IMaGES), and the commonly used Granger causality analysis (GCA), to infer consistent and reproducible functional interaction patterns among these brain regions. It is interesting that a number of reliable and consistent functional interaction patterns were identified by the GES, PC and IMaGES algorithms in different participating subjects when they watched multiple video shots of the same semantic category. These interaction patterns are meaningful given current neuroscience knowledge and are reasonably reproducible across different brains and video shots. In particular, these consistent functional interaction patterns are supported by structural connections derived from diffusion tensor imaging (DTI) data, suggesting the structural underpinnings of consistent functional interactions. Our work demonstrates that specific consistent patterns of functional interactions among relevant brain regions might reflect the brain's fundamental mechanisms of online processing and comprehension of video messages. PMID:22440644
Pogmore, Justin P; Pemberton, James M; Chi, Xiaoke; Andrews, David W
2016-01-01
The Bcl-2 family of proteins regulates the process of mitochondrial outer membrane permeabilization, causing the release of cytochrome c and committing a cell to apoptosis. The majority of the functional interactions between these proteins occur at, on, or within the mitochondrial outer membrane, complicating structural studies of the proteins and complexes. As a result most in vitro studies of these protein-protein interactions use truncated proteins and/or detergents which can cause artificial interactions. Herein, we describe a detergent-free, fluorescence-based, in vitro technique to study binding between full-length recombinant Bcl-2 family proteins, particularly cleaved BID (cBID) and BCL-XL, on the membranes of purified mitochondria.
Lewis, Maria E.; Belland, Robert J.; AbdelRahman, Yasser M.; Beatty, Wandy L.; Aiyar, Ashok A.; Zea, Arnold H.; Greene, Sheila J.; Marrero, Luis; Buckner, Lyndsey R.; Tate, David J.; McGowin, Chris L.; Kozlowski, Pamela A.; O'Brien, Michelle; Lillis, Rebecca A.; Martin, David H.; Quayle, Alison J.
2014-01-01
In vitro models of Chlamydia trachomatis growth have long been studied to predict growth in vivo. Alternative or persistent growth modes in vitro have been shown to occur under the influence of numerous stressors but have not been studied in vivo. Here, we report the development of methods for sampling human infections from the endocervix in a manner that permits a multifaceted analysis of the bacteria, host and the endocervical environment. Our approach permits evaluating total bacterial load, transcriptional patterns, morphology by immunofluorescence and electron microscopy, and levels of cytokines and nutrients in the infection microenvironment. By applying this approach to two pilot patients with disparate infections, we have determined that their contrasting growth patterns correlate with strikingly distinct transcriptional biomarkers, and are associated with differences in local levels of IFNγ. Our multifaceted approach will be useful to dissect infections in the human host and be useful in identifying patients at risk for chronic disease. Importantly, the molecular and morphological analyses described here indicate that persistent growth forms can be isolated from the human endocervix when the infection microenvironment resembles the in vitro model of IFNγ-induced persistence. PMID:24959423
Talbot, Pauline; Radziwill-Bienkowska, Joanna M; Kamphuis, Jasper B J; Steenkeste, Karine; Bettini, Sarah; Robert, Véronique; Noordine, Marie-Louise; Mayeur, Camille; Gaultier, Eric; Langella, Philippe; Robbe-Masselot, Catherine; Houdeau, Eric; Thomas, Muriel; Mercier-Bonin, Muriel
2018-06-19
Titanium dioxide (TiO 2 ) particles are commonly used as a food additive (E171 in the EU) for its whitening and opacifying properties. However, the risk of gut barrier disruption is an increasing concern because of the presence of a nano-sized fraction. Food-grade E171 may interact with mucus, a gut barrier protagonist still poorly explored in food nanotoxicology. To test this hypothesis, a comprehensive approach was performed to evaluate in vitro and in vivo interactions between TiO 2 and intestinal mucus, by comparing food-grade E171 with NM-105 (Aeroxyde P25) OECD reference nanomaterial. We tested E171-trapping properties of mucus in vitro using HT29-MTX intestinal epithelial cells. Time-lapse confocal laser scanning microscopy was performed without labeling to avoid modification of the particle surface. Near-UV irradiation of E171 TiO 2 particles at 364 nm resulted in fluorescence emission in the visible range, with a maximum at 510 nm. The penetration of E171 TiO 2 into the mucoid area of HT29-MTX cells was visualized in situ. One hour after exposure, TiO 2 particles accumulated inside "patchy" regions 20 µm above the substratum. The structure of mucus produced by HT29-MTX cells was characterized by MUC5AC immunofluorescence staining. The mucus layer was thin and organized into regular "islands" located approximately 20 µm above the substratum. The region-specific trapping of food-grade TiO 2 particles was attributed to this mucus patchy structure. We compared TiO 2 -mediated effects in vivo in rats after acute or sub-chronic oral daily administration of food-grade E171 and NM-105 at relevant exposure levels for humans. Cecal short-chain fatty acid profiles and gut mucin O-glycosylation patterns remained unchanged, irrespective of treatment. Food-grade TiO 2 is trapped by intestinal mucus in vitro but does not affect mucin O-glycosylation and short-chain fatty acid synthesis in vivo, suggesting the absence of a mucus barrier impairment under "healthy gut" conditions.
Makino, Toshiaki; Mizuno, Fumika; Mizukami, Hajime
2006-10-01
Herb-drug interaction has attracted attention as medicinal topics recently. However, the drug information is sometimes confusing. Previous in vitro studies revealed that schisandra fruit had strong inhibitory effect on CYP3A4 and claimed the possibilities of its herb-drug interaction. In the present study, we evaluated the inhibitory effects of schisandra fruit and shoseiryuto, an herbal formula in Japanese traditional kampo medicine containing eight herbal medicines including schisandra fruit, on rat CYP3A activity in vitro, and the effect of shoseiryuto on pharmacokinetics of nifedipine in rats, in comparison with those of grapefruit juice, a well-characterized natural CYP3A inhibitor. Shoseiryuto and its herbal constituents, schisandra fruit, ephedra herb and cinnamon bark exhibited in vitro inhibitory effect of CYP3A. Although shoseiryuto inhibited rat CYP3A activity in vitro with a degree comparable to grapefruit juice, shoseiryuto did not significantly affect a plasma concentration profile of nifedipine in rats as grapefruit juice did. These results indicate that in vivo experiments using the extract of herbal medicine prepared with the same dosage form as patients take are necessary to provide proper information about herb-drug interaction.
Polasek, Thomas M; Sadagopal, Janani S; Elliot, David J; Miners, John O
2010-03-01
To evaluate zolpidem as a mechanism-based inactivator of human CYP3A in vitro, and to assess its metabolic interaction potential with CYP3A drugs (in vitro-in vivo extrapolation; IV-IVE). A co- vs. pre-incubation strategy was used to quantify time-dependent inhibition of human liver microsomal (HLM) and recombinant CYP3A4 (rCYP3A4) by zolpidem. Experiments involving a 10-fold dilution step were employed to determine the kinetic constants of inactivation (K (I) and k (inact)) and to assess the in vitro mechanism-based inactivation (MBI) criteria. Inactivation data were entered into the Simcyp population-based ADME simulator to predict the increase in the area under the plasma concentration-time curve (AUC) for orally administered midazolam. Consistent with MBI, the inhibitory potency of zolpidem toward CYP3A was increased following pre-incubation. In HLMs, the concentration required for half maximal inactivation (K (I)) was 122 microM and the maximal rate of inactivation (k (inact)) was 0.094 min(-1). In comparison, K (I) and k (inact) values with rCYP3A4 were 50 microM and 0.229 min(-1), respectively. Zolpidem fulfilled all other in vitro MBI criteria, including irreversible inhibition. The mean oral AUC for midazolam in healthy volunteers was predicted to increase 1.1- to 1.7-fold due to the inhibition of metabolic clearance by zolpidem. Elderly subjects were more sensitive to the interaction, with mean increases in midazolam AUC of 1.2- and 2.2-fold for HLM IV-IVE and rCYP3A4 IV-IVE, respectively. Zolpidem is a relatively weak mechanism-based inactivator of human CYP3A in vitro. Zolpidem is unlikely to act as a significant perpetrator of metabolic interactions involving CYP3A.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sourav; van Opstal, Edward J.; Alink, Gerrit M.; Marcelis, Antonius T. M.; Zuilhof, Han; Rietjens, Ivonne M. C. M.
2013-06-01
The surface charge-dependent transport of polymeric nanoparticles (PNPs) across Caco-2 monolayers grown on transwell culture systems as an in vitro model for intestinal transport was tested. The transport of well-characterized, monodisperse, and fluorescent tri-block copolymer nanoparticles (TCNPs/size 45 nm) and polystyrene nanoparticles (PSNPs/size 50 nm), with different surface charges (positive and negative), was quantified. The positive PNPs showed a higher intracellular uptake and flux across the Caco-2 monolayers than the negative PNPs. Multidrug resistance/P-glycoprotein (MDR1/P-gp), a specific ATP-binding cassette (ABC) transporter, was found to play a major role in the cellular efflux of positive PNPs, whereas the multidrug resistance protein 1 took part in the efflux of negative PNPs from Caco-2 cells. The positive PNPs also caused an increased cellular uptake and apical to basolateral transport of the carcinogen PhIP across the Caco-2 monolayer. The flavonoid quercetin, which is known to interact with ABC transporters, promoted the intracellular uptake of different PNPs and interfered with the normal distribution patterns of PNPs in the transwell system. These results indicate that PNPs display surface charge-specific interactions with ABC transporters and can even affect the bioavailability of toxic food-borne compounds (like pro-carcinogens).
Sautel, Céline F; Ortet, Philippe; Saksouk, Nehmé; Kieffer, Sylvie; Garin, Jérôme; Bastien, Olivier; Hakimi, Mohamed-Ali
2009-01-01
The ability of living cells to alter their gene expression patterns in response to environmental changes is essential for viability. Oxidative stress represents a common threat for all aerobic life. In normally growing cells, in which hydrogen peroxide generation is transient or pulsed, the antioxidant systems efficiently control its concentration. Intracellular parasites must also protect themselves against the oxidative burst imposed by the host. In this work, we have investigated the role of KMTox, a new histone lysine methyltransferase, in the obligate intracellular parasite Toxoplasma gondii. KMTox is a nuclear protein that holds a High Mobility Group domain, which is thought to recognize bent DNA. The enzyme methylates both histones H4 and H2A in vitro with a great preference for the substrate in reduced conditions. Importantly, KMTox interacts specifically with the typical 2-cys peroxiredoxin-1 and the binding is to some extent enhanced upon oxidation. It appears that the cellular functions that are primarily regulated by the KMTox are antioxidant defences and maintenance of cellular homeostasis. KMTox may regulate gene expression in T. gondii by providing the rapid re-arrangement of chromatin domains and by interacting with the redox-sensor TgPrx1 contribute to establish the antioxidant 'firewall' in T. gondii.
Ayala, Vanessa; Herrera, Adriana P.; Latorre-Esteves, Magda; Torres-Lugo, Madeline
2013-01-01
Nanoparticle physicochemical properties such as surface charge are considered to play an important role in cellular uptake and particle–cell interactions. In order to systematically evaluate the role of surface charge on the uptake of iron oxide nanoparticles, we prepared carboxymethyl-substituted dextrans with different degrees of substitution, ranging from 38 to 5 groups per chain, and reacted them using carbodiimide chemistry with amine–silane-coated iron oxide nanoparticles with narrow size distributions in the range of 33–45 nm. Surface charge of carboxymethyl-substituted dextran-coated nano-particles ranged from −50 to 5 mV as determined by zeta potential measurements, and was dependent on the number of carboxymethyl groups incorporated in the dextran chains. Nanoparticles were incubated with CaCo-2 human colon cancer cells. Nanoparticle–cell interactions were observed by confocal laser scanning microscopy and uptake was quantified by elemental analysis using inductively coupled plasma mass spectroscopy. Mechanisms of internalization were inferred using pharmacological inhibitors for fluid-phase, clathrin-mediated, and caveola-mediated endocytosis. Results showed increased uptake for nanoparticles with greater negative charge. Internalization patterns suggest that uptake of the most negatively charged particles occurs via non-specific interactions. PMID:24470787
Tortorano, Anna Maria; Prigitano, Anna; Biraghi, Emanuela; Viviani, Maria Anna
2005-10-01
To investigate the in vitro antifungal susceptibility pattern of 375 Candida albicans bloodstream isolates recovered during the European Confederation of Medical Mycology survey of candidaemia performed in Lombardia, Italy and to test the ability to form biofilm. In vitro susceptibility to flucytosine, fluconazole, itraconazole, posaconazole, voriconazole and caspofungin was performed by broth microdilution following the NCCLS guidelines. Biofilm production was measured using the XTT reduction assay in 59 isolates selected as representative of different patterns of susceptibility to flucytosine and azoles. MICs (mg/L) at which 90% of the strains were inhibited were < or =0.25 for flucytosine, 0.25 for caspofungin, 4 for fluconazole and 0.06 for itraconazole, voriconazole and posaconazole. Flucytosine resistance was detected in five isolates and was associated with serotype B in 2/29 and serotype A in 3/346. Resistance to fluconazole was detected in 10 isolates; nine of these exhibited reduced susceptibility to the other azoles. Among the 10 patients with fluconazole-resistant C. albicans bloodstream infection, only one, an AIDS patient, had been previously treated with fluconazole. Biofilm production was observed in 23 isolates (39%) and was significantly associated with serotype B. No relationship was detected with the pattern of antifungal susceptibility. Resistance is uncommon in C. albicans isolates recovered from blood cultures, while biofilm production is a relatively frequent event. Periodic surveillance is warranted to monitor the incidence of in vitro antifungal resistance as well as of biofilm production.
Lee, C A; Kalvass, J C; Galetin, A; Zamek-Gliszczynski, M J
2014-09-01
The "P-glycoprotein" IC50 working group reported an 18- to 796-fold interlaboratory range in digoxin transport IC50 (inhibitor concentration achieving 50% of maximal inhibition), raising concerns about the predictability of clinical transporter-based drug-drug interactions (DDIs) from in vitro data. This Commentary describes complexities of digoxin transport, which involve both uptake and efflux processes. We caution against attributing digoxin transport IC50 specifically to P-glycoprotein (P-gp) or extending this composite uptake/efflux IC50 variability to individual transporters. Clinical digoxin interaction studies should be interpreted as evaluation of digoxin safety, not P-gp DDIs.
NASA Astrophysics Data System (ADS)
Rybyanets, A. N.; Naumenko, A. A.
The paper introduces an innovative combinational treatment method based on ultrasonic standing waves (USW) technology for noninvasive surgical, therapeutic, lypolitic or cosmetic treatment of tissues including subcutaneous adipose tissue, cellulite or skin on arbitrary body part of patient. The method is based on simultaneous or successive applying of constructively interfering physically and biologically sensed influences: USW, ultrasonic shear waves, radio-frequency (RF) heating, and vacuum massage. The paper provides basic physical principles of USW as well as critical comparison of USW and HIFU methods. The results of finite-elements and finite- difference modeling of USW transducer design and nodal pattern structure in tissue are presented. Biological effects of USW-tissue interaction and synergetic aspects of USW and RF combination are explored. Combinational treatment transducer designs and original in-vitro experiments on tissues are described.
Schieck, Maximilian; Schouten, Jan P; Michel, Sven; Suttner, Kathrin; Toncheva, Antoaneta A; Gaertner, Vincent D; Illig, Thomas; Lipinski, Simone; Franke, Andre; Klintschar, Michael; Kalayci, Omer; Sahiner, Umit M; Birben, Esra; Melén, Erik; Pershagen, Göran; Freidin, Maxim B; Ogorodova, Ludmila M; Granell, Raquel; Henderson, John; Brunekreef, Bert; Smit, Henriëtte A; Vogelberg, Christian; von Berg, Andrea; Bufe, Albrecht; Heinzmann, Andrea; Laub, Otto; Rietschel, Ernst; Simma, Burkhard; Genuneit, Jon; Jonigk, Danny; Postma, Dirkje S; Koppelman, Gerard H; Vonk, Judith M; Timens, Wim; Boezen, H Marike; Kabesch, Michael
2016-08-01
Asthma is a disease affecting more boys than girls in childhood and more women than men in adulthood. The mechanisms behind these sex-specific differences are not yet understood. We analyzed whether and how genetic factors contribute to sex-specific predisposition to childhood-onset asthma. Interactions between sex and polymorphisms on childhood asthma risk were evaluated in the Multicentre Asthma Genetics in Childhood Study (MAGICS)/Phase II International Study of Asthma and Allergies in Childhood (ISAAC II) population on a genome-wide level, and findings were validated in independent populations. Genetic fine mapping of sex-specific asthma association signals was performed, and putatively causal polymorphisms were characterized in vitro by using electrophoretic mobility shift and luciferase activity assays. Gene and protein expression of the identified gene doublesex and mab-3 related transcription factor 1 (DMRT1) were measured in different human tissues by using quantitative real-time PCR and immunohistochemistry. Polymorphisms in the testis-associated gene DMRT1 displayed interactions with sex on asthma status in a population of primarily clinically defined asthmatic children and nonasthmatic control subjects (lowest P = 5.21 × 10(-6)). Replication of this interaction was successful in 2 childhood populations clinically assessed for asthma but showed heterogeneous results in other population-based samples. Polymorphism rs3812523 located in the putative DMRT1 promoter was associated with allele-specific changes in transcription factor binding and promoter activity in vitro. DMRT1 expression was observed not only in the testis but also in lung macrophages. DMRT1 might influence sex-specific patterns of childhood asthma, and its expression in testis tissue and lung macrophages suggests a potential involvement in hormone or immune cell regulation. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. All rights reserved.
Drolez, Aurore; Vandenhaute, Elodie; Julien, Sylvain; Gosselet, Fabien; Burchell, Joy; Cecchelli, Roméo; Delannoy, Philippe; Dehouck, Marie-Pierre; Mysiorek, Caroline
2016-01-01
Around 7-17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities.
A New In Vitro Co-Culture Model Using Magnetic Force-Based Nanotechnology.
Takanari, Hiroki; Miwa, Keiko; Fu, XianMing; Nakai, Junichi; Ito, Akira; Ino, Kousuke; Honda, Hiroyuki; Tonomura, Wataru; Konishi, Satoshi; Opthof, Tobias; van der Heyden, Marcel Ag; Kodama, Itsuo; Lee, Jong-Kook
2016-10-01
Skeletal myoblast (SkMB) transplantation has been conducted as a therapeutic strategy for severe heart failure. However, arrhythmogenicity following transplantation remains unsolved. We developed an in vitro model of myoblast transplantation with "patterned" or "randomly-mixed" co-culture of SkMBs and cardiomyocytes enabling subsequent electrophysiological, and arrhythmogenic evaluation. SkMBs were magnetically labeled with magnetite nanoparticles and co-cultured with neonatal rat ventricular myocytes (NRVMs) on multi-electrode arrays. SkMBs were patterned by a magnet beneath the arrays. Excitation synchronicity was evaluated by Ca(2+) imaging using a gene-encoded Ca(2+) indicator, G-CaMP2. In the monoculture of NRVMs (control), conduction was well-organized. In the randomly-mixed co-culture of NRVMs and SkMBs (random group), there was inhomogeneous conduction from multiple origins. In the "patterned" co-culture where an en bloc SKMB-layer was inserted into the NRVM-layer, excitation homogenously propagated although conduction was distorted by the SkMB-area. The 4-mm distance conduction time (CT) in the random group was significantly longer (197 ± 126 ms) than in control (17 ± 3 ms). In the patterned group, CT through NRVM-area did not change (25 ± 3 ms), although CT through the SkMB-area was significantly longer (132 ± 77 ms). The intervals between spontaneous excitation varied beat-to-beat in the random group, while regular beating was recorded in the control and patterned groups. Synchronized Ca(2+) transients of NRVMs were observed in the patterned group, whereas those in the random group were asynchronous. Patterned alignment of SkMBs is feasible with magnetic nanoparticles. Using the novel in vitro model mimicking cell transplantation, it may become possible to predict arrhythmogenicity due to heterogenous cell transplantation. J. Cell. Physiol. 231: 2249-2256, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fernandes, Andrea Claudia Bekner Silva; Pedroso, Raíssa Bocchi; de Mello, Tatiane França Perles; Donatti, Lucélia; Venazzi, Eneide Aparecida Sabaini; Demarchi, Izabel Galhardo; Aristides, Sandra Mara Alessi; Lonardoni, Maria Valdrinez Campana; Silveira, Thaís Gomes Verzignassi
2016-08-01
Leishmaniasis is a group of diseases that presents various clinical manifestations. Many studies have shown that the parasite plays an important role in the clinical manifestations and prognosis of this disease. The cutaneous and mucosal forms of American tegumentary leishmaniasis (ATL) are associated with Leishmania (Viannia) braziliensis, which exhibits intraspecific genetic polymorphisms and various clinical manifestations. The present study focused on four different L. braziliensis strains that were isolated from patients with distinct Glucantime(®) treatment responses. The isolates were described based on their molecular, biological, and infective characteristics. Growth patterns in culture medium and different grow phases were analyzed, MID-Logarithimic (Mid-LOG), Logarithimic (LOG) and Stationary (STAT) phases. Complement resistance was evaluated using guinea pig serum. Infection to murine peritoneal macrophages, cytokine and nitric oxide were analyzed. Ultrastructural features were determined by transmission electron microscopy, and molecular characteristics were determined based on random amplified polymorphic DNA (RAPD). All of the L. braziliensis isolates showed typical growth and similar complement sensitivity patterns. Markedly lower infectivity indexes were observed for all strains in the LOG phase, with different cytokine profiles. The ultrastructure analysis revealed distinct differences between the MID-LOG, LOG, and STAT phases. The RAPD results showed a divergence between the isolates of the L. braziliensis. The in vitro characterization of L. braziliensis isolates from humans with different treatment responses using various parameters enabled us to observe differences among the isolates. Molecular and in vivo characterizations are currently under study to improve understanding of the parasite-host interaction that can imply in the clinical manifestation differences. Copyright © 2016 Elsevier Inc. All rights reserved.
In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota.
Pham, Tung; Teoh, Keat Thomas; Savary, Brett J; Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok
2017-11-12
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults ( n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides , Prevotella , and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium , specifically F. prausnitzii . Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia , suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function.
In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota
Pham, Tung; Savary, Brett J.; Teoh, Keat (Thomas); Chen, Ming-Hsuan; McClung, Anna; Lee, Sun-Ok
2017-01-01
Whole grain rice is a rich source of fiber, nutrients, and phytochemicals that may promote gastrointestinal health, but such beneficial components are typically removed with the bran during polishing. Soluble feruloylated arabinoxylan oligosaccharides (FAXO) and polyphenols (RBPP) isolated from rice bran are hypothesized to have positive impacts on human gut microbiota through a prebiotic function. Using an in vitro human fecal fermentation bioassay, FAXO and RBPP treatments were assessed for short-chain fatty acids (SCFA) production patterns and by evaluating their impacts on the phylogentic composition of human gut microbiota by 16S rRNA gene sequencing. Fresh fecal samples collected from healthy adults (n = 10, 5 males, 5 females) were diluted with anaerobic medium. Each sample received five treatments: CTRL (no substrates), FOS (fructooligosaccharides), FAXO, RBPP, and MIX (FAXO with RBPP). Samples were incubated at 37 °C and an aliquot was withdrawn at 0, 4, 8, 12, and 24 h Results showed that SCFA production was significantly increased with FAXO and was comparable to fermentation with FOS, a well-established prebiotic. RBPP did not increase SCFA productions, and no significant differences in total SCFA production were observed between FAXO and MIX, indicating that RBPP does not modify FAXO fermentation. Changes in microbiota population were found in FAXO treatment, especially in Bacteroides, Prevotella, and Dorea populations, indicating that FAXO might modulate microbiota profiles. RBPP and MIX increased Faecalibacterium, specifically F. prausnitzii. Combined FAXO and RBPP fermentation increased abundance of butyrogenic bacteria, Coprococcus and Roseburia, suggesting some interactive activity. Results from this study support the potential for FAXO and RBPP from rice bran to promote colon health through a prebiotic function. PMID:29137150
Growth factor involvement in tension-induced skeletal muscle growth
NASA Technical Reports Server (NTRS)
Vandenburgh, Herman H.
1993-01-01
Long-term manned space travel will require a better understanding of skeletal muscle atrophy which results from microgravity. Astronaut strength and dexterity must be maintained for normal mission operations and for emergency situations. Although exercise in space slows the rate of muscle loss, it does not prevent it. A biochemical understanding of how gravity/tension/exercise help to maintain muscle size by altering protein synthesis and/or degradation rate should ultimately allow pharmacological intervention to prevent muscle atrophy in microgravity. The overall objective is to examine some of the basic biochemical processes involved in tension-induced muscle growth. With an experimental in vitro system, the role of exogenous and endogenous muscle growth factors in mechanically stimulated muscle growth are examined. Differentiated avian skeletal myofibers can be 'exercised' in tissue culture using a newly developed dynamic mechanical cell stimulator device which simulates different muscle activity patterns. Patterns of mechanical activity which significantly affect muscle growth and metabolic characteristics were found. Both exogenous and endogenous growth factors are essential for tension-induced muscle growth. Exogenous growth factors found in serum, such as insulin, insulin-like growth factors, and steroids, are important regulators of muscle protein turnover rates and mechanically-induced muscle growth. Endogenous growth factors are synthesized and released into the culture medium when muscle cells are mechanically stimulated. At least one family of mechanically induced endogenous factors, the prostaglandins, help to regulate the rates of protein turnover in muscle cells. Endogenously synthesized IGF-1 is another. The interaction of muscle mechanical activity and these growth factors in the regulation of muscle protein turnover rates with our in vitro model system is studied.
Metabolism of captopril carboxyl ester derivatives for percutaneous absorption.
Gullick, Darren R; Ingram, Matthew J; Pugh, W John; Cox, Paul A; Gard, Paul; Smart, John D; Moss, Gary P
2009-02-01
To determine the metabolism of captopril n-carboxyl derivatives and how this may impact on their use as transdermal prodrugs. The pharmacological activity of the ester derivatives was also characterised in order to compare the angiotensin converting enzyme inhibitory potency of the derivatives compared with the parent drug, captopril. The metabolism rates of the ester derivatives were determined in vitro (using porcine liver esterase and porcine ear skin) and in silico (using molecular modelling to investigate the potential to predict metabolism). Relatively slow pseudo first-order metabolism of the prodrugs was observed, with the ethyl ester displaying the highest rate of metabolism. A strong relationship was established between in-vitro methods, while in-silico methods support the use of in-vitro methods and highlight the potential of in-silico techniques to predict metabolism. All the prodrugs behaved as angiotensin converting enzyme inhibitors, with the methyl ester displaying optimum inhibition. In-vitro porcine liver esterase metabolism rates inform in-vitro skin rates well, and in-silico interaction energies relate well to both. Thus, in-silico methods may be developed that include interaction energies to predict metabolism rates.
Evidence for the interaction of the regulatory protein Ki-1/57 with p53 and its interacting proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nery, Flavia C.; Departamento de Genetica e Evolucao, Universidade Estadual de Campinas, Campinas, SP; Rui, Edmilson
Ki-1/57 is a cytoplasmic and nuclear phospho-protein of 57 kDa and interacts with the adaptor protein RACK1, the transcription factor MEF2C, and the chromatin remodeling factor CHD3, suggesting that it might be involved in the regulation of transcription. Here, we describe yeast two-hybrid studies that identified a total of 11 proteins interacting with Ki-1/57, all of which interact or are functionally associated with p53 or other members of the p53 family of proteins. We further found that Ki-1/57 is able to interact with p53 itself in the yeast two-hybrid system when the interaction was tested directly. This interaction could bemore » confirmed by pull down assays with purified proteins in vitro and by reciprocal co-immunoprecipitation assays from the human Hodgkin analogous lymphoma cell line L540. Furthermore, we found that the phosphorylation of p53 by PKC abolishes its interaction with Ki-1/57 in vitro.« less
Takahashi, Hirotaka; Takahashi, Chikako; Moreland, Nicole J; Chang, Young-Tae; Sawasaki, Tatsuya; Ryo, Akihide; Vasudevan, Subhash G; Suzuki, Youichi; Yamamoto, Naoki
2012-12-01
Whereas the dengue virus (DENV) non-structural (NS) proteins NS3 and NS5 have been shown to interact in vitro and in vivo, the biological relevance of this interaction in viral replication has not been fully clarified. Here, we first applied a simple and robust in vitro assay based on AlphaScreen technology in combination with the wheat-germ cell-free protein production system to detect the DENV-2 NS3-NS5 interaction in a 384-well plate. The cell-free-synthesized NS3 and NS5 recombinant proteins were soluble and in possession of their respective enzymatic activities in vitro. In addition, AlphaScreen assays using the recombinant proteins detected a specific interaction between NS3 and NS5 with a robust Z' factor of 0.71. By employing the AlphaScreen assay, we found that both the N-terminal protease and C-terminal helicase domains of NS3 are required for its association with NS5. Furthermore, a competition assay revealed that the binding of full-length NS3 to NS5 was significantly inhibited by the addition of an excess of NS3 protease or helicase domains. Our results demonstrate that the AlphaScreen assay can be used to discover novel antiviral agents targeting the interactions between DENV NS proteins. Copyright © 2012 Elsevier B.V. All rights reserved.
Estimating Likelihood of Fetal In Vivo Interactions Using In ...
Tox21/ToxCast efforts provide in vitro concentration-response data for thousands of compounds. Predicting whether chemical-biological interactions observed in vitro will occur in vivo is challenging. We hypothesize that using a modified model from the FDA guidance for drug interaction studies, Cmax/AC50 (i.e., maximal in vivo blood concentration over the half-maximal in in vitro activity concentration), will give a useful approximation for concentrations where in vivo interactions are likely. Further, for doses where maternal blood concentrations are likely to elicit an interaction (Cmax/AC50>0.1), where do the compounds accumulate in fetal tissues? In order to estimate these doses based on Tox21 data, in silico parameters of chemical fraction unbound in plasma and intrinsic hepatic clearance were estimated from ADMET predictor (Simulations-Plus Inc.) and used in the HTTK R-package to obtain Cmax values from a physiologically-based toxicokinetics model. In silico estimated Cmax values predicted in vivo human Cmax with median absolute error of 0.81 for 93 chemicals, giving confidence in the R-package and in silico estimates. A case example evaluating Cmax/AC50 values for peroxisome proliferator-activated receptor gamma (PPARγ) and glucocorticoid receptor revealed known compounds (glitazones and corticosteroids, respectively) highest on the list at pharmacological doses. Doses required to elicit likely interactions across all Tox21/ToxCast assays were compared to
Human stanniocalcin-1 interacts with nuclear and cytoplasmic proteins and acts as a SUMO E3 ligase.
dos Santos, Marcos Tadeu; Trindade, Daniel Maragno; Gonçalves, Kaliandra de Almeida; Bressan, Gustavo Costa; Anastassopoulos, Filipe; Yunes, José Andres; Kobarg, Jörg
2011-01-01
Human stanniocalcin-1 (STC1) is a glycoprotein that has been implicated in different physiological process, including angiogenesis, apoptosis and carcinogenesis. Here we identified STC1 as a putative molecular marker for the leukemic bone marrow microenvironment and identified new interacting protein partners for STC1. Seven selected interactions retrieved from yeast two-hybrid screens were confirmed by GST-pull down assays in vitro. The N-terminal region was mapped to be the region that mediates the interaction with cytoplasmic, mitochondrial and nuclear proteins. STC1 interacts with SUMO-1 and several proteins that have been shown to be SUMOylated and localized to SUMOylation related nuclear bodies. Although STC1 interacts with SUMO-1 and has a high theoretical prediction score for a SUMOylation site, endogenous co-immunoprecipitation and in vitro SUMOylation assays with the purified recombinant protein could not detect STC1 SUMOylation. However, when we tested STC1 for SUMO E3 ligase activity, we found in an in vitro assay, that it significantly increases the SUMOylation of two other proteins. Confocal microscopic subcellular localization studies using both transfected cells and specific antibodies for endogenous STC1 revealed a cytoplasmic and nuclear deposition, the latter in the form of some specific dot-like substructure resembling SUMOylation related nuclear bodies. Together, these findings suggest a new role for STC1 in SUMOylation pathways, in nuclear bodies.
Computational biology of RNA interactions.
Dieterich, Christoph; Stadler, Peter F
2013-01-01
The biodiversity of the RNA world has been underestimated for decades. RNA molecules are key building blocks, sensors, and regulators of modern cells. The biological function of RNA molecules cannot be separated from their ability to bind to and interact with a wide space of chemical species, including small molecules, nucleic acids, and proteins. Computational chemists, physicists, and biologists have developed a rich tool set for modeling and predicting RNA interactions. These interactions are to some extent determined by the binding conformation of the RNA molecule. RNA binding conformations are approximated with often acceptable accuracy by sequence and secondary structure motifs. Secondary structure ensembles of a given RNA molecule can be efficiently computed in many relevant situations by employing a standard energy model for base pair interactions and dynamic programming techniques. The case of bi-molecular RNA-RNA interactions can be seen as an extension of this approach. However, unbiased transcriptome-wide scans for local RNA-RNA interactions are computationally challenging yet become efficient if the binding motif/mode is known and other external information can be used to confine the search space. Computational methods are less developed for proteins and small molecules, which bind to RNA with very high specificity. Binding descriptors of proteins are usually determined by in vitro high-throughput assays (e.g., microarrays or sequencing). Intriguingly, recent experimental advances, which are mostly based on light-induced cross-linking of binding partners, render in vivo binding patterns accessible yet require new computational methods for careful data interpretation. The grand challenge is to model the in vivo situation where a complex interplay of RNA binders competes for the same target RNA molecule. Evidently, bioinformaticians are just catching up with the impressive pace of these developments. Copyright © 2012 John Wiley & Sons, Ltd.
Interactive Alignment of Multisyllabic Stress Patterns in a Second Language Classroom
ERIC Educational Resources Information Center
Trofimovich, Pavel; McDonough, Kim; Foote, Jennifer A.
2014-01-01
The current study explored the occurrence of stress pattern alignment during peer interaction in a second language (L2) classroom. Interactive alignment is a sociocognitive phenomenon in which interlocutors reuse each other's expressions, structures, and pronunciation patterns during conversation. Students (N = 41) enrolled in a…
Crosara, Karla Tonelli Bicalho; Moffa, Eduardo Buozi; Xiao, Yizhi; Siqueira, Walter Luiz
2018-01-16
Protein-protein interaction is a common physiological mechanism for protection and actions of proteins in an organism. The identification and characterization of protein-protein interactions in different organisms is necessary to better understand their physiology and to determine their efficacy. In a previous in vitro study using mass spectrometry, we identified 43 proteins that interact with histatin 1. Six previously documented interactors were confirmed and 37 novel partners were identified. In this tutorial, we aimed to demonstrate the usefulness of the STRING database for studying protein-protein interactions. We used an in-silico approach along with the STRING database (http://string-db.org/) and successfully performed a fast simulation of a novel constructed histatin 1 protein-protein network, including both the previously known and the predicted interactors, along with our newly identified interactors. Our study highlights the advantages and importance of applying bioinformatics tools to merge in-silico tactics with experimental in vitro findings for rapid advancement of our knowledge about protein-protein interactions. Our findings also indicate that bioinformatics tools such as the STRING protein network database can help predict potential interactions between proteins and thus serve as a guide for future steps in our exploration of the Human Interactome. Our study highlights the usefulness of the STRING protein database for studying protein-protein interactions. The STRING database can collect and integrate data about known and predicted protein-protein associations from many organisms, including both direct (physical) and indirect (functional) interactions, in an easy-to-use interface. Copyright © 2017 Elsevier B.V. All rights reserved.
Bourget, Jean-Michel; Kérourédan, Olivia; Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain; Devillard, Raphaël
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro . Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors.
Medina, Manuela; Rémy, Murielle; Thébaud, Noélie Brunehilde; Bareille, Reine; Chassande, Olivier; Amédée, Joëlle; Catros, Sylvain
2016-01-01
Tissue engineering of large organs is currently limited by the lack of potent vascularization in vitro. Tissue-engineered bone grafts can be prevascularized in vitro using endothelial cells (ECs). The microvascular network architecture could be controlled by printing ECs following a specific pattern. Using laser-assisted bioprinting, we investigated the effect of distance between printed cell islets and the influence of coprinted mesenchymal cells on migration. When printed alone, ECs spread out evenly on the collagen hydrogel, regardless of the distance between cell islets. However, when printed in coculture with mesenchymal cells by laser-assisted bioprinting, they remained in the printed area. Therefore, the presence of mesenchymal cell is mandatory in order to create a pattern that will be conserved over time. This work describes an interesting approach to study cell migration that could be reproduced to study the effect of trophic factors. PMID:27833916
Understanding the Impact of 2D and 3D Fibroblast Cultures on In Vitro Breast Cancer Models
Sung, Kyung Eun; Su, Xiaojing; Berthier, Erwin; Pehlke, Carolyn; Friedl, Andreas; Beebe, David J.
2013-01-01
The utilization of 3D, physiologically relevant in vitro cancer models to investigate complex interactions between tumor and stroma has been increasing. Prior work has generally focused on the cancer cells and, the role of fibroblast culture conditions on tumor-stromal cell interactions is still largely unknown. Here, we focus on the stroma by comparing functional behaviors of human mammary fibroblasts (HMFs) cultured in 2D and 3D and their effects on the invasive progression of breast cancer cells (MCF10DCIS.com). We identified increased levels of several paracrine factors from HMFs cultured in 3D conditions that drive the invasive transition. Using a microscale co-culture model with improved compartmentalization and sensitivity, we demonstrated that HMFs cultured in 3D intensify the promotion of the invasive progression through the HGF/c-Met interaction. This study highlights the importance of the 3D stromal microenvironment in the development of multiple cell type in vitro cancer models. PMID:24124550
Wang, Yaping; Zhang, Guowen; Wang, Langhong
2015-01-14
Dimethyl phthalate (DMP) is widely used as a plasticizer in industrial processes and has been reported to possess potential toxicity to the human body. In this study, the interaction between DMP and trypsin in vitro was investigated. The results of fluorescence, UV–vis, circular dichroism, and Fourier transform infrared spectra along with cyclic voltammetric measurements indicated that the remarkable fluorescence quenching and conformational changes of trypsin resulted from the formation of a DMP–trypsin complex, which was driven mainly by hydrophobic interactions. The molecular docking and trypsin activity assay showed that DMP primarily interacted with the catalytic triad of trypsin and led to the inhibition of trypsin activity. The dimensions of the individual trypsin molecules were found to become larger after binding with DMP by atomic force microscopy imaging. This study offers a comprehensive picture of DMP–trypsin interaction, which is expected to provide insights into the toxicological effect of DMP.
Theory of domain patterns in systems with long-range interactions of Coulomb type.
Muratov, C B
2002-12-01
We develop a theory of the domain patterns in systems with competing short-range attractive interactions and long-range repulsive Coulomb interactions. We take an energetic approach, in which patterns are considered as critical points of a mean-field free energy functional. Close to the microphase separation transition, this functional takes on a universal form, allowing us to treat a number of diverse physical situations within a unified framework. We use asymptotic analysis to study domain patterns with sharp interfaces. We derive an interfacial representation of the pattern's free energy which remains valid in the fluctuating system, with a suitable renormalization of the Coulomb interaction's coupling constant. We also derive integro-differential equations describing stationary domain patterns of arbitrary shapes and their thermodynamic stability, coming from the first and second variations of the interfacial free energy. We show that the length scale of a stable domain pattern must obey a certain scaling law with the strength of the Coulomb interaction. We analyzed the existence and stability of localized (spots, stripes, annuli) and periodic (lamellar, hexagonal) patterns in two dimensions. We show that these patterns are metastable in certain ranges of the parameters and that they can undergo morphological instabilities leading to the formation of more complex patterns. We discuss nucleation of the domain patterns by thermal fluctuations and pattern formation scenarios for various thermal quenches. We argue that self-induced disorder is an intrinsic property of the domain patterns in the systems under consideration.
Cross species comparisons of chemical interaction with recombinant steroid receptors in vitro.
Typically, mammalian receptors are used for in vitro hazard identification and screening for endocrine disrupting compounds. There is concern, however, that differences may exist in the affinities of environmental compounds for steroid receptors from other vertebrate classes. S...
Chen, Chih-Ying; Brodsky, Frances M
2005-02-18
Clathrin heavy and light chains form triskelia, which assemble into polyhedral coats of membrane vesicles that mediate transport for endocytosis and organelle biogenesis. Light chain subunits regulate clathrin assembly in vitro by suppressing spontaneous self-assembly of the heavy chains. The residues that play this regulatory role are at the N terminus of a conserved 22-amino acid sequence that is shared by all vertebrate light chains. Here we show that these regulatory residues and others in the conserved sequence mediate light chain interaction with Hip1 and Hip1R. These related proteins were previously found to be enriched in clathrin-coated vesicles and to promote clathrin assembly in vitro. We demonstrate Hip1R binding preference for light chains associated with clathrin heavy chain and show that Hip1R stimulation of clathrin assembly in vitro is blocked by mutations in the conserved sequence of light chains that abolish interaction with Hip1 and Hip1R. In vivo overexpression of a fragment of clathrin light chain comprising the Hip1R-binding region affected cellular actin distribution. Together these results suggest that the roles of Hip1 and Hip1R in affecting clathrin assembly and actin distribution are mediated by their interaction with the conserved sequence of clathrin light chains.
In vitro reconstruction of human junctional and sulcular epithelium
Dabija-Wolter, G; Bakken, V; Cimpan, M R; Johannessen, A C; Costea, D E
2013-01-01
BACKGROUND The aim of this study was to develop and characterize standardized in vitro three-dimensional organotypic models of human junctional epithelium (JE) and sulcular epithelium (SE). METHODS Organotypic models were constructed by growing human normal gingival keratinocytes on top of collagen matrices populated with gingival fibroblasts (GF) or periodontal ligament fibroblasts (PLF). Tissues obtained were harvested at different time points and assessed for epithelial morphology, proliferation (Ki67), expression of JE-specific markers (ODAM and FDC-SP), cytokeratins (CK), transglutaminase, filaggrin, and basement membrane proteins (collagen IV and laminin1). RESULTS The epithelial component in 3- and 5-day organotypics showed limited differentiation and expressed Ki-67, ODAM, FDC-SP, CK 8, 13, 16, 19, and transglutaminase in a similar fashion to control JE samples. PLF supported better than GF expression of CK19 and suprabasal proliferation, although statistically significant only at day 5. Basement membrane proteins started to be deposited only from day 5. The rate of proliferating cells as well as the percentage of CK19-expressing cells decreased significantly in 7- and 9-day cultures. Day 7 organotypics presented higher number of epithelial cell layers, proliferating cells in suprabasal layers, and CK expression pattern similar to SE. CONCLUSION Both time in culture and fibroblast type had impact on epithelial phenotype. Five-day cultures with PLF are suggested as JE models, 7-day cultures with PLF or GF as SE models, while 9-day cultures with GF as gingival epithelium (GE) models. Such standard, reproducible models represent useful tools to study periodontal bacteria–host interactions in vitro. PMID:22947066
Huang, Zhaozhi; Gruen, Ingolf; Vardhanabhuti, Bongkosh
2018-06-15
The goal of our study was to investigate the effect of alginate on in vitro gastric digestion and sucrose release of soy protein isolate (SPI) in model beverages. Model beverages containing 5% w/w SPI, 0% to 0.20% w/w alginate, and 10% w/w sucrose were prepared by heating the mixtures at 85 °C for 30 min at pH 6.0 or 7.0. Characterizations of beverages included determination of zeta potential, particle size and rheological properties. Digestion patterns and sucrose release profiles were determined during 2 hr in vitro gastric digestion using SDS-PAGE and HPLC analysis, respectively. Increasing alginate concentration led to increased negative surface charge, particle size, as well as viscosity and pseudoplastic behavior; however, no phase separation was observed. SPI beverages formed intragastric gel during in vitro gastric digestion when the formulations contained alginate or at pH 6.0 without alginate. Formation of the intragastric gel led to delayed protein digestion and release of sucrose. Higher resistance to digestion and a slower sucrose release rate were exhibited at increased alginate concentration, and to a lesser extent, at pH 6.0. This suggests that electrostatic interaction between SPI and alginate that occurred when the beverages were under gastric condition could be responsible for the intragastric gelation. These results could potentially lead to the formulation of SPI beverages with functionality to lower postprandial glycemic response. The results could be used to design beverages or semi solid food products with altered digestion properties and lowered or slower glucose release. © 2018 Institute of Food Technologists®.
Impaired wound healing in mice deficient in a matricellular protein SPARC (osteonectin, BM-40)
Basu, Amitabha; Kligman, Lorraine H; Samulewicz, Stefan J; Howe, Chin C
2001-01-01
Background SPARC is a matricellular protein involved in cell-matrix interactions. From expression patterns at the wound site and in vitro studies, SPARC has been implicated in the control of wound healing. Here we examined the function of SPARC in cutaneous wound healing using SPARC-null mice and dermal fibroblasts derived from them. Results In large (25 mm) wounds, SPARC-null mice showed a significant delay in healing as compared to wild-type mice (31 days versus 24 days). Granulation tissue formation and extracellular matrix protein production were delayed in small 6 mm SPARC-null wounds initially but were resolved by day 6. In in vitro wound-healing assays, while wild-type primary dermal fibroblasts showed essentially complete wound closure at 11 hours, wound closure of SPARC-null cells was incomplete even at 31 hours. Addition of purified SPARC restored the normal time course of wound closure. Treatment of SPARC-null cells with mitomycin C to analyze cell migration without cell proliferation showed that wound repair remained incomplete after 31 hours. Cell proliferation as measured by 3H-thymidine incorporation and collagen gel contraction by SPARC-null cells were not compromised. Conclusions A significant delay in healing large excisional wounds and setback in granulation tissue formation and extracellular matrix protein production in small wounds establish that SPARC is required for granulation tissue formation during normal repair of skin wounds in mice. A defect in wound closure in vitro indicates that SPARC regulates cell migration. We conclude that SPARC plays a role in wound repair by promoting fibroblast migration and thus granulation tissue formation. PMID:11532190
Judson, Richard S.; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M.; Filer, Dayne L.; Houck, Keith A.; Martin, Matthew T.; Sipes, Nisha; Richard, Ann M.; Mansouri, Kamel; Setzer, R. Woodrow; Knudsen, Thomas B.; Crofton, Kevin M.; Thomas, Russell S.
2015-01-01
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. PMID:26272952
Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
3D printed, controlled release, tritherapeutic tablet matrix for advanced anti-HIV-1 drug delivery.
Siyawamwaya, Margaret; du Toit, Lisa C; Kumar, Pradeep; Choonara, Yahya E; Kondiah, Pierre P P D; Pillay, Viness
2018-04-12
A 3D-Bioplotter® was employed to 3D print (3DP) a humic acid-polyquaternium 10 (HA-PQ10) controlled release fixed dose combination (FDC) tablet comprising of the anti-HIV-1 drugs, efavirenz (EFV), tenofovir disoproxil fumarate (TDF) and emtricitabine (FTC). Chemical interactions, surface morphology and mechanical strength of the FDC were ascertained. In vitro drug release studies were conducted in biorelevant media followed by in vivo study in the large white pigs, in comparison with a market formulation, Atripla®. In vitro-in vivo correlation of results was undertaken. EFV, TDF and FTC were successfully entrapped in the 24-layered rectangular prism-shaped 3DP FDC with a loading of ∼12.5 mg/6.3 mg/4 mg of EFV/TDF/FTC respectively per printed layer. Hydrogen bonding between the EFV/TDF/FTC and HA-PQ10 was detected which was indicative of possible drug solubility enhancement. The overall surface of the tablet exhibited a fibrilla structure and the 90° inner pattern was determined to be optimal for 3DP of the FDC. In vitro and in vivo drug release profiles from the 3DP FDC demonstrated that intestinal-targeted and controlled drug release was achieved. A 3DP FDC was successfully manufactured with the aid of a 3D-Bioplotter in a single step process. The versatile HA-PQ10 entrapped all drugs and achieved an enhanced relative bioavailability of EFV, TDF, and FTC compared to the market formulation for potentially enhanced HIV treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
Mel'nyk, V M; Spiridonova, K V; Andrieiev, I O; Strashniuk, N M; Kunakh, V A
2002-01-01
The comparative study of the genomes of intact plants-representatives of some species of the genus Gentiana L. as well as cultured cells of G. lutea and G. punctata was performed using restriction analysis. Species specificity of restriction fragment patterns for studied representatives of this genus was revealed. The differences between electrophoretic patterns of digested DNA purified from rhizome and leaves of G. lutea and G. punctata were found. The changes in genomes of G. lutea and G. punctata cells cultured in vitro compared with the genomes of intact plants were detected. The data obtained evidence that some of them may be of nonrandom character.
Aswal, Ajay Pal Singh; Raghav, Sarvesh; De, Sachinandan; Thakur, Manish; Goswami, Surender Lal; Datta, Tirtha Kumar
2008-01-15
The present study was undertaken to evaluate the expression stability of two housekeeping genes (HKGs), 18S rRNA and G3PDH during in vitro maturation (IVM) of oocytes in buffalo, which qualifies their use as internal controls for valid qRT-PCR estimation of other oocyte transcripts. A semi quantitative RT-PCR system was used with optimised qRT-PCR parameters at exponential PCR cycle for evaluation of temporal expression pattern of these genes over 24 h of IVM. 18S rRNA was found more stable in its expression pattern than G3PDH.
Integrated Model of Chemical Perturbations of a Biological ...
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform (“”assay interference”). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 52 (2.8%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in v
Tumor Uptake And Photodynamic Activity Of Sulfonated Metallo Phthalocyanines
NASA Astrophysics Data System (ADS)
van Lier, Johan E.; Rousseau, Jacques; Paquette, Benoit; Brasseur, N.; Langlois, Rejean; Ali, Hasrat
1989-06-01
Sulfonated metallo phthalocyanines (M-SPC) are extensively studied as sensitizers for photodynamic therapy of cancer. They strongly absorb clinically useful red light with absorption maxima between 670-680 nm. Their photodynamic properties depend on the nature of the central metal ion as well as the degree of substitution on the macrocycle. The zinc, aluminum and gallium complexes are efficient photo-generators of singlet oxygen, the species most likely responsible for their phototoxicity and tumoricidal action. Tissue distribution pattern, cell penetration and dye aggregation are strongly affected by the degree of sulfonation of the dyes. Mono- and disulfonated M-SPC have the highest tendency to form photo-inactive aggregates. However, these lower sulfonated dyes more readily cross cell membranes resulting, in vitro, in enhanced phototoxicity. In vivo, the highly sulfonated hydrophilic M-SPC show the best tumor localization properties but the lower sulfonated dyes still exhibit the best photo-activity. Variations in activities between the differently sulfonated M-SPC are far less pronounced in vivo as compared to in vitro conditions. Such discrepancies are explained by the combined action of numerous vectors including interaction of M-SPC with plasma proteins, vascular versus cellular photo-damage, tumor retention, cell penetration as well as the degree of aggregation of the dye.
Zhou, Qiong; Hu, Ya; Howard, O M Zack; Oppenheim, Joost J; Chen, Xin
2014-01-01
CD4(+) T cells stimulate immune responses through distinct patterns of cytokine produced by Th1, Th2 or Th17 cells, or inhibit immune responses through Foxp3-expressing regulatory T cells (Tregs). Paradoxically, effector T cells were recently shown to activate Tregs, however, it remains unclear which Th subset is responsible for this effect. In this study, we found that Th17 cells expressed the highest levels of TNF among in vitro generated Th subsets, and most potently promoted expansion and stabilized Foxp3 expression by Tregs when co-transferred into Rag1(-/-) mice. Both TNF and IL-2 produced by Th17 cells contributed to this effect. The stimulatory effect of Th17 cells on Tregs was largely abolished when co-transferred with TNFR2-deficient Tregs. Furthermore, Tregs deficient in TNFR2 also supported a much lower production of IL-17A and TNF expression by co-transferred Th17 cells. Thus, our data indicate that the TNF-TNFR2 pathway plays a crucial role in the reciprocal stimulatory effect of Th17 cells and Tregs. This bidirectional interaction should be taken into account when designing therapy targeting Th17 cells, Tregs, TNF and TNFR2. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lee, Tae Jin; Schwartz, Chad; Guo, Peixuan
2010-01-01
Nanobiotechnology involves the creation, characterization, and modification of organized nanomaterials to serve as building blocks for constructing nanoscale devices in technology and medicine. Living systems contain a wide variety of nanomachines and highly ordered structures of macromolecules. The novelty and ingenious design of the bacterial virus phi29 DNA packaging motor and its parts inspired the synthesis of this motor and its components as biomimetics. This 30-nm nanomotor uses six copies of an ATP-binding pRNA to gear the motor. The structural versatility of pRNA has been utilized to construct dimers, trimers, hexamers, and patterned superstructures via the interaction of two interlocking loops. The approach, based on bottom-up assembly, has also been applied to nanomachine fabrication, pathogen detection and the delivery of drugs, siRNA, ribozymes, and genes to specific cells in vitro and in vivo. Another essential component of the motor is the connector, which contains 12 copies of a protein gp10 to form a 3.6-nm central channel as a path for DNA. This article will review current studies of the structure and function of the phi29 DNA packaging motor, as well as the mechanism of motion, the principle of in vitro construction, and its potential nanotechnological and medical applications. PMID:19495981
Arsov, I; Li, X; Matthews, G; Coradin, J; Hartmann, B; Simon, A K; Sealfon, S C; Yue, Z
2008-09-01
Beclin 1/Atg6 is an essential component of the evolutionary conserved PtdIns(3)-kinase (Vps34) protein complex that regulates macroautophagy (autophagy) in eukaryotic cells and also interacts with antiapoptotic Bcl-2 family members, Bcl-2, and Bcl-x(L). To elucidate the physiological function of Beclin 1, we generated transgenic mice producing a green fluorescent Beclin 1 protein (Beclin 1-GFP) under Beclin 1 endogenous regulation. The beclin 1-GFP transgene is functional because it completely rescues early embryonic lethality in beclin 1-deficient mice. The transgenic mice appear normal, with undetected change in basal autophagy levels in different tissues, despite the additional expression of functional Beclin 1-GFP. Staining of Beclin 1-GFP shows mostly diffuse cytoplasmic distribution in various tissues. Detailed analysis of the transgene expression by flow cytometry reveals a Bcl-2-like biphasic expression pattern in developing T and B cells, as well as differential regulation of expression in mature versus immature thymocytes following in vitro stimulation. Moreover, thymocytes expressing high Beclin 1-GFP levels appear increasingly sensitive to glucocorticoid-induced apoptosis in vitro. Our results, therefore, support a role for Beclin 1 in lymphocyte development involving cross talk between autophagy and apoptosis.
Havlickova, B; Bíró, T; Mescalchin, A; Arenberger, P; Paus, R
2004-10-01
Human hair growth can currently be studied in vitro by the use of organ-cultured scalp hair follicles (HFs). However, simplified organotypic systems are needed for dissecting the underlying epithelial-mesenchymal interactions and as screening tools for candidate hair growth-modulatory agents. To optimize the design and culture conditions of previously published organotypic systems that imitate epithelial-mesenchymal interactions in the human HF as closely as possible. Continuous submerged organotypic 'sandwich' cultures were established. These consist of a pseudodermis (collagen I mixed with and contracted by human interfollicular dermal fibroblasts) on which one of two upper layers is placed: either a mixture of Matrigel basement membrane matrix (BD Biosciences, Bedford, MA, U.S.A.) and follicular dermal papilla fibroblasts (DPC), with outer root sheath keratinocytes (ORSK) layered on the top ('layered' system), or a mixture of Matrigel, DPC and ORSK ('mixed' system). Morphological and functional characteristics of these 'folliculoid sandwiches' were then assessed by routine histology, histomorphometry and immunohistochemistry. In both 'layered' and 'mixed' systems, the ORSK formed spheroid epithelial cell aggregates, which retained their characteristic keratin expression pattern (i.e. cytokeratin 6). In the 'mixed' sandwich model the size of the epithelial cell aggregates was smaller, but the numbers of ORSK were significantly higher than in the 'layered' model at day 14 in the culture. ORSK proliferated better in the 'mixed' than in the 'layered' sandwich system, regardless of the calcium or serum content of the media, whereas apoptosis of ORSK was lowest in the 'mixed' system in serum-free, low calcium medium. The kinetics of proliferation and apoptosis of DPC, which retained their characteristic expression of versican, were similar in both systems. However, proliferation and apoptosis of DPC were higher in the presence of serum and/or under high calcium conditions. Our results underscore the importance of structural design and medium composition for epithelial-mesenchymal interactions as they occur in the human HF. Specifically, we report a new organotypic submerged 'folliculoid sandwich' system with serum-free, low calcium medium and a mixture of interacting human DPC and ORSK, which offers several advantages over previously available assays. This system allows the standardized assessment of the effects of a test agent on the proliferation, apoptosis and key marker expression of human ORSK and DPC under substantially simplified in vitro conditions which approximate the in vivo situation.
Orr, J M; Abbott, F S; Farrell, K; Ferguson, S; Sheppard, I; Godolphin, W
1982-05-01
In five of six epileptic children who were taking 18 to 49 mg/kg/day valproic acid (VPA), the steady-state serum free fractions of VPA rose from 12% to 43% when antipyretic doses of aspirin were also taken. Mean total VPA half-life (t1/2) rose from 10.4 +/- 2.7 to 12.9 +/- 1.8 hr and mean free VPA t1/2 rose from 6.7 +/- to 2.1 to 8.9 +2- 3.0 hr when salicylate was present in the serum. The in vitro albumin binding association constant (ka) for VPA was decreased by salicylate, but the in vivo ka value was not affected. The 12-hr (trough) concentrations of both free and total VPA were higher in the presence of serum salicylate in five of six patients. Renal excretion of unchanged VPA decreased in five of six patients, but the VPA carboxyl conjugate metabolite-excretion patterns were not consistently affected. Salicylate appeared to displace VPA from serum albumin in vivo, but the increased VPA t1/2 and changes in VPA elimination patterns suggest that serum salicylate also altered VPA metabolism.
Adipocyte induction of preadipocyte differentiation in a gradient chamber.
Lai, Ning; Sims, James K; Jeon, Noo Li; Lee, Kyongbum
2012-12-01
Adipose tissue expansion involves enlargement of mature adipocytes and the formation of new adipocytes through the differentiation of locally resident preadipocytes. Factors released by the enlarged adipocytes are potential cues that induce the differentiation of the preadipocytes. Currently, there are limited options to investigate these cues in isolation from confounding systemic influences. A gradient generating microfluidic channel-based cell culture system was designed to enable solution patterning, while supporting long-term culture and differentiation of preadipocytes. Solution patterning was confirmed by selectively staining a fraction of uniformly seeded preadipocytes. An adipogenic cocktail gradient was used to induce the differentiation of a fraction of uniformly seeded preadipocytes and establish a spatially defined coculture of adipocytes and preadipocytes. Varying the adipogenic cocktail gradient generated cocultures of preadipocytes and adipocytes with different compositions. Transient application of the cocktail gradient, followed by basal medium treatment showed a biphasic induction of differentiation. The two phases of differentiation correlated with a spatial gradient in adipocyte size. Our results provide in vitro data supporting the size-dependent release of preadipocyte differentiation factors by enlarged adipocytes. Prospectively, the coculture system developed in this study could facilitate controlled, yet physiologically meaningful studies on paracrine interactions between adipocytes and preadipocytes during adipose tissue development.
Paget, Vincent; Lechevrel, Mathilde; André, Véronique; Le Goff, Jérémie; Pottier, Didier; Billet, Sylvain; Garçon, Guillaume; Shirali, Pirouz; Sichel, François
2012-01-01
Mutations in the TP53 gene are the most common alterations in human tumours. TP53 mutational patterns have sometimes been linked to carcinogen exposure. In hepatocellular carcinoma, a specific G>T transversion on codon 249 is classically described as a fingerprint of aflatoxin B1 exposure. Likewise G>T transversions in codons 157 and 158 have been related to tobacco exposure in human lung cancers. However, controversies remain about the interpretation of TP53 mutational pattern in tumours as the fingerprint of genotoxin exposure. By using a functional assay, the Functional Analysis of Separated Alleles in Yeast (FASAY), the present study depicts the mutational pattern of TP53 in normal human fibroblasts after in vitro exposure to well-known carcinogens: benzo[a]pyrene, aflatoxin B1 and acetaldehyde. These in vitro patterns of mutations were then compared to those found in human tumours by using the IARC database of TP53 mutations. The results show that the TP53 mutational patterns found in human tumours can be only partly ascribed to genotoxin exposure. A complex interplay between the functional impact of the mutations on p53 phenotype and the cancer natural history may affect these patterns. However, our results strongly support that genotoxins exposure plays a major role in the aetiology of the considered cancers. PMID:22319594
Histamine-releasing factor has a proinflammatory role in mouse models of asthma and allergy
Kashiwakura, Jun-ichi; Ando, Tomoaki; Matsumoto, Kenji; Kimura, Miho; Kitaura, Jiro; Matho, Michael H.; Zajonc, Dirk M.; Ozeki, Tomomitsu; Ra, Chisei; MacDonald, Susan M.; Siraganian, Reuben P.; Broide, David H.; Kawakami, Yuko; Kawakami, Toshiaki
2011-01-01
IgE-mediated activation of mast cells and basophils underlies allergic diseases such as asthma. Histamine-releasing factor (HRF; also known as translationally controlled tumor protein [TCTP] and fortilin) has been implicated in late-phase allergic reactions (LPRs) and chronic allergic inflammation, but its functions during asthma are not well understood. Here, we identified a subset of IgE and IgG antibodies as HRF-interacting molecules in vitro. HRF was able to dimerize and bind to Igs via interactions of its N-terminal and internal regions with the Fab region of Igs. Therefore, HRF together with HRF-reactive IgE was able to activate mast cells in vitro. In mouse models of asthma and allergy, Ig-interacting HRF peptides that were shown to block HRF/Ig interactions in vitro inhibited IgE/HRF-induced mast cell activation and in vivo cutaneous anaphylaxis and airway inflammation. Intranasally administered HRF recruited inflammatory immune cells to the lung in naive mice in a mast cell– and Fc receptor–dependent manner. These results indicate that HRF has a proinflammatory role in asthma and skin immediate hypersensitivity, leading us to suggest HRF as a potential therapeutic target. PMID:22133880
Mapping of the self-interaction domains in the simian immunodeficiency virus Gag polyprotein.
Rauddi, María L; Mac Donald, Cecilia L; Affranchino, José L; González, Silvia A
2011-03-01
To gain a better understanding of the assembly process in simian immunodeficiency virus (SIV), we first established the conditions under which recombinant SIV Gag lacking the C-terminal p6 domain (SIV GagΔp6) assembled in vitro into spherical particles. Based on the full multimerization capacity of SIV GagΔp6, and to identify the Gag sequences involved in homotypic interactions, we next developed a pull-down assay in which a panel of histidine-tagged SIV Gag truncation mutants was tested for its ability to associate in vitro with GST-SIVGagΔp6. Removal of the nucleocapsid (NC) domain from Gag impaired its ability to interact with GST-SIVGagΔp6. However, this Gag mutant consisting of the matrix (MA) and capsid (CA) domains still retained 50% of the wild-type binding activity. Truncation of SIV Gag from its N-terminus yielded markedly different results. The Gag region consisting of the CA and NC was significantly more efficient than wild-type Gag at interacting in vitro with GST-SIVGagΔp6. Notably, a small Gag subdomain containing the C-terminal third of the CA and the entire NC not only bound to GST-SIVGagΔp6 in vitro at wild-type levels, but also associated in vivo with full-length Gag and was recruited into extracellular particles. Interestingly, when the mature Gag products were analyzed, the MA and NC interacted with GST-SIVGagΔp6 with efficiencies representing 20% and 40%, respectively, of the wild-type value, whereas the CA failed to bind to GST-SIVGagΔp6, despite being capable of self-associating into multimeric complexes.
Miyake, Makito; Hori, Shunta; Morizawa, Yosuke; Tatsumi, Yoshihiro; Toritsuka, Michihiro; Ohnishi, Sayuri; Shimada, Keiji; Furuya, Hideki; Khadka, Vedbar S.; Deng, Youping; Ohnishi, Kenta; Iida, Kota; Gotoh, Daisuke; Nakai, Yasushi; Inoue, Takeshi; Anai, Satoshi; Torimoto, Kazumasa; Aoki, Katsuya; Tanaka, Nobumichi; Konishi, Noboru; Fujimoto, Kiyohide
2017-01-01
Current knowledge of the molecular mechanism driving tumor budding is limited. Here, we focused on elucidating the detailed mechanism underlying tumor budding in urothelial cancer of the bladder. Invasive urothelial cancer was pathologically classified into three groups as follows: nodular, trabecular, and infiltrative (tumor budding). Pathohistological analysis of the orthotopic tumor model revealed that human urothelial cancer cell lines MGH-U3, UM-UC-14, and UM-UC-3 displayed typical nodular, trabecular, and infiltrative patterns, respectively. Based on the results of comprehensive gene expression analysis using microarray (25 K Human Oligo chip), we identified two collagens, COL4A1 and COL13A1, which may contribute to the formation of the infiltrative pattern. Visualization of protein interaction networks revealed that proteins associated with connective tissue disorders, epithelial-mesenchymal transition, growth hormone, and estrogen were pivotal factors in tumor cells. To evaluate the invasion pattern of tumor cells in vitro, 3-D collective cell invasion assay using Matrigel was performed. Invadopodial formation was evaluated using Gelatin Invadopodia Assay. Knockdown of collagens with siRNA led to dramatic changes in invasion patterns and a decrease in invasion capability through decreased invadopodia. The in vivo orthotopic experimental model of bladder tumors showed that intravesical treatment with siRNA targeting COL4A1 and COL13A1 inhibited the formation of the infiltrative pattern. COL4A1 and COL13A1 production by cancer cells plays a pivotal role in tumor invasion through the induction of tumor budding. Blocking of these collagens may be an attractive therapeutic approach for treatment of human urothelial cancer of the bladder. PMID:28415608
Nealon, John Oliver; Philomina, Limcy Seby
2017-01-01
The elucidation of protein–protein interactions is vital for determining the function and action of quaternary protein structures. Here, we discuss the difficulty and importance of establishing protein quaternary structure and review in vitro and in silico methods for doing so. Determining the interacting partner proteins of predicted protein structures is very time-consuming when using in vitro methods, this can be somewhat alleviated by use of predictive methods. However, developing reliably accurate predictive tools has proved to be difficult. We review the current state of the art in predictive protein interaction software and discuss the problem of scoring and therefore ranking predictions. Current community-based predictive exercises are discussed in relation to the growth of protein interaction prediction as an area within these exercises. We suggest a fusion of experimental and predictive methods that make use of sparse experimental data to determine higher resolution predicted protein interactions as being necessary to drive forward development. PMID:29206185
McKenzie, Zofi; Kendall, Michaela; Mackay, Rose-Marie; Tetley, Teresa D.; Morgan, Cliff; Griffiths, Mark; Clark, Howard W.; Madsen, Jens
2015-01-01
Numerous epidemiological and toxicological studies have indicated that respiratory infections are exacerbated following enhanced exposure to airborne particulates. Surfactant protein A (SP-A) and SP-D form an important part of the innate immune response in the lung and can interact with nanoparticles to modulate the cellular uptake of these particles. We hypothesize that this interaction will also affect the ability of these proteins to combat infections. TT1, A549 and differentiated THP-1 cells, representing the predominant cell types found in the alveolus namely alveolar type I (ATI) epithelial cells, ATII cells and macrophages, were used to examine the effect of two model nanoparticles, 100 nm amine modified (A-PS) and unmodified polystyrene (U-PS), on the ability of SP-A and SP-D to neutralize influenza A infections in vitro. Pre-incubation of low concentrations of U-PS with SP-A resulted in a reduction of SP-A anti-influenza activity in A549 cells, whereas at higher concentrations there was an increase in SP-A antiviral activity. This differential pattern of U-PS concentration on surfactant protein mediated protection against IAV was also shown with SP-D in TT1 cells. On the other hand, low concentrations of A-PS particles resulted in a reduction of SP-A activity in TT1 cells and a reduction in SP-D activity in A549 cells. These results indicate that nanoparticles can modulate the ability of SP-A and SP-D to combat viral challenges. Furthermore, the nanoparticle concentration, surface chemistry and cell type under investigation are important factors in determining the extent of these modulations. PMID:25533100
Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies
Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon
2013-01-01
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, En Hee; Pak, Jung Hun; Kim, Mi Jin
Highlights: Black-Right-Pointing-Pointer We isolated a novel E2 ubiquitin-conjugating enzyme from leaves of wild rice plants. Black-Right-Pointing-Pointer The OgUBC1 was highly expressed in leaves treated with SA and UV-B radiation. Black-Right-Pointing-Pointer The recombinant OgUBC1 has an enzymatic activity of E2 in vitro. Black-Right-Pointing-Pointer The OgUBC1 could protect disruption of plant cells by UV-B radiation. Black-Right-Pointing-Pointer OgUBC1 confers disease resistance and UV-B tolerance in transgenic Arabidopsis plants. -- Abstract: A previously unidentified gene encoding ubiquitin-conjugating enzyme was isolated from leaves of wild rice plant treated with wounding and microbe-associated molecular patterns. The OgUBC1 gene was composed of 148 amino acids and containedmore » a typical active site and 21 ubiquitin thioester intermediate interaction residues and 4 E3 interaction residues. Both exogenous application of salicylic acid and UV-B irradiation triggered expression of OgUBC1 in leaves of wild rice. Recombinant OgUBC1 proteins bound to ubiquitins in vitro, proposing that the protein might act as E2 enzyme in planta. Heterologous expression of the OgUBC1 in Arabidopsis thaliana protected plants from cellular damage caused by an excess of UV-B radiation. A stable expression of chalcone synthase gene was detected in leaves of OgUBC1-expressing Arabidopsis, resulting in producing higher amounts of anthocyanin than those in wild-type Col-0 plants. Additionally, both pathogenesis-related gene1 and 5 were transcribed in the transgenic Arabidopsis in the absence of pathogen infection. The OgUBC1-expressing plants were resistant to the infection of Botrytis cinerea. Taken together, we suggested that the OgUBC1 is involved in ubiquitination process important for cellular response against biotic and abiotic stresses in plants.« less
Self-organization of neural tissue architectures from pluripotent stem cells.
Karus, Michael; Blaess, Sandra; Brüstle, Oliver
2014-08-15
Despite being a subject of intensive research, the mechanisms underlying the formation of neural tissue architectures during development of the central nervous system remain largely enigmatic. So far, studies into neural pattern formation have been restricted mainly to animal experiments. With the advent of pluripotent stem cells it has become possible to explore early steps of nervous system development in vitro. These studies have unraveled a remarkable propensity of primitive neural cells to self-organize into primitive patterns such as neural tube-like rosettes in vitro. Data from more advanced 3D culture systems indicate that this intrinsic propensity for self-organization can even extend to the formation of complex architectures such as a multilayered cortical neuroepithelium or an entire optic cup. These novel experimental paradigms not only demonstrate the enormous self-organization capacity of neural stem cells, they also provide exciting prospects for studying the earliest steps of human neural tissue development and the pathogenesis of brain malformations in reductionist in vitro paradigms. © 2014 Wiley Periodicals, Inc.
Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru
2016-06-17
N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.
Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F
1995-01-01
The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021
Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks
Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil
2011-01-01
Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388
On the interaction of deaffrication and consonant harmony*
Dinnsen, Daniel A.; Gierut, Judith A.; Morrisette, Michele L.; Green, Christopher R.; Farris-Trimble, Ashley W.
2010-01-01
Error patterns in children’s phonological development are often described as simplifying processes that can interact with one another with different consequences. Some interactions limit the applicability of an error pattern, and others extend it to more words. Theories predict that error patterns interact to their full potential. While specific interactions have been documented for certain pairs of processes, no developmental study has shown that the range of typologically predicted interactions occurs for those processes. To determine whether this anomaly is an accidental gap or a systematic peculiarity of particular error patterns, two commonly occurring processes were considered, namely Deaffrication and Consonant Harmony. Results are reported from a cross-sectional and longitudinal study of 12 children (age 3;0 – 5;0) with functional phonological delays. Three interaction types were attested to varying degrees. The longitudinal results further instantiated the typology and revealed a characteristic trajectory of change. Implications of these findings are explored. PMID:20513256
Agent-Based Modeling of Cancer Stem Cell Driven Solid Tumor Growth.
Poleszczuk, Jan; Macklin, Paul; Enderling, Heiko
2016-01-01
Computational modeling of tumor growth has become an invaluable tool to simulate complex cell-cell interactions and emerging population-level dynamics. Agent-based models are commonly used to describe the behavior and interaction of individual cells in different environments. Behavioral rules can be informed and calibrated by in vitro assays, and emerging population-level dynamics may be validated with both in vitro and in vivo experiments. Here, we describe the design and implementation of a lattice-based agent-based model of cancer stem cell driven tumor growth.
Meletiadis, Joseph; Mouton, Johan W.; Rodriguez-Tudela, Juan L.; Meis, Jacques F. G. M.; Verweij, Paul E.
2000-01-01
In order to develop new approaches for the chemotherapy of invasive infections caused by Scedosporium prolificans, the in vitro interaction between itraconazole and terbinafine against 20 clinical isolates was studied using a checkerboard microdilution method. Itraconazole and terbinafine alone were inactive against most isolates, but the combination was synergistic against 95 and 85% of isolates after 48 and 72 h of incubation, respectively. Antagonism was not observed. The MICs obtained with the terbinafine-itraconazole combination were within levels that can be achieved in plasma. PMID:10639389
Svendsen, Edel Jannecke; Moen, Anne; Pedersen, Reidar; Bjørk, Ida Torunn
2016-03-01
The aim of this study was to increase understanding of parent-healthcare provider interaction in situations where newly admitted preschool children resist peripheral vein cannulation. Parent-healthcare provider interaction represents an important context for understanding children's resistance to medical procedures. Knowledge about this interaction can provide a better understanding of how restraint is used and talked about. Symbolic interactionism informed the understanding of interaction. An exploratory, qualitative study was chosen because little is known about these interactions. During 2012-2013, 14 naturalistic peripheral vein cannulation -attempts with six newly hospitalized preschool children were video recorded. Eight parents/relatives, seven physicians and eight nurses participated in this study. The analytical foci of turn-taking and participant structure were used. The results comprised three patterns of interactions. The first pattern, 'parents supported the interaction initiated by healthcare providers', was a response to the children's expressed resistance and they performed firm restraint together. The second pattern, 'parents create distance in interaction with healthcare providers', appeared after failed attempts and had a short time span. Parents stopped following up on the healthcare providers' interaction and their restraint became less firm. In the third pattern, 'healthcare providers reorient in interaction', healthcare providers took over more of the restraint and either helped each other to continue the interaction or they stopped it. Knowledge about the identified patterns of interactions can help healthcare providers to better understand and thereby prepare both parents and themselves for situations with potential use of restraint. © 2015 John Wiley & Sons Ltd.
Real-Time Protein and Cell Binding Measurements on Hydroxyapatite Coatings
Vilardell, A. M.; Cinca, N.; Jokinen, A.; Garcia-Giralt, N.; Dosta, S.; Cano, I. G.; Guilemany, J. M.
2016-01-01
Although a lot of in vitro and in vivo assays have been performed during the last few decades years for hydroxyapatite bioactive coatings, there is a lack of exploitation of real-time in vitro interaction measurements. In the present work, real-time interactions for a plasma sprayed hydroxyapatite coating were measured by a Multi-Parametric Surface Plasmon Resonance (MP-SPR), and the results were compared with standard traditional cell viability in vitro assays. MP-SPR is proven to be suitable not only for measurement of molecule–molecule interactions but also molecule–material interaction measurements and cell interaction. Although SPR is extensively utilized in interaction studies, recent research of protein or cell adsorption on hydroxyapatite coatings for prostheses applications was not found. The as-sprayed hydroxyapatite coating resulted in 62.4% of crystalline phase and an average thickness of 24 ± 6 μm. The MP-SPR was used to measure lysozyme protein and human mesenchymal stem cells interaction to the hydroxyapatite coating. A comparison between the standard gold sensor and Hydroxyapatite (HA)-plasma coated sensor denoted a clearly favourable cell attachment on HA coated sensor as a significantly higher signal of cell binding was detected. Moreover, traditional cell viability and proliferation tests showed increased activity with culture time indicating that cells were proliferating on HA coating. Cells show homogeneous distribution and proliferation along the HA surface between one and seven days with no significant mortality. Cells were flattened and spread on rough surfaces from the first day, with increasing cytoplasmatic extensions during the culture time. PMID:27618911
In vitro modulation of the interaction between HA95 and LAP2beta by cAMP signaling.
Martins, Sandra B; Marstad, Anne; Collas, Philippe
2003-09-09
The nuclear envelope mediates key functions by interacting with chromatin. We recently reported an interaction between the chromatin- and nuclear matrix-associated protein HA95 and the inner nuclear membrane integral protein LAP2beta, implicated in initiation of DNA replication (Martins et al. (2003) J. Cell Biol. 160, 177-188). Here, we show that in vitro, interaction between HA95 and LAP2beta is modulated by cAMP signaling via PKA. Exposure of an anti-HA95 immune precipitate from interphase HeLa cells to a mitotic extract promotes ATP-dependent release of LAP2beta from the HA95 complex. This coincides with Ser and Thr phosphorylation of HA95 and LAP2beta. Inhibition of PKA with PKI abolishes phosphorylation of HA95 and dissociation of LAP2beta from HA95, although LAPbeta remains phosphorylated. Antagonizing cAMP signaling in mitotic extract also abolishes the release of LAP2beta from HA95; however, disrupting PKA anchoring to A-kinase anchoring proteins has no effect. Inhibition of CDK activity in the extract greatly reduces LAP2beta phosphorylation but does not prevent LAP2beta release from HA95. Inhibition of PKC, MAP kinase, or CaM kinase II does not affect mitotic extract-induced dissociation of LAP2beta from HA95. PKA phosphorylates HA95 but not LAP2beta in vitro and elicits a release of LAP2beta from HA95. CDK1 or PKC phosphorylates LAP2beta within the HA95 complex, but neither kinase induces LAP2beta release. Our results indicate that in vitro, the interaction between HA95 and LAP2beta is influenced by a PKA-mediated phosphorylation of HA95 rather than by CDK1- or PKC-mediated phosphorylation of LAP2beta. This suggests an additional level of regulation of a chromatin-nuclear envelope interaction in dividing cells.
Bhogal, Moninder S; Lanyon-Hogg, Thomas; Johnston, Katherine A; Warriner, Stuart L; Baker, Alison
2016-01-29
Peroxisomes are vital metabolic organelles found in almost all eukaryotic organisms, and they rely exclusively on import of their matrix protein content from the cytosol. In vitro import of proteins into isolated peroxisomal fractions has provided a wealth of knowledge on the import process. However, the common method of protease protection garnered no information on the import of an N-terminally truncated PEX5 (PEX5C) receptor construct or peroxisomal malate dehydrogenase 1 (pMDH1) cargo protein into sunflower peroxisomes because of high degrees of protease susceptibility or resistance, respectively. Here we present a means for analysis of in vitro import through a covalent biotin label transfer and employ this method to the import of PEX5C. Label transfer demonstrates that the PEX5C construct is monomeric under the conditions of the import assay. This technique was capable of identifying the PEX5-PEX14 interaction as the first interaction of the import process through competition experiments. Labeling of the peroxisomal protein import machinery by PEX5C demonstrated that this interaction was independent of added cargo protein, and, strikingly, the interaction between PEX5C and the import machinery was shown to be ATP-dependent. These important mechanistic insights highlight the power of label transfer in studying interactions, rather than proteins, of interest and demonstrate that this technique should be applied to future studies of peroxisomal in vitro import. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Danesh Mesgaran, Sadjad; Sharbati, Jutta; Einspanier, Ralf; Gabler, Christoph
2016-08-15
The mammalian oviduct provides the optimal environment for gamete maturation including sperm capacitation, fertilization, and development of the early embryo. Various cell culture models for primary bovine oviductal epithelial cells (BOEC) were established to reveal such physiological events. The aim of this study was to evaluate 17 candidate mRNA expression patterns in oviductal epithelial cells (1) in transition from in vivo cells to in vitro cells; (2) during three consecutive cell culture passages; (3) affected by the impact of LOW or HIGH glucose content media; and (4) influenced by different phases of the estrous cycle in vivo and in vitro. In addition, the release of a metabolite and proteins from BOEC at two distinct cell culture passage numbers was estimated to monitor the functionality. BOEC from 8 animals were isolated and cultured for three consecutive passages. Total RNA was extracted from in vivo and in vitro samples and subjected to reverse transcription quantitative polymerase chain reaction to reveal mRNA expression of selected candidate genes. The release of prostaglandin E2 (PGE2), oviduct-specific glycoprotein 1 (OVGP1) and interleukin 8 (IL8) by BOEC was measured by EIA or ELISA after 24 h. Almost all candidate genes (prostaglandin synthases, enzymes of cellular metabolism and mucins) mRNA expression pattern differed compared in vivo with in vitro state. In addition, transcription of most candidate genes was influenced by the number of cell culture passages. Different glucose medium content did not affect mRNA expression of most candidate genes. The phase of the estrous cycle altered some candidate mRNA expression in BOEC in vitro at later passages. The release of PGE2 and OVGP1 between passages did not differ. However, BOEC in passage 3 released significantly higher amount of IL8 compared with cells in passage 0. This study supports the hypothesis that candidate mRNA expression in BOEC was influenced by transition from the in vivo situation to the new in vitro environment and during consecutive passages. The consequence of cell culture passaging on BOEC ability to release bioactive compounds should be considered.
Tabor, Rico; Friedrich, Rainer W.
2008-01-01
Although synaptic functions of ionotropic glutamate receptors in the olfactory bulb have been studied in vitro, their roles in pattern processing in the intact system remain controversial. We therefore examined the functions of ionotropic glutamate receptors during odor processing in the intact olfactory bulb of zebrafish using pharmacological manipulations. Odor responses of mitral cells and interneurons were recorded by electrophysiology and 2-photon Ca2+ imaging. The combined blockade of AMPA/kainate and NMDA receptors abolished odor-evoked excitation of mitral cells. The blockade of AMPA/kainate receptors alone, in contrast, increased the mean response of mitral cells and decreased the mean response of interneurons. The blockade of NMDA receptors caused little or no change in the mean responses of mitral cells and interneurons. However, antagonists of both receptor types had diverse effects on the magnitude and time course of individual mitral cell and interneuron responses and, thus, changed spatio-temporal activity patterns across neuronal populations. Oscillatory synchronization was abolished or reduced by AMPA/kainate and NMDA receptor antagonists, respectively. These results indicate that (1) interneuron responses depend mainly on AMPA/kainate receptor input during an odor response, (2) interactions among mitral cells and interneurons regulate the total olfactory bulb output activity, (3) AMPA/kainate receptors participate in the synchronization of odor-dependent neuronal ensembles, and (4) ionotropic glutamate receptor-containing synaptic circuits shape odor-specific patterns of olfactory bulb output activity. These mechanisms are likely to be important for the processing of odor-encoding activity patterns in the olfactory bulb. PMID:18183297
Columnar interactions determine horizontal propagation of recurrent network activity in neocortex
Wester, Jason C.; Contreras, Diego
2012-01-01
The cortex is organized in vertical and horizontal circuits that determine the spatiotemporal properties of distributed cortical activity. Despite detailed knowledge of synaptic interactions among individual cells in the neocortex, little is known about the rules governing interactions among local populations. Here we used self-sustained recurrent activity generated in cortex, also known as up-states, in rat thalamocortical slices in vitro to understand interactions among laminar and horizontal circuits. By means of intracellular recordings and fast optical imaging with voltage sensitive dyes, we show that single thalamic inputs activate the cortical column in a preferential L4→L2/3→L5 sequence, followed by horizontal propagation with a leading front in supra and infragranular layers. To understand the laminar and columnar interactions, we used focal injections of TTX to block activity in small local populations, while preserving functional connectivity in the rest of the network. We show that L2/3 alone, without underlying L5, does not generate self-sustained activity and is inefficient propagating activity horizontally. In contrast, L5 sustains activity in the absence of L2/3 and is necessary and sufficient to propagate activity horizontally. However, loss of L2/3 delays horizontal propagation via L5. Finally, L5 amplifies activity in L2/3. Our results show for the first time that columnar interactions between supra and infragranular layers are required for the normal propagation of activity in the neocortex. Our data suggest that supra and infragranular circuits with their specific and complex set of inputs and outputs, work in tandem to determine the patterns of cortical activation observed in vivo. PMID:22514308
Huo, Yujia; Lu, Qiaonan; Zheng, Xiaowei; Ma, Yuanfang; Lu, Feng
2016-02-04
To explore effects of FtsZ mutants FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) on FtsZ self-assembly and interaction of FtsZ with MreB in Escherichia coli strains. METHODS) We constructed FtsZ and its mutant's plasmids by molecular clone and site-directed mutagenesis methods, and purified targeted proteins by affinity chromatography. QN6(ftsZ::yfp-cat), QN7(tsZ::yfp-cat), QN8(ftsZ(R78G)::yfp-cat) and QN9 (ftsZ(D82A):.:yfp-cat) strains were constructed by linear DNA homologous recombination. We observed cellular localization pattern of FtsZ and its mutants in E. coli by living cell imaging experiments, examined interaction of FtsZ/FtsZ*-FtsZ* and FtsZ/FtsZ*-MreB by Coimmunoprecipitation and bacteria two hybrid, and analyzed assembly characteristics of FtsZ mutants by Light scattering. RESULTS) The Yfp-labeled FtsZ(E75A), FtsZ(R78G) and FtsZ(D82A) mutant proteins failed to assemble into functional Z-ring structure and localize correctly in E. coli strains. Interaction of FtsZ with its mutants, or FtsZ*-FtsZ* and FtsZ*-MreB interaction were weakened or completely disappeared. In addition, in vitro experiments show that E75A, R78G and D82A mutations decreased the polymerization efficiency of FtsZ monomer. FtsZ E75, R78 and D82 are critical amino acids in the assembly, function of FtsZ protein and FtsZ-MreB interaction in E. coli strains.
Samuel, Marcus A; Mudgil, Yashwanti; Salt, Jennifer N; Delmas, Frédéric; Ramachandran, Shaliny; Chilelli, Andrea; Goring, Daphne R
2008-08-01
The Arabidopsis (Arabidopsis thaliana) genome encompasses multiple receptor kinase families with highly variable extracellular domains. Despite their large numbers, the various ligands and the downstream interacting partners for these kinases have been deciphered only for a few members. One such member, the S-receptor kinase, is known to mediate the self-incompatibility (SI) response in Brassica. S-receptor kinase has been shown to interact and phosphorylate a U-box/ARM-repeat-containing E3 ligase, ARC1, which, in turn, acts as a positive regulator of the SI response. In an effort to identify conserved signaling pathways in Arabidopsis, we performed yeast two-hybrid analyses of various S-domain receptor kinase family members with representative Arabidopsis plant U-box/ARM-repeat (AtPUB-ARM) E3 ligases. The kinase domains from S-domain receptor kinases were found to interact with ARM-repeat domains from AtPUB-ARM proteins. These kinase domains, along with M-locus protein kinase, a positive regulator of SI response, were also able to phosphorylate the ARM-repeat domains in in vitro phosphorylation assays. Subcellular localization patterns were investigated using transient expression assays in tobacco (Nicotiana tabacum) BY-2 cells and changes were detected in the presence of interacting kinases. Finally, potential links to the involvement of these interacting modules to the hormone abscisic acid (ABA) were investigated. Interestingly, AtPUB9 displayed redistribution to the plasma membrane of BY-2 cells when either treated with ABA or coexpressed with the active kinase domain of ARK1. As well, T-DNA insertion mutants for ARK1 and AtPUB9 lines were altered in their ABA sensitivity during germination and acted at or upstream of ABI3, indicating potential involvement of these proteins in ABA responses.
Kjeldsen, Henrik D.; Kaiser, Marcus; Whittington, Miles A.
2015-01-01
Background Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. New method Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. Results The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. Comparison with existing methods The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Conclusions Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. PMID:26026581
Kjeldsen, Henrik D; Kaiser, Marcus; Whittington, Miles A
2015-09-30
Brain function is dependent upon the concerted, dynamical interactions between a great many neurons distributed over many cortical subregions. Current methods of quantifying such interactions are limited by consideration only of single direct or indirect measures of a subsample of all neuronal population activity. Here we present a new derivation of the electromagnetic analogy to near-field acoustic holography allowing high-resolution, vectored estimates of interactions between sources of electromagnetic activity that significantly improves this situation. In vitro voltage potential recordings were used to estimate pseudo-electromagnetic energy flow vector fields, current and energy source densities and energy dissipation in reconstruction planes at depth into the neural tissue parallel to the recording plane of the microelectrode array. The properties of the reconstructed near-field estimate allowed both the utilization of super-resolution techniques to increase the imaging resolution beyond that of the microelectrode array, and facilitated a novel approach to estimating causal relationships between activity in neocortical subregions. The holographic nature of the reconstruction method allowed significantly better estimation of the fine spatiotemporal detail of neuronal population activity, compared with interpolation alone, beyond the spatial resolution of the electrode arrays used. Pseudo-energy flow vector mapping was possible with high temporal precision, allowing a near-realtime estimate of causal interaction dynamics. Basic near-field electromagnetic holography provides a powerful means to increase spatial resolution from electrode array data with careful choice of spatial filters and distance to reconstruction plane. More detailed approaches may provide the ability to volumetrically reconstruct activity patterns on neuronal tissue, but the ability to extract vectored data with the method presented already permits the study of dynamic causal interactions without bias from any prior assumptions on anatomical connectivity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Mikami, Akiko; Hori, Satoko; Ohtani, Hisakazu; Sawada, Yasufumi
2017-01-01
The purpose of the study was to quantitatively estimate and predict drug interactions between terbinafine and tricyclic antidepressants (TCAs), amitriptyline or nortriptyline, based on in vitro studies. Inhibition of TCA-metabolizing activity by terbinafine was investigated using human liver microsomes. Based on the unbound K i values obtained in vitro and reported pharmacokinetic parameters, a pharmacokinetic model of drug interaction was fitted to the reported plasma concentration profiles of TCAs administered concomitantly with terbinafine to obtain the drug-drug interaction parameters. Then, the model was used to predict nortriptyline plasma concentration with concomitant administration of terbinafine and changes of area under the curve (AUC) of nortriptyline after cessation of terbinafine. The CYP2D6 inhibitory potency of terbinafine was unaffected by preincubation, so the inhibition seems to be reversible. Terbinafine competitively inhibited amitriptyline or nortriptyline E-10-hydroxylation, with unbound K i values of 13.7 and 12.4 nM, respectively. Observed plasma concentrations of TCAs administered concomitantly with terbinafine were successfully simulated with the drug interaction model using the in vitro parameters. Model-predicted nortriptyline plasma concentration after concomitant nortriptylene/terbinafine administration for two weeks exceeded the toxic level, and drug interaction was predicted to be prolonged; the AUC of nortriptyline was predicted to be increased by 2.5- or 2.0- and 1.5-fold at 0, 3 and 6 months after cessation of terbinafine, respectively. The developed model enables us to quantitatively predict the prolonged drug interaction between terbinafine and TCAs. The model should be helpful for clinical management of terbinafine-CYP2D6 substrate drug interactions, which are difficult to predict due to their time-dependency.
2010-01-01
Objectives To conduct a systematic review for the evidence supporting or disproving the reality of parenteral nutrition- antiepileptic drugs interaction, especially with respect to the plasma protein-binding of the drug. Methods The articles related to the topic were identified through Medline and PubMed search (1968-Feburary 2010) for English language on the interaction between parenteral nutrition and antiepileptic drugs; the search terms used were anti-epileptic drugs, parenteral nutrition, and/or interaction, and/or in vitro. The search looked for prospective randomized and nonrandomized controlled studies; prospective nonrandomized uncontrolled studies; retrospective studies; case reports; and in vitro studies. Full text of the articles were then traced from the Universiti Sains Malaysia (USM) library subscribed databases, including Wiley-Blackwell Library, Cochrane Library, EBSCOHost, OVID, ScienceDirect, SAGE Premier, Scopus, SpringerLINK, and Wiley InterScience. The articles from journals not listed by USM library were traced through inter library loan. Results There were interactions between parenteral nutrition and drugs, including antiepileptics. Several guidelines were designed for the management of illnesses such as traumatic brain injuries or cancer patients, involving the use of parenteral nutrition and antiepileptics. Moreover, many studies demonstrated the in vitro and in vivo parenteral nutrition -drugs interactions, especially with antiepileptics. Conclusions There was no evidence supporting the existence of parenteral nutrition-antiepileptic drugs interaction. The issue has not been studied in formal researches, but several case reports and anecdotes demonstrate this drug-nutrition interaction. However, alteration in the drug-free fraction result from parenteral nutrition-drug (i.e. antiepileptics) interactions may necessitate scrupulous reassessment of drug dosages in patients receiving these therapies. This reassessment may be particularly imperative in certain clinical situations characterized by hypoalbuminemia (e.g., burn patients). PMID:21194458
Mechanical forces direct stem cell behaviour in development and regeneration
Vining, Kyle H.; Mooney, David J.
2018-01-01
Stem cells and their local microenvironment, or niche, communicate through mechanical, cues to regulate cell fate and cell behaviour, and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their differentiation and self-renewal. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights on the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies. PMID:29115301
Visualizing Cochlear Mechanics Using Confocal Microscopy
NASA Astrophysics Data System (ADS)
Ulfendahl, M.; Boutet de Monvel, J.; Fridberger, A.
2003-02-01
The sound-evoked vibration pattern of the hearing organ is based on complex mechanical interactions between different cellular structures. To explore the structural changes occurring within the organ of Corti during basilar-membrane motion, stepwise alterations of the scala tympani pressure were applied in an in vitro preparation of the guinea-pig temporal bone. Confocal images were acquired at each pressure level. In this way, the motion of several structures could be simultaneously observed with high resolution in a nearly intact system. Images were analyzed using a novel wavelet-based optical-flow estimation algorithm. Under the present experimental conditions, the reticular lamina moved as a stiff plate with a center of rotation in the region of the inner hair cells. The outer hair cells appeared non-rigid and the basal, synaptic regions of these cells displayed significant radial motion indicative of cellular bending and internal shearing.
Engineered Antibodies for Monitoring of Polynuclear Aromatic Hydrocarbons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander E. Karu Ph.D; Victoria A. Roberts Ph.D.; Qing X. Li, Ph.D.
2002-01-17
This project was undertaken to fill needs in ODE's human and ecosystem health effects research, site remediation, rapid emergency response, and regulatory compliance monitoring programs. Doe has greatly stimulated development and validation of antibody-based, rapid, field-portable detection systems for small hazardous compounds. These range from simple dipsticks, microplate enzyme-linked immunosorbent assays (ELISAs), and hand-held colorimeters, to ultrasensitive microfluidic reactors, fiber-optic sensors and microarrays that can identify multiple analytes from patterns of cross-reactivity. Unfortunately, the technology to produce antibodies with the most desirable properties did not keep pace. Lack of antibodies remains a limiting factor in production and practical use ofmore » such devices. The goals of our project were to determine the chemical and structural bases for the antibody-analyte binding interactions using advanced computational chemistry, and to use this information to create useful new binding properties through in vitro genetic engineering and combinatorial library methods.« less
Alizadeh-Rahrovi, Joulia; Shayesteh, Alireza; Ebrahim-Habibi, Azadeh
2015-09-01
Glycoproteins are formed as the result of enzymatic glycosylation or chemical glycation in the body, and produced in vitro in industrial processes. The covalently attached carbohydrate molecule(s) confer new properties to the protein, including modified stability. In the present study, the structural stability of a glycoprotein form of myoglobin, bearing a glucose unit in the N-terminus, has been compared with its native form by the use of molecular dynamics simulation. Both structures were subjected to temperatures of 300 and 500 K in an aqueous environment for 10 ns. Changes in secondary structures and RMSD were then assessed. An overall higher stability was detected for glycomyoglobin, for which the most stable segments/residues were highlighted and compared with the native form. The simple addition of a covalently bound glucose is suggested to exert its stabilizing effect via increased contacts with surrounding water molecules, as well as a different pattern of interactions with neighbor residues.
Park, Chan-Ho; Chen, Songbiao; Shirsekar, Gautam; Zhou, Bo; Khang, Chang Hyun; Songkumarn, Pattavipha; Afzal, Ahmed J; Ning, Yuese; Wang, Ruyi; Bellizzi, Maria; Valent, Barbara; Wang, Guo-Liang
2012-11-01
Although the functions of a few effector proteins produced by bacterial and oomycete plant pathogens have been elucidated in recent years, information for the vast majority of pathogen effectors is still lacking, particularly for those of plant-pathogenic fungi. Here, we show that the avirulence effector AvrPiz-t from the rice blast fungus Magnaporthe oryzae preferentially accumulates in the specialized structure called the biotrophic interfacial complex and is then translocated into rice (Oryza sativa) cells. Ectopic expression of AvrPiz-t in transgenic rice suppresses the flg22- and chitin-induced generation of reactive oxygen species (ROS) and enhances susceptibility to M. oryzae, indicating that AvrPiz-t functions to suppress pathogen-associated molecular pattern (PAMP)-triggered immunity in rice. Interaction assays show that AvrPiz-t suppresses the ubiquitin ligase activity of the rice RING E3 ubiquitin ligase APIP6 and that, in return, APIP6 ubiquitinates AvrPiz-t in vitro. Interestingly, agroinfection assays reveal that AvrPiz-t and AvrPiz-t Interacting Protein 6 (APIP6) are both degraded when coexpressed in Nicotiana benthamiana. Silencing of APIP6 in transgenic rice leads to a significant reduction of flg22-induced ROS generation, suppression of defense-related gene expression, and enhanced susceptibility of rice plants to M. oryzae. Taken together, our results reveal a mechanism in which a fungal effector targets the host ubiquitin proteasome system for the suppression of PAMP-triggered immunity in plants.
Ambrosio, Javier R.; Valverde-Islas, Laura; Nava-Castro, Karen E.; Palacios- Arreola, M. Isabel; Ostoa-Saloma, Pedro; Reynoso-Ducoing, Olivia; Escobedo, Galileo; Ruíz-Rosado, Azucena; Dominguez-Ramírez, Lenin; Morales-Montor, Jorge
2015-01-01
The effects of testosterone (T4) and dihydrotestosterone (DHT) on the survival of the helminth cestode parasite Taenia crassiceps, as well as their effects on actin, tubulin and myosin expression and their assembly into the excretory system of flame cells are described in this paper. In vitro evaluations on parasite viability, flow cytometry, confocal microscopy, video-microscopy of live flame cells, and docking experiments of androgens interacting with actin, tubulin, and myosin were conducted. Our results show that T4 and DHT reduce T. crassiceps viability in a dose- and time-dependent fashion, reaching 90% of mortality at the highest dose used (40 ng/ml) and time exposed (10 days) in culture. Androgen treatment does not induce differences in the specific expression pattern of actin, tubulin, and myosin isoforms as compared with control parasites. Confocal microscopy demonstrated a strong disruption of the parasite tegument, with reduced assembly, shape, and motion of flame cells. Docking experiments show that androgens are capable of affecting parasite survival and flame cell morphology by directly interacting with actin, tubulin and myosin without altering their protein expression pattern. We show that both T4 and DHT are able to bind actin, tubulin, and myosin affecting their assembly and causing parasite intoxication due to impairment of flame cell function. Live flame cell video microscopy showing a reduced motion as well changes in the shape of flame cells are also shown. In summary, T4 and DHT directly act on T. crassiceps cysticerci through altering parasite survival as well as the assembly and function of flame cells. PMID:26076446
T cell virological synapses and HIV-1 pathogenesis.
Chen, Benjamin K
2012-12-01
Human immunodeficiency virus type 1 is the cause of a modern global pandemic associated with progressive acquired immune deficiency. The infection is characterized by the loss of the primary target of viral infection, the CD4+ T cell. The measurement of plasma viremia in patients can predict the rate of CD4+ cell decline; however, it is not clear whether this cell-free plasma virus represents the engine that drives viral spread. Active viral replication is mainly observed within lymphoid tissues that are hotbeds of cell-cell interactions that initiate and organize immune responses. It is well established that cell-cell interactions enhance viral spread in vitro. Dendritic cell-T cell interactions, which lie at the heart of adaptive immune responses, enhance viral infection in vitro. Interactions between infected and uninfected CD4+ T cells are a dominant route of viral spread in vitro and are likely to play a central role in viral dissemination in vivo. Future studies will test existing paradigms of HIV-1 dissemination to determine whether virus-transmitting contacts between infected and uninfected T cells called virological synapses are the dominant mode of viral spread in vivo. Here, we review the status of our understanding of this mode of infection with a focus on T cell-T cell interactions and examine how it may explain resistance to neutralizing antibodies and or the generation of genetic diversity of HIV.
Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo.
Tsai, Lin-Wei; Lin, Yu-Chung; Perevedentseva, Elena; Lugovtsov, Andrei; Priezzhev, Alexander; Cheng, Chia-Liang
2016-07-12
Nanodiamonds (ND) have emerged to be a widely-discussed nanomaterial for their applications in biological studies and for medical diagnostics and treatment. The potentials have been successfully demonstrated in cellular and tissue models in vitro. For medical applications, further in vivo studies on various applications become important. One of the most challenging possibilities of ND biomedical application is controllable drug delivery and tracing. That usually assumes ND interaction with the blood system. In this work, we study ND interaction with rat blood and analyze how the ND surface modification and coating can optimize the ND interaction with the blood. It was found that adsorption of a low concentration of ND does not affect the oxygenation state of red blood cells (RBC). The obtained in vivo results are compared to the results of in vitro studies of nanodiamond interaction with rat and human blood and blood components, such as red blood cells and blood plasma. An in vivo animal model shows ND injected in blood attach to the RBC membrane and circulate with blood for more than 30 min; and ND do not stimulate an immune response by measurement of proinflammatory cytokine TNF-α with ND injected into mice via the caudal vein. The results further confirm nanodiamonds' safety in organisms, as well as the possibility of their application without complicating the blood's physiological conditions.
Nanodiamonds for Medical Applications: Interaction with Blood in Vitro and in Vivo
Tsai, Lin-Wei; Lin, Yu-Chung; Perevedentseva, Elena; Lugovtsov, Andrei; Priezzhev, Alexander; Cheng, Chia-Liang
2016-01-01
Nanodiamonds (ND) have emerged to be a widely-discussed nanomaterial for their applications in biological studies and for medical diagnostics and treatment. The potentials have been successfully demonstrated in cellular and tissue models in vitro. For medical applications, further in vivo studies on various applications become important. One of the most challenging possibilities of ND biomedical application is controllable drug delivery and tracing. That usually assumes ND interaction with the blood system. In this work, we study ND interaction with rat blood and analyze how the ND surface modification and coating can optimize the ND interaction with the blood. It was found that adsorption of a low concentration of ND does not affect the oxygenation state of red blood cells (RBC). The obtained in vivo results are compared to the results of in vitro studies of nanodiamond interaction with rat and human blood and blood components, such as red blood cells and blood plasma. An in vivo animal model shows ND injected in blood attach to the RBC membrane and circulate with blood for more than 30 min; and ND do not stimulate an immune response by measurement of proinflammatory cytokine TNF-α with ND injected into mice via the caudal vein. The results further confirm nanodiamonds’ safety in organisms, as well as the possibility of their application without complicating the blood’s physiological conditions. PMID:27420044
Huang, Shan; Qiu, Hangna; Liu, Yi; Huang, Chusheng; Sheng, Jiarong; Cui, Jianguo; Su, Wei; Xiao, Qi
2016-12-01
Cadmium-free quantum dots (QDs) have attracted great attention in biological and biomedical applications due to their less content of toxic metals, but their potential toxicity investigations on molecular biology level are rarely involved. Since few studies have addressed whether InP/ZnS QDs could bind and alter the structure and function of human serum albumin (HSA), in vitro interaction between InP/ZnS QDs and HSA was systematically characterized by multispectroscopic approaches. InP/ZnS QDs could quench the intrinsic fluorescence of HSA via static mode. The binding site of InP/ZnS QDs was mainly located at subdomain IIA of HSA. Some thermodynamic parameters suggested that InP/ZnS QDs interacted with HSA mainly through electrostatic interactions. As further revealed by three-dimensional spectrometry, FT-IR spectrometry and circular dichroism technique, InP/ZnS QDs caused more global and local conformational change of HSA than CdSe/ZnS QDs, which illustrated the stronger binding interaction and higher potential toxicity of InP/ZnS QDs on biological function of HSA. Our results offer insights into the in vitro binding mechanism of InP/ZnS QDs with HSA and provide important information for possible toxicity risk of these cadmium-free QDs to human health. Copyright © 2016 Elsevier B.V. All rights reserved.
Grmaš, Jernej; Stare, Katarina; Božič, Dane; Injac, Rade; Dreu, Rok
2017-08-01
The aim of this work is to use an experimental design approach to identify and study influential formulation and delivery device properties, which can be controlled by final product manufacturer, to establish design space, within which desired in vitro performance can be reached. Combining three factors, viscosity of suspension, nozzle orifice diameter (OD), and shot weight (SW), at three levels resulted in D-optimal experimental design with 20 runs. Responses within this study were droplet size distribution (DSD) and spray pattern (SP) in vitro tests. In addition, the amount of mechanical work needed for actuation was integrated from force profiles and used as a response. Results were fit to quadratic model by regression, which allowed also for determination of second-order and interaction effects between factors. Models were further optimized by keeping significant terms only. Optimized models were used to create response surfaces and design space with confidence levels. Viscosity has a dominant effect on DSD and modest effect on SP, with lower viscosities related to generation of smaller DSD and larger SP. Orifice diameter was found to have the highest impact on SP, with larger diameter resulting in larger SP. This effect was additionally confirmed by results of Plume Geometry in vitro test. Shot weight factor exerts significant influence on all tested metrics. Work, however, did not vary greatly with suspension viscosity or orifice diameter. Shot weight is the most dominant factor for work and important for DSD having a positive effect on both responses. In the case of SP, its relationship with shot weight is described by second-order polynomial fit. Inspection of raw data revealed that density of droplets within SP area is different for different shot weights. Presented study elucidated an inherent relationship between factors and responses and established mathematical models (response surfaces) for predictive purposes to target specific in vitro performance of nasal sprays by appropriate specification of factors, taking into account control space with included risk and uncertainty analysis.
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Boumans, Iris J M M; de Boer, Imke J M; Hofstede, Gert Jan; Bokkers, Eddie A M
2018-07-01
Domesticated pigs, Sus scrofa, vary considerably in feeding, social interaction and growth patterns. This variation originates partly from genetic variation that affects physiological factors and partly from behavioural strategies (avoid or approach) in competitive food resource situations. Currently, it is unknown how variation in physiological factors and in behavioural strategies among animals contributes to variation in feeding, social interaction and growth patterns in animals. The aim of this study was to unravel causation of variation in these patterns among pigs. We used an agent-based model to explore the effects of physiological factors and behavioural strategies in pigs on variation in feeding, social interaction and growth patterns. Model results show that variation in feeding, social interaction and growth patterns are caused partly by chance, such as time effects and coincidence of conflicts. Furthermore, results show that seemingly contradictory empirical findings in literature can be explained by variation in pig characteristics (i.e. growth potential, positive feedback, dominance, and coping style). Growth potential mainly affected feeding and growth patterns, whereas positive feedback, dominance and coping style affected feeding patterns, social interaction patterns, as well as growth patterns. Variation in behavioural strategies among pigs can reduce aggression at group level, but also make some pigs more susceptible to social constraints inhibiting them from feeding when they want to, especially low-ranking pigs and pigs with a passive coping style. Variation in feeding patterns, such as feeding rate or meal frequency, can indicate social constraints. Feeding patterns, however, can say something different about social constraints at group versus individual level. A combination of feeding patterns, such as a decreased feed intake, an increased feeding rate, and an increased meal frequency might, therefore, be needed to measure social constraints at individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
Patiño, Arley Camilo; Benjumea, Dora María; Pereañez, Jaime Andrés
2013-09-16
The plant Renealmia alpinia has been used in folk medicine to treat snakebites in the northwest region of Colombia. In addition, it has been shown to neutralize edema-forming, hemorrhagic, lethal, and defibrin(ogen)ating activities of Bothrops asper venom. In this work, extracts of Renealmia alpinia obtained by micropropagation (in vitro) and from specimens collected in the wild were tested and compared in their capacity to inhibit enzymatic and toxic activities of a snake venom metalloproteinase isolated from Bothrops atrox (Batx-I) venom and a serine proteinase (Cdc SII) from Crotalus durissus cumanensis venom. We have investigated the inhibition capacity of Renealmia alpinia extracts on enzymatic and toxic actions of isolated toxins, a metalloproteinase and a serine proteinase. The protocols investigated included inhibition of proteolytic activity on azocasein, inhibition of proteolytic activity on fibrinogen, inhibition of pro-coagulant activity, inhibition of hemorrhagic activity and inhibition of edema-forming activity. Colorimetric assays detected the presence of terpenoids, flavonoids, tannins and coumarins in Renealmia alpinia extracts. Renealmia alpinia extracts inhibited the enzymatic, hemorrhagic and fibrinogenolytic activities of Batx-I. Extracts also inhibited coagulant, defibrin(ogen)ating and edema-forming activities of Cdc SII. Results highlight that Renealmia alpinia in vitro extract displayed comparable inhibitory capacity on venom proteinases that Renealmia alpinia wild extract. No alteration was observed in the electrophoretic pattern of venom proteinases after incubation with Renealmia alpinia extracts, thus excluding proteolytic degradation or protein denaturation/precipitation as a mechanism of inhibition. Our results showed that Renealmia alpinia wild and in vitro extracts contain compounds that neutralize metallo- and serine proteinases present in snake venoms. The mechanism of inhibition is not related to proteolytic degradation of the enzymes nor protein aggregation, but is likely to depend on molecular interactions of secondary metabolites in the plant with these venom proteinases. Crown Copyright © 2013 Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wollenberg, Lance A.
Cytochrome P450 (P450) enzymes are a family of oxoferroreductase enzymes containing a heme moiety and are well known to be involved in the metabolism of a wide variety of endogenous and xenobiotic materials. It is estimated that roughly 75% of all pharmaceutical compounds are metabolized by these enzymes. Traditional reconstituted in-vitro incubation studies using recombinant P450 enzymes are often used to predict in-vivo kinetic parameters of a drug early in development. However, in many cases, these reconstituted incubations are prone to aggregation which has been shown to affect the catalytic activity of an enzyme. Moreover, the presence of other isoforms of P450 enzymes present in a metabolic incubation, as is the case with microsomal systems, may affect the catalytic activity of an enzyme through isoform-specific protein-protein interactions. Both of these effects may result in inaccurate prediction of in-vivo drug metabolism using in-vitro experiments. Here we described the development of immobilized P450 constructs designed to elucidate the effects of aggregation and protein-protein interactions between P450 isoforms on catalytic activities. The long term objective of this project is to develop a system to control the oligomeric state of Cytochrome P450 enzymes to accurately elucidate discrepancies between in vitro reconstituted systems and actual in vivo drug metabolism for the precise prediction of metabolic activity. This approach will serve as a system to better draw correlations between in-vivo and in-vitro drug metabolism data. The central hypothesis is that Cytochrome P450 enzymes catalytic activity can be altered by protein-protein interactions occurring between Cytochrome P450 enzymes involved in drug metabolism, and is dependent on varying states of protein aggregation. This dissertation explains the details of the construction and characterization of a nanostructure device designed to control the state of aggregation of a P450 enzyme. Moreover, applications of immobilized P450 enzyme constructs will also be used for monitoring protein-protein interaction and metabolite production with the use of immobilized-P450 bioreactor constructs. This work provides insight into the effect on catalytic activity caused by both P450 aggregation as well as isoform-specific protein-protein interactions and provides insight in the production of biosynthetically produced drug metabolites
Excess Podocyte Semaphorin-3A Leads to Glomerular Disease Involving PlexinA1–Nephrin Interaction
Reidy, Kimberly J.; Aggarwal, Pardeep K.; Jimenez, Juan J.; Thomas, David B.; Veron, Delma; Tufro, Alda
2014-01-01
Semaphorin-3A (Sema3a), a guidance protein secreted by podocytes, is essential for normal kidney patterning and glomerular filtration barrier development. Here, we report that podocyte-specific Sema3a gain-of-function in adult mice leads to proteinuric glomerular disease involving the three layers of the glomerular filtration barrier. Reversibility of the glomerular phenotype upon removal of the transgene induction provided proof-of-principle of the cause-and-effect relationship between podocyte Sema3a excess and glomerular disease. Mechanistically, excess Sema3a induces dysregulation of nephrin, matrix metalloproteinase 9, and αvβ3 integrin in vivo. Sema3a cell-autonomously disrupts podocyte shape. We identified a novel direct interaction between the Sema3a signaling receptor plexinA1 and nephrin, linking extracellular Sema3a signals to the slit-diaphragm signaling complex. We conclude that Sema3a functions as an extracellular negative regulator of the structure and function of the glomerular filtration barrier in the adult kidney. Our findings demonstrate a crosstalk between Sema3a and nephrin signaling pathways that is functionally relevant both in vivo and in vitro. PMID:23954273
Structure of Drosophila Oskar reveals a novel RNA binding protein
Yang, Na; Yu, Zhenyu; Hu, Menglong; Wang, Mingzhu; Lehmann, Ruth; Xu, Rui-Ming
2015-01-01
Oskar (Osk) protein plays critical roles during Drosophila germ cell development, yet its functions in germ-line formation and body patterning remain poorly understood. This situation contrasts sharply with the vast knowledge about the function and mechanism of osk mRNA localization. Osk is predicted to have an N-terminal LOTUS domain (Osk-N), which has been suggested to bind RNA, and a C-terminal hydrolase-like domain (Osk-C) of unknown function. Here, we report the crystal structures of Osk-N and Osk-C. Osk-N shows a homodimer of winged-helix–fold modules, but without detectable RNA-binding activity. Osk-C has a lipase-fold structure but lacks critical catalytic residues at the putative active site. Surprisingly, we found that Osk-C binds the 3′UTRs of osk and nanos mRNA in vitro. Mutational studies identified a region of Osk-C important for mRNA binding. These results suggest possible functions of Osk in the regulation of stability, regulation of translation, and localization of relevant mRNAs through direct interaction with their 3′UTRs, and provide structural insights into a novel protein–RNA interaction motif involving a hydrolase-related domain. PMID:26324911
Systematic Proteomic Approach to Characterize the Impacts of ...
Chemical interactions have posed a big challenge in toxicity characterization and human health risk assessment of environmental mixtures. To characterize the impacts of chemical interactions on protein and cytotoxicity responses to environmental mixtures, we established a systems biology approach integrating proteomics, bioinformatics, statistics, and computational toxicology to measure expression or phosphorylation levels of 21 critical toxicity pathway regulators and 445 downstream proteins in human BEAS-28 cells treated with 4 concentrations of nickel, 2 concentrations each of cadmium and chromium, as well as 12 defined binary and 8 defined ternary mixtures of these metals in vitro. Multivariate statistical analysis and mathematical modeling of the metal-mediated proteomic response patterns showed a high correlation between changes in protein expression or phosphorylation and cellular toxic responses to both individual metals and metal mixtures. Of the identified correlated proteins, only a small set of proteins including HIF-1a is likely to be responsible for selective cytotoxic responses to different metals and metals mixtures. Furthermore, support vector machine learning was utilized to computationally predict protein responses to uncharacterized metal mixtures using experimentally generated protein response profiles corresponding to known metal mixtures. This study provides a novel proteomic approach for characterization and prediction of toxicities of
Direct regulation of IL-2 by curcumin.
Oh, Jin-Gyo; Hwang, Da-Jeong; Heo, Tae-Hwe
2018-01-01
Interleukin-2 (IL-2) is a crucial growth factor for both regulatory and effector T cells. Thus, IL-2 plays a critical role in the stimulation and suppression of immune responses. Recently, anti-IL-2 antibodies (Abs) have been shown to possess strong IL-2 modulatory activities by affecting the interaction between IL-2 and IL-2 receptors. In this study, we screened an herbal library to identify a compound that regulates IL-2, which resulted in the identification of curcumin as a direct binder and inhibitor of IL-2. Curcumin is a phytochemical with well-known anti-cancer properties. In this study, curcumin mimicked or altered the binding pattern of anti-IL-2 Abs against IL-2 and remarkably inhibited the interaction of recombinant IL-2 with the IL-2 receptor α, CD25. Interestingly, curcumin neutralized the biological activities of IL-2 both in vitro and in vivo. In this report, we elucidated the unsolved mechanism of the anti-cancer effect of curcumin by identifying IL-2 as a direct molecular target. Curcumin, as a small molecule IL-2 modulator, has the potential to be used to treat IL-2 related pathologic conditions. Copyright © 2017 Elsevier Inc. All rights reserved.
Ma, Meilei; He, Xiangyu; Zhu, Weiyun
2016-11-04
This experiment was conducted to study different metabolic patterns of pig hindgut bacteria on aromatic amino acids by an in vitro fermentation method. Ileum, cecum and colon chyme in Duroc, Landrace and Yorkshire goods hybridization pigs were taken as inoculum. The single aromatic amino acid concentration was kept 10 mmol/L in fermentation flask. Then the fermentation flask was incubated at 37℃ for 24 h. Gas production was measured at 4, 8, 12, 16 and 24 h, and samples of fermentation collected at 0 h and 24 h were used to measure ammonia nitrogen NH3-N and microbial crude protein (MCP). Denaturing gradient gel electrophoresis (DGGE) and real-time PCR were used to monitor and quantify the development of bacteria community in zymotic fluid.[ The concentrations of NH3-N and MCP were significantly affected by aromatic amino acids and intestinal segments (P<0.01). Intestinal segments also affected gas production (GP) significantly (P0.01). NH3-N, MCP and GP were affected by interaction of aromatic amino acids and intestinal segments. DGGE analysis showed bacteria of aromatic amino acids shared amount of bands together, especially similarity analysis of DGGE profile of Phe and Tyr in ileum, Tyr and Trp in colon were 87.9% and 80.5% separately. Shannon diversity indices analysis revealed that aromatic amino acids in cecum and colon varied significantly (P<0.05). Real-time PCR results showed that the quantity of total bacteria were affected by aromatic amino acids and intestinal segments significantly (P<0.05). The potential as proportion of different aromatic amino acids are different. Compared with Trp and Phe, the diversity of bacteria utilizing Tyr in cecum or colon is low; compared with Tyr and Trp, a large number of Phe participated in synthesizing bacteria.The fermentation pattern of specific aromatic amino acids in different intestinal segment was unique. Compared with ileum and cecum, much more aromatic amino acids participated in the synthesis of bacteria in colon.
Improving in vitro mineral nutrition for diverse germplasm
USDA-ARS?s Scientific Manuscript database
Complex chemical interactions in growth media and variation in genotype response make it very difficult to optimize mineral nutrition of in vitro plants. Germplasm collections contain diverse species and cultivars that often do not grow well on standard tissue culture media or do not grow at all. Se...
Cell-Cell Interactions during pollen tube guidance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daphne Preuss
The long-term goal of this research is to identify the signaling molecules that mediate plant cell-cell interactions during pollination. The immediate goals of this project are to perform genetic and molecular analysis of pollen tube guidance. Specifically, we proposed to: 1. Characterize the pistil components that direct pollen tube navigation using the Arabidopsis thaliana in vitro pollen tube guidance system 2. Identify pistil signals that direct pollen tube guidance by a) using microarrays to profile gene expression in developing pistils, and b) employing proteomics and metabolomics to isolate pollen tube guidance signals. 3. Explore the genetic basis of natural variationmore » in guidance signals, comparing the in vitro interactions between pollen and pistils from A. thaliana and its close relatives.« less
Zakharyants, A A; Burmistrova, O A; Poloznikov, A A
2017-02-01
The possibility of interactions between warfarin and dasatinib and their interactions with other drugs metabolized by cytochrome P450 isoform CYP3A4 was demonstrated using a previously created cytochrome P450 substrate-inhibitor panel for preclinical in vitro studies of drug biotransformation on a 3D histotypical microfluidic cell model of human liver (liver-on-a-chip technology). Dasatinib and warfarin are inhibitors of CYP2C19 isoform and hence, can interfere the drugs metabolized by this isoform. Our findings are in line with the data obtained on primary culture of human hepatocytes and suggest that the model can be used in preclinical in vitro studies of drugs.
Mannino, Robert G; Santiago-Miranda, Adriana N; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C; Neelapu, Sattva S; Roy, Krishnendu; Lam, Wilbur A
2017-01-31
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design.
Mannino, Robert G.; Santiago-Miranda, Adriana N.; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C.; Neelapu, Sattva S.; Roy, Krishnendu; Lam, Wilbur A.
2017-01-01
Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ~22,000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design. PMID:28054086
Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P
2016-07-01
In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.
Maconochie, M K; Nonchev, S; Studer, M; Chan, S K; Pöpperl, H; Sham, M H; Mann, R S; Krumlauf, R
1997-07-15
Correct regulation of the segment-restricted patterns of Hox gene expression is essential for proper patterning of the vertebrate hindbrain. We have examined the molecular basis of restricted expression of Hoxb2 in rhombomere 4 (r4), by using deletion analysis in transgenic mice to identify an r4 enhancer from the mouse gene. A bipartite Hox/Pbx binding motif is located within this enhancer, and in vitro DNA binding experiments showed that the vertebrate labial-related protein Hoxb1 will cooperatively bind to this site in a Pbx/Exd-dependent manner. The Hoxb2 r4 enhancer can be transactivated in vivo by the ectopic expression of Hoxb1, Hoxa1, and Drosophila labial in transgenic mice. In contrast, ectopic Hoxb2 and Hoxb4 are unable to induce expression, indicating that in vivo this enhancer preferentially responds to labial family members. Mutational analysis demonstrated that the bipartite Hox/Pbx motif is required for r4 enhancer activity and the responses to retinoids and ectopic Hox expression. Furthermore, three copies of the Hoxb2 motif are sufficient to mediate r4 expression in transgenic mouse embryos and a labial pattern in Drosophila embryos. This reporter expression in Drosophila embryos is dependent upon endogenous labial and exd, suggesting that the ability of this Hox/Pbx site to interact with labial-related proteins has been evolutionarily conserved. The endogenous Hoxb2 gene is no longer upregulated in r4 in Hoxb1 homozygous mutant embryos. On the basis of these experiments we conclude that the r4-restricted domain of Hoxb2 in the hindbrain is the result of a direct cross-regulatory interaction by Hoxb1 involving vertebrate Pbx proteins as cofactors. This suggests that part of the functional role of Hoxb1 in maintaining r4 identity may be mediated by the Hoxb2 gene.
Specimen-specific modeling of hip fracture pattern and repair.
Ali, Azhar A; Cristofolini, Luca; Schileo, Enrico; Hu, Haixiang; Taddei, Fulvia; Kim, Raymond H; Rullkoetter, Paul J; Laz, Peter J
2014-01-22
Hip fracture remains a major health problem for the elderly. Clinical studies have assessed fracture risk based on bone quality in the aging population and cadaveric testing has quantified bone strength and fracture loads. Prior modeling has primarily focused on quantifying the strain distribution in bone as an indicator of fracture risk. Recent advances in the extended finite element method (XFEM) enable prediction of the initiation and propagation of cracks without requiring a priori knowledge of the crack path. Accordingly, the objectives of this study were to predict femoral fracture in specimen-specific models using the XFEM approach, to perform one-to-one comparisons of predicted and in vitro fracture patterns, and to develop a framework to assess the mechanics and load transfer in the fractured femur when it is repaired with an osteosynthesis implant. Five specimen-specific femur models were developed from in vitro experiments under a simulated stance loading condition. Predicted fracture patterns closely matched the in vitro patterns; however, predictions of fracture load differed by approximately 50% due to sensitivity to local material properties. Specimen-specific intertrochanteric fractures were induced by subjecting the femur models to a sideways fall and repaired with a contemporary implant. Under a post-surgical stance loading, model-predicted load sharing between the implant and bone across the fracture surface varied from 59%:41% to 89%:11%, underscoring the importance of considering anatomic and fracture variability in the evaluation of implants. XFEM modeling shows potential as a macro-level analysis enabling fracture investigations of clinical cohorts, including at-risk groups, and the design of robust implants. © 2013 Published by Elsevier Ltd.
Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.
Gatterdam, Karl; Joest, Eike F; Gatterdam, Volker; Tampé, Robert
2018-05-29
Small chemical/biological interaction pairs are at the forefront in tracing proteins' function and interaction at high signal-to-background ratio in cellular pathways. Pharma ventures have eager plans to develop trisNTA probes for in vitro and in vivo screening of His-tagged protein targets. However, the optimal design of scaffold, linker, and chelator head yet deserves systematic investigations to achieve highest affinity and kinetic stability for in vitro and especially cell applications. In this study, we report on a library of N-nitrilotriacetic acid (NTA) based multivalent chelator heads (MCHs) built up on linear, cyclic, and dendritic scaffolds and contrast these with regard to their binding affinity and stability for labeling of cellular His-tagged proteins. Furthermore, we assign a new approach for tracing cellular target proteins at picomolar probe concentrations in cells. Finally, we describe fundamental differences between the MCH scaffold and define a cyclic trisNTA chelator, which displays the highest affinity and kinetic stability of all reversible, low-molecular weight interaction pairs. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mazzoleni, Giovanna; Fanò-Illic, Giorgio; Mariggiò, Maria A.
2015-01-01
We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124
Ollson, Cameron J; Smith, Euan; Juhasz, Albert L
2018-02-01
In vitro assays act as surrogate measurements of relative bioavailability (RBA) for inorganic contaminants. The values derived from these assays are routinely used to refine human health risk assessments (HHRA). Extensive in vitro research has been performed on three major inorganic contaminants; As, Cd and Pb. However, the majority of these studies have evaluated the contaminants individually, even in cases when they are found as co-contaminants. Recently, in vivo studies (animal model) have determined that when the three aforementioned contaminants are present in the same soil matrix, they have the ability to influence each other's individual bioavailability. Since in vitro assays are used to inform HHRA, this study investigated whether bioaccessibility methods including the Solubility/Bioavailability Research Consortium (SBRC) assay, and physiologically based extraction test (PBET), have the ability to detect interactions between As, Cd and Pb. Using a similar dosing methodology to recently published in vivo studies, spiked aged (12 years) soil was assessed by evaluating contaminant bioaccessibility individually, in addition to tertiary combinations. In two spiked aged soils (grey and brown chromosols), there was no influence on contaminant bioaccessibility when As, Cd and Pb we present as co-contaminants. However, in a red ferrosol, the presence of As and Pb significantly decreased (p < 0.05) the bioaccessibility of Cd when assessed using gastric and intestinal phases of the SBRC assay and the PBET. Conceivable, differences in key physico-chemical properties (TOC, Fe, Al, P) between the study soils influenced contaminant interactions and bioaccessibility outcomes. Although bioaccessibility methods may not account for interactions between elements as demonstrated in in vivo models, in vitro assessment provides a conservative prediction of contaminant RBA under co-contaminant scenarios. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zupančič, Jerneja; Raghupathi, Prem K; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J; Gunde-Cimerman, Nina
2018-01-01
Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis , the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health.
Zupančič, Jerneja; Raghupathi, Prem K.; Houf, Kurt; Burmølle, Mette; Sørensen, Søren J.; Gunde-Cimerman, Nina
2018-01-01
Biofilms formed on rubber seals in dishwashers harbor diverse microbiota. In this study, we focussed on the microbial composition of bacteria and fungi, isolated from a defined area of one square centimeter of rubber from four domestic dishwashers and assessed their abilities to in vitro multispecies biofilm formation. A total of 80 isolates (64 bacterial and 16 fungal) were analyzed. Multiple combinations of bacterial isolates from each dishwasher were screened for synergistic interactions. 32 out of 140 tested (23%) four-species bacterial combinations displayed consistent synergism leading to an overall increase in biomass, in all experimental trails. Bacterial isolates from two of the four dishwashers generated a high number of synergistically interacting four-species consortia. Network based correlation analyses also showed higher co-occurrence patterns observed between bacterial members in the same two dishwasher samples, indicating cooperative effects. Furthermore, two synergistic four-species bacterial consortia were tested for their abilities to incorporate an opportunistic fungal pathogen, Exophiala dermatitidis and their establishment as biofilms on sterile ethylene propylene diene monomer M-class (EPDM) rubber and polypropylene (PP) surfaces. When the bacterial consortia included E. dermatitidis, the overall cell numbers of both bacteria and fungi increased and a substantial increase in biofilm biomass was observed. These results indicate a novel phenomenon of cross kingdom synergy in biofilm formation and these observations could have potential implications for human health. PMID:29441043
A TRACER 3D Co-Culture tumour model for head and neck cancer.
Young, Miki; Rodenhizer, Darren; Dean, Teresa; D'Arcangelo, Elisa; Xu, Bin; Ailles, Laurie; McGuigan, Alison P
2018-05-01
Cancer-associated fibroblasts (CAFs) are a key component of the tumour microenvironment and have been shown to play an important role in the progression of cancer. To probe these tumour-stroma interactions, we incorporated CAFs derived from head and neck cancer patients and squamous carcinoma cells of the hypopharynx (FaDu) into the Tissue Roll for the Analysis of Cellular Environment and Response (TRACER) platform to establish a co-culture platform that simulates the CAF-tumour microenvironmental interactions in head and neck tumours. TRACER culture involves infiltrating cells into a thin fibrous scaffold and then rolling the resulting biocomposite around a mandrel to generate a 3D and layered structure. Patterning the fibrous scaffold biocomposite during fabrication enables control over the specific location of different cell populations in the rolled configuration. Here, we optimized the seeding densities and configurations of the CAF and FaDu cell tissue sections to enable a robust 3D co-culture system under normoxic conditions. Co-culture of CAFs with FaDu cells produced negligible effects on radiation resistance, but did produce increases in proliferation rate and invasive cell migration at 24 and 48 h of culture. Our study provides the basis for use of our in vitro co-culture TRACER model to investigate the tumour-stroma interactions, and to bridge the translational gap between preclinical and clinical studies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-01
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction. PMID:29342872
Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred
2018-01-13
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R
2013-01-01
Grape seed extract (GSE) phenolics have potential health-promoting properties, either from compounds present within the extract, or metabolites resulting from gastrointestinal tract (GIT) fermentation of these compounds. This study describes how GSE affected the kinetics and end-products of starch fermentation in vitro using pig intestinal and fecal inocula. Six GSE concentrations (0, 60, 125, 250, 500, and 750 µg ml⁻¹ were fermented in vitro by porcine ileal and fecal microbiota using starch as the energy source. Cumulative gas production, and end-point short chain fatty acids and ammonia were measured. GSE phenolics altered the pattern (gas kinetics, and end-products such as SCFA and NH₄⁺) of starch fermentation by both inocula, at concentrations above 250 µg ml⁻¹ . Below this level, neither inoculum showed any significant (P > 0.05) effect of the GSE. The results show that GSE phenolics at a concentration over 250 µg ml⁻¹ can have measurable effects on microbial activity in an in vitro fermentation system, as evidenced by the changes in kinetics and end-products from starch fermentation. This suggests that fermentation patterns could be conceivably shifted in the actual GIT, though further evidence will be required from in vivo studies. Copyright © 2012 Society of Chemical Industry.
PIPE: a protein–protein interaction passage extraction module for BioCreative challenge
Chu, Chun-Han; Su, Yu-Chen; Chen, Chien Chin; Hsu, Wen-Lian
2016-01-01
Identifying the interactions between proteins mentioned in biomedical literatures is one of the frequently discussed topics of text mining in the life science field. In this article, we propose PIPE, an interaction pattern generation module used in the Collaborative Biocurator Assistant Task at BioCreative V (http://www.biocreative.org/) to capture frequent protein-protein interaction (PPI) patterns within text. We also present an interaction pattern tree (IPT) kernel method that integrates the PPI patterns with convolution tree kernel (CTK) to extract PPIs. Methods were evaluated on LLL, IEPA, HPRD50, AIMed and BioInfer corpora using cross-validation, cross-learning and cross-corpus evaluation. Empirical evaluations demonstrate that our method is effective and outperforms several well-known PPI extraction methods. Database URL: PMID:27524807
NASA Astrophysics Data System (ADS)
Liu, Fu-Cheng; He, Ya-Feng; Pan, Yu-Yang
2010-05-01
In this paper, superlattice patterns have been investigated by using a two linearly coupled Brusselator model. It is found that superlattice patterns can only be induced in the sub-system with the short wavelength. Three different coupling methods have been used in order to investigate the mode interaction between the two Turing modes. It is proved in the simulations that interaction between activators in the two sub-systems leads to spontaneous formation of black eye pattern and/or white eye patterns while interaction between inhibitors leads to spontaneous formation of super-hexagonal pattern. It is also demonstrated that the same symmetries of the two modes and suitable wavelength ratio of the two modes should also be satisfied to form superlattice patterns.
Ginther, O J; Hoffman, M M
2016-09-01
The interactions between side of ovary (left ovary [LO] and right ovary [RO]) and number of follicles per ovary and between side and intraovarian patterns were studied in heifers with two follicular waves (anovulatory wave 1 and ovulatory wave 2). Intraovarian patterns were on the basis of location of the dominant follicle (DF) and corpus luteum (CL) and were termed DF-CL, DF, CL, and devoid. The frequency of the DF-CL intraovarian pattern was greater for the RO than for the LO in wave 1 (80 of 121; P < 0.0004) and in wave 2 (54 of 83; P < 0.006). For each wave, the DF of the DF-CL and DF patterns was more often in the RO for the ipsilateral relationship (e.g., wave 1: 66% vs. 48%; P < 0.01) and in the LO for the contralateral relationship (52% vs. 34%; P < 0.01). An interaction between side and pattern (P < 0.05) for number of follicles in wave 2 that attained 6 mm was from a greater number in RO than in LO when a DF was present (DF-CL and DF patterns). An interaction of side and pattern for the number of wave 2 regressing subordinate follicles that recovered (increased in diameter) and became part of the subsequent wave 1 was greater (P < 0.05) for LO than for RO for the DF pattern but not for the CL pattern. An effect of side or an interaction that involved side was not found for the greater dimensions and blood flow for both the DF and CL of the DF-CL pattern. Results indicated that side interacted with ovarian pattern for number of DF-CL patterns, side of DF, number of follicles per ovary, and recovery of regressing wave 2 follicles. The hypothesis was supported that some aspects of follicle dynamics reflect an interaction of side and intraovarian pattern. Future studies on the effect of side on luteal or follicle dynamics could be incomplete or misleading if intraovarian patterns are ignored. Copyright © 2016 Elsevier Inc. All rights reserved.
Modeling Child-Nature Interaction in a Nature Preschool: A Proof of Concept.
Kahn, Peter H; Weiss, Thea; Harrington, Kit
2018-01-01
This article provides a proof of concept for an approach to modeling child-nature interaction based on the idea of interaction patterns : characterizations of essential features of interaction between humans and nature, specified abstractly enough such that countless different instantiations of each one can occur - in more domestic or wild forms - given different types of nature, people, and purposes. The model draws from constructivist psychology, ecological psychology, and evolutionary psychology, and is grounded in observational data collected through a time-sampling methodology at a nature preschool. Through using a nature language that emphasizes ontogenetic and phylogenetic significance, seven keystone interaction patterns are described for this nature preschool: using one's body vigorously in nature, striking wood on wood, constructing shelter, being in solitude in nature, lying on earth, cohabiting with a wild animal , and being outside in weather . These 7 interactions patterns are then brought together with 13 other patterns published elsewhere to provide a total of 20 keystone interaction patterns that begin to fill out the model, and to show its promise. Discussion focuses on what the model aims to be in terms of both product and process, on what work the model can currently do, and how to further develop the model.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo t...
In vitro burn model illustrating heat conduction patterns using compressed thermal papers.
Lee, Jun Yong; Jung, Sung-No; Kwon, Ho
2015-01-01
To date, heat conduction from heat sources to tissue has been estimated by complex mathematical modeling. In the present study, we developed an intuitive in vitro skin burn model that illustrates heat conduction patterns inside the skin. This was composed of tightly compressed thermal papers with compression frames. Heat flow through the model left a trace by changing the color of thermal papers. These were digitized and three-dimensionally reconstituted to reproduce the heat conduction patterns in the skin. For standardization, we validated K91HG-CE thermal paper using a printout test and bivariate correlation analysis. We measured the papers' physical properties and calculated the estimated depth of heat conduction using Fourier's equation. Through contact burns of 5, 10, 15, 20, and 30 seconds on porcine skin and our burn model using a heated brass comb, and comparing the burn wound and heat conduction trace, we validated our model. The heat conduction pattern correlation analysis (intraclass correlation coefficient: 0.846, p < 0.001) and the heat conduction depth correlation analysis (intraclass correlation coefficient: 0.93, p < 0.001) showed statistically significant high correlations between the porcine burn wound and our model. Our model showed good correlation with porcine skin burn injury and replicated its heat conduction patterns. © 2014 by the Wound Healing Society.
Soriano, Mercedes; Li, Hui; Jacquard, Cédric; Angenent, Gerco C.; Krochko, Joan; Offringa, Remko; Boutilier, Kim
2014-01-01
In Arabidopsis thaliana, zygotic embryo divisions are highly regular, but it is not clear how embryo patterning is established in species or culture systems with irregular cell divisions. We investigated this using the Brassica napus microspore embryogenesis system, where the male gametophyte is reprogrammed in vitro to form haploid embryos in the absence of exogenous growth regulators. Microspore embryos are formed via two pathways: a zygotic-like pathway, characterized by initial suspensor formation followed by embryo proper formation from the distal cell of the suspensor, and a pathway characterized by initially unorganized embryos lacking a suspensor. Using embryo fate and auxin markers, we show that the zygotic-like pathway requires polar auxin transport for embryo proper specification from the suspensor, while the suspensorless pathway is polar auxin transport independent and marked by an initial auxin maximum, suggesting early embryo proper establishment in the absence of a basal suspensor. Polarity establishment in this suspensorless pathway was triggered and guided by rupture of the pollen exine. Irregular division patterns did not affect cell fate establishment in either pathway. These results confirm the importance of the suspensor and suspensor-driven auxin transport in patterning, but also uncover a mechanism where cell patterning is less regular and independent of auxin transport. PMID:24951481
Thomas, V; Kumari, T V; Jayabalan, M
2001-01-01
The effect of physical cross-linking in candidate cycloaliphatic and hydrophobic poly(urethane urea) (4,4'-methylenebis(cyclohexylisocyanate), H(12)MDI/hydroxy-terminated polybutadiene, HTPBD/hexamethylenediamine, HDA) and poly(ether urethane urea)s (H(12)MDI/HTPBD-PTMG/HDA) on the in vitro calcification and blood-material interaction was studied. All the candidate poly(urethane urea)s and poly(ether urethane urea)s elicit acceptable hemolytic activity, cytocompatibility, calcification, and blood compatibility in vitro. The studies on blood-material interaction reveal that the present poly(urethane urea)s are superior to polystyrene microtiter plates which were used for the studies on blood-material interaction. The present investigation reveals the influence of physical cross-link density on biological interaction differently with poly(urethane urea) and poly(ether urethane urea)s. The higher the physical cross-link density in the poly(urethane urea)s, the higher the calcification and consumption of WBC in whole blood. On the other hand, the higher the physical cross-link density in the poly(ether urethane urea)s, the lesser the calcification and consumption of WBC in whole blood. However a reverse of the above trend has been observed with the platelet consumption in the poly(urethane urea)s and poly(ether urethane urea)s.
Inhibition of cytochrome P450 by furanocoumarins in grapefruit juice and herbal medicines.
Guo, Lian-qing; Yamazoe, Yasushi
2004-02-01
Furanocoumarins (psoralens) exist in various plants and some of them are used to cure skin diseases. These chemicals draw attentions recently because of their abilities to arouse drug interaction through inhibition of cytochrome P450. Grapefruit juice is a well-known example for food-drug interaction. But in vitro and in vivo studies have shown that the causative components are mainly furanocoumarin derivatives with geranyloxy side chains. In vitro experiments confirmed that furanocoumarins from grapefruit juice are both competitive and mechanism-based inhibitors of CYP3A4. Although the inhibition appeared to be stronger in the dimers than that in the monomers, all contribute comprehensively to the grapefruit juice-drug interaction. Further experiments with other furanocoumarins and related citrus fruits or umbelliferous herbal medicines indicate that drug interaction might also occur with stuffs other than grapefruit juice, especially with traditional medicine.
Three invariant Hi-C interaction patterns: Applications to genome assembly.
Oddes, Sivan; Zelig, Aviv; Kaplan, Noam
2018-06-01
Assembly of reference-quality genomes from next-generation sequencing data is a key challenge in genomics. Recently, we and others have shown that Hi-C data can be used to address several outstanding challenges in the field of genome assembly. This principle has since been developed in academia and industry, and has been used in the assembly of several major genomes. In this paper, we explore the central principles underlying Hi-C-based assembly approaches, by quantitatively defining and characterizing three invariant Hi-C interaction patterns on which these approaches can build: Intrachromosomal interaction enrichment, distance-dependent interaction decay and local interaction smoothness. Specifically, we evaluate to what degree each invariant pattern holds on a single locus level in different species, cell types and Hi-C map resolutions. We find that these patterns are generally consistent across species and cell types but are affected by sequencing depth, and that matrix balancing improves consistency of loci with all three invariant patterns. Finally, we overview current Hi-C-based assembly approaches in light of these invariant patterns and demonstrate how local interaction smoothness can be used to easily detect scaffolding errors in extremely sparse Hi-C maps. We suggest that simultaneously considering all three invariant patterns may lead to better Hi-C-based genome assembly methods. Copyright © 2018 Elsevier Inc. All rights reserved.
Fráter, Mark; Forster, András; Jantyik, Ádám; Braunitzer, Gábor; Nagy, Katalin
2015-12-01
The purpose of this in vitro investigation was to evaluate the reinforcing effect of different fibre-reinforced composite (FRC) posts and insertion techniques in premolar teeth when using minimal invasive post space preparation. Thirty two extracted and endodontically treated premolar teeth were used and divided into four groups (n = 8) depending on the post used (Group 1-4). 1: one single conventional post, 2: one main conventional and one collateral post, 3: one flexible post, 4: one main flexible and one collateral post. After cementation and core build-up the specimens were submitted to static fracture toughness test. Fracture thresholds and fracture patterns were recorded and evaluated. The multi-post techniques (group 2 and 4) showed statistically higher fracture resistance compared to group one. Regarding fracture patterns there was no statistically significant difference between the tested groups. The application of multiple posts seems to be beneficial regarding fracture resistance independent from the used FRC post. Fracture pattern was not influenced by the elasticity of the post.
Drumond, Nélio; Stegemann, Sven
2018-06-01
Predicting the potential for unintended adhesion of solid oral dosage forms (SODF) to mucosal tissue is an important aspect that should be considered during drug product development. Previous investigations into low strength mucoadhesion based on particle interactions methods provided evidence that rheological measurements could be used to obtain valid predictions for the development of SODF coatings that can be safely swallowed. The aim of this second work was to estimate the low mucoadhesive strength properties of different polymers using in vitro methods based on mechanical forces and to identify which methods are more precise when measuring reduced mucoadhesion. Another aim was to compare the obtained results to the ones achieved with in vitro particle interaction methods in order to evaluate which methodology can provide stronger predictions. The combined results correlate between particle interaction methods and mechanical force measurements. The polyethylene glycol grades (PEG) and carnauba wax showed the lowest adhesive potential and are predicted to support safe swallowing. Hydroxypropyl methylcellulose (HPMC) along with high molecular grades of polyvinylpyrrolidone (PVP) and polyvinyl alcohol (PVA) exhibited strong in vitro mucoadhesive strength. The combination of rheological and force tensiometer measurements should be considered when assessing the reduced mucoadhesion of polymer coatings to support safe swallowing of SODF. Copyright © 2018 Elsevier B.V. All rights reserved.
Leung, E; Xue, A; Wang, Y; Rougerie, P; Sharma, V P; Eddy, R; Cox, D; Condeelis, J
2017-01-01
During metastasis to distant sites, tumor cells migrate to blood vessels. In vivo, breast tumor cells utilize a specialized mode of migration known as streaming, where a linear assembly of tumor cells migrate directionally towards blood vessels on fibronectin-collagen I-containing extracellular matrix (ECM) fibers in response to chemotactic signals. We have successfully reconstructed tumor cell streaming in vitro by co-plating tumors cells, macrophages and endothelial cells on 2.5 μm thick ECM-coated micro-patterned substrates. We found that tumor cells and macrophages, when plated together on the micro-patterned substrates, do not demonstrate sustained directional migration in only one direction (sustained directionality) but show random bi-directional walking. Sustained directionality of tumor cells as seen in vivo was established in vitro when beads coated with human umbilical vein endothelial cells were placed at one end of the micro-patterned ‘ECM fibers' within the assay. We demonstrated that these endothelial cells supply the hepatocyte growth factor (HGF) required for the chemotactic gradient responsible for sustained directionality. Using this in vitro reconstituted streaming system, we found that directional streaming is dependent on, and most effectively blocked, by inhibiting the HGF/C-Met signaling pathway between endothelial cells and tumor cells. Key observations made with the in vitro reconstituted system implicating C-Met signaling were confirmed in vivo in mammary tumors using the in vivo invasion assay and intravital multiphoton imaging of tumor cell streaming. These results establish HGF/C-Met as a central organizing signal in blood vessel-directed tumor cell migration in vivo and highlight a promising role for C-Met inhibitors in blocking tumor cell streaming and metastasis in vivo, and for use in human trials. PMID:27893712
Ferreira, A R; Machado, G M; Diesel, T O; Carvalho, J O; Rumpf, R; Melo, E O; Dode, M A N; Franco, M M
2010-07-01
During embryogenesis, one of the two X chromosomes is inactivated in embryos. The production of embryos in vitro may affect epigenetic mechanisms that could alter the expression of genes related to embryo development and X chromosome inactivation (XCI). The aim of this study was to understand XCI during in vitro, pre-implantation bovine embryo development by characterizing the allele-specific expression pattern of the X chromosome-linked gene, monoamine oxidase A (MAOA). Two pools of ten embryos, comprised of the 4-, 8- to 16-cell, morula, blastocyst, and expanded blastocyst stages, were collected. Total RNA from embryos was isolated, and the RT-PCR-RFLP technique was used to observe expression of the MAOA gene. The DNA amplicons were also sequenced using the dideoxy sequencing method. MAOA mRNA was detected, and allele-specific expression was identified in each pool of embryos. We showed the presence of both the maternal and paternal alleles in the 4-, 8- to 16-cell, blastocyst and expanded blastocyst embryos, but only the maternal allele was present in the morula stage. Therefore, we can affirm that the paternal X chromosome is totally inactivated at the morula stage and reactivated at the blastocyst stage. To our knowledge, this is the first report of allele-specific expression of an X-linked gene that is subject to XCI in in vitro bovine embryos from the 4-cell to expanded blastocyst stages. We have established a pattern of XCI in our in vitro embryo production system that can be useful as a marker to assist the development of new protocols for in vitro embryo production. (c) 2010 Wiley-Liss, Inc.
In vitro study of the age-dependent caecal fermentation pattern and methanogenesis in young rabbits.
Piattoni, F; Demeyer, D I; Maertens, L
1996-01-01
The caecal fermentation pattern, including methanogenesis, was studied in young rabbits using in vitro batch incubations. Six conventional litters of eight rabbits each were used. At the age of 22, 25, 28, 32, 36, 42 and 56 days, an animal was slaughtered from each litter and its caecal contents were used for in vitro batch incubations at 39 degrees C/24 h. The incubated samples were analysed for volatile fatty acids (VFA), methane, hydrogen, ammonia nitrogen (NH3-N) and lactic acid (LA). The net total in vitro VFA production did not differ clearly with age, although a significant decrease was observed on day 36, reflecting the reduced zootechnical performances probably related to an infection with Clostridium spiroforme that occurred in the same period. The molar proportions of butyrate and propionate formed a change in the opposite direction with age, starting with a sudden shift from propionate to butyrate at day 25. In vitro NH3-N production was suggestive of a progressive and significant decrease with age; in vitro LA production was always low. Methane production was almost absent from fermentation until 32 days of age, after which it suddenly shifted from 1.6 to 52.0 mumol/flask/day and increased further with age. A significant litter effect on methanogenesis was observed which suggested the existence of a genetic effect. The hydrogen production was quite low and decreased significantly from day 36 with increasing methanogenesis. The calculated hydrogen recoveries showed a gradual increase from day 32 and were positively correlated (r = 0.92) with methane production. In conclusion, it would seem that in young suckling rabbits, reductive acetogenesis is a major characteristic of caecal fermentation, to be replaced gradually and partially by methanogenesis with the increasing intake of solid feed.
T7 RNA Polymerase Functions In Vitro without Clustering
Finan, Kieran; Torella, Joseph P.; Kapanidis, Achillefs N.; Cook, Peter R.
2012-01-01
Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein. PMID:22768341
Kopylova, G V; Shchepkin, D V; Bershitsky, S Y
2018-05-01
The molecular mechanism of the failure of contractile function of skeletal muscles caused by oxidative damage to myosin in hyperthyroidism is not fully understood. Using an in vitro motility assay, we studied the effect of myosin damage caused by oxidative stress in experimental hyperthyroidism on the actin-myosin interaction and its regulation by calcium. We found that hyperthyroidism-induced oxidation of myosin is accompanied by a decrease in the sliding velocity of the regulated thin filaments in the in vitro motility assay, and this effect is increased with the duration of the pathological process.
Namour, Florence; Desrivot, Julie; Van der Aa, Annegret; Harrison, Pille; Tasset, Chantal; van't Klooster, Gerben
2016-01-01
The selective Janus kinase 1 inhibitor filgotinib (GLPG0634), which is currently in clinical development for the treatment of rheumatoid arthritis (RA) and Crohn's disease, demonstrated encouraging safety and efficacy profiles in RA patients after 4 weeks of daily dosing. As RA patients might be treated with multiple medications simultaneously, possible drug-drug interactions of filgotinib with cytochrome P450 enzymes and with key drug transporters were evaluated in vitro and in clinical studies. The enzymes involved in filgotinib's metabolism and the potential interactions of the parent and its active major metabolite with drug-metabolizing enzymes and drug transporters, were identified using recombinant enzymes, human microsomes, and cell systems. Furthermore, filgotinib's interaction potential with CYP3A4 was examined in an open-label study in healthy volunteers, which evaluated the impact of filgotinib co-administration on the CYP3A4-sensitive substrate midazolam. The potential interaction with the common RA drug methotrexate was investigated in a clinical study in RA patients. In vitro, filgotinib and its active metabolite at clinically relevant concentrations did not interact with cytochrome P450 enzymes and uridine 5'-diphospho-glucuronosyltransferases, and did not inhibit key drug transporters. In the clinic, a lack of relevant pharmacokinetic drug interactions by filgotinib and its active metabolite with substrates of CYP3A4, as well as with organic anion transporters involved in methotrexate elimination were found. the collective in vivo and in vitro data on drug-metabolizing enzymes and on key drug transporters, support co-administration of filgotinib with commonly used RA drugs to patients without the need for dose adjustments.
USDA-ARS?s Scientific Manuscript database
The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...
Davie, Jeremiah J; Faitar, Silviu L
2017-01-01
Currently, time-consuming serial in vitro experimentation involving immunocytochemistry or radiolabeled materials is required to identify which of the numerous Rab-GTPases (Rab) and Rab-GTPase activating proteins (RabGAP) are capable of functional interactions. These interactions are essential for numerous cellular functions, and in silico methods of reducing in vitro trial and error would accelerate the pace of research in cell biology. We have utilized a combination of three-dimensional protein modeling and protein bioinformatics to identify domains present in Rab proteins that are predictive of their functional interaction with a specific RabGAP. The RabF2 and RabSF1 domains appear to play functional roles in mediating the interaction between Rabs and RabGAPs. Moreover, the RabSF1 domain can be used to make in silico predictions of functional Rab/RabGAP pairs. This method is expected to be a broadly applicable tool for predicting protein-protein interactions where existing crystal structures for homologs of the proteins of interest are available.
Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor
Yuan, Andy H.; Gregory, Brian D.; Sharp, Josh S.; McCleary, Katherine D.; Dove, Simon L.; Hochschild, Ann
2008-01-01
Summary Bacterial anti-σ factors typically regulate σ factor function by restricting the access of their cognate σ factors to the RNA polymerase (RNAP) core enzyme. The E. coli Rsd protein forms a complex with the primary σ factor, σ70, inhibits σ70-dependent transcription in vitro, and has been proposed to function as a σ70-specific anti-σ factor, thereby facilitating the utilization of alternative σ factors. In prior work, Rsd has been shown to interact with conserved region 4 of σ70, but it is not known whether this interaction suffices to account for the regulatory functions of Rsd. Here we show that Rsd and the Rsd ortholog AlgQ, a global regulator of gene expression in P. aeruginosa, interact with conserved region 2 of σ70. We show further that Rsd and AlgQ can interact simultaneously with regions 2 and 4 of σ70. Our findings establish that the abilities of Rsd and AlgQ to interact with σ70 region 2 are important determinants of their in vitro and in vivo activities. PMID:18826409
Rsd family proteins make simultaneous interactions with regions 2 and 4 of the primary sigma factor.
Yuan, Andy H; Gregory, Brian D; Sharp, Josh S; McCleary, Katherine D; Dove, Simon L; Hochschild, Ann
2008-12-01
Bacterial anti-sigma factors typically regulate sigma factor function by restricting the access of their cognate sigma factors to the RNA polymerase (RNAP) core enzyme. The Escherichia coli Rsd protein forms a complex with the primary sigma factor, sigma(70), inhibits sigma(70)-dependent transcription in vitro, and has been proposed to function as a sigma(70)-specific anti-sigma factor, thereby facilitating the utilization of alternative sigma factors. In prior work, Rsd has been shown to interact with conserved region 4 of sigma(70), but it is not known whether this interaction suffices to account for the regulatory functions of Rsd. Here we show that Rsd and the Rsd orthologue AlgQ, a global regulator of gene expression in Pseudomonas aeruginosa, interact with conserved region 2 of sigma(70). We show further that Rsd and AlgQ can interact simultaneously with regions 2 and 4 of sigma(70). Our findings establish that the abilities of Rsd and AlgQ to interact with sigma(70) region 2 are important determinants of their in vitro and in vivo activities.
Molewyk Doornbos, Mary; Zandee, Gail Landheer; DeGroot, Joleen
2014-07-01
The United States is ethnically diverse. This diversity presents challenges to nurses, who, without empirical evidence to design culturally congruent interventions, may contribute to mental health care disparities. Using Leininger's theory of culture care diversity and universality, this study documented communication and interaction patterns of ethnically diverse, urban, impoverished, and underserved women. Using a community-based participatory research framework, 61 Black, Hispanic, and White women participated in focus groups around their experiences with anxiety/depression. Researchers recorded verbal communication, nonverbal behavior, and patterns of interaction. The women's communication and interaction patterns gave evidence of three themes that were evident across all focus groups and five subthemes that emerged along ethnic lines. The results suggest cultural universalities and cultural uniquenesses relative to the communication and interaction patterns of urban, ethnically diverse, impoverished, and underserved women that may assist in the design of culturally sensitive mental health care. © The Author(s) 2014.
Bianchi, Emily C; Brockner, Joel; van den Bos, Kees; Seifert, Matthias; Moon, Henry; van Dijke, Marius; De Cremer, David
2015-01-01
Reactions to decisions are shaped by both outcome and procedural fairness. Moreover, outcome and procedural fairness interact to influence beliefs and behaviors. However, different types of "process/outcome" interaction effects have emerged. Many studies have shown that people react particularly negatively when they receive unfair or unfavorable outcomes accompanied by unfair procedures (the "low-low" interactive pattern). However, others find that people react especially positively when they receive fair or favorable outcomes accompanied by fair procedures (the "high-high" interactive pattern). We propose that trust in decision-making authorities dictates the form of the process/outcome interaction. Across three studies, when trust was high, the "low-low" interactive pattern emerged. When trust was low, the "high-high" interactive pattern emerged. The findings suggest that when people's experience of outcome and procedural fairness diverged from how they expected to be treated, they reacted in the direction of their experiences; otherwise, their reactions were consistent with their expectations. © 2014 by the Society for Personality and Social Psychology, Inc.
In vitro assays of molecular motors--impact of motor-surface interactions.
Mansson, Alf; Balaz, Martina; Albet-Torres, Nuria; Rosengren, K Johan
2008-05-01
In many types of biophysical studies of both single molecules and ensembles of molecular motors the motors are adsorbed to artificial surfaces. Some of the most important assay systems of this type (in vitro motility assays and related single molecule techniques) will be briefly described together with an account of breakthroughs in the understanding of actomyosin function that have resulted from their use. A poorly characterized, but potentially important, entity in these studies is the mechanism of motor adsorption to surfaces and the effects of motor surface interactions on experimental results. A better understanding of these phenomena is also important for the development of commercially viable nanotechnological applications powered by molecular motors. Here, we will consider several aspects of motor surface interactions with a particular focus on heavy meromyosin (HMM) from skeletal muscle. These aspects will be related to heavy meromyosin structure and relevant parts of the vast literature on protein-surface interactions for non-motor proteins. An overview of methods for studying motor-surface interactions will also be given. The information is used as a basis for further development of a model for HMM-surface interactions and is discussed in relation to experiments where nanopatterning has been employed for in vitro reconstruction of actomyosin order. The challenges and potentials of this approach in biophysical studies, compared to the use of self-assembly of biological components into supramolecular protein aggregates (e.g. myosin filaments) will be considered. Finally, this review will consider the implications for further developments of motor-powered lab-on-a-chip devices.
Horn, C; Namane, A; Pescher, P; Rivière, M; Romain, F; Puzo, G; Bârzu, O; Marchal, G
1999-11-05
The Apa molecules secreted by Mycobacterium tuberculosis, Mycobacterium bovis, or BCG have been identified as major immunodominant antigens. Mass spectrometry analysis indicated similar mannosylation, a complete pattern from 1 up to 9 hexose residues/mole of protein, of the native species from the 3 reference strains. The recombinant antigen expressed in M. smegmatis revealed a different mannosylation pattern: species containing 7 to 9 sugar residues/mole of protein were in the highest proportion, whereas species bearing a low number of sugar residues were almost absent. The 45/47-kDa recombinant antigen expressed in E. coli was devoid of sugar residues. The proteins purified from M. tuberculosis, M. bovis, or BCG have a high capacity to elicit in vivo potent delayed-type hypersensitivity (DTH) reactions and to stimulate in vitro sensitized T lymphocytes of guinea pigs immunized with living BCG. The recombinant Apa expressed in Mycobacterium smegmatis was 4-fold less potent in vivo in the DTH assay and 10-fold less active in vitro to stimulate sensitized T lymphocytes than the native proteins. The recombinant protein expressed in Escherichia coli was nearly unable to elicit DTH reactions in vivo or to stimulate T lymphocytes in vitro. Thus the observed biological effects were related to the extent of glycosylation of the antigen.
On Selecting a Minimal Set of In Vitro Assays to Reliably Determine Estrogen Agonist Activity
The US EPA is charged with screening chemicals for their ability to be endocrine disruptors through interaction with the estrogen, androgen and thyroid axes. The agency is starting to explore the use of high-throughput in vitro assays to use in the Endocrine Disruptor Screening P...
Reichenbach, Myriam; Lim, Tiongti; Reichenbach, Horst-Dieter; Guengoer, Tuna; Habermann, Felix A; Matthiesen, Marieke; Hofmann, Andreas; Weber, Frank; Zerbe, Holm; Grupp, Thomas; Sinowatz, Fred; Pfeifer, Alexander; Wolf, Eckhard
2010-08-01
Lentiviral vectors are a powerful tool for the genetic modification of livestock species. We previously generated transgenic founder cattle with lentiviral integrants carrying enhanced green fluorescent protein (EGFP) under the control of the phosphoglycerate kinase (PGK) promoter. In this study, we investigated the transmission of LV-PGK-EGFP integrants through the female and male germ line in cattle. A transgenic founder heifer (#562, Kiki) was subjected to superovulation treatment and inseminated with semen from a non-transgenic bull. Embryos were recovered and transferred to synchronized recipient heifers, resulting in the birth of a healthy male transgenic calf expressing EGFP as detected by in vivo imaging. Semen from a transgenic founder bull (#561, Jojo) was used for in vitro fertilization (IVF) of in vitro matured (IVM) oocytes from non-transgenic cows. The rates of cleavage and development to blastocyst in vitro corresponded to 52.0 +/- 4.1 and 24.5 +/- 4.4%, respectively. Expression of EGFP was observed at blastocyst stage (day 7 after IVF) and was seen in 93.0% (281/302) of the embryos. 24 EGFP-expressing embryos were transferred to 9 synchronized recipients. Analysis of 2 embryos, flushed from the uterus on day 15, two fetuses recovered on day 45, and a healthy male transgenic calf revealed consistent high-level expression of EGFP in all tissues investigated. Our study shows for the first time transmission of lentiviral integrants through the germ line of female and male transgenic founder cattle. The pattern of inheritance was consistent with Mendelian rules. Importantly, high fidelity expression of EGFP in embryos, fetuses, and offspring of founder #561 provides interesting tools for developmental studies in cattle, including interactions of gametes, embryos and fetuses with their maternal environment.
Adigun, Abayomi A.; Seidler, Frederic J.; Slotkin, Theodore A.
2009-01-01
Cell-signaling cascades are convergent targets for developmental neurotoxicity of otherwise unrelated agents. We compared organophosphates (chlorpyrifos, diazinon), an organochlorine (dieldrin) and a metal (Ni2+) for their effects on neuronotypic PC12 cells, assessing gene transcription involved in the cyclic AMP pathway. Each agent was introduced during neurodifferentiation at a concentration of 30 μM for 24 or 72 hr and we assessed 69 genes encoding adenylyl cyclase isoforms and regulators, G-protein α- and β,γ-subunits, protein kinase A subtypes and the phosphodiesterase family. We found strong concordance among the four agents across all the gene families, with the strongest relationships for the G-proteins, followed by adenylyl cyclase, and lesser concordance for protein kinase A and phosphodiesterase. Superimposed on this pattern, chlorpyrifos and diazinon were surprisingly the least alike, whereas there was strong concordance of dieldrin and Ni2+ with each other and with each individual organophosphate. Further, the effects of chlorpyrifos differed substantially depending on whether cells were undifferentiated or differentiating. To resolve the disparities between chlorpyrifos and diazinon, we performed analyses in rat brain regions after in vivo neonatal exposures; unlike the in vitro results, there was strong concordance. Our results show that unrelated developmental neurotoxicants can nevertheless produce similar outcomes by targeting cell signaling pathways involved in neurodifferentiation during a critical developmental period of vulnerability. Nevertheless, a full evaluation of concordance between different toxicants requires evaluations of in vitro systems that detect direct effects, as well as in vivo systems that allow for more complex interactions that converge on the same pathway. PMID:20026089
Estrogenicity of halogenated bisphenol A: in vitro and in silico investigations.
Zhang, Jie; Li, Tiezhu; Wang, Tuoyi; Yuan, Cuiping; Zhong, Shuning; Guan, Tianzhu; Li, Zhuolin; Wang, Yongzhi; Yu, Hansong; Luo, Quan; Wang, Yongjun; Zhang, Tiehua
2018-03-01
The binding interactions of bisphenol A (BPA) and its halogenated derivatives (halogenated BPAs) to human estrogen receptor α ligand binding domain (hERα-LBD) was investigated using a combined in vitro and in silico approach. First, the recombinant hERα-LBD was prepared as a soluble protein in Escherichia coli BL21(DE3)pLysS. A native fluorescent phytoestrogen, coumestrol, was employed as tracer for the fluorescence polarization assay. The results of the in vitro binding assay showed that bisphenol compounds could bind to hERα-LBD as the affinity ligands. All the tested halogenated BPAs exhibited weaker receptor binding than BPA, which might be explained by the steric effect of substituents. Molecular docking studies elucidated that the halogenated BPAs adopted different conformations in the flexible hydrophobic ligand binding pocket (LBP), which is mainly dependent on their distinct halogenation patterns. The compounds with halogen substituents on the phenolic rings and on the bridging alkyl moiety acted as agonists and antagonists for hERα, respectively. Interestingly, all the compounds in the agonist conformation of hERα formed a hydrogen bond with His524, while the compounds in the antagonist conformation formed a hydrogen bond with Thr347. These docking results suggested a pivotal role of His524/Thr347 in maintaining the hERα structure in the biologically active agonist/antagonist conformation. Comparison of the calculated binding energies vs. experimental binding affinities yielded a good correlation, which might be applicable for the structure-based design of novel bisphenol compounds with reduced toxicities and for environmental risk assessment. In addition, based on hERα-LBD as a recognition element, the proposed fluorescence polarization assay may offer an alternative to chromatographic techniques for the multi-residue determination of bisphenol compounds.
Judson, Richard S; Magpantay, Felicia Maria; Chickarmane, Vijay; Haskell, Cymra; Tania, Nessy; Taylor, Jean; Xia, Menghang; Huang, Ruili; Rotroff, Daniel M; Filer, Dayne L; Houck, Keith A; Martin, Matthew T; Sipes, Nisha; Richard, Ann M; Mansouri, Kamel; Setzer, R Woodrow; Knudsen, Thomas B; Crofton, Kevin M; Thomas, Russell S
2015-11-01
We demonstrate a computational network model that integrates 18 in vitro, high-throughput screening assays measuring estrogen receptor (ER) binding, dimerization, chromatin binding, transcriptional activation, and ER-dependent cell proliferation. The network model uses activity patterns across the in vitro assays to predict whether a chemical is an ER agonist or antagonist, or is otherwise influencing the assays through a manner dependent on the physics and chemistry of the technology platform ("assay interference"). The method is applied to a library of 1812 commercial and environmental chemicals, including 45 ER positive and negative reference chemicals. Among the reference chemicals, the network model correctly identified the agonists and antagonists with the exception of very weak compounds whose activity was outside the concentration range tested. The model agonist score also correlated with the expected potency class of the active reference chemicals. Of the 1812 chemicals evaluated, 111 (6.1%) were predicted to be strongly ER active in agonist or antagonist mode. This dataset and model were also used to begin a systematic investigation of assay interference. The most prominent cause of false-positive activity (activity in an assay that is likely not due to interaction of the chemical with ER) is cytotoxicity. The model provides the ability to prioritize a large set of important environmental chemicals with human exposure potential for additional in vivo endocrine testing. Finally, this model is generalizable to any molecular pathway for which there are multiple upstream and downstream assays available. Published by Oxford University Press on behalf of the Society of Toxicology 2015. This work is written by US Government employees and is in the public domain in the US.
Nearest pattern interaction and global pattern formation
NASA Astrophysics Data System (ADS)
Jeong, Seong-Ok; Moon, Hie-Tae; Ko, Tae-Wook
2000-12-01
We studied the effect of nearest pattern interaction on a global pattern formation in a two-dimensional space, where patterns are to grow initially from a noise in the presence of a periodic supply of energy. Although our approach is general, we found that this study is relevant in particular to the pattern formation on a periodically vibrated granular layer, as it gives a unified perspective of the experimentally observed pattern dynamics such as oscillon and stripe formations, skew-varicose and crossroll instabilities, and also a kink formation and decoration.
A Simplified Experimental System for Observing Pollen Tube Growth in Styles.
ERIC Educational Resources Information Center
Motten, Alexander F.
1992-01-01
Describes an experimental system that allows students to observe pollen tubes in vitro and to investigate a variety of aspects of pollen tube-style interactions. One interaction provides an example of postmating reproductive isolation. (MDH)
Chen, Shi-Ling; Wu, Fang-Rong; Luo, Chen; Chen, Xin; Shi, Xiao-Yun; Zheng, Hai-Yan; Ni, Yun-Ping
2010-03-24
To evaluate the combined effect of endometrial thickness and pattern on clinical outcome in patients undergoing in vitro fertilization/intracytoplasmic sperm injection and embryo transfer (IVF/ICSI-ET). Cycles of IVF/ICSI-ET conducted between January 2003 and December 2008 at a university-based reproductive center were reviewed retrospectively. Endometrial ultrasonographic characteristics were recorded on the day of hCG administration. In the combined analysis, endometrial thickness groups (group 1: equal or <7 mm; group 2: 7-14 mm; group 3: >14 mm) were subdivided into two endometrial patterns (pattern A: triple-line; pattern B: no-triple line). Clinical pregnancy rate (CPR) and early miscarriage rate in different groups were analyzed. A total of 2896 cycles were reviewed. Clinical pregnancy rate (CPR) was 24.4% in group 1-A. There were no second trimester pregnancies in group 1-B. Miscarriage rate in group 2-A was significantly lower compared to group 2-B (P < 0.01), although CPR did not show any significant differences between the groups. A no-triple line endometrial pattern with moderate endometrial thickness (7-14 mm) had a detrimental effect on pregnancy outcome, but not the occurrence of pregnancy. In group 3, there was no difference in CPR and miscarriage rates between the two patterns; adequate endometrial thickness (>14 mm) seemed to mitigate the detrimental impact (high miscarriage rate) of pattern B. Combined analysis of endometrial thickness and pattern on the day of hCG administration was a better predictor of the outcome of IVF/ICSI-ET and may be more helpful for patient counseling than the separate analyses.
Ranjan, Ashwini; Webster, Thomas J
2009-07-29
The success of synthetic vascular grafts is largely determined by their ability to promote vital endothelial cell functions such as adhesion, alignment, proliferation, and extracellular matrix (ECM) deposition. Developing such biomaterials requires the design and fabrication of materials that mimic select properties of native extracellular matrices. Furthermore, cells of the native endothelium have elongated and aligned morphology in the direction of blood flow, yet few materials promote this type of morphology initially, but rather rely on blood flow to orient endothelial cells. Therefore, the objective of this in vitro study was to design a biomaterial that mimics the conditions of the micro- and nano-environment of vascular intima tissue suitable for endothelial cell adhesion and elongation to improve the efficacy of small synthetic vascular grafts. Towards this end, patterned poly(dimethylsiloxane) (PDMS) films consisting of periodic arrays of nano-grooves (500 nm), with spacings ranging from 22 to 80 microm, and alternating nano- and micron roughness were fabricated using a novel electron beam physical vapor deposition method followed by polymer casting. By varying pattern spacing, the area of micron- and nano-rough surface was controlled. In vitro rat aortic endothelial cell adhesion and elongation studies indicated that endothelial cell function was enhanced on patterned PDMS surfaces with the widest spacing and greatest surface area of nano-roughness, as compared to more narrow pattern spacings and non-patterned PDMS surfaces. Specifically, endothelial cells adherent on PDMS patterned films of the widest spacing (greatest nano-rough area) displayed almost twice as much elongation as cells on non-patterned surfaces. For these reasons, the present study highlighted design criteria (the use of micron patterns of nano-features on PDMS) that may contribute to the intelligent design of new-generation vascular grafts.
Săndulescu, Oana; Bleotu, Coralia; Matei, Lilia; Streinu-Cercel, Anca; Oprea, Mihaela; Drăgulescu, Elena Carmina; Chifiriuc, Mariana Carmen; Rafila, Alexandru; Pirici, Daniel; Tălăpan, Daniela; Dorobăţ, Olga Mihaela; Neguţ, Alina Cristina; Oţelea, Dan; Berciu, Ioana; Ion, Daniela Adriana; Codiţă, Irina; Calistru, Petre Iacob; Streinu-Cercel, Adrian
2017-01-01
Despite their commensal status, staphylococci can become problematic pathogens expressing multiple and redundant virulence factors. This study aimed to evaluate aggressiveness markers comparatively in staphylococcal strains isolated from severe infections versus asymptomatic carriage in order to identify clinically relevant bacterial traits that could easily be detected in clinical practice and could be suggestive for particular host-pathogen interactions such as cyto-adhesion or biofilm formation, ultimately orienting the clinical decision-making process. We have used in vitro phenotypic methods to assess adhesion to and invasion of eukaryotic cells, biofilm development, and expression of soluble virulence factors in 92 Staphylococcus spp. strains. The adhesion index, invasion capacity, biofilm formation and expression of soluble factors did not differ significantly between clinical and commensal strains. The major bacterial traits we found to be significantly more prevalent in clinical staphylococci were the aggregative adhesion pattern (P = 0.012), cluster adhesion (P = 0.001) and tetrad morphology (P = 0.018). The aggregative adhesion pattern was correlated with higher cyto-adhesion (P < 0.001), higher invasion capacity (P = 0.003) and lower Carmeli scores (P = 0.002). Three major bacterial traits, namely tetrad morphology, aggregative adhesion pattern, and resistance to methicillin (acronym: TAM), can be used to compute an aggressiveness score (SAS) predictive of the staphylococcal strain's virulence and capacity to initiate and develop a biofilm-driven chronic infectious process versus a fulminant acute infection, in a susceptible host. Copyright © 2016 Elsevier Ltd. All rights reserved.
Reuzel, Ellen; Embregts, Petri J C M; Bosman, Anna M T; Cox, Ralf F A; van Nieuwenhuijzen, Maroesjka; Jahoda, Andrew
2014-10-01
Social interactions between staff and clients with an intellectual disability contain synchronized turn-taking patterns. Synchrony can increase rapport and cooperation between individuals. This study investigated whether verbal interactional dominance and balance, an indication of attunement between staff and clients with ID, are associated with synchrony of turn-taking patterns during staff-client interactions and whether the level of dominance and balance is related to the observed quality of the social interactions. Nineteen staff members video-recorded a social interaction with one of their clients in which the client asked for support. The recordings were analyzed using Cross Recurrence Quantification Analysis and Initiative Response Analysis. Fifteen staff observers as well as client observers completed a questionnaire on the quality of the video-recorded interactions. Staff and clients' patterns of verbal interactional dominance and balance were associated with the synchrony of their turn-taking behaviors. Staff's dominance was associated with a higher level of synchrony of turn taking, whereas client's dominance was associated with a lower level of synchrony. The patterns of verbal interactional dominance and balance were associated with staff observer reports about the quality of the interactions. The study suggested that staff and clients have a tendency to be sensitive to different aspects of interactions, which in turn may have different functions.
Nanri, Hinako; Nishida, Yuichiro; Nakamura, Kazuyo; Tanaka, Keitaro; Naito, Mariko; Yin, Guang; Hamajima, Nobuyuki; Takashima, Naoyuki; Suzuki, Sadao; Nindita, Yora; Kohno, Michiko; Uemura, Hirokazu; Koyama, Teruhide; Hosono, Satoyo; Mikami, Haruo; Kubo, Michiaki; Tanaka, Hideo
2016-01-01
Interactions between dietary patterns and 2 β-adrenergic receptor (ADRβ) gene polymorphisms (ADRβ2 Gln27Glu and ADRβ3 Trp64Arg) were examined with regard to the effects on serum triglyceride levels. The cross-sectional study comprised 1720 men and women (aged 35–69 years) enrolled in the Japan Multi-Institutional Collaborative Cohort (J-MICC) Study. Genotyping was conducted using a multiplex polymerase chain reaction-based invader assay. We used 46 items from a validated short food frequency questionnaire and examined major dietary patterns by factor analysis. We identified four dietary patterns: healthy, Western, seafood and bread patterns. There was no significant association between any dietary pattern and serum triglyceride levels. After a separate genotype-based analysis, significant interactions between ADRβ3 Trp64Arg genotype and the bread pattern (p for interaction = 0.01) were associated with serum triglyceride levels; specifically, after adjusting for confounding factors, Arg allele carriers with the bread pattern had lower serum triglycerides (p for trend = 0.01). However, the Trp/Trp homozygous subjects with the bread pattern showed no association with serum triglycerides (p for trend = 0.55). Interactions between other dietary patterns and ADRβ polymorphisms were not significant for serum triglyceride levels. Our findings suggest that ADRβ3 polymorphism modifies the effects of the bread pattern on triglyceride levels. PMID:27608039
Farshad Ashraf, Mehdi; Abd Aziz, Maheran; Abdul Kadir, Mihdzar; Stanslas, Johnson; Farokhian, Elmira
2013-08-01
This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.
USDA-ARS?s Scientific Manuscript database
The aim of this study was to determine whether Shigella species, which are human gastrointestinal pathogens, can adhere to cattle recto-anal junction squamous epithelial (RSE) cells using a recently standardized adherence assay, and to compare their adherence patterns to that of Escherichia coli O15...
In vitro developmental model of the gastrointestinal tract from mouse embryonic stem cells.
Torihashi, Shigeko; Kuwahara, Masaki; Kurahashi, Masaaki
2007-10-01
Mouse embryonic stem (ES) cells are pluripotent and retain their potential to form cells, tissues and organs originated from three embryonic germ layers. Recently, we developed in vitro organ--gut-like structures--from mouse ES cells. They had basically similar morphological features to a mouse gastrointestinal tract in vivo composed of three distinct layers (i.e., epithelium, connective tissue and musculature). Gut-like structures showed spontaneous contractions derived from pacemaker cells (interstitial cells of Cajal) in the musculature. We also examined their formation process and expression pattern of transcription factors crucial for gut organogenesis such as Id2, Sox17, HNF3beta/Foxa2 and GATA4. We found that they mimic the development of embryonic gut in vivo and showed a similar expression pattern of common transcription factors. They also maintain their developmental potential after transplantation to a renal capsule. Therefore, gut-like structures are suitable for in vitro models of gastrointestinal tracts and their development. In addition, we pointed out several unique features different from gut in vivo that provide useful and advantageous tools to investigate the developmental mechanism of the gastrointestinal tract.
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-04-01
The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Advances and perspectives in in vitro human gut fermentation modeling.
Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe
2012-01-01
The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.
Flynn, G; Purich, D L
1987-11-15
Interactions of microtubules, neurofilaments, and microtubule-associated proteins were investigated by turbidity and falling-ball viscometry measurements. We found evidence of endogenous GTPase activity in neurofilaments and microtubule-associated proteins (MAPs) in preparations that do not include urea or heat treatment, respectively. The absence or presence of either adenyl-5'-yl imidodiphosphonic acid or a GTP-regenerating system markedly influenced observed polymerization and gelation characteristics. Most significantly, the apparent viscosity of neurofilament and microtubule samples did not display a biphasic optimal MAP concentration profile when a GTP-regenerating system was operant. Likewise, GTP regeneration promoted the recovery of gelation following mechanical disruption of neurofilament/MAP/microtubule mixtures. These and other observations require some reassessment of proposed roles for microtubule-associated proteins in modulating neurofilament-microtubule interactions in vitro.
Whitton, Sarah W.; Waldinger, Robert J.; Schulz, Marc S.; Allen, Joseph P.; Crowell, Judith A.; Hauser, Stuart T.
2011-01-01
To test the social learning–based hypothesis that marital conflict resolution patterns are learned in the family of origin, longitudinal, observational data were used to assess prospective associations between family conflict interaction patterns during adolescence and offspring’s later marital conflict interaction patterns. At age 14 years, 47 participants completed an observed family conflict resolution task with their parents. In a subsequent assessment 17 years later, the participants completed measures of marital adjustment and an observed marital conflict interaction task with their spouse. As predicted, levels of hostility and positive engagement expressed by parents and adolescents during family interactions were prospectively linked with levels of hostility and positive engagement expressed by offspring and their spouses during marital interactions. Family-of-origin hostility was a particularly robust predictor of marital interaction behaviors; it predicted later marital hostility and negatively predicted positive engagement, controlling for psychopathology and family-of-origin positive engagement. For men, family-of-origin hostility also predicted poorer marital adjustment, an effect that was mediated through hostility in marital interactions. These findings suggest a long-lasting influence of family communication patterns, particularly hostility, on offspring’s intimate communication and relationship functioning. PMID:18410214
Varma, Manthena V S; Scialis, Renato J; Lin, Jian; Bi, Yi-An; Rotter, Charles J; Goosen, Theunis C; Yang, Xin
2014-07-01
The purpose of this study is to characterize the involvement of hepato-biliary transport and cytochrome-P450 (CYP)-mediated metabolism in the disposition of glyburide and predict its pharmacokinetic variability due to drug interactions and genetic variations. Comprehensive in vitro studies suggested that glyburide is a highly permeable drug with substrate affinity to multiple efflux pumps and to organic anion transporting polypeptide (OATP)1B1 and OATP2B1. Active hepatic uptake was found to be significantly higher than the passive uptake clearance (15.8 versus 5.3 μL/min/10(6)-hepatocytes), using the sandwich-cultured hepatocyte model. In vitro, glyburide is metabolized (intrinsic clearance, 52.9 μL/min/mg-microsomal protein) by CYP3A4, CYP2C9, and CYP2C8 with fraction metabolism of 0.53, 0.36, and 0.11, respectively. Using these in vitro data, physiologically based pharmacokinetic models, assuming rapid-equilibrium between blood and liver compartments or permeability-limited hepatic disposition, were built to describe pharmacokinetics and evaluate drug interactions. Permeability-limited model successfully predicted glyburide interactions with rifampicin and other perpetrator drugs. Conversely, model assuming rapid-equilibrium mispredicted glyburide interactions, overall, suggesting hepatic uptake as the primary rate-determining process in the systemic clearance of glyburide. Further modeling and simulations indicated that the impairment of CYP2C9 function has a minimal effect on the systemic exposure, implying discrepancy in the contribution of CYP2C9 to glyburide clearance.
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ucciferri, Nadia; Interdepartmental Research Center “E. Piaggio”, University of Pisa, Pisa; Sbrana, Tommaso
2014-12-17
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell–cell or cell–tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting differentmore » cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.« less
The MTA family proteins as novel histone H3 binding proteins.
Wu, Meng; Wang, Lina; Li, Qian; Li, Jiwen; Qin, Jun; Wong, Jiemin
2013-01-03
The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail.
The MTA family proteins as novel histone H3 binding proteins
2013-01-01
Background The nucleosome remodeling and histone deacetylase complex (Mi2/NRD/NuRD/NURD) has a broad role in regulation of transcription, DNA repair and cell cycle. Previous studies have revealed a specific interaction between NURD and histone H3N-terminal tail in vitro that is not observed for another HDAC1/2-containing complex, Sin3A. However, the subunit(s) responsible for specific binding of H3 by NURD has not been defined. Results In this study, we show among several class I HDAC-containing corepressor complexes only NURD exhibits a substantial H3 tail-binding activity in vitro. We present the evidence that the MTA family proteins within the NURD complex interact directly with H3 tail. Extensive in vitro binding assays mapped the H3 tail-binding domain to the C-terminal region of MTA1 and MTA2. Significantly, although the MTA1 and MTA2 mutant proteins with deletion of the C-terminal H3 tail binding domain were assembled into the endogenous NURD complex when expressed in mammalian cells, the resulting NURD complexes were deficient in binding H3 tail in vitro, indicating that the MTA family proteins are required for the observed specific binding of H3 tail peptide by NURD in vitro. However, chromatin fractionation experiments show that the NURD complexes with impaired MTA1/2-H3 tail binding activity remained to be associated with chromatin in cells. Conclusions Together our study reveals a novel histone H3-binding activity for the MTA family proteins and provides evidence that the MTA family proteins mediate the in vitro specific binding of H3 tail peptide by NURD complex. However, multiple mechanisms are likely to contribute to the chromatin association of NURD complex in cells. Our finding also raises the possibility that the MTA family proteins may exert their diverse biological functions at least in part through their direct interaction with H3 tail. PMID:23286669
Allometric Scaling and Cell Ratios in Multi-Organ in vitro Models of Human Metabolism.
Ucciferri, Nadia; Sbrana, Tommaso; Ahluwalia, Arti
2014-01-01
Intelligent in vitro models able to recapitulate the physiological interactions between tissues in the body have enormous potential as they enable detailed studies on specific two-way or higher order tissue communication. These models are the first step toward building an integrated picture of systemic metabolism and signaling in physiological or pathological conditions. However, the rational design of in vitro models of cell-cell or cell-tissue interaction is difficult as quite often cell culture experiments are driven by the device used, rather than by design considerations. Indeed, very little research has been carried out on in vitro models of metabolism connecting different cell or tissue types in a physiologically and metabolically relevant manner. Here, we analyze the physiological relationship between cells, cell metabolism, and exchange in the human body using allometric rules, downscaling them to an organ-on-a-plate device. In particular, in order to establish appropriate cell ratios in the system in a rational manner, two different allometric scaling models (cell number scaling model and metabolic and surface scaling model) are proposed and applied to a two compartment model of hepatic-vascular metabolic cross-talk. The theoretical scaling studies illustrate that the design and hence relevance of multi-organ models is principally determined by experimental constraints. Two experimentally feasible model configurations are then implemented in a multi-compartment organ-on-a-plate device. An analysis of the metabolic response of the two configurations demonstrates that their glucose and lipid balance is quite different, with only one of the two models recapitulating physiological-like homeostasis. In conclusion, not only do cross-talk and physical stimuli play an important role in in vitro models, but the numeric relationship between cells is also crucial to recreate in vitro interactions, which can be extrapolated to the in vivo reality.
Özgür, Arzucan; Hur, Junguk; He, Yongqun
2016-01-01
The Interaction Network Ontology (INO) logically represents biological interactions, pathways, and networks. INO has been demonstrated to be valuable in providing a set of structured ontological terms and associated keywords to support literature mining of gene-gene interactions from biomedical literature. However, previous work using INO focused on single keyword matching, while many interactions are represented with two or more interaction keywords used in combination. This paper reports our extension of INO to include combinatory patterns of two or more literature mining keywords co-existing in one sentence to represent specific INO interaction classes. Such keyword combinations and related INO interaction type information could be automatically obtained via SPARQL queries, formatted in Excel format, and used in an INO-supported SciMiner, an in-house literature mining program. We studied the gene interaction sentences from the commonly used benchmark Learning Logic in Language (LLL) dataset and one internally generated vaccine-related dataset to identify and analyze interaction types containing multiple keywords. Patterns obtained from the dependency parse trees of the sentences were used to identify the interaction keywords that are related to each other and collectively represent an interaction type. The INO ontology currently has 575 terms including 202 terms under the interaction branch. The relations between the INO interaction types and associated keywords are represented using the INO annotation relations: 'has literature mining keywords' and 'has keyword dependency pattern'. The keyword dependency patterns were generated via running the Stanford Parser to obtain dependency relation types. Out of the 107 interactions in the LLL dataset represented with two-keyword interaction types, 86 were identified by using the direct dependency relations. The LLL dataset contained 34 gene regulation interaction types, each of which associated with multiple keywords. A hierarchical display of these 34 interaction types and their ancestor terms in INO resulted in the identification of specific gene-gene interaction patterns from the LLL dataset. The phenomenon of having multi-keyword interaction types was also frequently observed in the vaccine dataset. By modeling and representing multiple textual keywords for interaction types, the extended INO enabled the identification of complex biological gene-gene interactions represented with multiple keywords.
Charles B. Halpern; Joseph A. Antos; Janine M. Rice; Ryan D. Haugo; Nicole L. Lang
2010-01-01
We combined spatial point pattern analysis, population age structures, and a time-series of stem maps to quantify spatial and temporal patterns of conifer invasion over a 200-yr period in three plots totaling 4 ha. In combination, spatial and temporal patterns of establishment suggest an invasion process shaped by biotic interactions, with facilitation promoting...
ERIC Educational Resources Information Center
Brown, Dwight
Biogeography examines questions of organism inventory and pattern, organisms' interactions with the environment, and the processes that create and change inventory, pattern, and interactions. This learning module uses time series maps and simple simulation models to illustrate how human actions alter biological productivity patterns at local and…
Social contact patterns can buffer costs of forgetting in the evolution of cooperation.
Stevens, Jeffrey R; Woike, Jan K; Schooler, Lael J; Lindner, Stefan; Pachur, Thorsten
2018-06-13
Analyses of the evolution of cooperation often rely on two simplifying assumptions: (i) individuals interact equally frequently with all social network members and (ii) they accurately remember each partner's past cooperation or defection. Here, we examine how more realistic, skewed patterns of contact-in which individuals interact primarily with only a subset of their network's members-influence cooperation. In addition, we test whether skewed contact patterns can counteract the decrease in cooperation caused by memory errors (i.e. forgetting). Finally, we compare two types of memory error that vary in whether forgotten interactions are replaced with random actions or with actions from previous encounters. We use evolutionary simulations of repeated prisoner's dilemma games that vary agents' contact patterns, forgetting rates and types of memory error. We find that highly skewed contact patterns foster cooperation and also buffer the detrimental effects of forgetting. The type of memory error used also influences cooperation rates. Our findings reveal previously neglected but important roles of contact pattern, type of memory error and the interaction of contact pattern and memory on cooperation. Although cognitive limitations may constrain the evolution of cooperation, social contact patterns can counteract some of these constraints. © 2018 The Author(s).
Huang, Yuejia; Wang, Wenwen; Yao, Phil; Wang, Xiwei; Liu, Xing; Zhuang, Xiaoxuan; Yan, Feng; Zhou, Jinhua; Du, Jian; Ward, Tarsha; Zou, Hanfa; Zhang, Jiancun; Fang, Guowei; Ding, Xia; Dou, Zhen; Yao, Xuebiao
2012-01-01
Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochore. Although previous studies show that the mitotic kinesin CENP-E forms a link between attachment of the spindle microtubule to the kinetochore and the mitotic checkpoint signaling cascade, the molecular mechanism underlying dynamic kinetochore-microtubule interactions in mammalian cells remains elusive. Here, we identify a novel interaction between CENP-E and SKAP that functions synergistically in governing dynamic kinetochore-microtubule interactions. SKAP binds to the C-terminal tail of CENP-E in vitro and is essential for an accurate kinetochore-microtubule attachment in vivo. Immunoelectron microscopic analysis indicates that SKAP is a constituent of the kinetochore corona fibers of mammalian centromeres. Depletion of SKAP or CENP-E by RNA interference results in a dramatic reduction of inter-kinetochore tension, which causes chromosome mis-segregation with a prolonged delay in achieving metaphase alignment. Importantly, SKAP binds to microtubules in vitro, and this interaction is synergized by CENP-E. Based on these findings, we propose that SKAP cooperates with CENP-E to orchestrate dynamic kinetochore-microtubule interaction for faithful chromosome segregation. PMID:22110139
Micropatterning strategies to engineer controlled cell and tissue architecture in vitro.
D'Arcangelo, Elisa; McGuigan, Alison P
2015-01-01
Micropatterning strategies, which enable control over cell and tissue architecture in vitro, have emerged as powerful platforms for modelling tissue microenvironments at different scales and complexities. Here, we provide an overview of popular micropatterning techniques, along with detailed descriptions, to guide new users through the decision making process of which micropatterning procedure to use, and how to best obtain desired tissue patterns. Example techniques and the types of biological observations that can be made are provided from the literature. A focus is placed on microcontact printing to obtain co-cultures of patterned, confluent sheets, and the challenges associated with optimizing this protocol. Many issues associated with microcontact printing, however, are relevant to all micropatterning methodologies. Finally, we briefly discuss challenges in addressing key limitations associated with current micropatterning technologies.
Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vieira, J.M.B.D., E-mail: jmanya@terra.com.br; Laboratorio de Biologia de Anaerobios, IMPPG, UFRJ, Rio de Janeiro; Seabra, S.H.
Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed inmore » BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.« less
De Mil, Thomas; Devreese, Mathias; Broekaert, Nathan; Fraeyman, Sophie; De Backer, Patrick; Croubels, Siska
2015-05-06
Mycotoxin binders are readily mixed in feeds to prevent uptake of mycotoxins by the animal. Concerns were raised for nonspecific binding with orally administered veterinary drugs by the European Food Safety Authority in 2010. This paper describes the screening for in vitro adsorption of doxycycline-a broad-spectrum tetracycline antibiotic-to six different binders that were able to bind >75% of the doxycycline. Next, an in vivo pharmacokinetic interaction study of doxycycline with two of the binders, which demonstrated significant in vitro binding, was performed in broiler chickens using an oral bolus model. It was shown that two montmorillonite-based binders were able to lower the area under the plasma concentration-time curve of doxycycline by >60% compared to the control group. These results may indicate a possible risk for reduced efficacy of doxycycline when used concomitantly with montmorillonite-based mycotoxin binders.
ERIC Educational Resources Information Center
Bank, Lew; And Others
1996-01-01
This study investigated sibling interaction patterns in middle childhood as predictors of adjustment outcomes in males during adolescence and early adulthood using a social interactional perspective. It was theorized that negative interaction during middle childhood with siblings and parents would be the most powerful predictor of adjustment in…
Amelogenin-Ameloblastin Spatial Interaction around Maturing Enamel Rods.
Mazumder, P; Prajapati, S; Bapat, R; Moradian-Oldak, J
2016-08-01
Amelogenin and ameloblastin are 2 extracellular matrix proteins that are essential for the proper development of enamel. We recently reported that amelogenin and ameloblastin colocalized during the secretory stage of enamel formation when nucleation of enamel crystallites occurs. Direct interactions between the 2 proteins have been also demonstrated in our in vitro studies. Here, we explore interactions between their fragments during enamel maturation. We applied in vivo immunofluorescence imaging, quantitative co-localization analysis, and a new FRET (fluorescence resonance energy transfer) technique to demonstrate ameloblastin and amelogenin interaction in the maturing mouse enamel. Using immunochemical analysis of protein samples extracted from 8-d-old (P8) first molars from mice as a model for maturation-stage enamel, we identified the ~17-kDa ameloblastin (Ambn-N) and the TRAP (tyrosine-rich amelogenin peptide) fragments. We used Ambn-N18 and Ambn-M300 antibodies raised against the N-terminal and C-terminal segments of ameloblastin, as well as Amel-FL and Amel-C19 antibodies against full-length recombinant mouse amelogenin (rM179) and C-terminal amelogenin, respectively. In transverse sections, co-localization images of N-terminal fragments of amelogenin and ameloblastin around the prism boundary revealed the "fish net" pattern of the enamel matrix. Using in vivo FRET microscopy, we further demonstrated spatial interactions between amelogenin and ameloblastin N-terminal fragments. In the maturing mouse enamel, the association of these residual protein fragments created a discontinuity between enamel rods, which we suggest is important for support and maintenance of enamel rods and eventual contribution to unique enamel mechanical properties. We present data that support cooperative functions of enamel matrix proteins in mediating the structural hierarchy of enamel and that contribute to our efforts to design and develop enamel biomimetic material. © International & American Associations for Dental Research 2016.
Badri, Dayakar V.; De-la-Peña, Clelia; Lei, Zhentian; Manter, Daniel K.; Chaparro, Jacqueline M.; Guimarães, Rejane L.; Sumner, Lloyd W.; Vivanco, Jorge M.
2012-01-01
The mechanism whereby organisms interact and differentiate between others has been at the forefront of scientific inquiry, particularly in humans and certain animals. It is widely accepted that plants also interact, but the degree of this interaction has been constricted to competition for space, nutrients, water and light. Here, we analyzed the root secreted metabolites and proteins involved in early plant neighbor recognition by using Arabidopsis thaliana Col-0 ecotype (Col) as our focal plant co-cultured in vitro with different neighbors [A. thaliana Ler ecotype (Ler) or Capsella rubella (Cap)]. Principal component and cluster analyses revealed that both root secreted secondary metabolites and proteins clustered separately between the plants grown individually (Col-0, Ler and Cap grown alone) and the plants co-cultured with two homozygous individuals (Col-Col, Ler-Ler and Cap-Cap) or with different individuals (Col-Ler and Col-Cap). In particularly, we observed that a greater number of defense- and stress- related proteins were secreted when our control plant, Col, was grown alone as compared to when it was co-cultured with another homozygous individual (Col-Col) or with a different individual (Col-Ler and Col-Cap). However, the total amount of defense proteins in the exudates of the co-cultures was higher than in the plant alone. The opposite pattern of expression was identified for stress-related proteins. These data suggest that plants can sense and respond to the presence of different plant neighbors and that the level of relatedness is perceived upon initial interaction. Furthermore, the role of secondary metabolites and defense- and stress-related proteins widely involved in plant-microbe associations and abiotic responses warrants reassessment for plant-plant interactions. PMID:23056382
Pfensig, Claudia; Dominik, Adrian; Borufka, Luise; Hinz, Michael; Stange, Jan; Eggert, Martin
2016-04-01
Albumin dialysis in extracorporeal organ support is often performed in the treatment of liver failure as it facilitates the removal of toxic components from the blood. Here, we describe a possible effect of albumin dialysis on proinflammatory cytokine levels in vitro. Initially, albumin samples were incubated with different amounts of cytokines and analyzed by enzyme-linked immunosorbent assay (ELISA). Analysis of interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFα) levels indicated that increased concentrations of albumin reduce the measureable amount of the respective cytokines. This led to the hypothesis that the used proinflammatory cytokines may interact with albumin. Size exclusion chromatography of albumin spiked with cytokines was carried out using high-performance liquid chromatography analysis. The corresponding fractions were evaluated by immunoblotting. We detected albumin and cytokines in the same fractions indicating an interaction of the small-sized cytokines IL-6 and TNFα with the larger-sized albumin. Finally, a two-compartment albumin dialysis in vitro model was used to analyze the effect of albumin on proinflammatory cytokines in the recirculation circuit during 6-h treatment. These in vitro albumin dialysis experiments indicated a significant decrease of IL-6, but not of TNFα, when albumin was added to the dialysate solution. Taken together, we were able to show a putative in vitro interaction of human albumin with the proinflammatory cytokine IL-6, but with less evidence for TNFα, and demonstrated an additional application for albumin dialysis in liver support therapy where IL-6 removal might be indicated. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.
Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, S.; Tebby, C.
Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-timemore » cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.« less
Schelleman, H; Han, X; Brensinger, C M; Quinney, S K; Bilker, W B; Flockhart, D A; Li, L; Hennessy, Sean
2014-01-01
Aims To examine whether initiation of fibrates or statins in sulfonylurea users is associated with hypoglycaemia, and examine in vitro inhibition of cytochrome P450 (CYP) enzymes by statins, fenofibrate and glipizide. Methods We used healthcare data to conduct nested case-control studies of serious hypoglycaemia (i.e. resulting in hospital admission or emergency department treatment) in persons taking glipizide or glyburide, and calculated adjusted overall and time-stratified odds ratios (ORs) and 95% confidence intervals (CIs). We also characterized the in vitro inhibition of CYP enzymes by statins, fenofibrate and glipizide using fluorometric CYP450 inhibition assays, and estimated area under the concentration–time curve ratios (AUCRs) for the drug pairs. Results We found elevated adjusted overall ORs for glyburide-fenofibrate (OR 1.84, 95% CI 1.37, 2.47) and glyburide-gemfibrozil (OR 1.57, 95% CI 1.25, 1.96). The apparent risk did decline over time as might be expected from a pharmacokinetic mechanism. Fenofibrate was a potent in vitro inhibitor of CYP2C19 (IC50 = 0.2 μm) and CYP2B6 (IC50 = 0.7 μm) and a moderate inhibitor of CYP2C9 (IC50 = 9.7 μm). The predicted CYP-based AUCRs for fenofibrate-glyburide and gemfibrozil-glyburide interactions were only 1.09 and 1.04, suggesting that CYP inhibition is unlikely to explain such an interaction. Conclusions Use of fenofibrate or gemfibrozil together with glyburide was associated with elevated overall risks of serious hypoglycaemia. CYP inhibition seems unlikely to explain this observation. We speculate that a pharmacodynamic effect of fibrates (e.g. activate peroxisome proliferator-activator receptor alpha) may contribute to these apparent interactions. PMID:24548191
Venkatakrishnan, Karthik; Obach, R Scott
2007-06-01
This commentary discusses the approaches to, and key considerations in the in vitro-in vivo extrapolation of drug-drug interactions (DDI) resulting from mechanism-based inactivation (MBI) of cytochrome P450 (CYP) enzymes and clinical pharmacologic implications. In vitro kinetic assessment and prediction of DDI produced via reversible inhibition and MBI rely on operationally and conceptually distinct approaches. DDI risk assessment for inactivators requires estimation of maximal inactivation rate (k(inact)) and inactivator potency (KI) in vitro, that need to be considered in context of the biological turnover rate of the enzyme (kdeg) and clinical exposures of the inactivator (I), respectively, to predict interaction magnitude. Risk assessment cannot be performed by a simple comparison of inactivator potency against in vivo exposure since inactivation is both concentration and time-dependent. MBI contour plots tracking combinations of I:KI and k(inact):k(deg) resulting in identical fold-reductions in intrinsic clearance are proposed as a useful framework for DDI risk assessment. Additionally, substrate-specific factors like fraction of the total clearance of the object drug via the enzyme being inactivated (f(m(CYP) )) and the bioavailability fraction across the intestine for CYP3A substrates (F(G)) are important determinants of interaction magnitude. Sensitivity analysis of predicted DDI magnitude to uncertainty in input parameters is recommended to inform confidence in predictions. The time course of reversal of DDI resulting from CYP inactivation is determined by the half-life of the enzyme which is an important consideration in the design and interpretation of clinical DDI studies with inactivators.
Lim, Sara N.; Pradhan, Anil K.; Barth, Rolf F.; Nahar, Sultana N.; Nakkula, Robin J.; Yang, Weilian; Palmer, Alycia M.; Turro, Claudia; Weldon, Michael; Bell, Erica Hlavin; Mo, Xiaokui
2015-01-01
The purposes of this study were (i) to investigate the differences in effects between 160-kV low-energy and 6-MV high-energy X-rays, both by computational analysis and in vitro studies; (ii) to determine the effects of each on platinum-sensitized F98 rat glioma and murine B16 melanoma cells; and (iii) to describe the in vitro cytotoxicity and in vivo toxicity of a Pt(II) terpyridine platinum (Typ-Pt) complex. Simulations were performed using the Monte Carlo code Geant4 to determine enhancement in absorption of low- versus high-energy X-rays by Pt and to determine dose enhancement factors (DEFs) for a Pt-sensitized tumor phantom. In vitro studies were carried out using Typ-Pt and again with carboplatin due to the unexpected in vivo toxicity of Typ-Pt. Cell survival was determined using clonogenic assays. In agreement with computations and simulations, in vitro data showed up to one log unit reduction in surviving fractions (SFs) of cells treated with 1–4 µg/ml of Typ-Pt and irradiated with 160-kV versus 6-MV X-rays. DEFs showed radiosensitization in the 50–200 keV range, which fell to approximate unity at higher energies, suggesting marginal interactions at MeV energies. Cells sensitized with 1–5 or 7 µg/ml of carboplatin and then irradiated also showed a significant decrease (P < 0.05) in SFs. However, it was unlikely this was due to increased interactions. Theoretical and in vitro studies presented here demonstrated that the tumoricidal activity of low-energy X-rays was greater than that of high-energy X-rays against Pt-sensitized tumor cells. Determining whether radiosensitization is a function of increased interactions will require additional studies. PMID:25266332
Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk.
Garlíková, Zuzana; Silva, Ana Catarina; Rabata, Anas; Potěšil, David; Ihnatová, Ivana; Dumková, Jana; Koledová, Zuzana; Zdráhal, Zbyněk; Vinarský, Vladimír; Hampl, Aleš; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos
2018-01-01
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Co-synthesis and drug delivery properties of mesoporous hydroxyapatite-silica composites.
Zhao, Y F; Loo, S C J; Ma, J
2009-06-01
In this work, mesoporous hydroxyapatite-silica (HA-silica) composite materials with four different Si:Ca:P ratios were sol-gel derived through self-assembly using triblock copolymer Pluronics P123 as template. The composition and mesoporous structure formed were characterized by X-ray diffraction and electron microscopy. The XRD patterns indicated that the intensity of the HA phase becomes stronger as the Ca/Si ratio of the composite increases. From nitrogen gas analysis at 77 K, type IV isotherm plots for typical mesoporous materials were observed for all of the samples. However, the mesoporous structure of HA-silica tends to becomes less ordered as the Ca/Si ratio increases. Promising consistency between the pore sizes from the Barrett, Joyner and Halenda (BJH) method, Transmission Electron Microscopy (TEM) and Small Angle X-ray diffraction (SAXRD) was also observed. The formation mechanism of mesoporous HA-silica composites was proposed, where the interaction between the crystallization of HA and the surfactant liquid crystal determines the regularity of the meso-structure. In vitro drug loading and release studies showed that drug loading capacity is dependent on the pore volume of the sample, and the mesoporosity of the samples were responsible for the sustained release of drugs. In vitro cell culture of the samples showed promising biocompatibility where osteosarcoma cells were observed to grow favourably on the synthesized composites.
McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas
2014-01-01
Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099
Applications of Microscale Technologies for Regenerative Dentistry
Hacking, S.A.; Khademhosseini, A.
2009-01-01
While widespread advances in tissue engineering have occurred over the past decade, many challenges remain in the context of tissue engineering and regeneration of the tooth. For example, although tooth development is the result of repeated temporal and spatial interactions between cells of ectoderm and mesoderm origin, most current tooth engineering systems cannot recreate such developmental processes. In this regard, microscale approaches that spatially pattern and support the development of different cell types in close proximity can be used to regulate the cellular microenvironment and, as such, are promising approaches for tooth development. Microscale technologies also present alternatives to conventional tissue engineering approaches in terms of scaffolds and the ability to direct stem cells. Furthermore, microscale techniques can be used to miniaturize many in vitro techniques and to facilitate high-throughput experimentation. In this review, we discuss the emerging microscale technologies for the in vitro evaluation of dental cells, dental tissue engineering, and tooth regeneration. Abbreviations: AS, adult stem cell; BMP, bone morphogenic protein; ECM, extracellular matrix; ES, embryonic stem cell; HA, hydroxyapatite; FGF-2, fibroblast growth factor; iPS, inducible pleuripotent stem cell; IGF-1, insulin-like growth factor; PDGF, platelet-derived growth factor; PDMS, poly(dimethylsiloxane); PGA, polyglycolate; PGS, polyglycerol sebacate; PLGA, poly-L-lactate-co-glycolate; PLL, poly-L-lactate; RGD, Arg-Gly-Asp attachment site; TCP, tricalcium phosphate; TGF-β, transforming growth factor beta; and VEGF, vascular endothelial growth factor. PMID:19493883
The benefits of flexible team interaction during crises.
Stachowski, Alicia A; Kaplan, Seth A; Waller, Mary J
2009-11-01
Organizations increasingly rely on teams to respond to crises. While research on team effectiveness during nonroutine events is growing, naturalistic studies examining team behaviors during crises are relatively scarce. Furthermore, the relevant literature offers competing theoretical rationales concerning effective team response to crises. In this article, the authors investigate whether high- versus average-performing teams can be distinguished on the basis of the number and complexity of their interaction patterns. Using behavioral observation methodology, the authors coded the discrete verbal and nonverbal behaviors of 14 nuclear power plant control room crews as they responded to a simulated crisis. Pattern detection software revealed systematic differences among crews in their patterns of interaction. Mean comparisons and discriminant function analysis indicated that higher performing crews exhibited fewer, shorter, and less complex interaction patterns. These results illustrate the limitations of standardized response patterns and highlight the importance of team adaptability. Implications for future research and for team training are included.
Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian
2017-03-21
When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.
NASA Astrophysics Data System (ADS)
Zhang, Jianguo; Milzetti, Jasmin; Leroy, Frédéric; Müller-Plathe, Florian
2017-03-01
When droplets of nanoparticle suspension evaporate from surfaces, they leave behind a deposit of nanoparticles. The mechanism of evaporation-induced pattern formation in the deposit is studied by molecular dynamics simulations for sessile nanodroplets. The influence of the interaction between nanoparticles and liquid molecules and the influence of the evaporation rate on the final deposition pattern are addressed. When the nanoparticle-liquid interaction is weaker than the liquid-liquid interaction, an interaction-driven or evaporation-induced layer of nanoparticles appears at the liquid-vapor interface and eventually collapses onto the solid surface to form a uniform deposit independently of the evaporation rate. When the nanoparticle-liquid and liquid-liquid interactions are comparable, the nanoparticles are dispersed inside the droplet and evaporation takes place with the contact line pinned at a surface defect. In such a case, a pattern with an approximate ring-like shape is found with fast evaporation, while a more uniform distribution is observed with slower evaporation. When the liquid-nanoparticle interaction is stronger than the liquid-liquid interaction, evaporation always occurs with receding contact line. The final deposition pattern changes from volcano-like to pancake-like with decreasing evaporation rate. These findings might help to design nanoscale structures like nanopatterns or nanowires on surface through controlled solvent evaporation.
Modeling Child–Nature Interaction in a Nature Preschool: A Proof of Concept
Kahn, Peter H.; Weiss, Thea; Harrington, Kit
2018-01-01
This article provides a proof of concept for an approach to modeling child–nature interaction based on the idea of interaction patterns: characterizations of essential features of interaction between humans and nature, specified abstractly enough such that countless different instantiations of each one can occur – in more domestic or wild forms – given different types of nature, people, and purposes. The model draws from constructivist psychology, ecological psychology, and evolutionary psychology, and is grounded in observational data collected through a time-sampling methodology at a nature preschool. Through using a nature language that emphasizes ontogenetic and phylogenetic significance, seven keystone interaction patterns are described for this nature preschool: using one’s body vigorously in nature, striking wood on wood, constructing shelter, being in solitude in nature, lying on earth, cohabiting with a wild animal, and being outside in weather. These 7 interactions patterns are then brought together with 13 other patterns published elsewhere to provide a total of 20 keystone interaction patterns that begin to fill out the model, and to show its promise. Discussion focuses on what the model aims to be in terms of both product and process, on what work the model can currently do, and how to further develop the model. PMID:29896143
Wang, Yong-Qiang; Melzer, Rainer; Theissen, Günter
2010-10-01
Several lines of evidence suggest that the identity of floral organs in angiosperms is specified by multimeric transcription factor complexes composed of MADS-domain proteins. These bind to specific cis-regulatory elements ('CArG-boxes') of their target genes involving DNA-loop formation, thus constituting 'floral quartets'. Gymnosperms, angiosperms' closest relatives, contain orthologues of floral homeotic genes, but when and how the interactions constituting floral quartets were established during evolution has remained unknown. We have comprehensively studied the dimerization and DNA-binding of several classes of MADS-domain proteins from the gymnosperm Gnetum gnemon. Determination of protein-protein and protein-DNA interactions by yeast two-hybrid, in vitro pull-down and electrophoretic mobility shift assays revealed complex patterns of homo- and heterodimerization among orthologues of floral homeotic class B, class C and class E proteins and B(sister) proteins. Using DNase I footprint assays we demonstrate that both orthologues of class B with C proteins, and orthologues of class C proteins alone, but not orthologues of class B proteins alone can loop DNA in floral quartet-like complexes. This is in contrast to class B and class C proteins from angiosperms, which require other factors such as class E floral homeotic proteins to 'glue' them together in multimeric complexes. Our findings suggest that the evolutionary origin of floral quartet formation is based on the interaction of different DNA-bound homodimers, does not depend on class E proteins, and predates the origin of angiosperms. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Harfe, Brian D.; Gomes, Ana Vaz; Kenyon, Cynthia; Liu, Jun; Krause, Michael; Fire, Andrew
1998-01-01
Mesodermal development is a multistep process in which cells become increasingly specialized to form specific tissue types. In Drosophila and mammals, proper segregation and patterning of the mesoderm involves the bHLH factor Twist. We investigated the activity of a Twist-related factor, CeTwist, during Caenorhabditis elegans mesoderm development. Embryonic mesoderm in C. elegans derives from a number of distinct founder cells that are specified during the early lineages; in contrast, a single blast cell (M) is responsible for all nongonadal mesoderm formation during postembryonic development. Using immunofluorescence and reporter fusions, we determined the activity pattern of the gene encoding CeTwist. No activity was observed during specification of mesodermal lineages in the early embryo; instead, the gene was active within the M lineage and in a number of mesodermal cells with nonstriated muscle fates. A role for CeTwist in postembryonic mesodermal cell fate specification was indicated by ectopic expression and genetic interference assays. These experiments showed that CeTwist was responsible for activating two target genes normally expressed in specific subsets of nonstriated muscles derived from the M lineage. In vitro and in vivo assays suggested that CeTwist cooperates with the C. elegans E/Daughterless homolog in directly activating these targets. The two target genes that we have studied, ceh-24 and egl-15, encode an NK-2 class homeodomain and an FGF receptor (FGFR) homolog, respectively. Twist activates FGFR and NK-homeodomain target genes during mesodermal patterning of Drosophila and similar target interactions have been proposed to modulate mesenchymal growth during closure of the vertebrate skull. These results suggest the possibility that a conserved pathway may be used for diverse functions in mesodermal specification. PMID:9716413
In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy.
Ciciliani, Anna-Maria; Langguth, Peter; Wachtel, Herbert
2017-01-01
Combining in vitro mouth-throat deposition measurements, cascade impactor data and computational fluid dynamics (CFD) simulations, four different inhalers were compared which are indicated for chronic obstructive pulmonary disease (COPD) treatment. The Respimat inhaler, the Breezhaler, the Genuair, and the Ellipta were coupled to the idealized Alberta throat model. The modeled dose to the lung (mDTL) was collected downstream of the Alberta throat model using either a filter or a next generation impactor (NGI). Idealized breathing patterns from COPD patient groups - moderate and very severe COPD - were applied. Theoretical lung deposition patterns were assessed by an individual path model. For the Respimat the mDTL was found to be 59% (SD 5%) for the moderate COPD breathing pattern and 67% (SD 5%) for very severe COPD breathing pattern. The percentages refer to nominal dose (ND) in vitro. This is in the range of 44%-63% in vivo in COPD patients who display large individual variability. Breezhaler showed a mDTL of 43% (SD 2%) for moderate disease simulation and 51% (SD 2%) for very severe simulation. The corresponding results for Genuair are mDTL of 32% (SD 2%) for moderate and 42% (SD 1%) for very severe disease. Ellipta vilanterol particles showed a mDTL of 49% (SD 3%) for moderate and 55% (SD 2%) for very severe disease simulation, and Ellipta fluticasone particles showed a mDTL of 33% (SD 3%) and 41% (SD 2%), respectively for the two breathing patterns. Based on the throat output and average flows of the different inhalers, CFD simulations were performed. Laminar and turbulent steady flow calculations indicated that deposition occurs mainly in the small airways. In summary, Respimat showed the lowest amount of particles depositing in the mouth-throat model and the highest amount reaching all regions of the simulation lung model.
In vitro dose comparison of Respimat® inhaler with dry powder inhalers for COPD maintenance therapy
Ciciliani, Anna-Maria; Langguth, Peter; Wachtel, Herbert
2017-01-01
Background Combining in vitro mouth–throat deposition measurements, cascade impactor data and computational fluid dynamics (CFD) simulations, four different inhalers were compared which are indicated for chronic obstructive pulmonary disease (COPD) treatment. Methods The Respimat inhaler, the Breezhaler, the Genuair, and the Ellipta were coupled to the idealized Alberta throat model. The modeled dose to the lung (mDTL) was collected downstream of the Alberta throat model using either a filter or a next generation impactor (NGI). Idealized breathing patterns from COPD patient groups – moderate and very severe COPD – were applied. Theoretical lung deposition patterns were assessed by an individual path model. Results and conclusion For the Respimat the mDTL was found to be 59% (SD 5%) for the moderate COPD breathing pattern and 67% (SD 5%) for very severe COPD breathing pattern. The percentages refer to nominal dose (ND) in vitro. This is in the range of 44%–63% in vivo in COPD patients who display large individual variability. Breezhaler showed a mDTL of 43% (SD 2%) for moderate disease simulation and 51% (SD 2%) for very severe simulation. The corresponding results for Genuair are mDTL of 32% (SD 2%) for moderate and 42% (SD 1%) for very severe disease. Ellipta vilanterol particles showed a mDTL of 49% (SD 3%) for moderate and 55% (SD 2%) for very severe disease simulation, and Ellipta fluticasone particles showed a mDTL of 33% (SD 3%) and 41% (SD 2%), respectively for the two breathing patterns. Based on the throat output and average flows of the different inhalers, CFD simulations were performed. Laminar and turbulent steady flow calculations indicated that deposition occurs mainly in the small airways. In summary, Respimat showed the lowest amount of particles depositing in the mouth–throat model and the highest amount reaching all regions of the simulation lung model. PMID:28603412
[Trust-promoting variables in child-adult interaction].
Esser, M; Petermann, F
1985-01-01
As interpersonal trust is recognized as a central variable in child-psychotherapy, and as psychological research has not yet developed strategies to advance interpersonal trust, the question arose by which social behavior variables children's trust is determined in the interaction process between adults and children. After having developed a most concrete definition of trust in terms of social interaction behavior, everyday pedagogical interaction sequences involving adults and children were analyzed in order to identify behavioral elements or patterns of interaction conducive to trust. According to the hypotheses, the behavior classes "positive adult reaction", "adult trusting behavior" and the interaction pattern "positive adult response to child trusting behavior" were found as conducive to interpersonal trust in children. Furthermore the realisation of the pattern "alternation of trusting child behavior and positive adult behavior" for a longer period of interaction was identified as material to the foundation of interpersonal trust. The realisation of that pattern is encouraged by positive and permanent reinforcement of different child reactions by the adult and by the child's readiness to react trustfully to positive adult behavior.
Kanamitsu, S I; Ito, K; Okuda, H; Ogura, K; Watabe, T; Muro, K; Sugiyama, Y
2000-04-01
The fatal drug-drug interaction between sorivudine, an antiviral drug, and 5-fluorouracil (5-FU) has been shown to be caused by a mechanism-based inhibition. In this interaction, sorivudine is converted by gut flora to (E)-5-(2-bromovinyl)uracil (BVU), which is metabolically activated by dihydropyrimidine dehydrogenase (DPD), and the activated BVU irreversibly binds to DPD itself, thereby inactivating it. In an attempt to predict this interaction in vivo from in vitro data, inhibition of 5-FU metabolism by BVU was investigated by using rat and human hepatic cytosol and human recombinant DPD. Whichever enzyme was used, increased inhibition was observed that depended on the preincubation time of BVU and enzyme in the presence of NADPH and BVU concentration. The kinetic parameters obtained for inactivation represented by k(inact) and K'(app) were 2.05 +/- 1.52 min(-1), 69.2 +/- 60.8 microM (rat hepatic cytosol), 2.39 +/- 0.13 min(-1), 48.6 +/- 11.8 microM (human hepatic cytosol), and 0.574 +/- 0.121 min(-1), 2.20 +/- 0.57 microM (human recombinant DPD). The drug-drug interaction in vivo was predicted quantitatively based on a physiologically based pharmacokinetic model, using pharmacokinetic parameters obtained from the literature and kinetic parameters for the enzyme inactivation obtained in the in vitro studies. In rats, DPD was predicted to be completely inactivated by administration of BVU and the area under the curve of 5-FU was predicted to increase 11-fold, which agreed well with the reported data. In humans, a 5-fold increase in the area under the curve of 5-FU was predicted after administration of sorivudine, 150 mg/day for 5 days. Mechanism-based inhibition of drug metabolism is supposed to be very dangerous. We propose that such in vitro studies should be carried out during the drug-developing phase so that in vivo drug-drug interactions can be predicted.
Scheid, Lisa-Mareike; Weber, Cornelia; Bopp, Nasrin; Mosqueira, Matias; Fink, Rainer H. A.
2017-01-01
The in vitro motility assay (IVMA) is a technique that enables the measurement of the interaction between actin and myosin providing a relatively simple model to understand the mechanical muscle function. For actin-myosin IVMA, myosin is immobilized in a measurement chamber, where it converts chemical energy provided by ATP hydrolysis into mechanical energy. The result is the movement of fluorescently labeled actin filaments that can be recorded microscopically and analyzed quantitatively. Resulting sliding speeds and patterns help to characterize the underlying actin-myosin interaction that can be affected by different factors such as mutations or active compounds. Additionally, modulatory actions of the regulatory proteins tropomyosin and troponin in the presence of calcium on actin-myosin interaction can be studied with the IVMA. Zebrafish is considered a suitable model organism for cardiovascular and skeletal muscle research. In this context, straightforward protocols for the isolation and use of zebrafish muscle proteins in the IVMA would provide a useful tool in molecular studies. Currently, there are no protocols available for the mentioned purpose. Therefore, we developed fast and easy protocols for characterization of zebrafish proteins in the IVMA. Our protocols enable the interested researcher to (i) isolate actin from zebrafish skeletal muscle and (ii) extract functionally intact myosin from cardiac and skeletal muscle of individual adult zebrafish. Zebrafish tail muscle actin is isolated after acetone powder preparation, polymerized, and labeled with Rhodamine-Phalloidin. Myosin from ventricles of adult zebrafish is extracted directly into IVMA flow-cells. The same extraction protocol is applicable for comparably small tissue pieces as from zebrafish tail, mouse and frog muscle. After addition of the fluorescently labeled F-actin from zebrafish—or other origin—and ATP, sliding movement can be visualized using a fluorescence microscope and an intensified CCD camera. Taken together, we introduce a method for functional analysis in zebrafish cardiac and skeletal muscle research to study mutations at the molecular level of thick or thin filament proteins. Additionally, preliminary data indicate the usefulness of the presented method to perform the IVMA with myosin extracted from muscles of other animal models. PMID:28620318
Using Patterned Discourse in the Language of Law and Medicine.
ERIC Educational Resources Information Center
Hoppe, Ronald A.; Kess, Joseph F.
A discussion of discourse patterns in the professional interactions of lawyers and physicians suggests that these encounters are programmatic exchanges to which the psycholinguistic rules of processing and inference can be applied. In these professions, the constraints of normal discourse patterns interact with the conventions of giving and…
Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric
2008-06-01
Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.
Equine cloning: in vitro and in vivo development of aggregated embryos.
Gambini, Andrés; Jarazo, Javier; Olivera, Ramiro; Salamone, Daniel F
2012-07-01
The production of cloned equine embryos remains highly inefficient. Embryo aggregation has not yet been tested in the equine, and it might represent an interesting strategy to improve embryo development. This study evaluated the effect of cloned embryo aggregation on in vitro and in vivo equine embryo development. Zona-free reconstructed embryos were individually cultured in microwells (nonaggregated group) or as 2- or 3-embryo aggregates (aggregated groups). For in vitro development, they were cultured until blastocyst stage and then either fixed for Oct-4 immunocytochemical staining or maintained in in vitro culture where blastocyst expansion was measured daily until Day 17 or the day on which they collapsed. For in vivo assays, Day 7-8 blastocysts were transferred to synchronized mares and resultant vesicles, and cloned embryos were measured by ultrasonography. Embryo aggregation improved blastocyst rates on a per well basis, and aggregation did not imply additional oocytes to obtain blastocysts. Embryo aggregation improved embryo quality, nevertheless it did not affect Day 8 and Day 16 blastocyst Oct-4 expression patterns. Equine cloned blastocysts expanded and increased their cell numbers when they were maintained in in vitro culture, describing a particular pattern of embryo growth that was unexpectedly independent of embryo aggregation, as all embryos reached similar size after Day 7. Early pregnancy rates were higher using blastocysts derived from aggregated embryos, and advanced pregnancies as live healthy foals also resulted from aggregated embryos. These results indicate that the strategy of aggregating embryos can improve their development, supporting the establishment of equine cloned pregnancies.
Quantum pattern recognition with multi-neuron interactions
NASA Astrophysics Data System (ADS)
Fard, E. Rezaei; Aghayar, K.; Amniat-Talab, M.
2018-03-01
We present a quantum neural network with multi-neuron interactions for pattern recognition tasks by a combination of extended classic Hopfield network and adiabatic quantum computation. This scheme can be used as an associative memory to retrieve partial patterns with any number of unknown bits. Also, we propose a preprocessing approach to classifying the pattern space S to suppress spurious patterns. The results of pattern clustering show that for pattern association, the number of weights (η ) should equal the numbers of unknown bits in the input pattern ( d). It is also remarkable that associative memory function depends on the location of unknown bits apart from the d and load parameter α.
Stergiopoulou, Theodouli; Meletiadis, Joseph; Sein, Tin; Papaioannidou, Paraskevi; Tsiouris, Ioannis; Roilides, Emmanuel; Walsh, Thomas J.
2008-01-01
Patients suffering from invasive mycoses often receive concomitant antifungal therapy and antibacterial agents. Assessment of pharmacodynamic interactions between antifungal and antibacterial agents is complicated by the absence of a common antifungal end point for both agents. Ciprofloxacin has no intrinsic antifungal activity but may interact with antifungal agents, since it inhibits DNA gyrase (topoisomerase II), which is abundant in fungi. We therefore employed isobolographic analysis adapted to incorporate a nonactive agent in order to analyze the potential in vitro interaction between the fluoroquinolone ciprofloxacin and several representative antifungal agents against Candida albicans and Aspergillus fumigatus strains by using a microdilution checkerboard technique. In agreement with earlier in vitro studies, conventional fractional inhibitory concentration index analysis was unable to detect interactions between ciprofloxacin and antifungal agents. However, isobolographic analysis revealed significant pharmacodynamic interactions between antifungal agents and ciprofloxacin against C. albicans and A. fumigatus strains. Amphotericin B demonstrated concentration-dependent interactions for both species, with synergy (interaction indices, 0.14 to 0.81) observed at ciprofloxacin concentrations of <10.64 μg/ml. Synergy (interaction indices, 0.10 to 0.86) was also found for voriconazole and caspofungin against A. fumigatus. Isobolographic analysis may help to elucidate the pharmacodynamic interactions between antifungal and non-antifungal agents and to develop better management strategies against invasive candidiasis and aspergillosis. PMID:18299413
Santos, Efrén; Remy, Serge; Thiry, Els; Windelinckx, Saskia; Swennen, Rony; Sági, László
2009-06-24
Next-generation transgenic plants will require a more precise regulation of transgene expression, preferably under the control of native promoters. A genome-wide T-DNA tagging strategy was therefore performed for the identification and characterization of novel banana promoters. Embryogenic cell suspensions of a plantain-type banana were transformed with a promoterless, codon-optimized luciferase (luc+) gene and low temperature-responsive luciferase activation was monitored in real time. Around 16,000 transgenic cell colonies were screened for baseline luciferase activity at room temperature 2 months after transformation. After discarding positive colonies, cultures were re-screened in real-time at 26 degrees C followed by a gradual decrease to 8 degrees C. The baseline activation frequency was 0.98%, while the frequency of low temperature-responsive luciferase activity was 0.61% in the same population of cell cultures. Transgenic colonies with luciferase activity responsive to low temperature were regenerated to plantlets and luciferase expression patterns monitored during different regeneration stages. Twenty four banana DNA sequences flanking the right T-DNA borders in seven independent lines were cloned via PCR walking. RT-PCR analysis in one line containing five inserts allowed the identification of the sequence that had activated luciferase expression under low temperature stress in a developmentally regulated manner. This activating sequence was fused to the uidA reporter gene and back-transformed into a commercial dessert banana cultivar, in which its original expression pattern was confirmed. This promoter tagging and real-time screening platform proved valuable for the identification of novel promoters and genes in banana and for monitoring expression patterns throughout in vitro development and low temperature treatment. Combination of PCR walking techniques was efficient for the isolation of candidate promoters even in a multicopy T-DNA line. Qualitative and quantitative GUS expression analyses of one tagged promoter in a commercial cultivar demonstrated a reproducible promoter activity pattern during in vitro culture. Thus, this promoter could be used during in vitro selection and generation of commercial transgenic plants.
ERIC Educational Resources Information Center
Ferm, Ulrika; Ahlsen, Elisabeth; Bjorck-Akesson, Eva
2012-01-01
Background: Interaction between caregivers and children with severe impairments is closely related to the demands of daily activities. This study examines the relationship between interaction and the routine mealtime activity at home. Method: Patterns of interaction between a child (aged 6 years and 6 months) with severe speech and physical…
Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin
2015-01-01
Background Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. Methods We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m2/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. Results N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca2+, although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein–particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. Conclusion We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size. PMID:25848250
Lee, Jeong-A; Kim, Mi-Kyung; Kim, Hyoung-Mi; Lee, Jong Kwon; Jeong, Jayoung; Kim, Young-Rok; Oh, Jae-Min; Choi, Soo-Jin
2015-01-01
Orally administered particles rapidly interact with biological fluids containing proteins, enzymes, electrolytes, and other biomolecules to eventually form particles covered by a corona, and this corona potentially affects particle uptake, fate, absorption, distribution, and elimination in vivo. This study explored relationships between the biological interactions of calcium carbonate particles and their biokinetics. We examined the effects of food grade calcium carbonates of different particle size (nano [N-Cal] and bulk [B-Cal]: specific surface areas of 15.8 and 0.83 m(2)/g, respectively) on biological interactions in in vitro simulated physiological fluids, ex vivo biofluids, and in vivo in gastrointestinal fluid. Moreover, absorption and tissue distribution of calcium carbonates were evaluated following a single dose oral administration to rats. N-Cal interacted more with biomatrices than bulk materials in vitro and ex vivo, as evidenced by high fluorescence quenching ratios, but it did not interact more actively with biomatrices in vivo. Analysis of coronas revealed that immunoglobulin, apolipoprotein, thrombin, and fibrinogen, were the major corona proteins, regardless of particle size. A biokinetic study revealed that orally delivered N-Cal was more rapidly absorbed into the blood stream than B-Cal, but no significant differences were observed between the two in terms of absorption efficiencies or tissue distributions. Both calcium carbonates were primarily present as particulate forms in gastrointestinal fluids but enter the circulatory system in dissolved Ca(2+), although both types showed partial phase transformation to dicalcium phosphate dihydrate. Relatively low dissolution (about 4%), no remarkable protein-particle interaction, and the major particulate fate of calcium carbonate in vivo gastrointestinal fluids can explain its low oral absorption (about 4%) regardless of particle size. We conclude that calcium carbonate nanoparticles can act more actively with biological matrices in vitro and ex vivo, but that in vivo, their biological interactions and biokinetics are not affected by particle size.
Ultrastructural interaction between spermatozoon and human oviductal cells in vitro.
Vigil, Pilar; Salgado, Ana María; Cortés, Manuel E
2012-04-01
The oviduct is an important organ for successful mammalian reproduction. In this work, human oviducts were inseminated and their explants analyzed using scanning electron microscopy in order to study, at a finer ultrastructual level, the interaction between spermatozoon and oviduct in vitro. Results show unequivocally a spermatozoon tightly attached through the acrosomal region of its head to several cilia of the human tubal epithelial cells. This finding proves that spermatozoa do indeed adhere to the endosalpinx, a fact of utmost relevance for the physiology of the reproductive process, since it supports the idea of a spermatozoa reservoir being formed in the oviduct, which is also briefly discussed.
Oosterhof, Janine J H; van der Mei, Henny C; Busscher, Henk J; Free, Rolien H; Kaper, Hans J; van Weissenbruch, Ranny; Albers, Frans W J
2005-04-01
Although leakage through a tracheoesophageal shunt prosthesis is the main cause of prosthesis failure in a laryngectomy patient, this has never been the subject of in vitro evaluation. The aim of this study was to compare three commercially available voice prostheses by comparison of their in vitro leakage patterns, in absence or presence of a biofilm. To compare in vitro leakage patterns, a model comprised of an artificial throat equipped with a single prosthesis coupled to a water reservoir was developed. By varying the height of the water reservoir, different pressures on the voice prosthesis can be obtained. Both in absence and presence of a biofilm, the Blom Singer voice prosthesis demonstrated the lowest leakage, followed by Groningen Low Resistance. The Provox2 showed significantly the most leakage, however, in presence of a biofilm the leakage of the Provox2 significantly decreased. Regular airflow during biofilm formation significantly increased leakage through the Provox2. Out of 746 clinical replacements, Provox2 showed 76% and Groningen Low Resistance 57% replacements due to leakage. The model used in this study showed significant differences in leakage of the three types of voice prostheses used. Leakage occurred more readily through Provox2 than through Groningen Low Resistance and Blom Singer prostheses, which is in line with clinical observations and enforces the model. (c) 2005 Wiley Periodicals, Inc.
Kaur, Lovedeep; Rutherfurd, Shane M; Moughan, Paul J; Drummond, Lynley; Boland, Mike J
2010-04-28
This paper describes an in vitro study that tests the proposition that actinidin from green kiwifruit influences the digestion of proteins in the small intestine. Different food proteins, from sources including soy, meat, milk, and cereals, were incubated in the presence or absence of green kiwifruit extract (containing actinidin) using a two-stage in vitro digestion system consisting of an incubation with pepsin at stomach pH (simulating gastric digestion) and then with added pancreatin at small intestinal pH, simulating upper tract digestion in humans. The digests from the small intestinal stage (following the gastric digestion phase) were subjected to gel electrophoresis (SDS-PAGE) to assess loss of intact protein and development of large peptides during the in vitro simulated digestion. Kiwifruit extract influenced the digestion patterns of all of the proteins to various extents. For some proteins, actinidin had little impact on digestion. However, for other proteins, the presence of kiwifruit extract resulted in a substantially greater loss of intact protein and different peptide patterns from those seen after digestion with pepsin and pancreatin alone. In particular, enhanced digestion of whey protein isolate, zein, gluten, and gliadin was observed. In addition, reverse-phase HPLC (RP-HPLC) analysis showed that a 2.5 h incubation of sodium caseinate with kiwifruit extract alone resulted in approximately 45% loss of intact protein.
Bahl, D; Miller, D A; Leviton, I; Gialanella, P; Wolin, M J; Liu, W; Perkins, R; Miller, M H
1997-01-01
We characterized the effects of ciprofloxacin and rifampin alone and in combination on Staphylococcus aureus in vitro. The effects of drug combinations (e.g., indifferent, antagonistic, or additive interactions) on growth inhibition were compared by disk approximation studies and by determining the fractional inhibitory concentrations. Bactericidal effects in log-phase bacteria and in nongrowing isolates were characterized by time-kill methods. The effect of drug combinations was dependent upon whether or not cells were growing and whether killing or growth inhibition was the endpoint used to measure drug interaction. Despite bactericidal antagonism in time-kill experiments, our in vitro studies suggest several possible explanations for the observed benefits in patients treated with a combination of ciprofloxacin and rifampin for deep-seated staphylococcal infections. Notably, when growth inhibition rather than killing was used to characterize drug interaction, indifference rather than antagonism was observed. An additive bactericidal effect was observed in nongrowing bacteria suspended in phosphate-buffered saline. While rifampin antagonized the bactericidal effects of ciprofloxacin, ciprofloxacin did not antagonize the bactericidal effects of rifampin. Each antimicrobial prevented the emergence of subpopulations that were resistant to the other. PMID:9174186
Soares, Rodrigo Pedro; Nogueira, Paula Monalisa; Secundino, Nágila Francinete; Marialva, Eric Fabrício; Ríos-Velásquez, Cláudia Maria; Pessoa, Felipe Arley Costa
2018-03-01
Lutzomyia umbratilis, the vector for Leishmania guyanensis in northern South America, has been found naturally infected with L. guyanensis only in areas north of the Negro and Amazon rivers. While populations of this sand fly species are also found in areas south of these rivers, these populations have never been reported to be infected and/or transmitting L. guyanensis. However, no studies on the corresponding host-parasite interactions are available. This study evaluated the interaction between Lu. guyanensis promastigotes and field-collected Lu. umbratilis sand flies from Rio Preto da Eva and Manacapuru, which are located to the north and south, respectively, of the Negro River. Procyclic and metacyclic attachment was quantified using an in vitro system. Low attachment of parasites to the midguts of insects collected from Manacapuru was detected. Conversely, greater binding of metacyclic parasites was observed in the midguts of insects collected from Rio Preto da Eva, and this attachment was more pronounced than that observed for procyclics (p < 0.03). The Lu. umbratilis population from an area south of the Negro River has lower in vitro interaction with L. guyanensis. The higher attachment of L. guyanensis to midguts of insects from Rio Preto da Eva may suggest better vector competence. These findings are in accordance with previously reported epidemiological information of American cutaneous leishmaniasis (ACL) transmission in the Amazon.
de Morais-Teixeira, Eliane; Gallupo, Mariana Kolos; Rodrigues, Lucas Fonseca; Romanha, Alvaro José; Rabello, Ana
2014-01-01
To evaluate in vitro interactions between paromomycin sulphate and the antileishmanial drugs meglumine antimoniate, amphotericin B, miltefosine and azithromycin against intracellular Leishmania (Leishmania) infantum chagasi, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) amazonensis amastigotes in peritoneal mouse macrophages. First, drug susceptibility was assessed in 3, 5 and 7 day assays, followed by drug interaction assays with a modified fixed-ratio method. An overall mean sum fractional inhibitory concentration (∑FIC) was calculated for each combination and each Leishmania species. The nature of the interactions was classified as synergistic if the mean ∑FIC was ≤ 0.5, indifferent if the mean ∑FIC was >0.5-4.0 and antagonistic if the mean ∑FIC was >4.0. In vitro synergism was observed for the combinations of paromomycin plus miltefosine [at 50% and 90% inhibitory concentrations (IC50 and IC90, respectively)] and paromomycin plus amphotericin B (at the IC90 level) against L. (L.) amazonensis, paromomycin plus meglumine antimoniate (at the IC50 and IC90 levels) and paromomycin plus amphotericin B (at the IC50 level) against L. (V.) braziliensis, and paromomycin plus miltefosine, paromomycin plus amphotericin B (both at the IC90 level) and paromomycin plus azithromycin (at the IC50 level) against L. (L) infantum chagasi. This work provides a preclinical dataset that supports future studies on multidrug treatment schedules against New World leishmaniasis.
The effect of grapefruit juice on drug disposition
Hanley, Michael J.; Cancalon, Paul; Widmer, Wilbur W.; Greenblatt, David J.
2011-01-01
Introduction Since their initial discovery in 1989, grapefruit juice-drug interactions have received extensive interest from the scientific, medical, regulatory, and lay communities. Although knowledge regarding the effects of grapefruit juice on drug disposition continues to expand, the list of drugs studied in the clinical setting remains relatively limited. Areas covered This article reviews the in vitro effects of grapefruit juice and its constituents on the activity of cytochrome P450 enzymes, organic anion-transporting polypeptides, P-glycoprotein, esterases and sulfotransferases. The translational applicability of the in vitro findings to the clinical setting is discussed for each drug metabolizing enzyme and transporter. Reported area under the plasma concentration-time curve ratios for available grapefruit juice-drug interaction studies are also provided. Relevant investigations were identified by searching the Pubmed electronic database from 1989 to 2010. Expert opinion Grapefruit juice increases the bioavailability of some orally-administered drugs that are metabolized by CYP3A and normally undergo extensive presystemic extraction. In addition, grapefruit juice can decrease the oral absorption of a few drugs that rely on organic anion-transporting polypeptides in the gastrointestinal tract for their uptake. The number of drugs shown to interact with grapefruit juice in vitro is far greater than the number of clinically relevant grapefruit juice-drug interactions. For the majority of patients, complete avoidance of grapefruit juice is unwarranted. PMID:21254874
Huang, Tousheng; Zhang, Huayong; Dai, Liming; Cong, Xuebing; Ma, Shengnan
2018-03-01
This research investigates the formation of banded vegetation patterns on hillslopes affected by interactions between sediment deposition and vegetation growth. The following two perspectives in the formation of these patterns are taken into consideration: (a) increased sediment deposition from plant interception, and (b) reduced plant biomass caused by sediment accumulation. A spatial model is proposed to describe how the interactions between sediment deposition and vegetation growth promote self-organization of banded vegetation patterns. Based on theoretical and numerical analyses of the proposed spatial model, vegetation bands can result from a Turing instability mechanism. The banded vegetation patterns obtained in this research resemble patterns reported in the literature. Moreover, measured by sediment dynamics, the variation of hillslope landform can be described. The model predicts how treads on hillslopes evolve with the banded patterns. Thus, we provide a quantitative interpretation for coevolution of vegetation patterns and landforms under effects of sediment redistribution. Copyright © 2018. Published by Elsevier Masson SAS.
Saitoh, Ohki; Mitsutake, Norisato; Nakayama, Toshiyuki; Nagayama, Yuji
2009-07-01
It is known that genetic abnormalities in oncogenes and/or tumor suppressor genes promote carcinogenesis. Numerous recent articles, however, have demonstrated that epithelial-stromal interaction also plays a critical role for initiation and progression of carcinoma cells. Furthermore, ionizing radiation induces alterations in the tissue microenvironments that promote carcinogenesis. There is little or no information on epithelial-stromal interaction in thyroid carcinoma cells. The objective of this study was to determine if epithelial-stromal interaction influenced the growth of thyroid carcinoma cells in vivo and in vitro and to determine if radiation had added or interacting effects. Normal Fisher rat thyroid follicular cells (FRTL5 cells) and tumorigenic rat thyroid carcinoma cells (FRTL-Tc cells) derived from FRTL5 cells were employed. The cells were injected into thyroids or subcutaneously into left flanks of rats alone or in combination with skin-derived fibroblasts. In groups of rats, fibroblasts were irradiated with 0.1 or 4 Gy x-ray 3 days before inoculation. In vitro growth of FRTL-Tc and FRTL-5 cells were evaluated using the fibroblast-conditioned medium and in a co-culture system with fibroblasts. The in vivo experiments demonstrated that FRTL-Tc cells injected intrathyroidally grew faster than those injected subcutaneously, and that admixed fibroblasts enhanced growth of subcutaneous FRTL-Tc tumors, indicating that the intrathyroidal milieu, particularly in the presence of fibroblasts, confer growth-promoting advantage to thyroid carcinoma cells. This in vivo growth-promoting effect of fibroblasts on FRTL-Tc cells was duplicated in the in vitro experiments using the fibroblast-conditioned medium. Thus, our data demonstrate that this effect is mediated by soluble factor(s), is reversible, and is comparable to that of 10% fetal bovine serum. However, normal FRTL5 cells did not respond to the fibroblast-conditioned medium. Furthermore, high- and low-dose irradiation enhanced and suppressed, respectively, the in vivo fibroblast-mediated growth promotion. This effect was, however, not observed in the in vitro experiment with conditioned medium or even that allowing cell-cell contact. The intrathyroidal stromal microenvironments, particularly fibroblasts, appear to enhance the growth of thyroid carcinomas through soluble factor(s), which is modulated differently by high- and low-dose irradiation. To our knowledge this is the first study to show epithelial-stromal interaction in thyroid carcinoma.
Ibrahim, Heba; Saad, Amr; Abdo, Amany; Sharaf Eldin, A
2016-04-01
Pharmacovigilance (PhV) is an important clinical activity with strong implications for population health and clinical research. The main goal of PhV is the timely detection of adverse drug events (ADEs) that are novel in their clinical nature, severity and/or frequency. Drug interactions (DI) pose an important problem in the development of new drugs and post marketing PhV that contribute to 6-30% of all unexpected ADEs. Therefore, the early detection of DI is vital. Spontaneous reporting systems (SRS) have served as the core data collection system for post marketing PhV since the 1960s. The main objective of our study was to particularly identify signals of DI from SRS. In addition, we are presenting an optimized tailored mining algorithm called "hybrid Apriori". The proposed algorithm is based on an optimized and modified association rule mining (ARM) approach. A hybrid Apriori algorithm has been applied to the SRS of the United States Food and Drug Administration's (U.S. FDA) adverse events reporting system (FAERS) in order to extract significant association patterns of drug interaction-adverse event (DIAE). We have assessed the resulting DIAEs qualitatively and quantitatively using two different triage features: a three-element taxonomy and three performance metrics. These features were applied on two random samples of 100 interacting and 100 non-interacting DIAE patterns. Additionally, we have employed logistic regression (LR) statistic method to quantify the magnitude and direction of interactions in order to test for confounding by co-medication in unknown interacting DIAE patterns. Hybrid Apriori extracted 2933 interacting DIAE patterns (including 1256 serious ones) and 530 non-interacting DIAE patterns. Referring to the current knowledge using four different reliable resources of DI, the results showed that the proposed method can extract signals of serious interacting DIAEs. Various association patterns could be identified based on the relationships among the elements which composed a pattern. The average performance of the method showed 85% precision, 80% negative predictive value, 81% sensitivity and 84% specificity. The LR modeling could provide the statistical context to guard against spurious DIAEs. The proposed method could efficiently detect DIAE signals from SRS data as well as, identifying rare adverse drug reactions (ADRs). Copyright © 2016 Elsevier Inc. All rights reserved.
Interactions between benzylamiloride and fura-2: studies in vitro and in cardiac myocytes.
Hudson, C A; Rojas, J D; Sarvazyan, N; Wesson, D E; Martínez-Zaguilán, R
1998-08-01
Amiloride derivatives are commonly used inhibitors of Na+/H+- and Na+/Ca2+-exchange. Because they are fluorescent molecules the use of benzylamiloride (BZA), an inhibitor of Na+/Ca2+ exchange, in conjunction with Fura-2, a commonly used fluorescent Ca2+ indicator, might complicate interpretation of fluorescence data obtained. In vitro data show that BZA decreases the Fura-2 fluorescence at all useful wavelengths in a concentration-dependent manner. The Fura-2 ratio 340/380 (used to estimate intracellular Ca2+ ([Ca2+]in)) also decreased with increasing BZA concentrations. The Stern-Volmer relation suggests that this phenomenon is due to either static or dynamic quenching. Varying temperatures from 4 to 37 degreesC did not alter Stern-Volmer constants, consistent instead with fluorescence resonance energy transfer (FRET). The in situ relevance of these interactions was evaluated in adult rat cardiac myocytes which exhibit Na+/Ca2+ exchange reflected by rapid [Ca2+]in increase following Na+ removal. Pretreatment with BZA >/= 25 microM decreased the magnitude of Fura-2 changes induced by Na+ removal. Analysis of the individual Fura-2 useful wavelengths indicated that >/= 25 microM BZA altered the Fura-2 signal in a manner consistent with the quenching effects noted in vitro. Together, these data show that BZA interacts with Fura-2 in vitro and in situ and suggest caution when interpreting Fura-2 fluorescence data derived in conjunction with BZA. Copyright 1998 Academic Press.
Hobbs, Michael J; Bloomer, Jackie; Dear, Gordon
2017-08-01
1. In a clinical trial, a strong drug-drug interaction (DDI) was observed between dextromethorphan (DM, the object or victim drug) and GSK1034702 (the precipitant or perpetrator drug), following single and repeat doses. This study determined the inhibition parameters of GSK1034702 in vitro and applied PBPK modelling approaches to simulate the clinical observations and provide mechanistic hypotheses to understand the DDI. 2. In vitro assays were conducted to determine the inhibition parameters of human CYP2D6 by GSK1034702. PBPK models were populated with the in vitro parameters and DDI simulations conducted and compared to the observed data from a clinical study with DM and GSK1034702. 3. GSK1034702 was a potent direct and metabolism-dependent inhibitor of human CYP2D6, with inhibition parameters of: IC 50 = 1.6 μM, K inact = 3.7 h -1 and K I = 0.8 μM. Incorporating these data into PBPK models predicted a DDI after repeat, but not single, 5 mg doses of GSK1034702. 4. The DDI observed with repeat administration of GSK1034702 (5 mg) can be attributed to metabolism-dependent inhibition of CYP2D6. Further, in vitro data were generated and several potential mechanisms proposed to explain the interaction observed following a single dose of GSK1034702.
Organ/body-on-a-chip based on microfluidic technology for drug discovery.
Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo
2018-02-01
Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
Morozesk, Mariana; Franqui, Lidiane S; Mansano, Adrislaine S; Martinez, Diego Stéfani T; Fernandes, Marisa N
2018-05-05
The widespread production and application of carbon nanotubes (CNT) have raising concerns about their release into the environment and, the joint toxicity of CNT with pre-existing contaminants needs to be assessed. This is the first study that investigated the co-exposure of oxidized multiwalled carbon nanotubes (ox-MWCNT) and cadmium (Cd) using a zebrafish liver cell line (ZFL). Two in vitro co-exposure protocols differing by the order of ox-MWCNT interaction with Cd and fetal bovine serum (FBS) proteins were evaluated. Ox-MWCNT was physical and chemical characterized and its adsorption capacity and colloidal stability in cell culture medium was determined in both protocols. Cytotoxicity was investigated by MTT, neutral red, trypan blue, lactate dehydrogenase assays and the necrosis and apoptosis events were determined using flow cytometer. The Cd presence in medium did not interfere in the protein corona composition of MWCNT but the order of interaction of FBS and Cd interfered in its colloidal stability and metal adsorption rate. The ox-MWCNT increased Cd toxicity at low concentration probably by a "Trojan horse" and/or synergistic effect, and induced apoptosis and necrosis in ZFL cells. Although it was not observed differences of toxicity between protocols, the interaction of ox-MWCNT first with Cd led to its precipitation in cell culture medium and, as a consequence, to a possible false viability result by neutral red assay. Taken together, it was evident that the order of compounds interactions disturbs the colloidal stability and affects the in vitro toxicological assays. Considering that Protocol A showed more ox-MWCNT stability after interaction with Cd, this protocol is recommended to be adopted in future studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Verweij, Paul E.
2003-01-01
The in vitro interaction between terbinafine and the azoles voriconazole, miconazole, and itraconazole against five clinical Scedosporium prolificans isolates after 48 and 72 h of incubation was tested by a microdilution checkerboard (eight-by-twelve) technique. The antifungal effects of the drugs alone and in combination on the fungal biomass as well as on the metabolic activity of fungi were measured using a spectrophotometric method and two colorimetric methods, based on the lowest drug concentrations showed 75 and 50% growth inhibition (MIC-1 and MIC-2, respectively). The nature and the intensity of the interactions were assessed using a nonparametric approach (fractional inhibitory concentration [FIC] index model) and a fully parametric response surface approach (Greco model) of the Loewe additivity (LA) no-interaction theory as well as a nonparametric (Prichard model) and a semiparametric response surface approaches of the Bliss independence (BI) no-interaction theory. Statistically significant synergy was found between each of the three azoles and terbinafine in all cases, although with different intensities. A 27- to 64-fold and 16- to 90-fold reduction of the geometric mean of the azole and terbinafine MICs, respectively, was observed when they were combined, resulting in FIC indices of <1 to 0.02. Using the MIC-1 higher levels of synergy were obtained, , which were more consistent between the two incubation periods than using the MIC-2. The strongest synergy among the azoles was found with miconazole using the BI-based models and with voriconazole using the LA-based models. The synergistic effects both on fungal growth and metabolic activity were more potent after 72 h of incubation. Fully parametric approaches in combination with the modified colorimetric method might prove useful for testing the in vitro interaction of antifungal drugs against filamentous fungi. PMID:12499177
Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model
Majety, Meher; Pradel, Leon P.; Gies, Manuela; Ries, Carola H.
2015-01-01
In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME. PMID:26053043
ERIC Educational Resources Information Center
Blain-Moraes, Stefanie; Chau, Tom
2012-01-01
Background: Physiological responses have been used in individuals with acquired disability to enable communicative interaction without motor movement. This study explored four autonomic nervous system (ANS) signals--electrodermal activity, skin temperature, cardiac patterns and respiratory patterns--to enable interaction with individuals born with…
Perceived Density, Social Interaction and Morale in New South Wales Rural Communities
ERIC Educational Resources Information Center
Argent, Neil
2008-01-01
This paper explores the relationships between population density, social interaction patterns, and morale in rural communities. It tests two apparently competing hypotheses concerning rural population density, social interaction patterns and overall levels of morale: one, that low (and rapidly declining) rural densities lead to feelings of…
Boyle, Jon P; Radke, Jay R
2009-07-01
This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.
In vitro interactions of Peucedanum officinale essential oil with antibiotics.
Miladinović, Dragoljub L; Ilić, Budimir S; Kocić, Branislava D; Miladinović, Ljiljana C; Marković, Marija S
2015-01-01
The chemical composition and antibacterial activity of Peucedanum officinale L. (Apiaceae) essential oil were examined, as well as the association between it and antibiotics: tetracycline, streptomycin and chloramphenicol. The interactions of the essential oil with antibiotics were evaluated using the microdilution checkerboard assay. Monoterpene hydrocarbons, with α-phellandrene as the dominant constituent, were the most abundant compound class of the essential oil of P. officinale. The researched essential oil exhibited slight antibacterial activity against the tested bacterial strains in vitro. On the contrary, essential oil of P. officinale possesses a great synergistic potential with chloramphenicol and tetracycline. Their combinations reduced the minimum effective dose of the antibiotic and, consequently, minimised its adverse side effects. In addition, investigated interactions are especially successful against Gram-negative bacteria, the pharmacological treatment of which is very difficult nowadays.
A new protein-protein interaction sensor based on tripartite split-GFP association.
Cabantous, Stéphanie; Nguyen, Hau B; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A; Favre, Gilles; Terwilliger, Thomas C; Waldo, Geoffrey S
2013-10-04
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence.
A New Protein-Protein Interaction Sensor Based on Tripartite Split-GFP Association
Cabantous, Stéphanie; Nguyen, Hau B.; Pedelacq, Jean-Denis; Koraïchi, Faten; Chaudhary, Anu; Ganguly, Kumkum; Lockard, Meghan A.; Favre, Gilles; Terwilliger, Thomas C.; Waldo, Geoffrey S.
2013-01-01
Monitoring protein-protein interactions in living cells is key to unraveling their roles in numerous cellular processes and various diseases. Previously described split-GFP based sensors suffer from poor folding and/or self-assembly background fluorescence. Here, we have engineered a micro-tagging system to monitor protein-protein interactions in vivo and in vitro. The assay is based on tripartite association between two twenty amino-acids long GFP tags, GFP10 and GFP11, fused to interacting protein partners, and the complementary GFP1-9 detector. When proteins interact, GFP10 and GFP11 self-associate with GFP1-9 to reconstitute a functional GFP. Using coiled-coils and FRB/FKBP12 model systems we characterize the sensor in vitro and in Escherichia coli. We extend the studies to mammalian cells and examine the FK-506 inhibition of the rapamycin-induced association of FRB/FKBP12. The small size of these tags and their minimal effect on fusion protein behavior and solubility should enable new experiments for monitoring protein-protein association by fluorescence. PMID:24092409
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences.
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-11-05
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals' attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter's hypothesis to temporal networks.
Temporal motifs reveal homophily, gender-specific patterns, and group talk in call sequences
Kovanen, Lauri; Kaski, Kimmo; Kertész, János; Saramäki, Jari
2013-01-01
Recent studies on electronic communication records have shown that human communication has complex temporal structure. We study how communication patterns that involve multiple individuals are affected by attributes such as sex and age. To this end, we represent the communication records as a colored temporal network where node color is used to represent individuals’ attributes, and identify patterns known as temporal motifs. We then construct a null model for the occurrence of temporal motifs that takes into account the interaction frequencies and connectivity between nodes of different colors. This null model allows us to detect significant patterns in call sequences that cannot be observed in a static network that uses interaction frequencies as link weights. We find sex-related differences in communication patterns in a large dataset of mobile phone records and show the existence of temporal homophily, the tendency of similar individuals to participate in communication patterns beyond what would be expected on the basis of their average interaction frequencies. We also show that temporal patterns differ between dense and sparse neighborhoods in the network. Because also this result is independent of interaction frequencies, it can be seen as an extension of Granovetter’s hypothesis to temporal networks. PMID:24145424
Kona, S S R; Praveen Chakravarthi, V; Siva Kumar, A V N; Srividya, D; Padmaja, K; Rao, V H
2016-01-15
Quantitative patterns of expression of the growth differentiation factor 9 (GDF9) and bone morphogenic protein 15 (BMP15) genes in different development stages of in vivo and in vitro grown ovarian follicles in sheep were studied for the first time. Both GDF9 and BMP15 were expressed in the cumulus cells and oocytes at all the development stages of in vivo and in vitro grown ovarian follicles. Growth differentiation factor 9 and bone morphogenic protein 15 exhibited stage-specific undulations in the expression in the cumulus cells and oocytes isolated from in vivo grown ovarian follicles. These undulations could be related to discrete development events during the ovarian follicle development. The expression of GDF9 and BMP15 was highest (3.38 ± 0.02 and 2.69 ± 0.06, respectively; P ≤ 0.05) in the primordial follicles compared with preantral, early antral, antral, and large antral stages. Similarly, GDF9 and BMP15 expression in the cumulus cells (0 ± 0.16 and 0 ± 0.07) and oocytes (1.47 ± 0.07 and 1.32 ± 0.03) was lowest (P ≤ 0.05) in the in vivo grown antral follicles. In the cultured follicles, the stage-specific undulations observed in the expression of GDF9 and BMP15 in the in vivo grown follicles were either different or abolished. For example, in the oocytes from in vitro grown follicles, the expression of BMP15 did not change as the development progressed all the way from preantral to large antral follicle stage although in the oocytes from in vivo grown follicles BMP15 expression exhibited stage-specific variations. It is concluded that GDF9 and BMP15 follow a stage-specific pattern of expression during the in vivo development of ovarian follicles in sheep, and in vitro culture altered the stage-specific changes in the expression of these two genes. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhou, Bangjun; Zeng, Lirong
2018-01-01
In Arabidopsis and rice, the ubiquitin ligase PUB13-mediated protein degradation plays a significant role in plant pattern-triggered immunity (PTI) and flowering time control. The Arabidopsis PUB13 has been shown to attenuate the pattern recognition receptor FLS2-mediated immune signaling by ubiquitinating FLS2 and consequently promoting its degradation by the 26S proteasome. Nevertheless, the cognate ubiquitin-conjugating enzymes (E2) with which PUB13 acts to modulate FLS2-mediated PTI are unknown. To address this question, we investigate here the tomato (Solanum lycopersicum) homolog of PUB13, SlPUB13 by utilizing the recently characterized complete set of tomato E2s. Of the 13 groups of tomato E2s, only members in group III are found to interact and act with SlPUB13. Knocking-down of the group III E2 genes enhances callose deposition and induction of the RbohB gene in the immunity-associated, early oxidative burst after flg22 treatment. The group III E2s are also found to work with SlPUB13 to ubiquitinate FLS2 in vitro and are required for PUB13-mediated degradation of FLS2 in vivo upon flg22 treatment, suggesting an essential role for group III E2s in the modulation of FLS2-mediated immune signaling by PUB13. Additionally, another immunity-associated E3, NtCMPG1 is shown to also work specifically with members of group III E2 in the in vitro ubiquitination assay, which implies the group III E2 enzymes may cooperate with many E3 ligases to regulate different aspects of PTI. Taken together, these data corroborate the notion that group III E2 enzymes play an important role in PTI and build a foundation for further functional and mechanistic characterization of tomato PUB13.
Sperm Proteasomes Degrade Sperm Receptor on the Egg Zona Pellucida during Mammalian Fertilization
Zimmerman, Shawn W.; Manandhar, Gaurishankar; Yi, Young-Joo; Gupta, Satish K.; Sutovsky, Miriam; Odhiambo, John F.; Powell, Michael D.; Miller, David J.; Sutovsky, Peter
2011-01-01
Despite decades of research, the mechanism by which the fertilizing spermatozoon penetrates the mammalian vitelline membrane, the zona pellucida (ZP) remains one of the unexplained fundamental events of human/mammalian development. Evidence has been accumulating in support of the 26S proteasome as a candidate for echinoderm, ascidian and mammalian egg coat lysin. Monitoring ZP protein degradation by sperm during fertilization is nearly impossible because those few spermatozoa that penetrate the ZP leave behind a virtually untraceable residue of degraded proteins. We have overcome this hurdle by designing an experimentally consistent in vitro system in which live boar spermatozoa are co-incubated with ZP-proteins (ZPP) solubilized from porcine oocytes. Using this assay, mimicking sperm-egg interactions, we demonstrate that the sperm-borne proteasomes can degrade the sperm receptor protein ZPC. Upon coincubation with motile spermatozoa, the solubilized ZPP, which appear to be ubiquitinated, adhered to sperm acrosomal caps and induced acrosomal exocytosis/formation of the acrosomal shroud. The degradation of the sperm receptor protein ZPC was assessed by Western blotting band-densitometry and proteomics. A nearly identical pattern of sperm receptor degradation, evident already within the first 5 min of coincubation, was observed when the spermatozoa were replaced with the isolated, enzymatically active, sperm-derived proteasomes. ZPC degradation was blocked by proteasomal inhibitors and accelerated by ubiquitin-aldehyde(UBAL), a modified ubiquitin protein that stimulates proteasomal proteolysis. Such a degradation pattern of ZPC is consistent with in vitro fertilization studies, in which proteasomal inhibitors completely blocked fertilization, and UBAL increased fertilization and polyspermy rates. Preincubation of intact zona-enclosed ova with isolated active sperm proteasomes caused digestion, abrasions and loosening of the exposed zonae, and significantly reduced the fertilization/polyspermy rates after IVF, accompanied by en-mass detachment of zona bound sperm. Thus, the sperm borne 26S proteasome is a candidate zona lysin in mammals. This new paradigm has implications for contraception and assisted reproductive technologies in humans, as well as animals. PMID:21383844
Matrix-Embedded Cytokines to Simulate Osteoarthritis-Like Cartilage Microenvironments
Murab, Sumit; Chameettachal, Shibu; Bhattacharjee, Maumita; Das, Sanskrita; Kaplan, David L.
2013-01-01
In vivo, cytokines noncovalently bind to the extracellular matrix (ECM), to facilitate intimate interactions with cellular receptors and potentiate biological activity. Development of a biomaterial that simulates this type of physiological binding and function is an exciting proposition for designing controlled advanced delivery systems for simulating in vivo conditions in vitro. We have decorated silk protein with sulfonated moieties through diazonium coupling reactions to noncovalently immobilize pro-inflammatory cytokines interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) in such a biomimetic manner. After adsorption of the cytokines to the diazonium-modified silk matrix, constant release of cytokines up to at least 3 days was demonstrated, as an initial step to simulate an osteoarthritic (OA) microenvironment in vitro. Matrix-embedded cytokines induced the formation of multiple elongated processes in chondrocytes in vitro, akin to what is seen in OA cartilage in vivo. Gene expression profiles with this in vitro tissue model of OA showed significant similarities to profiles from explanted OA cartilage tissues collected from patients who underwent total knee replacement surgery. The common markers of OA, including COL, MMP, TIMP, ADAMTS, and metallothioneins, were upregulated at least 35-fold in the in vitro model when compared to the control—non-OA in vitro generated tissue-engineered cartilage. The microarray data were validated by reverse transcriptase–polymerase chain reaction. Mechanistically, protein interaction studies indicated that TNF-α and IL-1β synergistically controlled the equilibrium between MMPs and their inhibitors, TIMPs, resulting in ECM degradation through the MAPK pathway. This study offers a promising initial step toward establishing a relevant in vitro OA disease model, which can be further modified to assess signaling mechanisms, responses to cell or drug treatments and patient-specific features. PMID:23470228
Martín-Coello, J; González, R; Crespo, C; Gomendio, M; Roldan, E R S
2008-10-01
Mouse oocytes can be obtained via superovulation or using in vitro maturation although several factors, including genetic background, may affect response. Our previous studies have identified various mouse species as models to understand the role of sexual selection on the evolution of sperm traits and function. In order to do comparative studies of sperm-oocyte interaction, we sought reliable methods for oocyte superovulation and in vitro maturation in mature females of three mouse species (genus Mus). When 5 IU pregnant mare's serum gonadotrophin (PMSG) and 5 IU human chorionic gonadotrophin (hCG) were injected 48 h apart, and oocytes collected 14 h post-hCG, good responses were obtained in Mus musculus (18+/-1.3 oocytes/female; mean+/-S.E.M.) and Mus spretus (12+/-0.8), but no ovulation was seen in Mus spicilegus. Changes in PMSG or hCG doses, or longer post-hCG intervals, did not improve results. Use of PMSG/luteinizing hormone (LH) resulted in good responses in M. musculus (19+/-1.2) and M. spretus (12+/-1.1) but not in M. spicilegus (5+/-0.9) with ovulation not increasing with higher LH doses. Follicular puncture 48 h after PMSG followed by in vitro maturation led to a high oocyte yield in the three species (M. musculus, 23+/-0.9; M. spretus, 17+/-1.1; M. spicilegus, 10+/-0.9) with a consistently high maturation rates. In vitro fertilization of both superovulated and in vitro matured oocytes resulted in a high proportion of fertilization (range: 83-87%) in the three species. Thus, in vitro maturation led to high yields in all three species. These results will allow future studies on gamete interaction in these closely related species and the role of sexual selection in gamete compatibility.
Suppression of BRCA2 by Mutant Mitochondrial DNA in Prostate Cancer
2014-07-01
growth of prostatic epithelia both in vitro and in vivo To evaluate the impact of interaction between DAB2IP and Skp2 on cell growth , MTT assay and soft...determined using western blot and actin was used as a loading control. One thousand cells /well were seeded using 96-well plate. In vitro cell growth ...SEM. (E) 1 × 103 cells of C4-2 shSkp2 cells and its control were seeded at 96-well plate. In vitro cell growth was determined using
Jensen, Todd M
2018-03-09
Stepfamilies are an increasingly common family form, many of which are headed by a resident mother and stepfather. Stepfather-child relationships exert notable influence on stepfamily stability and individual well-being. Although various stepfather roles have been observed, more research is warranted by which stepfather-child interactions are explored holistically and across a variety of life domains (e.g., recreational, personal, academic, and disciplinary). Thus, the primary purpose of the current study is to explore varying interactional patterns between youth and their stepfathers. A latent class analysis is conducted using a representative sample of 1,183 youth (53% female; mean age = 15.64 years, SD = 1.70 years; 62% non-Hispanic White) residing in mother-stepfather families from Wave I of the National Longitudinal Study of Adolescent to Adult Health. Latent-class enumeration processes support a four-class solution, with latent classes representing inactive, academically oriented, casually connected, and versatile and involved patterns of youth-stepparent interaction. Notable differences and similarities are evident across patterns with respect to family relationship quality, youth well-being, and socio-demographic characteristics. Differences are most stark between the inactive and versatile and involved patterns. Ultimately, the results showcase notable variation in youth-stepparent interactional patterns, and one size does not necessarily fit all stepfamilies. Family practitioners should be mindful of variation in youth-stepparent interactional patterns and assist stepfamilies in seeking out stepparent-child dynamics that are most compatible with the needs and dynamics of the larger family system. © 2018 Family Process Institute.
Jorritsma, Wiard; Cnossen, Fokie; Dierckx, Rudi A; Oudkerk, Matthijs; van Ooijen, Peter M A
2016-01-01
To perform a post-deployment usability evaluation of a radiology Picture Archiving and Communication System (PACS) client based on pattern mining of user interaction log data, and to assess the usefulness of this approach compared to a field study. All user actions performed on the PACS client were logged for four months. A data mining technique called closed sequential pattern mining was used to automatically extract frequently occurring interaction patterns from the log data. These patterns were used to identify usability issues with the PACS. The results of this evaluation were compared to the results of a field study based usability evaluation of the same PACS client. The interaction patterns revealed four usability issues: (1) the display protocols do not function properly, (2) the line measurement tool stays active until another tool is selected, rather than being deactivated after one use, (3) the PACS's built-in 3D functionality does not allow users to effectively perform certain 3D-related tasks, (4) users underuse the PACS's customization possibilities. All usability issues identified based on the log data were also found in the field study, which identified 48 issues in total. Post-deployment usability evaluation based on pattern mining of user interaction log data provides useful insights into the way users interact with the radiology PACS client. However, it reveals few usability issues compared to a field study and should therefore not be used as the sole method of usability evaluation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Dagne, Getachew A.; Brown, C. Hendricks; Howe, George W.
2007-01-01
This article presents new methods for modeling the strength of association between multiple behaviors in a behavioral sequence, particularly those involving substantively important interaction patterns. Modeling and identifying such interaction patterns becomes more complex when behaviors are assigned to more than two categories, as is the case…
Measuring patterns in team interaction sequences using a discrete recurrence approach.
Gorman, Jamie C; Cooke, Nancy J; Amazeen, Polemnia G; Fouse, Shannon
2012-08-01
Recurrence-based measures of communication determinism and pattern information are described and validated using previously collected team interaction data. Team coordination dynamics has revealed that"mixing" team membership can lead to flexible interaction processes, but keeping a team "intact" can lead to rigid interaction processes. We hypothesized that communication of intact teams would have greater determinism and higher pattern information compared to that of mixed teams. Determinism and pattern information were measured from three-person Uninhabited Air Vehicle team communication sequences over a series of 40-minute missions. Because team members communicated using push-to-talk buttons, communication sequences were automatically generated during each mission. The Composition x Mission determinism effect was significant. Intact teams' determinism increased over missions, whereas mixed teams' determinism did not change. Intact teams had significantly higher maximum pattern information than mixed teams. Results from these new communication analysis methods converge with content-based methods and support our hypotheses. Because they are not content based, and because they are automatic and fast, these new methods may be amenable to real-time communication pattern analysis.
NASA Astrophysics Data System (ADS)
Manfait, Michel; Alix, Alain J. P.; Butour, Jean-Luc; Labarre, Jean-François; Sournies, François
1981-02-01
A Raman investigation of hexaziridinocyclotriphosphazene3D¯NA interactions in vitro suggests that the alkylating sites on DNA for this powerful antitumour agent are the N(7) and NH 2 positions of adenine.
Bostrom, Mathias; O'Keefe, Regis
2009-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately. PMID:18612016
Bostrom, Mathias; O'Keefe, Regis
2008-01-01
Understanding the complex cellular and tissue mechanisms and interactions resulting in periprosthetic osteolysis requires a number of experimental approaches, each of which has its own set of advantages and limitations. In vitro models allow for the isolation of individual cell populations and have furthered our understanding of particle-cell interactions; however, they are limited because they do not mimic the complex tissue environment in which multiple cell interactions occur. In vivo animal models investigate the tissue interactions associated with periprosthetic osteolysis, but the choice of species and whether the implant system is subjected to mechanical load or to unloaded conditions are critical in assessing whether these models can be extrapolated to the clinical condition. Rigid analysis of retrieved tissue from clinical cases of osteolysis offers a different approach to studying the biologic process of osteolysis, but it is limited in that the tissue analyzed represents the end-stage of this process and, thus, may not reflect this process adequately.
Vollnberg, Anke; Prajakwong, Somsak; Sirichaisinthop, Jeeraphat; Wiedermann, Gerhard; Wernsdorfer, Gunther; Wernsdorfer, Walther H
2003-01-01
The blood schizontocidal, pharmacodynamic interaction between tafenoquine (WR 238605--a 5-phenoxyprimaquine derivative--and chloroquine was investigated, using an in-vitro test for the inhibition of schizont maturation, in 15 fresh isolates of Plasmodium falciparum that originated from northwestern Thailand and neighbouring Myanmar. In this area the parasite is highly resistant to chloroquine. The geometric mean cut-off concentrations of schizont maturation for tafenoquine and chloroquine were 5261 nM and 7638 nM, respectively. With a mixture of tafenoquine and chloroquine, the mean cut-off concentration was 5252 nM, corresponding to 389 nM tafenoquine + 4863 nM chloroquine. Further analysis showed that the interaction between tafenoquine and chloroquine was additive within the range of EC20 and EC77. At concentrations higher than the EC77, interaction was moderately synergistic. While tafenoquine did not reverse the resistance to chloroquine to the degree of clinically relevant sensitivity, there was evidence that the blood schizontocidal efficacy of tafenoquine would be enhanced in the presence of chloroquine.
Durak, Agata; Gawlik-Dziki, Urszula; Pecio, Lukasz
2014-11-01
This paper evaluates the potential bioaccessibility and interactions between antiradical and anti-inflammatory compounds from coffee and cinnamon. Results obtained for whole plant material extracts were compared with those for chlorogenic and cinnamic acids (the main bioactive constituents of the study material). All samples, coffee, cinnamon and a mixture of the two showed abilities to scavenge free radicals and to inhibit lipoxygenase (LOX) activity. Both activities increased after simulated gastrointestinal digestion. In the mixture antiradical phytochemicals acted antagonistically - isoboles adopted the convex form. The same interactions were determined for chemical standards. The water-extractable LOX inhibitors acted synergistically - the isobole curve was "concave". The same type of interaction was determined for standard compounds. Interestingly, after digestion in vitro a slight antagonism in the action of LOX inhibitors was observed. The results show that the food matrix and/or its changes during digestion may play an important role in creating the biological properties. Copyright © 2014 Elsevier Ltd. All rights reserved.
Haemmerli, G; Sträuli, P
1981-05-15
The motile behavior of six cell lines derived from human squamous carcinomas (two from the larynx, four from the tongue) was studied by cinematography under phase- and reflection-contrast illumination. The recorded cell activities consist in spreading, stationary and translocation motility, and aggregate formation. Within this common pattern, quantitative modifications ("sub-pattern") are stable properties of the individual cells lines. Such modifications are particularly evident with regard to the dynamic texture of the aggregates which ranges from loose, netlike structures to compact islands with smooth borders. Accordingly, the intensity of cell traffic within and around the aggregates varies considerably. It is discussed to what extent the in vitro motility of the carcinoma cell populations reflects their behavior in the organism and thus the significance of cell movements for invasion.
Guiding tissue regeneration with ultrasound in vitro and in vivo
NASA Astrophysics Data System (ADS)
Dalecki, Diane; Comeau, Eric S.; Raeman, Carol H.; Child, Sally Z.; Hobbs, Laura; Hocking, Denise C.
2015-05-01
Developing new technologies that enable the repair or replacement of injured or diseased tissues is a major focus of regenerative medicine. This paper will discuss three ultrasound technologies under development in our laboratories to guide tissue regeneration both in vitro and in vivo. A critical obstacle in tissue engineering is the need for rapid and effective tissue vascularization strategies. To address this challenge, we are developing acoustic patterning techniques for microvascular tissue engineering. Acoustic radiation forces associated with ultrasound standing wave fields provide a rapid, non-invasive approach to spatially pattern cells in three dimensions without affecting cell viability. Acoustic patterning of endothelial cells leads to the rapid formation of microvascular networks throughout the volumes of three-dimensional hydrogels, and the morphology of the resultant microvessel networks can be controlled by design of the ultrasound field. A second technology under development uses ultrasound to noninvasively control the microstructure of collagen fibers within engineered tissues. The microstructure of extracellular matrix proteins provides signals that direct cell functions critical to tissue regeneration. Thus, controlling collagen microfiber structure with ultrasound provides a noninvasive approach to regulate the mechanical properties of biomaterials and control cellular responses. The third technology employs therapeutic ultrasound to enhance the healing of chronic wounds. Recent studies demonstrate increased granulation tissue thickness and collagen deposition in murine dermal wounds exposed to pulsed ultrasound. In summary, ultrasound technologies offer noninvasive approaches to control cell behaviors and extracellular matrix organization and thus hold great promise to advance tissue regeneration in vitro and in vivo.
Misalová, A; Durkovic, J; Mamonová, M; Priwitzer, T; Lengyelová, A; Hladká, D; Lux, A
2009-09-01
Changes in anatomical organisation of the leaf, photosynthetic performance and wood formation were examined to evaluate the temporal and spatial patterns of acclimatisation of micropropagated slow-growing black mulberry (Morus nigra L.) plantlets to the ex vitro environment. Leaf structure differentiation, the rates of net photosynthesis (P(n)), transpiration (E) and stomatal conductance (g(s)), and secondary xylem growth were determined in the course of a 56-day acclimatisation. Differentiation of palisade parenchyma was observed 7 days after transfer. At this stage, the rates of P(n), E and g(s) reached maximum values, after which the rates of all three gas exchange parameters gradually decreased. The highest proportion of woody area occupied by vessels was also observed 7 days after transfer. An important feature of developing woody tissue is the difference in patterns of vessel distribution from the characteristic differentiation patterns of earlywood and latewood vessels in mature wood of ring-porous trees. Vessels with lumen areas over 3000 microm(2) were only differentiated in acclimatised plantlets, whereas vessels in stems sampled on days 0 and 7 had very small lumen areas of up to 560 microm(2). Full acclimatisation, observed 56 days after transfer to the ex vitro environment, was associated with the rapid growth of new in vivo formed leaves, very low rates of E and g(s), and much increased secondary xylem tissue within the stem area.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies.
Suri, Shalu; Singh, Ankur; Nguyen, Anh H; Bratt-Leal, Andres M; McDevitt, Todd C; Lu, Hang
2013-12-07
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments.
Microfluidic-based patterning of embryonic stem cells for in vitro development studies
Suri, Shalu; Singh, Ankur; Nguyen, Anh H.; Bratt-Leal, Andres M.; McDevitt, Todd C.
2013-01-01
In vitro recapitulation of mammalian embryogenesis and examination of the emerging behaviours of embryonic structures require both the means to engineer complexity and accurately assess phenotypes of multicellular aggregates. Current approaches to study multicellular populations in 3D configurations are limited by the inability to create complex (i.e. spatially heterogeneous) environments in a reproducible manner with high fidelity thus impeding the ability to engineer microenvironments and combinations of cells with similar complexity to that found during morphogenic processes such as development, remodelling and wound healing. Here, we develop a multicellular embryoid body (EB) fusion technique as a higher-throughput in vitro tool, compared to a manual assembly, to generate developmentally relevant embryonic patterns. We describe the physical principles of the EB fusion microfluidic device design; we demonstrate that >60 conjoined EBs can be generated overnight and emulate a development process analogous to mouse gastrulation during early embryogenesis. Using temporal delivery of bone morphogenic protein 4 (BMP4) to embryoid bodies, we recapitulate embryonic day 6.5 (E6.5) during mouse embryo development with induced mesoderm differentiation in murine embryonic stem cells leading to expression of Brachyury-T-green fluorescent protein (T-GFP), an indicator of primitive streak development and mesoderm differentiation during gastrulation. The proposed microfluidic approach could be used to manipulate hundreds or more of individual embryonic cell aggregates in a rapid fashion, thereby allowing controlled differentiation patterns in fused multicellular assemblies to generate complex yet spatially controlled microenvironments. PMID:24113509
Active Curved Polymers Form Vortex Patterns on Membranes.
Denk, Jonas; Huber, Lorenz; Reithmann, Emanuel; Frey, Erwin
2016-04-29
Recent in vitro experiments with FtsZ polymers show self-organization into different dynamic patterns, including structures reminiscent of the bacterial Z ring. We model FtsZ polymers as active particles moving along chiral, circular paths by Brownian dynamics simulations and a Boltzmann approach. Our two conceptually different methods point to a generic phase behavior. At intermediate particle densities, we find self-organization into vortex structures including closed rings. Moreover, we show that the dynamics at the onset of pattern formation is described by a generalized complex Ginzburg-Landau equation.
Engineering epithelial-stromal interactions in vitro for toxicology assessment.
Belair, David G; Abbott, Barbara D
2017-05-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. Published by Elsevier B.V.
Engineering epithelial-stromal interactions in vitro for toxicology assessment
Belair, David G.; Abbott, Barbara D.
2018-01-01
Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue homeostasis. Epithelial-stromal interactions (ESIs) have historically been examined using mammalian models and ex vivo tissue recombination. Although these approaches have elucidated signaling mechanisms underlying embryonic morphogenesis processes and adult mammalian epithelial tissue function, they are limited by the availability of tissue, low throughput, and human developmental or physiological relevance. In this review, we describe how bioengineered ESIs, using either human stem cells or co-cultures of human primary epithelial and stromal cells, have enabled the development of human in vitro epithelial tissue models that recapitulate the architecture, phenotype, and function of adult human epithelial tissues. We discuss how the strategies used to engineer mature epithelial tissue models in vitro could be extrapolated to instruct the design of organotypic culture models that can recapitulate the structure of embryonic ectodermal tissues and enable the in vitro assessment of events critical to organ/tissue morphogenesis. Given the importance of ESIs towards normal epithelial tissue development and function, such models present a unique opportunity for toxicological screening assays to incorporate ESIs to assess the impact of chemicals on mature and developing epidermal tissues. PMID:28285100
Engineering stromal-epithelial interactions in vitro for ...
Background: Crosstalk between epithelial and stromal cells drives the morphogenesis of ectodermal organs during development and promotes normal mature adult epithelial tissue function. Epithelial-mesenchymal interactions (EMIs) have been examined using mammalian models, ex vivo tissue recombination, and in vitro co-cultures. Although these approaches have elucidated signaling mechanisms underlying morphogenetic processes and adult mammalian epithelial tissue function, they are limited by the availability of human tissue, low throughput, and human developmental or physiological relevance. Objectives: Bioengineering strategies to promote EMIs using human epithelial and mesenchymal cells have enabled the development of human in vitro models of adult epidermal and glandular tissues. In this review, we describe recent bioengineered models of human epithelial tissue and organs that can instruct the design of organotypic models of human developmental processes.Methods: We reviewed current bioengineering literature and here describe how bioengineered EMIs have enabled the development of human in vitro epithelial tissue models.Discussion: Engineered models to promote EMIs have recapitulated the architecture, phenotype, and function of adult human epithelial tissue, and similar engineering principles could be used to develop models of developmental morphogenesis. We describe how bioengineering strategies including bioprinting and spheroid culture could be implemented to
Mikkat, U; Damm, I; Schröder, G; Schmidt, K; Wirth, C; Weber, H; Jonas, L
1998-05-01
Lectins are able to bind to cholecystokinin (CCK) receptors and other glycosylated membrane proteins. The lectins wheat germ agglutinin (WGA) and Ulex europaeus agglutinin (UEA-I) are used for affinity chromatography to isolate the highly glycosylated CCK-A receptor of pancreatic acinar cells. According to the working hypothesis that lectin binding to the CCK receptor should alter the ligand-receptor interaction, the effect of WGA and UEA-I on CCK-8-induced enzyme secretion was studied on isolated rat pancreatic acini in vitro. In vitro both lectins showed a dosage-dependent inhibition of CCK-8-induced alpha-amylase secretion of acini over 60 min. WGA showed a strong inhibitory effect on amylase secretion, approximately 40%, in vitro. UEA-I caused a smaller, but significant decrease, approximately 20%, in enzyme secretion of isolated acini. Additionally, both lectins inhibited cerulein/secretin- or cerulein-induced pancreatic secretion of rats in vivo, but not after secretin alone. The results are discussed with respect to a possible influence of both lectins on the interaction of CCK or cerulein with the CCK-A receptor.
Wyart, Claire; Ybert, Christophe; Bourdieu, Laurent; Herr, Catherine; Prinz, Christelle; Chatenay, Didier
2002-06-30
The use of ordered neuronal networks in vitro is a promising approach to study the development and the activity of small neuronal assemblies. However, in previous attempts, sufficient growth control and physiological maturation of neurons could not be achieved. Here we describe an original protocol in which polylysine patterns confine the adhesion of cellular bodies to prescribed spots and the neuritic growth to thin lines. Hippocampal neurons in these networks are maintained healthy in serum free medium up to 5 weeks in vitro. Electrophysiology and immunochemistry show that neurons exhibit mature excitatory and inhibitory synapses and calcium imaging reveals spontaneous activity of neurons in isolated networks. We demonstrate that neurons in these geometrical networks form functional synapses preferentially to their first neighbors. We have, therefore, established a simple and robust protocol to constrain both the location of neuronal cell bodies and their pattern of connectivity. Moreover, the long term maintenance of the geometry and the physiology of the networks raises the possibility of new applications for systematic screening of pharmacological agents and for electronic to neuron devices.
Predicting human genetic interactions from cancer genome evolution.
Lu, Xiaowen; Megchelenbrink, Wout; Notebaart, Richard A; Huynen, Martijn A
2015-01-01
Synthetic Lethal (SL) genetic interactions play a key role in various types of biological research, ranging from understanding genotype-phenotype relationships to identifying drug-targets against cancer. Despite recent advances in empirical measuring SL interactions in human cells, the human genetic interaction map is far from complete. Here, we present a novel approach to predict this map by exploiting patterns in cancer genome evolution. First, we show that empirically determined SL interactions are reflected in various gene presence, absence, and duplication patterns in hundreds of cancer genomes. The most evident pattern that we discovered is that when one member of an SL interaction gene pair is lost, the other gene tends not to be lost, i.e. the absence of co-loss. This observation is in line with expectation, because the loss of an SL interacting pair will be lethal to the cancer cell. SL interactions are also reflected in gene expression profiles, such as an under representation of cases where the genes in an SL pair are both under expressed, and an over representation of cases where one gene of an SL pair is under expressed, while the other one is over expressed. We integrated the various previously unknown cancer genome patterns and the gene expression patterns into a computational model to identify SL pairs. This simple, genome-wide model achieves a high prediction power (AUC = 0.75) for known genetic interactions. It allows us to present for the first time a comprehensive genome-wide list of SL interactions with a high estimated prediction precision, covering up to 591,000 gene pairs. This unique list can potentially be used in various application areas ranging from biotechnology to medical genetics.
sc-PDB-Frag: a database of protein-ligand interaction patterns for Bioisosteric replacements.
Desaphy, Jérémy; Rognan, Didier
2014-07-28
Bioisosteric replacement plays an important role in medicinal chemistry by keeping the biological activity of a molecule while changing either its core scaffold or substituents, thereby facilitating lead optimization and patenting. Bioisosteres are classically chosen in order to keep the main pharmacophoric moieties of the substructure to replace. However, notably when changing a scaffold, no attention is usually paid as whether all atoms of the reference scaffold are equally important for binding to the desired target. We herewith propose a novel database for bioisosteric replacement (scPDBFrag), capitalizing on our recently published structure-based approach to scaffold hopping, focusing on interaction pattern graphs. Protein-bound ligands are first fragmented and the interaction of the corresponding fragments with their protein environment computed-on-the-fly. Using an in-house developed graph alignment tool, interaction patterns graphs can be compared, aligned, and sorted by decreasing similarity to any reference. In the herein presented sc-PDB-Frag database ( http://bioinfo-pharma.u-strasbg.fr/scPDBFrag ), fragments, interaction patterns, alignments, and pairwise similarity scores have been extracted from the sc-PDB database of 8077 druggable protein-ligand complexes and further stored in a relational database. We herewith present the database, its Web implementation, and procedures for identifying true bioisosteric replacements based on conserved interaction patterns.
Schiffmann, D A; White, J H; Cooper, A; Nutley, M A; Harding, S E; Jumel, K; Solari, R; Ray, K P; Gay, N J
1999-09-07
In Drosophila, the Toll receptor signaling pathway is required for embryonic dorso-ventral patterning and at later developmental stages for innate immune responses. It is thought that dimerization of the receptor by binding of the ligand spätzle causes the formation of a postreceptor activation complex at the cytoplasmic surface of the membrane. Two components of this complex are the adaptor tube and protein kinase pelle. These proteins both have "death domains", protein interaction motifs found in a number of signaling pathways, particularly those involved in apoptotic cell death. It is thought that pelle is bound by tube during formation of the activation complexes, and that this interaction is mediated by the death domains. In this paper, we show using the yeast two-hybrid system that the wild-type tube and pelle death domains bind together. Mutant tube proteins which do not support signaling in the embryo are also unable to bind pelle in the 2-hybrid assay. We have purified proteins corresponding to the death domains of tube and pelle and show that these form corresponding heterodimeric complexes in vitro. Partial proteolysis reveals a smaller core consisting of the minimal death domain sequences. We have studied the tube/pelle interaction with the techniques of surface plasmon resonance, analytical ultracentrifugation and isothermal titration calorimetry. These measurements produce a value of K(d) for the complex of about 0.5 microM.
Allen, A M; Chai, S Y; Clevers, J; McKinley, M J; Paxinos, G; Mendelsohn, F A
1988-03-08
Angiotensin II receptor and angiotensin converting enzyme distributions in the human medulla oblongata were localised by quantitative in vitro autoradiography. Angiotensin II receptors were labelled with the antagonist analogue 125I-[Sar1, Ile8] AII while angiotensin converting enzyme was labelled with 125I-351A, a derivative of the specific converting enzyme inhibitor, lisinopril. Angiotensin II receptor binding and angiotensin converting enzyme are present in high concentrations in the nucleus of the solitary tract, the dorsal motor nucleus of vagus, the rostral and caudal ventrolateral reticular nucleus, and in a band connecting the dorsal and ventral regions. In the rostral and caudal ventrolateral reticular nucleus, angiotensin II receptors are distributed in a punctate pattern that registers with neuronal cell bodies. The distribution and density of these cell bodies closely resemble those of catecholamine-containing neurones mapped by others. In view of the known interactions of angiotensin II with both central and peripheral catecholamine-containing neurons of laboratory animals, the current anatomical findings suggest similar interactions between these neuroactive compounds in the human central nervous system. The presence of angiotensin II receptors and angiotensin converting enzyme in the nucleus of the solitary tract, dorsal motor nucleus of vagus, and rostral and caudal ventrolateral reticular nucleus demonstrates sites for central angiotensin II to exert its known actions on vasopressin release and autonomic functions including blood pressure control. These data also suggest a possible interaction between angiotensin II and central catecholeminergic systems.
Strong inter-population cooperation leads to partner intermixing in microbial communities
Momeni, Babak; Brileya, Kristen A.; Fields, Matthew W.; ...
2013-01-22
Patterns of spatial positioning of individuals within microbial communities are often critical to community function. However, understanding patterning in natural communities is hampered by the multitude of cell–cell and cell–environment interactions as well as environmental variability. Here, through simulations and experiments on communities in defined environments, we examined how ecological interactions between two distinct partners impacted community patterning. We found that in strong cooperation with spatially localized large fitness benefits to both partners, a unique pattern is generated: partners spatially intermixed by appearing successively on top of each other, insensitive to initial conditions and interaction dynamics. Intermixing was experimentally observedmore » in two obligatory cooperative systems: an engineered yeast community cooperating through metabolite-exchanges and a methane-producing community cooperating through redox-coupling. Even in simulated communities consisting of several species, most of the strongly-cooperating pairs appeared intermixed. Thus, when ecological interactions are the major patterning force, strong cooperation leads to partner intermixing.« less
Patterson, Larissa B.; Bain, Emily J.; Parichy, David M.
2014-01-01
Fishes have diverse pigment patterns, yet mechanisms of pattern evolution remain poorly understood. In zebrafish, Danio rerio, pigment-cell autonomous interactions generate dark stripes of melanophores that alternate with light interstripes of xanthophores and iridophores. Here, we identify mechanisms underlying the evolution of a uniform pattern in D. albolineatus in which all three pigment cell classes are intermingled. We show that in this species xanthophores differentiate precociously over a wider area, and that cis regulatory evolution has increased expression of xanthogenic Colony Stimulating Factor-1 (Csf1). Expressing Csf1 similarly in D. rerio has cascading effects, driving the intermingling of all three pigment cell classes and resulting in the loss of stripes, as in D. albolineatus. Our results identify novel mechanisms of pattern development and illustrate how pattern diversity can be generated when a core network of pigment-cell autonomous interactions is coupled with changes in pigment cell differentiation. PMID:25374113
Between War and Peace: Interactional Patterns of Couples under Prolonged Uncertainty.
ERIC Educational Resources Information Center
Ben-David, Amith; Lavee, Yoav
1996-01-01
Explores how global and political issues affect microsystems like the marital unit. A variety of interactional patterns emerged in the observation of 30 couples marital interactions during a prolonged stressful situation. Couples reporting a deterioration of their relationship had more disagreements regarding the meaning of a peace process and its…
ERIC Educational Resources Information Center
Mitrani, Victoria B.; Feaster, Daniel J.; McCabe, Brian E.; Czaja, Sara J.; Szapocznik, Jose
2005-01-01
Purpose: This study adapted the Structural Family Systems Ratings (SFSR), an observational measure of family interactions, for dementia caregivers. This article presents the development of the SFSR-Dementia Caregiver adaptation (SFSR-DC) and examines relationships between specific family-interaction patterns and caregiver distress. Design and…
Pattern of Non-Task Interactions in Asynchronous Computer-Supported Collaborative Learning Courses
ERIC Educational Resources Information Center
Abedin, Babak; Daneshgar, Farhad; D'Ambra, John
2014-01-01
Despite the importance of the non-task interactions in computer-supported collaborative learning (CSCL) environments as emphasized in the literature, few studies have investigated online behavior of people in the CSCL environments. This paper studies the pattern of non-task interactions among postgraduate students in an Australian university. The…