In-vitro engineering of novel bioactivity in the natural enzymes
NASA Astrophysics Data System (ADS)
Tiwari, Vishvanath
2016-10-01
Enzymes catalyze various biochemical functions with high efficiency and specificity. In-vitro design of the enzyme leads to novel bioactivity in this natural biomolecule that give answers of some vital questions like crucial residues in binding with substrate, molecular evolution, cofactor specificity etc. Enzyme engineering technology involves directed evolution, rational designing, semi-rational designing and structure-based designing using chemical modifications. Similarly, combined computational and in-vitro evolution approaches together help in artificial designing of novel bioactivity in the natural enzyme. DNA shuffling, error prone PCR and staggered extension process are used to artificially redesign active site of enzyme, which can alter its efficiency and specificity. Modifications of the enzyme can lead to the discovery of new path of molecular evolution, designing of efficient enzymes, locating active sites and crucial residues, shift in substrate and cofactor specificity. The methods and thermodynamics of in-vitro designing of the enzyme are also discussed. Similarly, engineered thermophilic and psychrophilic enzymes attain substrate specificity and activity of mesophilic enzymes that may also be beneficial for industry and therapeutics.
Workshop on Molecular Evolution
NASA Technical Reports Server (NTRS)
Cummings, Michael P.
2004-01-01
Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.
Ghalayini, Mohamed; Magnan, Mélanie; Glodt, Jérémy; Pintard, Coralie; Dion, Sara; Denamur, Erick; Tenaillon, Olivier
2017-01-01
Though microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin resistant strain 536, in the digestive tract of streptomycin treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the non-random associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that “evolve and sequence” approach coupled to an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment. PMID:27661780
Non-unity molecular heritability demonstrated by continuous evolution in vitro
NASA Technical Reports Server (NTRS)
Schmitt, T.; Lehman, N.
1999-01-01
INTRODUCTION: When catalytic RNA is evolved in vitro, the molecule's chemical reactivity is usually the desired selection target. Sometimes the phenotype of a particular RNA molecule cannot be unambiguously determined from its genotype, however. This can occur if a nucleotide sequence can adopt multiple folded states, an example of non-unity heritability (i.e. one genotype gives rise to more than one phenotype). In these cases, more rounds of selection are required to achieve a phenotypic shift. We tested the influence of non-unity heritability at the molecular level by selecting for variants of a ligase ribozyme via continuous evolution. RESULTS: During 20 bursts of continuous evolution of a 152-nucleotide ligase ribozyme in which the Mg2+ concentration was periodically lowered, a nine-error variant of the starting 'wild-type' molecule became dominant in the last eight bursts. This variant appears to be more active than the wild type. Kinetic analyses of the mutant suggest that it may not possess a higher first-order catalytic rate constant, however. Examination of the multiple RNA conformations present under the continuous evolution conditions suggests that the mutant is superior to the wild type because it is less likely to misfold into inactive conformers. CONCLUSIONS: The evolution of genotypes that are more likely to exhibit a particular phenotype is an epiphenomenon usually ascribed only to complex living systems. We show that this can occur at the molecular level, demonstrating that in vitro systems may have more life-like characteristics than previously thought, and providing additional support for an RNA world.
Zou, Wei; Sissons, Mike; Warren, Frederick J; Gidley, Michael J; Gilbert, Robert G
2016-11-05
The roles that the compact structure and proteins in pasta play in retarding evolution of starch molecular structure during in vitro digestion are explored, using four types of cooked samples: whole pasta, pasta powder, semolina (with proteins) and extracted starch without proteins. These were subjected to in vitro digestion with porcine α-amylase, collecting samples at different times and characterizing the weight distribution of branched starch molecules using size-exclusion chromatography. Measurement of α-amylase activity showed that a protein (or proteins) from semolina or pasta powder interacted with α-amylase, causing reduced enzymatic activity and retarding digestion of branched starch molecules with hydrodynamic radius (Rh)<100nm; this protein(s) was susceptible to proteolysis. Thus the compact structure of pasta protects the starch and proteins in the interior of the whole pasta, reducing the enzymatic degradation of starch molecules, especially for molecules with Rh>100nm. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wang, Xue-Feng; Liu, Qiang; Wang, Yu-Hong; Wang, Shuai; Chen, Jie; Lin, Yue-Zhi; Ma, Jian; Zhou, Jian-Hua
2018-01-01
ABSTRACT The equine infectious anemia virus (EIAV) attenuated vaccine was developed by long-term passaging of a field-isolated virulent strain in cross-species hosts, followed by successive cultivation in cells in vitro. To explore the molecular mechanism underlying the evolution of the EIAV attenuated vaccine, a systematic study focusing on long-terminal-repeat (LTR) variation in numerous virus strains ranging from virulent EIAV to attenuated EIAV was performed over time both in vitro and in vivo. Two hypervariable regions were identified within the U3 region in the enhancer region (EHR) and the negative regulatory element (NRE) and within the R region in the transcription start site (TSS) and the Tat-activating region (TAR). Among these sites, variation in the U3 region resulted in the formation of additional transcription factor binding sites; this variation of the in vitro-adapted strains was consistent with the loss of pathogenicity. Notably, the same LTR variation pattern was observed both in vitro and in vivo. Generally, the LTR variation in both the attenuated virus and the virulent strain fluctuated over time in vivo. Interestingly, the attenuated-virus-specific LTR variation was also detected in horses infected with the virulent strain, supporting the hypothesis that the evolution of an attenuated virus might have involved branching from EIAV quasispecies. This hypothesis was verified by phylogenetic analysis. The present systematic study examining the molecular evolution of attenuated EIAV from EIAV quasispecies may provide an informative model reflecting the evolution of similar lentiviruses. IMPORTANCE The attenuated EIAV vaccine was the first lentiviral vaccine used to successfully control for equine infectious anemia in China. This vaccine provides an important reference for studying the relationship between EIAV gene variation and changes in biological characteristics. Importantly, the vaccine provides a model for the investigation of lentiviral quasispecies evolution. This study followed the “natural” development of the attenuated EIAV vaccine by use of a systematic analysis of LTR evolution in vitro and in vivo. The results revealed that the increase in LTR variation with passaging was accompanied by a decrease in virulence, which indicated that LTR variability might parallel the attenuation of virulence. Interestingly, the attenuated-virus-specific LTR variation was also detected in virulent-strain-infected horses, a finding consistent with those of previous investigations of gp90 and S2 evolution. Therefore, we present a hypothesis that the evolution of the attenuated virus may involve branching from EIAV quasispecies present in vivo. PMID:29386282
In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display
Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain
2014-01-01
The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763
A molecular description of the evolution of resistance
NASA Technical Reports Server (NTRS)
Ordoukhanian, P.; Joyce, G. F.
1999-01-01
BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.
Can clues from evolution unlock the molecular development of the cerebellum?
Butts, Thomas; Chaplin, Natalie; Wingate, Richard J T
2011-02-01
The cerebellum sits at the rostral end of the vertebrate hindbrain and is responsible for sensory and motor integration. Owing to its relatively simple architecture, it is one of the most powerful model systems for studying brain evolution and development. Over the last decade, the combination of molecular fate mapping techniques in the mouse and experimental studies, both in vitro and in vivo, in mouse and chick have significantly advanced our understanding of cerebellar neurogenesis in space and time. In amniotes, the most numerous cell type in the cerebellum, and indeed the brain, is the cerebellar granule neurons, and these are born from a transient secondary proliferative zone, the external granule layer (EGL), where proliferation is driven by sonic hedgehog signalling and causes cerebellar foliation. Recent studies in zebrafish and sharks have shown that while the molecular mechanisms of neurogenesis appear conserved across vertebrates, the EGL as a site of shh-driven transit amplification is not, and is therefore implicated as a key amniote innovation that facilitated the evolution of the elaborate foliated cerebella found in birds and mammals. Ellucidating the molecular mechanisms underlying the origin of the EGL in evolution could have significant impacts on our understanding of the molecular details of cerebellar development.
Walter, N G; Strunk, G
1994-01-01
Strand displacement amplification is an isothermal DNA amplification reaction based on a restriction endonuclease nicking its recognition site and a polymerase extending the nick at its 3' end, displacing the downstream strand. The reaction resembles rolling-circle replication of single-stranded phages and small plasmids. The displaced sense strand serves as target for an antisense reaction and vice versa, resulting in exponential growth and the autocatalytic nature of this in vitro reaction as long as the template is the limiting agent. We describe the optimization of strand displacement amplification for in vitro evolution experiments under serial transfer conditions. The reaction was followed and controlled by use of the fluorescent dye thiazole orange binding to the amplified DNA. We were able to maintain exponential growth conditions with a doubling time of 3.0 min throughout 100 transfers or approximately 350 molecular generations by using an automatic handling device. Homology of in vitro amplification with rolling-circle replication was mirrored by the occurring evolutionary processes. Deletion events most likely caused by a slipped mispairing mechanism as postulated for in vivo replication took place. Under our conditions, the mutation rate was high and a molecular quasi-species formed with a mutant lacking internal hairpin formation ability and thus outgrowing all other species under dGTP/dCTP deficiency. Images PMID:8058737
Targeting the Human Complement Membrane Attack Complex to Selectively Kill Prostate Cancer Cells
2013-10-01
prostate cancer cells in vitro . Evaluate CD59 expression in human prostate cancer microarrays. Aim 4: Evaluate toxicity and efficacy of the lead PAC5...fragment in vitro . Since PSA is the major chymotrypsin-like serine protease in the seminal plasma and prostatic fluid, we hypothesized that PSA was...that the evolution -related complement protein C5, but not C4, is a substrate of PSA as well. *Department of Pharmacology and Molecular Sciences, The
Partitioning the Fitness Components of RNA Populations Evolving In Vitro
Díaz Arenas, Carolina; Lehman, Niles
2013-01-01
All individuals in an evolving population compete for resources, and their performance is measured by a fitness metric. The performance of the individuals is relative to their abilities and to the biotic surroundings – the conditions under which they are competing – and involves many components. Molecules evolving in a test tube can also face complex environments and dynamics, and their fitness measurements should reflect the complexity of various contributing factors as well. Here, the fitnesses of a set of ligase ribozymes evolved by the continuous in vitro evolution system were measured. During these evolution cycles there are three different catalytic steps, ligation, reverse transcription, and forward transcription, each with a potential differential influence on the total fitness of each ligase. For six distinct ligase ribozyme genotypes that resulted from continuous evolution experiments, the rates of reaction were measured for each catalytic step by tracking the kinetics of enzymes reacting with their substrates. The reaction products were analyzed for the amount of product formed per time. Each catalytic step of the evolution cycle was found to have a differential incidence in the total fitness of the ligases, and therefore the total fitness of any ligase cannot be inferred from only one catalytic step of the evolution cycle. Generally, the ribozyme-directed ligation step tends to impart the largest effect on overall fitness. Yet it was found that the ligase genotypes have different absolute fitness values, and that they exploit different stages of the overall cycle to gain a net advantage. This is a new example of molecular niche partitioning that may allow for coexistence of more than one species in a population. The dissection of molecular events into multiple components of fitness provides new insights into molecular evolutionary studies in the laboratory, and has the potential to explain heretofore counterintuitive findings. PMID:24391957
Primate-specific evolution of an LDLR enhancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian-Fei; Prabhakar, Shyam; Wang, Qianben
2005-12-01
Sequence changes in regulatory regions have often been invoked to explain phenotypic divergence among species, but molecular examples of this have been difficult to obtain. In this study we identified an anthropoid primate-specific sequence element that contributed to the regulatory evolution of the low-density lipoprotein receptor. Using a combination of close and distant species genomic sequence comparisons coupled with in vivo and in vitro studies, we found that a functional cholesterol-sensing sequence motif arose and was fixed within a pre-existing enhancer in the common ancestor of anthropoid primates. Our study demonstrates one molecular mechanism by which ancestral mammalian regulatory elementsmore » can evolve to perform new functions in the primate lineage leading to human.« less
The molecular origin and evolution of dim-light vision in mammals.
Bickelmann, Constanze; Morrow, James M; Du, Jing; Schott, Ryan K; van Hazel, Ilke; Lim, Steve; Müller, Johannes; Chang, Belinda S W
2015-11-01
The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin--the vertebrate visual pigment mediating the first step in phototransduction at low-light levels--via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
The interface of protein structure, protein biophysics, and molecular evolution
Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon
2012-01-01
Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593
Yrinesi, Joséphine; Ekala, Marie-Thérèse; Péneau, Julie; Volney, Béatrice; Berger, Franck; Bouchier, Christiane; Bertani, Stéphane; Musset, Lise; Meynard, Jean-Baptiste; Mercereau-Puijalon, Odile
2012-01-01
Analysis of the evolution of drug target genes under changing drug policy is needed to assist monitoring of Plasmodium falciparum drug resistance in the field. Here we genotype Pfcrt and Pfdmr1 of 700 isolates collected in French Guiana from 2000 (5 years after withdrawal of chloroquine) to 2008, i.e., the period when the artemether-lumefantrine combination was progressively introduced and mefloquine was abandoned. Gene sequencing showed fixation of the 7G8-type Pfcrt SMVNT resistance haplotype and near fixation of the NYCDY Pfdmr1 haplotype. Pfdmr1 gene copy number correlated with 50% inhibitory concentrations of mefloquine and halofantrine (r = 0.64 and 0.47, respectively, n = 547); its temporal changes paralleled changes in in vitro mefloquine susceptibility. However, the molecular parameters studied did not account for the regained in vitro susceptibility to chloroquine and showed a poor correlation with susceptibility to artemether, lumefantrine, or quinine. Identification of novel markers of resistance to these antimalarials is needed in this South American area. PMID:22232280
Primate-Specific Evolution of an LDLR Enhancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qian-fei; Prabhakar, Shyam; Wang, Qianben
2006-06-28
Sequence changes in regulatory regions have often beeninvoked to explain phenotypic divergence among species, but molecularexamples of this have been difficult to obtain. In this study, weidentified an anthropoid primate specific sequence element thatcontributed to the regulatory evolution of the LDL receptor. Using acombination of close and distant species genomic sequence comparisonscoupled with in vivo and in vitro studies, we show that a functionalcholesterol-sensing sequence motif arose and was fixed within apre-existing enhancer in the common ancestor of anthropoid primates. Ourstudy demonstrates one molecular mechanism by which ancestral mammalianregulatory elements can evolve to perform new functions in the primatelineage leadingmore » to human.« less
Ledbetter, Michael P; Hwang, Tony W; Stovall, Gwendolyn M; Ellington, Andrew D
2013-01-01
Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. In vitro directed evolution (IVDE) frequently serves as a model system for the study of Darwinian evolution but produces noticeable phenotypic shifts in a matter of hours. An IVDE demonstration lab would serve to both directly demonstrate how Darwinian selection can act on a pool of variants and introduce students to an essential method of modern molecular biology. To produce an IVDE demonstration lab, continuous IVDE of a T500 ribozyme ligase population has been paired with a fluorescent strand displacement reporter system to visualize the selection of improved catalytic function. A ribozyme population is taken through rounds of isothermal amplification dependent on the self-ligation of a T7 promoter. As the population is selectively enriched with better ligase activity, the strand displacement system allows for the monitoring of the population's ligation rate. The strand displacement reporter system permits the detection of ligated ribozyme. Once ligated with the T7 promoter, the 5' end of the ribozyme displaces paired fluorophore-quencher oligonucleotides, in turn, generating visible signal upon UV light excitation. As the ligation rate of the population increases, due to the selection for faster ligating species, the fluorescent signal develops more rapidly. The pairing of the continuous isothermal system with the fluorescent reporting scheme allows any user, provided with minimal materials, to model the continuous directed evolution of a biomolecule. Copyright © 2013 Wiley-Liss, Inc.
Molecular engineering of antibodies for therapeutic and diagnostic purposes
Ducancel, Frédéric; Muller, Bruno H.
2012-01-01
During the past ten years, monoclonal antibodies (mAbs) have taken center stage in the field of targeted therapy and diagnosis. This increased interest in mAbs is due to their binding accuracy (affinity and specificity) together with the original molecular and structural rules that govern interactions with their cognate antigen. In addition, the effector properties of antibodies constitute a second major advantage associated with their clinical use. The development of molecular and structural engineering and more recently of in vitro evolution of antibodies has opened up new perspectives in the de novo design of antibodies more adapted to clinical and diagnostic use. Thus, efforts are regularly made by researchers to improve or modulate antibody recognition properties, to adapt their pharmacokinetics, engineer their stability, and control their immunogenicity. This review presents the latest molecular engineering results on mAbs with therapeutic and diagnostic applications. PMID:22684311
Ye, Lidan; Yang, Chengcheng; Yu, Hongwei
2018-01-01
With increasing concerns in sustainable development, biocatalysis has been recognized as a competitive alternative to traditional chemical routes in the past decades. As nature's biocatalysts, enzymes are able to catalyze a broad range of chemical transformations, not only with mild reaction conditions but also with high activity and selectivity. However, the insufficient activity or enantioselectivity of natural enzymes toward non-natural substrates limits their industrial application, while directed evolution provides a potent solution to this problem, thanks to its independence on detailed knowledge about the relationship between sequence, structure, and mechanism/function of the enzymes. A proper high-throughput screening (HTS) method is the key to successful and efficient directed evolution. In recent years, huge varieties of HTS methods have been developed for rapid evaluation of mutant libraries, ranging from in vitro screening to in vivo selection, from indicator addition to multi-enzyme system construction, and from plate screening to computation- or machine-assisted screening. Recently, there is a tendency to integrate directed evolution with metabolic engineering in biosynthesis, using metabolites as HTS indicators, which implies that directed evolution has transformed from molecular engineering to process engineering. This paper aims to provide an overview of HTS methods categorized based on the reaction principles or types by summarizing related studies published in recent years including the work from our group, to discuss assay design strategies and typical examples of HTS methods, and to share our understanding on HTS method development for directed evolution of enzymes involved in specific catalytic reactions or metabolic pathways.
ERIC Educational Resources Information Center
Ledbetter, Michael P.; Hwang, Tony W.; Stovall, Gwendolyn M.; Ellington, Andrew D.
2013-01-01
Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. "In vitro" directed evolution (IVDE) frequently serves as a model system for the study of Darwinian…
Krejciova, Zuzana; Barria, Marcelo A.; Jones, Michael; Ironside, James W.; Jeffrey, Martin; González, Lorenzo; Head, Mark W.
2014-01-01
Prion diseases are rare fatal neurological conditions of humans and animals, one of which (variant Creutzfeldt-Jakob disease) is known to be a zoonotic form of the cattle disease bovine spongiform encephalopathy (BSE). What makes one animal prion disease zoonotic and others not is poorly understood, but it appears to involve compatibility between the prion strain and the host prion protein sequence. Concerns have been raised that the United Kingdom sheep flock may have been exposed to BSE early in the cattle BSE epidemic and that serial BSE transmission in sheep might have resulted in adaptation of the agent, which may have come to phenotypically resemble scrapie while maintaining its pathogenicity for humans. We have modeled this scenario in vitro. Extrapolation from our results suggests that if BSE were to infect sheep in the field it may, with time and in some sheep genotypes, become scrapie-like at the molecular level. However, the results also suggest that if BSE in sheep were to come to resemble scrapie it would lose its ability to affect humans. PMID:25100723
Engineered Aptamers to Probe Molecular Interactions on the Cell Surface
Batool, Sana; Bhandari, Sanam; George, Shanell; Okeoma, Precious; Van, Nabeela; Zümrüt, Hazan E.; Mallikaratchy, Prabodhika
2017-01-01
Significant progress has been made in understanding the nature of molecular interactions on the cell membrane. To decipher such interactions, molecular scaffolds can be engineered as a tool to modulate these events as they occur on the cell membrane. To guarantee reliability, scaffolds that function as modulators of cell membrane events must be coupled to a targeting moiety with superior chemical versatility. In this regard, nucleic acid aptamers are a suitable class of targeting moieties. Aptamers are inherently chemical in nature, allowing extensive site-specific chemical modification to engineer sensing molecules. Aptamers can be easily selected using a simple laboratory-based in vitro evolution method enabling the design and development of aptamer-based functional molecular scaffolds against wide range of cell surface molecules. This article reviews the application of aptamers as monitors and modulators of molecular interactions on the mammalian cell surface with the aim of increasing our understanding of cell-surface receptor response to external stimuli. The information gained from these types of studies could eventually prove useful in engineering improved medical diagnostics and therapeutics. PMID:28850067
Molecular Regulation of Lumen Morphogenesis Review
Datta, Anirban; Bryant, David M.; Mostov, Keith E.
2013-01-01
The asymmetric polarization of cells allows specialized functions to be performed at discrete subcellular locales. Spatiotemporal coordination of polarization between groups of cells allowed the evolution of metazoa. For instance, coordinated apical-basal polarization of epithelial and endothelial cells allows transport of nutrients and metabolites across cell barriers and tissue microenvironments. The defining feature of such tissues is the presence of a central, interconnected luminal network. Although tubular networks are present in seemingly different organ systems, such as the kidney, lung, and blood vessels, common underlying principles govern their formation. Recent studies using in vivo and in vitro models of lumen formation have shed new light on the molecular networks regulating this fundamental process. We here discuss progress in understanding common design principles underpinning de novo lumen formation and expansion. PMID:21300279
Patterning by heritage in mouse molar row development.
Prochazka, Jan; Pantalacci, Sophie; Churava, Svatava; Rothova, Michaela; Lambert, Anne; Lesot, Hervé; Klein, Ophir; Peterka, Miroslav; Laudet, Vincent; Peterkova, Renata
2010-08-31
It is known from paleontology studies that two premolars have been lost during mouse evolution. During mouse mandible development, two bud-like structures transiently form that may represent rudimentary precursors of the lost premolars. However, the interpretation of these structures and their significance for mouse molar development are highly controversial because of a lack of molecular data. Here, we searched for typical tooth signaling centers in these two bud-like structures, and followed their fate using molecular markers, 3D reconstructions, and lineage tracing in vitro. Transient signaling centers were indeed found to be located at the tips of both the anterior and posterior rudimentary buds. These centers expressed a similar set of molecular markers as the "primary enamel knot" (pEK), the signaling center of the first molar (M1). These two transient signaling centers were sequentially patterned before and anterior to the M1 pEK. We also determined the dynamics of the M1 pEK, which, slightly later during development, spread up to the field formerly occupied by the posterior transient signaling center. It can be concluded that two rudimentary tooth buds initiate the sequential development of the mouse molars and these have previously been mistaken for early stages of M1 development. Although neither rudiment progresses to form an adult tooth, the posterior one merges with the adjacent M1, which may explain the anterior enlargement of the M1 during mouse family evolution. This study highlights how rudiments of lost structures can stay integrated and participate in morphogenesis of functional organs and help in understanding their evolution, as Darwin suspected long ago.
Vu, Michael M. K.; Jameson, Nora E.; Masuda, Stuart J.; Lin, Dana; Larralde-Ridaura, Rosa; Lupták, Andrej
2012-01-01
SUMMARY Aptamers are structured macromolecules in vitro evolved to bind molecular targets, whereas in nature they form the ligand-binding domains of riboswitches. Adenosine aptamers of a single structural family were isolated several times from random pools but they have not been identified in genomic sequences. We used two unbiased methods, structure-based bioinformatics and human genome-based in vitro selection, to identify aptamers that form the same adenosine-binding structure in a bacterium, and several vertebrates, including humans. Two of the human aptamers map to introns of RAB3C and FGD3 genes. The RAB3C aptamer binds ATP with dissociation constants about ten times lower than physiological ATP concentration, while the minimal FGD3 aptamer binds ATP only co-transcriptionally. PMID:23102219
McMahon, Dino P.; Hayward, Alexander; Kathirithamby, Jeyaraney
2011-01-01
A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621
Multidisciplinary approaches to solar hydrogen
Bren, Kara L.
2015-01-01
This review summarizes three different approaches to engineering systems for the solar-driven evolution of hydrogen fuel from water: molecular, nanomaterials and biomolecular. Molecular systems have the advantage of being highly amenable to modification and detailed study and have provided great insight into photophysics, electron transfer and catalytic mechanism. However, they tend to display poor stability. Systems based on nanomaterials are more robust but also are more difficult to synthesize in a controlled manner and to modify and study in detail. Biomolecular systems share many properties with molecular systems and have the advantage of displaying inherently high efficiencies for light absorption, electron–hole separation and catalysis. However, biological systems must be engineered to couple modules that capture and convert solar photons to modules that produce hydrogen fuel. Furthermore, biological systems are prone to degradation when employed in vitro. Advances that use combinations of these three tactics also are described. Multidisciplinary approaches to this problem allow scientists to take advantage of the best features of biological, molecular and nanomaterials systems provided that the components can be coupled for efficient function. PMID:26052425
Ultrasoft microgels displaying emergent platelet-like behaviours
NASA Astrophysics Data System (ADS)
Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.
2014-12-01
Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.
Novel transcriptional networks regulated by CLOCK in human neurons.
Fontenot, Miles R; Berto, Stefano; Liu, Yuxiang; Werthmann, Gordon; Douglas, Connor; Usui, Noriyoshi; Gleason, Kelly; Tamminga, Carol A; Takahashi, Joseph S; Konopka, Genevieve
2017-11-01
The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function. © 2017 Fontenot et al.; Published by Cold Spring Harbor Laboratory Press.
Molecular evolution and the latitudinal biodiversity gradient.
Dowle, E J; Morgan-Richards, M; Trewick, S A
2013-06-01
Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.
NASA Technical Reports Server (NTRS)
Ditzler, Mark A.
2014-01-01
RNA world theories figure prominently in many scenarios for the origin and early evolution of life. These theories posit that RNA molecules played a much larger role in ancient biology than they do now, acting both as the dominant biocatalysts and as the repository of genetic information. Many features of modern RNA biology are potential examples of molecular fossils from an RNA world, such as the pervasive involvement of nucleotides in coenzymes, the existence of natural aptamers that bind these coenzymes, the existence of natural ribozymes, a biosynthetic pathway in which deoxynucleotides are produced from ribonucleotides, and the central role of ribosomal RNA in protein synthesis in the peptidyl transferase center of the ribosome. Here, we uses both a top-down approach that evaluates RNA function in modern biology and a bottom-up approach that examines the capacities of RNA independent of modern biology. These complementary approaches exploit multiple in vitro evolution techniques coupled with high-throughput sequencing and bioinformatics analysis. Together these complementary approaches advance our understanding of the most primitive organisms, their early evolution, and their eventual transition to modern biochemistry.
Molecular Evolution in Historical Perspective.
Suárez-Díaz, Edna
2016-12-01
In the 1960s, advances in protein chemistry and molecular genetics provided new means for the study of biological evolution. Amino acid sequencing, nucleic acid hybridization, zone gel electrophoresis, and immunochemistry were some of the experimental techniques that brought about new perspectives to the study of the patterns and mechanisms of evolution. New concepts, such as the molecular evolutionary clock, and the discovery of unexpected molecular phenomena, like the presence of repetitive sequences in eukaryotic genomes, eventually led to the realization that evolution might occur at a different pace at the organismic and the molecular levels, and according to different mechanisms. These developments sparked important debates between defendants of the molecular and organismic approaches. The most vocal confrontations focused on the relation between primates and humans, and the neutral theory of molecular evolution. By the 1980s and 1990s, the construction of large protein and DNA sequences databases, and the development of computer-based statistical tools, facilitated the coming together of molecular and evolutionary biology. Although in its contemporary form the field of molecular evolution can be traced back to the last five decades, the field has deep roots in twentieth century experimental life sciences. For historians of science, the origins and consolidation of molecular evolution provide a privileged field for the study of scientific debates, the relation between technological advances and scientific knowledge, and the connection between science and broader social concerns.
Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection
ERIC Educational Resources Information Center
Hubler, Tina; Adams, Patti; Scammell, Jonathan
2015-01-01
The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…
González Altamiranda, Erika; Manrique, Julieta M; Pérez, Sandra E; Ríos, Glenda L; Odeón, Anselmo C; Leunda, María R; Jones, Leandro R; Verna, Andrea
2015-01-01
Bovine herpesvirus 4 (BoHV-4) is increasingly considered as responsible for various problems of the reproductive tract. The virus infects mainly blood mononuclear cells and displays specific tropism for vascular endothelia, reproductive and fetal tissues. Epidemiological studies suggest its impact on reproductive performance, and its presence in various sites in the reproductive tract highlights its potential transmission in transfer-stage embryos. This work describes the biological and genetic characterization of BoHV-4 strains isolated from an in vitro bovine embryo production system. BoHV-4 strains were isolated in 2011 and 2013 from granulosa cells and bovine oocytes from ovary batches collected at a local abattoir, used as "starting material" for in vitro production of bovine embryos. Compatible BoHV-4-CPE was observed in the co-culture of granulosa cells and oocytes with MDBK cells. The identity of the isolates was confirmed by PCR assays targeting three ORFs of the viral genome. The phylogenetic analyses of the strains suggest that they were evolutionary unlinked. Therefore it is possible that BoHV-4 ovary infections occurred regularly along the evolution of the virus, at least in Argentina, which can have implications in the systems of in vitro embryo production. Thus, although BoHV-4 does not appear to be a frequent risk factor for in vitro embryo production, data are still limited. This study reveals the potential of BoHV-4 transmission via embryo transfer. Moreover, the high variability among the BoHV-4 strains isolated from aborted cows in Argentina highlights the importance of further research on the role of this virus as an agent with the potential to cause reproductive disease in cattle. The genetic characterization of the isolated strains provides data to better understand the pathogenesis of BoHV-4 infections. Furthermore, it will lead to fundamental insights into the molecular aspects of the virus and the means by which these strains circulate in the herds.
García-Romero, Noemí; González-Tejedo, Carmen; Carrión-Navarro, Josefa; Esteban-Rubio, Susana; Rackov, Gorjana; Rodríguez-Fanjul, Vanessa; Oliver-De La Cruz, Jorge; Prat-Acín, Ricardo; Peris-Celda, María; Blesa, David; Ramírez-Jiménez, Laura; Sánchez-Gómez, Pilar; Perona, Rosario; Escobedo-Lucea, Carmen; Belda-Iniesta, Cristobal; Ayuso-Sacido, Angel
2016-10-04
Human gliomas harbour cancer stem cells (CSCs) that evolve along the course of the disease, forming highly heterogeneous subpopulations within the tumour mass. These cells possess self-renewal properties and appear to contribute to tumour initiation, metastasis and resistance to therapy. CSC cultures isolated from surgical samples are considered the best preclinical in vitro model for primary human gliomas. However, it is not yet well characterized to which extent their biological and functional properties change during in vitro passaging in the serum-free culture conditions. Here, we demonstrate that our CSC-enriched cultures harboured from one to several CSC clones from the human glioma sample. When xenotransplanted into mouse brain, these cells generated tumours that reproduced at least three different dissemination patterns found in original tumours. Along the passages in culture, CSCs displayed increased expression of stem cell markers, different ratios of chromosomal instability events, and a varied response to drug treatment. Our findings highlight the need for better characterization of CSC-enriched cultures in the context of their evolution in vitro, in order to uncover their full potential as preclinical models in the studies aimed at identifying molecular biomarkers and developing new therapeutic approaches of human gliomas.
Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution
NASA Technical Reports Server (NTRS)
Tsang, Joyce; Joyce, Gerald F.
1996-01-01
In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.
Skinner, Michael K
2015-04-26
Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Yonemoto, Isaac T; Matteri, Christopher W; Nguyen, Thao Amy; Smith, Hamilton O; Weyman, Philip D
2013-07-02
Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii "Deep ecotype" that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement.
López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio
2018-04-01
Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.
Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development
Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos
2013-01-01
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026
Mistakes and Molecular Evolution.
ERIC Educational Resources Information Center
Trevors, J. T.
1998-01-01
Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)
Dynamically Tunable Cell Culture Platforms for Tissue Engineering and Mechanobiology
Uto, Koichiro; Tsui, Jonathan H.; DeForest, Cole A.; Kim, Deok-Ho
2016-01-01
Human tissues are sophisticated ensembles of many distinct cell types embedded in the complex, but well-defined, structures of the extracellular matrix (ECM). Dynamic biochemical, physicochemical, and mechano-structural changes in the ECM define and regulate tissue-specific cell behaviors. To recapitulate this complex environment in vitro, dynamic polymer-based biomaterials have emerged as powerful tools to probe and direct active changes in cell function. The rapid evolution of polymerization chemistries, structural modulation, and processing technologies, as well as the incorporation of stimuli-responsiveness, now permit synthetic microenvironments to capture much of the dynamic complexity of native tissue. These platforms are comprised not only of natural polymers chemically and molecularly similar to ECM, but those fully synthetic in origin. Here, we review recent in vitro efforts to mimic the dynamic microenvironment comprising native tissue ECM from the viewpoint of material design. We also discuss how these dynamic polymer-based biomaterials are being used in fundamental cell mechanobiology studies, as well as towards efforts in tissue engineering and regenerative medicine. PMID:28522885
In Silico Prediction and In Vitro Characterization of Multifunctional Human RNase3
Kuo, Ping-Hsueh; Chen, Chien-Jung; Chang, Hsiu-Hui; Fang, Shun-lung; Wu, Wei-Shuo; Lai, Yiu-Kay; Pai, Tun-Wen; Chang, Margaret Dah-Tsyr
2013-01-01
Human ribonucleases A (hRNaseA) superfamily consists of thirteen members with high-structure similarities but exhibits divergent physiological functions other than RNase activity. Evolution of hRNaseA superfamily has gained novel functions which may be preserved in a unique region or domain to account for additional molecular interactions. hRNase3 has multiple functions including ribonucleolytic, heparan sulfate (HS) binding, cellular binding, endocytic, lipid destabilization, cytotoxic, and antimicrobial activities. In this study, three putative multifunctional regions, 34RWRCK38 (HBR1), 75RSRFR79 (HBR2), and 101RPGRR105 (HBR3), of hRNase3 have been identified employing in silico sequence analysis and validated employing in vitro activity assays. A heparin binding peptide containing HBR1 is characterized to act as a key element associated with HS binding, cellular binding, and lipid binding activities. In this study, we provide novel insights to identify functional regions of hRNase3 that may have implications for all hRNaseA superfamily members. PMID:23484086
Hierarchy and extremes in selections from pools of randomized proteins
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-01-01
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different “frameworks” typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution). PMID:26969726
Hierarchy and extremes in selections from pools of randomized proteins.
Boyer, Sébastien; Biswas, Dipanwita; Kumar Soshee, Ananda; Scaramozzino, Natale; Nizak, Clément; Rivoire, Olivier
2016-03-29
Variation and selection are the core principles of Darwinian evolution, but quantitatively relating the diversity of a population to its capacity to respond to selection is challenging. Here, we examine this problem at a molecular level in the context of populations of partially randomized proteins selected for binding to well-defined targets. We built several minimal protein libraries, screened them in vitro by phage display, and analyzed their response to selection by high-throughput sequencing. A statistical analysis of the results reveals two main findings. First, libraries with the same sequence diversity but built around different "frameworks" typically have vastly different responses; second, the distribution of responses of the best binders in a library follows a simple scaling law. We show how an elementary probabilistic model based on extreme value theory rationalizes the latter finding. Our results have implications for designing synthetic protein libraries, estimating the density of functional biomolecules in sequence space, characterizing diversity in natural populations, and experimentally investigating evolvability (i.e., the potential for future evolution).
Dualities in the analysis of phage DNA packaging motors
Serwer, Philip; Jiang, Wen
2012-01-01
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research. PMID:23532204
Copin, Richard; Wang, Xueying; Louie, Eddie; Escuyer, Vincent; Coscolla, Mireia; Gagneux, Sebastien; Palmer, Guy H; Ernst, Joel D
2016-12-01
Molecular epidemiological assessments, drug treatment optimization, and development of immunological interventions all depend on understanding pathogen adaptation and genetic variation, which differ for specific pathogens. Mycobacterium tuberculosis is an exceptionally successful human pathogen, yet beyond knowledge that this bacterium has low overall genomic variation but acquires drug resistance mutations, little is known of the factors that drive its population genomic characteristics. Here, we compared the genetic diversity of the bacteria that established infection to the bacterial populations obtained from infected tissues during murine M. tuberculosis pulmonary infection and human disseminated M. bovis BCG infection. We found that new mutations accumulate during in vitro culture, but that in vivo, purifying selection against new mutations dominates, indicating that M. tuberculosis follows a dominant lineage model of evolution. Comparing bacterial populations passaged in T cell-deficient and immunocompetent mice, we found that the presence of T cells is associated with an increase in the diversity of the M. tuberculosis genome. Together, our findings put M. tuberculosis genetic evolution in a new perspective and clarify the impact of T cells on sequence diversity of M. tuberculosis.
Molecular evolution: concepts and the origin of disciplines.
Suárez-Díaz, Edna
2009-03-01
This paper focuses on the consolidation of Molecular Evolution, a field originating in the 1960s at the interface of molecular biology, biochemistry, evolutionary biology, biophysics and studies on the origin of life and exobiology. The claim is made that Molecular Evolution became a discipline by integrating different sorts of scientific traditions: experimental, theoretical and comparative. The author critically incorporates Timothy Lenoir's treatment of disciplines (1997), as well as ideas developed by Stephen Toulmin (1962) on the same subject. On their account disciplines are spaces where the social and epistemic dimensions of science are deeply and complexly interwoven. However, a more detailed account of discipline formation and the dynamics of an emerging disciplinary field is lacking in their analysis. The present essay suggests focusing on the role of scientific concepts in the double configuration of disciplines: the social/political and the epistemic order. In the case of Molecular Evolution the concepts of molecular clock and informational molecules played a central role, both in differentiating molecular from classical evolutionists, and in promoting communication between the different sorts of traditions integrated in Molecular Evolution. The paper finishes with a reflection on the historicity of disciplines, and the historicity of our concepts of disciplines.
Huseby, Douglas L; Pietsch, Franziska; Brandis, Gerrit; Garoff, Linnéa; Tegehall, Angelica; Hughes, Diarmaid
2017-05-01
Ciprofloxacin is an important antibacterial drug targeting Type II topoisomerases, highly active against Gram-negatives including Escherichia coli. The evolution of resistance to ciprofloxacin in E. coli always requires multiple genetic changes, usually including mutations affecting two different drug target genes, gyrA and parC. Resistant mutants selected in vitro or in vivo can have many different mutations in target genes and efflux regulator genes that contribute to resistance. Among resistant clinical isolates the genotype, gyrA S83L D87N, parC S80I is significantly overrepresented suggesting that it has a selective advantage. However, the evolutionary or functional significance of this high frequency resistance genotype is not fully understood. By combining experimental data and mathematical modeling, we addressed the reasons for the predominance of this specific genotype. The experimental data were used to model trajectories of mutational resistance evolution under different conditions of drug exposure and population bottlenecks. We identified the order in which specific mutations are selected in the clinical genotype, showed that the high frequency genotype could be selected over a range of drug selective pressures, and was strongly influenced by the relative fitness of alternative mutations and factors affecting mutation supply. Our data map for the first time the fitness landscape that constrains the evolutionary trajectories taken during the development of clinical resistance to ciprofloxacin and explain the predominance of the most frequently selected genotype. This study provides strong support for the use of in vitro competition assays as a tool to trace evolutionary trajectories, not only in the antibiotic resistance field. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima
2013-09-20
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
MEvoLib v1.0: the first molecular evolution library for Python.
Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo
2016-10-28
Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.
Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E
2018-05-01
Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
In vitro selection of shape-changing DNA nanostructures capable of binding-induced cargo release.
Oh, Seung Soo; Plakos, Kory; Xiao, Yi; Eisenstein, Michael; Soh, H Tom
2013-11-26
Many biological systems employ allosteric regulatory mechanisms, which offer a powerful means of directly linking a specific binding event to a wide spectrum of molecular functionalities. There is considerable interest in generating synthetic allosteric regulators that can perform useful molecular functions for applications in diagnostics, imaging and targeted therapies, but generating such molecules through either rational design or directed evolution has proven exceptionally challenging. To address this need, we present an in vitro selection strategy for generating conformation-switching DNA nanostructures that selectively release a small-molecule payload in response to binding of a specific trigger molecule. As an exemplar, we have generated a DNA nanostructure that hybridizes with a separate 'cargo strand' containing an abasic site. This abasic site stably sequesters a fluorescent cargo molecule in an inactive state until the DNA nanostructure encounters an ATP trigger molecule. This ATP trigger causes the nanostructure to release the cargo strand, thereby liberating the fluorescent payload and generating a detectable fluorescent readout. Our DNA nanostructure is highly sensitive, with an EC50 of 30 μM, and highly specific, releasing its payload in response to ATP but not to other chemically similar nucleotide triphosphates. We believe that this selection approach could be generalized to generate synthetic nanostructures capable of selective and controlled release of other small-molecule cargos in response to a variety of triggers, for both research and clinical applications.
Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B
2014-01-01
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell–derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders. PMID:24832007
Young, Gareth T; Gutteridge, Alex; Fox, Heather DE; Wilbrey, Anna L; Cao, Lishuang; Cho, Lily T; Brown, Adam R; Benn, Caroline L; Kammonen, Laura R; Friedman, Julia H; Bictash, Magda; Whiting, Paul; Bilsland, James G; Stevens, Edward B
2014-08-01
The generation of human sensory neurons by directed differentiation of pluripotent stem cells opens new opportunities for investigating the biology of pain. The inability to generate this cell type has meant that up until now their study has been reliant on the use of rodent models. Here, we use a combination of population and single-cell techniques to perform a detailed molecular, electrophysiological, and pharmacological phenotyping of sensory neurons derived from human embryonic stem cells. We describe the evolution of cell populations over 6 weeks of directed differentiation; a process that results in the generation of a largely homogeneous population of neurons that are both molecularly and functionally comparable to human sensory neurons derived from mature dorsal root ganglia. This work opens the prospect of using pluripotent stem-cell-derived sensory neurons to study human neuronal physiology and as in vitro models for drug discovery in pain and sensory disorders.
Sooter, Letha J.
2017-01-01
Fipronil is a commonly used insecticide that has been shown to have environmental and human health risks. The current standard methods of detection for fipronil and its metabolites, such as GC-MS, are time consuming and labor intensive. In this study, a variant of systematic evolution of ligands by exponential enrichment (SELEX), was utilized to identify the first single-stranded DNA (ssDNA) molecular recognition element (MRE) that binds to fipronil with high affinity (Kd = 48 ± 8 nM). The selected MRE displayed low cross binding activity on various environmentally relevant, structurally unrelated herbicides and pesticides, in addition to broad-spectrum binding activity on major metabolites of fipronil and a structurally similar pesticide in prepared river samples. Additionally, a proof-of-principle fluorescent detection assay was developed by using the selected ssDNA MRE as a signal-reporting element, with a limit of detection of 105 nM in a prepared river water sample. PMID:29283416
Small-Molecule Binding Aptamers: Selection Strategies, Characterization, and Applications
Ruscito, Annamaria; DeRosa, Maria C.
2016-01-01
Aptamers are single-stranded, synthetic oligonucleotides that fold into 3-dimensional shapes capable of binding non-covalently with high affinity and specificity to a target molecule. They are generated via an in vitro process known as the Systematic Evolution of Ligands by EXponential enrichment, from which candidates are screened and characterized, and then used in various applications. These applications range from therapeutic uses to biosensors for target detection. Aptamers for small molecule targets such as toxins, antibiotics, molecular markers, drugs, and heavy metals will be the focus of this review. Their accurate detection is needed for the protection and wellbeing of humans and animals. However, the small molecular weights of these targets, including the drastic size difference between the target and the oligonucleotides, make it challenging to select, characterize, and apply aptamers for their detection. Thus, recent (since 2012) notable advances in small molecule aptamers, which have overcome some of these challenges, are presented here, while defining challenges that still exist are discussed. PMID:27242994
González Altamiranda, Erika; Manrique, Julieta M.; Pérez, Sandra E.; Ríos, Glenda L.; Odeón, Anselmo C.; Leunda, María R.; Jones, Leandro R.; Verna, Andrea
2015-01-01
Bovine herpesvirus 4 (BoHV-4) is increasingly considered as responsible for various problems of the reproductive tract. The virus infects mainly blood mononuclear cells and displays specific tropism for vascular endothelia, reproductive and fetal tissues. Epidemiological studies suggest its impact on reproductive performance, and its presence in various sites in the reproductive tract highlights its potential transmission in transfer-stage embryos. This work describes the biological and genetic characterization of BoHV-4 strains isolated from an in vitro bovine embryo production system. BoHV-4 strains were isolated in 2011 and 2013 from granulosa cells and bovine oocytes from ovary batches collected at a local abattoir, used as “starting material” for in vitro production of bovine embryos. Compatible BoHV-4-CPE was observed in the co-culture of granulosa cells and oocytes with MDBK cells. The identity of the isolates was confirmed by PCR assays targeting three ORFs of the viral genome. The phylogenetic analyses of the strains suggest that they were evolutionary unlinked. Therefore it is possible that BoHV-4 ovary infections occurred regularly along the evolution of the virus, at least in Argentina, which can have implications in the systems of in vitro embryo production. Thus, although BoHV-4 does not appear to be a frequent risk factor for in vitro embryo production, data are still limited. This study reveals the potential of BoHV-4 transmission via embryo transfer. Moreover, the high variability among the BoHV-4 strains isolated from aborted cows in Argentina highlights the importance of further research on the role of this virus as an agent with the potential to cause reproductive disease in cattle. The genetic characterization of the isolated strains provides data to better understand the pathogenesis of BoHV-4 infections. Furthermore, it will lead to fundamental insights into the molecular aspects of the virus and the means by which these strains circulate in the herds. PMID:26177382
Present Day Biology seen in the Looking Glass of Physics of Complexity
NASA Astrophysics Data System (ADS)
Schuster, P.
Darwin's theory of variation and selection in its simplest form is directly applicable to RNA evolution in vitro as well as to virus evolution, and it allows for quantitative predictions. Understanding evolution at the molecular level is ultimately related to the central paradigm of structural biology: sequence⇒ structure ⇒ function. We elaborate on the state of the art in modeling and understanding evolution of RNA driven by reproduction and mutation. The focus will be laid on the landscape concept—originally introduced by Sewall Wright—and its application to problems in biology. The relation between genotypes and phenotypes is the result of two consecutive mappings from a space of genotypes called sequence space onto a space of phenotypes or structures, and fitness is the result of a mapping from phenotype space into non-negative real numbers. Realistic landscapes as derived from folding of RNA sequences into structures are characterized by two properties: (i) they are rugged in the sense that sequences lying nearby in sequence space may have very different fitness values and (ii) they are characterized by an appreciable degree of neutrality implying that a certain fraction of genotypes and/or phenotypes cannot be distinguished in the selection process. Evolutionary dynamics on realistic landscapes will be studied as a function of the mutation rate, and the role of neutrality in the selection process will be discussed.
Joseph, Sandeep J; Marti, Hanna; Didelot, Xavier; Read, Timothy D; Dean, Deborah
2016-09-02
Species closely related to the human pathogen Chlamydia trachomatis (Ct) have recently been found to cause zoonotic infections, posing a public health threat especially in the case of tetracycline resistant Chlamydia suis (Cs) strains. These strains acquired a tet(C)-containing cassette via horizontal gene transfer (HGT). Genomes of 11 Cs strains from various tissues were sequenced to reconstruct evolutionary pathway(s) for tet(C) HGT. Cs had the highest recombination rate of Chlamydia species studied to date. Admixture occurred among Cs strains and with Chlamydia muridarum but not with Ct Although in vitro tet(C) cassette exchange with Ct has been documented, in vivo evidence may require examining human samples from Ct and Cs co-infected sites. Molecular-clock dating indicated that ancestral clades of resistant Cs strains predated the 1947 discovery of tetracycline, which was subsequently used in animal feed. The cassette likely spread throughout Cs strains by homologous recombination after acquisition from an external source, and our analysis suggests Betaproteobacteria as the origin. Selective pressure from tetracycline may be responsible for recent bottlenecks in Cs populations. Since tetracycline is an important antibiotic for treating Ct, zoonotic infections at mutual sites of infection indicate the possibility for cassette transfer and major public health repercussions. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Evolutionary Potential of an RNA Virus
Makeyev, Eugene V.; Bamford, Dennis H.
2004-01-01
RNA viruses are remarkably adaptable to changing environments. This is medically important because it enables pathogenic viruses to escape the immune response and chemotherapy and is of considerable theoretical interest since it allows the investigation of evolutionary processes within convenient time scales. A number of earlier studies have addressed the dynamics of adapting RNA virus populations. However, it has been difficult to monitor the trajectory of molecular changes in RNA genomes in response to selective pressures. To address the problem, we developed a novel in vitro evolution system based on a recombinant double-stranded RNA bacteriophage, φ6, containing a β-lactamase (bla) gene marker. Carrier-state bacterial cells are resistant to ampicillin, and after several passages, they become resistant to high concentrations of another β-lactam antibiotic, cefotaxime, due to mutations in the virus-borne bla gene. We monitored the changes in bla cDNAs induced by cefotaxime selection and observed an initial explosion in sequence variants with multiple mutations throughout the gene. After four passages, a stable, homogeneous population of bla sequences containing three specific nonsynonymous mutations was established. Of these, two mutations (E104K and G238S) have been previously reported for β-lactamases from cefotaxime-resistant bacterial isolates. These results extend our understanding of the molecular mechanisms of viral adaptation and also demonstrate the possibility of using an RNA virus as a vehicle for directed evolution of heterologous proteins. PMID:14747576
Evolutionary potential of an RNA virus.
Makeyev, Eugene V; Bamford, Dennis H
2004-02-01
RNA viruses are remarkably adaptable to changing environments. This is medically important because it enables pathogenic viruses to escape the immune response and chemotherapy and is of considerable theoretical interest since it allows the investigation of evolutionary processes within convenient time scales. A number of earlier studies have addressed the dynamics of adapting RNA virus populations. However, it has been difficult to monitor the trajectory of molecular changes in RNA genomes in response to selective pressures. To address the problem, we developed a novel in vitro evolution system based on a recombinant double-stranded RNA bacteriophage, phi 6, containing a beta-lactamase (bla) gene marker. Carrier-state bacterial cells are resistant to ampicillin, and after several passages, they become resistant to high concentrations of another beta-lactam antibiotic, cefotaxime, due to mutations in the virus-borne bla gene. We monitored the changes in bla cDNAs induced by cefotaxime selection and observed an initial explosion in sequence variants with multiple mutations throughout the gene. After four passages, a stable, homogeneous population of bla sequences containing three specific nonsynonymous mutations was established. Of these, two mutations (E104K and G238S) have been previously reported for beta-lactamases from cefotaxime-resistant bacterial isolates. These results extend our understanding of the molecular mechanisms of viral adaptation and also demonstrate the possibility of using an RNA virus as a vehicle for directed evolution of heterologous proteins.
2013-01-01
Background Photosynthetic microorganisms that directly channel solar energy to the production of molecular hydrogen are a potential future biofuel system. Building such a system requires installation of a hydrogenase in the photosynthetic organism that is both tolerant to oxygen and capable of hydrogen production. Toward this end, we have identified the [NiFe] hydrogenase from the marine bacterium Alteromonas macleodii “Deep ecotype” that is able to be heterologously expressed in cyanobacteria and has tolerance to partial oxygen. The A. macleodii enzyme shares sequence similarity with the uptake hydrogenases that favor hydrogen uptake activity over hydrogen evolution. To improve hydrogen evolution from the A. macleodii hydrogenase, we examined the three Fe-S clusters found in the small subunit of many [NiFe] uptake hydrogenases that presumably act as a molecular wire to guide electrons to or from the active site of the enzyme. Studies by others altering the medial cluster of a Desulfovibrio fructosovorans hydrogenase from 3Fe-4S to 4Fe-4S resulted in two-fold improved hydrogen evolution activity. Results We adopted a strategy of screening for improved hydrogenase constructs using an Escherichia coli expression system before testing in slower growing cyanobacteria. From the A. macleodii enzyme, we created a mutation in the gene encoding the hydrogenase small subunit that in other systems is known to convert the 3Fe-4S medial cluster to 4Fe-4S. The medial cluster substitution did not improve the hydrogen evolution activity of our hydrogenase. However, modifying both the medial cluster and the ligation of the distal Fe-S cluster improved in vitro hydrogen evolution activity relative to the wild type hydrogenase by three- to four-fold. Other properties of the enzyme including thermostability and tolerance to partial oxygen did not appear to be affected by the substitutions. Conclusions Our results show that substitution of amino acids altering the ligation of Fe-S clusters in the A. macleodii [NiFe] uptake hydrogenase resulted in increased hydrogen evolution activity. This activity can be recapitulated in multiple host systems and with purified protein. These results validate the approach of using an E. coli-cyanobacteria shuttle system for enzyme expression and improvement. PMID:23819621
Okamoto, Ryoko; Nagata, Yasunobu; Kanojia, Deepika; Venkatesan, Subhashree; M. T., Anand; Braunstein, Glenn D.; Said, Jonathan W.; Doan, Ngan B.; Ho, Quoc; Akagi, Tadayuki; Gery, Sigal; Liu, Li-zhen; Tan, Kar Tong; Chng, Wee Joo; Yang, Henry; Ogawa, Seishi; Koeffler, H. Phillip
2015-01-01
Context: Anaplastic thyroid cancer (ATC) has no effective treatment, resulting in a high rate of mortality. We established cell lines from a primary ATC and its lymph node metastasis, and investigated the molecular factors and genomic changes associated with tumor growth. Objective: The aim of the study was to understand the molecular and genomic changes of highly aggressive ATC and its clonal evolution to develop rational therapies. Design: We established unique cell lines from primary (OGK-P) and metastatic (OGK-M) ATC specimen, as well as primagraft from the metastatic ATC, which was serially xeno-transplanted for more than 1 year in NOD scid gamma mice were established. These cell lines and primagraft were used as tools to examine gene expression, copy number changes, and somatic mutations using RNA array, SNP Chip, and whole exome sequencing. Results: Mice carrying sc (OGK-P and OGK-M) tumors developed splenomegaly and neutrophilia with high expression of cytokines including CSF1, CSF2, CSF3, IL-1β, and IL-6. Levels of HIF-1α and its targeted genes were also elevated in these tumors. The treatment of tumor carrying mice with Bevacizumab effectively decreased tumor growth, macrophage infiltration, and peripheral WBCs. SNP chip analysis showed homozygous deletion of exons 3–22 of the PARD3 gene in the cells. Forced expression of PARD3 decreased cell proliferation, motility, and invasiveness, restores cell-cell contacts and enhanced cell adhesion. Next generation exome sequencing identified the somatic changes present in the primary, metastatic, and primagraft tumors demonstrating evolution of the mutational signature over the year of passage in vivo. Conclusion: To our knowledge, we established the first paired human primary and metastatic ATC cell lines offering unique possibilities for comparative functional investigations in vitro and in vivo. Our exome sequencing also identified novel mutations, as well as clonal evolution in both the metastasis and primagraft. PMID:25365311
Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru
2016-06-17
N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.
Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.
Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen M
2010-09-01
Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.
Reassessment of murine APOBEC1 as a retrovirus restriction factor in vivo.
Barrett, Bradley S; Guo, Kejun; Harper, Michael S; Li, Sam X; Heilman, Karl J; Davidson, Nicholas O; Santiago, Mario L
2014-11-01
APOBEC1 is a cytidine deaminase involved in cholesterol metabolism that has been linked to retrovirus restriction, analogous to the evolutionarily-related APOBEC3 proteins. In particular, murine APOBEC1 was shown to inhibit Friend retrovirus (FV) in vitro, generating high levels of C-to-T and G-to-A mutations. These observations raised the possibility that FV infection might be altered in APOBEC1-null mice. To examine this question directly, we infected wild-type and APOBEC1-null mice with FV complex and evaluated acute infection levels. Surprisingly, APOBEC1-null mice exhibited similar cellular infection levels and plasma viremia relative to wild-type mice. Moreover, next-generation sequencing analyses revealed that in contrast to APOBEC3, APOBEC1 did not enhance retroviral C-to-T and G-to-A mutational frequencies in genomic DNA. Thus, APOBEC1 neither inhibited nor significantly drove the molecular evolution of FV in vivo. Our findings reinforce that not all retrovirus restriction factors characterized as potent in vitro may be functionally relevant in vivo. Copyright © 2014 Elsevier Inc. All rights reserved.
Tessadori, Jacopo; Ghirardi, Mirella
2015-01-01
Brain functions are strictly dependent on neural connections formed during development and modified during life. The cellular and molecular mechanisms underlying synaptogenesis and plastic changes involved in learning and memory have been analyzed in detail in simple animals such as invertebrates and in circuits of mammalian brains mainly by intracellular recordings of neuronal activity. In the last decades, the evolution of techniques such as microelectrode arrays (MEAs) that allow simultaneous, long-lasting, noninvasive, extracellular recordings from a large number of neurons has proven very useful to study long-term processes in neuronal networks in vivo and in vitro. In this work, we start off by briefly reviewing the microelectrode array technology and the optimization of the coupling between neurons and microtransducers to detect subthreshold synaptic signals. Then, we report MEA studies of circuit formation and activity in invertebrate models such as Lymnaea, Aplysia, and Helix. In the following sections, we analyze plasticity and connectivity in cultures of mammalian dissociated neurons, focusing on spontaneous activity and electrical stimulation. We conclude by discussing plasticity in closed-loop experiments. PMID:25866681
Phylogenetic estimates of diversification rate are affected by molecular rate variation.
Duchêne, D A; Hua, X; Bromham, L
2017-10-01
Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya
Perrochia, Ludovic; Crozat, Estelle; Hecker, Arnaud; Zhang, Wenhua; Bareille, Joseph; Collinet, Bruno; van Tilbeurgh, Herman; Forterre, Patrick
2013-01-01
N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells. PMID:23258706
Dungan, Sarah Z; Kosyakov, Alexander; Chang, Belinda S W
2016-02-01
Cetaceans have undergone a remarkable evolutionary transition that was accompanied by many sensory adaptations, including modification of the visual system for underwater environments. Recent sequencing of cetacean genomes has made it possible to begin exploring the molecular basis of these adaptations. In this study we use in vitro expression methods to experimentally characterize the first step of the visual transduction cascade, the light activation of rhodopsin, for the killer whale. To investigate the spectral effects of amino acid substitutions thought to correspond with absorbance shifts relative to terrestrial mammals, we used the orca gene as a background for the first site-directed mutagenesis experiments in a cetacean rhodopsin. The S292A mutation had the largest effect, and was responsible for the majority of the spectral difference between killer whale and bovine (terrestrial) rhodopsin. Using codon-based likelihood models, we also found significant evidence for positive selection in cetacean rhodopsin sequences, including on spectral tuning sites we experimentally mutated. We then investigated patterns of ecological divergence that may be correlated with rhodopsin functional variation by using a series of clade models that partitioned the data set according to phylogeny, habitat, and foraging depth zone. Only the model partitioning according to depth was significant. This suggests that foraging dives might be a selective regime influencing cetacean rhodopsin divergence, and our experimental results indicate that spectral tuning may be playing an adaptive role in this process. Our study demonstrates that combining computational and experimental methods is crucial for gaining insight into the selection pressures underlying molecular evolution. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Lun, Z R; Desser, S S
1996-01-01
The patterns of random amplified fragments and molecular karyotypes of 12 isolates of anuran trypanosomes continuously cultured in vitro were compared by random amplified polymorphic DNA (RAPD) analysis and pulsed field gradient gel electrophoresis (PFGE). The time interval between preparation of two series of samples was one year. Changes were not observed in the number and size of sharp, amplified fragments of DNA samples from both series examined with the ten primers used. Likewise, changes in the molecular karyotypes were not detected between the two samples of these isolates. These results suggest that the molecular karyotype and the RAPD patterns of the anuran trypanosomes remain stable after being cultured continuously in vitro for one year.
In vitro molecular machine learning algorithm via symmetric internal loops of DNA.
Lee, Ji-Hoon; Lee, Seung Hwan; Baek, Christina; Chun, Hyosun; Ryu, Je-Hwan; Kim, Jin-Woo; Deaton, Russell; Zhang, Byoung-Tak
2017-08-01
Programmable biomolecules, such as DNA strands, deoxyribozymes, and restriction enzymes, have been used to solve computational problems, construct large-scale logic circuits, and program simple molecular games. Although studies have shown the potential of molecular computing, the capability of computational learning with DNA molecules, i.e., molecular machine learning, has yet to be experimentally verified. Here, we present a novel molecular learning in vitro model in which symmetric internal loops of double-stranded DNA are exploited to measure the differences between training instances, thus enabling the molecules to learn from small errors. The model was evaluated on a data set of twenty dialogue sentences obtained from the television shows Friends and Prison Break. The wet DNA-computing experiments confirmed that the molecular learning machine was able to generalize the dialogue patterns of each show and successfully identify the show from which the sentences originated. The molecular machine learning model described here opens the way for solving machine learning problems in computer science and biology using in vitro molecular computing with the data encoded in DNA molecules. Copyright © 2017. Published by Elsevier B.V.
Mehta, Heer H.; Prater, Amy G.; Shamoo, Yousif
2017-01-01
With multi-drug and pan-drug resistant bacteria becoming increasingly common in hospitals, antibiotic resistance has threatened to return us to a pre-antibiotic era that would completely undermine modern medicine. There is an urgent need to develop new antibiotics and strategies to combat resistance that are substantially different from earlier drug discovery efforts. One such strategy that would complement current and future antibiotics would be a class of co-drugs that target the evolution of resistance and thereby extend the efficacy of specific classes of antibiotics. A critical step in the development of such strategies lies in understanding the critical evolutionary trajectories responsible for resistance and which proteins or biochemical pathways within those trajectories would be good candidates for co-drug discovery. We identify the most important steps in the evolution of resistance for a specific pathogen and antibiotic combination by evolving highly polymorphic populations of pathogens to resistance in a novel bioreactor that favors biofilm development. As the populations evolve to increasing drug concentrations, we use deep sequencing to elucidate the network of genetic changes responsible for resistance and subsequent in vitro biochemistry and often structure determination to determine how the adaptive mutations produce resistance. Importantly, the identification of the molecular steps, their frequency within the populations and their chronology within the evolutionary trajectory toward resistance is critical to assessing their relative importance. In this work, we discuss findings from the evolution of the ESKAPE pathogen, Pseudomonas aeruginosa to the drug of last resort, colistin to illustrate the power of this approach. PMID:28928474
A Curriculum Vitae of Teeth: Evolution, Generation, Regeneration
Koussoulakou, Despina S.; Margaritis, Lukas H.; Koussoulakos, Stauros L.
2009-01-01
The ancestor of recent vertebrate teeth was a tooth-like structure on the outer body surface of jawless fishes. Over the course of 500,000,000 years of evolution, many of those structures migrated into the mouth cavity. In addition, the total number of teeth per dentition generally decreased and teeth morphological complexity increased. Teeth form mainly on the jaws within the mouth cavity through mutual, delicate interactions between dental epithelium and oral ectomesenchyme. These interactions involve spatially restricted expression of several, teeth-related genes and the secretion of various transcription and signaling factors. Congenital disturbances in tooth formation, acquired dental diseases and odontogenic tumors affect millions of people and rank human oral pathology as the second most frequent clinical problem. On the basis of substantial experimental evidence and advances in bioengineering, many scientists strongly believe that a deep knowledge of the evolutionary relationships and the cellular and molecular mechanisms regulating the morphogenesis of a given tooth in its natural position, in vivo, will be useful in the near future to prevent and treat teeth pathologies and malformations and for in vitro and in vivo teeth tissue regeneration. PMID:19266065
Company Profile: Selventa, Inc.
Fryburg, David A; Latino, Louis J; Tagliamonte, John; Kenney, Renee D; Song, Diane H; Levine, Arnold J; de Graaf, David
2012-08-01
Selventa, Inc. (MA, USA) is a biomarker discovery company that enables personalized healthcare. Originally founded as Genstruct, Inc., Selventa has undergone significant evolution from a technology-based service provider to an active partner in the development of diagnostic tests, functioning as a molecular dashboard of disease activity using a unique platform. As part of that evolution, approximately 2 years ago the company was rebranded as Selventa to reflect its new identity and mission. The contributions to biomedical research by Selventa are based on in silico, reverse-engineering methods to determine biological causality. That is, given a set of in vitro or in vivo biological observations, which biological mechanisms can explain the measured results? Facilitated by a large and carefully curated knowledge base, these in silico methods generated new insights into the mechanisms driving a disease. As Selventa's methods would enable biomarker discovery and be directly applicable to generating novel diagnostics, the scientists at Selventa have focused on the development of predictive biomarkers of response in autoimmune and oncologic diseases. Selventa is presently building a portfolio of independent, as well as partnered, biomarker projects with the intention to create diagnostic tests that predict response to therapy.
Lu, Zhi-xiang; Peng, Jia; Su, Bing
2007-10-01
Neuropsin (kallikrein 8, KLK8) is a secreted-type serine protease preferentially expressed in the central nervous system and involved in learning and memory. Its splicing pattern is different in human and mouse, with the longer form (type II) only expressed in human. Sequence analysis suggested a recent origin of type II during primate evolution. Here we demonstrate that the type II form is absent in nonhuman primates, and is thus a human-specific splice form. With the use of an in vitro splicing assay, we show that a human-specific T to A mutation (c.71-127T>A) triggers the change of splicing pattern, leading to the origin of a novel splice form in the human brain. Using mutation assay, we prove that this mutation is not only necessary but also sufficient for type II expression. Our results demonstrate a molecular mechanism for the creation of novel proteins through alternative splicing in the central nervous system during human evolution. Copyright 2007 Wiley-Liss, Inc.
Continuous in vitro evolution of catalytic function.
Wright, M C; Joyce, G F
1997-04-25
A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.
Continuous in vitro evolution of catalytic function
NASA Technical Reports Server (NTRS)
Wright, M. C.; Joyce, G. F.
1997-01-01
A population of RNA molecules that catalyze the template-directed ligation of RNA substrates was made to evolve in a continuous manner in the test tube. A simple serial transfer procedure was used to achieve approximately 300 successive rounds of catalysis and selective amplification in 52 hours. During this time, the population size was maintained against an overall dilution of 3 x 10(298). Both the catalytic rate and amplification rate of the RNAs improved substantially as a consequence of mutations that accumulated during the evolution process. Continuous in vitro evolution makes it possible to maintain laboratory "cultures" of catalytic molecules that can be perpetuated indefinitely.
Molecular evolution tracks macroevolutionary transitions in Cetacea.
McGowen, Michael R; Gatesy, John; Wildman, Derek E
2014-06-01
Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evolution in vitro: analysis of a lineage of ribozymes
NASA Technical Reports Server (NTRS)
Lehman, N.; Joyce, G. F.
1993-01-01
Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.
Towards Complex Abiotic Systems for Chemical and Biological Sensing
2009-11-01
such as phage display, cell surface display, and Systematic Evolution of Ligands by Exponential Enrichment (SELEX). Other processes necessary to...Directed evolution by in vitro compartmentalization. Nat Methods 2006, 3, 561-570. l7Chelliserrykattil, J.; Ellington, A.D. Evolution of a T7 RNA
Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F
2016-06-01
Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.
Literman, Robert; Burrett, Alexandria; Bista, Basanta; Valenzuela, Nicole
2018-01-01
The evolutionary lability of sex-determining mechanisms across the tree of life is well recognized, yet the extent of molecular changes that accompany these repeated transitions remain obscure. Most turtles retain the ancestral temperature-dependent sex determination (TSD) from which multiple transitions to genotypic sex determination (GSD) occurred independently, and two contrasting hypotheses posit the existence or absence of reversals back to TSD. Here we examined the molecular evolution of the coding regions of a set of gene regulators involved in gonadal development in turtles and several other vertebrates. We found slower molecular evolution in turtles and crocodilians compared to other vertebrates, but an acceleration in Trionychia turtles and at some phylogenetic branches demarcating major taxonomic diversification events. Of all gene classes examined, hormone signaling genes, and Srd5a1 in particular, evolve faster in many lineages and especially in turtles. Our data show that sex-linked genes do not follow a ubiquitous nor uniform pattern of molecular evolution. We then evaluated turtle nucleotide and protein evolution under two evolutionary hypotheses with or without GSD-to-TSD reversals, and found that when GSD-to-TSD reversals are considered, all transitional branches irrespective of direction, exhibit accelerated molecular evolution of nucleotide sequences, while GSD-to-TSD transitional branches also show acceleration in protein evolution. Significant changes in predicted secondary structure that may affect protein function were identified in three genes that exhibited hastened evolution in turtles compared to other vertebrates or in transitional versus non-transitional branches within turtles, rendering them candidates for a key role during SDM evolution in turtles.
The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution
ERIC Educational Resources Information Center
White, Harold B.
2007-01-01
Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…
Chemical evolution of molecular clouds
NASA Technical Reports Server (NTRS)
Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.
1987-01-01
The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.
The Molecular Basis of Human Brain Evolution.
Enard, Wolfgang
2016-10-24
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, Peter
2013-03-01
Peter Larsen of Argonne National Lab on "Delineating molecular interaction mechanisms in an in vitro microbial-plant community" at the 8th Annual Genomics of Energy & Environment Meeting in Walnut Creek, CA.
IN VITRO CARDIAC CELLULAR AND MOLECULAR EFFECTS OF AIR POLLUTION PARTICLE CONSTITUENTS
In Vitro Cardiac Cellular and Molecular Effects of Air Pollution Particle Constituents
Travis L. Knuckles1, Richard Jaskot2, Judy Richards2, and Kevin L. Dreher2. 1North Carolina State University, College of Veterinary Medicine, Raleigh, NC 27606, 2USEPA, Research Triangle Pa...
Molecular evolution of the vertebrate mechanosensory cell and ear.
Fritzsch, Bernd; Beisel, Kirk W; Pauley, Sarah; Soukup, Garrett
2007-01-01
The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has been spent on the evolution of the inner ear and the central auditory system. Recent advances in our molecular understanding of ear and brain development provide novel avenues to this neglected aspect of auditory neurosensory evolution.
Application of FRET probes in the analysis of neuronal plasticity
Ueda, Yoshibumi; Kwok, Showming; Hayashi, Yasunori
2013-01-01
Breakthroughs in imaging techniques and optical probes in recent years have revolutionized the field of life sciences in ways that traditional methods could never match. The spatial and temporal regulation of molecular events can now be studied with great precision. There have been several key discoveries that have made this possible. Since green fluorescent protein (GFP) was cloned in 1992, it has become the dominant tracer of proteins in living cells. Then the evolution of color variants of GFP opened the door to the application of Förster resonance energy transfer (FRET), which is now widely recognized as a powerful tool to study complicated signal transduction events and interactions between molecules. Employment of fluorescent lifetime imaging microscopy (FLIM) allows the precise detection of FRET in small subcellular structures such as dendritic spines. In this review, we provide an overview of the basic and practical aspects of FRET imaging and discuss how different FRET probes have revealed insights into the molecular mechanisms of synaptic plasticity and enabled visualization of neuronal network activity both in vitro and in vivo. PMID:24133415
Evolution of coreceptor utilization to escape CCR5 antagonist therapy.
Zhang, Jie; Gao, Xiang; Martin, John; Rosa, Bruce; Chen, Zheng; Mitreva, Makedonka; Henrich, Timothy; Kuritzkes, Daniel; Ratner, Lee
2016-07-01
The HIV-1 envelope interacts with coreceptors CCR5 and CXCR4 in a dynamic, multi-step process, its molecular details not clearly delineated. Use of CCR5 antagonists results in tropism shift and therapeutic failure. Here we describe a novel approach using full-length patient-derived gp160 quasispecies libraries cloned into HIV-1 molecular clones, their separation based on phenotypic tropism in vitro, and deep sequencing of the resultant variants for structure-function analyses. Analysis of functionally validated envelope sequences from patients who failed CCR5 antagonist therapy revealed determinants strongly associated with coreceptor specificity, especially at the gp120-gp41 and gp41-gp41 interaction surfaces that invite future research on the roles of subunit interaction and envelope trimer stability in coreceptor usage. This study identifies important structure-function relationships in HIV-1 envelope, and demonstrates proof of concept for a new integrated analysis method that facilitates laboratory discovery of resistant mutants to aid in development of other therapeutic agents. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hong, Ka L; Battistella, Luisa; Salva, Alysia D; Williams, Ryan M; Sooter, Letha J
2015-01-27
Alpha toxin is one of the major virulence factors secreted by Staphylococcus aureus, a bacterium that is responsible for a wide variety of infections in both community and hospital settings. Due to the prevalence of S. aureus related infections and the emergence of methicillin-resistant S. aureus, rapid and accurate diagnosis of S. aureus infections is crucial in benefiting patient health outcomes. In this study, a rigorous Systematic Evolution of Ligands by Exponential Enrichment (SELEX) variant previously developed by our laboratory was utilized to select a single-stranded DNA molecular recognition element (MRE) targeting alpha toxin with high affinity and specificity. At the end of the 12-round selection, the selected MRE had an equilibrium dissociation constant (Kd) of 93.7 ± 7.0 nM. Additionally, a modified sandwich enzyme-linked immunosorbent assay (ELISA) was developed by using the selected ssDNA MRE as the toxin-capturing element and a sensitive detection of 200 nM alpha toxin in undiluted human serum samples was achieved.
Sun, Baoshan; Neves, Ana C; Fernandes, Tiago A; Fernandes, Ana L; Mateus, Nuno; De Freitas, Vítor; Leandro, Conceição; Spranger, Maria I
2011-06-22
The objective of this work was to study the evolution of the phenolic composition of red wine during vinification and storage and its relationship with some sensory properties (astringency and bitterness) and antioxidant activities. Thus, red wine was made by a classic vinification method with Castelão and Tinta Miúda grapes (Vitis vinifera L.) harvested at maturity (3:2; w/w). Samples were taken at 2 and 7 days of maceration, at second racking, at the time of bottling and at 6 and 14 months after bottling. The total polyphenols extract (TPx) in each sample was isolated by column chromatography. The phenolic composition (anthocyanins and proanthocyanidins), in vitro antioxidant activity, and sensory property (astringency, bitterness) of the isolated TPx from different winemaking stages were evaluated through high-performance liquid chromatography-diode array detection, 1,1-diphenyl-2-picrylhidrazyl radical test, ferric reducing antioxidant power assay, total phenolic index, MWI (polyphenol molecular weight index), TSA (tannin specific activity), and sensory panel tasting. The results showed that the phenolic composition of red wine varied significantly during winemaking. The intensity of astringency (IA) and the intensity bitterness (IB) of the isolated TPx from different winemaking stages increased from 2 days of maceration until second racking and then decreased. Furthermore, MWI and TSA are positively correlated with IA and IB. The in vitro antioxidant activity of the isolated TPx from different winemaking stages maintained unchanged after alcoholic fermentation, which was independent of the variation of phenolic composition and sensory properties.
Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo.
McCarthy, Alex J; Loeffler, Anette; Witney, Adam A; Gould, Katherine A; Lloyd, David H; Lindsay, Jodi A
2014-09-25
Staphylococcus aureus is a commensal and major pathogen of humans and animals. Comparative genomics of S. aureus populations suggests that colonization of different host species is associated with carriage of mobile genetic elements (MGE), particularly bacteriophages and plasmids capable of encoding virulence, resistance, and immune evasion pathways. Antimicrobial-resistant S. aureus of livestock are a potential zoonotic threat to human health if they adapt to colonize humans efficiently. We utilized the technique of experimental evolution and co-colonized gnotobiotic piglets with both human- and pig-associated variants of the lineage clonal complex 398, and investigated growth and genetic changes over 16 days using whole genome sequencing. The human isolate survived co-colonization on piglets more efficiently than in vitro. During co-colonization, transfer of MGE from the pig to the human isolate was detected within 4 h. Extensive and repeated transfer of two bacteriophages and three plasmids resulted in colonization with isolates carrying a wide variety of mobilomes. Whole genome sequencing of progeny bacteria revealed no acquisition of core genome polymorphisms, highlighting the importance of MGE. Staphylococcus aureus bacteriophage recombination and integration into novel sites was detected experimentally for the first time. During colonization, clones coexisted and diversified rather than a single variant dominating. Unexpectedly, each piglet carried unique populations of bacterial variants, suggesting limited transmission of bacteria between piglets once colonized. Our data show that horizontal gene transfer occurs at very high frequency in vivo and significantly higher than that detectable in vitro. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Molecular microenvironments: Solvent interactions with nucleic acid bases and ions
NASA Technical Reports Server (NTRS)
Macelroy, R. D.; Pohorille, A.
1986-01-01
The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.
Saladino, Raffaele; Šponer, Judit E; Šponer, Jiří; Costanzo, Giovanna; Pino, Samanta; Di Mauro, Ernesto
2018-06-20
Molecular Darwinian evolution is an intrinsic property of reacting pools of molecules resulting in the adaptation of the system to changing conditions. It has no a priori aim. From the point of view of the origin of life, Darwinian selection behavior, when spontaneously emerging in the ensembles of molecules composing prebiotic pools, initiates subsequent evolution of increasingly complex and innovative chemical information. On the conservation side, it is a posteriori observed that numerous biological processes are based on prebiotically promptly made compounds, as proposed by the concept of Chemomimesis. Molecular Darwinian evolution and Chemomimesis are principles acting in balanced cooperation in the frame of Systems Chemistry. The one-pot synthesis of nucleosides in radical chemistry conditions is possibly a telling example of the operation of these principles. Other indications of similar cases of molecular evolution can be found among biogenic processes.
Parasitic plants have increased rates of molecular evolution across all three genomes
2013-01-01
Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data. PMID:23782527
Parasitic plants have increased rates of molecular evolution across all three genomes.
Bromham, Lindell; Cowman, Peter F; Lanfear, Robert
2013-06-19
Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic plants tend to be smaller than their non-parasitic relatives, which may result in more cell generations per year, thus a higher rate of mutations arising from DNA copy errors per unit time. Demonstration that adoption of a parasitic lifestyle influences the rate of genomic evolution is relevant to attempts to infer molecular phylogenies of parasitic plants and to estimate their evolutionary divergence times using sequence data.
Anil, Siji; Rawson, David; Zhang, Tiantian
2018-05-29
Development of in vitro culture protocol for early stage ovarian follicles of zebrafish is important since cryopreserved early stage ovarian follicles would need to be matured in vitro following cryopreservation before they can be fertilised. Development of molecular markers for zebrafish (Danio rerio) ovarian follicle growth assessment following in vitro culture of early stage zebrafish ovarian follicles in ovarian tissue fragments is reported here for the first time although some work has been reported for in vitro culture of isolated early stage zebrafish ovarian follicles. The main aim of the present study was to develop molecular markers in an optimised in vitro culture protocol for stage I and stage II zebrafish ovarian follicles in ovarian tissue fragments. The effect of concentration of the hormones human chorionic gonadotropin and follicle stimulating hormones, and additives such as Foetal Bovine Serum and Bovine Serum Albumin were studied. The results showed that early stage zebrafish ovarian fragments containing stage I and stage II follicles which are cultured in vitro for 24 h in 20% FBS and 100mIU/ml FSH in 90% L-15 medium at 28 °C can grow to the size of stage II and stage III ovarian follicles respectively. More importantly the follicle growth from stage I to stage II and from stage II to stage III were confirmed using molecular markers such as cyp19a1a (also known as P450aromA) and vtg1 genes respectively. However, no follicle growth was observed following cryopreservation and in vitro culture. Copyright © 2018 Elsevier Inc. All rights reserved.
Non-linear molecular pattern classification using molecular beacons with multiple targets.
Lee, In-Hee; Lee, Seung Hwan; Park, Tai Hyun; Zhang, Byoung-Tak
2013-12-01
In vitro pattern classification has been highlighted as an important future application of DNA computing. Previous work has demonstrated the feasibility of linear classifiers using DNA-based molecular computing. However, complex tasks require non-linear classification capability. Here we design a molecular beacon that can interact with multiple targets and experimentally shows that its fluorescent signals form a complex radial-basis function, enabling it to be used as a building block for non-linear molecular classification in vitro. The proposed method was successfully applied to solving artificial and real-world classification problems: XOR and microRNA expression patterns. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The molecular mechanisms of larval cestode development: first steps into an unknown world.
Brehm, Klaus; Spiliotis, Markus; Zavala-Góngora, Ricardo; Konrad, Christian; Frosch, Matthias
2006-01-01
Several hundred million years ago, the free-living ancestors of all extant helminth parasites decided to colonize entirely new habitats, the bodies of other metazoan animals. As a consequence of the resulting adaptation processes, they evolved highly complex life-cycles in which many developmental transitions were initiated and controlled by host-derived signals. Understanding the molecular basis of the original developmental mechanisms, and the modifications that occurred during co-evolution with the host, is not only fundamental to our understanding of parasitism but also highly relevant for the design of anti-parasitic drugs and vaccines. In the past several years, molecular investigations on parasitic nematode and trematode development have made considerable progress and, supported by respective genome sequencing projects and emerging methods of genetic manipulation, will be a flourishing field in the years to come. We consider it time that corresponding studies are also pushed for the third large group of parasitic helminths, the cestodes. Here, we review the first experimental steps into that area, which have been undertaken recently. We report on cestode genomics, the identification of signaling factors associated with larval development, and the establishment as well as improvement of in vitro cultivation systems by which cestode life-cycles can be studied in the laboratory.
Nisha, J; Shanthi, V
2015-07-01
Mycobacterium leprae, the etiologic agent of leprosy, is non-cultivable in vitro. Consequently, the assessment of antibiotic activity against M. leprae hinge mainly upon the time consuming mouse footpad system. As M. leprae develops resistance against most of the drugs, the evolution of new long acting antimycobacterial compounds stand in need for leprosy control. The rpoB of M. leprae is the target of antimycobacterial drug, rifampicin. Recently, cases were reported that rpoB mutation (S425L) became resistant to rifampicin and the mechanism of resistance is still not well understood. The present study is aimed at studying the molecular and structural mechanism of the rifampicin binding to both native and mutant rpoB through computational approaches. From molecular docking, we demonstrated the stable binding of rifampicin through two hydrogen bonding with His420 residue of native than with mutant rpoB where one hydrogen bonding was found with Ser406. The difference in binding energies observed in the docking study evidently signifies that rifampicin is less effective in the treatment of patients with S425L variant. Moreover, the molecular dynamics studies also highlight the stable binding of rifampicin with native than mutant (S425L) rpoB. © 2015 Wiley Periodicals, Inc.
Lee, Patricia; Ng, Hwee L.; Yang, Otto O.
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319
Star formation in evolving molecular clouds
NASA Astrophysics Data System (ADS)
Völschow, M.; Banerjee, R.; Körtgen, B.
2017-09-01
Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.
Oyama, Hiroyuki; Morita, Izumi; Kiguchi, Yuki; Banzono, Erika; Ishii, Kasumi; Kubo, Satoshi; Watanabe, Yoshiro; Hirai, Anna; Kaede, Chiaki; Ohta, Mitsuhiro; Kobayashi, Norihiro
2017-01-03
Immunoassays for cotinine, a major nicotine metabolite, in the urine are useful for monitoring the degree of tobacco smoke exposure. However, hybridoma-based anti-cotinine antibodies lack sufficient binding affinity to perform practically sensitive measurements, and thus most cotinine assays still rely on polyclonal antibodies. Here, we describe the generation of a mutant single-chain Fv fragment (scFv) that was used in an enzyme-linked immunosorbent assay (ELISA) to determine urinary cotinine levels in passive smokers. A "wild-type" scFv (scFv-wt) with a K a value of 2.7 × 10 7 M -1 (at 4 °C) was prepared by linking the V H and V L domains in a mouse anti-cotinine antibody. "One-shot" random mutagenesis on the scFv-wt gene by error-prone PCR generated mutant scFv genes, which were expressed on phage particles. Repeated panning directed toward mutants with slower off-rates selected scFv clones that showed improved sensitivity in an ELISA system. One of these mutants (scFv#m1-54) with five amino acid substitutions showed more than a 40-fold enhanced K a (1.2 × 10 9 M -1 at 4 °C) and, thus, was used to monitor human urinary cotinine. A limited amount of soluble scFv was reacted with urine specimens (or cotinine standards) at 4 °C for 120 min in microwells on which cotinine residues had been immobilized. The midpoint of the dose-response curves under optimized conditions (0.27 ng/assay) was more than 100-fold lower than the ELISA results obtained using scFv-wt. The limit of detection (8.4 pg/assay) corresponded to 0.17 ng/mL urinary cotinine, which was satisfactorily low for testing the threshold levels for passive smoke exposure. The assay values for volunteers correlated with the values determined using a commercial assay kit. This study evidently showed the potential of a molecular breeding approach, in which simple in vitro evolution might generate superior antibody reagents as cloned proteins, overcoming the limited molecular diversity inherent to conventional immunization-based antibodies.
Experimental evolution of protein–protein interaction networks
Kaçar, Betül; Gaucher, Eric A.
2013-01-01
The modern synthesis of evolutionary theory and genetics has enabled us to discover underlying molecular mechanisms of organismal evolution. We know that in order to maximize an organism's fitness in a particular environment, individual interactions among components of protein and nucleic acid networks need to be optimized by natural selection, or sometimes through random processes, as the organism responds to changes and/or challenges in the environment. Despite the significant role of molecular networks in determining an organism's adaptation to its environment, we still do not know how such inter- and intra-molecular interactions within networks change over time and contribute to an organism's evolvability while maintaining overall network functions. One way to address this challenge is to identify connections between molecular networks and their host organisms, to manipulate these connections, and then attempt to understand how such perturbations influence molecular dynamics of the network and thus influence evolutionary paths and organismal fitness. In the present review, we discuss how integrating evolutionary history with experimental systems that combine tools drawn from molecular evolution, synthetic biology and biochemistry allow us to identify the underlying mechanisms of organismal evolution, particularly from the perspective of protein interaction networks. PMID:23849056
Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process
Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya
2015-01-01
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution. PMID:26177190
Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.
Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya
2015-07-01
The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.
On the Overdispersed Molecular Clock
Takahata, Naoyuki
1987-01-01
Rates of molecular evolution at some loci are more irregular than described by simple Poisson processes. Three situations under which molecular evolution would not follow simple Poisson processes are reevaluated from the viewpoint of the neutrality hypothesis: (i) concomitant or multiple substitutions in a gene, (ii) fluctuating substitution rates in time caused by coupled effects of deleterious mutations and bottlenecks, and (iii) changes in the degree of selective constraints against a gene (neutral space) caused by successive substitutions. The common underlying assumption that these causes are lineage nonspecific excludes the case where mutation rates themselves change systematically among lineages or taxonomic groups, and severely limits the extent of variation in the number of substitutions among lineages. Even under this stringent condition, however, the third hypothesis, the fluctuating neutral space model, can generate fairly large variation. This is described by a time-dependent renewal process, which does not exhibit any episodic nature of molecular evolution. It is argued that the observed elevated variances in the number of nucleotide or amino acid substitutions do not immediately call for positive Darwinian selection in molecular evolution. PMID:3596230
Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).
Yunpeng, Liang; Li, Yu
2015-01-01
As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.
Genotoxicity testing: progress and prospects for the next decade.
Turkez, Hasan; Arslan, Mehmet E; Ozdemir, Ozlem
2017-10-01
Genotoxicity and mutagenicity analyses have a significant role in the identification of hazard effects of therapeutic drugs, cosmetics, agrochemicals, industrial compounds, food additives, natural toxins and nanomaterials for regulatory purposes. To evaluate mutagenicity or genotoxicity, different in vitro and in vivo methodologies exert various genotoxicological endpoints such as point mutations, changes in number and structure of chromosomes. Areas covered: This review covered the basics of genotoxicity and in vitro/in vivo methods for determining of genetic damages. The limitations that have arisen as a result of the common use of these methods were also discussed. Finally, the perspectives of further prospects on the use of genotoxicity testing and genotoxic mode of action were emphasized. Expert opinion: The solution of actual and practical problems of genetic toxicology is inarguably based on the understanding of DNA damage mechanisms at molecular, subcellular, cellular, organ, system and organism levels. Current strategies to investigate human health risks should be modified to increase their performance for more reliable results and also new techniques such as toxicogenomics, epigenomics and single cell approaches must be integrated into genetic safety evolutions. The explored new biomarkers by the omic techniques will provide forceful genotoxicity assessment to reduce the cancer risk.
In vitro selection of high temperature Zn(2+)-dependent DNAzymes.
Nelson, Kevin E; Bruesehoff, Peter J; Lu, Yi
2005-08-01
In vitro selection of Zn(2+)-dependent RNA-cleaving DNAzymes with activity at 90 degrees C has yielded a diverse spool of selected sequences. The RNA cleavage efficiency was found in all cases to be specific for Zn(2+) over Pb(2+), Ca(2+), Cd(2+), Co(2+), Hg(2+), and Mg(2+). The Zn(2+)-dependent activity assay of the most active sequence showed that the DNAzyme possesses an apparent Zn(2+)-binding dissociation constant of 234 muM and that its activity increases with increasing temperatures from 50-90 degrees C. A fit of the Arrhenius plot data gave E(a) = 15.3 kcal mol(-1). Surprisingly, the selected Zn(2+)-dependent DNAzymes showed only a modest (approximately 3-fold) activity enhancement over the background rate of cleavage of random sequences containing a single embedded ribonucleotide within an otherwise DNA oligonucleotide. The result is attributable to the ability of DNA to sustain cleavage activity at high temperature with minimal secondary structure when Zn(2+) is present. Since this effect is highly specific for Zn(2+), this metal ion may play a special role in molecular evolution of nucleic acids at high temperature.
2012-01-01
Combined results of theoretical molecular dynamic simulations and in vitro spectroscopic (circular dichroism and fluorescence) studies are presented, providing the atomistic and secondary structure details of the process by which a selected small molecule may destabilize the β-sheet ordered “amyloid” oligomers formed by the model undecapeptide of amyloid β-peptide 25–35 [Aβ(25–35)]. Aβ(25–35) was chosen because it is the shortest fragment capable of forming large β-sheet fibrils and retaining the toxicity of the full length Aβ(1–40/42) peptides. The conformational transition, that leads to the formation of β-sheet fibrils from soluble unordered structures, was found to depend on the environmental conditions, whereas the presence of myricetin destabilizes the self-assembly and antagonizes this conformational shift. In parallel, we analyzed several molecular dynamics trajectories describing the evolution of five monomer fragments, without inhibitor as well as in the presence of myricetin. Other well-known inhibitors (curcumin and (−)-tetracycline), found to be stronger and weaker Aβ(1–42) aggregation inhibitors, respectively, were also studied. The combined in vitro and theoretical studies of the Aβ(25–35) self-assembly and its inhibition contribute to understanding the mechanism of action of well-known inhibitors and the peptide amino acid residues involved in the interaction leading to a rational drug design of more potent new molecules able to antagonize the self-assembly process. PMID:23173074
The evolution of cell types in animals: emerging principles from molecular studies.
Arendt, Detlev
2008-11-01
Cell types are fundamental units of multicellular life but their evolution is obscure. How did the first cell types emerge and become distinct in animal evolution? What were the sets of cell types that existed at important evolutionary nodes that represent eumetazoan or bilaterian ancestors? How did these ancient cell types diversify further during the evolution of organ systems in the descending evolutionary lines? The recent advent of cell type molecular fingerprinting has yielded initial insights into the evolutionary interrelationships of cell types between remote animal phyla and has allowed us to define some first principles of cell type diversification in animal evolution.
The Molecular Basis of Evolution and Disease: A Cold War Alliance.
Suárez-Díaz, Edna
2017-03-28
This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.
Remington, David L
2015-12-01
Perspectives on the role of large-effect quantitative trait loci (QTL) in the evolution of complex traits have shifted back and forth over the past few decades. Different sets of studies have produced contradictory insights on the evolution of genetic architecture. I argue that much of the confusion results from a failure to distinguish mutational and allelic effects, a limitation of using the Fisherian model of adaptive evolution as the lens through which the evolution of adaptive variation is examined. A molecular-based perspective reveals that allelic differences can involve the cumulative effects of many mutations plus intragenic recombination, a model that is supported by extensive empirical evidence. I discuss how different selection regimes could produce very different architectures of allelic effects under a molecular-based model, which may explain conflicting insights on genetic architecture from studies of variation within populations versus between divergently selected populations. I address shortcomings of genome-wide association study (GWAS) practices in light of more suitable models of allelic evolution, and suggest alternate GWAS strategies to generate more valid inferences about genetic architecture. Finally, I discuss how adopting more suitable models of allelic evolution could help redirect research on complex trait evolution toward addressing more meaningful questions in evolutionary biology. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Cole, Elisabeth B; Miller, David; Rometo, David; Greenberg, Robert M; Brömme, Dieter; Cataltepe, Sule; Pak, Stephen C; Mills, David R; Silverman, Gary A; Luke, Cliff J
2004-09-21
Delineating the phylogenetic relationships among members of a protein family can provide a high degree of insight into the evolution of domain structure and function relationships. To identify an early metazoan member of the high molecular weight serine proteinase inhibitor (serpin) superfamily, we initiated a cDNA library screen of the cnidarian, Cyanea capillata. We identified one serpin cDNA encoding for a full-length serpin, jellypin. Phylogenetic analysis using the deduced amino acid sequence showed that jellypin was most similar to the platyhelminthe Echinococcus multiocularis serpin and the clade P serpins, suggesting that this serpin evolved approximately 1000 million years ago (MYA). Modeling of jellypin showed that it contained all the functional elements of an inhibitory serpin. In vitro biochemical analysis confirmed that jellypin was an inhibitor of the S1 clan SA family of serine proteinases. Analysis of the interactions between the human serine proteinases, chymotrypsin, cathepsin G, and elastase, showed that jellypin inhibited these enzymes in the classical serpin manner, forming a SDS stable enzyme/inhibitor complex. These data suggest that the coevolution of serpin structure and inhibitory function date back to at least early metazoan evolution, approximately 1000 MYA.
Diogo, Rui; Peng, Zuogang; Wood, Bernard
2013-01-01
Here we provide the first report about the rates of muscle evolution derived from Bayesian and parsimony cladistic analyses of primate higher-level phylogeny, and compare these rates with published rates of molecular evolution. It is commonly accepted that there is a ‘general molecular slow-down of hominoids’, but interestingly the rates of muscle evolution in the nodes leading and within the hominoid clade are higher than those in the vast majority of other primate clades. The rate of muscle evolution at the node leading to Homo (1.77) is higher than that at the nodes leading to Pan (0.89) and particularly to Gorilla (0.28). Notably, the rates of muscle evolution at the major euarchontan and primate nodes are different, but within each major primate clade (Strepsirrhini, Platyrrhini, Cercopithecidae and Hominoidea) the rates at the various nodes, and particularly at the nodes leading to the higher groups (i.e. including more than one genera), are strikingly similar. We explore the implications of these new data for the tempo and mode of primate and human evolution. PMID:23320764
Aguilar-Díaz, Hugo; Nava-Castro, Karen E; Escobedo, Galileo; Domínguez-Ramírez, Lenin; García-Varela, Martín; Del Río-Araiza, Víctor H; Palacios-Arreola, Margarita I; Morales-Montor, Jorge
2018-03-09
We have previously reported that progesterone (P 4 ) has a direct in vitro effect on the scolex evagination and growth of Taenia solium cysticerci. Here, we explored the hypothesis that the P 4 direct effect on T. solium might be mediated by a novel steroid-binding parasite protein. By way of using immunofluorescent confocal microscopy, flow cytometry analysis, double-dimension electrophoresis analysis, and sequencing the corresponding protein spot, we detected a novel PGRMC in T. solium. Molecular modeling studies accompanied by computer docking using the sequenced protein, together with phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is from parasite origin. Our results show that P 4 in vitro increases parasite evagination and scolex size. Using immunofluorescent confocal microscopy, we detected that parasite cells showed expression of a P 4 -binding like protein exclusively located at the cysticercus subtegumental tissue. Presence of the P 4 -binding protein in cyst cells was also confirmed by flow cytometry. Double-dimension electrophoresis analysis, followed by sequencing the corresponding protein spot, revealed a protein that was previously reported in the T. solium genome belonging to a membrane-associated progesterone receptor component (PGRMC). Molecular modeling studies accompanied by computer docking using the sequenced protein showed that PGRMC is potentially able to bind steroid hormones such as progesterone, estradiol, testosterone and dihydrodrotestosterone with different affinities. Phylogenetic analysis and sequence alignment clearly demonstrated that T. solium PGRMC is related to a steroid-binding protein of Echinoccocus granulosus, both of them being nested within a cluster including similar proteins present in platyhelminths such as Schistocephalus solidus and Schistosoma haematobium. Progesterone may directly act upon T. solium cysticerci probably by binding to PGRMC. This research has implications in the field of host-parasite co-evolution as well as the sex-associated susceptibility to this infection. In a more practical matter, present results may contribute to the molecular design of new drugs with anti-parasite actions.
Evolution in vitro of an RNA enzyme with altered metal dependence
NASA Technical Reports Server (NTRS)
Lehman, N.; Joyce, G. F.
1993-01-01
The Tetrahymena group I ribozyme catalyses a sequence-specific phosphodiester cleavage reaction on an external RNA oligonucleotide substrate in the presence of a divalent metal cation cofactor. This reaction proceeds readily with either Mg2+ or Mn2+, but no detectable reaction has been reported when other divalent cations are used as the sole cofactor. Cations such as Ca2+, Sr2+ and Ba2+ can stabilize the correct folded conformation of the ribozyme, thereby partially alleviating the Mg2+ or Mn2+ requirement. But catalysis by the ribozyme involves coordination of either Mg2+ or Mn2+ at the active site, resulting in an overall requirement for one of these two cations. Here we use an in vitro evolution process to obtain variants of the Tetrahymena ribozyme that are capable of cleaving an RNA substrate in reaction mixtures containing Ca2+ as the divalent cation. These findings extend the range of different chemical environments available to RNA enzymes and illustrate the power of in vitro evolution in generating macromolecular catalysts with desired properties.
Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Iemura, Masashi; Kohara, Arihiro
2016-06-01
Genomic changes in tumor cell lines can occur during culture, leading to differences between cell lines carrying the same name. In this study, genome profiles between low and high passages were investigated in the Ishikawa 3-H-12 cell line (JCRB1505). Cells contained between 43 and 46 chromosomes and the modal number changed from 46 to 45 during culture. Cytogenetic analysis revealed that a translocation t(9;14), observed in all metaphases, is a robust marker for this cell line. Single-nucleotide polymorphism microarrays showed a heterogeneous copy number in the early passages and distinct profiles at late passages. These results demonstrate that cell culture can lead to elimination of ancestral clones by sequential selection, resulting in extensive replacement with a novel clone. Our observations on Ishikawa cells in vitro are different from the in vivo heterogeneity in which ancestral clones are often retained during tumor evolution and suggest a model for in vitro clonal evolution. Copyright © 2016 Elsevier Inc. All rights reserved.
Evolution of complex adaptations in molecular systems
Pál, Csaba; Papp, Balázs
2017-01-01
A central challenge in evolutionary biology concerns the mechanisms by which complex adaptations arise. Such adaptations depend on the fixation of multiple, highly specific mutations, where intermediate stages of evolution seemingly provide little or no benefit. It is generally assumed that the establishment of complex adaptations is very slow in nature, as evolution of such traits demands special population genetic or environmental circumstances. However, blueprints of complex adaptations in molecular systems are pervasive, indicating that they can readily evolve. We discuss the prospects and limitations of non-adaptive scenarios, which assume multiple neutral or deleterious steps in the evolution of complex adaptations. Next, we examine how complex adaptations can evolve by natural selection in changing environment. Finally, we argue that molecular ’springboards’, such as phenotypic heterogeneity and promiscuous interactions facilitate this process by providing access to new adaptive paths. PMID:28782044
The Jukes-Cantor Model of Molecular Evolution
ERIC Educational Resources Information Center
Erickson, Keith
2010-01-01
The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…
Time Evolution of the Giant Molecular Cloud Mass Functions across Galactic Disks
NASA Astrophysics Data System (ADS)
Kobayashi, Masato I. N.; Inutsuka, Shu-Ichiro; Kobayashi, Hiroshi; Hasegawa, Kenji
2017-01-01
We formulate and conduct the time-integration of time evolution equation for the giant molecular cloud mass function (GMCMF) including the cloud-cloud collision (CCC) effect. Our results show that the CCC effect is only limited in the massive-end of the GMCMF and indicate that future high resolution and sensitivity radio observations may constrain giant molecular cloud (GMC) timescales by observing the GMCMF slope in the lower mass regime.
Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.; ...
2016-02-16
Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less
Viral evolution in response to the broad-based retroviral protease inhibitor TL-3.
Bühler, B; Lin, Y C; Morris, G; Olson, A J; Wong, C H; Richman, D D; Elder, J H; Torbett, B E
2001-10-01
TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.
Viral Evolution in Response to the Broad-Based Retroviral Protease Inhibitor TL-3†
Bühler, Bernd; Lin, Ying-Chuan; Morris, Garrett; Olson, Arthur J.; Wong, Chi-Huey; Richman, Douglas D.; Elder, John H.; Torbett, Bruce E.
2001-01-01
TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity. PMID:11533212
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carpenter, Timothy S.; McNerney, M. Windy; Be, Nicholas A.
Membrane permeability is a key property to consider in drug design, especially when the drugs in question need to cross the blood-brain barrier (BBB). A comprehensive in vivo assessment of the BBB permeability of a drug takes considerable time and financial resources. A current, simplified in vitro model to investigate drug permeability is a Parallel Artificial Membrane Permeability Assay (PAMPA) that generally provides higher throughput and initial quantification of a drug's passive permeability. Computational methods can also be used to predict drug permeability. Our methods are highly advantageous as they do not require the synthesis of the desired drug, andmore » can be implemented rapidly using high-performance computing. In this study, we have used umbrella sampling Molecular Dynamics (MD) methods to assess the passive permeability of a range of compounds through a lipid bilayer. Furthermore, the permeability of these compounds was comprehensively quantified using the PAMPA assay to calibrate and validate the MD methodology. And after demonstrating a firm correlation between the two approaches, we then implemented our MD method to quantitatively predict the most permeable potential drug from a series of potential scaffolds. This permeability was then confirmed by the in vitro PAMPA methodology. Therefore, in this work we have illustrated the potential that these computational methods hold as useful tools to help predict a drug's permeability in a faster and more cost-effective manner. Release number: LLNL-ABS-677757.« less
Continuing evolution of in-vitro diagnostic instrumentation
NASA Astrophysics Data System (ADS)
Cohn, Gerald E.
2000-04-01
The synthesis of analytical instrumentation and analytical biochemistry technologies in modern in vitro diagnostic instrumentation continues to generate new systems with improved performance and expanded capability. Detection modalities have expanded to include multichip modes of fluorescence, scattering, luminescence and reflectance so as to accommodate increasingly sophisticated immunochemical and nucleic acid based reagent systems. The time line graph of system development now extends from the earliest automated clinical spectrophotometers through molecule recognition assays and biosensors to the new breakthroughs of biochip and DNA diagnostics. This brief review traces some of the major innovations in the evolution of system technologies and previews the conference program.
Cherwa, James E; Tyson, Joshua; Bedwell, Gregory J; Brooke, Dewey; Edwards, Ashton G; Dokland, Terje; Prevelige, Peter E; Fane, Bentley A
2017-01-01
During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity. Copyright © 2016 American Society for Microbiology.
Second Symposium on Chemical Evolution and the Origin of Life
NASA Technical Reports Server (NTRS)
Devincenzi, D. L. (Editor); model. (Editor)
1986-01-01
Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
Second Symposium on Chemical Evolution and the Origin of Life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devincenzi, D.L.; Dufour, P.A.
1986-05-01
Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
Hernández-Osorio, L A; Márquez-Dueñas, C; Florencio-Martínez, L E; Ballesteros-Rodea, G; Martínez-Calvillo, S; Manning-Cela, R G
2010-01-01
Trypanosoma cruzi undergoes a biphasic life cycle that consists of four alternate developmental stages. In vitro conditions to obtain a synchronic transformation and efficient rates of pure intermediate forms (IFs), which are indispensable for further biochemical, biological, and molecular studies, have not been reported. In the present study, we established an improved method to obtain IFs from secondary amastigogenesis. During the transformation kinetics, we observed progressive decreases in the size of the parasite body, undulating membrane and flagellum that were concomitant with nucleus remodeling and kinetoplast displacement. In addition, a gradual reduction in parasite movement and acquisition of the amastigote-specific Ssp4 antigen were observed. Therefore, our results showed that the in vitro conditions used obtained large quantities of highly synchronous and pure IFs that were clearly distinguished by morphometrical and molecular analyses. Obtaining these IFs represents the first step towards an understanding of the molecular mechanisms involved in amastigogenesis.
Synthetic biology projects in vitro.
Forster, Anthony C; Church, George M
2007-01-01
Advances in the in vitro synthesis and evolution of DNA, RNA, and polypeptides are accelerating the construction of biopolymers, pathways, and organisms with novel functions. Known functions are being integrated and debugged with the aim of synthesizing life-like systems. The goals are knowledge, tools, smart materials, and therapies.
Unemo, Magnus; Golparian, Daniel; Shafer, William M
2015-01-01
Neisseria gonorrhoeae has retained antimicrobial resistance to drugs previously recommended for first-line empiric treatment of gonorrhea, and resistance to ceftriaxone, the last option for monotherapy, is evolving. Crucial actions to combat this developing situation include implementing response plans; considering use of dual antimicrobial regimens; enhancing surveillance of gonorrhea, gonococcal antimicrobial resistance, treatment failures and antimicrobial use/misuse and improving prevention, early diagnosis, contact tracing and treatment. The ways forward also include an intensified research to identify novel antimicrobial resistance determinants and develop and evaluate appropriate use of molecular antimicrobial resistance testing, ideally point-of-care and with simultaneous detection of gonococci, to supplement culture-based methods and ideally guide tailored treatment. It is crucial with an enhanced understanding of the dynamics of the national and international emergence, transmission and evolution of antimicrobial-resistant gonococcal strains. Genome sequencing combined with epidemiological metadata will detail these issues and might also revolutionize the molecular antimicrobial resistance testing. Ultimately, novel antimicrobials are essential and some antimicrobials in development have shown potent in vitro activity against gonococci. Several of these antimicrobials deserve further attention for potential future treatment of gonorrhea. PMID:24702589
Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis.
Wolf, Anja; Aggio, Julian; Campbell, Clyde; Wright, Francis; Marquez, Gabriel; Traver, David; Stachura, David L
2017-03-16
Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system.
Ahmed, Danish; Kumar, Vikas; Sharma, Manju; Verma, Amita
2014-05-13
Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis.
2014-01-01
Background Albizzia Lebbeck Benth. is traditionally important plant and is reported to possess a variety of pharmacological actions. The present research exertion was undertaken to isolate and characterized the flavonoids from the extract of stem bark of Albizzia Lebbeck Benth. and to evaluate the efficacy of the isolated flavonoids on in-vitro models of type-II diabetes. Furthermore, the results of in-vitro experimentation inveterate by the molecular docking studies of the isolated flavonoids on α-glucosidase and α-amylase enzymes. Methods Isolation of the flavonoids from the methanolic extract of stem bark of A. Lebbeck Benth was executed by the Silica gel (Si) column chromatography to yield different fractions. These fractions were then subjected to purification to obtain three important flavonoids. The isolated flavonoids were then structurally elucidated with the assist of 1H-NMR, 13C-NMR, and Mass spectroscopy. In-vitro experimentation was performed with evaluation of α-glucosidase, α-amylase and DPPH inhibition capacity. Molecular docking study was performed with GLIDE docking software. Results Three flavonoids, (1) 5-deoxyflavone (geraldone), (2) luteolin and (3) Isookanin were isolated from the EtOAc fraction of the methanolic extract of Albizzia lebbeck Benth bark. (ALD). All the compounds revealed to inhibit the α-glucosidase and α-amylase enzymes in in-vitro investigation correlating to reduce the plasma glucose level. Molecular docking study radically corroborates the binding affinity and inhibition of α-glucosidase and α-amylase enzymes. Conclusion The present research exertion demonstrates the anti-diabetic and antioxidant activity of the important isolated flavonoids with inhibition of α-glucosidase, α-amylase and DPPH which is further supported by molecular docking analysis. PMID:24886138
Evolution of egg coats: linking molecular biology and ecology.
Shu, Longfei; Suter, Marc J-F; Räsänen, Katja
2015-08-01
One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.
Prediction of in vivo hepatotoxicity effects using in vitro transcriptomics data (SOT)
High-throughput in vitro transcriptomics data support molecular understanding of chemical-induced toxicity. Here, we evaluated the utility of such data to predict liver toxicity. First, in vitro gene expression data for 93 genes was generated following exposure of metabolically c...
Bacterial flagella and Type III secretion: case studies in the evolution of complexity.
Pallen, M J; Gophna, U
2007-01-01
Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.
Uchiyama, Jumpei; Suzuki, Masato; Nishifuji, Koji; Kato, Shin-Ichiro; Miyata, Reina; Nasukawa, Tadahiro; Yamaguchi, Kotoe; Takemura-Uchiyama, Iyo; Ujihara, Takako; Shimakura, Hidekatsu; Murakami, Hironobu; Okamoto, Noriaki; Sakaguchi, Yoshihiko; Shibayama, Keigo; Sakaguchi, Masahiro; Matsuzaki, Shigenobu
2016-08-01
Pseudomonas aeruginosa causes serious intractable infections in humans and animals. Bacteriophage (phage) therapy has been applied to treat P. aeruginosa infections, and phages belonging to the PB1-like virus genus in the Myoviridae family have been used as therapeutic phages. To achieve safer and more effective phage therapy, the use of preadapted phages is proposed. To understand in detail such phage preadaptation, the short-term antagonistic evolution of bacteria and phages should be studied. In this study, the short-term antagonistic evolution of bacteria and PB1-like phage was examined by studying phage-resistant clones of P. aeruginosa strain PAO1 and mutant PB1-like phages that had recovered their infectivity. First, phage KPP22 was isolated and characterized; it was classified as belonging to the PB1-like virus genus in the Myoviridae family. Subsequently, three KPP22-resistant PAO1 clones and three KPP22 mutant phages capable of infecting these clones were isolated in three sets of in vitro experiments. It was shown that the bacterial resistance to phage KPP22 was caused by significant decreases in phage adsorption and that the improved infectivity of KPP22 mutant phages was caused by significant increases in phage adsorption. The KPP22-resistant PAO1 clones and the KPP22 mutant phages were then analyzed genetically. All three KPP22-resistant PAO1 clones, which were deficient for the O5 antigen, had a common nonsense mutation in the wzy gene. All the KPP22 mutant phage genomes showed the same four missense mutations in the open reading frames orf060, orf065, and orf086 The information obtained in this study should be useful for further development of safe and efficient phage therapy. Pseudomonas aeruginosa causes serious intractable infections in humans and animals; bacteriophage (phage) therapy has been utilized to treat P. aeruginosa infections, and phages that belong to the PB1-like virus genus in the family Myoviridae have been used as therapeutic phages. The preadapted phage is trained in advance through the antagonistic evolution of bacteria and phage and is proposed to be used to achieve safer and more effective phage therapy. In this study, to understand the phage preadaptation, the in vitro short-term antagonistic evolution was studied using P. aeruginosa strain PAO1 and the newly isolated PB1-like phage KPP22. Phage KPP22 was characterized, and the molecular framework regarding the phage preadaptation of KPP22 was elucidated. The importance of study of antagonistic evolution of bacteria and phage in phage therapy is discussed. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
DNA Re-EvolutioN: a game for learning molecular genetics and evolution.
Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva
2013-01-01
Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.
Molecular Biology and Pathogenicity of Mycoplasmas
Razin, Shmuel; Yogev, David; Naot, Yehudith
1998-01-01
The recent sequencing of the entire genomes of Mycoplasma genitalium and M. pneumoniae has attracted considerable attention to the molecular biology of mycoplasmas, the smallest self-replicating organisms. It appears that we are now much closer to the goal of defining, in molecular terms, the entire machinery of a self-replicating cell. Comparative genomics based on comparison of the genomic makeup of mycoplasmal genomes with those of other bacteria, has opened new ways of looking at the evolutionary history of the mycoplasmas. There is now solid genetic support for the hypothesis that mycoplasmas have evolved as a branch of gram-positive bacteria by a process of reductive evolution. During this process, the mycoplasmas lost considerable portions of their ancestors’ chromosomes but retained the genes essential for life. Thus, the mycoplasmal genomes carry a high percentage of conserved genes, greatly facilitating gene annotation. The significant genome compaction that occurred in mycoplasmas was made possible by adopting a parasitic mode of life. The supply of nutrients from their hosts apparently enabled mycoplasmas to lose, during evolution, the genes for many assimilative processes. During their evolution and adaptation to a parasitic mode of life, the mycoplasmas have developed various genetic systems providing a highly plastic set of variable surface proteins to evade the host immune system. The uniqueness of the mycoplasmal systems is manifested by the presence of highly mutable modules combined with an ability to expand the antigenic repertoire by generating structural alternatives, all compressed into limited genomic sequences. In the absence of a cell wall and a periplasmic space, the majority of surface variable antigens in mycoplasmas are lipoproteins. Apart from providing specific antimycoplasmal defense, the host immune system is also involved in the development of pathogenic lesions and exacerbation of mycoplasma induced diseases. Mycoplasmas are able to stimulate as well as suppress lymphocytes in a nonspecific, polyclonal manner, both in vitro and in vivo. As well as to affecting various subsets of lymphocytes, mycoplasmas and mycoplasma-derived cell components modulate the activities of monocytes/macrophages and NK cells and trigger the production of a wide variety of up-regulating and down-regulating cytokines and chemokines. Mycoplasma-mediated secretion of proinflammatory cytokines, such as tumor necrosis factor alpha, interleukin-1 (IL-1), and IL-6, by macrophages and of up-regulating cytokines by mitogenically stimulated lymphocytes plays a major role in mycoplasma-induced immune system modulation and inflammatory responses. PMID:9841667
Genes involved in convergent evolution of eusociality in bees
Woodard, S. Hollis; Fischman, Brielle J.; Venkat, Aarti; Hudson, Matt E.; Varala, Kranthi; Cameron, Sydney A.; Clark, Andrew G.; Robinson, Gene E.
2011-01-01
Eusociality has arisen independently at least 11 times in insects. Despite this convergence, there are striking differences among eusocial lifestyles, ranging from species living in small colonies with overt conflict over reproduction to species in which colonies contain hundreds of thousands of highly specialized sterile workers produced by one or a few queens. Although the evolution of eusociality has been intensively studied, the genetic changes involved in the evolution of eusociality are relatively unknown. We examined patterns of molecular evolution across three independent origins of eusociality by sequencing transcriptomes of nine socially diverse bee species and combining these data with genome sequence from the honey bee Apis mellifera to generate orthologous sequence alignments for 3,647 genes. We found a shared set of 212 genes with a molecular signature of accelerated evolution across all eusocial lineages studied, as well as unique sets of 173 and 218 genes with a signature of accelerated evolution specific to either highly or primitively eusocial lineages, respectively. These results demonstrate that convergent evolution can involve a mosaic pattern of molecular changes in both shared and lineage-specific sets of genes. Genes involved in signal transduction, gland development, and carbohydrate metabolism are among the most prominent rapidly evolving genes in eusocial lineages. These findings provide a starting point for linking specific genetic changes to the evolution of eusociality. PMID:21482769
Artificial Lipid Membranes: Past, Present, and Future
Siontorou, Christina G.; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P.
2017-01-01
The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life. PMID:28933723
Kawamura, Kunio
2017-01-01
Although studies about the origin of life are a frontier in science and a number of effective approaches have been developed, drawbacks still exist. Examples include: (1) simulation of chemical evolution experiments (which were demonstrated for the first time by Stanley Miller); (2) approaches tracing back the most primitive life-like systems (on the basis of investigations of present organisms); and (3) constructive approaches for making life-like systems (on the basis of molecular biology), such as in vitro construction of the RNA world. Naturally, simulation experiments of chemical evolution under plausible ancient Earth environments have been recognized as a potentially fruitful approach. Nevertheless, simulation experiments seem not to be sufficient for identifying the scenario from molecules to life. This is because primitive Earth environments are still not clearly defined and a number of possibilities should be taken into account. In addition, such environments frequently comprise extreme conditions when compared to the environments of present organisms. Therefore, we need to realize the importance of accurate and convenient experimental approaches that use practical research tools, which are resistant to high temperature and pressure, to facilitate chemical evolution studies. This review summarizes improvements made in such experimental approaches over the last two decades, focusing primarily on our hydrothermal microflow reactor technology. Microflow reactor systems are a powerful tool for performing simulation experiments in diverse simulated hydrothermal Earth conditions in order to measure the kinetics of formation and degradation and the interactions of biopolymers. PMID:28974048
Generation of Synthetic Copolymer Libraries by Combinatorial Assembly on Nucleic Acid Templates.
Kong, Dehui; Yeung, Wayland; Hili, Ryan
2016-07-11
Recent advances in nucleic acid-templated copolymerization have expanded the scope of sequence-controlled synthetic copolymers beyond the molecular architectures witnessed in nature. This has enabled the power of molecular evolution to be applied to synthetic copolymer libraries to evolve molecular function ranging from molecular recognition to catalysis. This Review seeks to summarize different approaches available to generate sequence-defined monodispersed synthetic copolymer libraries using nucleic acid-templated polymerization. Key concepts and principles governing nucleic acid-templated polymerization, as well as the fidelity of various copolymerization technologies, will be described. The Review will focus on methods that enable the combinatorial generation of copolymer libraries and their molecular evolution for desired function.
Åslund, Andreas; Sigurdson, Christina J.; Klingstedt, Therése; Grathwohl, Stefan; Bolmont, Tristan; Dickstein, Dara L.; Glimsdal, Eirik; Prokop, Stefan; Lindgren, Mikael; Konradsson, Peter; Holtzman, David M.; Hof, Patrick R.; Heppner, Frank L.; Gandy, Samuel; Jucker, Mathias; Aguzzi, Adriano; Hammarström, Per; Nilsson, K. Peter R.
2010-01-01
Molecular probes for selective identification of protein aggregates are important to advance our understanding of the molecular pathogenesis underlying cerebral amyloidoses. Here we report the chemical design of pentameric thiophene derivatives, denoted luminescent conjugated oligothiophenes (LCOs), which could be used for real-time visualization of cerebral protein aggregates in transgenic mouse models of neurodegenerative diseases by multiphoton microscopy. One of the LCOs, p-FTAA, showed conformation-dependent optical properties and could be utilized for ex vivo spectral assignment of distinct prion deposits from two mouse-adapted prion strains. p-FTAA also revealed staining of transient soluble pre-fibrillar non-thioflavinophilic Aβ- assemblies during in vitro fibrillation of Aβ peptides. In brain tissue samples, Aβ deposits and neurofibrillary tangles (NFTs) were readily identified by a strong fluorescence from p-FTAA and the LCO staining showed complete co-localization with conventional antibodies (6E10 and AT8), indicating that p-FTAA detects all the immuno-positive aggregated proteinaceous species in Alzheimer disease, but with significantly shorter imaging time (100 fold) compared to immunofluorescence. In addition, a patchy islet-like staining of individual Aβ plaque was unveiled by the anti-oligomer A11 antibody during co-staining with p-FTAA, suggesting that pre-fibrillar species are likely an intrinsic component of Aβ plaques in human brain. The major hallmarks of Alzheimer’s disease, namely Aβ aggregates versus NFTs could also be distinguished due to distinct emission spectra from p-FTAA. Overall, we demonstrate that LCOs can be utilized as powerful practical research tools for studying protein aggregation diseases and facilitate the study of amyloid origin, evolution and maturation, Aβ−tau interactions and pathogenesis both ex vivo and in vivo. PMID:19624097
Molecular Determinants of Mutant Phenotypes, Inferred from Saturation Mutagenesis Data.
Tripathi, Arti; Gupta, Kritika; Khare, Shruti; Jain, Pankaj C; Patel, Siddharth; Kumar, Prasanth; Pulianmackal, Ajai J; Aghera, Nilesh; Varadarajan, Raghavan
2016-11-01
Understanding how mutations affect protein activity and organismal fitness is a major challenge. We used saturation mutagenesis combined with deep sequencing to determine mutational sensitivity scores for 1,664 single-site mutants of the 101 residue Escherichia coli cytotoxin, CcdB at seven different expression levels. Active-site residues could be distinguished from buried ones, based on their differential tolerance to aliphatic and charged amino acid substitutions. At nonactive-site positions, the average mutational tolerance correlated better with depth from the protein surface than with accessibility. Remarkably, similar results were observed for two other small proteins, PDZ domain (PSD95 pdz3 ) and IgG-binding domain of protein G (GB1). Mutational sensitivity data obtained with CcdB were used to derive a procedure for predicting functional effects of mutations. Results compared favorably with those of two widely used computational predictors. In vitro characterization of 80 single, nonactive-site mutants of CcdB showed that activity in vivo correlates moderately with thermal stability and solubility. The inability to refold reversibly, as well as a decreased folding rate in vitro, is associated with decreased activity in vivo. Upon probing the effect of modulating expression of various proteases and chaperones on mutant phenotypes, most deleterious mutants showed an increased in vivo activity and solubility only upon over-expression of either Trigger factor or SecB ATP-independent chaperones. Collectively, these data suggest that folding kinetics rather than protein stability is the primary determinant of activity in vivo This study enhances our understanding of how mutations affect phenotype, as well as the ability to predict fitness effects of point mutations. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Biological intuition in alignment-free methods: response to Posada.
Ragan, Mark A; Chan, Cheong Xin
2013-08-01
A recent editorial in Journal of Molecular Evolution highlights opportunities and challenges facing molecular evolution in the era of next-generation sequencing. Abundant sequence data should allow more-complex models to be fit at higher confidence, making phylogenetic inference more reliable and improving our understanding of evolution at the molecular level. However, concern that approaches based on multiple sequence alignment may be computationally infeasible for large datasets is driving the development of so-called alignment-free methods for sequence comparison and phylogenetic inference. The recent editorial characterized these approaches as model-free, not based on the concept of homology, and lacking in biological intuition. We argue here that alignment-free methods have not abandoned models or homology, and can be biologically intuitive.
Social parasitism and the molecular basis of phenotypic evolution.
Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian
2015-01-01
Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization.
Social parasitism and the molecular basis of phenotypic evolution
Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian
2015-01-01
Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361
Exploitation of peptide motif sequences and their use in nanobiotechnology.
Shiba, Kiyotaka
2010-08-01
Short amino acid sequences extracted from natural proteins or created using in vitro evolution systems are sometimes associated with particular biological functions. These peptides, called peptide motifs, can serve as functional units for the creation of various tools for nanobiotechnology. In particular, peptide motifs that have the ability to specifically recognize the surfaces of solid materials and to mineralize certain inorganic materials have been linking biological science to material science. Here, I review how these peptide motifs have been isolated from natural proteins or created using in vitro evolution systems, and how they have been used in the nanobiotechnology field. Copyright © 2010 Elsevier Ltd. All rights reserved.
In vitro flow cytometry-based screening platform for cellulase engineering
Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich
2016-01-01
Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298
Application of in vitro based safety assessment requires reconciling chemical concentrations sufficient to produce bioactivity in vitro with those that trigger a molecular initiating event at the relevant in vivo target site. To address such need, computational tools such as phy...
Limits of neutral drift: lessons from the in vitro evolution of two ribozymes.
Petrie, Katherine L; Joyce, Gerald F
2014-10-01
The relative contributions of adaptive selection and neutral drift to genetic change are unknown but likely depend on the inherent abundance of functional genotypes in sequence space and how accessible those genotypes are to one another. To better understand the relative roles of selection and drift in evolution, local fitness landscapes for two different RNA ligase ribozymes were examined using a continuous in vitro evolution system under conditions that foster the capacity for neutral drift to mediate genetic change. The exploration of sequence space was accelerated by increasing the mutation rate using mutagenic nucleotide analogs. Drift was encouraged by carrying out evolution within millions of separate compartments to exploit the founder effect. Deep sequencing of individuals from the evolved populations revealed that the distribution of genotypes did not escape the starting local fitness peak, remaining clustered around the sequence used to initiate evolution. This is consistent with a fitness landscape where high-fitness genotypes are sparse and well isolated, and suggests, at least in this context, that neutral drift alone is not a primary driver of genetic change. Neutral drift does, however, provide a repository of genetic variation upon which adaptive selection can act.
Informing Mechanistic Toxicology with Computational Molecular Models
Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo effo...
Koufopanou, Vassiliki; Burt, Austin
2005-07-01
VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.
Reubi, Jean Claude
2017-12-01
The identification of new molecular targets for diagnostic and therapeutic applications using in vitro methods is an important challenge in nuclear medicine. One such method is immunohistochemistry, increasingly popular because it is easy to perform. This review presents the case for conducting receptor immunohistochemistry to evaluate potential molecular targets in human tumor tissue sections. The focus is on the immunohistochemistry of G-protein-coupled receptors, one of the largest families of cell surface proteins, representing a major class of drug targets and thus playing an important role in nuclear medicine. This review identifies common pitfalls and challenges and provides guidelines on performing such immunohistochemical studies. An appropriate validation of the target is a prerequisite for developing robust and informative new molecular probes. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Pan, Ning; Kopecky, Benjamin; Jahan, Israt; Fritzsch, Bernd
2012-01-01
Reconstructing a functional organ of Corti is the ultimate target towards curing hearing loss. Despite the impressive technical gains made over the last few years, many complications remain ahead for the two main restoration avenues: in vitro transformation of pluripotent cells into hair cell-like cells and adenovirus-mediated gene therapy. Most notably, both approaches require a more complete understanding of the molecular networks that ensure specific cell types form in the correct places to allow proper function of the restored organ of Corti. Important to this understanding are the basic helix-loop-helix (bHLH) transcription factors (TFs) that are highly diverse and serve to increase functional complexity but their evolutionary implementation in the inner ear neurosensory development is less conspicuous. To this end, we review the evolutionary and developmentally dynamic interactions of the three bHLH TFs that have been identified as the main players in neurosensory evolution and development, Neurog1, Neurod1 and Atoh1. These three TFs belong to the neurogenin/atonal family and evolved from a molecular precursor that likely regulated single sensory cell development in the ectoderm of metazoan ancestors but are now also expressed in other parts of the body, including the brain. They interact extensively via intracellular and intercellular cross-regulation to establish the two main neurosensory cell types of the ear, the hair cells and sensory neurons. Furthermore, the level and duration of their expression affect the specification of hair cell subtypes (inner hair cells vs. outer hair cells). We propose that appropriate manipulation of these TFs through their characterized binding sites may offer a solution by itself, or in conjunction with the two other approaches currently pursued by others, to restore the organ of Corti. PMID:22688958
Relova, Damarys; Acevedo, Ana M.; Coronado, Liani; Perera, Carmen L.
2018-01-01
The current global conditions, which include intensive globalization, climate changes, and viral evolution among other factors, have led to an increased emergence of viruses and new viral diseases; RNA viruses are key drivers of this evolution. Laboratory networks that are linked to central reference laboratories are required to conduct both active and passive environmental surveillance of this complicated global viral environment. These tasks require a continuous exchange of strains or field samples between different diagnostic laboratories. The shipment of these samples on dry ice represents both a biological hazard and a general health risk. Moreover, the requirement to ship on dry ice could be hampered by high costs, particularly in underdeveloped countries or regions located far from each other. To solve these issues, the shipment of RNA isolated from viral suspensions or directly from field samples could be a useful way to share viral genetic material. However, extracted RNA stored in aqueous solutions, even at −70 °C, is highly prone to degradation. The current study evaluated different RNA storage conditions for safety and feasibility for future use in molecular diagnostics. The in vitro RNA-transcripts obtained from an inactivated highly pathogenic avian influenza (HPAI) H5N1 virus was used as a model. The role of secondary structures in the protection of the RNA was also explored. Of the conditions evaluated, the dry pellet matrix was best able to protect viral RNA under extreme storage conditions. This method is safe, cost-effective and assures the integrity of RNA samples for reliable molecular diagnosis. This study aligns with the globally significant “Global One Health” paradigm, especially with respect to the diagnosis of emerging diseases that require confirmation by reference laboratories. PMID:29415432
Liu, Fuxiao; Wu, Xiaodong; Li, Lin; Zou, Yanli; Liu, Shan; Wang, Zhiliang
2016-08-01
The genus Morbillivirus is classified into the family Paramyxoviridae, and is composed of 6 members, namely measles virus (MV), rinderpest virus (RPV), peste-des-petits-ruminants virus (PPRV), canine distemper virus (CDV), phocine distemper virus (PDV) and cetacean morbillivirus (CeMV). The MV, RPV, PPRV and CDV have been successfully attenuated through their serial passages in vitro for the production of live vaccines. It has been demonstrated that the morbilliviral virulence in animals was progressively attenuated with their consecutive passages in vitro. However, only a few reports were involved in explanation of an attenuation-related mechanism on them until many years after the establishment of a quasispecies theory. RNA virus quasispecies arise from rapid evolution of viruses with high mutation rate during genomic replication, and play an important role in gradual loss of viral virulence by serial passages. Here, we overviewed the development of live-attenuated vaccine strains against morbilliviruses by consecutive passages in vitro, and further discussed a related mechanism concerning the relationship between virulence attenuation and viral evolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
2018-01-01
Although many new anti-infectives have been discovered and developed solely using phenotypic cellular screening and assay optimization, most researchers recognize that structure-guided drug design is more practical and less costly. In addition, a greater chemical space can be interrogated with structure-guided drug design. The practicality of structure-guided drug design has launched a search for the targets of compounds discovered in phenotypic screens. One method that has been used extensively in malaria parasites for target discovery and chemical validation is in vitro evolution and whole genome analysis (IVIEWGA). Here, small molecules from phenotypic screens with demonstrated antiparasitic activity are used in genome-based target discovery methods. In this Review, we discuss the newest, most promising druggable targets discovered or further validated by evolution-based methods, as well as some exceptions. PMID:29451780
EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE
Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.
2015-01-01
Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168
Molecular evolution of cyclin proteins in animals and fungi
2011-01-01
Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events. PMID:21798004
Molecular Evolution of Respiratory Syncytial Virus Fusion Gene, Canada, 2006–2010
Papenburg, Jesse; Carbonneau, Julie; Hamelin, Marie-Ève; Isabel, Sandra; Bouhy, Xavier; Ohoumanne, Najwa; Déry, Pierre; Paes, Bosco A.; Corbeil, Jacques; Bergeron, Michel G.; De Serres, Gaston
2012-01-01
To assess molecular evolution of the respiratory syncytial virus (RSV) fusion gene, we analyzed RSV-positive specimens from 123 children in Canada who did or did not receive RSV immunoprophylaxis (palivizumab) during 2006–2010. Resistance-conferring mutations within the palivizumab binding site occurred in 8.7% of palivizumab recipients and none of the nonrecipients. PMID:22264682
Integrated Multiscale Modeling of Molecular Computing Devices. Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tim Schulze
2012-11-01
The general theme of this research has been to expand the capabilities of a simulation technique, Kinetic Monte Carlo (KMC) and apply it to study self-assembled nano-structures on epitaxial thin films. KMC simulates thin film growth and evolution by replacing the detailed dynamics of the system's evolution, which might otherwise be studied using molecular dynamics, with an appropriate stochastic process.
Castel, Guillaume; Razzauti, Maria; Jousselin, Emmanuelle; Kergoat, Gael J.; Cosson, Jean-François
2014-01-01
In the last 50 years, hantaviruses have significantly affected public health worldwide, but the exact extent of the distribution of hantavirus diseases, species and lineages and the risk of their emergence into new geographic areas are still poorly known. In particular, the determinants of molecular evolution of hantaviruses circulating in different geographical areas or different host species are poorly documented. Yet, this understanding is essential for the establishment of more accurate scenarios of hantavirus emergence under different climatic and environmental constraints. In this study, we focused on Murinae-associated hantaviruses (mainly Seoul Dobrava and Hantaan virus) using sequences available in GenBank and conducted several complementary phylogenetic inferences. We sought for signatures of selection and changes in patterns and rates of diversification in order to characterize hantaviruses’ molecular evolution at different geographical scales (global and local). We then investigated whether these events were localized in particular geographic areas. Our phylogenetic analyses supported the assumption that RNA virus molecular variations were under strong evolutionary constraints and revealed changes in patterns of diversification during the evolutionary history of hantaviruses. These analyses provide new knowledge on the molecular evolution of hantaviruses at different scales of time and space. PMID:24618811
Ahmad, Kareem M; Xiao, Yi; Soh, H Tom
2012-12-01
Multivalent molecular interactions can be exploited to dramatically enhance the performance of an affinity reagent. The enhancement in affinity and specificity achieved with a multivalent construct depends critically on the effectiveness of the scaffold that joins the ligands, as this determines their positions and orientations with respect to the target molecule. Currently, no generalizable design rules exist for construction of an optimal multivalent ligand for targets with known structures, and the design challenge remains an insurmountable obstacle for the large number of proteins whose structures are not known. As an alternative to such design-based strategies, we report here a directed evolution-based method for generating optimal bivalent aptamers. To demonstrate this approach, we fused two thrombin aptamers with a randomized DNA sequence and used a microfluidic in vitro selection strategy to isolate scaffolds with exceptionally high affinities. Within five rounds of selection, we generated a bivalent aptamer that binds thrombin with an apparent dissociation constant (K(d)) <10 pM, representing a ∼200-fold improvement in binding affinity over the monomeric aptamers and a ∼15-fold improvement over the best designed bivalent construct. The process described here can be used to produce high-affinity multivalent aptamers and could potentially be adapted to other classes of biomolecules.
Stretch or contraction induced inversion of rectification in diblock molecular junctions
NASA Astrophysics Data System (ADS)
Zhang, Guang-Ping; Hu, Gui-Chao; Song, Yang; Xie, Zhen; Wang, Chuan-Kui
2013-09-01
Based on ab initio theory and nonequilibrium Green's function method, the effect of stretch or contraction on the rectification in diblock co-oligomer molecular diodes is investigated theoretically. Interestingly, an inversion of rectifying direction induced by stretching or contracting the molecular junctions, which is closely related to the number of the pyrimidinyl-phenyl units, is proposed. The analysis of the molecular projected self-consistent Hamiltonian and the evolution of the frontier molecular orbitals as well as transmission coefficients under external biases gives an inside view of the observed results. It reveals that the asymmetric molecular level shift and asymmetric evolution of orbital wave functions under biases are competitive mechanisms for rectification. The stretching or contracting induced inversion of the rectification is due to the conversion of the dominant mechanism. This work suggests a feasible technique to manipulate the rectification performance in molecular diodes by use of the mechanically controllable method.
Tonnabel, Jeanne; Mignot, Agnès; Douzery, Emmanuel J P; Rebelo, Anthony G; Schurr, Frank M; Midgley, Jeremy; Illing, Nicola; Justy, Fabienne; Orcel, Denis; Olivieri, Isabelle
2014-10-01
Natural selection is expected to cause convergence of life histories among taxa as well as correlated evolution of different life-history traits. Here, we quantify the extent of convergence of five key life-history traits (adult fire survival, seed storage, degree of sexual dimorphism, pollination mode, and seed-dispersal mode) and test hypotheses about their correlated evolution in the genus Leucadendron (Proteaceae) from the fire-prone South African fynbos. We reconstructed a new molecular phylogeny of this highly diverse genus that involves more taxa and molecular markers than previously. This reconstruction identifies new clades that were not detected by previous molecular study and morphological classifications. Using this new phylogeny and robust methods that account for phylogenetic uncertainty, we show that the five life-history traits studied were labile during the evolutionary history of the genus. This diversity allowed us to tackle major questions about the correlated evolution of life-history strategies. We found that species with longer seed-dispersal distances tended to evolve lower pollen-dispersal distance, that insect-pollinated species evolved decreased sexual dimorphism, and that species with a persistent soil seed-bank evolved toward reduced fire-survival ability of adults. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.
Molecular mechanisms of dominance evolution in Müllerian mimicry.
Llaurens, V; Joron, M; Billiard, S
2015-12-01
Natural selection acting on dominance between adaptive alleles at polymorphic loci can be sufficiently strong for dominance to evolve. However, the molecular mechanisms underlying such evolution are generally unknown. Here, using Müllerian mimicry as a case-study for adaptive morphological variation, we present a theoretical analysis of the invasion of dominance modifiers altering gene expression through different molecular mechanisms. Toxic species involved in Müllerian mimicry exhibit warning coloration, and converge morphologically with other toxic species of the local community, due to positive frequency-dependent selection acting on these colorations. Polymorphism in warning coloration may be maintained by migration-selection balance with fine scale spatial heterogeneity. We modeled a dominance modifier locus altering the expression of the warning coloration locus, targeting one or several alleles, acting in cis or trans, and either enhancing or repressing expression. We confirmed that dominance could evolve when balanced polymorphism was maintained at the color locus. Dominance evolution could result from modifiers enhancing one allele specifically, irrespective of their linkage with the targeted locus. Nonspecific enhancers could also persist in populations, at frequencies tightly depending on their linkage with the targeted locus. Altogether, our results identify which mechanisms of expression alteration could lead to dominance evolution in polymorphic mimicry. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Fourth Symposium on Chemical Evolution and the Origin and Evolution of Life
NASA Technical Reports Server (NTRS)
Wharton, Robert A., Jr. (Editor); Andersen, Dale T. (Editor); Bzik, Sara E. (Editor); Rummel, John D. (Editor)
1991-01-01
This symposium was held at the NASA Ames Research Center, Moffett Field, California, July 24-27, 1990. The NASA exobiology investigators reported their recent research findings. Scientific papers were presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI).
Molecular clocks and the early evolution of metazoan nervous systems.
Wray, Gregory A
2015-12-19
The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. © 2015 The Author(s).
Kim, Inhae; Lee, Heetak; Han, Seong Kyu; Kim, Sanguk
2014-10-01
The modular architecture of protein-protein interaction (PPI) networks is evident in diverse species with a wide range of complexity. However, the molecular components that lead to the evolution of modularity in PPI networks have not been clearly identified. Here, we show that weak domain-linear motif interactions (DLIs) are more likely to connect different biological modules than strong domain-domain interactions (DDIs). This molecular division of labor is essential for the evolution of modularity in the complex PPI networks of diverse eukaryotic species. In particular, DLIs may compensate for the reduction in module boundaries that originate from increased connections between different modules in complex PPI networks. In addition, we show that the identification of biological modules can be greatly improved by including molecular characteristics of protein interactions. Our findings suggest that transient interactions have played a unique role in shaping the architecture and modularity of biological networks over the course of evolution.
Molecular Epidemiology and Genomics of Group A Streptococcus
Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé
2014-01-01
Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818
Sex in a test tube: testing the benefits of in vitro recombination.
Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M
2016-10-19
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Evolution and the Distribution of Glutaminyl and Asparaginyl Residues in Proteins
Robinson, Arthur B.
1974-01-01
Recent experiments on the deamidation of glutaminyl and asparaginyl residues in peptides and proteins support the hypothesis that these residues may serve as molecular clocks that control biological processes. A hypothesis is now offered that suggests that these molecular clocks are set by rejection or accumulation of appropriate sequences of residues including a glutaminyl or asparaginyl residue during evolution. PMID:4522799
Fujisawa, Tomochika; Vogler, Alfried P; Barraclough, Timothy G
2015-01-22
Comparative analysis is a potentially powerful approach to study the effects of ecological traits on genetic variation and rate of evolution across species. However, the lack of suitable datasets means that comparative studies of correlates of genetic traits across an entire clade have been rare. Here, we use a large DNA-barcode dataset (5062 sequences) of water beetles to test the effects of species ecology and geographical distribution on genetic variation within species and rates of molecular evolution across species. We investigated species traits predicted to influence their genetic characteristics, such as surrogate measures of species population size, latitudinal distribution and habitat types, taking phylogeny into account. Genetic variation of cytochrome oxidase I in water beetles was positively correlated with occupancy (numbers of sites of species presence) and negatively with latitude, whereas substitution rates across species depended mainly on habitat types, and running water specialists had the highest rate. These results are consistent with theoretical predictions from nearly-neutral theories of evolution, and suggest that the comparative analysis using large databases can give insights into correlates of genetic variation and molecular evolution.
Micropropagation, genetic engineering, and molecular biology of Populus
N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew
1997-01-01
Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...
The evolution of dorsal-ventral patterning mechanisms in insects.
Lynch, Jeremy A; Roth, Siegfried
2011-01-15
The gene regulatory network (GRN) underpinning dorsal-ventral (DV) patterning of the Drosophila embryo is among the most thoroughly understood GRNs, making it an ideal system for comparative studies seeking to understand the evolution of development. With the emergence of widely applicable techniques for testing gene function, species with sequenced genomes, and multiple tractable species with diverse developmental modes, a phylogenetically broad and molecularly deep understanding of the evolution of DV axis formation in insects is feasible. Here, we review recent progress made in this field, compare our emerging molecular understanding to classical embryological experiments, and suggest future directions of inquiry.
Evolutionary molecular medicine.
Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S
2012-05-01
Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.
Size and habit evolution of PETN crystals - a lattice Monte Carlo study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zepeda-Ruiz, L A; Maiti, A; Gee, R
2006-02-28
Starting from an accurate inter-atomic potential we develop a simple scheme of generating an ''on-lattice'' molecular potential of short range, which is then incorporated into a lattice Monte Carlo code for simulating size and shape evolution of nanocrystallites. As a specific example, we test such a procedure on the morphological evolution of a molecular crystal of interest to us, e.g., Pentaerythritol Tetranitrate, or PETN, and obtain realistic facetted structures in excellent agreement with experimental morphologies. We investigate several interesting effects including, the evolution of the initial shape of a ''seed'' to an equilibrium configuration, and the variation of growth morphologymore » as a function of the rate of particle addition relative to diffusion.« less
Evolution: Understanding Life on Earth.
ERIC Educational Resources Information Center
Dybas, Cheryl Lyn
2002-01-01
Reports on presentations representing evolution at the 53rd annual meeting of the American Institute of Biological Sciences (AIBS) which was held March 22-24, 2002. Explains evolutionary patterns, phylogenetic pageantry, molecular clocks, speciation and biogeography, speciation and macroevolution, and human-induced evolution of drugs-resistant…
High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...
Conservation of Toll-like receptor signaling pathways in teleost fish
Purcell, M.K.; Smith, K.D.; Aderem, A.; Hood, L.; Winton, J.R.; Roach, J.C.
2006-01-01
In mammals, toll-like receptors (TLR) recognize ligands, including pathogen-associated molecular patterns (PAMPs), and respond with ligand-specific induction of genes. In this study, we establish evolutionary conservation in teleost fish of key components of the TLR-signaling pathway that act as switches for differential gene induction, including MYD88, TIRAP, TRIF, TRAF6, IRF3, and IRF7. We further explore this conservation with a molecular phylogenetic analysis of MYD88. To the extent that current genomic analysis can establish, each vertebrate has one ortholog to each of these genes. For molecular tree construction and phylogeny inference, we demonstrate a methodology for including genes with only partial primary sequences without disrupting the topology provided by the high-confidence full-length sequences. Conservation of the TLR-signaling molecules suggests that the basic program of gene regulation by the TLR-signaling pathway is conserved across vertebrates. To test this hypothesis, leukocytes from a model fish, rainbow trout (Oncorhynchus mykiss), were stimulated with known mammalian TLR agonists including: diacylated and triacylated forms of lipoprotein, flagellin, two forms of LPS, synthetic double-stranded RNA, and two imidazoquinoline compounds (loxoribine and R848). Trout leukocytes responded in vitro to a number of these agonists with distinct patterns of cytokine expression that correspond to mammalian responses. Our results support the key prediction from our phylogenetic analyses that strong selective pressure of pathogenic microbes has preserved both TLR recognition and signaling functions during vertebrate evolution.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H C; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P
2016-05-31
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma.
Bougnaud, Sébastien; Golebiewska, Anna; Oudin, Anaïs; Keunen, Olivier; Harter, Patrick N.; Mäder, Lisa; Azuaje, Francisco; Fritah, Sabrina; Stieber, Daniel; Kaoma, Tony; Vallar, Laurent; Brons, Nicolaas H.C.; Daubon, Thomas; Miletic, Hrvoje; Sundstrøm, Terje; Herold-Mende, Christel; Mittelbronn, Michel; Bjerkvig, Rolf; Niclou, Simone P.
2016-01-01
The histopathological and molecular heterogeneity of glioblastomas represents a major obstacle for effective therapies. Glioblastomas do not develop autonomously, but evolve in a unique environment that adapts to the growing tumour mass and contributes to the malignancy of these neoplasms. Here, we show that patient-derived glioblastoma xenografts generated in the mouse brain from organotypic spheroids reproducibly give rise to three different histological phenotypes: (i) a highly invasive phenotype with an apparent normal brain vasculature, (ii) a highly angiogenic phenotype displaying microvascular proliferation and necrosis and (iii) an intermediate phenotype combining features of invasion and vessel abnormalities. These phenotypic differences were visible during early phases of tumour development suggesting an early instructive role of tumour cells on the brain parenchyma. Conversely, we found that tumour-instructed stromal cells differentially influenced tumour cell proliferation and migration in vitro, indicating a reciprocal crosstalk between neoplastic and non-neoplastic cells. We did not detect any transdifferentiation of tumour cells into endothelial cells. Cell type-specific transcriptomic analysis of tumour and endothelial cells revealed a strong phenotype-specific molecular conversion between the two cell types, suggesting co-evolution of tumour and endothelial cells. Integrative bioinformatic analysis confirmed the reciprocal crosstalk between tumour and microenvironment and suggested a key role for TGFβ1 and extracellular matrix proteins as major interaction modules that shape glioblastoma progression. These data provide novel insight into tumour-host interactions and identify novel stroma-specific targets that may play a role in combinatorial treatment strategies against glioblastoma. PMID:27049916
A proposal for in vitro/GFR molecular erythema action spectrum
NASA Astrophysics Data System (ADS)
de Souza, João A. V.; Lorenzini, Fabiane; Rizzatti, Mara R.
2008-08-01
We propose an erythema action spectrum based on experimental molecular measurements named molecular erythema action spectrum or in vitro/GFR, where the acronym GFR represents our research group name, Grupo de Física das Radiaçöes. The in vitro methodology was developed by using a derma tissue simulator (TSD), as a radiation protection shield, and monochromatic ultraviolet (UV) sources of 254, 310, 365, 380, and 400 nm. The irradiance from each source was monitored through spectroradiometry in order to obtain the exposure dose over a period of time. Changes in the chemical structure were monitored by Fourier transform infrared spectroscopy (FTIR) and UV and visible spectroscopy (UV-vis). The samples were analyzed by UV-vis at each 200 up to 1000 J/m2 and at each 400 up to 2000 J/m2. FTIR was performed only for samples exposed to a maximum dose of 2000 J/m2. The in vitro action parameters were obtained by considering the redshift revealed through UV-vis analysis, as being the molecular quantification of minimal erythema, and the chemical bond rupture of TSD molecules associated with erythema, revealed through FTIR. The in vitro/GFR action spectrum shows that UV-A and UV-B radiation are equally responsible for the damage observed in TSD. When this proposal was compared to the CIE erythema action spectrum from ISO [ISO17166 CIE S 007/E, Erythema Reference Action Spectrum and Standard Erythema Dose (CIE Central Bureau, Austria, 1998)], similarities could be observed in wavelengths less than 280 nm in UV-B region. However, for wavelengths higher than 300 nm, the efficiency of this radiation to induce damage, mainly in the UV-A part, was much higher than predicted in CIE model. The increasing concern on UV-A radiation, assumed to be as responsible as UV-B for inducing most of the already observed skin injuries, may be better understood when observing the experimental model presented in in vitro/GFR action spectrum.
Phylogenomic Insights into Animal Evolution.
Telford, Maximilian J; Budd, Graham E; Philippe, Hervé
2015-10-05
Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recurrent Innovation at Genes Required for Telomere Integrity in Drosophila.
Lee, Yuh Chwen G; Leek, Courtney; Levine, Mia T
2017-02-01
Telomeres are nucleoprotein complexes at the ends of linear chromosomes. These specialized structures ensure genome integrity and faithful chromosome inheritance. Recurrent addition of repetitive, telomere-specific DNA elements to chromosome ends combats end-attrition, while specialized telomere-associated proteins protect naked, double-stranded chromosome ends from promiscuous repair into end-to-end fusions. Although telomere length homeostasis and end-protection are ubiquitous across eukaryotes, there is sporadic but building evidence that the molecular machinery supporting these essential processes evolves rapidly. Nevertheless, no global analysis of the evolutionary forces that shape these fast-evolving proteins has been performed on any eukaryote. The abundant population and comparative genomic resources of Drosophila melanogaster and its close relatives offer us a unique opportunity to fill this gap. Here we leverage population genetics, molecular evolution, and phylogenomics to define the scope and evolutionary mechanisms driving fast evolution of genes required for telomere integrity. We uncover evidence of pervasive positive selection across multiple evolutionary timescales. We also document prolific expansion, turnover, and expression evolution in gene families founded by telomeric proteins. Motivated by the mutant phenotypes and molecular roles of these fast-evolving genes, we put forward four alternative, but not mutually exclusive, models of intra-genomic conflict that may play out at very termini of eukaryotic chromosomes. Our findings set the stage for investigating both the genetic causes and functional consequences of telomere protein evolution in Drosophila and beyond. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Shivange, Amol V; Hoeffken, Hans Wolfgang; Haefner, Stefan; Schwaneberg, Ulrich
2016-12-01
Protein consensus-based surface engineering (ProCoS) is a simple and efficient method for directed protein evolution combining computational analysis and molecular biology tools to engineer protein surfaces. ProCoS is based on the hypothesis that conserved residues originated from a common ancestor and that these residues are crucial for the function of a protein, whereas highly variable regions (situated on the surface of a protein) can be targeted for surface engineering to maximize performance. ProCoS comprises four main steps: ( i ) identification of conserved and highly variable regions; ( ii ) protein sequence design by substituting residues in the highly variable regions, and gene synthesis; ( iii ) in vitro DNA recombination of synthetic genes; and ( iv ) screening for active variants. ProCoS is a simple method for surface mutagenesis in which multiple sequence alignment is used for selection of surface residues based on a structural model. To demonstrate the technique's utility for directed evolution, the surface of a phytase enzyme from Yersinia mollaretii (Ymphytase) was subjected to ProCoS. Screening just 1050 clones from ProCoS engineering-guided mutant libraries yielded an enzyme with 34 amino acid substitutions. The surface-engineered Ymphytase exhibited 3.8-fold higher pH stability (at pH 2.8 for 3 h) and retained 40% of the enzyme's specific activity (400 U/mg) compared with the wild-type Ymphytase. The pH stability might be attributed to a significantly increased (20 percentage points; from 9% to 29%) number of negatively charged amino acids on the surface of the engineered phytase.
Biophysical Fitness Landscapes for Transcription Factor Binding Sites
Haldane, Allan; Manhart, Michael; Morozov, Alexandre V.
2014-01-01
Phenotypic states and evolutionary trajectories available to cell populations are ultimately dictated by complex interactions among DNA, RNA, proteins, and other molecular species. Here we study how evolution of gene regulation in a single-cell eukaryote S. cerevisiae is affected by interactions between transcription factors (TFs) and their cognate DNA sites. Our study is informed by a comprehensive collection of genomic binding sites and high-throughput in vitro measurements of TF-DNA binding interactions. Using an evolutionary model for monomorphic populations evolving on a fitness landscape, we infer fitness as a function of TF-DNA binding to show that the shape of the inferred fitness functions is in broad agreement with a simple functional form inspired by a thermodynamic model of two-state TF-DNA binding. However, the effective parameters of the model are not always consistent with physical values, indicating selection pressures beyond the biophysical constraints imposed by TF-DNA interactions. We find little statistical support for the fitness landscape in which each position in the binding site evolves independently, indicating that epistasis is common in the evolution of gene regulation. Finally, by correlating TF-DNA binding energies with biological properties of the sites or the genes they regulate, we are able to rule out several scenarios of site-specific selection, under which binding sites of the same TF would experience different selection pressures depending on their position in the genome. These findings support the existence of universal fitness landscapes which shape evolution of all sites for a given TF, and whose properties are determined in part by the physics of protein-DNA interactions. PMID:25010228
Caetano-Anollés, Gustavo
2013-01-01
Reconstructing the evolutionary history of modern species is a difficult problem complicated by the conceptual and technical limitations of phylogenetic tree building methods. Here, we propose a comparative proteomic and functionomic inferential framework for genome evolution that allows resolving the tripartite division of cells and sketching their history. Evolutionary inferences were derived from the spread of conserved molecular features, such as molecular structures and functions, in the proteomes and functionomes of contemporary organisms. Patterns of use and reuse of these traits yielded significant insights into the origins of cellular diversification. Results uncovered an unprecedented strong evolutionary association between Bacteria and Eukarya while revealing marked evolutionary reductive tendencies in the archaeal genomic repertoires. The effects of nonvertical evolutionary processes (e.g., HGT, convergent evolution) were found to be limited while reductive evolution and molecular innovation appeared to be prevalent during the evolution of cells. Our study revealed a strong vertical trace in the history of proteins and associated molecular functions, which was reliably recovered using the comparative genomics approach. The trace supported the existence of a stem line of descent and the very early appearance of Archaea as a diversified superkingdom, but failed to uncover a hidden canonical pattern in which Bacteria was the first superkingdom to deploy superkingdom-specific structures and functions. PMID:24492748
A new model for biological effects of radiation and the driven force of molecular evolution
NASA Astrophysics Data System (ADS)
Wada, Takahiro; Manabe, Yuichiro; Nakajima, Hiroo; Tsunoyama, Yuichi; Bando, Masako
We proposed a new mathematical model to estimate biological effects of radiation, which we call Whack-A-Mole (WAM) model. A special feature of WAM model is that it involves the dose rate of radiation as a key ingredient. We succeeded to reproduce the experimental data of various species concerning the radiation induced mutation frequencies. From the analysis of the mega-mouse experiments, we obtained the mutation rate per base-pair per year for mice which is consistent with the so-called molecular clock in evolution genetics, 10-9 mutation/base-pair/year. Another important quantity is the equivalent dose rate for the whole spontaneous mutation, deff. The value of deff for mice is 1.1*10-3 Gy/hour which is much larger than the dose rate of natural radiation (10- (6 - 7) Gy/hour) by several orders of magnitude. We also analyzed Drosophila data and obtained essentially the same numbers. This clearly indicates that the natural radiation is not the dominant driving force of the molecular evolution, but we should look for other factors, such as miscopy of DNA in duplication process. We believe this is the first quantitative proof of the small contribution of the natural radiation in the molecular evolution.
Evolution of heteromorphic sex chromosomes in the order Aulopiformes.
Ota, K; Kobayashi, T; Ueno, K; Gojobori, T
2000-12-23
The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.
Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.
2016-01-01
Abstract. The misfolding and self-assembly of intrinsically disordered proteins into insoluble amyloid structures are central to many neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases. Optical imaging of this self-assembly process in vitro and in cells is revolutionizing our understanding of the molecular mechanisms behind these devastating conditions. In contrast to conventional biophysical methods, optical imaging and, in particular, optical superresolution imaging, permits the dynamic investigation of the molecular self-assembly process in vitro and in cells, at molecular-level resolution. In this article, current state-of-the-art imaging methods are reviewed and discussed in the context of research into neurodegeneration. PMID:27413767
Mazurik, V K; Mikhaĭlov, V F
2001-01-01
The recent data on the radiation-induced genome instability as a special state of progeny of cells irradiated in vitro as well as after a whole body exposure to ionizing radiation, that make these cells considerably different from normal, unirradiated cells, were considered. This state presents a number of cytogenetical, molecular-biological, cytological and biochemical manifestations untypical for normal cells. The state is controlled by the mechanisms of regulation of checkpoints of cell cycle, and apoptosis, that is under gene p53 control. The proof has been found that this state transfers from irradiated maternal cells to their surviving progeny by the epigenetical mechanisms and would exist until the cells restore the original state of response on the DNA damage. From the point of view of the genome instability conception, that considers the chromatine rearrangement as the adaptive-evolution mechanism of adaptation of the species to changeable environmental conditions, the radiation-induced genome instability may be considered as transition of irradiated progeny to the state of read these to adaptation changes with two alternative pathways. The first leads to adaptation to enviromental conditions and restoring of normal cell functions. The second presents the cell transition into the transformed state with remain genome instability and with increase of tumour growth probability.
Development of novel vaccines using DNA shuffling and screening strategies.
Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha
2004-02-01
DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.
Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui
2016-08-01
The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller's dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins.
Bai, Mingmei; Qin, Guixin; Sun, Zewei; Long, Guohui
2016-01-01
The nutritional value of feed proteins and their utilization by livestock are related not only to the chemical composition but also to the structure of feed proteins, but few studies thus far have investigated the relationship between the structure of feed proteins and their solubility as well as digestibility in monogastric animals. To address this question we analyzed soybean meal, fish meal, corn distiller’s dried grains with solubles, corn gluten meal, and feather meal by Fourier transform infrared (FTIR) spectroscopy to determine the protein molecular spectral band characteristics for amides I and II as well as α-helices and β-sheets and their ratios. Protein solubility and in vitro digestibility were measured with the Kjeldahl method using 0.2% KOH solution and the pepsin-pancreatin two-step enzymatic method, respectively. We found that all measured spectral band intensities (height and area) of feed proteins were correlated with their the in vitro digestibility and solubility (p≤0.003); moreover, the relatively quantitative amounts of α-helices, random coils, and α-helix to β-sheet ratio in protein secondary structures were positively correlated with protein in vitro digestibility and solubility (p≤0.004). On the other hand, the percentage of β-sheet structures was negatively correlated with protein in vitro digestibility (p<0.001) and solubility (p = 0.002). These results demonstrate that the molecular structure characteristics of feed proteins are closely related to their in vitro digestibility at 28 h and solubility. Furthermore, the α-helix-to-β-sheet ratio can be used to predict the nutritional value of feed proteins. PMID:26954145
Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A
2012-06-01
The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models.
Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A.
2012-01-01
The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population’s phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model in which evolutionary rate does not depend on population size, but is critically dependent on the complexity of organisms and mutation size. For SR as well as VR we found that key parameters of molecular evolution are linked by biological factors, and we showed that they cannot be fixed independently by arbitrary criteria, as has usually been assumed in previous molecular evolutionary models. PMID:22426879
A scaling law of radial gas distribution in disk galaxies
NASA Technical Reports Server (NTRS)
Wang, Zhong
1990-01-01
Based on the idea that local conditions within a galactic disk largely determine the region's evolution time scale, researchers built a theoretical model to take into account molecular cloud and star formations in the disk evolution process. Despite some variations that may be caused by spiral arms and central bulge masses, they found that many late-type galaxies show consistency with the model in their radial atomic and molecular gas profiles. In particular, researchers propose that a scaling law be used to generalize the gas distribution characteristics. This scaling law may be useful in helping to understand the observed gas contents in many galaxies. Their model assumes an exponential mass distribution with disk radius. Most of the mass are in atomic gas state at the beginning of the evolution. Molecular clouds form through a modified Schmidt Law which takes into account gravitational instabilities in a possible three-phase structure of diffuse interstellar medium (McKee and Ostriker, 1977; Balbus and Cowie, 1985); whereas star formation proceeds presumably unaffected by the environmental conditions outside of molecular clouds (Young, 1987). In such a model both atomic and molecular gas profiles in a typical galactic disk (as a result of the evolution) can be fitted simultaneously by adjusting the efficiency constants. Galaxies of different sizes and masses, on the other hand, can be compared with the model by simply scaling their characteristic length scales and shifting their radial ranges to match the assumed disk total mass profile sigma tot(r).
Pestieau, Aude; Evrard, Brigitte
2017-05-01
For many decades, one of the most critical issues in the pharmaceutical industry has been the poor solubility of some drugs. Indeed, a prerequisite for drug absorption is the presence of dissolved drug at the absorption site and this can be challenging for compounds with low aqueous solubility such as BCS class II (low solubility, high permeability) and IV (low solubility, low permeability) compounds. If the development of oral delivery formulations of these compounds is frequently challenging to formulation scientists in the pharmaceutical industry, the in vitro evaluation of these new formulations is also a great challenge. One alternative approach to overcome the problems encountered with conventional dissolution methods is the use of biphasic dissolution systems. This review provides an overview of the origin and the evolution over time of the biphasic systems and the growing interest among scientists regarding their suitability for establishing in vitro-in vivo correlations. The evolution of these systems and their applications from the 1960s to the present day, such as in system variants and improvements, analysis of complex formulations, discriminatory power, bio-relevance, precipitation and supersaturation visualization, etc. will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Cell adhesion and the immune system: a case study using earthworms.
Cooper, E L; Cossarizza, A; Kauschke, E; Franceschi, C
1999-02-15
In the earthworm's immune system, cell adhesion, which occurs by putative receptors on leukocytes, is essential after recognition of self vs. non-self. Confrontation with foreign antigens is a normal event in the environment, replete with microbial pathogens that pose a threat to survival. To better understand what happens when an effector cell first recognizes a foreign target followed by its adhesion to it, isolated leukocytes, in sufficient quantities to be subjected to various analyses, have been extremely beneficial. In vitro approaches when accompanied by biochemical, immunological, and molecular technologies, have opened up new vistas concerning the immune response of earthworms and other invertebrates. The most recent discovery includes the preliminary identification of cell differentiation (CD) markers that play vital roles in recognitive and adhesive events. Certain leukocyte effectors show characteristics of natural killer (NK) cells that may act differently depending upon their source, whether autogeneic, allogeneic, xenogeneic, or expressed under normal or varying environmental conditions including exposure to xenobiotics. At the level of earthworm evolution, there is apparently a dissociation of phagocytosis from the process of killing by NK-like effectors. There are at least three future challenges. First, it is essential to determine the precise nature of the CD markers with respect to their molecular structure. Second, once their molecular and biochemical characteristics have been defined, the role of these markers in cellular and humoral mechanisms must be clarified in order to define effector cell products and resulting immune responses. Third, there is a need to differentiate between the several lytic factors that have been found in earthworms with respect to molecular structure, and biochemical and functional characterization.
Molecular Imaging and Contrast Agent Database (MICAD): evolution and progress.
Chopra, Arvind; Shan, Liang; Eckelman, W C; Leung, Kam; Latterner, Martin; Bryant, Stephen H; Menkens, Anne
2012-02-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov ) to students, researchers, and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, X-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1,000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4,250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration as well as a comma separated values file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, pre-clinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities, and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments, or suggestions for further improvement of the database by writing to the editors at micad@nlm.nih.gov.
Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress
Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne
2011-01-01
The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943
Pollen tube energetics: respiration, fermentation and the race to the ovule
Rounds, Caleb M.; Winship, Lawrence J.; Hepler, Peter K.
2011-01-01
Background Pollen tubes grow by transferring chemical energy from stored cellular starch and newly assimilated sugars into ATP. This drives myriad processes essential for cell elongation, directly or through the creation of ion gradients. Respiration plays a central role in generating and regulating this energy flow and thus in the success of plant reproduction. Pollen tubes are easily grown in vitro and have become an excellent model for investigating the contributions of respiration to plant cellular growth and morphogenesis at the molecular, biochemical and physiological levels. Scope In recent decades, pollen tube research has become increasingly focused on the molecular mechanisms involved in cellular processes. Yet, effective growth and development requires an intact, integrated set of cellular processes, all supplied with a constant flow of energy. Here we bring together information from the current and historical literature concerning respiration, fermentation and mitochondrial physiology in pollen tubes, and assess the significance of more recent molecular and genetic investigations in a physiological context. Conclusions The rapid growth of the pollen tube down the style has led to the evolution of high rates of pollen tube respiration. Respiration rates in lily predict a total energy turnover of 40–50 fmol ATP s−1 per pollen grain. Within this context we examine the energetic requirements of cell wall synthesis, osmoregulation, actin dynamics and cyclosis. At present, we can only estimate the amount of energy required, because data from growing pollen tubes are not available. In addition to respiration, we discuss fermentation and mitochondrial localization. We argue that the molecular pathways need to be examined within the physiological context to understand better the mechanisms that control tip growth in pollen tubes. PMID:22476489
Strulson, Christopher A.; Boyer, Joshua A.; Whitman, Elisabeth E.; Bevilacqua, Philip C.
2014-01-01
Folding mechanisms of functional RNAs under idealized in vitro conditions of dilute solution and high ionic strength have been well studied. Comparatively little is known, however, about mechanisms for folding of RNA in vivo where Mg2+ ion concentrations are low, K+ concentrations are modest, and concentrations of macromolecular crowders and low-molecular-weight cosolutes are high. Herein, we apply a combination of biophysical and structure mapping techniques to tRNA to elucidate thermodynamic and functional principles that govern RNA folding under in vivo–like conditions. We show by thermal denaturation and SHAPE studies that tRNA folding cooperativity increases in physiologically low concentrations of Mg2+ (0.5–2 mM) and K+ (140 mM) if the solution is supplemented with physiological amounts (∼20%) of a water-soluble neutral macromolecular crowding agent such as PEG or dextran. Low-molecular-weight cosolutes show varying effects on tRNA folding cooperativity, increasing or decreasing it based on the identity of the cosolute. For those additives that increase folding cooperativity, the gain is manifested in sharpened two-state-like folding transitions for full-length tRNA over its secondary structural elements. Temperature-dependent SHAPE experiments in the absence and presence of crowders and cosolutes reveal extent of cooperative folding of tRNA on a nucleotide basis and are consistent with the melting studies. Mechanistically, crowding agents appear to promote cooperativity by stabilizing tertiary structure, while those low molecular cosolutes that promote cooperativity stabilize tertiary structure and/or destabilize secondary structure. Cooperative folding of functional RNA under physiological-like conditions parallels the behavior of many proteins and has implications for cellular RNA folding kinetics and evolution. PMID:24442612
The historical role of species from the Solanaceae plant family in genetic research.
Gebhardt, Christiane
2016-12-01
This article evaluates the main contributions of tomato, tobacco, petunia, potato, pepper and eggplant to classical and molecular plant genetics and genomics since the beginning of the twentieth century. Species from the Solanaceae family form integral parts of human civilizations as food sources and drugs since thousands of years, and, more recently, as ornamentals. Some Solanaceous species were subjects of classical and molecular genetic research over the last 100 years. The tomato was one of the principal models in twentieth century classical genetics and a pacemaker of genome analysis in plants including molecular linkage maps, positional cloning of disease resistance genes and quantitative trait loci (QTL). Besides that, tomato is the model for the genetics of fruit development and composition. Tobacco was the major model used to establish the principals and methods of plant somatic cell genetics including in vitro propagation of cells and tissues, totipotency of somatic cells, doubled haploid production and genetic transformation. Petunia was a model for elucidating the biochemical and genetic basis of flower color and development. The cultivated potato is the economically most important Solanaceous plant and ranks third after wheat and rice as one of the world's great food crops. Potato is the model for studying the genetic basis of tuber development. Molecular genetics and genomics of potato, in particular association genetics, made valuable contributions to the genetic dissection of complex agronomic traits and the development of diagnostic markers for breeding applications. Pepper and eggplant are horticultural crops of worldwide relevance. Genetic and genomic research in pepper and eggplant mostly followed the tomato model. Comparative genome analysis of tomato, potato, pepper and eggplant contributed to the understanding of plant genome evolution.
Walczak, Agata P; Kramer, Evelien; Hendriksen, Peter J M; Helsdingen, Richard; van der Zande, Meike; Rietjens, Ivonne M C M; Bouwmeester, Hans
2015-01-01
The conditions of the gastrointestinal tract may change the physicochemical properties of nanoparticles (NPs) and therewith the bioavailability of orally taken NPs. Therefore, we assessed the impact of in vitro gastrointestinal digestion on the protein corona of polystyrene NPs (PS-NPs) and their subsequent translocation across an in vitro intestinal barrier. A co-culture of intestinal Caco-2 and HT29-MTX cells was exposed to 50 nm PS-NPs of different charges (positive and negative) in two forms: pristine and digested in an in vitro gastrointestinal digestion model. In vitro digestion significantly increased the translocation of all, except the "neutral", PS-NPs. Upon in vitro digestion, translocation was 4-fold higher for positively charged NPs and 80- and 1.7-fold higher for two types of negatively charged NPs. Digestion significantly reduced the amount of protein in the corona of three out of four types of NPs. This reduction of proteins was 4.8-fold for "neutral", 3.5-fold for positively charged and 1.8-fold for one type of negatively charged PS-NPs. In vitro digestion also affected the composition of the protein corona of PS-NPs by decreasing the presence of higher molecular weight proteins and shifting the protein content of the corona to low molecular weight proteins. These findings are the first to report that in vitro gastrointestinal digestion significantly affects the protein corona and significantly increases the in vitro translocation of differently charged PS-NPs. These findings stress the importance of including the in vitro digestion in future in vitro intestinal translocation screening studies for risk assessment of orally taken NPs.
Melkikh, Alexey V; Khrennikov, Andrei
2017-11-01
A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular hyperdiversity and evolution in very large populations.
Cutter, Asher D; Jovelin, Richard; Dey, Alivia
2013-04-01
The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of noncrossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on noncoding regulatory elements. © 2013 Blackwell Publishing Ltd.
The eyes have it: A Problem-Based Learning Exercise in Molecular Evolution.
White, Harold B
2007-05-01
Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related evolutionary trade offs of gene sharing versus gene duplication among their corresponding genes. It has directive elements that require students to find and read classic articles, review thermodynamic principles, and apply their understanding to a mythical world wherein dinosaurs continued to evolve. The science fiction writing assignment that brings closure to the problem transformed the problem with respect to student interest and engagement. Copyright © 2007 International Union of Biochemistry and Molecular Biology, Inc.
Driess, Matthias; Panda, Chakadola; Menezes, Prashanth Wilfried
2018-05-07
The low-temperature synthesis of inorganic materials and their interfaces at the atomic and molecular level provides numerous opportunities for the design and improvement of inorganic materials in heterogeneous catalysis for sustainable chemical energy conversion or other energy-saving areas. Using suitable molecular precursors for functional inorganic nanomaterial synthesis allows for facile control over uniform particle size distribution, stoichiometry, and leads to desired chemical and physical properties. This minireview outlines some advantages of the molecular precursor approach in light of selected recent developments of molecule-to-nanomaterials synthesis for renewable energy applications, relevant for the oxygen evolution reaction (OER), hydrogen evolution reaction (HER) and overall water-splitting. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Metabolic rate does not calibrate the molecular clock
Lanfear, Robert; Thomas, Jessica A.; Welch, John J.; Brey, Thomas; Bromham, Lindell
2007-01-01
Rates of molecular evolution vary widely among lineages, but the causes of this variation remain poorly understood. It has been suggested that mass-specific metabolic rate may be one of the key factors determining the rate of molecular evolution, and that it can be used to derive “corrected” molecular clocks. However, previous studies have been hampered by a paucity of mass-specific metabolic rate data and have been largely limited to vertebrate taxa. Using mass-specific metabolic rate measurements and DNA sequence data for >300 metazoan species for 12 different genes, we find no evidence that mass-specific metabolic rate drives substitution rates. The mechanistic basis of the metabolic rate hypothesis is discussed in light of these findings. PMID:17881572
An In Vitro Translation, Selection, and Amplification System for Peptide Nucleic Acids
Brudno, Yevgeny; Birnbaum, Michael E.; Kleiner, Ralph E.; Liu, David R.
2009-01-01
Methods to evolve synthetic, rather than biological, polymers could significantly expand the functional potential of polymers that emerge from in vitro evolution. Requirements for synthetic polymer evolution include: (i) sequence-specific polymerization of synthetic building blocks on an amplifiable template; (ii) display of the newly translated polymer strand in a manner that allows it to adopt folded structures; (iii) selection of synthetic polymer libraries for desired binding or catalytic properties; and (iv) amplification of template sequences surviving selection in a manner that allows subsequent translation. Here we report the development of such a system for peptide nucleic acids (PNAs) using a set of twelve PNA pentamer building blocks. We validated the system by performing six iterated cycles of translation, selection, and amplification on a library of 4.3 × 108 PNA-encoding DNA templates and observed >1,000,000-fold overall enrichment of a template encoding a biotinylated (streptavidin-binding) PNA. These results collectively provide an experimental foundation for PNA evolution in the laboratory. PMID:20081830
Evolution of an ancient protein function involved in organized multicellularity in animals.
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-07
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which - the evolution of GKPID's capacity to bind the cortical marker protein - can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-01
... makes appropriate recommendations to the Commissioner. E. Molecular and Clinical Genetics Devices Panel... vitro devices for use in clinical laboratory medicine, including clinical and molecular genetics, and...
The QTN program and the alleles that matter for evolution: all that's gold does not glitter.
Rockman, Matthew V
2012-01-01
The search for the alleles that matter, the quantitative trait nucleotides (QTNs) that underlie heritable variation within populations and divergence among them, is a popular pursuit. But what is the question to which QTNs are the answer? Although their pursuit is often invoked as a means of addressing the molecular basis of phenotypic evolution or of estimating the roles of evolutionary forces, the QTNs that are accessible to experimentalists, QTNs of relatively large effect, may be uninformative about these issues if large-effect variants are unrepresentative of the alleles that matter. Although 20th century evolutionary biology generally viewed large-effect variants as atypical, the field has recently undergone a quiet realignment toward a view of readily discoverable large-effect alleles as the primary molecular substrates for evolution. I argue that neither theory nor data justify this realignment. Models and experimental findings covering broad swaths of evolutionary phenomena suggest that evolution often acts via large numbers of small-effect polygenes, individually undetectable. Moreover, these small-effect variants are different in kind, at the molecular level, from the large-effect alleles accessible to experimentalists. Although discoverable QTNs address some fundamental evolutionary questions, they are essentially misleading about many others. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
In vitro isolation of small-molecule-binding aptamers with intrinsic dye-displacement functionality
Yu, Haixiang; Yang, Weijuan; Alkhamis, Obtin; Canoura, Juan; Yang, Kyung-Ae; Xiao, Yi
2018-01-01
Abstract Aptamer-based sensors offer a powerful tool for molecular detection, but the practical implementation of these biosensors is hindered by costly and laborious sequence engineering and chemical modification procedures. We report a simple strategy for directly isolating signal-reporting aptamers in vitro through systematic evolution of ligands by exponential enrichment (SELEX) that transduce binding events into a detectable change of absorbance via target-induced displacement of a small-molecule dye. We first demonstrate that diethylthiatricarbocyanine (Cy7) can stack into DNA three-way junctions (TWJs) in a sequence-independent fashion, greatly altering the dye's absorbance spectrum. We then design a TWJ-containing structured library and isolate an aptamer against 3,4-methylenedioxypyrovalerone (MDPV), a synthetic cathinone that is an emerging drug of abuse. This aptamer intrinsically binds Cy7 within its TWJ domain, but MDPV efficiently displaces the dye, resulting in a change in absorbance within seconds. This assay is label-free, and detects nanomolar concentrations of MDPV. It also recognizes other synthetic cathinones, offering the potential to detect newly-emerging designer drugs, but does not detect structurally-similar non-cathinone compounds or common cutting agents. Moreover, we demonstrate that the Cy7-displacement colorimetric assay is more sensitive than a conventional strand-displacement fluorescence assay. We believe our strategy offers an effective generalized approach for the development of sensitive dye-displacement colorimetric assays for other small-molecule targets. PMID:29361056
Kim, Kyung Mo; Caetano-Anollés, Gustavo
2014-01-01
The origins of diversified life remain mysterious despite considerable efforts devoted to untangling the roots of the universal tree of life. Here we reconstructed phylogenies that described the evolution of molecular functions and the evolution of species directly from a genomic census of gene ontology (GO) definitions. We sampled 249 free-living genomes spanning organisms in the three superkingdoms of life, Archaea, Bacteria, and Eukarya, and used the abundance of GO terms as molecular characters to produce rooted phylogenetic trees. Results revealed an early thermophilic origin of Archaea that was followed by genome reduction events in microbial superkingdoms. Eukaryal genomes displayed extraordinary functional diversity and were enriched with hundreds of novel molecular activities not detected in the akaryotic microbial cells. Remarkably, the majority of these novel functions appeared quite late in evolution, synchronized with the diversification of the eukaryal superkingdom. The distribution of GO terms in superkingdoms confirms that Archaea appears to be the simplest and most ancient form of cellular life, while Eukarya is the most diverse and recent. PMID:25249790
The Evolutionary Dynamics of the Odorant Receptor Gene Family in Corbiculate Bees.
Brand, Philipp; Ramírez, Santiago R
2017-08-01
Insects rely on chemical information to locate food, choose mates, and detect potential predators. It has been hypothesized that adaptive changes in the olfactory system facilitated the diversification of numerous insect lineages. For instance, evolutionary changes of Odorant Receptor (OR) genes often occur in parallel with modifications in life history strategies. Corbiculate bees display a diverse array of behaviors that are controlled through olfaction, including varying degrees of social organization, and manifold associations with floral resources. Here we investigated the molecular mechanisms driving the evolution of the OR gene family in corbiculate bees in comparison to other chemosensory gene families. Our results indicate that the genomic organization of the OR gene family has remained highly conserved for ∼80 Myr, despite exhibiting major changes in repertoire size among bee lineages. Moreover, the evolution of OR genes appears to be driven mostly by lineage-specific gene duplications in few genomic regions that harbor large numbers of OR genes. A selection analysis revealed that OR genes evolve under positive selection, with the strongest signals detected in recently duplicated copies. Our results indicate that chromosomal translocations had a minimal impact on OR evolution, and instead local molecular mechanisms appear to be main drivers of OR repertoire size. Our results provide empirical support to the longstanding hypothesis that positive selection shaped the diversification of the OR gene family. Together, our results shed new light on the molecular mechanisms underlying the evolution of olfaction in insects. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Wang, Bing; Dong, Jun; Niu, Lijing; Chen, Wenyan; Chen, Dongliang; Shen, Chengyi; Zhu, Jiang; Zhang, Xiaoming
2017-08-01
Electrospun membranes of poly(p-dioxanone-co-l-phenylalanine) (PDPA) hold potential as an anti-adhesion material. Since adjustable degradation properties are important for anti-adhesion materials, in this study, the in vitro and in vivo degradation processes of PDPA electrospun membranes were investigated in detail. The morphological analysis of these membranes revealed the main degradation conditions of PDPA membranes. The weight remaining and molecular weight variation showed that the overall degradation rate of the membranes could be adjusted by modulating the molecular structure of the PDPAs. Especially, α-chymotrypsin could catalyze the degradation process of PDPAs. Based on these results, the in vitro degradation mechanism was demonstrated, and confirmed by 1 H NMR of the hydrolysis products. Finally, the in vivo degradation and biocompatibility of different PDPAs were investigated. The kinetic study showed that the in vitro and in vivo molecular weight loss of PDPAs have the first-order characteristics. The in vivo degradation rate of the most Phe-containing PDPA-3 is the slowest, and this result relates to the biocompatibilities of PDPAs. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1369-1378, 2017. © 2016 Wiley Periodicals, Inc.
Antibody engineering--a valuable asset in preventing closed environment epidemics.
Fjallman, Ted; Hall, J Christopher
2005-01-01
Investigations of Mir, Space Shuttle, Skylab and Apollo missions report extensive colonisation of the spacecraft by bacteria and fungi, which can lead to degradative effects on spacecraft equipment and devastating effects on space-grown crops. More than 80% of terrestrial greenhouse epidemics are due to the fungal genera Phytophthora, Pythium and Fusarium, which have been found in life support system test-beds. The advent of recombinant antibody technologies, including ribosome display and phage display, has made it possible to develop antibodies against virtually any toxin or organism and allows for maturation of antibodies by in vitro molecular evolution. These antibodies may play an important role in an integrated pest management regime for life support systems. Efficacy of existing fungal countermeasures could be increased by chemical linkage to antibodies, which target the site of action of the biocide or trap the pathogen in a biofilter. Novel recombinant antibody-biocide fusions can be expressed in situ by plants or symbiotic microbes to create direct disease resistance. c2005 Elsevier Ltd. All rights reserved.
Belkorchia, Abdel; Biderre, Corinne; Militon, Cécile; Polonais, Valérie; Wincker, Patrick; Jubin, Claire; Delbac, Frédéric; Peyretaillade, Eric; Peyret, Pierre
2008-03-01
Brachiola algerae has a broad host spectrum from human to mosquitoes. The successful infection of two mosquito cell lines (Mos55: embryonic cells and Sua 4.0: hemocyte-like cells) and a human cell line (HFF) highlights the efficient adaptive capacity of this microsporidian pathogen. The molecular karyotype of this microsporidian species was determined in the context of the B. algerae genome sequencing project, showing that its haploid genome consists of 30 chromosomal-sized DNAs ranging from 160 to 2240 kbp giving an estimated genome size of 23 Mbp. A contig of 12,269 bp including the DNA sequence of the B. algerae ribosomal transcription unit has been built from initial genomic sequences and the secondary structure of the large subunit rRNA constructed. The data obtained indicate that B. algerae should be an excellent parasitic model to understand genome evolution in relation to infectious capacity.
Vaughan, Sue; Wickstead, Bill; Gull, Keith; Addinall, Stephen G
2004-01-01
The FtsZ protein is a polymer-forming GTPase which drives bacterial cell division and is structurally and functionally related to eukaryotic tubulins. We have searched for FtsZ-related sequences in all freely accessible databases, then used strict criteria based on the tertiary structure of FtsZ and its well-characterized in vitro and in vivo properties to determine which sequences represent genuine homologues of FtsZ. We have identified 225 full-length FtsZ homologues, which we have used to document, phylum by phylum, the primary sequence characteristics of FtsZ homologues from the Bacteria, Archaea, and Eukaryota. We provide evidence for at least five independent ftsZ gene-duplication events in the bacterial kingdom and suggest the existence of three ancestoral euryarchaeal FtsZ paralogues. In addition, we identify "FtsZ-like" sequences from Bacteria and Archaea that, while showing significant sequence similarity to FtsZs, are unlikely to bind and hydrolyze GTP.
Huang, Yukun; Wang, Xin; Duan, Nuo; Xia, Yu; Wang, Zhouping; Che, Zhenming; Wang, Lijun; Yang, Xiao; Chen, Xianggui
2018-06-15
An aptamer against Streptococcus pyogenes was selected and identified, and a fluorescent method based on the reported aptamer was established to detect S. pyogenes in the cooked chicken. Through a twelve rounds of whole-bacterium SELEX (systematic evolution of ligands by exponential enrichment) selection in vitro, a set of aptamers binding to the whole cell of S. pyogenes were generated, harvesting a low-level dissociation constant (K d ) value of 44 ± 5 nmol L -1 of aptamer S-12. Aptamer-based quantification of S. pyogenes in the cooked chicken sample was implemented in a fluorescence resonance energy transfer-based assay by using graphene oxide, resulting in a limit of detection of 70 cfu mL -1 . The selected aptamer showed affinity and selectivity recognizing S. pyogenes; besides, more biosensors based on the selected aptamer as a molecular recognition element could be developed in the innovative determinations of S. pyogenes. Copyright © 2018 Elsevier Inc. All rights reserved.
An RNA-Binding Multimer Specifies Nematode Sperm Fate.
Aoki, Scott T; Porter, Douglas F; Prasad, Aman; Wickens, Marvin; Bingman, Craig A; Kimble, Judith
2018-06-26
FOG-3 is a master regulator of sperm fate in Caenorhabditis elegans and homologous to Tob/BTG proteins, which in mammals are monomeric adaptors that recruit enzymes to RNA binding proteins. Here, we determine the FOG-3 crystal structure and in vitro demonstrate that FOG-3 forms dimers that can multimerize. The FOG-3 multimeric structure has a basic surface potential, suggestive of binding nucleic acid. Consistent with that prediction, FOG-3 binds directly to nearly 1,000 RNAs in nematode spermatogenic germ cells. Most binding is to the 3' UTR, and most targets (94%) are oogenic mRNAs, even though assayed in spermatogenic cells. When tethered to a reporter mRNA, FOG-3 represses its expression. Together these findings elucidate the molecular mechanism of sperm fate specification and reveal the evolution of a protein from monomeric to multimeric form with acquisition of a distinct mode of mRNA repression. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Grzela, Renata; Nusbaum, Julien; Fieulaine, Sonia; Lavecchia, Francesco; Bienvenut, Willy V; Dian, Cyril; Meinnel, Thierry; Giglione, Carmela
2017-09-08
Prokaryotic proteins must be deformylated before the removal of their first methionine. Peptide deformylase (PDF) is indispensable and guarantees this mechanism. Recent metagenomics studies revealed new idiosyncratic PDF forms as the most abundant family of viral sequences. Little is known regarding these viral PDFs, including the capacity of the corresponding encoded proteins to ensure deformylase activity. We provide here the first evidence that viral PDFs, including the shortest PDF identified to date, Vp16 PDF, display deformylase activity in vivo, despite the absence of the key ribosome-interacting C-terminal region. Moreover, characterization of phage Vp16 PDF underscores unexpected structural and molecular features with the C-terminal Isoleucine residue significantly contributing to deformylase activity both in vitro and in vivo. This residue fully compensates for the absence of the usual long C-domain. Taken together, these data elucidate an unexpected mechanism of enzyme natural evolution and adaptation within viral sequences.
Hayakawa, Yumiko; Matsuno, Mitsuhiro; Tanaka, Makoto; Wada, Akihiro; Kitamura, Koichiro; Takei, Osamu; Sasaki, Ryuzo; Mizukami, Tamio; Hasegawa, Makoto
2015-09-01
Artificial peptides designed for molecular recognition of a bacterial toxin have been developed. Vacuolating cytotoxin A protein (VacA) is a major virulence factor of Helicobacter pylori, a gram-negative microaerophilic bacterium inhabiting the upper gastrointestinal tract, particularly the stomach. This study attempted to identify specific peptide sequences with high affinity for VacA using systematic directed evolution in vitro, a cDNA display method. A surface plasmon resonance-based biosensor and fluorescence correlation spectroscopy to examine binding of peptides with VacA identified a peptide (GRVNQRL) with high affinity. Cyclization of the peptide by attaching cysteine residues to both termini improved its binding affinity to VacA, with a dissociation constant (Kd ) of 58 nm. This study describes a new strategy for the development of artificial functional peptides, which are promising materials in biochemical analyses and medical applications. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.
Breche, Q; Chagnon, G; Machado, G; Girard, E; Nottelet, B; Garric, X; Favier, D
2016-07-01
PLA-b-PEG-b-PLA is a biodegradable triblock copolymer that presents both the mechanical properties of PLA and the hydrophilicity of PEG. In this paper, physical and mechanical properties of PLA-b-PEG-b-PLA are studied during in vitro degradation. The degradation process leads to a mass loss, a decrease of number average molecular weight and an increase of dispersity index. Mechanical experiments are made in a specific experimental set-up designed to create an environment close to in vivo conditions. The viscoelastic behaviour of the material is studied during the degradation. Finally, the mechanical behaviour is modelled with a linear viscoelastic model. A degradation variable is defined and included in the model to describe the hydrolytic degradation. This variable is linked to physical parameters of the macromolecular polymer network. The model allows us to describe weak deformations but become less accurate for larger deformations. The abilities and limits of the model are discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Epigenetic Research of Neurodegenerative Disorders Using Patient iPSC-Based Models
2016-01-01
Epigenetic mechanisms play a role in human disease but their involvement in pathologies from the central nervous system has been hampered by the complexity of the brain together with its unique cellular architecture and diversity. Until recently, disease targeted neural types were only available as postmortem materials after many years of disease evolution. Current in vitro systems of induced pluripotent stem cells (iPSCs) generated by cell reprogramming of somatic cells from patients have provided valuable disease models recapitulating key pathological molecular events. Yet whether cell reprogramming on itself implies a truly epigenetic reprogramming, the epigenetic mechanisms governing this process are only partially understood. Moreover, elucidating epigenetic regulation using patient-specific iPSC-derived neural models is expected to have a great impact to unravel the pathophysiology of neurodegenerative diseases and to hopefully expand future therapeutic possibilities. Here we will critically review current knowledge of epigenetic involvement in neurodegenerative disorders focusing on the potential of iPSCs as a promising tool for epigenetic research of these diseases. PMID:26697081
Baker, Stephen; Duy, Pham Thanh; Nga, Tran Vu Thieu; Dung, Tran Thi Ngoc; Phat, Voong Vinh; Chau, Tran Thuy; Turner, A Keith; Farrar, Jeremy; Boni, Maciej F
2013-01-01
Fluoroquinolones (FQ) are the recommended antimicrobial treatment for typhoid, a severe systemic infection caused by the bacterium Salmonella enterica serovar Typhi. FQ-resistance mutations in S. Typhi have become common, hindering treatment and control efforts. Using in vitro competition experiments, we assayed the fitness of eleven isogenic S. Typhi strains with resistance mutations in the FQ target genes, gyrA and parC. In the absence of antimicrobial pressure, 6 out of 11 mutants carried a selective advantage over the antimicrobial-sensitive parent strain, indicating that FQ resistance in S. Typhi is not typically associated with fitness costs. Double-mutants exhibited higher than expected fitness as a result of synergistic epistasis, signifying that epistasis may be a critical factor in the evolution and molecular epidemiology of S. Typhi. Our findings have important implications for the management of drug-resistant S. Typhi, suggesting that FQ-resistant strains would be naturally maintained even if fluoroquinolone use were reduced. DOI: http://dx.doi.org/10.7554/eLife.01229.001 PMID:24327559
Du, Sean X.; Xu, Li; Zhang, Wenge; Tang, Susan; Boenig, Rebecca I.; Chen, Helen; Mariano, Ellaine B.; Zwick, Michael B.; Parren, Paul W. H. I.; Burton, Dennis R.; Wrin, Terri; Petropoulos, Christos J.; Ballantyne, John A.; Chambers, Michael; Whalen, Robert G.
2011-01-01
A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences. PMID:21738594
In vitro quantification of specific microRNA using molecular beacons
Baker, Meredith B.; Bao, Gang; Searles, Charles D.
2012-01-01
MicroRNAs (miRNAs), a class of non-coding RNAs, have become a major focus of molecular biology research because of their diverse genomic origin and ability to regulate an array of cellular processes. Although the biological functions of miRNA are yet to be fully understood, tissue levels of specific miRNAs have been shown to correlate with pathological development of disease. Here, we demonstrate that molecular beacons can readily distinguish mature- and pre-miRNAs, and reliably quantify miRNA expression. We found that molecular beacons with DNA, RNA and combined locked nucleic acid (LNA)–DNA backbones can all detect miRNAs of low (<1 nM) concentrations in vitro, with RNA beacons having the highest detection sensitivity. Furthermore, we found that molecular beacons have the potential to distinguish miRNAs that have slight variations in their nucleotide sequence. These results suggest that the molecular beacon-based approach to assess miRNA expression and distinguish mature and precursor miRNA species is quite robust, and has the promise for assessing miRNA levels in biological samples. PMID:22110035
Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L
2015-10-01
Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.
Photoionization-regulated star formation and the structure of molecular clouds
NASA Technical Reports Server (NTRS)
Mckee, Christopher F.
1989-01-01
A model for the rate of low-mass star formation in Galactic molecular clouds and for the influence of this star formation on the structure and evolution of the clouds is presented. The rate of energy injection by newly formed stars is estimated, and the effect of this energy injection on the size of the cloud is determined. It is shown that the observed rate of star formation appears adequate to support the observed clouds against gravitational collapse. The rate of photoionization-regulated star formation is estimated and it is shown to be in agreement with estimates of the observed rate of star formation if the observed molecular cloud parameters are used. The mean cloud extinction and the Galactic star formation rate per unit mass of molecular gas are predicted theoretically from the condition that photionization-regulated star formation be in equilibrium. A simple model for the evolution of isolated molecular clouds is developed.
[A group of new experiments on molecular evolution].
Zhu, Xin-Yu; Xie, Xiao-Ling; Chen, Pei-Lin
2004-07-01
This paper presents a group of new experiments on molecular evolution. It allows students to get acquaint with the basic process of the reconstruction of phylogenetic tree using DNA or protein sequences, and to acquire the correct viewpoint how to affect the result of reconstruction when different tree-building methods, materials and parameters were used. This group of experiments are also characteristic of the opening and exploring, which accords with the direction and demand of experimental teaching reform.
Tollis, Marc; Hutchins, Elizabeth D; Stapley, Jessica; Rupp, Shawn M; Eckalbar, Walter L; Maayan, Inbar; Lasku, Eris; Infante, Carlos R; Dennis, Stuart R; Robertson, Joel A; May, Catherine M; Crusoe, Michael R; Bermingham, Eldredge; DeNardo, Dale F; Hsieh, Shi-Tong Tonia; Kulathinal, Rob J; McMillan, William Owen; Menke, Douglas B; Pratt, Stephen C; Rawls, Jeffery Alan; Sanjur, Oris; Wilson-Rawls, Jeanne; Wilson Sayres, Melissa A; Fisher, Rebecca E; Kusumi, Kenro
2018-02-01
Squamates include all lizards and snakes, and display some of the most diverse and extreme morphological adaptations among vertebrates. However, compared with birds and mammals, relatively few resources exist for comparative genomic analyses of squamates, hampering efforts to understand the molecular bases of phenotypic diversification in such a speciose clade. In particular, the ∼400 species of anole lizard represent an extensive squamate radiation. Here, we sequence and assemble the draft genomes of three anole species-Anolis frenatus, Anolis auratus, and Anolis apletophallus-for comparison with the available reference genome of Anolis carolinensis. Comparative analyses reveal a rapid background rate of molecular evolution consistent with a model of punctuated equilibrium, and strong purifying selection on functional genomic elements in anoles. We find evidence for accelerated evolution in genes involved in behavior, sensory perception, and reproduction, as well as in genes regulating limb bud development and hindlimb specification. Morphometric analyses of anole fore and hindlimbs corroborated these findings. We detect signatures of positive selection across several genes related to the development and regulation of the forebrain, hormones, and the iguanian lizard dewlap, suggesting molecular changes underlying behavioral adaptations known to reinforce species boundaries were a key component in the diversification of anole lizards. © The Author(s) 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Directed evolution of FLS2 towards novel flagellin peptide recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helft, Laura; Thompson, Mikayla; Bent, Andrew F.
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wildtype Arabidopsis FLS2 confers little or no response. A targeted approachmore » generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. Furthermore, these studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.« less
Directed evolution of FLS2 towards novel flagellin peptide recognition
Helft, Laura; Thompson, Mikayla; Bent, Andrew F.
2016-06-06
Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wildtype Arabidopsis FLS2 confers little or no response. A targeted approachmore » generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. Furthermore, these studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.« less
Functional Evolution in Orthologous Cell-encoded RNA-dependent RNA Polymerases.
Qian, Xinlei; Hamid, Fursham M; El Sahili, Abbas; Darwis, Dina Amallia; Wong, Yee Hwa; Bhushan, Shashi; Makeyev, Eugene V; Lescar, Julien
2016-04-22
Many eukaryotic organisms encode more than one RNA-dependent RNA polymerase (RdRP) that probably emerged as a result of gene duplication. Such RdRP paralogs often participate in distinct RNA silencing pathways and show characteristic repertoires of enzymatic activities in vitro However, to what extent members of individual paralogous groups can undergo functional changes during speciation remains an open question. We show that orthologs of QDE-1, an RdRP component of the quelling pathway in Neurospora crassa, have rapidly diverged in evolution at the amino acid sequence level. Analyses of purified QDE-1 polymerases from N. crassa (QDE-1(Ncr)) and related fungi, Thielavia terrestris (QDE-1(Tte)) and Myceliophthora thermophila (QDE-1(Mth)), show that all three enzymes can synthesize RNA, but the precise modes of their action differ considerably. Unlike their QDE-1(Ncr) counterpart favoring processive RNA synthesis, QDE-1(Tte) and QDE-1(Mth) produce predominantly short RNA copies via primer-independent initiation. Surprisingly, a 3.19 Å resolution crystal structure of QDE-1(Tte) reveals a quasisymmetric dimer similar to QDE-1(Ncr) Further electron microscopy analyses confirm that QDE-1(Tte) occurs as a dimer in solution and retains this status upon interaction with a template. We conclude that divergence of orthologous RdRPs can result in functional innovation while retaining overall protein fold and quaternary structure. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
The evolution, morphology, and development of fern leaves
Vasco, Alejandra; Moran, Robbin C.; Ambrose, Barbara A.
2013-01-01
Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy) on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearly all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology, and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development. PMID:24027574
Molecular evolution of the clustered MMIC-3 multigene family of Gossypium species
USDA-ARS?s Scientific Manuscript database
Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 supergene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate supergenes in allopolyploids. Here we report molecular evolutionary rates...
Epistasis increases the rate of conditionally neutral substitution in an adapting population.
Draghi, Jeremy A; Parsons, Todd L; Plotkin, Joshua B
2011-04-01
Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations--i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations--substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations.
Epistasis Increases the Rate of Conditionally Neutral Substitution in an Adapting Population
Draghi, Jeremy A.; Parsons, Todd L.; Plotkin, Joshua B.
2011-01-01
Kimura observed that the rate of neutral substitution should equal the neutral mutation rate. This classic result is central to our understanding of molecular evolution, and it continues to influence phylogenetics, genomics, and the interpretation of evolution experiments. By demonstrating that neutral mutations substitute at a rate independent of population size and selection at linked sites, Kimura provided an influential justification for the idea of a molecular clock and emphasized the importance of genetic drift in shaping molecular evolution. But when epistasis among sites is common, as numerous empirical studies suggest, do neutral mutations substitute according to Kimura's expectation? Here we study simulated, asexual populations of RNA molecules, and we observe that conditionally neutral mutations—i.e., mutations that do not alter the fitness of the individual in which they arise, but that may alter the fitness effects of subsequent mutations—substitute much more often than expected while a population is adapting. We quantify these effects using a simple population-genetic model that elucidates how the substitution rate at conditionally neutral sites depends on the population size, mutation rate, strength of selection, and prevalence of epistasis. We discuss the implications of these results for our understanding of the molecular clock, and for the interpretation of molecular variation in laboratory and natural populations. PMID:21288876
Fisher, Scott J; Swaan, Peter W; Eddington, Natalie D
2010-01-01
Alcohol consumption leads to the production of the highly reactive ethanol metabolite, acetaldehyde, which may affect intestinal tight junctions and increase paracellular permeability. We examined the effects of elevated acetaldehyde within the gastrointestinal tract on the permeability and bioavailability of hydrophilic markers and drug molecules of variable molecular weight and geometry. In vitro permeability was measured unidirectionally in Caco-2 and MDCKII cell models in the presence of acetaldehyde, ethanol, or disulfiram, an aldehyde dehydrogenase inhibitor, which causes acetaldehyde formation when coadministered with ethanol in vivo. Acetaldehyde significantly lowered transepithelial resistance in cell monolayers and increased permeability of the low-molecular-weight markers, mannitol and sucrose; however, permeability of high-molecular-weight markers, polyethylene glycol and inulin, was not affected. In vivo permeability was assessed in male Sprague-Dawley rats treated for 6 days with ethanol, disulfiram, or saline alone or in combination. Bioavailability of naproxen was not affected by any treatment, whereas that of paclitaxel was increased upon acetaldehyde exposure. Although disulfiram has been shown to inhibit multidrug resistance-1 P-glycoprotein (P-gp) in vitro, our data demonstrate that the known P-gp substrate paclitaxel is not affected by coadministration of disulfiram. In conclusion, we demonstrate that acetaldehyde significantly modulates tight junctions and paracellular permeability in vitro as well as the oral bioavailability of low-molecular-weight hydrophilic probes and therapeutic molecules in vivo even when these molecules are substrates for efflux transporters. These studies emphasize the significance of ethanol metabolism and drug interactions outside of the liver.
Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.
Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V
2017-04-01
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.
Dhar, Niha; Razdan, Sumeer; Rana, Satiander; Bhat, Wajid W.; Vishwakarma, Ram; Lattoo, Surrinder K.
2015-01-01
Withania somnifera, a multipurpose medicinal plant is a rich reservoir of pharmaceutically active triterpenoids that are steroidal lactones known as withanolides. Though the plant has been well-characterized in terms of phytochemical profiles as well as pharmaceutical activities, limited attempts have been made to decipher the biosynthetic route and identification of key regulatory genes involved in withanolide biosynthesis. This scenario limits biotechnological interventions for enhanced production of bioactive compounds. Nevertheless, recent emergent trends vis-à-vis, the exploration of genomic, transcriptomic, proteomic, metabolomics, and in vitro studies have opened new vistas regarding pathway engineering of withanolide production. During recent years, various strategic pathway genes have been characterized with significant amount of regulatory studies which allude toward development of molecular circuitries for production of key intermediates or end products in heterologous hosts. Another pivotal aspect covering redirection of metabolic flux for channelizing the precursor pool toward enhanced withanolide production has also been attained by deciphering decisive branch point(s) as robust targets for pathway modulation. With these perspectives, the current review provides a detailed overview of various studies undertaken by the authors and collated literature related to molecular and in vitro approaches employed in W. somnifera for understanding various molecular network interactions in entirety. PMID:26640469
Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies.Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system.Methods: We used U.S. EPA??s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA??s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarch
Nondegenerative Evolution in Ancient Heritable Bacterial Endosymbionts of Fungi.
Mondo, Stephen J; Salvioli, Alessandra; Bonfante, Paola; Morton, Joseph B; Pawlowska, Teresa E
2016-09-01
Bacterial endosymbionts are critical to the existence of many eukaryotes. Among them, vertically transmitted endobacteria are uniquely typified by reduced genomes and molecular evolution rate acceleration relative to free-living taxa. These patterns are attributable to genetic drift-dominated degenerative processes associated with reproductive dependence on the host. The degenerative evolution scenario is well supported in endobacteria with strict vertical transmission, such as essential mutualists of insects. In contrast, heritable endosymbionts that are nonessential to their hosts and engage occasionally in horizontal transmission are expected to display deviations from the degenerative evolution model. To explore evolution patterns in such nonessential endobacteria, we focused on Candidatus Glomeribacter gigasporarum ancient heritable mutualists of fungi. Using a collection of genomes, we estimated in Glomeribacter mutation rate at 2.03 × 10(-9) substitutions per site per year and effective population size at 1.44 × 10(8) Both fall within the range of values observed in free-living bacteria. To assess the ability of Glomeribacter to purge slightly deleterious mutations, we examined genome-wide dN/dS values and distribution patterns. We found that these dN/dS profiles cluster Glomeribacter with free-living bacteria as well as with other nonessential endosymbionts, while distinguishing it from essential heritable mutualists of insects. Finally, our evolutionary simulations revealed that the molecular evolution rate acceleration in Glomeribacter is caused by limited recombination in a largely clonal population rather than by increased fixation of slightly deleterious mutations. Based on these patterns, we propose that genome evolution in Glomeribacter is nondegenerative and exemplifies a departure from the model of degenerative evolution in heritable endosymbionts. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The functional basis of adaptive evolution in chemostats.
Gresham, David; Hong, Jungeui
2015-01-01
Two of the central problems in biology are determining the molecular basis of adaptive evolution and understanding how cells regulate their growth. The chemostat is a device for culturing cells that provides great utility in tackling both of these problems: it enables precise control of the selective pressure under which organisms evolve and it facilitates experimental control of cell growth rate. The aim of this review is to synthesize results from studies of the functional basis of adaptive evolution in long-term chemostat selections using Escherichia coli and Saccharomyces cerevisiae. We describe the principle of the chemostat, provide a summary of studies of experimental evolution in chemostats, and use these studies to assess our current understanding of selection in the chemostat. Functional studies of adaptive evolution in chemostats provide a unique means of interrogating the genetic networks that control cell growth, which complements functional genomic approaches and quantitative trait loci (QTL) mapping in natural populations. An integrated approach to the study of adaptive evolution that accounts for both molecular function and evolutionary processes is critical to advancing our understanding of evolution. By renewing efforts to integrate these two research programs, experimental evolution in chemostats is ideally suited to extending the functional synthesis to the study of genetic networks. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.
Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N
2016-12-01
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.
2016-01-01
ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478
ERIC Educational Resources Information Center
Valenzuela-Harrington, Mauricio; Delgado-Garcia, Jose M.; Minichiello, Liliana; Gruart, Agnes; Sciarretta, Carla
2007-01-01
Previous in vitro studies have characterized the electrophysiological properties and molecular events associated with long-term potentiation (LTP), but as yet there are no in vivo data from molecular-level dissection that directly identify LTP as the biological substrate for learning and memory. Understanding whether the molecular pathways…
Teaching Molecular Biology with Microcomputers.
ERIC Educational Resources Information Center
Reiss, Rebecca; Jameson, David
1984-01-01
Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)
NASA Astrophysics Data System (ADS)
Ostrovsky, Mikhail
The evolution of photoreception, giving rise to eye, offers a kaleidoscopic view on selection acting at both the organ and molecular levels. The molecular level is mainly considered in the lecture. The greatest progress to date has been made in relation to the opsin visual pigments. Opsins appeared before eyes did. Two- and three-dimensional organization for rhodopsin in the rod outer segment disk membrane, as well as molecular mechanisms of visual pigments spectral tuning, photoisomerization and also opsin as a G-protein coupled receptor are considered. Molecular mechanisms of visual pigments spectral tuning, namely switching of chromophore (physiological time scale) and amino acid changes in the chromophore site of opsin (evolutionary time scale) is considered in the lecture. Photoisomerization of rhodopsin chromophore, 11-cis retinal is the only photochemical reaction in vision. The reaction is extemely fast (less that 200 fs) and high efficient (. is 0.65). The rhodopsin photolysis and kinetics of the earlier products appearance, photo- and bathorhodopsin, is considered. It is known that light is not only a carrier of information, but also a risk factor of damage to the eye. This photobiological paradox of vision is mainly due to the nature of rhodopsin chromophore. Photooxidation is the base of the paradox. All factors present in the phototrceptor cells to initiate free-radical photooxidation: photosensitizers, oxygen and substrates of oxidation: lipids and proteins (opsin). That is why photoprotective system of the eye structures appeared in the course of evolution. Three lines of protective system to prevent light damage to the retina and retina pigment epithelium is known: permanent renewal of rod and cone outer segment, powerful antioxidant system and optical media as cut-off filters where the lens is a key component. The molecular mechanisms of light damage to the eye and photoprotective system of the eye is considered in the lecture. The molecular mechanisms of phototransduction in vertebrates eye is also briefly considered in the lecture. Evolution of vision is an enormous subject for thought and investigation. In the postgenomic era evolutionary molecular physiology as a whole and evolutionary molecular physiology of vision can be considered as a key approach for understanding how genome is working.
Mobile DNA and evolution in the 21st century
2010-01-01
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification. PMID:20226073
Social molecular pathways and the evolution of bee societies
Bloch, Guy; Grozinger, Christina M.
2011-01-01
Bees provide an excellent model with which to study the neuronal and molecular modifications associated with the evolution of sociality because relatively closely related species differ profoundly in social behaviour, from solitary to highly social. The recent development of powerful genomic tools and resources has set the stage for studying the social behaviour of bees in molecular terms. We review ‘ground plan’ and ‘genetic toolkit’ models which hypothesize that discrete pathways or sets of genes that regulate fundamental behavioural and physiological processes in solitary species have been co-opted to regulate complex social behaviours in social species. We further develop these models and propose that these conserved pathways and genes may be incorporated into ‘social pathways’, which consist of relatively independent modules involved in social signal detection, integration and processing within the nervous and endocrine systems, and subsequent behavioural outputs. Modifications within modules or in their connections result in the evolution of novel behavioural patterns. We describe how the evolution of pheromonal regulation of social pathways may lead to the expression of behaviour under new social contexts, and review plasticity in circadian rhythms as an example for a social pathway with a modular structure. PMID:21690132
USABecause of the multitude of potential molecular targets for chemical disruption in the developing nervous system, our laboratory has developed in vitro assays that measure chemical disruption of key neurodevelopmental processes. These include proliferation, differentiation, ap...
Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-01-01
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway. PMID:24089713
Abriata, Luciano A; Bovigny, Christophe; Dal Peraro, Matteo
2016-06-17
Protein variability can now be studied by measuring high-resolution tolerance-to-substitution maps and fitness landscapes in saturated mutational libraries. But these rich and expensive datasets are typically interpreted coarsely, restricting detailed analyses to positions of extremely high or low variability or dubbed important beforehand based on existing knowledge about active sites, interaction surfaces, (de)stabilizing mutations, etc. Our new webserver PsychoProt (freely available without registration at http://psychoprot.epfl.ch or at http://lucianoabriata.altervista.org/psychoprot/index.html ) helps to detect, quantify, and sequence/structure map the biophysical and biochemical traits that shape amino acid preferences throughout a protein as determined by deep-sequencing of saturated mutational libraries or from large alignments of naturally occurring variants. We exemplify how PsychoProt helps to (i) unveil protein structure-function relationships from experiments and from alignments that are consistent with structures according to coevolution analysis, (ii) recall global information about structural and functional features and identify hitherto unknown constraints to variation in alignments, and (iii) point at different sources of variation among related experimental datasets or between experimental and alignment-based data. Remarkably, metabolic costs of the amino acids pose strong constraints to variability at protein surfaces in nature but not in the laboratory. This and other differences call for caution when extrapolating results from in vitro experiments to natural scenarios in, for example, studies of protein evolution. We show through examples how PsychoProt can be a useful tool for the broad communities of structural biology and molecular evolution, particularly for studies about protein modeling, evolution and design.
NASA Astrophysics Data System (ADS)
Foley, Joseph; Hill, Shannon E.; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-09-01
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Foley, Joseph; Hill, Shannon E; Miti, Tatiana; Mulaj, Mentor; Ciesla, Marissa; Robeel, Rhonda; Persichilli, Christopher; Raynes, Rachel; Westerheide, Sandy; Muschol, Martin
2013-09-28
Deposits of fibrils formed by disease-specific proteins are the molecular hallmark of such diverse human disorders as Alzheimer's disease, type II diabetes, or rheumatoid arthritis. Amyloid fibril formation by structurally and functionally unrelated proteins exhibits many generic characteristics, most prominently the cross β-sheet structure of their mature fibrils. At the same time, amyloid formation tends to proceed along one of two separate assembly pathways yielding either stiff monomeric filaments or globular oligomers and curvilinear protofibrils. Given the focus on oligomers as major toxic species, the very existence of an oligomer-free assembly pathway is significant. Little is known, though, about the structure of the various intermediates emerging along different pathways and whether the pathways converge towards a common or distinct fibril structures. Using infrared spectroscopy we probed the structural evolution of intermediates and late-stage fibrils formed during in vitro lysozyme amyloid assembly along an oligomeric and oligomer-free pathway. Infrared spectroscopy confirmed that both pathways produced amyloid-specific β-sheet peaks, but at pathway-specific wavenumbers. We further found that the amyloid-specific dye thioflavin T responded to all intermediates along either pathway. The relative amplitudes of thioflavin T fluorescence responses displayed pathway-specific differences and could be utilized for monitoring the structural evolution of intermediates. Pathway-specific structural features obtained from infrared spectroscopy and Thioflavin T responses were identical for fibrils grown at highly acidic or at physiological pH values and showed no discernible effects of protein hydrolysis. Our results suggest that late-stage fibrils formed along either pathway are amyloidogenic in nature, but have distinguishable structural fingerprints. These pathway-specific fingerprints emerge during the earliest aggregation events and persist throughout the entire cascade of aggregation intermediates formed along each pathway.
Gene Duplication Leads to Altered Membrane Topology of a Cytochrome P450 Enzyme in Seed Plants.
Renault, Hugues; De Marothy, Minttu; Jonasson, Gabriella; Lara, Patricia; Nelson, David R; Nilsson, IngMarie; André, François; von Heijne, Gunnar; Werck-Reichhart, Danièle
2017-08-01
Evolution of the phenolic metabolism was critical for the transition of plants from water to land. A cytochrome P450, CYP73, with cinnamate 4-hydroxylase (C4H) activity, catalyzes the first plant-specific and rate-limiting step in this pathway. The CYP73 gene is absent from green algae, and first detected in bryophytes. A CYP73 duplication occurred in the ancestor of seed plants and was retained in Taxaceae and most angiosperms. In spite of a clear divergence in primary sequence, both paralogs can fulfill comparable cinnamate hydroxylase roles both in vitro and in vivo. One of them seems dedicated to the biosynthesis of lignin precursors. Its N-terminus forms a single membrane spanning helix and its properties and length are highly constrained. The second is characterized by an elongated and variable N-terminus, reminiscent of ancestral CYP73s. Using as proxies the Brachypodium distachyon proteins, we show that the elongation of the N-terminus does not result in an altered subcellular localization, but in a distinct membrane topology. Insertion in the membrane of endoplasmic reticulum via a double-spanning open hairpin structure allows reorientation to the lumen of the catalytic domain of the protein. In agreement with participation to a different functional unit and supramolecular organization, the protein displays modified heme proximal surface. These data suggest the evolution of divergent C4H enzymes feeding different branches of the phenolic network in seed plants. It shows that specialization required for retention of gene duplicates may result from altered protein topology rather than change in enzyme activity. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Contrasting Levels of Molecular Evolution on the Mouse X Chromosome
Larson, Erica L.; Vanderpool, Dan; Keeble, Sara; Zhou, Meng; Sarver, Brice A. J.; Smith, Andrew D.; Dean, Matthew D.; Good, Jeffrey M.
2016-01-01
The mammalian X chromosome has unusual evolutionary dynamics compared to autosomes. Faster-X evolution of spermatogenic protein-coding genes is known to be most pronounced for genes expressed late in spermatogenesis, but it is unclear if these patterns extend to other forms of molecular divergence. We tested for faster-X evolution in mice spanning three different forms of molecular evolution—divergence in protein sequence, gene expression, and DNA methylation—across different developmental stages of spermatogenesis. We used FACS to isolate individual cell populations and then generated cell-specific transcriptome profiles across different stages of spermatogenesis in two subspecies of house mice (Mus musculus), thereby overcoming a fundamental limitation of previous studies on whole tissues. We found faster-X protein evolution at all stages of spermatogenesis and faster-late protein evolution for both X-linked and autosomal genes. In contrast, there was less expression divergence late in spermatogenesis (slower late) on the X chromosome and for autosomal genes expressed primarily in testis (testis-biased). We argue that slower-late expression divergence reflects strong regulatory constraints imposed during this critical stage of sperm development and that these constraints are particularly acute on the tightly regulated sex chromosomes. We also found slower-X DNA methylation divergence based on genome-wide bisulfite sequencing of sperm from two species of mice (M. musculus and M. spretus), although it is unclear whether slower-X DNA methylation reflects development constraints in sperm or other X-linked phenomena. Our study clarifies key differences in patterns of regulatory and protein evolution across spermatogenesis that are likely to have important consequences for mammalian sex chromosome evolution, male fertility, and speciation. PMID:27317678
In the Beginning was a Mutualism - On the Origin of Translation
NASA Astrophysics Data System (ADS)
Vitas, Marko; Dobovišek, Andrej
2018-04-01
The origin of translation is critical for understanding the evolution of life, including the origins of life. The canonical genetic code is one of the most dominant aspects of life on this planet, while the origin of heredity is one of the key evolutionary transitions in living world. Why the translation apparatus evolved is one of the enduring mysteries of molecular biology. Assuming the hypothesis, that during the emergence of life evolution had to first involve autocatalytic systems which only subsequently acquired the capacity of genetic heredity, we propose and discuss possible mechanisms, basic aspects of the emergence and subsequent molecular evolution of translation and ribosomes, as well as enzymes as we know them today. It is possible, in this sense, to view the ribosome as a digital-to-analogue information converter. The proposed mechanism is based on the abilities and tendencies of short RNA and polypeptides to fold and to catalyse biochemical reactions. The proposed mechanism is in concordance with the hypothesis of a possible chemical co-evolution of RNA and proteins in the origin of the genetic code or even more generally at the early evolution of life on Earth. The possible abundance and availability of monomers at prebiotic conditions are considered in the mechanism. The hypothesis that early polypeptides were folding on the RNA scaffold is also considered and mutualism in molecular evolutionary development of RNA and peptides is favoured.
Tailoring in vitro evolution for protein affinity or stability
Jermutus, Lutz; Honegger, Annemarie; Schwesinger, Falk; Hanes, Jozef; Plückthun, Andreas
2001-01-01
We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (koff at 4°C of 10−4 s−1) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible. PMID:11134506
Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity
Bartlett, Madelaine E.; Whipple, Clinton J.
2013-01-01
Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL) cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic) diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; altered protein–protein interactions; altered domain content; altered activity as an activator or repressor; altered protein stability; and hypomorphic and hypermorphic alleles. There was also variability in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution. PMID:24124420
Yasukochi, Yoshiki; Satta, Yoko
2015-03-25
The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
From the ultrasonic to the infrared: molecular evolution and the sensory biology of bats
Jones, Gareth; Teeling, Emma C.; Rossiter, Stephen J.
2013-01-01
Great advances have been made recently in understanding the genetic basis of the sensory biology of bats. Research has focused on the molecular evolution of candidate sensory genes, genes with known functions [e.g., olfactory receptor (OR) genes] and genes identified from mutations associated with sensory deficits (e.g., blindness and deafness). For example, the FoxP2 gene, underpinning vocal behavior and sensorimotor coordination, has undergone diversification in bats, while several genes associated with audition show parallel amino acid substitutions in unrelated lineages of echolocating bats and, in some cases, in echolocating dolphins, representing a classic case of convergent molecular evolution. Vision genes encoding the photopigments rhodopsin and the long-wave sensitive opsin are functional in bats, while that encoding the short-wave sensitive opsin has lost functionality in rhinolophoid bats using high-duty cycle laryngeal echolocation, suggesting a sensory trade-off between investment in vision and echolocation. In terms of olfaction, bats appear to have a distinctive OR repertoire compared with other mammals, and a gene involved in signal transduction in the vomeronasal system has become non-functional in most bat species. Bitter taste receptors appear to have undergone a “birth-and death” evolution involving extensive gene duplication and loss, unlike genes coding for sweet and umami tastes that show conservation across most lineages but loss in vampire bats. Common vampire bats have also undergone adaptations for thermoperception, via alternative splicing resulting in the evolution of a novel heat-sensitive channel. The future for understanding the molecular basis of sensory biology is promising, with great potential for comparative genomic analyses, studies on gene regulation and expression, exploration of the role of alternative splicing in the generation of proteomic diversity, and linking genetic mechanisms to behavioral consequences. PMID:23755015
Optical Traps to Study Properties of Molecular Motors
Spudich, James A.; Rice, Sarah E.; Rock, Ronald S.; Purcell, Thomas J.; Warrick, Hans M.
2016-01-01
In vitro motility assays enabled the analysis of coupling between ATP hydrolysis and movement of myosin along actin filaments or kinesin along microtubules. Single-molecule assays using laser trapping have been used to obtain more detailed information about kinesins, myosins, and processive DNA enzymes. The combination of in vitro motility assays with laser-trap measurements has revealed detailed dynamic structural changes associated with the ATPase cycle. This article describes the use of optical traps to study processive and nonprocessive molecular motor proteins, focusing on the design of the instrument and the assays to characterize motility. PMID:22046048
Emergence of a replicating species from an in vitro RNA evolution reaction
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Joyce, G. F.
1994-01-01
The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.
NASA Technical Reports Server (NTRS)
2010-01-01
The Program of the 2010 Astrobiology Science Conference: Evolution and Life: Surviving Catastrophes and Extremes on Earth and Beyond, included sessions on: 50 Years of Exobiology and Astrobiology: Greatest Hits; Extraterrestrial Molecular Evolution and Pre-Biological Chemistry: From the Interstellar Medium to the Solar System I; Human Exploration, Astronaut Health; Diversity in Astrobiology Research and Education; Titan: Past, Present, and Future; Energy Flow in Microbial Ecosystems; Extraterrestrial Molecular Evolution and Prebiological Chemistry: From the Interstellar Medium to the Solar System II; Astrobiology in Orbit; Astrobiology and Interdisciplinary Communication; Science from Rio Tinto: An Acidic Environment; Can We Rule Out Spontaneous Generation of RNA as the Key Step in the Origin of Life?; How Hellish Was the Hadean Earth?; Results from ASTEP and Other Astrobiology Field Campaigns I; Prebiotic Evolution: From Chemistry to Life I; Adaptation of Life in Hostile Space Environments; Extrasolar Terrestrial Planets I: Formation and Composition; Collaborative Tools and Technology for Astrobiology; Results from ASTEP and Other Astrobiology Field Campaigns II; Prebiotic Evolution: From Chemistry to Life II; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Environments; Extrasolar Terrestrial Planets II: Habitability and Life; Planetary Science Decadal Survey Update; Astrobiology Research Funding; Bioessential Elements Through Space and Time I; State of the Art in Life Detection; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Psychrophiles and Polar Environments; Life in Volcanic Environments: On Earth and Beyond; Geochronology and Astrobiology On and Off the Earth; Bioessential Elements Through Space and Time II; Origins and Evolution of Genetic Systems; Evolution of Advanced Life; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Impact Events and Evolution; A Warm, Wet Mars?; Titan Versus Europa - Potential for Astrobiology; Habitability Potential of Mars; Biosignatures: Tools and Development I; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Deserts and Evaporite Basins and Associated Microbialite Systems; Ancient Life and Synthetic Biology: Crossroad of the Past and Future; Biosignatures: Tools and Development II; Free Oxygen: Proxies, Causes, and Consequences; Life in Modern Microbialite Systems - Function and Adaptation; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Where Should We Go on Mars to Seek Signs of Life?; Search for Intelligent Life I. Innovative SETI Observing Programs and Future Directions; Integrating Astrobiology Research Across and Beyond the Community; Education in Astrobiology in K-12; Search for Intelligent Life II. Global Engagement and Interstellar Message Construction; Poster sessions included: Extraterrestrial Molecular Evolution and Pre-Biological Chemistry; Prebiotic Evolution: From Chemistry to Life; RNA World; Terrestrial Evolution: Implications for the Past, Present, and Future of Life on Earth; Hydrothermal Systems and Organosynthesis Processes: Origin and Evolution of Life; Virology and Astrobiology; Horizontal Genetic Transfer and Properties of Ancestral Organisms; Life in Volcanic Environments: On Earth and Beyond; Impact Events and Evolution; Evolution of Advanced Life; Evolution of Intelligent Life; Education in Astrobiology in K-12; Origins of Molecular Asymmetry, Homochirality, and Life Detection; Astrobiology and Interdisciplinary Communication; Diversity in Astrobiology Research and Education; Integrating Astrobiology Research Across and Beyond the Community; Policy and Societal Issues: Dealing with Potential Bumps in the Astrobiology Road Ahead; Results from ASTEP and Other Astrobiology Field Campaigns; Energy Flow in Microbial Ecosystems; Psychrophiles and Polar Environments; Deserts and Evaporite Basins and Associated Microbialite stems; Life in Modern Microbialite Systems - Function and Adaptation; Free Oxygen: Proxies, Causes, and Consequences; Bioessential Elements Through Space and Time; Water-rich Asteroids and Moons: Composition and Astrobiological Potential; Biosignatures: Tools and Developments; Robotics and Instrumentation for Astrobiology; State of the Art in Life Detection; Astrobiology in Orbit; Survival, Growth, and Evolution of Microrganisms in Model Extraterrestrial Evolution; Search for Intelligent Life; Habitability Potential of Mars; How and Where Should We Seek Signs of Life on Mars?; Titan: Past, Present, and Future; Extrasolar Terrestrial Planets: Formation, Composition, Diversity, Habitability and Life; Human Exploration, Astronaut Health; Science from Rio Tinto: An Acidic Environment and Adaptation of Life in Hostile Space Environments;
Global Analysis of the Evolution and Mechanism of Echinocandin Resistance in Candida glabrata
Singh-Babak, Sheena D.; Babak, Tomas; Diezmann, Stephanie; Hill, Jessica A.; Xie, Jinglin Lucy; Chen, Ying-Lien; Poutanen, Susan M.; Rennie, Robert P.; Heitman, Joseph; Cowen, Leah E.
2012-01-01
The evolution of drug resistance has a profound impact on human health. Candida glabrata is a leading human fungal pathogen that can rapidly evolve resistance to echinocandins, which target cell wall biosynthesis and are front-line therapeutics for Candida infections. Here, we provide the first global analysis of mutations accompanying the evolution of fungal drug resistance in a human host utilizing a series of C. glabrata isolates that evolved echinocandin resistance in a patient treated with the echinocandin caspofungin for recurring bloodstream candidemia. Whole genome sequencing identified a mutation in the drug target, FKS2, accompanying a major resistance increase, and 8 additional non-synonymous mutations. The FKS2-T1987C mutation was sufficient for echinocandin resistance, and associated with a fitness cost that was mitigated with further evolution, observed in vitro and in a murine model of systemic candidemia. A CDC6-A511G(K171E) mutation acquired before FKS2-T1987C(S663P), conferred a small resistance increase. Elevated dosage of CDC55, which acquired a C463T(P155S) mutation after FKS2-T1987C(S663P), ameliorated fitness. To discover strategies to abrogate echinocandin resistance, we focused on the molecular chaperone Hsp90 and downstream effector calcineurin. Genetic or pharmacological compromise of Hsp90 or calcineurin function reduced basal tolerance and resistance. Hsp90 and calcineurin were required for caspofungin-dependent FKS2 induction, providing a mechanism governing echinocandin resistance. A mitochondrial respiration-defective petite mutant in the series revealed that the petite phenotype does not confer echinocandin resistance, but renders strains refractory to synergy between echinocandins and Hsp90 or calcineurin inhibitors. The kidneys of mice infected with the petite mutant were sterile, while those infected with the HSP90-repressible strain had reduced fungal burden. We provide the first global view of mutations accompanying the evolution of fungal drug resistance in a human host, implicate the premier compensatory mutation mitigating the cost of echinocandin resistance, and suggest a new mechanism of echinocandin resistance with broad therapeutic potential. PMID:22615574
Chemical Evolution of Protostellar Matter
NASA Technical Reports Server (NTRS)
Langer, William D.; vanDishoeck, Ewine F.; Bergin, Edwin A.; Blake, Geoffrey A.; Tielens, Alexander G. G. M.; Velusamy, Thangasamy; Whittet, Douglas C. B.
2000-01-01
We review the chemical processes that are important in the evolution from a molecular cloud core to a protostellar disk. These cover both gas phase and gas grain interactions. The current observational and theoretical state of this field are discussed.
USDA-ARS?s Scientific Manuscript database
Uniqueness, content, localization, and defense-related features of the root-knot nematode resistance-associated MIC-3 multigene cluster in the genus Gossypium are all of interest for molecular evolutionary studies of duplicate genes in allopolyploids. Here we report molecular evolutionary rates of t...
[Mobile genetic elements in plant sex evolution].
Gerashchenkov, G A; Rozhnova, N A
2010-11-01
The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.
Anastasiou, Evilena; Mitchell, Piers D
2013-10-01
The development of molecular tools for the extraction, analysis and interpretation of DNA from the remains of ancient organisms (paleogenetics) has revolutionised a range of disciplines as diverse as the fields of human evolution, bioarchaeology, epidemiology, microbiology, taxonomy and population genetics. The paper draws attention to some of the challenges associated with the extraction and interpretation of ancient DNA from archaeological material, and then reviews the influence of paleogenetics on the field of human evolution. It discusses the main contributions of molecular studies to reconstructing the evolutionary and phylogenetic relationships between extinct hominins (human ancestors) and anatomically modern humans. It also explores the evidence for evolutionary changes in the genetic structure of anatomically modern humans in recent millennia. This breadth of research has led to discoveries that would never have been possible using traditional approaches to human evolution. Copyright © 2013 Elsevier B.V. All rights reserved.
Convergent evolution of the genomes of marine mammals
Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.
2015-01-01
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.
Convergent evolution of the genomes of marine mammals
Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret E.; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.
2015-01-01
Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and are therefore a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and de novo assembled the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome, and that a subset were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that while convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare. PMID:25621460
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution
2017-01-01
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. PMID:28637852
Fold or hold: experimental evolution in vitro
Collins, S; Rambaut, A; Bridgett, S J
2013-01-01
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997
Ganot, Philippe; Zoccola, Didier; Tambutté, Eric; Voolstra, Christian R; Aranda, Manuel; Allemand, Denis; Tambutté, Sylvie
2015-01-01
Septate junctions (SJs) insure barrier properties and control paracellular diffusion of solutes across epithelia in invertebrates. However, the origin and evolution of their molecular constituents in Metazoa have not been firmly established. Here, we investigated the genomes of early branching metazoan representatives to reconstruct the phylogeny of the molecular components of SJs. Although Claudins and SJ cytoplasmic adaptor components appeared successively throughout metazoan evolution, the structural components of SJs arose at the time of Placozoa/Cnidaria/Bilateria radiation. We also show that in the scleractinian coral Stylophora pistillata, the structural SJ component Neurexin IV colocalizes with the cortical actin network at the apical border of the cells, at the place of SJs. We propose a model for SJ components in Cnidaria. Moreover, our study reveals an unanticipated diversity of SJ structural component variants in cnidarians. This diversity correlates with gene-specific expression in calcifying and noncalcifying tissues, suggesting specific paracellular pathways across the cell layers of these diploblastic animals. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
Kane, Joshua J.; Contescu, Cristian I.; Smith, Rebecca E.; ...
2017-06-08
A thorough understanding of oxidation is important when considering the health and integrity of graphite components in graphite reactors. For the next generation of graphite reactors, HTGRs specifically, an unlikely air ingress has been deemed significant enough to have made its way into the licensing applications of many international licensing bodies. While a substantial body of literature exists on nuclear graphite oxidation in the presence of molecular oxygen and significant efforts have been made to characterize oxidation kinetics of various grades, the value of existing information is somewhat limited. Often, multiple competing processes, including reaction kinetics, mass transfer, and microstructuralmore » evolution, are lumped together into a single rate expression that limits the ability to translate this information to different conditions. This article reviews the reaction of graphite with molecular oxygen in terms of the reaction kinetics, gas transport, and microstructural evolution of graphite. It also presents the foundations of a model for the graphite-molecular oxygen reaction system that is kinetically independent of graphite grade, and is capable of describing both the bulk and local oxidation rates under a wide range of conditions applicable to air-ingress.« less
Detection of biological threats. A challenge for directed molecular evolution.
Petrenko, Valery A; Sorokulova, Iryna B
2004-08-01
The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.
Schuettpelz, Eric; Pryer, Kathleen M
2006-06-01
The rate of molecular evolution is not constant across the Tree of Life. Characterizing rate discrepancies and evaluating the relative roles of time and rate along branches through the past are both critical to a full understanding of evolutionary history. In this study, we explore the interactions of time and rate in filmy ferns (Hymenophyllaceae), a lineage with extreme branch length differences between the two major clades. We test for the presence of significant rate discrepancies within and between these clades, and we separate time and rate across the filmy fern phylogeny to simultaneously yield an evolutionary time scale of filmy fern diversification and reconstructions of ancestral rates of molecular evolution. Our results indicate that the branch length disparity observed between the major lineages of filmy ferns is indeed due to a significant difference in molecular evolutionary rate. The estimation of divergence times reveals that the timing of crown group diversification was not concurrent for the two lineages, and the reconstruction of ancestral rates of molecular evolution points to a substantial rate deceleration in one of the clades. Further analysis suggests that this may be due to a genome-wide deceleration in the rate of nucleotide substitution.
In silico study of in vitro GPCR assays by QSAR modeling
The U.S. EPA is screening thousands of chemicals of environmental interest in hundreds of in vitro high-throughput screening (HTS) assays (the ToxCast program). One goal is to prioritize chemicals for more detailed analyses based on activity in molecular initiating events (MIE) o...
Background: Adverse outcome pathways (AOPs) link adverse effects in individuals or populations to a molecular initiating event (MIE) that can be quantified using in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires incorporation of knowled...
Gas Phase Probe Molecules for Assessing In vitro Metabolism to Infer an In vivo Response
Efficient and accurate in vitro high-throughput screening (HTS) methods use cellular and molecular based adverse outcome pathways (AOPs) as central elements for exposure assessment and chemical prioritization. However, not all AOPs are based on human or animal systems biology, bu...
The EPA ToxCast program is using in vitro assay data and chemical descriptors to build predictive models for in vivo toxicity endpoints. In vitro assays measure activity of chemicals against molecular targets such as enzymes and receptors (measured in cell-free and cell-based sys...
The evolution of vertebrate Toll-like receptors
Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.
2005-01-01
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.
Evolution of an ancient protein function involved in organized multicellularity in animals
Anderson, Douglas P; Whitney, Dustin S; Hanson-Smith, Victor; Woznica, Arielle; Campodonico-Burnett, William; Volkman, Brian F; King, Nicole; Thornton, Joseph W; Prehoda, Kenneth E
2016-01-01
To form and maintain organized tissues, multicellular organisms orient their mitotic spindles relative to neighboring cells. A molecular complex scaffolded by the GK protein-interaction domain (GKPID) mediates spindle orientation in diverse animal taxa by linking microtubule motor proteins to a marker protein on the cell cortex localized by external cues. Here we illuminate how this complex evolved and commandeered control of spindle orientation from a more ancient mechanism. The complex was assembled through a series of molecular exploitation events, one of which – the evolution of GKPID’s capacity to bind the cortical marker protein – can be recapitulated by reintroducing a single historical substitution into the reconstructed ancestral GKPID. This change revealed and repurposed an ancient molecular surface that previously had a radically different function. We show how the physical simplicity of this binding interface enabled the evolution of a new protein function now essential to the biological complexity of many animals. DOI: http://dx.doi.org/10.7554/eLife.10147.001 PMID:26740169
In vitro selection of catalytic RNAs
NASA Technical Reports Server (NTRS)
Chapman, K. B.; Szostak, J. W.
1994-01-01
In vitro selection techniques are poised to allow a rapid expansion of the study of catalysis by RNA enzymes (ribozymes). This truly molecular version of genetics has already been applied to the study of the structures of known ribozymes and to the tailoring of their catalytic activity to meet specific requirements of substrate specificity or reaction conditions. During the past year, in vitro selection has been successfully used to isolate novel RNA catalysts from random sequence pools.
In-vitro anticoagulant activity of fucoidan derivatives from brown seaweed Laminaria japonica
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Quanbin; Zhang, Zhongshan; Hou, Yun; Zhang, Hong
2011-05-01
Fucoidan, a group of sulfated heteropolysaccharides, was extracted from Laminaria japonica, an important economic alga species in China. The anticoagulant activity of fucoidan and its derivatives (including sulfated, phosphorylated, and aminated fucoidan) was examined using in-vitro anticoagulant systems. The correlation between chemical variations within the fucoidan group and anticoagulant activity was determined. The in-vitro anticoagulant properties of fucoidan and its derivatives were determined by measuring activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT). The results indicate anticoagulant activity in all samples using APTT and TT assays; however, only the fucoidan derivatives affected the PT assay. Thus, the fucoidan derivatives were able to inhibit both intrinsic and extrinsic blood coagulants. Fucoidan (FPS) and its derivatives presented better anticoagulant activity than low molecular weight fucoidan (DFPS) and its derivatives, suggesting that molecular weight and proper conformation are contributing factors for anticoagulant activity of polysaccharides. Amino groups have a positive charge and can thus change the charge density of fucoidan. Accordingly, among the tested samples, aminated fucoidan (NF) was the most active reflecting the importance of charge density for anticoagulant activity. Available data obtained using in-vitro models suggest that the sulfate content, sulfate/total-sugar ratio, molecular weight, and the substituted group of fucoidan are important factors for anticoagulant activity but that the influence of sulfate, phosphate and amino groups on anticoagulant activity was different.
Lei, Yaogeng; Hannoufa, Abdelali; Prates, Luciana Louzada; Shi, Haitao; Wang, Yuxi; Biligetu, Bill; Christensen, David; Yu, Peiqiang
2018-06-06
The objective of this study was to investigate the effects of silencing the TT8 and HB12 genes on the nutritive profiles and in vitro gas production of alfalfa in relation to the spectral molecular structures of alfalfa. TT8-silenced (TT8i, n = 5) and HB12-silenced (HB12i, n = 11) alfalfa were generated by RNA interference (RNAi) and grown with nontransgenic wild type controls (WT, n = 4) in a greenhouse. Alfalfa plants were harvested at early-to-mid vegetative stage. Samples were analyzed for their chemical compositions, CNCPS fractions, and in vitro gas production. Correlations and regressions of the nutritional profiles and in vitro gas production with the molecular spectral structures were also determined. The results showed that the transformed alfalfa had higher digestible fiber and lower crude protein with higher proportions of indigestible protein than WT. HB12 RNAi had lower gas production compared with those of the others. Some chemical, CNCPS, and gas-production profiles were closely correlated with spectral structures and could be well predicted from spectral parameters. In conclusion, the RNAi silencing of TT8 and HB12 in alfalfa altered the chemical, CNCPS and gas-production profiles of alfalfa, and such alterations were closely correlated with the inherent spectral structures of alfalfa.
Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu
2017-12-21
Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance with a putative generation time effect.
Murphy, Bridget F; Thompson, Michael B
2011-07-01
Squamate reptiles (lizards and snakes) offer a unique model system for testing hypotheses about the evolutionary transition from oviparity (egg-laying) to viviparity (live-bearing) in amniote vertebrates. The evolution of squamate viviparity has occurred remarkably frequently (>108 times) and has resulted in major changes in reproductive physiology. Such frequent changes in reproductive strategy pose two questions: (1) what are the molecular mechanisms responsible for the evolution of squamate viviparity? (2) Are these molecular mechanisms the same for separate origins of viviparity? Molecular approaches, such as RT-PCR, in situ hybridisation, Western blotting and immunofluorescence, have been invaluable for identifying genes and proteins that are involved in squamate placental development, materno-foetal immunotolerance, placental transport, placental angiogenesis, hormone synthesis and hormone receptor expression. However, the candidate-gene or -protein approach that has been used until now does not allow for de novo gene/protein discovery; results to date suggest that the reproductive physiologies of mammals and squamate reptiles are very similar, but this conclusion may simply be due to a limited capacity to study the subset of genes and proteins that are unique to reptiles. Progress has also been slowed by the lack of appropriate molecular and genomic resources for squamate reptiles. The advent of next-generation sequencing provides a relatively inexpensive way to conduct rapid high-throughput sequencing of genomes and transcriptomes. We discuss the potential use of next-generation sequencing technologies to analyse differences in gene expression between oviparous and viviparous squamates, provide important sequence information for reptiles, and generate testable hypotheses for the evolution of viviparity.
Genomic evolution of Saccharomyces cerevisiae under Chinese rice wine fermentation.
Li, Yudong; Zhang, Weiping; Zheng, Daoqiong; Zhou, Zhan; Yu, Wenwen; Zhang, Lei; Feng, Lifang; Liang, Xinle; Guan, Wenjun; Zhou, Jingwen; Chen, Jian; Lin, Zhenguo
2014-09-10
Rice wine fermentation represents a unique environment for the evolution of the budding yeast, Saccharomyces cerevisiae. To understand how the selection pressure shaped the yeast genome and gene regulation, we determined the genome sequence and transcriptome of a S. cerevisiae strain YHJ7 isolated from Chinese rice wine (Huangjiu), a popular traditional alcoholic beverage in China. By comparing the genome of YHJ7 to the lab strain S288c, a Japanese sake strain K7, and a Chinese industrial bioethanol strain YJSH1, we identified many genomic sequence and structural variations in YHJ7, which are mainly located in subtelomeric regions, suggesting that these regions play an important role in genomic evolution between strains. In addition, our comparative transcriptome analysis between YHJ7 and S288c revealed a set of differentially expressed genes, including those involved in glucose transport (e.g., HXT2, HXT7) and oxidoredutase activity (e.g., AAD10, ADH7). Interestingly, many of these genomic and transcriptional variations are directly or indirectly associated with the adaptation of YHJ7 strain to its specific niches. Our molecular evolution analysis suggested that Japanese sake strains (K7/UC5) were derived from Chinese rice wine strains (YHJ7) at least approximately 2,300 years ago, providing the first molecular evidence elucidating the origin of Japanese sake strains. Our results depict interesting insights regarding the evolution of yeast during rice wine fermentation, and provided a valuable resource for genetic engineering to improve industrial wine-making strains. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Molecular Signaling Network Motifs Provide a Mechanistic Basis for Cellular Threshold Responses
Bhattacharya, Sudin; Conolly, Rory B.; Clewell, Harvey J.; Kaminski, Norbert E.; Andersen, Melvin E.
2014-01-01
Background: Increasingly, there is a move toward using in vitro toxicity testing to assess human health risk due to chemical exposure. As with in vivo toxicity testing, an important question for in vitro results is whether there are thresholds for adverse cellular responses. Empirical evaluations may show consistency with thresholds, but the main evidence has to come from mechanistic considerations. Objectives: Cellular response behaviors depend on the molecular pathway and circuitry in the cell and the manner in which chemicals perturb these circuits. Understanding circuit structures that are inherently capable of resisting small perturbations and producing threshold responses is an important step towards mechanistically interpreting in vitro testing data. Methods: Here we have examined dose–response characteristics for several biochemical network motifs. These network motifs are basic building blocks of molecular circuits underpinning a variety of cellular functions, including adaptation, homeostasis, proliferation, differentiation, and apoptosis. For each motif, we present biological examples and models to illustrate how thresholds arise from specific network structures. Discussion and Conclusion: Integral feedback, feedforward, and transcritical bifurcation motifs can generate thresholds. Other motifs (e.g., proportional feedback and ultrasensitivity)produce responses where the slope in the low-dose region is small and stays close to the baseline. Feedforward control may lead to nonmonotonic or hormetic responses. We conclude that network motifs provide a basis for understanding thresholds for cellular responses. Computational pathway modeling of these motifs and their combinations occurring in molecular signaling networks will be a key element in new risk assessment approaches based on in vitro cellular assays. Citation: Zhang Q, Bhattacharya S, Conolly RB, Clewell HJ III, Kaminski NE, Andersen ME. 2014. Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270; http://dx.doi.org/10.1289/ehp.1408244 PMID:25117432
NASA Astrophysics Data System (ADS)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel; Carilli, Chris; Bouwens, Rychard; da Cunha, Elisabete; Daddi, Emanuele; Ivison, R. J.; Popping, Gergö; Riechers, Dominik; Smail, Ian R.; Swinbank, Mark; Weiss, Axel; Anguita, Timo; Assef, Roberto J.; Bauer, Franz E.; Bell, Eric F.; Bertoldi, Frank; Chapman, Scott; Colina, Luis; Cortes, Paulo C.; Cox, Pierre; Dickinson, Mark; Elbaz, David; Gónzalez-López, Jorge; Ibar, Edo; Infante, Leopoldo; Hodge, Jacqueline; Karim, Alex; Le Fevre, Olivier; Magnelli, Benjamin; Neri, Roberto; Oesch, Pascal; Ota, Kazuaki; Rix, Hans-Walter; Sargent, Mark; Sheth, Kartik; van der Wel, Arjen; van der Werf, Paul; Wagg, Jeff
2016-12-01
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ˜ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 109 K km s-1 pc2). We find clear evidence of an evolution in the CO luminosity function with respect to z ˜ 0, with more CO-luminous galaxies present at z ˜ 2. The observed galaxies at z ˜ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3-10 from z ˜ 2 to z ˜ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation (z ˜ 2).
Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.
2017-02-01
We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.
PAL: an object-oriented programming library for molecular evolution and phylogenetics.
Drummond, A; Strimmer, K
2001-07-01
Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.
Pazza, Rubens; Dergam, Jorge A.; Kavalco, Karine F.
2018-01-01
The study of patterns and evolutionary processes in neotropical fish is not always an easy task due the wide distribution of major fish groups in large and extensive river basins. Thus, it is not always possible to detect or correlate possible effects of chromosome rearrangements in the evolution of biodiversity. In the Astyanax genus, chromosome data obtained since the 1970s have shown evidence of cryptic species, karyotypic plasticity, supernumerary chromosomes, triploidies, and minor chromosomal rearrangements. In the present work, we map and discuss the main chromosomal events compatible with the molecular evolution of the genus Astyanax (Characiformes, Characidae) using mitochondrial DNA sequence data, in the search for major chromosome evolutionary trends within this taxon. PMID:29713335
Evolution of bacterial virulence.
Diard, Médéric; Hardt, Wolf-Dietrich
2017-09-01
Bacterial virulence is highly dynamic and context-dependent. For this reason, it is challenging to predict how molecular changes affect the growth of a pathogen in a host and its spread in host population. Two schools of thought have taken quite different directions to decipher the underlying principles of bacterial virulence. While molecular infection biology is focusing on the basic mechanisms of the pathogen-host interaction, evolution biology takes virulence as one of several parameters affecting pathogen spread in a host population. We review both approaches and discuss how they can complement each other in order to obtain a comprehensive understanding of bacterial virulence, its emergence, maintenance and evolution. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Petrenko, Valery A
2018-06-07
The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis).
Oliveira, Gustavo R; Silva, Maria C M; Lucena, Wagner A; Nakasu, Erich Y T; Firmino, Alexandre A P; Beneventi, Magda A; Souza, Djair S L; Gomes, José E; de Souza, José D A; Rigden, Daniel J; Ramos, Hudson B; Soccol, Carlos R; Grossi-de-Sa, Maria F
2011-09-09
The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis.
Improving Cry8Ka toxin activity towards the cotton boll weevil (Anthonomus grandis)
2011-01-01
Background The cotton boll weevil (Anthonomus grandis) is a serious insect-pest in the Americas, particularly in Brazil. The use of chemical or biological insect control is not effective against the cotton boll weevil because of its endophytic life style. Therefore, the use of biotechnological tools to produce insect-resistant transgenic plants represents an important strategy to reduce the damage to cotton plants caused by the boll weevil. The present study focuses on the identification of novel molecules that show improved toxicity against the cotton boll weevil. In vitro directed molecular evolution through DNA shuffling and phage display screening was applied to enhance the insecticidal activity of variants of the Cry8Ka1 protein of Bacillus thuringiensis. Results Bioassays carried out with A. grandis larvae revealed that the LC50 of the screened mutant Cry8Ka5 toxin was 3.15-fold higher than the wild-type Cry8Ka1 toxin. Homology modelling of Cry8Ka1 and the Cry8Ka5 mutant suggested that both proteins retained the typical three-domain Cry family structure. The mutated residues were located mostly in loops and appeared unlikely to interfere with molecular stability. Conclusions The improved toxicity of the Cry8Ka5 mutant obtained in this study will allow the generation of a transgenic cotton event with improved potential to control A. grandis. PMID:21906288
Rampogu, Shailima; Baek, Ayoung; Gajula, Rajesh Goud; Zeb, Amir; Bavi, Rohit S; Kumar, Raj; Kim, Yongseong; Kwon, Yong Jung; Lee, Keun Woo
2018-04-02
Antibiotic resistance is a defense mechanism, harbored by pathogens to survive under unfavorable conditions. Among several antibiotic resistant microbial consortium, Staphylococcus aureus is one of the most havoc microorganisms. Staphylococcus aureus encodes a unique enzyme 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (SaHPPK), against which, none of existing antibiotics have been reported. Computational approaches have been instrumental in designing and discovering new drugs for several diseases. The present study highlights the impact of ginger phytochemicals on Staphylococcus aureus SaHPPK. Herein, we have retrieved eight ginger phytochemicals from published literature and investigated their inhibitory interactions with SaHPPK. To authenticate our work, the investigation proceeds considering the known antibiotics alongside the phytochemicals. Molecular docking was performed employing GOLD and CDOCKER. The compounds with the highest dock score from both the docking programmes were tested for their inhibitory capability in vitro. The binding conformations that were seated within the binding pocket showing strong interactions with the active sites residues rendered by highest dock score were forwarded towards the molecular dynamic (MD) simulation analysis. Based on molecular dock scores, molecular interaction with catalytic active residues and MD simulations studies, two ginger phytochemicals, gingerenone-A and shogaol have been proposed as candidate inhibitors against Staphylococcus aureus. They have demonstrated higher dock scores than the known antibiotics and have represented interactions with the key residues within the active site. Furthermore, these compounds have rendered considerable inhibitory activity when tested in vitro. Additionally, their superiority was corroborated by stable MD results conducted for 100 ns employing GROMACS package. Finally, we suggest that gingerenone-A and shogaol may either be potential SaHPPK inhibitors or can be used as fundamental platforms for novel SaHPPK inhibitor development.
San Lucas, F Anthony; Fowler, Jerry; Chang, Kyle; Kopetz, Scott; Vilar, Eduardo; Scheet, Paul
2014-12-01
Large-scale cancer datasets such as The Cancer Genome Atlas (TCGA) allow researchers to profile tumors based on a wide range of clinical and molecular characteristics. Subsequently, TCGA-derived gene expression profiles can be analyzed with the Connectivity Map (CMap) to find candidate drugs to target tumors with specific clinical phenotypes or molecular characteristics. This represents a powerful computational approach for candidate drug identification, but due to the complexity of TCGA and technology differences between CMap and TCGA experiments, such analyses are challenging to conduct and reproduce. We present Cancer in silico Drug Discovery (CiDD; scheet.org/software), a computational drug discovery platform that addresses these challenges. CiDD integrates data from TCGA, CMap, and Cancer Cell Line Encyclopedia (CCLE) to perform computational drug discovery experiments, generating hypotheses for the following three general problems: (i) determining whether specific clinical phenotypes or molecular characteristics are associated with unique gene expression signatures; (ii) finding candidate drugs to repress these expression signatures; and (iii) identifying cell lines that resemble the tumors being studied for subsequent in vitro experiments. The primary input to CiDD is a clinical or molecular characteristic. The output is a biologically annotated list of candidate drugs and a list of cell lines for in vitro experimentation. We applied CiDD to identify candidate drugs to treat colorectal cancers harboring mutations in BRAF. CiDD identified EGFR and proteasome inhibitors, while proposing five cell lines for in vitro testing. CiDD facilitates phenotype-driven, systematic drug discovery based on clinical and molecular data from TCGA. ©2014 American Association for Cancer Research.
Automatic Evolution of Molecular Nanotechnology Designs
NASA Technical Reports Server (NTRS)
Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)
1998-01-01
This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.
Interplay between Chaperones and Protein Disorder Promotes the Evolution of Protein Networks
Pechmann, Sebastian; Frydman, Judith
2014-01-01
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution. PMID:24968255
Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins
Sunagar, Kartik; Jackson, Timothy N. W.; Undheim, Eivind A. B.; Ali, Syed. A.; Antunes, Agostinho; Fry, Bryan G.
2013-01-01
Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of Rapid Accumulation of Variations in Exposed Residues (RAVER) to illustrate the significance of point mutations, guided by focal mutagenesis and positive selection in the evolution and diversification of 3FTx. PMID:24253238
The evolution of porcine embryo in vitro production.
Grupen, Christopher G
2014-01-01
The in vitro production of porcine embryos has presented numerous challenges to researchers over the past four decades. Some of the problems encountered were specific to porcine gametes and embryos and needed the concerted efforts of many to overcome. Gradually, porcine embryo in vitro production systems became more reliable and acceptable rates of blastocyst formation were achieved. Despite the significant improvements, the problem of polyspermic fertilization has still not been adequately resolved and the embryo in vitro culture conditions are still considered to be suboptimal. Whereas early studies focused on increasing our understanding of the reproductive processes involved, the technology evolved to the point where in vitro-matured oocytes and in vitro-produced embryos could be used as research material for developing associated reproductive technologies, such as SCNT and embryo cryopreservation. Today, the in vitro procedures used to mature oocytes and culture embryos are integral to the production of transgenic pigs by SCNT. This review discusses the major achievements, advances, and knowledge gained from porcine embryo in vitro production studies and highlights the future research perspectives of this important technology. Copyright © 2014 Elsevier Inc. All rights reserved.
Huang, Yi; Zhang, Bin
2017-11-20
A cost-effective and robust strategy for the anchoring of molecular hydrogen evolution cocatalysts onto semiconductors has recently been reported. The composite materials were highly efficient and stable towards photocatalytic H 2 evolution. This study provides guidance for the design and construction of highly active heterogeneous photocatalysts. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources. PMID:26461812
Genomics and Evolution in Traditional Medicinal Plants: Road to a Healthier Life.
Hao, Da-Cheng; Xiao, Pei-Gen
2015-01-01
Medicinal plants have long been utilized in traditional medicine and ethnomedicine worldwide. This review presents a glimpse of the current status of and future trends in medicinal plant genomics, evolution, and phylogeny. These dynamic fields are at the intersection of phytochemistry and plant biology and are concerned with the evolution mechanisms and systematics of medicinal plant genomes, origin and evolution of the plant genotype and metabolic phenotype, interaction between medicinal plant genomes and their environment, the correlation between genomic diversity and metabolite diversity, and so on. Use of the emerging high-end genomic technologies can be expanded from crop plants to traditional medicinal plants, in order to expedite medicinal plant breeding and transform them into living factories of medicinal compounds. The utility of molecular phylogeny and phylogenomics in predicting chemodiversity and bioprospecting is also highlighted within the context of natural-product-based drug discovery and development. Representative case studies of medicinal plant genome, phylogeny, and evolution are summarized to exemplify the expansion of knowledge pedigree and the paradigm shift to the omics-based approaches, which update our awareness about plant genome evolution and enable the molecular breeding of medicinal plants and the sustainable utilization of plant pharmaceutical resources.
He, M; Taussig, M J
1997-01-01
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828
He, M; Taussig, M J
1997-12-15
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.
Guzmán González, Eduardo; Gaviño Gaviño, Fernando; Valero Origel, Alberto; Deschamps Díaz, Horacio; Ramírez Fernández, María Antonieta; Miranda Lamadrid, Mario
2009-03-01
The double twin pregnancy with complete hydatidiform mole and coexistent fetus is a rare event and perinatal treatment complex. Presents a significant case of this unusual partnership and describes their evolution. Patient of 33 years, secondary infertility factor-peritoneal tube and pregnancy achieved by in vitro fertilization and embryo transfer. An ultrasound early pregnancy reported twice, a sack was a complete mole, another bag was a fetus and placenta previa unchanged total. The case is carefully monitored and uterine inhibitors were administered at different stages of gestation. It settled the case by caesarean section at 37 weeks and obstetric hysterectomy for placenta previa percreta molar involution of the placenta and newborn health. The evolution of the mother and the child was appropriate.
NASA Astrophysics Data System (ADS)
Yoshida, Mari; Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy
2017-06-01
Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs.
Yasmin, Zannatul; Khachatryan, Edward; Lee, Yuan-Hao; Maswadi, Saher; Glickman, Randolph; Nash, Kelly L
2015-02-15
In this work, the assembly of gold nanoparticles of (AuNPs) is used to detect the presence of the biomolecule glutathione (GSH) using a novel technique called "all-optical photoacoustic spectroscopy" (AOPAS). The AOPAS technique coupled with AuNPs forms the basis of a biosensing technique capable of probing the dynamic evolution of nano-bio interfaces within a microscopic volume. Dynamic Light Scattering (DLS) and ultraviolet-visible (UV-vis) spectra were measured to describe the kinetics governing the interparticle interactions by monitoring the AuNPs assembly and evolution of the surface plasmon resonance (SPR) band. A comparison of the same dynamic evolution of AuNPs assembly was performed using the AOPAS technique to confirm the validity of this method. The fundamental study is complemented by a demonstration of the performance of this biosensing technique in the presence of cell culture medium containing fetal bovine serum (FBS), which forms a protein corona on the surface of the AuNPs. This work demonstrates that the in vitro monitoring capabilities of the AOPAS provides sensitive measurement at the microscopic level and low nanoparticle concentrations without the artifacts limiting the use of conventional biosensing methods, such as fluorescent indicators. The AOPAS technique not only provides a facile approach for in vitro biosensing, but also shed a light on the real-time detection of thiol containing oxidative stress biomarkers in live systems using AuNPs. Copyright © 2014 Elsevier B.V. All rights reserved.
Influence of molecular weight on in vitro immunostimulatory properties of instant coffee.
Passos, Cláudia P; Cepeda, Márcio R; Ferreira, Sónia S; Nunes, Fernando M; Evtuguin, Dmitry V; Madureira, Pedro; Vilanova, Manuel; Coimbra, Manuel A
2014-10-15
Instant coffee was prepared and fractionated into higher (>100kDa), medium (5-10, 10-30, 30-100kDa) and lower (1-5, <1kDa) molecular weight fractions. Sugars and linkage composition characteristics of arabinogalactans and galactomannans were recovered in all fractions. Also, amino acid analysis performed after hydrolysis showed similar compositions in all fractions. On the contrary, free chlorogenic acids and caffeine were only detected in the lowest molecular weight fraction (<1kDa). A direct relationship between the melanoidins browning index and the molecular weight was observed. The fractions obtained were incubated in vitro with murine spleen lymphocytes in order to evaluate their possible immunostimulatory abilities. The surface expression of CD69 (early activation marker) on different lymphocyte sub-populations showed that the fraction with 1-5kDa was able to induce activation of B-lymphocytes. This was the only fraction to induce B-lymphocyte activation, since all the other fractions failed, even when higher concentrations were used. Copyright © 2014 Elsevier Ltd. All rights reserved.
Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.
Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming
2017-04-18
The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical chains from self-assembly. The handedness of the twisted lamella can be determined by using rotation experiment of polarized light microscopy (PLM). Similar to the self-assembly of BCPs*, the examined results suggest the homochiral evolution in the crystallized chiral polylactides. The results presented in this Account demonstrate the notable progress in the spectral and morphological determination for the examination of molecular, conformational, and hierarchical chirality in self-assembled twisted superstructures of chiral polymers and helical phases of block copolymers and suggest the attainability of homochiral evolution in the self-assembly of chiral homopolymers and BCPs*. The suggested methodologies for the understanding of the mechanisms of the chirality transfer at different length scales provide the approaches to give Supporting Information for disclosing the mysteries of the homochiral evolution from molecular level.
Su, Juanjuan; Thomas, Ann S; Grabietz, Tanja; Landgraf, Christiane; Volkmer, Rudolf; Marrink, Siewert J; Williams, Chris; Melo, Manuel N
2018-06-01
Pex11p plays a crucial role in peroxisome fission. Previously, it was shown that a conserved N-terminal amphipathic helix in Pex11p, termed Pex11-Amph, was necessary for peroxisomal fission in vivo while in vitro studies revealed that this region alone was sufficient to bring about tubulation of liposomes with a lipid consistency resembling the peroxisomal membrane. However, molecular details of how Pex11-Amph remodels the peroxisomal membrane remain unknown. Here we have combined in silico, in vitro and in vivo approaches to gain insights into the molecular mechanisms underlying Pex11-Amph activity. Using molecular dynamics simulations, we observe that Pex11-Amph peptides form linear aggregates on a model membrane. Furthermore, we identify mutations that disrupted this aggregation in silico, which also abolished the peptide's ability to remodel liposomes in vitro, establishing that Pex11p oligomerisation plays a direct role in membrane remodelling. In vivo studies revealed that these mutations resulted in a strong reduction in Pex11 protein levels, indicating that these residues are important for Pex11p function. Taken together, our data demonstrate the power of combining in silico techniques with experimental approaches to investigate the molecular mechanisms underlying Pex11p-dependent membrane remodelling. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
The USEPA’s ToxCast program is developing a novel approach to chemical toxicity testing using high-throughput screening (HTS) assays to rapidly test thousands of chemicals against hundreds of in vitro molecular targets. This approach is based on the premise that in vitro HTS bioa...
USDA-ARS?s Scientific Manuscript database
Previous studies showed that a series of purified condensed tannins (CTs) from warm-season perennial legumes exhibited high variability in their modulation of methane production during in vitro rumen digestion. The molecular weight difference of these CTs did not provide correlation with either the ...
IN VITRO CARDIOTOXICITY OF AIR POLLUTION PARTICLES: ROLE OF BIOAVAILABLE CONSTITUENTS, OXIDATIVE STRESS AND TYROSINE PHOSPHORYLATION.
T. L. Knuckles1 R. Jaskot2, J. Richards2, and K.Dreher2.
1Department of Molecular and Biomedical Sciences, College of Veterinary Medicin...
IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN ADULT AND NEONATAL RAT TESTIS
IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL TESTIS
Chad R. Blystone1, 2, David J. Dix2, and John C. Rockett2
1Department of Environmental and Molecular Toxicology, Box 7633, NC State University, Raleigh, NC 27695, USA and 2U.S. Envi...
Regdon, G; Bácskay, I; Kata, M; Selmeczi, B; Szikszay, M; Sánta, A; Bálint, G S
1994-05-01
Methodology and the results of the in vitro membrane diffusion and in vivo bioavailability studies are presented. The results confirm a correlation between in vitro and in vivo findings. Hydrophilic macrogol-mixture with great molecular mass can be recommended as the optimal vehicle for formulation of diazepam suppositories.
Evaluation of the ToxCast Suite of Cellular and Molecular Assays for Prediction of In Vivo Toxicity
Measurement of perturbation of critical signaling pathways and cellular processes using in vitro assays provides a means to predict the potential for chemicals to cause injury in the intact animal. To explore the utility of such an approach, a diverse collection of human in vitro...
NASA Astrophysics Data System (ADS)
Dandouras, I.; Poppe, A. R.; Fillingim, M. O.; Kistler, L. M.; Mouikis, C. G.; Rème, H.
2017-09-01
First coordinated observation of escaping heavy molecular ions in the Earth's inner magnetosphere and at the Moon. Quantifying the underlying escape mechanisms is important in order to understand the long-term (billion years scale) evolution of the atmospheric composition, and in particular the evolution of the N/O ratio, which is essential for habitability. Terrestrial heavy ions, transported to the Moon, suggest also that the Earth's atmosphere of billions of years ago may be preserved on the present-day lunar regolith.
Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T
2003-08-14
The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.
Serohijos, Adrian W.R.; Shakhnovich, Eugene I.
2014-01-01
The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy—molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the critical need to integrate these two disciplines. We first articulate the elements of these integrated approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. PMID:24952216
Serohijos, Adrian W R; Shakhnovich, Eugene I
2014-06-01
The variation among sequences and structures in nature is both determined by physical laws and by evolutionary history. However, these two factors are traditionally investigated by disciplines with different emphasis and philosophy-molecular biophysics on one hand and evolutionary population genetics in another. Here, we review recent theoretical and computational approaches that address the crucial need to integrate these two disciplines. We first articulate the elements of these approaches. Then, we survey their contribution to our mechanistic understanding of molecular evolution, the polymorphisms in coding region, the distribution of fitness effects (DFE) of mutations, the observed folding stability of proteins in nature, and the distribution of protein folds in genomes. Copyright © 2014 Elsevier Ltd. All rights reserved.
Molecular mechanisms involved in convergent crop domestication.
Lenser, Teresa; Theißen, Günter
2013-12-01
Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Melo, Liliane Pimenta; Salmoria, Gean Vitor; Fancello, Eduardo Alberto; Roesler, Carlos Rodrigo de Mello
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures.
Epigenetics: Biology's Quantum Mechanics
Jorgensen, Richard A.
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene – the molecular biological view and the epigenetic view – are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider. PMID:22639577
14-3-3 proteins tune non-muscle myosin II assembly.
West-Foyle, Hoku; Kothari, Priyanka; Osborne, Jonathan; Robinson, Douglas N
2018-05-04
The 14-3-3 family comprises a group of small proteins that are essential, ubiquitous, and highly conserved across eukaryotes. Overexpression of the 14-3-3 proteins σ, ϵ, ζ, and η correlates with high metastatic potential in multiple cancer types. In Dictyostelium , 14-3-3 promotes myosin II turnover in the cell cortex and modulates cortical tension, cell shape, and cytokinesis. In light of the important roles of 14-3-3 proteins across a broad range of eukaryotic species, we sought to determine how 14-3-3 proteins interact with myosin II. Here, conducting in vitro and in vivo studies of both Dictyostelium (one 14-3-3 and one myosin II) and human proteins (seven 14-3-3s and three nonmuscle myosin IIs), we investigated the mechanism by which 14-3-3 proteins regulate myosin II assembly. Using in vitro assembly assays with purified myosin II tail fragments and 14-3-3, we demonstrate that this interaction is direct and phosphorylation-independent. All seven human 14-3-3 proteins also altered assembly of at least one paralog of myosin II. Our findings indicate a mechanism of myosin II assembly regulation that is mechanistically conserved across a billion years of evolution from amebas to humans. We predict that altered 14-3-3 expression in humans inhibits the tumor suppressor myosin II, contributing to the changes in cell mechanics observed in many metastatic cancers. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Molecular clock or erratic evolution? A tale of two genes.
Ayala, F J; Barrio, E; Kwiatowski, J
1996-01-01
We have investigated the evolution of glycerol-3-phosphate dehydrogenase (Gpdh). The rate of amino acid replacements is 1 x 10(-10)/site/year when Drosophila species are compared. The rate is 2.7 times greater when Drosophila and Chymomyza species are compared; and about 5 times greater when any of those species are compared with the medfly Ceratitis capitata. This rate of 5 x 10(-10)/site/year is also the rate observed in comparisons between mammals, or between different animal phyla, or between the three multicellular kingdoms. We have also studied the evolution of Cu,Zn superoxide dismutase (Sod). The rate of amino acid replacements is about 17 x 10(-10)/site/year when comparisons are made between dipterans or between mammals, but only 5 x 10(-10) when animal phyla are compared, and only 3 x 10(-10) when the multicellular kingdoms are compared. The apparent decrease by about a factor of 5 in the rate of SOD evolution as the divergence between species increases can be consistent with the molecular clock hypothesis by assuming the covarion hypothesis (namely, that the number of amino acids that can change is constant, but the set of such amino acids changes from time to time and from lineage to lineage). However, we know of no model consistent with the molecular clock hypothesis that would account for the increase in the rate of GPDH evolution as the divergence between species increases. Images Fig. 2 Fig. 5 PMID:8876205
The Genome and Methylome of a Subsocial Small Carpenter Bee, Ceratina calcarata.
Rehan, Sandra M; Glastad, Karl M; Lawson, Sarah P; Hunt, Brendan G
2016-05-13
Understanding the evolution of animal societies, considered to be a major transition in evolution, is a key topic in evolutionary biology. Recently, new gateways for understanding social evolution have opened up due to advances in genomics, allowing for unprecedented opportunities in studying social behavior on a molecular level. In particular, highly eusocial insect species (caste-containing societies with nonreproductives that care for siblings) have taken center stage in studies of the molecular evolution of sociality. Despite advances in genomic studies of both solitary and eusocial insects, we still lack genomic resources for early insect societies. To study the genetic basis of social traits requires comparison of genomes from a diversity of organisms ranging from solitary to complex social forms. Here we present the genome of a subsocial bee, Ceratina calcarata This study begins to address the types of genomic changes associated with the earliest origins of simple sociality using the small carpenter bee. Genes associated with lipid transport and DNA recombination have undergone positive selection in C. calcarata relative to other bee lineages. Furthermore, we provide the first methylome of a noneusocial bee. Ceratina calcarata contains the complete enzymatic toolkit for DNA methylation. As in the honey bee and many other holometabolous insects, DNA methylation is targeted to exons. The addition of this genome allows for new lines of research into the genetic and epigenetic precursors to complex social behaviors. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Lee, Chien-Yueh; Hsieh, Ping-Han; Chiang, Li-Mei; Chattopadhyay, Amrita; Li, Kuan-Yi; Lee, Yi-Fang; Lu, Tzu-Pin; Lai, Liang-Chuan; Lin, En-Chung; Lee, Hsinyu; Ding, Shih-Torng; Tsai, Mong-Hsun; Chen, Chien-Yu; Chuang, Eric Y
2018-05-01
The Mikado pheasant (Syrmaticus mikado) is a nearly endangered species indigenous to high-altitude regions of Taiwan. This pheasant provides an opportunity to investigate evolutionary processes following geographic isolation. Currently, the genetic background and adaptive evolution of the Mikado pheasant remain unclear. We present the draft genome of the Mikado pheasant, which consists of 1.04 Gb of DNA and 15,972 annotated protein-coding genes. The Mikado pheasant displays expansion and positive selection of genes related to features that contribute to its adaptive evolution, such as energy metabolism, oxygen transport, hemoglobin binding, radiation response, immune response, and DNA repair. To investigate the molecular evolution of the major histocompatibility complex (MHC) across several avian species, 39 putative genes spanning 227 kb on a contiguous region were annotated and manually curated. The MHC loci of the pheasant revealed a high level of synteny, several rapidly evolving genes, and inverse regions compared to the same loci in the chicken. The complete mitochondrial genome was also sequenced, assembled, and compared against four long-tailed pheasants. The results from molecular clock analysis suggest that ancestors of the Mikado pheasant migrated from the north to Taiwan about 3.47 million years ago. This study provides a valuable genomic resource for the Mikado pheasant, insights into its adaptation to high altitude, and the evolutionary history of the genus Syrmaticus, which could potentially be useful for future studies that investigate molecular evolution, genomics, ecology, and immunogenetics.
Eu, Byung Chan
2008-09-07
In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.
Ohtani, Misato; Akiyoshi, Nobuhiro; Takenaka, Yuto; Sano, Ryosuke; Demura, Taku
2017-01-01
One crucial problem that plants faced during their evolution, particularly during the transition to growth on land, was how to transport water, nutrients, metabolites, and small signaling molecules within a large, multicellular body. As a solution to this problem, land plants developed specific tissues for conducting molecules, called water-conducting cells (WCCs) and food-conducting cells (FCCs). The well-developed WCCs and FCCs in extant plants are the tracheary elements and sieve elements, respectively, which are found in vascular plants. Recent molecular genetic studies revealed that transcriptional networks regulate the differentiation of tracheary and sieve elements, and that the networks governing WCC differentiation are largely conserved among land plant species. In this review, we discuss the molecular evolution of plant conducting cells. By focusing on the evolution of the key transcription factors that regulate vascular cell differentiation, the NAC transcription factor VASCULAR-RELATED NAC-DOMAIN for WCCs and the MYB-coiled-coil (CC)-type transcription factor ALTERED PHLOEM DEVELOPMENT for sieve elements, we describe how land plants evolved molecular systems to produce the specialized cells that function as WCCs and FCCs. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Do, Hai Quynh; Trinh, Dinh Thau; Nguyen, Thi Lan; Vu, Thi Thu Hang; Than, Duc Duong; Van Lo, Thi; Yeom, Minjoo; Song, Daesub; Choe, SeEun; An, Dong-Jun; Le, Van Phan
2016-11-17
Porcine respiratory and reproductive syndrome (PRRS) virus is one of the most economically significant pathogens in the Vietnamese swine industry. ORF5, which participates in many functional processes, including virion assembly, entry of the virus into the host cell, and viral adaptation to the host immune response, has been widely used in molecular evolution and phylogeny studies. Knowing of molecular evolution of PRRSV fields strains might contribute to PRRS control in Vietnam. The results showed that phylogenetic analysis indicated that all strains belonged to sub-lineages 8.7 and 5.1. The nucleotide and amino acid identities between strains were 84.5-100% and 82-100%, respectively. Furthermore, the results revealed differences in nucleotide and amino acid identities between the 2 sub-lineage groups. N-glycosylation prediction identified 7 potential N-glycosylation sites and 11 glycotypes. Analyses of the GP5 sequences, revealed 7 sites under positive selective pressure and 25 under negative selective pressure. Phylogenetic analysis based on ORF5 sequence indicated the diversity of PRRSV in Vietnam. Furthermore, the variance of N-glycosylation sites and position under selective pressure were demonstrated. This study expands existing knowledge on the genetic diversity and evolution of PRRSV in Vietnam and assists the effective strategies for PRRS vaccine development in Vietnam.
Development of ultrasound bioprobe for biological imaging
Shekhawat, Gajendra S.; Dudek, Steven M.; Dravid, Vinayak P.
2017-01-01
We report the development of an ultrasound bioprobe for in vitro molecular imaging. In this method, the phase of the scattered ultrasound wave is mapped to provide in vitro and intracellular imaging with nanometer-scale resolution under physiological conditions. We demonstrated the technique by successfully imaging a magnetic core in silica core shells and the stiffness image of intracellular fibers in endothelial cells that were stimulated with thrombin. The findings demonstrate a significant advancement in high-resolution ultrasound imaging of biological systems with acoustics under physiological conditions. These will open up various applications in biomedical and molecular imaging with subsurface resolution down to the nanometer scale. PMID:29075667
Drolez, Aurore; Vandenhaute, Elodie; Julien, Sylvain; Gosselet, Fabien; Burchell, Joy; Cecchelli, Roméo; Delannoy, Philippe; Dehouck, Marie-Pierre; Mysiorek, Caroline
2016-01-01
Around 7-17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities.
Vickers, Anna A; Potter, Nicola J; Fishwick, Colin W G; Chopra, Ian; O'Neill, Alex J
2009-06-01
This study sought to expand knowledge on the molecular mechanisms of mutational resistance to trimethoprim in Staphylococcus aureus, and the fitness costs associated with resistance. Spontaneous trimethoprim-resistant mutants of S. aureus SH1000 were recovered in vitro, resistance genotypes characterized by DNA sequencing of the gene encoding the drug target (dfrA) and the fitness of mutants determined by pair-wise growth competition assays with SH1000. Novel resistance genotypes were confirmed by ectopic expression of dfrA alleles in a trimethoprim-sensitive S. aureus strain. Molecular models of S. aureus dihydrofolate reductase (DHFR) were constructed to explore the structural basis of trimethoprim resistance, and to rationalize the observed in vitro fitness of trimethoprim-resistant mutants. In addition to known amino acid substitutions in DHFR mediating trimethoprim resistance (F(99)Y and H(150)R), two novel resistance polymorphisms (L(41)F and F(99)S) were identified among the trimethoprim-resistant mutants selected in vitro. Molecular modelling of mutated DHFR enzymes provided insight into the structural basis of trimethoprim resistance. Calculated binding energies of the substrate (dihydrofolate) for the mutant and wild-type enzymes were similar, consistent with apparent lack of fitness costs for the resistance mutations in vitro. Reduced susceptibility to trimethoprim of DHFR enzymes carrying substitutions L(41)F, F(99)S, F(99)Y and H(150)R appears to result from structural changes that reduce trimethoprim binding to the enzyme. However, the mutations conferring trimethoprim resistance are not associated with fitness costs in vitro, suggesting that the survival of trimethoprim-resistant strains emerging in the clinic may not be subject to a fitness disadvantage.
ERIC Educational Resources Information Center
Stebbins, G. Ledyard; Ayala, Francisco J.
1985-01-01
Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)
Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution.
Warnock, Rachel C M; Yang, Ziheng; Donoghue, Philip C J
2017-06-28
Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. © 2017 The Authors.
Casillas, Sònia; Barbadilla, Antonio
2017-01-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. PMID:28270526
Molecular Population Genetics.
Casillas, Sònia; Barbadilla, Antonio
2017-03-01
Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.
The Transition from Mathematician to Astrophysicist
NASA Astrophysics Data System (ADS)
Flannery, M. R.
Various landmarks in the evolution of Alexander Dalgarno from a gifted mathematician to becoming the acknowledged Father of Molecular Astrophysics are noted. His researches in basic atomic and molecular physics, aeronomy (the study of the upper atmosphere) and astrophysics are highlighted.
Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka
2016-04-01
The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
ERIC Educational Resources Information Center
Hubler, Tina; Adams, Patti; Scammell, Jonathan
2015-01-01
The molecular basis of evolution is an important and challenging concept for students to understand. In a previous article, we provided some of the scientific background necessary to teach this topic. This article features a series of laboratory activities demonstrating that molecular events can alter the genomes of organisms. These activities are…
Fontanillas, Eric; Welch, John J; Thomas, Jessica A; Bromham, Lindell
2007-01-01
Background Molecular clock dates, which place the origin of animal phyla deep in the Precambrian, have been used to reject the hypothesis of a rapid evolutionary radiation of animal phyla supported by the fossil record. One possible explanation of the discrepancy is the potential for fast substitution rates early in the metazoan radiation. However, concerted rate variation, occurring simultaneously in multiple lineages, cannot be detected by "clock tests", and so another way to explore such variation is to look for correlated changes between rates and other biological factors. Here we investigate two possible causes of fast early rates: change in average body size or diversification rate of deep metazoan lineages. Results For nine genes for phylogenetically independent comparisons between 50 metazoan phyla, orders, and classes, we find a significant correlation between average body size and rate of molecular evolution of mitochondrial genes. The data also indicate that diversification rate may have a positive effect on rates of mitochondrial molecular evolution. Conclusion If average body sizes were significantly smaller in the early history of the Metazoa, and if rates of diversification were much higher, then it is possible that mitochondrial genes have undergone a slow-down in evolutionary rate, which could affect date estimates made from these genes. PMID:17592650
Huchon, D; Catzeflis, F M; Douzery, E J
2000-01-01
The von Willebrand factor (vWF) gene has been used to understand the origin and timing of Rodentia evolution in the context of placental phylogeny vWF exon 28 sequences of 15 rodent families and eight non-rodent eutherian clades are analysed with two different molecular dating methods (uniform clock on a linearized tree; quartet dating). Three main conclusions are drawn from the study of this nuclear exon. First, Ctenodactylidae (gundis) and Hystricognathi (e.g. porcupines, guinea-pigs, chinchillas) robustly cluster together in a newly recognized clade, named 'Ctenohystrica'. The Sciurognathi monophyly is subsequently rejected. Pedetidae (springhares) is an independent and early diverging rodent lineage, suggesting a convergent evolution of the multiserial enamel of rodent incisors. Second, molecular date estimates are here more influenced by accuracy and choice of the palaeontological temporal references used to calibrate the molecular clock than by either characters analysed (nucleotides versus amino acids) or species sampling. The caviomorph radiation at 31 million years (Myr) and the pig porpoise split at 63 Myr appear to be reciprocally compatible dates. Third, during the radiation of Rodentia, at least three lineages (Gliridae, Sciuroidea and Ctenohystrica) emerged close to the Cretaceous-Tertiary boundary, and their common ancestor separated from other placental orders in the Late Cretaceous. PMID:10722222
Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.
Greenwold, Matthew J; Sawyer, Roger H
2011-12-15
Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.
USDA-ARS?s Scientific Manuscript database
Ergot alkaloids, in their active isomeric form, affect animal health and performance and adsorbents are used to mitigate toxicities by reducing bioavailability. Adsorbents with high specificity (molecularly imprinted: MIP and non-imprinted: NIP polymers) adsorb ergot alkaloids in vitro, but require ...
Pirela, Sandra Vanessa; Martin, John; Bello, Dhimiter; Demokritou, Philip
2017-09-01
Toner formulations used by laser printers (LP) and photocopiers (PC), collectively called "toner-based printing equipment" (TPE), are nano-enabled products (NEP) because they contain several engineered nanomaterials (ENM) that improve toner performance. It has been shown that during consumer use (printing), these ENM are released in the air, together with other semi-volatile organic nanoparticles, and newly formed gaseous co-pollutants such as volatile organic compounds (VOC). The aim of this review is to detail and analyze physico-chemical and morphological (PCM), as well as the toxicological properties of particulate matter (PM) emissions from TPE. The review covers evolution of science since the early 2000, when this printing technology first became a subject of public interest, as well as the lagging regulatory framework around it. Important studies that have significantly changed our understanding of these exposures are also highlighted. The review continues with a critical appraisal of the most up-to-date cellular, animal and human toxicological evidence on the potential adverse human health effects of PM emitted from TPE. We highlight several limitations of existing studies, including (i) use of high and often unrealistic doses in vitro or in vivo; (ii) unrealistically high-dose rates in intratracheal instillation studies; (iii) improper use of toners as surrogate for emitted nanoparticles; (iv) lack of or inadequate PCM characterization of exposures; and (v) lack of dosimetry considerations in in vitro studies. Presently, there is compelling evidence that the PM 0.1 from TPE are biologically active and capable of inducing oxidative stress in vitro and in vivo, respiratory tract inflammation in vivo (in rats) and in humans, several endpoints of cellular injury in monocultures and co-cultures, including moderate epigenetic modifications in vitro. In humans, limited epidemiological studies report typically 2-3 times higher prevalence of chronic cough, wheezing, nasal blockage, excessive sputum production, breathing difficulties, and shortness of breath, in copier operators relative to controls. Such symptoms can be exacerbated during chronic exposures, and in individuals susceptible to inhaled pollutants. Thus respiratory, immunological, cardiovascular, and other disorders may be developed following such exposures; however, further toxicological and larger scale molecular epidemiological studies must be done to fully understand the mechanism of action of these TPE emitted nanoparticles. Major research gaps have also been identified. Among them, a methodical risk assessment based on "real world" exposures rather than on the toner particles alone needs to be performed to provide the much-needed data to establish regulatory guidelines protective of individuals exposed to TPE emissions at both the occupational and consumer level. Industry-wide molecular epidemiology as well as mechanistic animal and human studies are also urgently needed.
Within-Host Evolution of Burkholderia pseudomallei in Four Cases of Acute Melioidosis
Limmathurotsakul, Direk; Max, Tamara L.; Sarovich, Derek S.; Vogler, Amy J.; Dale, Julia L.; Ginther, Jennifer L.; Leadem, Benjamin; Colman, Rebecca E.; Foster, Jeffrey T.; Tuanyok, Apichai; Wagner, David M.; Peacock, Sharon J.; Pearson, Talima; Keim, Paul
2010-01-01
Little is currently known about bacterial pathogen evolution and adaptation within the host during acute infection. Previous studies of Burkholderia pseudomallei, the etiologic agent of melioidosis, have shown that this opportunistic pathogen mutates rapidly both in vitro and in vivo at tandemly repeated loci, making this organism a relevant model for studying short-term evolution. In the current study, B. pseudomallei isolates cultured from multiple body sites from four Thai patients with disseminated melioidosis were subjected to fine-scale genotyping using multilocus variable-number tandem repeat analysis (MLVA). In order to understand and model the in vivo variable-number tandem repeat (VNTR) mutational process, we characterized the patterns and rates of mutations in vitro through parallel serial passage experiments of B. pseudomallei. Despite the short period of infection, substantial divergence from the putative founder genotype was observed in all four melioidosis cases. This study presents a paradigm for examining bacterial evolution over the short timescale of an acute infection. Further studies are required to determine whether the mutational process leads to phenotypic alterations that impact upon bacterial fitness in vivo. Our findings have important implications for future sampling strategies, since colonies in a single clinical sample may be genetically heterogeneous, and organisms in a culture taken late in the infective process may have undergone considerable genetic change compared with the founder inoculum. PMID:20090837
Integrating influenza antigenic dynamics with molecular evolution
Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew
2014-01-01
Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547
Role of transcriptional regulation in the evolution of plant phenotype: A dynamic systems approach.
Rodríguez-Mega, Emiliano; Piñeyro-Nelson, Alma; Gutierrez, Crisanto; García-Ponce, Berenice; Sánchez, María De La Paz; Zluhan-Martínez, Estephania; Álvarez-Buylla, Elena R; Garay-Arroyo, Adriana
2015-03-02
A growing body of evidence suggests that alterations in transcriptional regulation of genes involved in modulating development are an important part of phenotypic evolution, and this can be documented among species and within populations. While the effects of differential transcriptional regulation in organismal development have been preferentially studied in animal systems, this phenomenon has also been addressed in plants. In this review, we summarize evidence for cis-regulatory mutations, trans-regulatory changes and epigenetic modifications as molecular events underlying important phenotypic alterations, and thus shaping the evolution of plant development. We postulate that a mechanistic understanding of why such molecular alterations have a key role in development, morphology and evolution will have to rely on dynamic models of complex regulatory networks that consider the concerted action of genetic and nongenetic components, and that also incorporate the restrictions underlying the genotype to phenotype mapping process. Developmental Dynamics, 2015. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Marek’s disease (MD) is a lymphoproliferative disease of chickens caused by the oncogenic Gallid herpesvirus 2, commonly known as Marek’s disease virus (MDV). MD vaccines, the primary control method, are often generated by repeated in vitro serial passage of this highly cell-associated virus to atte...
Adverse outcome pathways (AOP) link known population outcomes to a molecular initiating event (MIE) that can be quantified using high-throughput in vitro methods. Practical application of AOPs in chemical-specific risk assessment requires consideration of exposure and absorption,...
Efficient and accurate adverse outcome pathway (AOP) based high-throughput screening (HTS) methods use a systems biology based approach to computationally model in vitro cellular and molecular data for rapid chemical prioritization; however, not all HTS assays are grounded by rel...
Dehury, Budheswar; Behera, Santosh Kumar; Mahapatra, Namita
2017-01-01
The protein kinases (PKs), belonging to serine/threonine kinase (STKs), are important drug targets for a wide spectrum of diseases in human. Among protein kinases, the Casein Kinases (CKs) are vastly expanded in various organisms, where, the malarial parasite Plasmodium falciparum possesses a single member i.e., PfCKI, which can phosphorylate various proteins in parasite extracts in vitro condition. But, the structure-function relationship of PfCKI and dynamics of ATP binding is yet to be understood. Henceforth, an attempt was made to study the dynamics, stability, and ATP binding mechanisms of PfCKI through computational modelling, docking, molecular dynamics (MD) simulations, and MM/PBSA binding free energy estimation. Bi-lobed catalytic domain of PfCKI shares a high degree of secondary structure topology with CKI domains of rice, human, and mouse indicating co-evolution of these kinases. Molecular docking study revealed that ATP binds to the active site where the glycine-rich ATP-binding motif (G16-X-G18-X-X-G21) along with few conserved residues plays a crucial role maintaining stability of the complex. Structural superposition of PfCKI with close structural homologs depicted that the location and length of important loops are different, indicating the dynamic properties of these loops among CKIs, which is consistent with principal component analysis (PCA). PCA displayed that the overall global motion of ATP-bound form is comparatively higher than that of apo form. The present study provides insights into the structural features of PfCKI, which could contribute towards further understanding of related protein structures, dynamics of catalysis and phosphorylation mechanism in these important STKs from malarial parasite in near future. Copyright © 2016 Elsevier Inc. All rights reserved.
High-Throughput Functional Validation of Progression Drivers in Lung Adenocarcinoma
2013-09-01
2) a novel molecular barcoding approach that facilitates cost- effective detection of driver events following in vitro and in vivo functional screens...aberration construction pipeline, which we named High-Throughput 3 Mutagenesis and Molecular Barcoding (HiTMMoB; Fig.1). We have therefore been able...lentiviral vector specially constructed for this project. This vector is compatible with our flexible molecular barcoding technology (Fig. 1), thus each
Rosenberg, Susan M; Shee, Chandan; Frisch, Ryan L; Hastings, P J
2012-01-01
Abstract Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the “modern synthesis” of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen–host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer. PMID:22911060
Rosenberg, Susan M; Shee, Chandan; Frisch, Ryan L; Hastings, P J
2012-10-01
Evolutionary theory assumed that mutations occur constantly, gradually, and randomly over time. This formulation from the "modern synthesis" of the 1930s was embraced decades before molecular understanding of genes or mutations. Since then, our labs and others have elucidated mutation mechanisms activated by stress responses. Stress-induced mutation mechanisms produce mutations, potentially accelerating evolution, specifically when cells are maladapted to their environment, that is, when they are stressed. The mechanisms of stress-induced mutation that are being revealed experimentally in laboratory settings provide compelling models for mutagenesis that propels pathogen-host adaptation, antibiotic resistance, cancer progression and resistance, and perhaps much of evolution generally. We discuss double-strand-break-dependent stress-induced mutation in Escherichia coli. Recent results illustrate how a stress response activates mutagenesis and demonstrate this mechanism's generality and importance to spontaneous mutation. New data also suggest a possible harmony between previous, apparently opposed, models for the molecular mechanism. They additionally strengthen the case for anti-evolvability therapeutics for infectious disease and cancer. Copyright © 2012 WILEY Periodicals, Inc.
Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics.
Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K; Gomez-Lorenzo, Maria G; Vanaerschot, Manu; Sakata-Kato, Tomoyo; Flannery, Erika L; Magistrado, Pamela; Owen, Edward; Abraham, Matthew; LaMonte, Gregory; Painter, Heather J; Williams, Roy M; Franco, Virginia; Linares, Maria; Arriaga, Ignacio; Bopp, Selina; Corey, Victoria C; Gnädig, Nina F; Coburn-Flynn, Olivia; Reimer, Christin; Gupta, Purva; Murithi, James M; Moura, Pedro A; Fuchs, Olivia; Sasaki, Erika; Kim, Sang W; Teng, Christine H; Wang, Lawrence T; Akidil, Aslı; Adjalley, Sophie; Willis, Paul A; Siegel, Dionicio; Tanaseichuk, Olga; Zhong, Yang; Zhou, Yingyao; Llinás, Manuel; Ottilie, Sabine; Gamo, Francisco-Javier; Lee, Marcus C S; Goldberg, Daniel E; Fidock, David A; Wirth, Dyann F; Winzeler, Elizabeth A
2018-01-12
Chemogenetic characterization through in vitro evolution combined with whole-genome analysis can identify antimalarial drug targets and drug-resistance genes. We performed a genome analysis of 262 Plasmodium falciparum parasites resistant to 37 diverse compounds. We found 159 gene amplifications and 148 nonsynonymous changes in 83 genes associated with drug-resistance acquisition, where gene amplifications contributed to one-third of resistance acquisition events. Beyond confirming previously identified multidrug-resistance mechanisms, we discovered hitherto unrecognized drug target-inhibitor pairs, including thymidylate synthase and a benzoquinazolinone, farnesyltransferase and a pyrimidinedione, and a dipeptidylpeptidase and an arylurea. This exploration of the P. falciparum resistome and druggable genome will likely guide drug discovery and structural biology efforts, while also advancing our understanding of resistance mechanisms available to the malaria parasite. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
In vitro fertilization: four decades of reflections and promises.
Zhao, Yulian; Brezina, Paul; Hsu, Chao-Chin; Garcia, Jairo; Brinsden, Peter R; Wallach, Edward
2011-09-01
In 2010, Robert Edwards was awarded the Nobel Prize in Medicine for his pioneering work in the development of in vitro fertilization, a field that has touched millions of lives across the globe. Edwards dedicated his career to helping couples overcome infertility. He first established principles of early embryo development that served as the foundation for his later work. In the 1960s, he achieved the first human fertilized oocyte in vitro while at the Johns Hopkins Hospital. He then continued his work at Cambridge University. In 1978, the world witnessed the birth of the first "test tube baby". This achievement is a landmark not only in the reproductive sciences but also in the history of mankind's technological evolution. This article outlines the development and progression of IVF from its infancy to the refined and broadly utilized technology offered to patients today. We describe the evolution of the field and the current state of IVF, including its current technological and social challenges. We congratulate Professor Edwards for his well-deserved recognition as Nobel Laureate in Medicine. This article is a tribute to Edwards for his exceptional accomplishments in this specific and rewarding field of modern medicine. Copyright © 2011 Elsevier B.V. All rights reserved.
Mitogenomic perspectives on the origin and phylogeny of living amphibians.
Zhang, Peng; Zhou, Hui; Chen, Yue-Qin; Liu, Yi-Fei; Qu, Liang-Hu
2005-06-01
Establishing the relationships among modern amphibians (lissamphibians) and their ancient relatives is necessary for our understanding of early tetrapod evolution. However, the phylogeny is still intractable because of the highly specialized anatomy and poor fossil record of lissamphibians. Paleobiologists are still not sure whether lissamphibians are monophyletic or polyphyletic, and which ancient group (temnospondyls or lepospondyls) is most closely related to them. In an attempt to address these problems, eight mitochondrial genomes of living amphibians were determined and compared with previously published amphibian sequences. A comprehensive molecular phylogenetic analysis of nucleotide sequences yields a highly resolved tree congruent with the traditional hypotheses (Batrachia). By using a molecular clock-independent approach for inferring dating information from molecular phylogenies, we present here the first molecular timescale for lissamphibian evolution, which suggests that lissamphibians first emerged about 330 million years ago. By observing the fit between molecular and fossil times, we suggest that the temnospondyl-origin hypothesis for lissamphibians is more credible than other hypotheses. Moreover, under this timescale, the potential geographic origins of the main living amphibian groups are discussed: (i) advanced frogs (neobatrachians) may possess an Africa-India origin; (ii) salamanders may have originated in east Asia; (iii) the tropic forest of the Triassic Pangaea may be the place of origin for the ancient caecilians. An accurate phylogeny with divergence times can be also helpful to direct the search for "missing" fossils, and can benefit comparative studies of amphibian evolution.
Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).
Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar
2016-12-01
In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.
2012-01-01
Background Elucidating the selective and neutral forces underlying molecular evolution is fundamental to understanding the genetic basis of adaptation. Plants have evolved a suite of adaptive responses to cope with variable environmental conditions, but relatively little is known about which genes are involved in such responses. Here we studied molecular evolution on a genome-wide scale in two species of Cardamine with distinct habitat preferences: C. resedifolia, found at high altitudes, and C. impatiens, found at low altitudes. Our analyses focussed on genes that are involved in stress responses to two factors that differentiate the high- and low-altitude habitats, namely temperature and irradiation. Results High-throughput sequencing was used to obtain gene sequences from C. resedifolia and C. impatiens. Using the available A. thaliana gene sequences and annotation, we identified nearly 3,000 triplets of putative orthologues, including genes involved in cold response, photosynthesis or in general stress responses. By comparing estimated rates of molecular substitution, codon usage, and gene expression in these species with those of Arabidopsis, we were able to evaluate the role of positive and relaxed selection in driving the evolution of Cardamine genes. Our analyses revealed a statistically significant higher rate of molecular substitution in C. resedifolia than in C. impatiens, compatible with more efficient positive selection in the former. Conversely, the genome-wide level of selective pressure is compatible with more relaxed selection in C. impatiens. Moreover, levels of selective pressure were heterogeneous between functional classes and between species, with cold responsive genes evolving particularly fast in C. resedifolia, but not in C. impatiens. Conclusions Overall, our comparative genomic analyses revealed that differences in effective population size might contribute to the differences in the rate of protein evolution and in the levels of selective pressure between the C. impatiens and C. resedifolia lineages. The within-species analyses also revealed evolutionary patterns associated with habitat preference of two Cardamine species. We conclude that the selective pressures associated with the habitats typical of C. resedifolia may have caused the rapid evolution of genes involved in cold response. PMID:22257588
Jozwiak, Krzysztof; Targowska-Duda, Katarzyna M; Kaczor, Agnieszka A; Kozak, Joanna; Ligeza, Agnieszka; Szacon, Elzbieta; Wrobel, Tomasz M; Budzynska, Barbara; Biala, Grazyna; Fornal, Emilia; Poso, Antti; Wainer, Irving W; Matosiuk, Dariusz
2014-12-15
9 N-alkylated derivatives of dextromethorphan are synthesized and studied as non-competitive inhibitors of α3β4 nicotinic acetylcholine receptors (nAChRs). In vitro activity towards α3β4 nicotinic acetylcholine receptor is determined using a patch-clamp technique and is in the micromolar range. Homology modeling, molecular docking and molecular dynamics of ligand-receptor complexes in POPC membrane are used to find the mode of interactions of N-alkylated dextromethorphan derivatives with α3β4 nAChR. The compounds, similarly as dextromethorphan, interact with the middle portion of α3β4 nAChR ion channel. Finally, behavioral tests confirmed potential application of the studied compounds for the treatment of addiction. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shao, Ping; Chen, Xiaoxiao; Sun, Peilong
2015-03-01
In the previous study, we have found that polysaccharides isolated from Sargassum horneri exhibited bioactivities. The aim of this study was to investigate the antioxidant and moisture-preserving activities of molecular weight alteration of Sargassum horneri polysaccharide in vitro. For this purpose, the homogeneous active polysaccharide SHP was isolated from Sargassum horneri, and response surface methodology was employed to optimize the enzymatic degradation conditions to get SHP-derived fragments with different molecular weight. Results proved that the polysaccharide is capable of scavenging both ABTS and DPPH radicals in vitro. The study revealed that the polysaccharides had strong moisture-absorption and -retention capacities as compared to propanediol and glycerin. Furthermore, these data demonstrated that molecular weight had a certain effect on antioxidant activities and strong moisture-retention capacities of the polysaccharide from Sargassum horneri. Copyright © 2014 Elsevier B.V. All rights reserved.
The modern theory of biological evolution: an expanded synthesis.
Kutschera, Ulrich; Niklas, Karl J
2004-06-01
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the "modern synthesis" is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
The modern theory of biological evolution: an expanded synthesis
NASA Astrophysics Data System (ADS)
Kutschera, Ulrich; Niklas, Karl J.
In 1858, two naturalists, Charles Darwin and Alfred Russel Wallace, independently proposed natural selection as the basic mechanism responsible for the origin of new phenotypic variants and, ultimately, new species. A large body of evidence for this hypothesis was published in Darwin's Origin of Species one year later, the appearance of which provoked other leading scientists like August Weismann to adopt and amplify Darwin's perspective. Weismann's neo-Darwinian theory of evolution was further elaborated, most notably in a series of books by Theodosius Dobzhansky, Ernst Mayr, Julian Huxley and others. In this article we first summarize the history of life on Earth and provide recent evidence demonstrating that Darwin's dilemma (the apparent missing Precambrian record of life) has been resolved. Next, the historical development and structure of the ``modern synthesis'' is described within the context of the following topics: paleobiology and rates of evolution, mass extinctions and species selection, macroevolution and punctuated equilibrium, sexual reproduction and recombination, sexual selection and altruism, endosymbiosis and eukaryotic cell evolution, evolutionary developmental biology, phenotypic plasticity, epigenetic inheritance and molecular evolution, experimental bacterial evolution, and computer simulations (in silico evolution of digital organisms). In addition, we discuss the expansion of the modern synthesis, embracing all branches of scientific disciplines. It is concluded that the basic tenets of the synthetic theory have survived, but in modified form. These sub-theories require continued elaboration, particularly in light of molecular biology, to answer open-ended questions concerning the mechanisms of evolution in all five kingdoms of life.
Hydrogenase activity in the thermophile mastigocladus laminosus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benemann, J.R.; Miyamoto, K.; Hallenbeck, P.C.
Hydrogenase activity in the thermophilic cyanobacterium, Mastigocladus laminosus was studied both in vivo and in vitro. In vivo hydrogen consumption required oxygen but not light, was about ten-fold higher than in mesophilic cyanobacteria, and was relatively insensitive to carbon monoxide. H/sub 2/-supported acetylene reduction in reductant-limited cultures was a light-dependent, but O/sub 2/-independent reaction. In vitro hydrogen evolution was unaffected by carbon monoxide, and this activity could be partially purified using a procedure developed for Anabaena cylindrica.
Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene
Lane, J. Matthew; Moore, Nathan W.
2018-02-01
Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less
Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.
Sherwin, W B; Chao, A; Jost, L; Smouse, P E
2017-12-01
Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.
Molecular and Kinetic Models for High-rate Thermal Degradation of Polyethylene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, J. Matthew; Moore, Nathan W.
Thermal degradation of polyethylene is studied under the extremely high rate temperature ramps expected in laser-driven and X-ray ablation experiments—from 10 10 to 10 14 K/s in isochoric, condensed phases. The molecular evolution and macroscopic state variables are extracted as a function of density from reactive molecular dynamics simulations using the ReaxFF potential. The enthalpy, dissociation onset temperature, bond evolution, and observed cross-linking are shown to be rate dependent. These results are used to parametrize a kinetic rate model for the decomposition and coalescence of hydrocarbons as a function of temperature, temperature ramp rate, and density. In conclusion, the resultsmore » are contrasted to first-order random-scission macrokinetic models often assumed for pyrolysis of linear polyethylene under ambient conditions.« less
Microfluidic Bead Suspension Hopper
2014-01-01
Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load beads into a microfluidic droplet generator. A suspension hopper continuously delivered synthesis resin beads (17 μm diameter, 112,000 over 2.67 h) functionalized with a photolabile linker and pepstatin A into picoliter-scale droplets of an HIV-1 protease activity assay to model ultraminiaturized compound screening. Likewise, trypsinogen template DNA-coated magnetic beads (2.8 μm diameter, 176,000 over 5.5 h) were loaded into droplets of an in vitro transcription/translation system to model a protein evolution experiment. The suspension hopper should effectively remove any barriers to using suspensions as sample inputs, paving the way for microfluidic automation to replace robotic library distribution. PMID:24761972
UDP-galactose and acetyl-CoA transporters as Plasmodium multidrug resistance genes.
Lim, Michelle Yi-Xiu; LaMonte, Gregory; Lee, Marcus C S; Reimer, Christin; Tan, Bee Huat; Corey, Victoria; Tjahjadi, Bianca F; Chua, Adeline; Nachon, Marie; Wintjens, René; Gedeck, Peter; Malleret, Benoit; Renia, Laurent; Bonamy, Ghislain M C; Ho, Paul Chi-Lui; Yeung, Bryan K S; Chow, Eric D; Lim, Liting; Fidock, David A; Diagana, Thierry T; Winzeler, Elizabeth A; Bifani, Pablo
2016-09-19
A molecular understanding of drug resistance mechanisms enables surveillance of the effectiveness of new antimicrobial therapies during development and deployment in the field. We used conventional drug resistance selection as well as a regime of limiting dilution at early stages of drug treatment to probe two antimalarial imidazolopiperazines, KAF156 and GNF179. The latter approach permits the isolation of low-fitness mutants that might otherwise be out-competed during selection. Whole-genome sequencing of 24 independently derived resistant Plasmodium falciparum clones revealed four parasites with mutations in the known cyclic amine resistance locus (pfcarl) and a further 20 with mutations in two previously unreported P. falciparum drug resistance genes, an acetyl-CoA transporter (pfact) and a UDP-galactose transporter (pfugt). Mutations were validated both in vitro by CRISPR editing in P. falciparum and in vivo by evolution of resistant Plasmodium berghei mutants. Both PfACT and PfUGT were localized to the endoplasmic reticulum by fluorescence microscopy. As mutations in pfact and pfugt conveyed resistance against additional unrelated chemical scaffolds, these genes are probably involved in broad mechanisms of antimalarial drug resistance.
Molecular clock of HIV-1 envelope genes under early immune selection
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.; ...
2016-06-01
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Molecular clock of HIV-1 envelope genes under early immune selection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Sung Yong; Love, Tanzy M. T.; Perelson, Alan S.
Here, the molecular clock hypothesis that genes or proteins evolve at a constant rate is a key tool to reveal phylogenetic relationships among species. Using the molecular clock, we can trace an infection back to transmission using HIV-1 sequences from a single time point. Whether or not a strict molecular clock applies to HIV-1’s early evolution in the presence of immune selection has not yet been fully examined.
Animal Foraging and the Evolution of Goal-Directed Cognition
ERIC Educational Resources Information Center
Hills, Thomas T.
2006-01-01
Foraging-and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor…
Adhesive sealing of dentin surfaces in vitro: A review
Abu-Nawareg, Manar M; Zidan, Ahmed Z; Zhou, Jianfeng; Agee, Kelli; Chiba, Ayaka; Tagami, Jungi; Pashley, David H
2016-01-01
Purpose The purpose of this review is to describe the evolution of the use of dental adhesives to form a tight seal of freshly prepared dentin to protect the pulp from bacterial products, during the time between crown preparation and final cementum of full crowns. The evolution of these “immediate dentin sealants” follows the evolution of dental adhesives, in general. That is, they began with multiple-step, etch-and-rinse adhesives, and then switched to the use of simplified adhesives. Methods Literature was reviewed for evidence that bacteria or bacterial products diffusing across dentin can irritate pulpal tissues before and after smear layer removal. Smear layers can be solubilized by plaque organisms within 7–10 days if they are directly exposed to oral fluids. It is likely that smear layers covered by temporary restorations may last more than one month. As long as smear layers remain in place, they can partially seal dentin. Thus, many in vitro studies evaluating the sealing ability of adhesive resins use smear layer-covered dentin as a reference condition. Surprisingly, many adhesives do not seal dentin as well as do smear layers. Results Both in vitro and in vivo studies show that resin-covered dentin allows dentinal fluid to cross polymerized resins. The use of simplified single bottle adhesives to seal dentin was a step backwards. Currently, most authorities use either 3-step adhesives such as Scotchbond Multi-Purposea or OptiBond FLb or two-step self-etching primer adhesives, such as Clearfil SEc, Unifil Bondd or AdheSEe, respectfully. PMID:26846037
Detection of hydroxyapatite in calcified cardiovascular tissues.
Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan
2012-10-01
The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Detection of Hydroxyapatite in Calcified Cardiovascular Tissues
Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan
2012-01-01
Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867
Biomolecular dynamics and binding studies in the living cell.
Diekmann, Stephan; Hoischen, Christian
2014-03-01
Isolation and preparation of proteins of higher organisms often is a tedious task. In the case of success, the properties of these proteins and their interactions with other proteins can be studied in vitro. If however, these proteins are modified in the cell in order to gain or change function, this is non-trivial to correctly realise in vitro. When, furthermore, the cellular function requires the interplay of more than one or two proteins, in vitro experiments for the analysis of this situation soon become complex. Instead, we thus try to obtain information on the molecular properties of proteins in the living cell. Then, the cell takes care of correct protein folding and modification. A series of molecular techniques are, and new ones become, available which allow for measuring molecular protein properties in the living cell, offering information on concentration (FCS), dynamics (FCS, RICS, FRAP), location (PALM, STED), interactions (F3H, FCCS) and protein proximities (FRET, BRET, FLIM, BiFC). Here, these techniques are presented with their advantages and drawbacks, with examples from our current kinetochore research. The review is supposed to give orientation to researchers planning to enter the field, and inform which techniques help us to gain molecular information on a multi-protein complex. We show that the field of cellular imaging is in a phase of transition: in the future, an increasing amount of physico-chemical data can be determined in the living cell. Copyright © 2013 Elsevier B.V. All rights reserved.
Notarangelo, Angelantonio; Trombetta, Domenico; D'Angelo, Vincenzo; Parrella, Paola; Palumbo, Orazio; Storlazzi, Clelia Tiziana; Impera, Luciana; Muscarella, Lucia Anna; La Torre, Antonella; Affuso, Andrea; Fazio, Vito Michele; Carella, Massimo; Zelante, Leopoldo
2014-03-01
Glioblastoma multiforme (World Health Organization, grade IV astrocytoma) is the most common and most aggressive malignant primary brain tumor. We report a novel cell line, designated as ANGM-CSS, which was established from a 56-year-old male patient with a surgically removed glioblastoma multiforme. The ANGM-CSS cell line was established in vitro and characterized using histological and immunohistochemical staining, classical and molecular cytogenetic analyses, molecular studies and functional assays using a xenograft model in immunodeficient animals. ANGM-CSS was positive for CD133, nestin and vimentin proteins, whereas GFAP showed staining only in a fraction of the cells. Cytogenetic and molecular cytogenetic analysis revealed a near-tetraploid karyotype, with a modal chromosome number from 88 to 91, and additional cytogenetic abnormalities, such as the t(6;14)(p12;q11.2), t(8;10)(q24.2;q21.1) and t(5;9)(q34;p21) unbalanced translocations. Moreover, ANGM-CSS showed amplification of the MET and EGFR genes whose overexpression was observed at the mRNA level. Interestingly, ANGM-CSS is tumorigenic when implanted in immunodeficient mice, and the cells obtained from the xenografts showed the same morphology and karyotype in vitro as the original cell line. ANGM-CSS represents a biologically relevant cell line to be used to investigate the molecular pathology of glioblastoma multiforme, also to evaluate the efficacy of novel therapeutic drugs in vitro.
Evolution of lung breathing from a lungless primitive vertebrate.
Hoffman, M; Taylor, B E; Harris, M B
2016-04-01
Air breathing was critical to the terrestrial radiation and evolution of tetrapods and arose in fish. The vertebrate lung originated from a progenitor structure present in primitive boney fish. The origin of the neural substrates, which are sensitive to metabolically produced CO2 and which rhythmically activate respiratory muscles to match lung ventilation to metabolic demand, is enigmatic. We have found that a distinct periodic centrally generated rhythm, described as "cough" and occurring in lamprey in vivo and in vitro, is modulated by central sensitivity to CO2. This suggests that elements critical for the evolution of breathing in tetrapods, were present in the most basal vertebrate ancestors prior to the evolution of the lung. We propose that the evolution of breathing in all vertebrates occurred through exaptations derived from these critical basal elements. Copyright © 2015 Elsevier B.V. All rights reserved.
Anticipatory dynamics of biological systems: from molecular quantum states to evolution
NASA Astrophysics Data System (ADS)
Igamberdiev, Abir U.
2015-08-01
Living systems possess anticipatory behaviour that is based on the flexibility of internal models generated by the system's embedded description. The idea was suggested by Aristotle and is explicitly introduced to theoretical biology by Rosen. The possibility of holding the embedded internal model is grounded in the principle of stable non-equilibrium (Bauer). From the quantum mechanical view, this principle aims to minimize energy dissipation in expense of long relaxation times. The ideas of stable non-equilibrium were developed by Liberman who viewed living systems as subdivided into the quantum regulator and the molecular computer supporting coherence of the regulator's internal quantum state. The computational power of the cell molecular computer is based on the possibility of molecular rearrangements according to molecular addresses. In evolution, the anticipatory strategies are realized both as a precession of phylogenesis by ontogenesis (Berg) and as the anticipatory search of genetic fixation of adaptive changes that incorporates them into the internal model of genetic system. We discuss how the fundamental ideas of anticipation can be introduced into the basic foundations of theoretical biology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Ningbo, E-mail: curl-zhao@163.com; Wang, Xin, E-mail: 394041230@qq.com; Qin, Lei, E-mail: qinlei30@126.com
Hyaluronan (HA), the simplest glycosaminoglycan and a major component of the extracellular matrix, exists in various tissues. It is involved in some critical biological procedures, including cellular signaling, cell adhesion and proliferation, and cell differentiation. The effect of molecular weight (MW) and concentration of HA on cell proliferation and differentiation was controversial. In this study, we investigated the effect of MW and concentration of HA on the proliferation and osteogenic differentiation of rabbit bone marrow-derived stem cells in vitro. Results showed that high MW HA decreased the cell adhesion rate in a concentration-dependant manner. The cell adhesion rate was decreased bymore » increasing MW of HA. Cell proliferation was significantly enhanced by low MW HA (P < 0.05). The factorial analysis indicated that MW and concentration had an interactive effect on the cell adhesion rate and cell proliferation (P < 0.05). High MW HA increased the mRNA expressions of ALP, RUNX-2 and OCN. The higher the MW was, the higher the mRNA expressions were. The factorial analysis indicated that MW and concentration had an interactive effect on ALP mRNA expression (P < 0.05). HA of higher MW and higher concentration promoted bone formation. These findings provide some useful information in understanding the mechanism underlying the effect of MW and concentration of HA on cell proliferation and differentiation. - Highlights: • Effect of hyaluronan on cell proliferation and differentiation is evaluated in vitro. • Hyaluronan of low molecular weight increases cell proliferation. • Hyaluronan of high molecular weight promotes cell osteogenic differentiation. • Molecular weight and concentration of hyaluronan show interactive effect.« less
NASA Astrophysics Data System (ADS)
Furubayashi, T.; Bansho, Y.; Motooka, D.; Nakamura, S.; Ichihashi, N.
2017-07-01
We performed coevolution of artificial RNA self-replicators and parasitic replicators in microdroplets. We observed evolutionary arms-races with oscillating population dynamics and faster evolution of self-replicators caused by parasitic replicators.
On the Evolution of the Mammalian Brain.
Torday, John S; Miller, William B
2016-01-01
Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes.
Comparative genomics of the tardigrades Hypsibius dujardini and Ramazzottius varieornatus.
Yoshida, Yuki; Koutsovoulos, Georgios; Laetsch, Dominik R; Stevens, Lewis; Kumar, Sujai; Horikawa, Daiki D; Ishino, Kyoko; Komine, Shiori; Kunieda, Takekazu; Tomita, Masaru; Blaxter, Mark; Arakawa, Kazuharu
2017-07-01
Tardigrada, a phylum of meiofaunal organisms, have been at the center of discussions of the evolution of Metazoa, the biology of survival in extreme environments, and the role of horizontal gene transfer in animal evolution. Tardigrada are placed as sisters to Arthropoda and Onychophora (velvet worms) in the superphylum Panarthropoda by morphological analyses, but many molecular phylogenies fail to recover this relationship. This tension between molecular and morphological understanding may be very revealing of the mode and patterns of evolution of major groups. Limnoterrestrial tardigrades display extreme cryptobiotic abilities, including anhydrobiosis and cryobiosis, as do bdelloid rotifers, nematodes, and other animals of the water film. These extremophile behaviors challenge understanding of normal, aqueous physiology: how does a multicellular organism avoid lethal cellular collapse in the absence of liquid water? Meiofaunal species have been reported to have elevated levels of horizontal gene transfer (HGT) events, but how important this is in evolution, and particularly in the evolution of extremophile physiology, is unclear. To address these questions, we resequenced and reassembled the genome of H. dujardini, a limnoterrestrial tardigrade that can undergo anhydrobiosis only after extensive pre-exposure to drying conditions, and compared it to the genome of R. varieornatus, a related species with tolerance to rapid desiccation. The 2 species had contrasting gene expression responses to anhydrobiosis, with major transcriptional change in H. dujardini but limited regulation in R. varieornatus. We identified few horizontally transferred genes, but some of these were shown to be involved in entry into anhydrobiosis. Whole-genome molecular phylogenies supported a Tardigrada+Nematoda relationship over Tardigrada+Arthropoda, but rare genomic changes tended to support Tardigrada+Arthropoda.
Auxology: when auxin meets plant evo-devo.
Finet, Cédric; Jaillais, Yvon
2012-09-01
Auxin is implicated throughout plant growth and development. Although the effects of this plant hormone have been recognized for more than a century, it is only in the past two decades that light has been shed on the molecular mechanisms that regulate auxin homeostasis, signaling, transport, crosstalk with other hormonal pathways as well as its roles in plant development. These discoveries established a molecular framework to study the role of auxin in land plant evolution. Here, we review recent advances in auxin biology and their implications in both micro- and macro-evolution of plant morphology. By analogy to the term 'hoxology', which refers to the critical role of HOX genes in metazoan evolution, we propose to introduce the term 'auxology' to take into account the crucial role of auxin in plant evo-devo. Copyright © 2012 Elsevier Inc. All rights reserved.
An organismic critique of molecular darwinism.
Wicken, J S
1985-12-21
The molecular darwinian approach to the emergence of life treats the competition between RNA sequences for nucleotide resources as the primordial selective process in prebiotic evolution, which prescribes possible pathways for the subsequent elaboration of organizational relationships. Since success in this competition is determined by the "phenotypic" properties of RNA strands in the absence of organizational context, the genesis of biotic organization is dependent upon the establishment of co-operative, hypercyclic interactions between competing RNA sequences. The thesis of this paper is that hypercycle theory is based on unwarranted assumptions about the conditions of prebiotic evolution, and that the implications of these assumptions run counter to both empirical evidence and to the rational by which natural selection operates in evolution generally. An organismic alternative to hypercycle theory is suggested, based on the catalytic microsphere and the thermodynamics of selection.
Sabaawy, Hatem E
2013-11-18
The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate detection and sustained targeting of initial and evolving driver mutations and/or aberrations in cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer progression contributes to the longitudinal variations of clonal, morphological, anatomical, and molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of therapy or emerging as a result of targeted therapies represent major challenges for achieving success of personalized therapies in providing meaningful improvement in cancer survival rates. Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the implementation of personalized or precision cancer medicine.
NASA Astrophysics Data System (ADS)
Kobayashi, M. I. N.; Inutsuka, S.; Kobayashi, H.; Hasegawa, K.
We formulate the evolution equation for the giant molecular cloud (GMC) mass functions including self-growth of GMCs through the thermal instability, self-dispersal due to massive stars born in GMCs, cloud-cloud collisions (CCCs), and gas resurrection that replenishes the minimum-mass GMC population. The computed time evolutions obtained from this formulation suggest that the slope of GMC mass function in the mass range <105.5 Mȯ is governed by the ratio of GMC formation timescale to its dispersal timescale, and that the CCC process modifies only the massive end of the mass function. Our results also suggest that most of the dispersed gas contributes to the mass growth of pre-existing GMCs in arm regions whereas less than 60 per cent contributes in inter-arm regions.
Mobile Genetic Elements: In Silico, In Vitro, In Vivo
Arkhipova, Irina R.; Rice, Phoebe A.
2016-01-01
Mobile genetic elements (MGEs), also called transposable elements (TEs), represent universal components of most genomes and are intimately involved in nearly all aspects of genome organization, function, and evolution. However, there is currently a gap between fast-paced TE discovery in silico, stimulated by exponential growth of comparative genomic studies, and a limited number of experimental models amenable to more traditional in vitro and in vivo studies of structural, mechanistic, and regulatory properties of diverse MGEs. Experimental and computational scientists came together to bridge this gap at a recent conference, “Mobile Genetic Elements: in silico, in vitro, in vivo,” held at the Marine Biological Laboratory (MBL) in Woods Hole, MA, USA. PMID:26822117
NASA Technical Reports Server (NTRS)
Chang, S.
1981-01-01
The course of organic chemical evolution preceding the emergence of life on earth is discussed based on evidence of processes occurring in interstellar space, the solar system and the primitive earth. Following a brief review of the equilibrium condensation model for the origin and evolution of the solar system, consideration is given to the nature and organic chemistry of interstellar clouds, comets, Jupiter, meteorites, Venus and Mars, and the prebiotic earth. Major issues to be resolved in the study of organic chemical evolution on earth are identified regarding condensation and accretion in the solar nebula, early geological evolution, the origin and evolution of the atmosphere, organic production rates, organic-inorganic interactions, environmental fluctuations, phase separation and molecular selectivity.
Parallel evolution of mound-building and grass-feeding in Australian nasute termites.
Arab, Daej A; Namyatova, Anna; Evans, Theodore A; Cameron, Stephen L; Yeates, David K; Ho, Simon Y W; Lo, Nathan
2017-02-01
Termite mounds built by representatives of the family Termitidae are among the most spectacular constructions in the animal kingdom, reaching 6-8 m in height and housing millions of individuals. Although functional aspects of these structures are well studied, their evolutionary origins remain poorly understood. Australian representatives of the termitid subfamily Nasutitermitinae display a wide variety of nesting habits, making them an ideal group for investigating the evolution of mound building. Because they feed on a variety of substrates, they also provide an opportunity to illuminate the evolution of termite diets. Here, we investigate the evolution of termitid mound building and diet, through a comprehensive molecular phylogenetic analysis of Australian Nasutitermitinae. Molecular dating analysis indicates that the subfamily has colonized Australia on three occasions over the past approximately 20 Myr. Ancestral-state reconstruction showed that mound building arose on multiple occasions and from diverse ancestral nesting habits, including arboreal and wood or soil nesting. Grass feeding appears to have evolved from wood feeding via ancestors that fed on both wood and leaf litter. Our results underscore the adaptability of termites to ancient environmental change, and provide novel examples of parallel evolution of extended phenotypes. © 2017 The Author(s).
Zhou, Xianfeng; Zhang, Xizhen; Yu, Xianghui; Zha, Xiao; Fu, Qiuan; Liu, Bin; Wang, Xueyun; Chen, Yan; Chen, Yue; Shan, Yaming; Jin, Yinghua; Wu, Yongge; Liu, Junqiu; Kong, Wei; Shen, Jiacong
2008-01-01
Nonviral gene delivery systems based on conventional high molecular weight chitosans are efficient as DNA vaccine delivery system, but have poor physical properties such as aggregated shapes, low solubility at neutral pH, high viscosity at concentrations used for in vivo delivery and a slow onset of action. Furthermore, Chitosan oligomers shorter than 14 monomers units were recently found to form only weak complexes with DNA, resulting in physically unstable polyplexes in vitro and in vivo. Here, low molecular weight chitosans with an average molecular mass of 6kDa (Chito6) have been covalently attached to gold nanoparticles (GNPs), and the potency of the resulting Chito6-GNPs conjugates as vectors for the delivery of plasmid DNA has been investigated in vitro and in vivo. After delivery by intramuscular immunization in BALB/c mice, the Chito6-GNPs conjugates induced an enhanced serum antibody response 10 times more potent than naked DNA vaccine. Additionally, in contrast to naked DNA, the Chito6-GNPs conjugates induced potent cytotoxic T lymphocyte responses at a low dose.
Wang, Shujun; Sun, Yue; Wang, Jinrong; Wang, Shuo; Copeland, Les
2016-02-01
The molecular disassembly of starch during thermal processing is a major determinant for the susceptibility of starch to enzymatic digestion. In the present study, the effects of thermal processing on the disassembly of the granular structure and the in vitro enzymatic digestibility of rice and lotus starches were investigated. After heating at 50 °C, rice and lotus starches did not show significant changes in granular morphology, long-range crystallinity and short-range molecular order. As the temperature increased to 60 °C, rice starch underwent a partial gelatinization followed by an incomplete disruption of granular morphology, crystallites and molecular order. In contrast, lotus starch was almost completely gelatinized at 60 °C. At 70 °C or higher, both starches were fully gelatinized with complete disruption of the micro and macro structures. Our results show that gelatinization greatly increased the in vitro enzymatic digestibility of both starches, but that the degree of disassembly of the starch structure during thermal processing was not a major determinant of the digestibility of gelatinized starch.
Metabolite toxicity determines the pace of molecular evolution within microbial populations.
Lilja, Elin E; Johnson, David R
2017-02-14
The production of toxic metabolites has shaped the spatial and temporal arrangement of metabolic processes within microbial cells. While diverse solutions to mitigate metabolite toxicity have evolved, less is known about how evolution itself is affected by metabolite toxicity. We hypothesized that the pace of molecular evolution should increase as metabolite toxicity increases. At least two mechanisms could cause this. First, metabolite toxicity could increase the mutation rate. Second, metabolite toxicity could increase the number of available mutations with large beneficial effects that selection could act upon (e.g., mutations that provide tolerance to toxicity), which consequently would increase the rate at which those mutations increase in frequency. We tested this hypothesis by experimentally evolving the bacterium Pseudomonas stutzeri under denitrifying conditions. The metabolite nitrite accumulates during denitrification and has pH-dependent toxic effects, which allowed us to evolve P. stutzeri at different magnitudes of nitrite toxicity. We demonstrate that increased nitrite toxicity results in an increased pace of molecular evolution. We further demonstrate that this increase is generally due to an increased number of available mutations with large beneficial effects and not to an increased mutation rate. Our results demonstrate that the production of toxic metabolites can have important impacts on the evolutionary processes of microbial cells. Given the ubiquity of toxic metabolites, they could also have implications for understanding the evolutionary histories of biological organisms.
Interaction-based evolution: how natural selection and nonrandom mutation work together.
Livnat, Adi
2013-10-18
The modern evolutionary synthesis leaves unresolved some of the most fundamental, long-standing questions in evolutionary biology: What is the role of sex in evolution? How does complex adaptation evolve? How can selection operate effectively on genetic interactions? More recently, the molecular biology and genomics revolutions have raised a host of critical new questions, through empirical findings that the modern synthesis fails to explain: for example, the discovery of de novo genes; the immense constructive role of transposable elements in evolution; genetic variance and biochemical activity that go far beyond what traditional natural selection can maintain; perplexing cases of molecular parallelism; and more. Here I address these questions from a unified perspective, by means of a new mechanistic view of evolution that offers a novel connection between selection on the phenotype and genetic evolutionary change (while relying, like the traditional theory, on natural selection as the only source of feedback on the fit between an organism and its environment). I hypothesize that the mutation that is of relevance for the evolution of complex adaptation-while not Lamarckian, or "directed" to increase fitness-is not random, but is instead the outcome of a complex and continually evolving biological process that combines information from multiple loci into one. This allows selection on a fleeting combination of interacting alleles at different loci to have a hereditary effect according to the combination's fitness. This proposed mechanism addresses the problem of how beneficial genetic interactions can evolve under selection, and also offers an intuitive explanation for the role of sex in evolution, which focuses on sex as the generator of genetic combinations. Importantly, it also implies that genetic variation that has appeared neutral through the lens of traditional theory can actually experience selection on interactions and thus has a much greater adaptive potential than previously considered. Empirical evidence for the proposed mechanism from both molecular evolution and evolution at the organismal level is discussed, and multiple predictions are offered by which it may be tested. This article was reviewed by Nigel Goldenfeld (nominated by Eugene V. Koonin), Jürgen Brosius and W. Ford Doolittle.
USDA-ARS?s Scientific Manuscript database
Plant evolution is largely driven by adaptations in seed protection and dispersal strategies that allow diversification into new niches. This is evident by the tremendous variation in flowering and fruiting structures present both across and within different plant lineages. Within a single plant f...
The Theory of Evolution: An Educational Perspective.
ERIC Educational Resources Information Center
Johnson, William L.; Johnson, Annabel M.
The article's thesis is that evolution's intellectual foundations have been steadily eroding, and that few new findings in embryology, taxonomy, fossil remains, and molecular biology are bringing us very near to a formal, logical disproof of Darwinian claims. The paper begins by discussing the evidence of a prehistoric world, then they discuss…
In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in...
IN VITRO CONAZOLE EXPOSURE INHIBITS TESTOSTERONE PRODUCTION IN THE ADULT AND NEONATAL RAT TESTIS THROUGH THE INHIBITION OF CYP17 ACTIVITY
Chad R. Blystone1, David J. Dix2, and John C. Rockett2
1Department of Environmental and Molecular Toxicology, NC State University, R...
Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery
Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O
2011-01-01
Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493
The origin and evolution of dust in interstellar and circumstellar environments
NASA Technical Reports Server (NTRS)
Whittet, Douglas C. B.; Leung, Chun M.
1993-01-01
This status report covers the period from the commencement of the research program on 1 Jul. 1992 through 30 Apr. 1993. Progress is reported for research in the following areas: (1) grain formation in circumstellar envelopes; (2) photochemistry in circumstellar envelopes; (3) modeling ice features in circumstellar envelopes; (4) episodic dust formation in circumstellar envelopes; (5) grain evolution in the diffuse interstellar medium; and (6) grain evolution in dense molecular clouds.
Early evolution without a tree of life.
Martin, William F
2011-06-30
Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.
Erdmann, Tabea; Klener, Pavel; Lynch, James T; Grau, Michael; Vočková, Petra; Molinsky, Jan; Tuskova, Diana; Hudson, Kevin; Polanska, Urszula M; Grondine, Michael; Mayo, Michele; Dai, Beiying; Pfeifer, Matthias; Erdmann, Kristian; Schwammbach, Daniela; Zapukhlyak, Myroslav; Staiger, Annette M; Ott, German; Berdel, Wolfgang E; Davies, Barry R; Cruzalegui, Francisco; Trneny, Marek; Lenz, Peter; Barry, Simon T; Lenz, Georg
2017-07-20
Activated B-cell-like (ABC) and germinal center B-cell-like diffuse large B-cell lymphoma (DLBCL) represent the 2 major molecular DLBCL subtypes. They are characterized by differences in clinical course and by divergent addiction to oncogenic pathways. To determine activity of novel compounds in these 2 subtypes, we conducted an unbiased pharmacologic in vitro screen. The phosphatidylinositol-3-kinase (PI3K) α/δ (PI3Kα/δ) inhibitor AZD8835 showed marked potency in ABC DLBCL models, whereas the protein kinase B (AKT) inhibitor AZD5363 induced apoptosis in PTEN-deficient DLBCLs irrespective of their molecular subtype. These in vitro results were confirmed in various cell line xenograft and patient-derived xenograft mouse models in vivo. Treatment with AZD8835 induced inhibition of nuclear factor κB signaling, prompting us to combine AZD8835 with the Bruton's tyrosine kinase inhibitor ibrutinib. This combination was synergistic and effective both in vitro and in vivo. In contrast, the AKT inhibitor AZD5363 was effective in PTEN-deficient DLBCLs through downregulation of the oncogenic transcription factor MYC. Collectively, our data suggest that patients should be stratified according to their oncogenic dependencies when treated with PI3K and AKT inhibitors. © 2017 by The American Society of Hematology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaife, R.M.; Wilson, L.; Purich, D.L.
1992-01-14
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extentmore » of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.« less
Re"CYC"ling molecular regulators in the evolution and development of flower symmetry.
Spencer, Victoria; Kim, Minsung
2018-07-01
Flower forms are both highly diverse and multifaceted. As well as varying in colour, size, organ number, and much more, flowers show different types of symmetry. Floral symmetry can be grouped into three main categories: asymmetry, bilateral symmetry and radial symmetry, characterised by zero, one, and multiple planes of symmetry, respectively. This review will first explore floral symmetry from a classical morphological view, then from a modern molecular perspective. The recent molecular work on symmetry in monocots and eudicots will be discussed, followed by an in-depth discussion into the evolution of CYC genes, particularly in the capitulum of the sunflower family (Asteraceae). Whilst recent studies on non-model species are helping to bring new light to this field, more species coverage is required to understand how traits such as bilateral symmetry have evolved so many times, and whether the same molecular regulators were recruited for this function. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
González-Alfonso, E.; Armus, L.; Carrera, F. J.; Charmandaris, V.; Efstathiou, A.; Egami, E.; Fernández-Ontiveros, J. A.; Fischer, J.; Granato, G. L.; Gruppioni, C.; Hatziminaoglou, E.; Imanishi, M.; Isobe, N.; Kaneda, H.; Koziel-Wierzbowska, D.; Malkan, M. A.; Martín-Pintado, J.; Mateos, S.; Matsuhara, H.; Miniutti, G.; Nakagawa, T.; Pozzi, F.; Rico-Villas, F.; Rodighiero, G.; Roelfsema, P.; Spinoglio, L.; Spoon, H. W. W.; Sturm, E.; van der Tak, F.; Vignali, C.; Wang, L.
2017-11-01
A far-infrared observatory such as the SPace Infrared telescope for Cosmology and Astrophysics, with its unprecedented spectroscopic sensitivity, would unveil the role of feedback in galaxy evolution during the last 10 Gyr of the Universe (z = 1.5-2), through the use of far- and mid-infrared molecular and ionic fine structure lines that trace outflowing and infalling gas. Outflowing gas is identified in the far-infrared through P-Cygni line shapes and absorption blueshifted wings in molecular lines with high dipolar moments, and through emission line wings of fine-structure lines of ionised gas. We quantify the detectability of galaxy-scale massive molecular and ionised outflows as a function of redshift in AGN-dominated, starburst-dominated, and main-sequence galaxies, explore the detectability of metal-rich inflows in the local Universe, and describe the most significant synergies with other current and future observatories that will measure feedback in galaxies via complementary tracers at other wavelengths.
Kawaida, Hitomi; Ohba, Kohki; Koutake, Yuhki; Shimizu, Hiroshi; Tachida, Hidenori; Kobayakawa, Yoshitaka
2013-03-01
Although many physiological studies have been reported on the symbiosis between hydra and green algae, very little information from a molecular phylogenetic aspect of symbiosis is available. In order to understand the origin and evolution of symbiosis between the two organisms, we compared the phylogenetic relationships among symbiotic green algae with the phylogenetic relationships among host hydra strains. To do so, we reconstructed molecular phylogenetic trees of several strains of symbiotic chlorella harbored in the endodermal epithelial cells of viridissima group hydra strains and investigated their congruence with the molecular phylogenetic trees of the host hydra strains. To examine the species specificity between the host and the symbiont with respect to the genetic distance, we also tried to introduce chlorella strains into two aposymbiotic strains of viridissima group hydra in which symbiotic chlorella had been eliminated in advance. We discussed the origin and history of symbiosis between hydra and green algae based on the analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
From Astrochemistry to prebiotic chemistry? An hypothetical approach toward Astrobiology
NASA Astrophysics Data System (ADS)
Le Sergeant d'Hendecourt, L.; Danger, G.
2012-12-01
We present in this paper a general perspective about the evolution of molecular complexity, as observed from an astrophysicist point of view and its possible relation to the problem of the origin of life on Earth. Based on the cosmic abundances of the elements and the molecular composition of our life, we propose that life cannot really be based on other elements. We discuss where the necessary molecular complexity is built-up in astrophysical environments, actually within inter/circumstellar solid state materials known as ``grains''. Considerations based on non-directed laboratory experiments, that must be further extended in the prebiotic domain, lead to the hypothesis that if the chemistry at the origin of life may indeed be a rather universal and deterministic phenomenon, once molecular complexity is installed, the chemical evolution that generated the first prebiotic reactions that involve autoreplication must be treated in a systemic approach because of the strong contingency imposed by the complex local environment(s) and associated processes in which these chemical systems have evolved.
Leung, Maxwell C.K.; Phuong, Jimmy; Baker, Nancy C.; Sipes, Nisha S.; Klinefelter, Gary R.; Martin, Matthew T.; McLaurin, Keith W.; Setzer, R. Woodrow; Darney, Sally Perreault; Judson, Richard S.; Knudsen, Thomas B.
2015-01-01
Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies. Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system. Methods: We used U.S. EPA’s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarchy across animal studies consistent with the human TDS hypothesis. We confirmed the known role of estrogen and androgen signaling pathways in rodent TDS, and importantly, broadened the list of molecular targets to include retinoic acid signaling, vascular remodeling proteins, G-protein coupled receptors (GPCRs), and cytochrome P450s. Citation: Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. 2016. Systems toxicology of male reproductive development: profiling 774 chemicals for molecular targets and adverse outcomes. Environ Health Perspect 124:1050–1061; http://dx.doi.org/10.1289/ehp.1510385 PMID:26662846
Life History Traits, Protein Evolution, and the Nearly Neutral Theory in Amniotes.
Figuet, Emeric; Nabholz, Benoît; Bonneau, Manon; Mas Carrio, Eduard; Nadachowska-Brzyska, Krystyna; Ellegren, Hans; Galtier, Nicolas
2016-06-01
The nearly neutral theory of molecular evolution predicts that small populations should accumulate deleterious mutations at a faster rate than large populations. The analysis of nonsynonymous (dN) versus synonymous (dS) substitution rates in birds versus mammals, however, has provided contradictory results, questioning the generality of the nearly neutral theory. Here we analyzed the impact of life history traits, taken as proxies of the effective population size, on molecular evolutionary and population genetic processes in amniotes, including the so far neglected reptiles. We report a strong effect of species body mass, longevity, and age of sexual maturity on genome-wide patterns of polymorphism and divergence across the major groups of amniotes, in agreement with the nearly neutral theory. Our results indicate that the rate of protein evolution in amniotes is determined in the first place by the efficiency of purifying selection against deleterious mutations-and this is true of both radical and conservative amino acid changes. Interestingly, the among-species distribution of dN/dS in birds did not follow this general trend: dN/dS was not higher in large, long-lived than in small, short-lived species of birds. We show that this unexpected pattern is not due to a more narrow range of life history traits, a lack of correlation between traits and Ne, or a peculiar distribution of fitness effects of mutations in birds. Our analysis therefore highlights the bird dN/dS ratio as a molecular evolutionary paradox and a challenge for future research. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sangpakdee, Wiwat; Tanomtong, Alongkoad; Chaveerach, Arunrat; Pinthong, Krit; Trifonov, Vladimir; Loth, Kristina; Hensel, Christiana; Liehr, Thomas; Weise, Anja; Fan, Xiaobo
2018-04-01
The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Decarli, Roberto; Walter, Fabian; Aravena, Manuel
2016-12-10
In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence ofmore » an evolution in the CO luminosity function with respect to z ∼ 0, with more CO-luminous galaxies present at z ∼ 2. The observed galaxies at z ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z ∼ 2 to z ∼ 0 (with significant error bars), and possibly a decline at z > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z ∼ 2).« less
Back to basics--how the evolution of the extracellular matrix underpinned vertebrate evolution.
Huxley-Jones, Julie; Pinney, John W; Archer, John; Robertson, David L; Boot-Handford, Raymond P
2009-04-01
The extracellular matrix (ECM) is a complex substrate that is involved in and influences a spectrum of behaviours such as growth and differentiation and is the basis for the structure of tissues. Although a characteristic of all metazoans, the ECM has elaborated into a variety of tissues unique to vertebrates, such as bone, tendon and cartilage. Here we review recent advances in our understanding of the molecular evolution of the ECM. Furthermore, we demonstrate that ECM genes represent a pivotal family of proteins the evolution of which appears to have played an important role in the evolution of vertebrates.
Balaminut, Talita; Venturini, Danielle; da Silva, Valéria Costa Evangelista; Rossetto, Edilaine Giovanini; Zani, Adriana Valongo
2015-01-01
Objective: To compare the efficacy of two concentrations of heparin to clear the lumen of in vitro clotted neonatal peripherally inserted central catheters (PICCs). Methods: This is an in vitro, experimental quantitative study of 76 neonatal 2.0-Fr PICCs coagulated in vitro. The catheters were divided into two groups of 38 PICCs each. In both groups an infusion of low molecular weight heparin was administered with a dose of 25IU/mL for Group 1 and 50IU/mL for Group 2. The negative pressure technique was applied to the catheters of both groups at 5, 15 and 30min and at 4h to test their permeability. Kaplan-Meier survival analysis was used to verify the outcome of the groups according to time intervals. Results: The comparison between both groups in the first 5min showed that more catheters from Group 2 were cleared compared to Group 1 (57.9 vs. 21.1%, respectively). Kaplan-Meier survival analysis showed that less time was needed to clear catheters treated with 50IU/mL of heparin (p<0.001). Conclusions: The use of low molecular weight heparin at a concentration of 50IU/mL was more effective in restoring the permeability of neonatal PICCs occluded in vitro by a clot, and the use of this concentration is within the safety margin indicated by scientific literature. PMID:26116325
Lundquist, P; Artursson, P
2016-11-15
In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanoparticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the physiological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein expression profiles of the different physiological barriers to peptide and nanoparticle absorption. Strategies that have been employed to increase peptide absorption across each of the barriers are discussed. Special consideration is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system needs to realistically capture the central aspects of the mentioned barriers. Therefore, characteristics of common in vitro cell culture systems are discussed and compared to those of human intestinal tissues. Attempts to use the cell and tissue models for in vitro-in vivo extrapolation are reviewed. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Lambreva, Maya D.; Giardi, Maria Teresa; Rambaldi, Irene; Antonacci, Amina; Pastorelli, Sandro; Bertalan, Ivo; Husu, Ivan; Johanningmeier, Udo; Rea, Giuseppina
2013-01-01
This study was prompted by increasing concerns about ecological damage and human health threats derived by persistent contamination of water and soil with herbicides, and emerging of bio-sensing technology as powerful, fast and efficient tool for the identification of such hazards. This work is aimed at overcoming principal limitations negatively affecting the whole-cell-based biosensors performance due to inadequate stability and sensitivity of the bio-recognition element. The novel bio-sensing elements for the detection of herbicides were generated exploiting the power of molecular engineering in order to improve the performance of photosynthetic complexes. The new phenotypes were produced by an in vitro directed evolution strategy targeted at the photosystem II (PSII) D1 protein of Chlamydomonas reinhardtii, using exposures to radical-generating ionizing radiation as selection pressure. These tools proved successful to identify D1 mutations conferring enhanced stability, tolerance to free-radical-associated stress and competence for herbicide perception. Long-term stability tests of PSII performance revealed the mutants capability to deal with oxidative stress-related conditions. Furthermore, dose-response experiments indicated the strains having increased sensitivity or resistance to triazine and urea type herbicides with I50 values ranging from 6×10−8 M to 2×10−6 M. Besides stressing the relevance of several amino acids for PSII photochemistry and herbicide sensing, the possibility to improve the specificity of whole-cell-based biosensors, via coupling herbicide-sensitive with herbicide-resistant strains, was verified. PMID:23613953
Luque, Raul M; Sampedro-Nuñez, Miguel; Gahete, Manuel D; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D; Castaño, Justo P; Marazuela, Mónica
2015-08-14
Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value.
Gahete, Manuel D.; Ramos-Levi, Ana; Ibáñez-Costa, Alejandro; Rivero-Cortés, Esther; Serrano-Somavilla, Ana; Adrados, Magdalena; Culler, Michael D.; Castaño, Justo P.; Marazuela, Mónica
2015-01-01
Ghrelin system comprises a complex family of peptides, receptors (GHSRs), and modifying enzymes [e.g. ghrelin-O-acyl-transferase (GOAT)] that control multiple pathophysiological processes. Aberrant alternative splicing is an emerging cancer hallmark that generates altered proteins with tumorigenic capacity. Indeed, In1-ghrelin and truncated-GHSR1b splicing variants can promote development/progression of certain endocrine-related cancers. Here, we determined the expression levels of key ghrelin system components in neuroendocrine tumor (NETs) and explored their potential functional role. Twenty-six patients with NETs were prospectively/retrospectively studied [72 samples from primary and metastatic tissues (30 normal/42 tumors)] and clinical data were obtained. The role of In1-ghrelin in aggressiveness was studied in vitro using NET cell lines (BON-1/QGP-1). In1-ghrelin, GOAT and GHSR1a/1b expression levels were elevated in tumoral compared to normal/adjacent tissues. Moreover, In1-ghrelin, GOAT, and GHSR1b expression levels were positively correlated within tumoral, but not within normal/adjacent samples, and were higher in patients with progressive vs. with stable/cured disease. Finally, In1-ghrelin increased aggressiveness (e.g. proliferation/migration) of NET cells. Altogether, our data strongly suggests a potential implication of ghrelin system in the pathogenesis and/or clinical outcome of NETs, and warrant further studies on their possible value for the future development of molecular biomarkers with diagnostic/prognostic/therapeutic value. PMID:26124083
Dexpanthenol modulates gene expression in skin wound healing in vivo.
Heise, R; Skazik, C; Marquardt, Y; Czaja, K; Sebastian, K; Kurschat, P; Gan, L; Denecke, B; Ekanayake-Bohlig, S; Wilhelm, K-P; Merk, H F; Baron, J M
2012-01-01
Topical application of dexpanthenol is widely used in clinical practice for the improvement of wound healing. Previous in vitro experiments identified a stimulatory effect of pantothenate on migration, proliferation and gene regulation in cultured human dermal fibroblasts. To correlate these in vitro findings with the more complex in vivo situation of wound healing, a clinical trial was performed in which the dexpanthenol-induced gene expression profile in punch biopsies of previously injured and dexpanthenol-treated skin in comparison to placebo-treated skin was analyzed at the molecular level by Affymetrix® GeneChip analysis. Upregulation of IL-6, IL-1β, CYP1B1, CXCL1, CCL18 and KAP 4-2 gene expression and downregulation of psorasin mRNA and protein expression were identified in samples treated topically with dexpanthenol. This in vivo study might provide new insight into the molecular mechanisms responsible for the effect of dexpanthenol in wound healing and shows strong correlations to previous in vitro data using cultured dermal fibroblasts. Copyright © 2012 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang
2016-08-01
Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.
Fancello, Eduardo Alberto
2017-01-01
The purpose of this article is to present mechanical and physicochemical properties during in vitro degradation of PLGA material as craniofacial plates based on different values of injection molded temperatures. Injection molded plates were submitted to in vitro degradation in a thermostat bath at 37 ± 1°C by 16 weeks. The material was removed after 15, 30, 60, and 120 days; then bending stiffness, crystallinity, molecular weights, and viscoelasticity were studied. A significant decrease of molecular weight and mechanical properties over time and a difference in FT-IR after 60 days showed faster degradation of the material in the geometry studied. DSC analysis confirmed that the crystallization occurred, especially in higher melt temperature condition. DMA analysis suggests a greater contribution of the viscous component of higher temperature than lower temperature in thermomechanical behavior. The results suggest that physical-mechanical properties of PLGA plates among degradation differ per injection molding temperatures. PMID:29056968
Abdessamad, A; Baraket, G; Sakka, H; Ammari, Y; Ksontini, M; Hannachi, A Salhi
2016-10-24
Sequences of the trnL-trnF spacer and combined trnL-trnF region in chloroplast DNA of cork oak (Quercus suber L.) were analyzed to detect polymorphisms and to elucidate molecular evolution and demographic history. The aligned sequences varied in length and nucleotide composition. The overall ratio of transition/transversion (ti/tv) of 0.724 for the intergenic spacer and 0.258 for the pooled sequences were estimated, and indicated that transversions are more frequent than transitions. The molecular evolution and demographic history of Q. suber were investigated. Neutrality tests (Tajima's D and Fu and Li) ruled out the null hypothesis of a strictly neutral model, and Fu's Fs and Ramos-Onsins and Rozas' R2 confirmed the recent expansion of cork oak trees, validating its persistency in North Africa since the last glaciation during the Quaternary. The observed uni-modal mismatch distribution and the Harpending's raggedness index confirmed the demographic history model for cork oak. A phylogenetic dendrogram showed that the distribution of Q. suber trees occurs independently of geographical origin, the relief of the population site, and the bioclimatic stages. The molecular history and cytoplasmic diversity suggest that in situ and ex situ conservation strategies can be recommended for preserving landscape value and facing predictable future climatic changes.
Evolution viewed from physics, physiology and medicine.
Noble, Denis
2017-10-06
Stochasticity is harnessed by organisms to generate functionality. Randomness does not, therefore, necessarily imply lack of function or 'blind chance' at higher levels. In this respect, biology must resemble physics in generating order from disorder. This fact is contrary to Schrödinger's idea of biology generating phenotypic order from molecular- level order, which inspired the central dogma of molecular biology. The order originates at higher levels, which constrain the components at lower levels. We now know that this includes the genome, which is controlled by patterns of transcription factors and various epigenetic and reorganization mechanisms. These processes can occur in response to environmental stress, so that the genome becomes 'a highly sensitive organ of the cell' (McClintock). Organisms have evolved to be able to cope with many variations at the molecular level. Organisms also make use of physical processes in evolution and development when it is possible to arrive at functional development without the necessity to store all information in DNA sequences. This view of development and evolution differs radically from that of neo-Darwinism with its emphasis on blind chance as the origin of variation. Blind chance is necessary, but the origin of functional variation is not at the molecular level. These observations derive from and reinforce the principle of biological relativity, which holds that there is no privileged level of causation. They also have important implications for medical science.
The molecular biology and evolution of feline immunodeficiency viruses of cougars
Poss, Mary; Ross, Howard; Rodrigo, Allen; Terwee, Julie; VandeWoude, Sue; Biek, Roman
2008-01-01
Feline immunodeficiency virus (FIV) is a lentivirus that has been identified in many members of the family Felidae but domestic cats are the only FIV host in which infection results in disease. We studied FIVpco infection of cougars (Puma concolor) as a model for asymptomatic lentivirus infections to understand the mechanisms of host-virus coexistence. Several natural cougar populations were evaluated to determine if there are any consequences of FIVpco infection on cougar fecundity, survival, or susceptibility to other infections. We have sequenced full length viral genomes and conducted a detailed analysis of viral molecular evolution on these sequences and on genome fragments of serially sampled animals to determine the evolutionary forces experienced by this virus in cougars. In addition, we have evaluated the molecular genetics of FIVpco in a new host, domestic cats, to determine the evolutionary consequences to a host-adapted virus associated with cross-species infection. Our results indicate that there are no significant differences in survival, fecundity or susceptibility to other infections between FIVpco-infected and uninfected cougars. The molecular evolution of FIVpco is characterized by a slower evolutionary rate and an absence of positive selection, but also by proviral and plasma viral loads comparable to those of epidemic lentiviruses such as HIV-1 or FIVfca. Evolutionary and recombination rates and selection profiles change significantly when FIVpco replicates in a new host. PMID:18295904
Gupta, Radhey S
2016-07-01
Analyses of genome sequences, by some approaches, suggest that the widespread occurrence of horizontal gene transfers (HGTs) in prokaryotes disguises their evolutionary relationships and have led to questioning of the Darwinian model of evolution for prokaryotes. These inferences are critically examined in the light of comparative genome analysis, characteristic synapomorphies, phylogenetic trees and Darwin's views on examining evolutionary relationships. Genome sequences are enabling discovery of numerous molecular markers (synapomorphies) such as conserved signature indels (CSIs) and conserved signature proteins (CSPs), which are distinctive characteristics of different prokaryotic taxa. Based on these molecular markers, exhibiting high degree of specificity and predictive ability, numerous prokaryotic taxa of different ranks, currently identified based on the 16S rRNA gene trees, can now be reliably demarcated in molecular terms. Within all studied groups, multiple CSIs and CSPs have been identified for successive nested clades providing reliable information regarding their hierarchical relationships and these inferences are not affected by HGTs. These results strongly support Darwin's views on evolution and classification and supplement the current phylogenetic framework based on 16S rRNA in important respects. The identified molecular markers provide important means for developing novel diagnostics, therapeutics and for functional studies providing important insights regarding prokaryotic taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C.; Paoletti, Christopher; Nowak, Martin A.
2015-01-01
Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a “molecular clock” to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution. PMID:25719560
Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A
2015-02-01
Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.
Receptor-like kinases in plant innate immunity.
Wu, Ying; Zhou, Jian-Min
2013-12-01
Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens. [Figure: see text] Jian-Min Zhou (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.
The evolution and future of minimalism in neurological surgery.
Liu, Charles Y; Wang, Michael Y; Apuzzo, Michael L J
2004-11-01
The evolution of the field of neurological surgery has been marked by a progressive minimalism. This has been evident in the development of an entire arsenal of modern neurosurgical enterprises, including microneurosurgery, neuroendoscopy, stereotactic neurosurgery, endovascular techniques, radiosurgical systems, intraoperative and navigational devices, and in the last decade, cellular and molecular adjuvants. In addition to reviewing the major developments and paradigm shifts in the cyclic reinvention of the field as it currently stands, this paper attempts to identify forces and developments that are likely to fuel the irresistible escalation of minimalism into the future. These forces include discoveries in computational science, imaging, molecular science, biomedical engineering, and information processing as they relate to the theme of minimalism. These areas are explained in the light of future possibilities offered by the emerging field of nanotechnology with molecular engineering.
Grath, Sonja; Parsch, John
2012-01-01
Sex-biased gene expression (i.e., the differential expression of genes between males and females) is common among sexually reproducing species. However, genes often differ in their sex-bias classification or degree of sex bias between species. There is also an unequal distribution of sex-biased genes (especially male-biased genes) between the X chromosome and the autosomes. We used whole-genome expression data and evolutionary rate estimates for two different Drosophilid lineages, melanogaster and obscura, spanning an evolutionary time scale of around 50 Myr to investigate the influence of sex-biased gene expression and chromosomal location on the rate of molecular evolution. In both lineages, the rate of protein evolution correlated positively with the male/female expression ratio. Genes with highly male-biased expression, genes expressed specifically in male reproductive tissues, and genes with conserved male-biased expression over long evolutionary time scales showed the fastest rates of evolution. An analysis of sex-biased gene evolution in both lineages revealed evidence for a “fast-X” effect in which the rate of evolution was greater for X-linked than for autosomal genes. This pattern was particularly pronounced for male-biased genes. Genes located on the obscura “neo-X” chromosome, which originated from a recent X-autosome fusion, showed rates of evolution that were intermediate between genes located on the ancestral X-chromosome and the autosomes. This suggests that the shift to X-linkage led to an increase in the rate of molecular evolution. PMID:22321769
Omissions in the synthetic theory of evolution.
Frías L, Daniel
2010-01-01
The Synthetic Theory of Evolution is the most unifying theory of life science. This theory has dominated scientific thought in explaining the mechanisms involved in speciation. However, there are some omissions that have delayed the understanding of some aspects of the mechanisms of organic evolution, principally: 1) the bridge between somatic and germinal cells, especially in some phylum of invertebrates and vertebrates; 2) horizontal genetic transferences and the importance of viruses in host adaptation and evolution; 3) the role of non-coding DNA and non-transcriptional genes; 4) homeotic evolution and the limitations of gradual evolution; and 5) excessive emphasis on extrinsic barriers to animal speciation. This paper reviews each of these topics in an effort to contribute to a better comprehension of organic evolution. Molecular findings suggest the need for a new evolutionary synthesis.
A first step towards a consensus static in vitro model for simulating full-term infant digestion.
Ménard, O; Bourlieu, C; De Oliveira, S C; Dellarosa, N; Laghi, L; Carrière, F; Capozzi, F; Dupont, D; Deglaire, A
2018-02-01
In vitro alternatives to clinical trials are used for studying human food digestion. For simulating infant digestion, only a few models, lacking physiological relevance, are available. Thanks to an extensive literature review of the in vivo infant digestive conditions, a gastrointestinal static in vitro model was developed for infants born at term and aged 28days. The model was applied to the digestion of a commercial infant formula. Kinetics of digestion, as well as the structural evolution, were compared with those obtained while submitting the same formula to the adult international consensus protocol of in vitro static digestion. The kinetics of proteolysis and lipolysis differed according to the physiological stage resulting mainly from the reduced level of enzymes and bile salts, as well as the higher gastric pH in the infant model. This in vitro static model of infant digestion is of interest for scientists, food or pharmaceutical manufacturers. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Goicovic, Felipe G.; Sesana, Alberto; Cuadra, Jorge; Stasyszyn, Federico
2017-11-01
The formation of massive black hole binaries (MBHBs) is an unavoidable outcome of galaxy evolution via successive mergers. However, the mechanism that drives their orbital evolution from parsec separations down to the gravitational wave dominated regime is poorly understood, and their final fate is still unclear. If such binaries are embedded in gas-rich and turbulent environments, as observed in remnants of galaxy mergers, the interaction with gas clumps (such as molecular clouds) may efficiently drive their orbital evolution. Using numerical simulations, we test this hypothesis by studying the dynamical evolution of an equal mass, circular MBHB accreting infalling molecular clouds. We investigate different orbital configurations, modelling a total of 13 systems to explore different possible impact parameters and relative inclinations of the cloud-binary encounter. We focus our study on the prompt, transient phase during the first few orbits when the dynamical evolution of the binary is fastest, finding that this evolution is dominated by the exchange of angular momentum through gas capture by the individual black holes and accretion. Building on these results, we construct a simple model for evolving an MBHB interacting with a sequence of clouds, which are randomly drawn from reasonable populations with different levels of anisotropy in their angular momenta distributions. We show that the binary efficiently evolves down to the gravitational wave emission regime within a few hundred million years, overcoming the 'final parsec' problem regardless of the stellar distribution.
Evolution of catalytic function
NASA Technical Reports Server (NTRS)
Joyce, G. F.
1993-01-01
An RNA-based evolution system was constructed in the laboratory and used to develop RNA enzymes with novel catalytic function. By controlling the nature of the catalytic task that the molecules must perform in order to survive, it is possible to direct the evolving population toward the expression of some desired catalytic behavior. More recently, this system has been coupled to an in vitro translation procedure, raising the possibility of evolving protein enzymes in the laboratory to produce novel proteins with desired catalytic properties. The aim of this line of research is to reduce darwinian evolution, the fundamental process of biology, to a laboratory procedure that can be made to operate in the service of organic synthesis.
[Technical and biological evolution of medically assisted procreation (MAP)].
Camier, B
1990-12-01
Compared to IUI (to which one knows that an ovulation induction must not be associated and where 6 cycles must not be exceeded), in vitro fertilization has undergone an important evolution. It has now become ambulatory. Its evolution has been marked by the use of LH-RH agonists, the vaginal route for the echographic puncture and freezing of the embryos. The two progresses expected are: in the short term, the mastering of the retrograde catheterization of the tube, to enable the embryo replacement in sterilities of healthy tubes and, in middle term, a better assessment of the quality of the conceptus to carry out a selective embryo transfer and to reduce the rate of multiple pregnancies.
Variance to mean ratio, R(t), for poisson processes on phylogenetic trees.
Goldman, N
1994-09-01
The ratio of expected variance to mean, R(t), of numbers of DNA base substitutions for contemporary sequences related by a "star" phylogeny is widely seen as a measure of the adherence of the sequences' evolution to a Poisson process with a molecular clock, as predicted by the "neutral theory" of molecular evolution under certain conditions. A number of estimators of R(t) have been proposed, all predicted to have mean 1 and distributions based on the chi 2. Various genes have previously been analyzed and found to have values of R(t) far in excess of 1, calling into question important aspects of the neutral theory. In this paper, I use Monte Carlo simulation to show that the previously suggested means and distributions of estimators of R(t) are highly inaccurate. The analysis is applied to star phylogenies and to general phylogenetic trees, and well-known gene sequences are reanalyzed. For star phylogenies the results show that Kimura's estimators ("The Neutral Theory of Molecular Evolution," Cambridge Univ. Press, Cambridge, 1983) are unsatisfactory for statistical testing of R(t), but confirm the accuracy of Bulmer's correction factor (Genetics 123: 615-619, 1989). For all three nonstar phylogenies studied, attained values of all three estimators of R(t), although larger than 1, are within their true confidence limits under simple Poisson process models. This shows that lineage effects can be responsible for high estimates of R(t), restoring some limited confidence in the molecular clock and showing that the distinction between lineage and molecular clock effects is vital.(ABSTRACT TRUNCATED AT 250 WORDS)
Dias, Raquel; Manny, Austin; Kolaczkowski, Oralia; Kolaczkowski, Bryan
2017-06-01
Reconstruction of ancestral protein sequences using phylogenetic methods is a powerful technique for directly examining the evolution of molecular function. Although ancestral sequence reconstruction (ASR) is itself very efficient, downstream functional, and structural studies necessary to characterize when and how changes in molecular function occurred are often costly and time-consuming, currently limiting ASR studies to examining a relatively small number of discrete functional shifts. As a result, we have very little direct information about how molecular function evolves across large protein families. Here we develop an approach combining ASR with structure and function prediction to efficiently examine the evolution of ligand affinity across a large family of double-stranded RNA binding proteins (DRBs) spanning animals and plants. We find that the characteristic domain architecture of DRBs-consisting of 2-3 tandem double-stranded RNA binding motifs (dsrms)-arose independently in early animal and plant lineages. The affinity with which individual dsrms bind double-stranded RNA appears to have increased and decreased often across both animal and plant phylogenies, primarily through convergent structural mechanisms involving RNA-contact residues within the β1-β2 loop and a small region of α2. These studies provide some of the first direct information about how protein function evolves across large gene families and suggest that changes in molecular function may occur often and unassociated with major phylogenetic events, such as gene or domain duplications. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
75 FR 2877 - Center For Scientific Review; Notice of Closed Meetings
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-19
... Group; Molecular Neurogenetics Study Section. Date: February 11, 2010. Time: 7 a.m. to 6 p.m. Agenda: To...- 0902, [email protected] . Name of Committee: Molecular, Cellular and Developmental Neuroscience..., Genomes, and Genetics Integrated Review Group; Genetic Variation and Evolution Study Section. Date...
2006-03-30
METABOLISM OF ENDOSULFAN-ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Richard C.T. Casabar...MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 Corresponding Author: Randy L. Rose Department of Environmental and Molecular...ALPHA BY HUMAN LIVER MICROSOMES AND ITS UTILITY AS A SIMULTANEOUS IN VITRO PROBE FOR CYP2B6 AND CYP3A4 . 6. AUTHOR(S) CAPT CASABAR RICHARD C 7
Harvey, Alexandra J.; Mao, Shihong; Lalancette, Claudia; Krawetz, Stephen A.; Brenner, Carol A.
2012-01-01
Numerous studies have focused on the transcriptional signatures that underlie the maintenance of embryonic stem cell (ESC) pluripotency. However, it remains unclear whether ESC retain transcriptional aberrations seen in in vitro cultured embryos. Here we report the first global transcriptional profile comparison between ESC generated from either in vitro cultured or in vivo derived primate embryos by microarray analysis. Genes involved in pluripotency, oxygen regulation and the cell cycle were downregulated in rhesus ESC generated from in vitro cultured embryos (in vitro ESC). Significantly, several gene differences are similarly downregulated in preimplantation embryos cultured in vitro, which have been associated with long term developmental consequences and disease predisposition. This data indicates that prior to derivation, embryo quality may influence the molecular signature of ESC lines, and may differentially impact the physiology of cells prior to or following differentiation. PMID:23028448
Carbon Isotope Chemistry in Molecular Clouds
NASA Technical Reports Server (NTRS)
Robertson, Amy N.; Willacy, Karen
2012-01-01
Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.
Practical aspects of protein co-evolution.
Ochoa, David; Pazos, Florencio
2014-01-01
Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation), and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these.
Practical aspects of protein co-evolution
Ochoa, David; Pazos, Florencio
2014-01-01
Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation), and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these. PMID:25364721
The role of protein dynamics in the evolution of new enzyme function.
Campbell, Eleanor; Kaltenbach, Miriam; Correy, Galen J; Carr, Paul D; Porebski, Benjamin T; Livingstone, Emma K; Afriat-Jurnou, Livnat; Buckle, Ashley M; Weik, Martin; Hollfelder, Florian; Tokuriki, Nobuhiko; Jackson, Colin J
2016-11-01
Enzymes must be ordered to allow the stabilization of transition states by their active sites, yet dynamic enough to adopt alternative conformations suited to other steps in their catalytic cycles. The biophysical principles that determine how specific protein dynamics evolve and how remote mutations affect catalytic activity are poorly understood. Here we examine a 'molecular fossil record' that was recently obtained during the laboratory evolution of a phosphotriesterase from Pseudomonas diminuta to an arylesterase. Analysis of the structures and dynamics of nine protein variants along this trajectory, and three rationally designed variants, reveals cycles of structural destabilization and repair, evolutionary pressure to 'freeze out' unproductive motions and sampling of distinct conformations with specific catalytic properties in bi-functional intermediates. This work establishes that changes to the conformational landscapes of proteins are an essential aspect of molecular evolution and that change in function can be achieved through enrichment of preexisting conformational sub-states.
Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation
ERIC Educational Resources Information Center
Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy
2014-01-01
Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…
So Many Chemicals, So Little Time... Evolution of ...
Current testing is limited by traditional testing models and regulatory systems. An overview is given of high throughput screening approaches to provide broader chemical and biological coverage, toxicokinetics and molecular pathway data and tools to facilitate utilization for regulatory application. Presentation at the NCSU Toxicology lecture series on the Evolution of Computational Toxicology
Convergent evolution of morphogenetic processes in fungi
Malagnac, Fabienne; Bidard, Frédérique; Lalucque, Hervé; Brun, Sylvain; Lambou, Karine; Lebrun, Marc-Henri
2008-01-01
Convergent evolution of trophic life style and morphological characters are very common in the fungal kingdom. Recently, we have shown that the same molecular machinery containing a tetraspanin and a NADPH oxidase has been recruited in two different fungal species for the same purpose (exiting from a melanized re-enforced cell at a focal weakened point), but at different stages of their development (ascospore germination and appressorium mediated penetration). Although this molecular machinery is required at these key developmental steps, it is also likely involved in specialized cellular functions at other stages of fungal development, as shown here for nutrient acquisition by Podospora anserina. PMID:19704887
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2005-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process. During the second year of this grant, progress toward these goals is discussed.
NASA Technical Reports Server (NTRS)
Lada, Charles J.
2004-01-01
This grant funds a research program to use infrared extinction measurements to probe the detailed structure of dark molecular cloud cores and investigate the physical conditions which give rise to star and planet formation. The goals of this program are to acquire, reduce and analyze deep infrared and molecular-line observations of a carefully selected sample of nearby dark clouds in order to determine the detailed initial conditions for star formation from quantitative measurements of the internal structure of starless cloud cores and to quantitatively investigate the evolution of such structure through the star and planet formation process.
NASA Technical Reports Server (NTRS)
Buvet, R. (Editor); Ponnamperuma, C.
1971-01-01
The present state of investigations on the origin of life is surveyed together with the current state of molecular paleontology. General and theoretical subjects discussed include an energetic approach to prebiological chemistry, the recognition of description and function in chemical reaction networks, and the origin and development of optical activity of bio-organic compounds on the primordial earth. Other fields considered are the syntheses of small molecules, oligomers and polymers; photochemical processes; the origin of biological structures; primitive biochemistry and biology; and exobiology. Individual items are abstracted in this issue.
Dutta, Amlan; Raychaudhuri, Arup Kumar; Saha-Dasgupta, Tanusri
2016-01-01
We study the thermal stability of hollow copper nanowires using molecular dynamics simulation. We find that the plasticity-mediated structural evolution leads to transformation of the initial hollow structure to a solid wire. The process involves three distinct stages, namely, collapse, recrystallization and slow recovery. We calculate the time scales associated with different stages of the evolution process. Our findings suggest a plasticity-mediated mechanism of collapse and recrystallization. This contradicts the prevailing notion of diffusion driven transport of vacancies from the interior to outer surface being responsible for collapse, which would involve much longer time scales as compared to the plasticity-based mechanism.
NASA Astrophysics Data System (ADS)
Lang, Lin; Tian, Zean; Xiao, Shifang; Deng, Huiqiu; Ao, Bingyun; Chen, Piheng; Hu, Wangyu
2017-02-01
Molecular dynamics simulations have been performed to investigate the structural evolution of Cu64.5Zr35.5 metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.
Relaxed selection is a precursor to the evolution of phenotypic plasticity.
Hunt, Brendan G; Ometto, Lino; Wurm, Yannick; Shoemaker, DeWayne; Yi, Soojin V; Keller, Laurent; Goodisman, Michael A D
2011-09-20
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the for-mation of solid electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and oth-er electrolyte components are still unclear. We report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach in-volving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li2S, LiF, Li2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and elec-trolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS5) fouling process. These new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.; ...
2017-05-03
Parasitic reactions of electrolyte and polysulfide with the Li-anode in lithium sulfur (Li-S) batteries lead to the formation of solid-electrolyte interphase (SEI) layers, which are the major reason behind severe capacity fading in these systems. Despite numerous studies, the evolution mechanism of the SEI layer and specific roles of polysulfides and other electrolyte components are still unclear. Here, we report an in-situ X-ray photoelectron spectroscopy (XPS) and chemical imaging analysis combined with ab initio molecular dynamics (AIMD) computational modeling to gain fundamental understanding regarding the evolution of SEI layers on Li-anodes within Li-S batteries. A multi-modal approach involving AIMD modelingmore » and in-situ XPS characterization uniquely reveals the chemical identity and distribution of active participants in parasitic reactions as well as the SEI layer evolution mechanism. The SEI layer evolution has three major stages: the formation of a primary composite mixture phase involving stable lithium compounds (Li 2S, LiF, Li 2O etc); and formation of a secondary matrix type phase due to cross interaction between reaction products and electrolyte components, which is followed by a highly dynamic mono-anionic polysulfide (i.e. LiS 5) fouling process. In conclusion, these new molecular-level insights into the SEI layer evolution on Li- anodes are crucial for delineating effective strategies for the development of Li–S batteries.« less
Distinguishing Between Convergent Evolution and Violation of the Molecular Clock for Three Taxa.
Mitchell, Jonathan D; Sumner, Jeremy G; Holland, Barbara R
2018-05-18
We give a non-technical introduction to convergence-divergence models, a new modeling approach for phylogenetic data that allows for the usual divergence of lineages after lineage-splitting but also allows for taxa to converge, i.e. become more similar over time. By examining the 3-taxon case in some detail we illustrate that phylogeneticists have been "spoiled" in the sense of not having to think about the structural parameters in their models by virtue of the strong assumption that evolution is tree-like. We show that there are not always good statistical reasons to prefer the usual class of tree-like models over more general convergence-divergence models. Specifically we show many 3-taxon data sets can be equally well explained by supposing violation of the molecular clock due to change in the rate of evolution along different edges, or by keeping the assumption of a constant rate of evolution but instead assuming that evolution is not a purely divergent process. Given the abundance of evidence that evolution is not strictly tree-like, our discussion is an illustration that as phylogeneticists we need to think clearly about the structural form of the models we use. For cases with four taxa we show that there will be far greater ability to distinguish models with convergence from non-clock-like tree models.
Intraclass Evolution and Classification of the Colpodea (Ciliophora)
FOISSNER, WILHELM; STOECK, THORSTEN; AGATHA, SABINE; DUNTHORN, MICAH
2012-01-01
Using nine new taxa and statistical inferences based on morphological and molecular data, we analyze the evolution within the class Colpodea. The molecular and cladistic analyses show four well-supported clades: platyophryids, bursariomorphids, cyrtolophosidids, and colpodids. There is a widespread occurrence of homoplasies, affecting even conspicuous morphological characteristics, e.g. the inclusion of the micronucleus in the perinuclear space of the macronucleus. The most distinct changes in the morphological classification are the lack of a basal divergence into two subclasses and the split of the cyrtolophosidids into two main clades, differing mainly by the presence vs. absence of an oral cavity. The most complex clade is that of the colpodids. We partially reconcile the morphological and molecular data using evolutionary systematics, providing a scenario in which the colpodids evolved from a Bardeliella-like ancestor and the genus Colpoda performed an intense adaptive radiation, giving rise to three main clades: Colpodina n. subord., Grossglockneriina, and Bryophryina. Three new taxa are established: Colpodina n. subord., Tillinidae n. fam., and Ottowphryidae n. fam. Colpodean evolution and classification are far from being understood because sequences are lacking for most species and half of their diversity is possibly undescribed. PMID:21762424
Graphene defects induced by ion beam
NASA Astrophysics Data System (ADS)
Gawlik, Grzegorz; Ciepielewski, Paweł; Baranowski, Jacek; Jagielski, Jacek
2017-10-01
The CVD graphene deposited on the glass substrate was bombarded by molecular carbon ions C3+ C6+ hydrocarbon ions C3H4+ and atomic ions He+, C+, N+, Ar+, Kr+ Yb+. Size and density of ion induced defects were estimated from evolution of relative intensities of Raman lines D (∼1350 1/cm), G (∼1600 1/cm), and D‧ (∼1620 1/cm) with ion fluence. The efficiency of defect generation by atomic ions depend on ion mass and energy similarly as vacancy generation directly by ion predicted by SRIM simulations. However, efficiency of defect generation in graphene by molecular carbon ions is essentially higher than summarized efficiency of similar group of separate atomic carbon ions of the same energy that each carbon ion in a cluster. The evolution of the D/D‧ ratio of Raman lines intensities with ion fluence was observed. This effect may indicate evolution of defect nature from sp3-like at low fluence to a vacancy-like at high fluence. Observed ion graphene interactions suggest that the molecular ion interacts with graphene as single integrated object and should not be considered as a group of atomic ions with partial energy.
Egieyeh, Samuel Ayodele; Syce, James; Malan, Sarel F; Christoffels, Alan
2016-01-29
A large number of natural products have shown in vitro antiplasmodial activities. Early identification and prioritization of these natural products with potential for novel mechanism of action, desirable pharmacokinetics and likelihood for development into drugs is advantageous. Chemo-informatic profiling of these natural products were conducted and compared to currently registered anti-malarial drugs (CRAD). Natural products with in vitro antiplasmodial activities (NAA) were compiled from various sources. These natural products were sub-divided into four groups based on inhibitory concentration (IC50). Key molecular descriptors and physicochemical properties were computed for these compounds and analysis of variance used to assess statistical significance amongst the sets of compounds. Molecular similarity analysis, estimation of drug-likeness, in silico pharmacokinetic profiling, and exploration of structure-activity landscape were also carried out on these sets of compounds. A total of 1040 natural products were selected and a total of 13 molecular descriptors were analysed. Significant differences were observed among the sub-groups of NAA and CRAD for at least 11 of the molecular descriptors, including number of hydrogen bond donors and acceptors, molecular weight, polar and hydrophobic surface areas, chiral centres, oxygen and nitrogen atoms, and shape index. The remaining molecular descriptors, including clogP, number of rotatable bonds and number of aromatic rings, did not show any significant difference when comparing the two compound sets. Molecular similarity and chemical space analysis identified natural products that were structurally diverse from CRAD. Prediction of the pharmacokinetic properties and drug-likeness of these natural products identified over 50% with desirable drug-like properties. Nearly 70% of all natural products were identified as potentially promiscuous compounds. Structure-activity landscape analysis highlighted compound pairs that form 'activity cliffs'. In all, prioritization strategies for the NAA were proposed. Chemo-informatic profiling of NAA and CRAD have produced a wealth of information that may guide decisions and facilitate anti-malarial drug development from natural products. Articulation of the information provided within an interactive data-mining environment led to a prioritized list of NAA.
Feather development genes and associated regulatory innovation predate the origin of Dinosauria.
Lowe, Craig B; Clarke, Julia A; Baker, Allan J; Haussler, David; Edwards, Scott V
2015-01-01
The evolution of avian feathers has recently been illuminated by fossils and the identification of genes involved in feather patterning and morphogenesis. However, molecular studies have focused mainly on protein-coding genes. Using comparative genomics and more than 600,000 conserved regulatory elements, we show that patterns of genome evolution in the vicinity of feather genes are consistent with a major role for regulatory innovation in the evolution of feathers. Rates of innovation at feather regulatory elements exhibit an extended period of innovation with peaks in the ancestors of amniotes and archosaurs. We estimate that 86% of such regulatory elements and 100% of the nonkeratin feather gene set were present prior to the origin of Dinosauria. On the branch leading to modern birds, we detect a strong signal of regulatory innovation near insulin-like growth factor binding protein (IGFBP) 2 and IGFBP5, which have roles in body size reduction, and may represent a genomic signature for the miniaturization of dinosaurian body size preceding the origin of flight. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
The Evolution of Energy-Transducing Systems. Studies with an Extremely Halophilic Archaebacterium
NASA Technical Reports Server (NTRS)
Stan-Lotter, Helga
1997-01-01
The F-type ATPases are found in remarkably similar versions in the energy-transducing membranes of bacteria, chloroplasts and mitochondria (1). Thus, it is likely that they have originated early in the evolution of life, which is consistent with their function as key enzymes of cellular metabolism. The archaea (formerly called archaebacteria) are a group of microorganisms which, as shown by molecular sequencing and biochemical data, have diverged early from the main line of prokaryotic evolution (2). From studies of members of all three major groups of archaea, the halophiles, methanogens and thermoacidophiles, it emerged that they possess a membrane ATPase, which differs from the F-ATPases. The goal of this project was a comparison of the ATPase from the halophilic archaebacterium Halobacterium saccharovorum with the well-characterized F-type ATPases on the molecular level. The results were expected to allow a decision about the nature of archaebacterial ATPases, their classification as one of the known or, alternatively, novel enzyme complex, and possibly a deduction of events during the early evolution of energy-transducing systems.
The evolution of eyes and visually guided behaviour
Nilsson, Dan-Eric
2009-01-01
The morphology and molecular mechanisms of animal photoreceptor cells and eyes reveal a complex pattern of duplications and co-option of genetic modules, leading to a number of different light-sensitive systems that share many components, in which clear-cut homologies are rare. On the basis of molecular and morphological findings, I discuss the functional requirements for vision and how these have constrained the evolution of eyes. The fact that natural selection on eyes acts through the consequences of visually guided behaviour leads to a concept of task-punctuated evolution, where sensory systems evolve by a sequential acquisition of sensory tasks. I identify four key innovations that, one after the other, paved the way for the evolution of efficient eyes. These innovations are (i) efficient photopigments, (ii) directionality through screening pigment, (iii) photoreceptor membrane folding, and (iv) focusing optics. A corresponding evolutionary sequence is suggested, starting at non-directional monitoring of ambient luminance and leading to comparisons of luminances within a scene, first by a scanning mode and later by parallel spatial channels in imaging eyes. PMID:19720648
φ-evo: A program to evolve phenotypic models of biological networks.
Henry, Adrien; Hemery, Mathieu; François, Paul
2018-06-01
Molecular networks are at the core of most cellular decisions, but are often difficult to comprehend. Reverse engineering of network architecture from their functions has proved fruitful to classify and predict the structure and function of molecular networks, suggesting new experimental tests and biological predictions. We present φ-evo, an open-source program to evolve in silico phenotypic networks performing a given biological function. We include implementations for evolution of biochemical adaptation, adaptive sorting for immune recognition, metazoan development (somitogenesis, hox patterning), as well as Pareto evolution. We detail the program architecture based on C, Python 3, and a Jupyter interface for project configuration and network analysis. We illustrate the predictive power of φ-evo by first recovering the asymmetrical structure of the lac operon regulation from an objective function with symmetrical constraints. Second, we use the problem of hox-like embryonic patterning to show how a single effective fitness can emerge from multi-objective (Pareto) evolution. φ-evo provides an efficient approach and user-friendly interface for the phenotypic prediction of networks and the numerical study of evolution itself.
Protobiological informatoin, bidirectional recognition and reverse translation
NASA Technical Reports Server (NTRS)
Fox, S. W.; Nakashima, T.; Przybylski, A.; Vaughan, G.
1986-01-01
Emergence of protobiological information has been suggested by experiments in which heated mixtures of alpha-amino acids order themselves into a self limited array of thermal proteins. The polymers display selective catalytic, hormonal, and other activities. Interactions of varied cationic thermal proteins with polynucleotides indicate selective recognition in both directions. Reverse translation is partly a missing link in the molecular evolution flowsheet. The self ordering of amino acids serves conceptually as a deterministic evolutionary precursor of the modern coding mechanism. The possibility for the evolution of information at an early nontemplated protein stage is supported by findings of electrical signals from proteinoid microspheres prepared with no DNA/RNA in their history. The deposition of thermal copolyamino acids on lipid membranes in the Mueller-Rudin apparatus has here been found to produce electrical behavior like that evoked by bacterial EIM polypeptide. A new procedure is to make a film of membrane on the electrode; the results provide maximal repeatability. The principle of nonrandom biomacromolecular specificity identified by these studies in molecular evolution have been extrapolated to principles of evolution of advanced organisms.
Adaptive Molecular Evolution for 13,000 Phage Generations
Wichman, Holly A.; Millstein, Jack; Bull, J. J.
2005-01-01
Bacteriophage φX174 was evolved on a continuous supply of sensitive hosts for 180 days (∼13,000 phage generations). The average rate of nucleotide substitution was nearly 0.2% (11 substitutions)/20 days, and, surprisingly, substitutions accumulated in a clock-like manner throughout the study, except for a low rate during the first 20 days. Rates of silent and missense substitutions varied over time and among genes. Approximately 40% of the 71 missense changes and 25% of the 58 silent changes have been observed in previous adaptations; the rate of parallel substitution was highest in the early phase of the evolution, but 7% of the later changes had evolved in previous studies of much shorter duration. Several lines of evidence suggest that most of the changes were adaptive, even many of the silent substitutions. The sustained, high rate of adaptive evolution for 180 days defies a model of adaptation to a constant environment. We instead suggest that continuing molecular evolution reflects a potentially indefinite arms race, stemming from high levels of co-infection and the resulting conflict among genomes competing within the same cell. PMID:15687276
Evolution of seahorses' upright posture was linked to Oligocene expansion of seagrass habitats.
Teske, Peter R; Beheregaray, Luciano B
2009-08-23
Seahorses (Syngnathidae: Hippocampus) are iconic marine teleosts that are readily identifiable by their upright posture. The fossil record is inadequate to shed light on the evolution of this trait because it lacks transitional forms. There are, however, extant syngnathid species (the pygmy pipehorses) that look like horizontally swimming seahorses and that might represent a surviving evolutionary link between the benthic seahorses and other, free-swimming members of the family Syngnathidae. Using sequence data from five nuclear loci, we confirm the sister taxon relationship between seahorses and pygmy pipehorses. Molecular dating indicates that the two taxa diverged during the Late Oligocene. During this time, tectonic events in the Indo-West Pacific resulted in the formation of vast amounts of new shallow-water areas and associated expansion of seagrass habitats that would have favoured the seahorses' upright posture by improving their camouflage while not affecting their manoeuvrability negatively. The molecular techniques employed here provide new insights into the evolution of a taxon whose fossil record is incomplete, but whose evolutionary history is so recent that the major stages of morphological evolution are still represented in extant species.
Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments
NASA Astrophysics Data System (ADS)
Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.
2017-03-01
We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sebastian, Katrin, E-mail: ksebastian@ukaachen.de; Ott, Hagen; Zwadlo-Klarwasser, Gabriele
Since the 7th amendment to the EU cosmetics directive foresees a complete ban on animal testing, alternative in vitro methods have been established to evaluate the sensitizing potential of small molecular weight compounds. To find out whether these novel in vitro assays are also capable to predict the sensitizing potential of small molecular weight drugs, model compounds such as beta-lactams and sulfonamides – which are the most frequent cause of adverse drug reactions – were co-incubated with THP-1, MUTZ-LC, or primary monocyte‐derived dendritic cells for 48 h and subsequent expression of selected marker genes (IL-8, IL-1β, CES1, NQO1, GCLM, PIRmore » and TRIM16) was studied by real time PCR. Benzylpenicillin and phenoxymethylpenicillin were recognized as sensitizing compounds because they are capable to induce the mRNA expression of these genes in moDCs and, except for IL-8, in THP-1 cells but not in MUTZ-LC. Ampicillin stimulated the expression of some marker genes in moDCs and THP-1 cells. SMX did not affect the expression of these genes in THP-1, however, in moDCs, at least PIR was enhanced and there was an increase of the release of IL-8. These data reveal that novel in vitro DC based assays might play a role in the evaluation of the allergenic potential of novel drug compounds, but these systems seem to lack the ability to detect the sensitizing potential of prohaptens that require metabolic activation prior to sensitization and moDCs seem to be superior with regard to the sensitivity compared with THP-1 and MUTZ-3 cell lines. -- Highlights: ► We tested the sensitizing potential of small molecular weight drugs in vitro. ► In vitro assays were performed with moDCs and THP-1 cells. ► Beta-lactam antibiotics can be recognized as sensitizing compounds. ► They affect the expression of metabolic enzymes, cytokines and transcription factors. ► Sulfamethoxazole has no measurable effect on THP-1 cells and moDCs.« less
Liu, Jianbing; Shen, Chunling; Fan, Weimin; Chen, Yan; Zhang, Aijun; Feng, Yun; Li, Zheng; Kuang, Ying; Wang, Zhugang
2016-11-01
PRSS37, a putative trypsin-like serine protease, is highly conserved during mammalian evolution as revealed by multiple sequence alignment. Mice deficient for Prss37 gene exhibit male infertility, but their mating behavior, spermatogenesis, sperm morphology, and motility remain unaffected, similar to a situation called unexplained male infertility (UMI) in men (human being). Here, we demonstrated that PRSS37 is restrictively expressed in human testis, where it is mainly located in the elongating and elongated spermatids during spermiogenesis as shown by immunohistochemical analysis of normal human testicular sections. In mature sperm, PRSS37 appears in the acrosome region and diminishes during acrosome reaction. Further examination reveals that PRSS37 contents in sperm from patients with UMI are dramatically lower than those in sperm from men with proven fertility or from sperm donors. Sperm with low PRSS37 contents exhibit abnormal activation of the proacrosin/acrosin system and premature proteolysis of ADAM2, which may impair the functional competence of human sperm in vivo However, the in vitro fertilization outcomes of sperm with low PRSS37 contents are not affected. Together, these data implicate an important role of PRSS37 for male fertility. PRSS37 can be used as a potential molecular biomarker for evaluating sperm fertilization capability in vivo but not in vitro. © The Author 2016. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Development of companion diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; ...
2015-12-12
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of companion diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods asmore » companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. Lastly, the review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic.« less
Development of Companion Diagnostics
Mankoff, David A.; Edmonds, Christine E.; Farwell, Michael D.; Pryma, Daniel A.
2016-01-01
The goal of individualized and targeted treatment and precision medicine requires the assessment of potential therapeutic targets to direct treatment selection. The biomarkers used to direct precision medicine, often termed companion diagnostics, for highly targeted drugs have thus far been almost entirely based on in vitro assay of biopsy material. Molecular imaging companion diagnostics offer a number of features complementary to those from in vitro assay, including the ability to measure the heterogeneity of each patient’s cancer across the entire disease burden and to measure early changes in response to treatment. We discuss the use of molecular imaging methods as companion diagnostics for cancer therapy with the goal of predicting response to targeted therapy and measuring early (pharmacodynamic) response as an indication of whether the treatment has “hit” the target. We also discuss considerations for probe development for molecular imaging companion diagnostics, including both small-molecule probes and larger molecules such as labeled antibodies and related constructs. We then describe two examples where both predictive and pharmacodynamic molecular imaging markers have been tested in humans: endocrine therapy for breast cancer and human epidermal growth factor receptor type 2–targeted therapy. The review closes with a summary of the items needed to move molecular imaging companion diagnostics from early studies into multicenter trials and into the clinic. PMID:26687857
ROLE OF MOLECULAR MARKERS IN THYROID NODULE MANAGEMENT: THEN AND NOW.
Nikiforov, Yuri E
2017-08-01
To describe the evolution and clinical utility of molecular testing for thyroid nodules and cancer achieved over the last 2 decades. Scientific reports on thyroid cancer genetics and molecular diagnostics in thyroid nodules. Over the last 2 decades, our understanding of the genetic mechanisms of thyroid cancer has dramatically expanded, such that most thyroid cancers now have known gene driver events. This knowledge provides the basis for establishing and further improving molecular tests for thyroid nodules and cancer and for the introduction of new entities such as noninvasive follicular thyroid neoplasm with papillary-like nuclear features. The progress with molecular tests for thyroid nodules started in the 1990s from demonstrating feasibility of detecting various molecular alterations in fine-needle aspiration (FNA) material collected from thyroid nodules. It was followed by the introduction of the first single-gene mutational markers, such as BRAF, and a small mutational panel into clinical practice in the mid 2000s. Currently, several more advanced molecular tests are available for clinical use. They are based on multiple molecular markers and have increasing impact on the clinical management of patients with thyroid nodules. The evolution of molecular tests for thyroid nodules followed the discovery of various diagnostic and prognostic molecular markers of thyroid cancer that can be applied to thyroid FNA samples to inform more individualized management of these patients. FNA = fine-needle aspiration miRNA = micro RNA NGS = next-generation sequencing NIFTP = noninvasive follicular thyroid neoplasm with papillary-like nuclear features NPV = negative predictive value PPV = positive predictive value PTC = papillary thyroid carcinoma RAI = radioactive iodine.
Marcilla, Antonio; Pérez-García, Ana; Espert, Ana; Bernal, Dolores; Muñoz-Antolí, Carla; Esteban, José Guillermo; Toledo, Rafael
2007-09-01
In order to investigate molecules that could be involved in host-trematode relationships, we have analysed the excretory/secretory products (ESP) of Echinostoma caproni following a proteomic approach. Actin, Gluthathione S-transferase (GST) and enolase have been identified in the ESP. Enolase, observed to be one of the most abundant proteins, was further characterized. The molecular cloning and in vitro expression in Escherichia coli of E. caproni enolase allowed us to determine that the protein contains 431 amino acids and a theoretical MW of 46272 Da. E. caproni enolase shows high homology to other trematode enolases. The recombinant protein binds specifically to human plasminogen in vitro, as observed for the native protein, confirming its properties as a host-interacting molecule.
In vitro assessment of phthalate acid esters-trypsin complex formation.
Chi, Zhenxing; Zhao, Jing; Li, Weiguo; Araghi, Arash; Tan, Songwen
2017-10-01
In this work, interactions of three phthalate acid esters (PAEs), including dimethyl phthalate (DMP), diethyl phthalate (DEP) and dibutyl phthalate (DBP), with trypsin have been studied in vitro, under simulated physiological conditions using multi-spectroscopic techniques and molecular modeling. The results show that these PAEs can bind to the trypsin, forming trypsin-PAEs complexes, mainly via hydrophobic interactions, with the affinity order of DMP > DEP > DBP. Binding to the PAEs is found to result in molecular deformation of trypsin. The modeling results suggest that only DBP can bind with the amino acid residues of the catalytic triad and S1 binding pocket of trypsin, leading to potential competitive enzyme inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.
In vitro gamete derivation from pluripotent stem cells: progress and perspective.
Nagano, Makoto C
2007-04-01
Germ cells constitute a highly specialized cell population that is indispensable for the continuation and evolution of the species. Recently, several research groups have shown that these unique cells can be produced in vitro from pluripotent stem cells. Furthermore, live births of offspring using induced germ cells have been reported in one study. These results suggest that it may be possible to investigate germ cell development ex vivo and to establish novel reproductive technologies. To this end, it is critical to assess if gamete induction processes in vitro faithfully recapitulate normal germ cell development in vivo. Here, this issue is discussed with a focus on the germ line specification and the sex-specific development of pre- and postnatal germ cells. The aim of this paper is to concisely summarize the past progress and to present some future issues for the investigation into in vitro gamete production from pluripotent stem cells.
Qi, Delin; Chao, Yan; Guo, Songchang; Zhao, Lanying; Li, Taiping; Wei, Fulei; Zhao, Xinquan
2012-01-01
Schizothoracine fishes distributed in the water system of the Qinghai-Tibetan plateau (QTP) and adjacent areas are characterized by being highly adaptive to the cold and hypoxic environment of the plateau, as well as by a high degree of diversity in trophic morphology due to resource polymorphisms. Although convergent and parallel evolution are prevalent in the organisms of the QTP, it remains unknown whether similar evolutionary patterns have occurred in the schizothoracine fishes. Here, we constructed for the first time a tentative molecular phylogeny of the schizothoracine fishes based on the complete sequences of the cytochrome b gene. We employed this molecular phylogenetic framework to examine the evolution of trophic morphologies. We used Pagel's maximum likelihood method to estimate the evolutionary associations of trophic morphologies and food resource use. Our results showed that the molecular and published morphological phylogenies of Schizothoracinae are partially incongruent with respect to some intergeneric relationships. The phylogenetic results revealed that four character states of five trophic morphologies and of food resource use evolved at least twice during the diversification of the subfamily. State transitions are the result of evolutionary patterns including either convergence or parallelism or both. Furthermore, our analyses indicate that some characters of trophic morphologies in the Schizothoracinae have undergone correlated evolution, which are somewhat correlated with different food resource uses. Collectively, our results reveal new examples of convergent and parallel evolution in the organisms of the QTP. The adaptation to different trophic niches through the modification of trophic morphologies and feeding behaviour as found in the schizothoracine fishes may account for the formation and maintenance of the high degree of diversity and radiations in fish communities endemic to QTP. PMID:22470515
Hemizygosity Enhances Purifying Selection: Lack of Fast-Z Evolution in Two Satyrine Butterflies.
Rousselle, Marjolaine; Faivre, Nicolas; Ballenghien, Marion; Galtier, Nicolas; Nabholz, Benoit
2016-10-23
The fixation probability of a recessive beneficial mutation is increased on the X or Z chromosome, relative to autosomes, because recessive alleles carried by X or Z are exposed to selection in the heterogametic sex. This leads to an increased dN/dS ratio on sex chromosomes relative to autosomes, a pattern called the "fast-X" or "fast-Z" effect. Besides positive selection, the strength of genetic drift and the efficacy of purifying selection, which affect the rate of molecular evolution, might differ between sex chromosomes and autosomes. Disentangling the complex effects of these distinct forces requires the genome-wide analysis of polymorphism, divergence and gene expression data in a variety of taxa. Here we study the influence of hemizygosity of the Z chromosome in Maniola jurtina and Pyronia tithonus, two species of butterflies (Lepidoptera, Nymphalidae, Satyrinae). Using transcriptome data, we compare the strength of positive and negative selection between Z and autosomes accounting for sex-specific gene expression. We show that M. jurtina and P. tithonus do not experience a faster, but rather a slightly slower evolutionary rate on the Z than on autosomes. Our analysis failed to detect a significant difference in adaptive evolutionary rate between Z and autosomes, but comparison of male-biased, unbiased and female-biased Z-linked genes revealed an increased efficacy of purifying selection against recessive deleterious mutations in female-biased Z-linked genes. This probably contributes to the lack of fast-Z evolution of satyrines. We suggest that the effect of hemizygosity on the fate of recessive deleterious mutations should be taken into account when interpreting patterns of molecular evolution in sex chromosomes vs. autosomes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.