Sample records for vitro replication kinetics

  1. Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿

    PubMed Central

    Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam

    2008-01-01

    The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823

  2. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  3. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  4. Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner

    PubMed Central

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Rzechorzek, Nina M.; Ullian, Erik M.; Manson, Jean

    2017-01-01

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype–dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. PMID:29141869

  5. Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner.

    PubMed

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Krencik, Robert; Rzechorzek, Nina M; Ullian, Erik M; Manson, Jean; Ironside, James W; Head, Mark W; Chandran, Siddharthan

    2017-12-04

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. © 2017 Krejciova et al.

  6. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts

    PubMed Central

    Owen, Carolyn A.; Moukarzel, Romy; Huang, Xiao; Kassem, Mona A.; Eliasco, Eleonora; Aranda, Miguel A.; Coutts, Robert H. A.; Livieratos, Ioannis C.

    2016-01-01

    Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants. PMID:27314380

  7. Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1.

    PubMed Central

    Homann, M; Tzortzakaki, S; Rittner, K; Sczakiel, G; Tabler, M

    1993-01-01

    The catalytic domain of a hammerhead ribozyme was incorporated into a 413 nucleotides long antisense RNA directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1) (pos. +222 to +634). The resulting catalytic antisense RNA was shown to cleave its target RNA in vitro specifically at physiological ion strength and temperature. We compared the antiviral effectiveness of this catalytic antisense RNA with that of the corresponding unmodified antisense RNA and with a mutated catalytic antisense RNA, which did not cleave the substrate RNA in vitro. Each of these RNAs was co-transfected into human SW480 cells together with infectious complete proviral HIV-1 DNA, followed by analysis of HIV-1 replication. The presence of the catalytically active domain resulted in 4 to 7 fold stronger inhibition of HIV-1 replication as compared to the parental antisense RNA and the inactive mutant. Kinetic and structural studies performed in vitro indicated that the ability for double strand formation was not changed in catalytic antisense RNA versus parental antisense RNA. Together, these data suggest that the ability to cleave target RNA is a crucial prerequisite for the observed increase of inhibition of the replication of HIV-1. Images PMID:8332489

  8. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses

    NASA Astrophysics Data System (ADS)

    Simon, Philippe F.; de La Vega, Marc-Antoine; Paradis, Éric; Mendoza, Emelissa; Coombs, Kevin M.; Kobasa, Darwyn; Beauchemin, Catherine A. A.

    2016-04-01

    Avian influenza viruses present an emerging epidemiological concern as some strains of H5N1 avian influenza can cause severe infections in humans with lethality rates of up to 60%. These have been in circulation since 1997 and recently a novel H7N9-subtyped virus has been causing epizootics in China with lethality rates around 20%. To better understand the replication kinetics of these viruses, we combined several extensive viral kinetics experiments with mathematical modelling of in vitro infections in human A549 cells. We extracted fundamental replication parameters revealing that, while both the H5N1 and H7N9 viruses replicate faster and to higher titers than two low-pathogenicity H1N1 strains, they accomplish this via different mechanisms. While the H7N9 virions exhibit a faster rate of infection, the H5N1 virions are produced at a higher rate. Of the two H1N1 strains studied, the 2009 pandemic H1N1 strain exhibits the longest eclipse phase, possibly indicative of a less effective neuraminidase activity, but causes infection more rapidly than the seasonal strain. This explains, in part, the pandemic strain’s generally slower growth kinetics and permissiveness to accept mutations causing neuraminidase inhibitor resistance without significant loss in fitness. Our results highlight differential growth properties of H1N1, H5N1 and H7N9 influenza viruses.

  9. Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism

    PubMed Central

    Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencső, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-01-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log10 titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV. PMID:22438554

  10. Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment

    PubMed Central

    Schrauwen, Eefje J.A.; Herfst, Sander; Chutinimitkul, Salin; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2011-01-01

    Since emergence of the pandemic (H1N1) 2009 virus in April 2009, three influenza A viruses—seasonal (H3N2), seasonal (H1N1), and pandemic (H1N1) 2009—have circulated in humans. Genetic reassortment between these viruses could result in enhanced pathogenicity. We compared 4 reassortant viruses with favorable in vitro replication properties with the wild-type pandemic (H1N1) 2009 virus with respect to replication kinetics in vitro and pathogenicity and transmission in ferrets. Pandemic (H1N1) 2009 viruses containing basic polymerase 2 alone or in combination with acidic polymerase of seasonal (H1N1) virus were attenuated in ferrets. In contrast, pandemic (H1N1) 2009 with neuraminidase of seasonal (H3N2) virus resulted in increased virus replication and more severe pulmonary lesions. The data show that pandemic (H1N1) 2009 virus has the potential to reassort with seasonal influenza viruses, which may result in increased pathogenicity while it maintains the capacity of transmission through aerosols or respiratory droplets. PMID:21291589

  11. Aptamer redesigned tRNA is nonfunctional and degraded in cells

    PubMed Central

    LEE, DENNIS; MCCLAIN, WILLIAM H.

    2004-01-01

    An RNA aptamer derived from tRNAGln isolated in vitro and a rationally redesigned tRNAGln were used to address the relationship between structure and function of tRNAGln aminoacylation in Escherichia coli. Two mutant tRNAGln sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNAGln in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNAGln knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro. PMID:14681579

  12. Effect of Leflunomide, Cidofovir and Ciprofloxacin on replication of BKPyV in a salivary gland in vitro culture system.

    PubMed

    Jeffers-Francis, Liesl K; Burger-Calderon, Raquel; Webster-Cyriaque, Jennifer

    2015-06-01

    BK polyomavirus (BKPyV) is a known kidney tropic virus that has been detected at high levels in HIV-associated salivary gland disease (HIV-SGD), one of the most important AIDS associated oral lesions. BKPyV has been detected in HIV-SGD patient saliva and replicates in salivary gland cells in vitro. BKPyV antivirals are currently in wide use to guard against BKPyV mediated organ rejection in kidney transplant recipients. The goal of this study was to investigate the inhibitory effects of three such antiviral agents, Ciprofloxacin, Cidofovir, and Leflunomide in BKPyV infected salivary gland cells. Human salivary gland cells, and Vero cells, were infected with BKPyV, treated with antiviral drugs and assessed for BKPyV gene expression and viral replication for up to 5 days post infection. The kinetics of BKPyV replication were different in salivary gland cells compared to kidney cells. Ciprofloxacin and Cidofovir had minimal effect on metabolic activity and host cell DNA replication, however, cell toxicity was detected at the protein level with Leflunomide treatment. Ciprofloxacin decreased BKV T Ag and VP1 mRNA expression by at least 50% in both cell types, and decreased T Ag protein expression at days 3 and 4 post infection. A 2.5-4 log decrease in intracellular DNA replication and a 2-3 log decrease in progeny release were detected with Ciprofloxacin treatment. Cidofovir and Leflunomide also inhibited BKPyV gene expression and DNA replication. The three drugs diminished progeny release by 30-90% and 2- to 6-fold decreases in infectious virus were detected post drug treatment by fluorescence focus assay. Additionally, three clinical BKPyV isolates were assessed for their responses to these agents in vitro. Cidofovir and Leflunomide, but not Ciprofloxacin treatment resulted in statistically significant inhibition of BKPyV progeny release from salivary gland cells infected with HIVSGD BKPyV isolates. All three drugs decreased progeny release from cells infected with a transplant derived viral isolate. In conclusion, treatment of human salivary gland cells with each of the three drugs produced modest decreases in BKPyV genome replication. These data highlight the need for continued studies to discover more effective and less toxic drugs that inhibit BKPyV replication in salivary gland cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    USGS Publications Warehouse

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  14. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies

    PubMed Central

    Baker, Steven F.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection. PMID:26809059

  15. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Perez, Daniel R; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer's spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.

  16. Viral evolution in response to the broad-based retroviral protease inhibitor TL-3.

    PubMed

    Bühler, B; Lin, Y C; Morris, G; Olson, A J; Wong, C H; Richman, D D; Elder, J H; Torbett, B E

    2001-10-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.

  17. Viral Evolution in Response to the Broad-Based Retroviral Protease Inhibitor TL-3†

    PubMed Central

    Bühler, Bernd; Lin, Ying-Chuan; Morris, Garrett; Olson, Arthur J.; Wong, Chi-Huey; Richman, Douglas D.; Elder, John H.; Torbett, Bruce E.

    2001-01-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity. PMID:11533212

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less

  19. Use of a highly sensitive strand-specific quantitative PCR to identify abortive replication in the mouse model of respiratory syncytial virus disease

    PubMed Central

    2010-01-01

    Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795

  20. RuvAB and RecG are not essential for the recovery of DNA synthesis following UV-induced DNA damage in Escherichia coli.

    PubMed Central

    Donaldson, Janet R; Courcelle, Charmain T; Courcelle, Justin

    2004-01-01

    Ultraviolet light induces DNA lesions that block the progression of the replication machinery. Several models speculate that the resumption of replication following disruption by UV-induced DNA damage requires regression of the nascent DNA or migration of the replication machinery away from the blocking lesion to allow repair or bypass of the lesion to occur. Both RuvAB and RecG catalyze branch migration of three- and four-stranded DNA junctions in vitro and are proposed to catalyze fork regression in vivo. To examine this possibility, we characterized the recovery of DNA synthesis in ruvAB and recG mutants. We found that in the absence of either RecG or RuvAB, arrested replication forks are maintained and DNA synthesis is resumed with kinetics that are similar to those in wild-type cells. The data presented here indicate that RecG- or RuvAB-catalyzed fork regression is not essential for DNA synthesis to resume following arrest by UV-induced DNA damage in vivo. PMID:15126385

  1. Replication of Simulated Prebiotic Amphiphilic Vesicles in a Finite Environment Exhibits Complex Behavior That Includes High Progeny Variability and Competition

    PubMed Central

    Armstrong, Don L.; Lancet, Doron

    2018-01-01

    Abstract We studied the simulated replication and growth of prebiotic vesicles composed of 140 phospholipids and cholesterol using our R-GARD (Real Graded Autocatalysis Replication Domain) formalism that utilizes currently extant lipids that have known rate constants of lipid-vesicle interactions from published experimental data. R-GARD normally modifies kinetic parameters of lipid-vesicle interactions based on vesicle composition and properties. Our original R-GARD model tracked the growth and division of one vesicle at a time in an environment with unlimited lipids at a constant concentration. We explore here a modified model where vesicles compete for a finite supply of lipids. We observed that vesicles exhibit complex behavior including initial fast unrestricted growth, followed by intervesicle competition for diminishing resources, then a second growth burst driven by better-adapted vesicles, and ending with a final steady state. Furthermore, in simulations without kinetic parameter modifications (“invariant kinetics”), the initial replication was an order of magnitude slower, and vesicles' composition variability at the final steady state was much lower. The complex kinetic behavior was not observed either in the previously published R-GARD simulations or in additional simulations presented here with only one lipid component. This demonstrates that both a finite environment (inducing selection) and multiple components (providing variation for selection to act upon) are crucial for portraying evolution-like behavior. Such properties can improve survival in a changing environment by increasing the ability of early protocellular entities to respond to rapid environmental fluctuations likely present during abiogenesis both on Earth and possibly on other planets. This in silico simulation predicts that a relatively simple in vitro chemical system containing only lipid molecules might exhibit properties that are relevant to prebiotic processes. Key Words: Phospholipid vesicles—Prebiotic compartments—Prebiotic vesicle competition—Prebiotic vesicle variability. Astrobiology 18, 419–430. PMID:29634319

  2. In Vitro Lesion Bypass Studies of O(4)-Alkylthymidines with Human DNA Polymerase η.

    PubMed

    Williams, Nicole L; Wang, Pengcheng; Wu, Jiabin; Wang, Yinsheng

    2016-04-18

    Environmental exposure and endogenous metabolism can give rise to DNA alkylation. Among alkylated nucleosides, O(4)-alkylthymidine (O(4)-alkyldT) lesions are poorly repaired in mammalian systems and may compromise the efficiency and fidelity of cellular DNA replication. To cope with replication-stalling DNA lesions, cells are equipped with translesion synthesis DNA polymerases that are capable of bypassing various DNA lesions. In this study, we assessed human DNA polymerase η (Pol η)-mediated bypass of various O(4)-alkyldT lesions, with the alkyl group being Me, Et, nPr, iPr, nBu, iBu, (R)-sBu, or (S)-sBu, in template DNA by conducting primer extension and steady-state kinetic assays. Our primer extension assay results revealed that human Pol η, but not human polymerases κ and ι or yeast polymerase ζ, was capable of bypassing all O(4)-alkyldT lesions and extending the primer to generate full-length replication products. Data from steady-state kinetic measurements showed that Pol η preferentially misincorporated dGMP opposite O(4)-alkyldT lesions with a straight-chain alkyl group. The nucleotide misincorporation opposite most lesions with a branched-chain alkyl group was, however, not selective, where dCMP, dGMP, and dTMP were inserted at similar efficiencies opposite O(4)-iPrdT, O(4)-iBudT, and O(4)-(R)-sBudT. These results provide important knowledge about the effects of the length and structure of the alkyl group in O(4)-alkyldT lesions on the fidelity and efficiency of DNA replication mediated by human Pol η.

  3. Evaluation of the zoonotic potential of multiple subgroups of clade 2.3.4.4 influenza A (H5N8) virus.

    PubMed

    Lee, Yu-Na; Lee, Eun-Kyoung; Song, Byung-Min; Heo, Gyeong-Beom; Woo, Sang-Hee; Cheon, Sun-Ha; Lee, Youn-Jeong

    2018-03-01

    Clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses (HPAIVs) have spread worldwide. Phylogenetic analysis identified two genetic groups of the H5N8 HPAIVs in South Korea; group A evolved further into four subgroups. Here, we examined the zoonotic potential, both in vivo and in vitro, of genetically distinct subgroups of H5N8 HPAIVs isolated in South Korea. When compared with other subgroups, A/mallard/Korea/H2102/2015 (H2102) virus caused relatively severe disease in mice at high doses. In ferrets, all H5N8 viruses replicated restrictively in the respiratory tract and did not induce significant clinical signs of influenza infection. In vitro studies, all viruses displayed a hemagglutinin phenotype that was poorly adapted for infection of mammals, although the H2102 virus exhibited higher replication kinetics at 33°C than the others. Although H5N8 HPAIVs have not yet acquired all the characteristics required for adaptation to mammals, their ability to evolve continuously underscores the need for timely risk assessment. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. In Vitro Antiviral Activity of Circular Triple Helix Forming Oligonucleotide RNA towards Feline Infectious Peritonitis Virus Replication

    PubMed Central

    Choong, Oi Kuan; Tejo, Bimo Ario; Omar, Abdul Rahman

    2014-01-01

    Feline Infectious Peritonitis (FIP) is a severe fatal immune-augmented disease in cat population. It is caused by FIP virus (FIPV), a virulent mutant strain of Feline Enteric Coronavirus (FECV). Current treatments and prophylactics are not effective. The in vitro antiviral properties of five circular Triple-Helix Forming Oligonucleotide (TFO) RNAs (TFO1 to TFO5), which target the different regions of virulent feline coronavirus (FCoV) strain FIPV WSU 79-1146 genome, were tested in FIPV-infected Crandell-Rees Feline Kidney (CRFK) cells. RT-qPCR results showed that the circular TFO RNAs, except TFO2, inhibit FIPV replication, where the viral genome copy numbers decreased significantly by 5-fold log10 from 1014 in the virus-inoculated cells to 109 in the circular TFO RNAs-transfected cells. Furthermore, the binding of the circular TFO RNA with the targeted viral genome segment was also confirmed using electrophoretic mobility shift assay. The strength of binding kinetics between the TFO RNAs and their target regions was demonstrated by NanoITC assay. In conclusion, the circular TFOs have the potential to be further developed as antiviral agents against FIPV infection. PMID:24707494

  5. G0-G1 Transition and the Restriction Point in Pancreatic β-Cells In Vivo

    PubMed Central

    Hija, Ayat; Salpeter, Seth; Klochendler, Agnes; Grimsby, Joseph; Brandeis, Michael; Glaser, Benjamin; Dor, Yuval

    2014-01-01

    Most of our knowledge on cell kinetics stems from in vitro studies of continuously dividing cells. In this study, we determine in vivo cell-cycle parameters of pancreatic β-cells, a largely quiescent population, using drugs that mimic or prevent glucose-induced replication of β-cells in mice. Quiescent β-cells exposed to a mitogenic glucose stimulation require 8 h to enter the G1 phase of the cell cycle, and this time is prolonged in older age. The duration of G1, S, and G2/M is ∼5, 8, and 6 h, respectively. We further provide the first in vivo demonstration of the restriction point at the G0-G1 transition, discovered by Arthur Pardee 40 years ago. The findings may have pharmacodynamic implications in the design of regenerative therapies aimed at increasing β-cell replication and mass in patients with diabetes. PMID:24130333

  6. Self-Assembly of Measles Virus Nucleocapsid-like Particles: Kinetics and RNA Sequence Dependence.

    PubMed

    Milles, Sigrid; Jensen, Malene Ringkjøbing; Communie, Guillaume; Maurin, Damien; Schoehn, Guy; Ruigrok, Rob W H; Blackledge, Martin

    2016-08-01

    Measles virus RNA genomes are packaged into helical nucleocapsids (NCs), comprising thousands of nucleo-proteins (N) that bind the entire genome. N-RNA provides the template for replication and transcription by the viral polymerase and is a promising target for viral inhibition. Elucidation of mechanisms regulating this process has been severely hampered by the inability to controllably assemble NCs. Here, we demonstrate self-organization of N into NC-like particles in vitro upon addition of RNA, providing a simple and versatile tool for investigating assembly. Real-time NMR and fluorescence spectroscopy reveals biphasic assembly kinetics. Remarkably, assembly depends strongly on the RNA-sequence, with the genomic 5' end and poly-Adenine sequences assembling efficiently, while sequences such as poly-Uracil are incompetent for NC formation. This observation has important consequences for understanding the assembly process. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  7. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation

    PubMed Central

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2015-01-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented. PMID:26858981

  8. Synthesis of novel ICIE16/BSG and ICIE16/BSG-NITRI bioglasses and description of ionic release kinetics upon immersion in SBF fluid: Effect of nitridation.

    PubMed

    Orgaz, Felipe; Amat, Daniel; Szycht, Olga; Dzika, Aleksandra; Barba, Flora; Becerra, José; Santos-Ruiz, Leonor

    2016-03-01

    A novel bioactive glass scaffold ICIE16/BSG has been prepared from a mixture of two different melt-derived glasses: a silicate bioglass (ICIE16) and a borosilicate bioglass (BSG). Combined processing techniques (gel casting and foam replication) were used to form three-dimensional, interconnected porous monolith scaffolds (Orgaz et al., 2016) [1]. They were then nitrided with a hot ammonia flow as described in (Aleixandre et al., 1973) [3] and (Nieto, 1984) [4] to synthesize the ICIE16/BSG-NITRI bioglass (Orgaz et al., 2016) [1]. Herein we present a flow chart summarizing the forming process, plus images of the resulting scaffold after sintering and drying. Bioactivity was characterized in vitro by immersion in simulated body fluid (SBF) for up to seven days. Data of ionic release kinetics upon SBF immersion are presented.

  9. Mechanistic Investigation of the Bypass of a Bulky Aromatic DNA Adduct Catalyzed by a Y-family DNA Polymerase

    PubMed Central

    Gadkari, Varun V.; Tokarsky, E. John; Malik, Chanchal K.; Basu, Ashis K.; Suo, Zucai

    2014-01-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2’-deoxyguanosin-8-yl)-3-aminobenzanthrone (dGC8-N-ABA). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dGC8-N-ABA is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dGC8-N-ABA on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dGC8-N-ABA lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dGC8-N-ABA lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dGC8-N-ABA bypass catalyzed by Dpo4. PMID:25048879

  10. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase.

    PubMed

    Gadkari, Varun V; Tokarsky, E John; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2014-09-01

    3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Prion propagation and toxicity occur in vitro with two-phase kinetics specific to strain and neuronal type.

    PubMed

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A; Haïk, Stéphane

    2013-03-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrP(Sc)) of the host-encoded prion protein (PrP(C)), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrP(Sc) distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau.

  12. Prion Propagation and Toxicity Occur In Vitro with Two-Phase Kinetics Specific to Strain and Neuronal Type

    PubMed Central

    Hannaoui, Samia; Maatouk, Layal; Privat, Nicolas; Levavasseur, Etienne; Faucheux, Baptiste A.

    2013-01-01

    Prion diseases, or transmissible spongiform encephalopathies (TSEs), are fatal neurodegenerative disorders that occur in humans and animals. The neuropathological hallmarks of TSEs are spongiosis, glial proliferation, and neuronal loss. The only known specific molecular marker of TSEs is the abnormal isoform (PrPSc) of the host-encoded prion protein (PrPC), which accumulates in the brain of infected subjects and forms infectious prion particles. Although this transmissible agent lacks a specific nucleic acid component, several prion strains have been isolated. Prion strains are characterized by differences in disease outcome, PrPSc distribution patterns, and brain lesion profiles at the terminal stage of the disease. The molecular factors and cellular mechanisms involved in strain-specific neuronal tropism and toxicity remain largely unknown. Currently, no cellular model exists to facilitate in vitro studies of these processes. A few cultured cell lines that maintain persistent scrapie infections have been developed, but only two of them have shown the cytotoxic effects associated with prion propagation. In this study, we have developed primary neuronal cultures to assess in vitro neuronal tropism and toxicity of different prion strains (scrapie strains 139A, ME7, and 22L). We have tested primary neuronal cultures enriched in cerebellar granular, striatal, or cortical neurons. Our results showed that (i) a strain-specific neuronal tropism operated in vitro; (ii) the cytotoxic effect varied among strains and neuronal cell types; (iii) prion propagation and toxicity occurred in two kinetic phases, a replicative phase followed by a toxic phase; and (iv) neurotoxicity peaked when abnormal PrP accumulation reached a plateau. PMID:23255799

  13. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    NASA Astrophysics Data System (ADS)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  14. Mechanistic models enable the rational use of in vitro drug-target binding kinetics for better drug effects in patients.

    PubMed

    de Witte, Wilhelmus E A; Wong, Yin Cheong; Nederpelt, Indira; Heitman, Laura H; Danhof, Meindert; van der Graaf, Piet H; Gilissen, Ron A H J; de Lange, Elizabeth C M

    2016-01-01

    Drug-target binding kinetics are major determinants of the time course of drug action for several drugs, as clearly described for the irreversible binders omeprazole and aspirin. This supports the increasing interest to incorporate newly developed high-throughput assays for drug-target binding kinetics in drug discovery. A meaningful application of in vitro drug-target binding kinetics in drug discovery requires insight into the relation between in vivo drug effect and in vitro measured drug-target binding kinetics. In this review, the authors discuss both the relation between in vitro and in vivo measured binding kinetics and the relation between in vivo binding kinetics, target occupancy and effect profiles. More scientific evidence is required for the rational selection and development of drug-candidates on the basis of in vitro estimates of drug-target binding kinetics. To elucidate the value of in vitro binding kinetics measurements, it is necessary to obtain information on system-specific properties which influence the kinetics of target occupancy and drug effect. Mathematical integration of this information enables the identification of drug-specific properties which lead to optimal target occupancy and drug effect in patients.

  15. Extension of helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic parameters in vitro but causes loss of the inhibitory potential in living cells.

    PubMed Central

    Homann, M; Tabler, M; Tzortzakaki, S; Sczakiel, G

    1994-01-01

    When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo. Images PMID:7524030

  16. Structure and Dynamics of Replication-Mutation Systems

    NASA Astrophysics Data System (ADS)

    Schuster, Peter

    1987-03-01

    The kinetic equations of polynucleotide replication can be brought into fairly simple form provided certain environmental conditions are fulfilled. Two flow reactors, the continuously stirred tank reactor (CSTR) and a special dialysis reactor are particularly suitable for the analysis of replication kinetics. An experimental setup to study the chemical reaction network of RNA synthesis was derived from the bacteriophage Qβ. It consists of a virus specific RNA polymerase, Qβ replicase, the activated ribonucleosides GTP, ATP, CTP and UTP as well as a template suitable for replication. The ordinary differential equations for replication and mutation under the conditions of the flow reactors were analysed by the qualitative methods of bifurcation theory as well as by numerical integration. The various kinetic equations are classified according to their dynamical properties: we distinguish "quasilinear systems" which have uniquely stable point attractors and "nonlinear systems" with inherent nonlinearities which lead to multiple steady states, Hopf bifuractions, Feigenbaum-like sequences and chaotic dynamics for certain parameter ranges. Some examples which are relevant in molecular evolution and population genetics are discussed in detail.

  17. CYP2E1 hydroxylation of aniline involves negative cooperativity.

    PubMed

    Hartman, Jessica H; Knott, Katie; Miller, Grover P

    2014-02-01

    CYP2E1 plays a role in the metabolic activation and elimination of aniline, yet there are conflicting reports on its mechanism of action, and hence relevance, in aniline metabolism. Based on our work with similar compounds, we hypothesized that aniline binds two CYP2E1 sites during metabolism resulting in cooperative reaction kinetics and tested this hypothesis through rigorous in vitro studies. The kinetic profile for recombinant CYP2E1 demonstrated significant negative cooperativity based on a fit of data to the Hill equation (n=0.56). Mechanistically, the data were best explained through a two-binding site cooperative model in which aniline binds with high affinity (K(s)=30 μM) followed by a second weaker binding event (K(ss)=1100 uM) resulting in a threefold increase in the oxidation rate. Binding sites for aniline were confirmed by inhibition studies with 4-methylpyrazole. Inhibitor phenotyping experiments with human liver microsomes validated the central role for CYP2E1 in aniline hydroxylation and indicated minor roles for CYP2A6 and CYP2C9. Importantly, inhibition of minor metabolic pathways resulted in a kinetic profile for microsomal CYP2E1 that replicated the preferred mechanism and parameters observed with the recombinant enzyme. Scaled modeling of in vitro CYP2E1 metabolism of aniline to in vivo clearance, especially at low aniline levels, led to significant deviations from the traditional model based on non-cooperative, Michaelis-Menten kinetics. These findings provide a critical mechanistic perspective on the potential importance of CYP2E1 in the metabolic activation and elimination of aniline as well as the first experimental evidence of a negatively cooperative metabolic reaction catalyzed by CYP2E1. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.

    DTIC Science & Technology

    1995-08-31

    cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast

  19. Bridging from Replication to Translation with a Thermal, Autonomous Replicator Made from Transfer RNA

    NASA Astrophysics Data System (ADS)

    Braun, Dieter; Möller, Friederike M.; Krammer, Hubert

    2013-03-01

    Central to the understanding of living systems is the interplay between DNA/RNA and proteins. Known as Eigen paradox, proteins require genetic information while proteins are needed for the replication of genes. RNA world scenarios focus on a base by base replication disconnected from translation. Here we used strategies from DNA machines to demonstrate a tight connection between a basic replication mechanism and translation. A pool of hairpin molecules replicate a two-letter code. The replication is thermally driven: the energy and negative entropy to drive replication is initially stored in metastable hairpins by kinetic cooling. Both are released by a highly specific and exponential replication reaction that is solely implemented by base hybridization. The duplication time is 30s. The reaction is monitored by fluorescence and described by a detailed kinetic model. The RNA hairpins usetransfer RNA sequences and the replication is driven by the simple disequilibrium setting of a thermal gradient The experiments propose a physical rather than a chemical scenario for the autonomous replication of protein encoding information. Supported by the NanoSystems Initiative Munich and ERC.

  20. Biological effects of radiation, metabolic and replication kinetics alterations

    NASA Technical Reports Server (NTRS)

    Post, J.

    1972-01-01

    The biological effects of radiation upon normal and cancerous tissues were studied. A macromolecular precursor of DNA, 3ETdR, was incorporated into the cell nucleus during synthesis and provided intranuclear beta radiation. Tritium labeled cells were studied with autoradiographic methods; cell cycle kinetics were determined and cell functions modified by radiation dosage or by drugs were also evaluated. The long term program has included; (1) effects of radiation on cell replication and the correlation with incorporated dose levels, (2) radiation induced changes in cell function, viz., the response of beta irradiated spleen lymphocytes to antigenic stimulation by sheep red blood cells (SRBC), (3) kinetics of tumor and normal cell replication; and (4) megakaryocyte formation and modification by radiomimetic drugs.

  1. Non-animal approaches for toxicokinetics in risk evaluations of food chemicals.

    PubMed

    Punt, Ans; Peijnenburg, Ad A C M; Hoogenboom, Ron L A P; Bouwmeester, Hans

    2017-01-01

    The objective of the present work was to review the availability and predictive value of non-animal toxicokinetic approaches and to evaluate their current use in European risk evaluations of food contaminants, additives and food contact materials, as well as pesticides and medicines. Results revealed little use of quantitative animal or human kinetic data in risk evaluations of food chemicals, compared with pesticides and medicines. Risk evaluations of medicines provided sufficient in vivo kinetic data from different species to evaluate the predictive value of animal kinetic data for humans. These data showed a relatively poor correlation between the in vivo bioavailability in rats and dogs versus that in humans. In contrast, in vitro (human) kinetic data have been demonstrated to provide adequate predictions of the fate of compounds in humans, using appropriate in vitro-in vivo scalers and by integration of in vitro kinetic data with in silico kinetic modelling. Even though in vitro kinetic data were found to be occasionally included within risk evaluations of food chemicals, particularly results from Caco-2 absorption experiments and in vitro data on gut-microbial conversions, only minor use of in vitro methods for metabolism and quantitative in vitro-in vivo extrapolation methods was identified. Yet, such quantitative predictions are essential in the development of alternatives to animal testing as well as to increase human relevance of toxicological risk evaluations. Future research should aim at further improving and validating quantitative alternative methods for kinetics, thereby increasing regulatory acceptance of non-animal kinetic data.

  2. The POLD3 subunit of DNA polymerase δ can promote translesion synthesis independently of DNA polymerase ζ

    PubMed Central

    Hirota, Kouji; Yoshikiyo, Kazunori; Guilbaud, Guillaume; Tsurimoto, Toshiki; Murai, Junko; Tsuda, Masataka; Phillips, Lara G.; Narita, Takeo; Nishihara, Kana; Kobayashi, Kaori; Yamada, Kouich; Nakamura, Jun; Pommier, Yves; Lehmann, Alan; Sale, Julian E.; Takeda, Shunichi

    2015-01-01

    The replicative DNA polymerase Polδ consists of a catalytic subunit POLD1/p125 and three regulatory subunits POLD2/p50, POLD3/p66 and POLD4/p12. The ortholog of POLD3 in Saccharomyces cerevisiae, Pol32, is required for a significant proportion of spontaneous and UV-induced mutagenesis through its additional role in translesion synthesis (TLS) as a subunit of DNA polymerase ζ. Remarkably, chicken DT40 B lymphocytes deficient in POLD3 are viable and able to replicate undamaged genomic DNA with normal kinetics. Like its counterpart in yeast, POLD3 is required for fully effective TLS, its loss resulting in hypersensitivity to a variety of DNA damaging agents, a diminished ability to maintain replication fork progression after UV irradiation and a significant decrease in abasic site-induced mutagenesis in the immunoglobulin loci. However, these defects appear to be largely independent of Polζ, suggesting that POLD3 makes a significant contribution to TLS independently of Polζ in DT40 cells. Indeed, combining polη, polζ and pold3 mutations results in synthetic lethality. Additionally, we show in vitro that POLD3 promotes extension beyond an abasic by the Polδ holoenzyme suggesting that while POLD3 is not required for normal replication, it may help Polδ to complete abasic site bypass independently of canonical TLS polymerases. PMID:25628356

  3. Enzyme Kinetics of the Mitochondrial Deoxyribonucleoside Salvage Pathway Are Not Sufficient to Support Rapid mtDNA Replication

    PubMed Central

    Gandhi, Vishal V.; Samuels, David C.

    2011-01-01

    Using a computational model, we simulated mitochondrial deoxynucleotide metabolism and mitochondrial DNA replication. Our results indicate that the output from the mitochondrial salvage enzymes alone is inadequate to support a mitochondrial DNA replication duration of as long as 10 hours. We find that an external source of deoxyribonucleoside diphosphates or triphosphates (dNTPs), in addition to those supplied by mitochondrial salvage, is essential for the replication of mitochondrial DNA to complete in the experimentally observed duration of approximately 1 to 2 hours. For meeting a relatively fast replication target of 2 hours, almost two-thirds of the dNTP requirements had to be externally supplied as either deoxyribonucleoside di- or triphosphates, at about equal rates for all four dNTPs. Added monophosphates did not suffice. However, for a replication target of 10 hours, mitochondrial salvage was able to provide for most, but not all, of the total substrate requirements. Still, additional dGTPs and dATPs had to be supplied. Our analysis of the enzyme kinetics also revealed that the majority of enzymes of this pathway prefer substrates that are not precursors (canonical deoxyribonucleosides and deoxyribonucleotides) for mitochondrial DNA replication, such as phosphorylated ribonucleotides, instead of the corresponding deoxyribonucleotides. The kinetic constants for reactions between mitochondrial salvage enzymes and deoxyribonucleotide substrates are physiologically unreasonable for achieving efficient catalysis with the expected in situ concentrations of deoxyribonucleotides. PMID:21829339

  4. Thermodynamic limits on the size and size distribution of nucleic acids synthesized in vitro: the role of pyrophosphate hydrolysis.

    PubMed

    Peller, L

    1977-02-08

    The free-energy change of phosphodiester bond formation from nucleoside triphosphates is more favorable than with nucleoside diphosphates as substrates. Base-stacking interactions can make significant contributions to both delta G degrees ' values. Pyrophosphate hydrolysis when it accompanies the former reaction dominates all thermodynamic considerations. Three experimental situations are discussed in which high-molecular-weight polynucleotides are synthesized without a strong driving force for covalent bond formation. For one of these, a kinetic scheme is presented which encompasses an early narrow Poisson distribution of chain lengths with ultimate passage to a disperse equilibrium population of chain sizes. Hydrolytic removal of pyrophosphate expands the time scale for this undesirable process by a factor of 10(9), while it enormously elevates the thermodynamic ceiling for the average degrees of polymerization in the other two examples. The electron micrographically revealed broad size population from an early study of partial replication of a T7 DNA template is found to adhere (fortuitously) to a disperse most probable representation. Some possible origins are examined for the branched structures in this product, as well as in a later investigation of replication of this nucleic acid. The achievement of both very high molecular weights and sharply peaked size distributions in polynucleotides synthesized in vitro will require coupling to inorganic pyrophosphatase action as in vivo.

  5. Iterated function systems for DNA replication

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2017-10-01

    The kinetic equations of DNA replication are shown to be exactly solved in terms of iterated function systems, running along the template sequence and giving the statistical properties of the copy sequences, as well as the kinetic and thermodynamic properties of the replication process. With this method, different effects due to sequence heterogeneity can be studied, in particular, a transition between linear and sublinear growths in time of the copies, and a transition between continuous and fractal distributions of the local velocities of the DNA polymerase along the template. The method is applied to the human mitochondrial DNA polymerase γ without and with exonuclease proofreading.

  6. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein.

    PubMed

    Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K

    2014-01-01

    This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.

  7. Self-replicating Replicon-RNA Delivery to Dendritic Cells by Chitosan-nanoparticles for Translation In Vitro and In Vivo

    PubMed Central

    McCullough, Kenneth C; Bassi, Isabelle; Milona, Panagiota; Suter, Rolf; Thomann-Harwood, Lisa; Englezou, Pavlos; Démoulins, Thomas; Ruggli, Nicolas

    2014-01-01

    Self-amplifying replicon RNA (RepRNA) possesses high potential for increasing antigen load within dendritic cells (DCs). The major aim of the present work was to define how RepRNA delivered by biodegradable, chitosan-based nanoparticulate delivery vehicles (nanogel-alginate (NGA)) interacts with DCs, and whether this could lead to translation of the RepRNA in the DCs. Although studies employed virus replicon particles (VRPs), there are no reports on biodegradable, nanoparticulate vehicle delivery of RepRNA. VRP studies employed cytopathogenic agents, contrary to DC requirements—slow processing and antigen retention. We employed noncytopathogenic RepRNA with NGA, demonstrating for the first time the efficiency of RepRNA association with nanoparticles, NGA delivery to DCs, and RepRNA internalization by DCs. RepRNA accumulated in vesicular structures, with patterns typifying cytosolic release. This promoted RepRNA translation, in vitro and in vivo. Delivery and translation were RepRNA concentration-dependent, occurring in a kinetic manner. Including cationic lipids with chitosan during nanoparticle formation enhanced delivery and translation kinetics, but was not required for translation of immunogenic levels in vivo. This work describes for the first time the characteristics associated with chitosan-nanoparticle delivery of self-amplifying RepRNA to DCs, leading to translation of encoded foreign genes, namely influenza virus hemagglutinin and nucleoprotein. PMID:25004099

  8. Recent Insight into the Kinetic Mechanisms and Conformational Dynamics of Y-Family DNA Polymerases

    PubMed Central

    2015-01-01

    The kinetic mechanisms by which DNA polymerases catalyze DNA replication and repair have long been areas of active research. Recently discovered Y-family DNA polymerases catalyze the bypass of damaged DNA bases that would otherwise block replicative DNA polymerases and stall replication forks. Unlike DNA polymerases from the five other families, the Y-family DNA polymerases have flexible, solvent-accessible active sites that are able to tolerate various types of damaged template bases and allow for efficient lesion bypass. Their promiscuous active sites, however, also lead to fidelities that are much lower than those observed for other DNA polymerases and give rise to interesting mechanistic properties. Additionally, the Y-family DNA polymerases have several other unique structural features and undergo a set of conformational changes during substrate binding and catalysis different from those observed for replicative DNA polymerases. In recent years, pre-steady-state kinetic methods have been extensively employed to reveal a wealth of information about the catalytic properties of these fascinating noncanonical DNA polymerases. Here, we review many of the recent findings on the kinetic mechanisms of DNA polymerization with undamaged and damaged DNA substrates by the Y-family DNA polymerases, and the conformational dynamics employed by these error-prone enzymes during catalysis. PMID:24716482

  9. In Vitro "Evolutionary Arms-Races" Between Hosts and Parasites in an Artificial RNA Replication System

    NASA Astrophysics Data System (ADS)

    Furubayashi, T.; Bansho, Y.; Motooka, D.; Nakamura, S.; Ichihashi, N.

    2017-07-01

    We performed coevolution of artificial RNA self-replicators and parasitic replicators in microdroplets. We observed evolutionary arms-races with oscillating population dynamics and faster evolution of self-replicators caused by parasitic replicators.

  10. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-06-23

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.

  11. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  12. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.

    PubMed

    McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2008-12-01

    Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.

  13. Competitive replication kinetics and pathogenicity in pigs co-infected with historical and newly invading classical swine fever viruses.

    PubMed

    Huang, Yu-Liang; Deng, Ming-Chung; Tsai, Kuo-Jung; Liu, Hsin-Meng; Huang, Chin-Cheng; Wang, Fun-In; Chang, Chia-Yi

    2017-01-15

    Classical swine fever (CSF), an economically important and highly contagious disease of pigs, is caused by classical swine fever virus (CSFV). In Taiwan, CSFVs from field outbreaks belong to two distinct genotypes. The historical genotype 3.4 dominated from the 1920s to 1996, and since 1996, the newly invading genotype 2.1 has dominated. To explain the phenomenon of this virus shift in the field, representative viruses belonging to genotypes 2.1 and 3.4 were either inoculated alone (single infection) or co-inoculated (co-infection), both in vivo and in vitro, to compare the virus replication and pathogenesis. In pigs co-infected with the genotype 2.1 TD/96/TWN strain and the genotype 3.4 94.4/IL/94/TWN strain, the newly invading genotype 2.1 was detected earlier in the blood, oral fluid, and feces, and the viral loads were consistently and significantly higher than that of the historical genotype 3.4. In cell cultures, the ratio of secreted virus to cell-associated virus of the genotype 2.1 strain was higher than that of the genotype 3.4 strain. This study is the first to demonstrate a possible explanation of virus shift in the field, wherein the newly invading genotype 2.1 replicates more efficiently than did genotype 3.4 and outcompetes the replication and pathogenicity of genotype 3.4 in pigs in the field. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Kaplan-Meier Meets Chemical Kinetics: Intrinsic Rate of SOD1 Amyloidogenesis Decreased by Subset of ALS Mutations and Cannot Fully Explain Age of Disease Onset.

    PubMed

    Abdolvahabi, Alireza; Shi, Yunhua; Rasouli, Sanaz; Croom, Corbin M; Aliyan, Amir; Martí, Angel A; Shaw, Bryan F

    2017-06-21

    Over 150 mutations in SOD1 (superoxide dismutase-1) cause amyotrophic lateral sclerosis (ALS), presumably by accelerating SOD1 amyloidogenesis. Like many nucleation processes, SOD1 fibrillization is stochastic (in vitro), which inhibits the determination of aggregation rates (and obscures whether rates correlate with patient phenotypes). Here, we diverged from classical chemical kinetics and used Kaplan-Meier estimators to quantify the probability of apo-SOD1 fibrillization (in vitro) from ∼10 3 replicate amyloid assays of wild-type (WT) SOD1 and nine ALS variants. The probability of apo-SOD1 fibrillization (expressed as a Hazard ratio) is increased by certain ALS-linked SOD1 mutations but is decreased or remains unchanged by other mutations. Despite this diversity, Hazard ratios of fibrillization correlated linearly with (and for three mutants, approximately equaled) Hazard ratios of patient survival (R 2 = 0.67; Pearson's r = 0.82). No correlation exists between Hazard ratios of fibrillization and age of initial onset of ALS (R 2 = 0.09). Thus, Hazard ratios of fibrillization might explain rates of disease progression but not onset. Classical kinetic metrics of fibrillization, i.e., mean lag time and propagation rate, did not correlate as strongly with phenotype (and ALS mutations did not uniformly accelerate mean rate of nucleation or propagation). A strong correlation was found, however, between mean ThT fluorescence at lag time and patient survival (R 2 = 0.93); oligomers of SOD1 with weaker fluorescence correlated with shorter survival. This study suggests that SOD1 mutations trigger ALS by altering a property of SOD1 or its oligomers other than the intrinsic rate of amyloid nucleation (e.g., oligomer stability; rates of intercellular propagation; affinity for membrane surfaces; and maturation rate).

  15. Human Mitochondrial RNA Polymerase: Evaluation of the Single-Nucleotide-Addition Cycle on Synthetic RNA/DNA Scaffolds

    PubMed Central

    Smidansky, Eric D.; Arnold, Jamie J.; Reynolds, Shelley L.; Cameron, Craig E.

    2013-01-01

    The human mitochondrial RNA polymerase (h-mtRNAP) serves as both the transcriptase for expression and the primase for replication of mitochondrial DNA. As such, the enzyme is of fundamental importance to cellular energy metabolism, and defects in its function may be related to human disease states. Here we describe in vitro analysis of the h-mtRNAP kinetic mechanism for single, correct nucleotide incorporation. This was made possible by the development of efficient methods for expression and purification of h-mtRNAP using a bacterial system and by utilization of assays that rely on simple, synthetic RNA/DNA scaffolds without the need for mitochondrial transcription accessory proteins. We find that h-mtRNAP accomplishes single-nucleotide incorporation by using the same core steps, including conformational change steps before and after chemistry, that are prototypical for most types of nucleic acid polymerases. The polymerase binds to scaffolds via a two-step mechanism consisting of a fast initial-encounter step followed by a much slower isomerization that leads to catalytic competence. A substantial solvent deuterium kinetic isotope effect was observed for the forward reaction, but none was detectable for the reverse reaction, suggesting that chemistry is at least partially rate-limiting in the forward direction but not in the reverse. h-mtRNAP appears to exercise much more stringent surveillance over base than over sugar in determining the correctness of a nucleotide. The utility of developing the robust in vitro assays described here and of establishing a baseline of kinetic performance for the wild-type enzyme is that biological questions concerning h-mtRNAP may now begin to be addressed. PMID:21548588

  16. Spatial distribution and specification of mammalian replication origins during G1 phase

    PubMed Central

    Li, Feng; Chen, Jianhua; Solessio, Eduardo; Gilbert, David M.

    2003-01-01

    We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication. PMID:12707307

  17. Cytologic Effects of Air Force Chemicals

    DTIC Science & Technology

    1980-11-01

    Studies of DNA replication and repair in cell cultures have shown that hydrazine, although highly toxic to cells, does not damage DNA and thus...interfere directly with DNA replication in Chinese hamster ovary cells grown in vitro, nor does it affect DNA repair synthesis in CCL-185 human lung cells...vitro with chemicals and monitoring their effect on DNA replication and repair. This method has been used to show that the alkylating agents MMS and 4

  18. A D-Shaped Bileaflet Bioprosthesis which Replicates Physiological Left Ventricular Flow Patterns

    PubMed Central

    Tan, Sean Guo-Dong; Kim, Sangho; Hon, Jimmy Kim Fatt; Leo, Hwa Liang

    2016-01-01

    Prior studies have shown that in a healthy heart, there exist a large asymmetric vortex structure that aids in establishing a steady flow field in the left ventricle. However, the implantation of existing artificial heart valves at the mitral position is found to have a negative effect on this physiological flow pattern. In light of this, a novel D-shaped bileaflet porcine bioprosthesis (GD valve) has been designed based on the native geometry mitral valve, with the hypothesis that biomimicry in valve design can restore physiological left ventricle flow patterns after valve implantation. An in-vitro experiment using two dimensional particle velocimetry imaging was carried out to determine the hemodynamic performance of the new bileaflet design and then compared to that of the well-established St. Jude Epic valve which functioned as a control in the experiment. Although both valves were found to have similar Reynolds shear stress and Turbulent Kinetic Energy levels, the novel D-shape valve was found to have lower turbulence intensity and greater mean kinetic energy conservation. PMID:27258099

  19. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  20. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout

    USGS Publications Warehouse

    Wargo, Andrew R.; Scott, Robert J.; Kerr, Benjamin; Kurath, Gael

    2017-01-01

    Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2 days, defining a generally uniform early peak period of shedding from 1 to 4 days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority of fish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV shedding kinetics and variation at the individual fish level could assist with management decisions about how to respond to disease outbreaks when they occur.

  1. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout.

    PubMed

    Wargo, Andrew R; Scott, Robert J; Kerr, Benjamin; Kurath, Gael

    2017-01-02

    Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2days, defining a generally uniform early peak period of shedding from 1 to 4days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority of fish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV shedding kinetics and variation at the individual fish level could assist with management decisions about how to respond to disease outbreaks when they occur. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Replication and shedding kinetics of infectious hematopoietic necrosis virus in juvenile rainbow trout

    PubMed Central

    Wargo, Andrew R.; Scott, Robert J.; Kerr, Benjamin; Kurath, Gael

    2016-01-01

    Viral replication and shedding are key components of transmission and fitness, the kinetics of which are heavily dependent on virus, host, and environmental factors. To date, no studies have quantified the shedding kinetics of infectious hematopoietic necrosis virus (IHNV) in rainbow trout (Oncorhynchus mykiss), or how they are associated with replication, making it difficult to ascertain the transmission dynamics of this pathogen of high agricultural and conservation importance. Here, the replication and shedding kinetics of two M genogroup IHNV genotypes were examined in their naturally co-evolved rainbow trout host. Within host virus replication began rapidly, approaching maximum values by day 3 post-infection, after which viral load was maintained or gradually dropped through day 7. Host innate immune response measured as stimulation of Mx-1 gene expression generally followed within host viral loads. Shedding also began very quickly and peaked within 2 days, defining a generally uniform early peak period of shedding from 1 to 4 days after exposure to virus. This was followed by a post-peak period where shedding declined, such that the majority offish were no longer shedding by day 12 post-infection. Despite similar kinetics, the average shedding rate over the course of infection was significantly lower in mixed compared to single genotype infections, suggesting a competition effect, however, this did not significantly impact the total amount of virus shed. The data also indicated that the duration of shedding, rather than peak amount of virus shed, was correlated with fish mortality. Generally, the majority of virus produced during infection appeared to be shed into the environment rather than maintained in the host, although there was more retention of within host virus during the post-peak period. Viral virulence was correlated with shedding, such that the more virulent of the two genotypes shed more total virus. This fundamental understanding of IHNV shedding kinetics and variation at the individual fish level could assist with management decisions about how to respond to disease outbreaks when they occur. PMID:27771253

  3. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  4. Influenza B virus: alpha-amanitin sensitivity of replication and primer-dependence of in vitro transcription.

    PubMed

    Mowshowitz, S L; Deval, J

    1980-01-01

    The replication of influenza B/Lee/40 virus in MDCK (canine kidney) cells was sensitive to alpha-amanitin and actinomycin D. In vitro, virion transcriptase activity was stimulated by dinucleotide primers such as ApG. The above characteristics are shared by A/WSN virus.

  5. Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication

    PubMed Central

    Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.

    1998-01-01

    A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241

  6. Pre-steady-state kinetic investigation of bypass of a bulky guanine lesion by human Y-family DNA polymerases.

    PubMed

    Tokarsky, E John; Gadkari, Varun V; Zahurancik, Walter J; Malik, Chanchal K; Basu, Ashis K; Suo, Zucai

    2016-10-01

    3-Nitrobenzanthrone (3-NBA), a byproduct of diesel exhaust, is highly present in the environment and poses a significant health risk. Exposure to 3-NBA results in formation of N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG C8- N -ABA ), a bulky DNA lesion that is of particular importance due to its mutagenic and carcinogenic potential. If not repaired or bypassed during genomic replication, dG C8- N -ABA can stall replication forks, leading to senescence and cell death. Here we used pre-steady-state kinetic methods to determine which of the four human Y-family DNA polymerases (hPolη, hPolκ, hPolι, or hRev1) are able to catalyze translesion synthesis of dG C8- N -ABA in vitro. Our studies demonstrated that hPolη and hPolκ most efficiently bypassed a site-specifically placed dG C8- N- ABA lesion, making them good candidates for catalyzing translesion synthesis (TLS) of this bulky lesion in vivo. Consistently, our publication (Biochemistry 53, 5323-31) in 2014 has shown that small interfering RNA-mediated knockdown of hPolη and hPolκ in HEK293T cells significantly reduces the efficiency of TLS of dG C8- N -ABA . In contrast, hPolι and hRev1 were severely stalled by dG C8- N -ABA and their potential role in vivo was discussed. Subsequently, we determined the kinetic parameters for correct and incorrect nucleotide incorporation catalyzed by hPolη at various positions upstream, opposite, and downstream from dG C8- N- ABA . Notably, nucleotide incorporation efficiency and fidelity both decreased significantly during dG C8- N -ABA bypass and the subsequent extension step, leading to polymerase pausing and error-prone DNA synthesis by hPolη. Furthermore, hPolη displayed nucleotide concentration-dependent biphasic kinetics at the two polymerase pause sites, suggesting that multiple enzyme•DNA complexes likely exist during nucleotide incorporation. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of the kinetic parameters of the truncated catalytic subunit and holoenzyme of human DNA polymerase ε

    PubMed Central

    Zahurancik, Walter J.; Baranovskiy, Andrey G.; Tahirov, Tahir H.; Suo, Zucai

    2015-01-01

    Numerous genetic studies have provided compelling evidence to establish DNA polymerase ε (Polε) as the primary DNA polymerase responsible for leading strand synthesis during eukaryotic nuclear genome replication. Polε is a heterotetramer consisting of a large catalytic subunit that contains the conserved polymerase core domain as well as a 3′ → 5′ exonuclease domain common to many replicative polymerases. In addition, Polε possesses three small subunits that lack a known catalytic activity but associate with components involved in a variety of DNA replication and maintenance processes. Previous enzymatic characterization of the Polε heterotetramer from budding yeast suggested that the small subunits slightly enhance DNA synthesis by Polε in vitro. However, similar studies of the human Polε heterote-tramer (hPolε) have been limited by the difficulty of obtaining hPolε in quantities suitable for thorough investigation of its catalytic activity. Utilization of a baculovirus expression system for overexpression and purification of hPolε from insect host cells has allowed for isolation of greater amounts of active hPolε, thus enabling a more detailed kinetic comparison between hPolε and an active N-terminal fragment of the hPolε catalytic subunit (p261N), which is readily overexpressed in Escherichia coli. Here, we report the first pre-steady-state studies of fully-assembled hPolε. We observe that the small subunits increase DNA binding by hPolε relative to p261N, but do not increase processivity during DNA synthesis on a single-stranded M13 template. Interestingly, the 3′ → 5′ exonuclease activity of hPolε is reduced relative to p261N on matched and mismatched DNA substrates, indicating that the presence of the small subunits may regulate the proofreading activity of hPolε and sway hPolε toward DNA synthesis rather than proofreading. PMID:25684708

  8. Albumin nanoparticles coated with polysorbate 80 as a novel drug carrier for the delivery of antiretroviral drug—Efavirenz

    PubMed Central

    Jenita, Josephine Leno; Chocalingam, Vijaya; Wilson, Barnabas

    2014-01-01

    Purpose of the study: The antiretroviral therapy (ART) has dramatically improved human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) treatment, prevention and also has been found to increase the lifespan of HIV/AIDS patients by providing durable control of the HIV replication in patients. Efavirenz is a non-nucleoside reverse transcriptase inhibitor of HIV-1. The purpose of this study is to formulate efavirenz-loaded bovine serum albumin nanoparticles to improve efavirenz delivery into various organs. Materials and Methods: Nanoparticles were prepared by desolvation technique and coated with polysorbate 80. Ethanol, glutaraldehyde, and mannitol were used as desolvating, cross linking agent, and cryoprotectant, respectively. Drug to polymer ratio was chosen at five levels from 1:2, 1:3, 1:4, 1:5, and 1:6 (by weight). The formulated nanoparticles were characterized for Fourier Transform Infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC) studies, entrapment efficiency, particle size, surface charge, surface morphology, in vitro drug release, release kinetics, stability studies, and biodistribution studies. Results and Major Conclusion: The particle size of the prepared formulations was found below 250nm with narrow size distribution, spherical in shape and showed good entrapment efficiency (45.62-72.49%). The in vitro drug release indicated biphasic release and its data were fitted to release kinetics models and release pattern was Fickian diffusion controlled release profile. The prepared nanoparticles increased efavirenz delivery into various organs by several fold in comparison with the free drug. PMID:25126528

  9. Characterizing Bacteriophage PR772 as a Potential Surrogate for Adenovirus in Water Disinfection: A Comparative Analysis of Inactivation Kinetics and Replication Cycle Inhibition by Free Chlorine.

    PubMed

    Gall, Aimee M; Shisler, Joanna L; Mariñas, Benito J

    2016-03-01

    Elucidating mechanisms by which pathogenic waterborne viruses become inactivated by drinking water disinfectants would facilitate the development of sensors to detect infectious viruses and novel disinfection strategies to provide safe water. Using bacteriophages as surrogates for human pathogenic viruses could assist in elucidating these mechanisms; however, an appropriate viral surrogate for human adenovirus (HAdV), a medium-sized virus with a double-stranded DNA genome, needs to be identified. Here, we characterized the inactivation kinetics of bacteriophage PR772, a member of the Tectiviridae family with many similarities in structure and replication to HAdV. The inactivation of PR772 and HAdV by free chlorine had similar kinetics that could be represented with a model previously developed for HAdV type 2 (HAdV-2). We developed and tested a quantitative assay to analyze several steps in the PR772 replication cycle to determine if both viruses being inactivated at similar rates resulted from similar replication cycle events being inhibited. Like HAdV-2, we observed that PR772 inactivated by free chlorine still attached to host cells, and viral DNA synthesis and early and late gene transcription were inhibited. Consequently, free chlorine exposure inhibited a replication cycle event that was post-binding but took place prior to early gene synthesis for both PR772 and HAdV-2.

  10. Promotion of Hendra Virus Replication by MicroRNA 146a

    PubMed Central

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  11. Quantitative estimation of Nipah virus replication kinetics in vitro

    PubMed Central

    Chang, Li-Yen; Ali, AR Mohd; Hassan, Sharifah Syed; AbuBakar, Sazaly

    2006-01-01

    Background Nipah virus is a zoonotic virus isolated from an outbreak in Malaysia in 1998. The virus causes infections in humans, pigs, and several other domestic animals. It has also been isolated from fruit bats. The pathogenesis of Nipah virus infection is still not well described. In the present study, Nipah virus replication kinetics were estimated from infection of African green monkey kidney cells (Vero) using the one-step SYBR® Green I-based quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR) assay. Results The qRT-PCR had a dynamic range of at least seven orders of magnitude and can detect Nipah virus from as low as one PFU/μL. Following initiation of infection, it was estimated that Nipah virus RNA doubles at every ~40 minutes and attained peak intracellular virus RNA level of ~8.4 log PFU/μL at about 32 hours post-infection (PI). Significant extracellular Nipah virus RNA release occurred only after 8 hours PI and the level peaked at ~7.9 log PFU/μL at 64 hours PI. The estimated rate of Nipah virus RNA released into the cell culture medium was ~0.07 log PFU/μL per hour and less than 10% of the released Nipah virus RNA was infectious. Conclusion The SYBR® Green I-based qRT-PCR assay enabled quantitative assessment of Nipah virus RNA synthesis in Vero cells. A low rate of Nipah virus extracellular RNA release and low infectious virus yield together with extensive syncytial formation during the infection support a cell-to-cell spread mechanism for Nipah virus infection. PMID:16784519

  12. Mink parvoviruses and interferons: in vitro studies.

    PubMed Central

    Wiedbrauk, D L; Bloom, M E; Lodmell, D L

    1986-01-01

    Although interferons can inhibit the replication of a number of viruses, little is known about their ability to inhibit parvovirus replication. Therefore, in vitro experiments were done to determine if Aleutian disease virus and mink enteritis virus, two autonomously replicating mink parvoviruses, induced interferon, were sensitive to the effects of interferon, or inhibited the production of interferon. The results indicated that these parvoviruses neither induced nor were sensitive to the effects of interferon. Furthermore, preexisting parvovirus infections did not inhibit poly(I).poly(C)-induced interferon production. This independence from the interferon system may, therefore, be a general property of the autonomously replicating parvoviruses. PMID:2431162

  13. Autologous neutralizing antibody to human immunodeficiency virus-1 and replication-competent virus recovered from CD4+ T-cell reservoirs in pediatric HIV-1-infected patients on HAART.

    PubMed

    Ching, Natascha; Nielsen-Saines, Karin A; Deville, Jaime G; Wei, Lian S; Garratty, Eileen; Bryson, Yvonne J

    2010-05-01

    A patient's ability to produce autologous neutralizing antibody (ANAB) to current and past HIV isolates correlates with reduced disease progression and protects against maternal-fetal transmission. Little is known about the effects of prolonged viral suppression on the ANAB response in pediatric HIV-infected patients receiving HAART because the virus is hard to isolate, except by special methods. We therefore assessed ANAB to pre-HAART PBMC virus isolates and post-HAART replication-competent virus (RCV) isolates recovered from latent CD4(+) T-cell reservoirs in perinatally HIV-infected children by using a PBMC-based assay and 90% neutralization titers. We studied two infants and three children before and after HAART. At the time of RCV isolation (n = 4), plasma HIV RNA was <50 copies/ml. At baseline, four of five children had detectable ANAB titers to concurrent pre-HAART virus isolates. Although ANAB was detected in all subjects at several time points despite prolonged HAART and undetectable viremia, the response was variable. ANAB titers to concurrent post-HAART RCV and earlier pre-HAART plasma were present in 3 children suggesting prior exposure to this virus. Post-HAART RCV isolates had reduced replication kinetics in vitro compared to pre-HAART viruses. The presence of ANAB over time suggests that low levels of viral replication may still be ongoing despite HAART. The observation of baseline ANAB activity with earlier plasma against a later RCV suggests that the "latent" reservoir may be established early in life before HAART.

  14. Efficient assembly of full-length infectious clone of Brazilian IBDV isolate by homologous recombination in yeast

    PubMed Central

    Silva, J.V.J.; Arenhart, S.; Santos, H.F.; Almeida-Queiroz, S.R.; Silva, A.N.M.R.; Trevisol, I.M.; Bertani, G.R.; Gil, L.H.V.G.

    2014-01-01

    The Infectious Bursal Disease Virus (IBDV) causes immunosuppression in young chickens. Advances in molecular virology and vaccines for IBDV have been achieved by viral reverse genetics (VRG). VRG for IBDV has undergone changes over time, however all strategies used to generate particles of IBDV involves multiple rounds of amplification and need of in vitro ligation and restriction sites. The aim of this research was to build the world’s first VRG for IBDV by yeast-based homologous recombination; a more efficient, robust and simple process than cloning by in vitro ligation. The wild type IBDV (Wt-IBDV-Br) was isolated in Brazil and had its genome cloned in pJG-CMV-HDR vector by yeast-based homologous recombination. The clones were transfected into chicken embryo fibroblasts and the recovered virus (IC-IBDV-Br) showed genetic stability and similar phenotype to Wt-IBDV-Br, which were observed by nucleotide sequence, focus size/morphology and replication kinetics, respectively. Thus, IBDV reverse genetics by yeast-based homologous recombination provides tools to IBDV understanding and vaccines/viral vectors development. PMID:25763067

  15. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khalil, Mohamed I., E-mail: mkhalil2@stanford.edu; Department of Molecular Biology, National Research Centre, El-Buhouth St., Cairo; Che, Xibing

    VZV IE62 is an essential, immediate-early, tegument protein and consists of five domains. We generated recombinant viruses carrying mutations in the first three IE62 domains and tested their influence on VZV replication kinetics. The mutations in domain I did not affect replication kinetics while domain II mutations, disrupting the DNA binding and dimerization domain (DBD), were lethal for VZV replication. Mutations in domain III of the nuclear localization signal (NLS) and the two phosphorylation sites S686A/S722A resulted in slower growth in early and late infection respectively and were associated with IE62 accumulation in the cytoplasm and nucleus respectively. This studymore » mapped the functional domains of IE62 in context of viral infection, indicating that DNA binding and dimerization domain is essential for VZV replication. In addition, the correct localization of IE62, whether nuclear or cytoplasmic, at different points in the viral life cycle, is important for normal progression of VZV replication. - Highlights: • Mutation of IE62 domain I did not affect VZV replication in melanoma cells. • IE62 domain II and III are important for VZV replication in melanoma cells. • Mutations of IE62 domain II (DBD) were lethal for virus replication. • Mutations of IE62 NLS and phosphorylation sites inhibited VZV replication. • NLS and S686A/S722A mutations altered localization of IE62 during early and late infection.« less

  16. IN VITRO METABOLISM OF THE CHIRAL TRIAZOLE FUNGICIDE BROMUCONAZOLE 47 USING SUBSTRATE DEPLETION AND PRODUCT FORMATION KINETICS IN RAT HEPATIC MICROSOMES

    EPA Science Inventory

    Kinetic analysis of xenobiotic metabolism using in vitro hepatic microsomes are needed for predictive in vivo physiological modeling. Recently, much emphasis has been placed on the adverse effects of triazole fungicides in mammalian steroid metabolism. In vitro metabolism of the ...

  17. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    PubMed

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine.

    PubMed

    Yoon, Jung-Hoon; Roy Choudhury, Jayati; Park, Jeseong; Prakash, Satya; Prakash, Louise

    2017-11-10

    N3-Methyladenine (3-MeA) is formed in DNA by reaction with S -adenosylmethionine, the reactive methyl donor, and by reaction with alkylating agents. 3-MeA protrudes into the DNA minor groove and strongly blocks synthesis by replicative DNA polymerases (Pols). However, the mechanisms for replicating through this lesion in human cells remain unidentified. Here we analyzed the roles of translesion synthesis (TLS) Pols in the replication of 3-MeA-damaged DNA in human cells. Because 3-MeA has a short half-life in vitro , we used the stable 3-deaza analog, 3-deaza-3-methyladenine (3-dMeA), which blocks the DNA minor groove similarly to 3-MeA. We found that replication through the 3-dMeA adduct is mediated via three different pathways, dependent upon Polι/Polκ, Polθ, and Polζ. As inferred from biochemical studies, in the Polι/Polκ pathway, Polι inserts a nucleotide (nt) opposite 3-dMeA and Polκ extends synthesis from the inserted nt. In the Polθ pathway, Polθ carries out both the insertion and extension steps of TLS opposite 3-dMeA, and in the Polζ pathway, Polζ extends synthesis following nt insertion by an as yet unidentified Pol. Steady-state kinetic analyses indicated that Polι and Polθ insert the correct nt T opposite 3-dMeA with a much reduced catalytic efficiency and that both Pols exhibit a high propensity for inserting a wrong nt opposite this adduct. However, despite their low fidelity of synthesis opposite 3-dMeA, TLS opposite this lesion replicates DNA in a highly error-free manner in human cells. We discuss the implications of these observations for TLS mechanisms in human cells. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Cellular respiration: replicating in vivo systems biology for in ...

    EPA Pesticide Factsheets

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The express purpose is to provide a publication outlet for novel breath related research that includes in vitro studies, especially those that explore the biological origin and expression of compounds that may ultimately influence the constituents of exhaled breath. The new topics include all manner of methods and instrumentations for making in vivo and in vitro measurements, the use of different biological media (blood, urine saliva, swabs) including human and microbial cell-lines, in vitro kinetic studies of metabolism, and advances in ex vivo methods for maintaining metabolic competency and viability of biological samples. Traditionally, JBR has published articles on human breath analysis for diagnosing disease, tracking health state, assessing the dose and effect of exogenous chemicals, and contributions of malodorous compounds from the oral/nasal cavity. These have also included research describing novel sampling and analytical technologies, most notably those implementing mass spectrometry, chemical sensors and optical measurement instrumentation (Amann and Smith 2013). The journal’s original scope has also embraced animal models as surrogates for human sampling, new mathematical and

  20. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro

    PubMed Central

    van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.

    2016-01-01

    ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro. Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses. PMID:27903804

  1. A VP26-mNeonGreen Capsid Fusion HSV-2 Mutant Reactivates from Viral Latency in the Guinea Pig Genital Model with Normal Kinetics

    PubMed Central

    Pieknik, Julianna R.; Tang, Shuang

    2018-01-01

    Fluorescent herpes simplex viruses (HSV) are invaluable tools for localizing virus in cells, permitting visualization of capsid trafficking and enhancing neuroanatomical research. Fluorescent viruses can also be used to study virus kinetics and reactivation in vivo. Such studies would be facilitated by fluorescent herpes simplex virus recombinants that exhibit wild-type kinetics of replication and reactivation and that are genetically stable. We engineered an HSV-2 strain expressing the fluorescent mNeonGreen protein as a fusion with the VP26 capsid protein. This virus has normal replication and in vivo recurrence phenotypes, providing an essential improved tool for further study of HSV-2 infection. PMID:29738431

  2. In vivo imaging of cidofovir treatment of cowpox virus infection.

    PubMed

    Goff, Arthur; Twenhafel, Nancy; Garrison, Aura; Mucker, Eric; Lawler, James; Paragas, Jason

    2007-09-01

    Variola virus and other members of the genus Orthopoxviruses constitute a prominent bioterrorism and public health threat. Treatment with the anti-viral drug cidofovir inhibits replication of orthopoxviruses in vitro and in vivo. In this study, we visualized the effect of cidofovir on viral kinetics in orthopoxvirus infected mice by using whole-body fluorescence imaging (FI). We engineered a cowpox virus (CPV) expressing the enhanced green fluorescent protein (GFP). Single-step growth curves and calculated 50% lethal doses (LD(50)) of wild-type CPX (Wt-CPV) and GFP-expressing CPX (GFP-CPV) were comparable. Whole-body FI first detected GFP fluorescence in the mesenteric tissue of untreated animals on post-infection day (PID) 1. On PID 3 GFP signal was detected throughout the mesentery, in all abdominal organs by PID 5 and in most major organs, except for the heart and brain by PID 6. Infected animals treated with 25mg/kg of cidofovir also began showing signs of viral replication on PID 1, however, the fluorescent signal was limited only to discrete foci throughout the course of the infection. This work describes the first use of an established Orthopox model of infection to evaluate drug efficacy and track virus progression on a macroscopic level.

  3. Thermodynamic Basis for the Emergence of Genomes during Prebiotic Evolution

    PubMed Central

    Woo, Hyung-June; Vijaya Satya, Ravi; Reifman, Jaques

    2012-01-01

    The RNA world hypothesis views modern organisms as descendants of RNA molecules. The earliest RNA molecules must have been random sequences, from which the first genomes that coded for polymerase ribozymes emerged. The quasispecies theory by Eigen predicts the existence of an error threshold limiting genomic stability during such transitions, but does not address the spontaneity of changes. Following a recent theoretical approach, we applied the quasispecies theory combined with kinetic/thermodynamic descriptions of RNA replication to analyze the collective behavior of RNA replicators based on known experimental kinetics data. We find that, with increasing fidelity (relative rate of base-extension for Watson-Crick versus mismatched base pairs), replications without enzymes, with ribozymes, and with protein-based polymerases are above, near, and below a critical point, respectively. The prebiotic evolution therefore must have crossed this critical region. Over large regions of the phase diagram, fitness increases with increasing fidelity, biasing random drifts in sequence space toward ‘crystallization.’ This region encloses the experimental nonenzymatic fidelity value, favoring evolutions toward polymerase sequences with ever higher fidelity, despite error rates above the error catastrophe threshold. Our work shows that experimentally characterized kinetics and thermodynamics of RNA replication allow us to determine the physicochemical conditions required for the spontaneous crystallization of biological information. Our findings also suggest that among many potential oligomers capable of templated replication, RNAs may have evolved to form prebiotic genomes due to the value of their nonenzymatic fidelity. PMID:22693440

  4. Novel infectivity-enhanced oncolytic adenovirus with a capsid-incorporated dual-imaging moiety for monitoring virotherapy in ovarian cancer.

    PubMed

    Kimball, Kristopher J; Rivera, Angel A; Zinn, Kurt R; Icyuz, Mert; Saini, Vaibhav; Li, Jing; Zhu, Zeng B; Siegal, Gene P; Douglas, Joanne T; Curiel, David T; Alvarez, Ronald D; Borovjagin, Anton V

    2009-01-01

    We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for noninvasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk) and monomeric red fluorescent protein 1 (mRFP1) into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  5. Myxoma Virus Expressing Interleukin-15 Fails To Cause Lethal Myxomatosis in European Rabbits▿

    PubMed Central

    Liu, Jia; Wennier, Sonia; Reinhard, Mary; Roy, Edward; MacNeill, Amy; McFadden, Grant

    2009-01-01

    Myxoma virus (MYXV) is a poxvirus pathogenic only for European rabbits, but its permissiveness in human cancer cells gives it potential as an oncolytic virus. A recombinant MYXV expressing both the tdTomato red fluorescent protein and interleukin-15 (IL-15) (vMyx-IL-15-tdTr) was constructed. Cells infected with vMyx-IL-15-tdTr secreted bioactive IL-15 and had in vitro replication kinetics similar to that of wild-type MYXV. To determine the safety of this virus for future oncolytic studies, we tested its pathogenesis in European rabbits. In vivo, vMyx-IL-15-tdTr no longer causes lethal myxomatosis. Thus, ectopic IL-15 functions as an antiviral cytokine in vivo, and vMyx-IL-15-tdTr is a safe candidate for animal studies of oncolytic virotherapy. PMID:19279088

  6. Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits.

    PubMed

    Liu, Jia; Wennier, Sonia; Reinhard, Mary; Roy, Edward; MacNeill, Amy; McFadden, Grant

    2009-06-01

    Myxoma virus (MYXV) is a poxvirus pathogenic only for European rabbits, but its permissiveness in human cancer cells gives it potential as an oncolytic virus. A recombinant MYXV expressing both the tdTomato red fluorescent protein and interleukin-15 (IL-15) (vMyx-IL-15-tdTr) was constructed. Cells infected with vMyx-IL-15-tdTr secreted bioactive IL-15 and had in vitro replication kinetics similar to that of wild-type MYXV. To determine the safety of this virus for future oncolytic studies, we tested its pathogenesis in European rabbits. In vivo, vMyx-IL-15-tdTr no longer causes lethal myxomatosis. Thus, ectopic IL-15 functions as an antiviral cytokine in vivo, and vMyx-IL-15-tdTr is a safe candidate for animal studies of oncolytic virotherapy.

  7. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  8. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2001-05-01

    We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA

  9. Evidence for Sequential and Increasing Activation of Replication Origins along Replication Timing Gradients in the Human Genome

    PubMed Central

    Guilbaud, Guillaume; Rappailles, Aurélien; Baker, Antoine; Chen, Chun-Long; Arneodo, Alain; Goldar, Arach; d'Aubenton-Carafa, Yves; Thermes, Claude; Audit, Benjamin; Hyrien, Olivier

    2011-01-01

    Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. PMID:22219720

  10. Cancer-adipose tissue interaction and fluid flow synergistically modulate cell kinetics, HER2 expression, and trastuzumab efficacy in gastric cancer.

    PubMed

    Akutagawa, Takashi; Aoki, Shigehisa; Yamamoto-Rikitake, Mihoko; Iwakiri, Ryuichi; Fujimoto, Kazuma; Toda, Shuji

    2018-04-25

    Early local tumor invasion in gastric cancer results in likely encounters between cancer cells and submucosal and subserosal adipose tissue, but these interactions remain to be clarified. Microenvironmental mechanical forces, such as fluid flow, are known to modulate normal cell kinetics, but the effects of fluid flow on gastric cancer cells are poorly understood. We analyzed the cell kinetics and chemosensitivity in gastric cancer using a simple in vitro model that simultaneously replicated the cancer-adipocyte interaction and physical microenvironment. Gastric cancer cells (MKN7 and MKN74) were seeded on rat adipose tissue fragment-embedded discs or collagen discs alone. To generate fluid flow, samples were placed on a rotatory shaker in a CO 2 incubator. Proliferation, apoptosis, invasion, and motility-related molecules were analyzed by morphometry and immunostaining. Proteins were evaluated by western blot analysis. Chemosensitivity was investigated by trastuzumab treatment. Adipose tissue and fluid flow had a positive synergistic effect on the proliferative potential and invasive capacity of gastric cancer cells, and adipose tissue inhibited apoptosis in these cells. Adipose tissue upregulated ERK1/2 signaling in gastric cancer cells, but downregulated p38 signaling. Notably, adipose tissue and fluid flow promoted membranous and cytoplasmic HER2 expression and modulated chemosensitivity to trastuzumab in gastric cancer cells. We have demonstrated that cancer-adipocyte interaction and physical microenvironment mutually modulate gastric cancer cell kinetics. Further elucidation of the microenvironmental regulation in gastric cancer will be very important for the development of strategies involving molecular targeted therapy.

  11. Anterior Cruciate Ligament Biomechanics During Robotic and Mechanical Simulations of Physiologic and Clinical Motion Tasks: A Systematic Review and Meta-Analysis

    PubMed Central

    Bates, Nathaniel A.; Myer, Gregory D.; Shearn, Jason T.; Hewett, Timothy E.

    2014-01-01

    Investigators use in vitro joint simulations to invasively study the biomechanical behaviors of the anterior cruciate ligament. The aims of these simulations are to replicate physiologic conditions, but multiple mechanisms can be used to drive in vitro motions, which may influence biomechanical outcomes. The objective of this review was to examine, summarize, and compare biomechanical evidence related to anterior cruciate ligament function from in vitro simulations of knee motion. A systematic review was conducted (2004 to 2013) in Scopus, PubMed/Medline, and SPORTDiscus to identify peer-reviewed studies that reported kinematic and kinetic outcomes from in vitro simulations of physiologic or clinical tasks at the knee. Inclusion criteria for relevant studies were articles published in English that reported on whole-ligament anterior cruciate ligament mechanics during the in vitro simulation of physiologic or clinical motions on cadaveric knees that were unaltered outside of the anterior-cruciate-ligament-intact, -deficient, and -reconstructed conditions. A meta-analysis was performed to synthesize biomechanical differences between the anterior-cruciate-ligament-intact and reconstructed conditions. 77 studies met our inclusion/exclusion criteria and were reviewed. Combined joint rotations have the greatest impact on anterior cruciate ligament loads, but the magnitude by which individual kinematic degrees of freedom contribute to ligament loading during in vitro simulations is technique-dependent. Biomechanical data collected in prospective, longitudinal studies corresponds better with robotic-manipulator simulations than mechanical-impact simulations. Robotic simulation indicated that the ability to restore intact anterior cruciate ligament mechanics with anterior cruciate ligament reconstructions was dependent on loading condition and degree of freedom examined. PMID:25547070

  12. Lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats: a systematic review.

    PubMed

    Bol, Sebastiaan; Bunnik, Evelien M

    2015-11-16

    Feline herpesvirus 1 is a highly contagious virus that affects many cats. Virus infection presents with flu-like signs and irritation of ocular and nasal regions. While cats can recover from active infections without medical treatment, examination by a veterinarian is recommended. Lysine supplementation appears to be a popular intervention (recommended by > 90 % of veterinarians in cat hospitals). We investigated the scientific merit of lysine supplementation by systematically reviewing all relevant literature. NCBI's PubMed database was used to search for published work on lysine and feline herpesvirus 1, as well as lysine and human herpesvirus 1. Seven studies on lysine and feline herpesvirus 1 (two in vitro studies and 5 studies with cats), and 10 publications on lysine and human herpesvirus 1 (three in vitro studies and 7 clinical trials) were included for qualitative analysis. There is evidence at multiple levels that lysine supplementation is not effective for the prevention or treatment of feline herpesvirus 1 infection in cats. Lysine does not have any antiviral properties, but is believed to act by lowering arginine levels. However, lysine does not antagonize arginine in cats, and evidence that low intracellular arginine concentrations would inhibit viral replication is lacking. Furthermore, lowering arginine levels is highly undesirable since cats cannot synthesize this amino acid themselves. Arginine deficiency will result in hyperammonemia, which may be fatal. In vitro studies with feline herpesvirus 1 showed that lysine has no effect on the replication kinetics of the virus. Finally, and most importantly, several clinical studies with cats have shown that lysine is not effective for the prevention or the treatment of feline herpesvirus 1 infection, and some even reported increased infection frequency and disease severity in cats receiving lysine supplementation. We recommend an immediate stop of lysine supplementation because of the complete lack of any scientific evidence for its efficacy.

  13. Isolation and Characterization of Highly Replicable Hepatitis C Virus Genotype 1a Strain HCV-RMT

    PubMed Central

    Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori

    2013-01-01

    Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient’s serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo. PMID:24358200

  14. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT.

    PubMed

    Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori

    2013-01-01

    Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.

  15. Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells.

    PubMed

    Neumann, Avidan U; Phillips, Sandra; Levine, Idit; Ijaz, Samreen; Dahari, Harel; Eren, Rachel; Dagan, Shlomo; Naoumov, Nikolai V

    2010-09-01

    Antibodies are thought to exert antiviral activities by blocking viral entry into cells and/or accelerating viral clearance from circulation. In particular, antibodies to hepatitis B virus (HBV) surface antigen (HBsAg) confer protection, by binding circulating virus. Here, we used mathematical modeling to gain information about viral dynamics during and after single or multiple infusions of a combination of two human monoclonal anti-HBs (HepeX-B) antibodies in patients with chronic hepatitis B. The antibody HBV-17 recognizes a conformational epitope, whereas antibody HBV-19 recognizes a linear epitope on the HBsAg. The kinetic profiles of the decline of serum HBV DNA and HBsAg revealed partial blocking of virion release from infected cells as a new antiviral mechanism, in addition to acceleration of HBV clearance from the circulation. We then replicated this approach in vitro, using cells secreting HBsAg, and compared the prediction of the mathematical modeling obtained from the in vivo kinetics. In vitro, HepeX-B treatment of HBsAg-producing cells showed cellular uptake of antibodies, resulting in intracellular accumulation of viral particles. Blocking of HBsAg secretion also continued after HepeX-B was removed from the cell culture supernatants. These results identify a novel antiviral mechanism of antibodies to HBsAg (anti-HBs) involving prolonged blocking of the HBV and HBsAg subviral particles release from infected cells. This may have implications in designing new therapies for patients with chronic HBV infection and may also be relevant in other viral infections.

  16. Pre-steady-state Kinetic Analysis of a Family D DNA Polymerase from Thermococcus sp. 9°N Reveals Mechanisms for Archaeal Genomic Replication and Maintenance*

    PubMed Central

    Schermerhorn, Kelly M.; Gardner, Andrew F.

    2015-01-01

    Family D DNA polymerases (polDs) have been implicated as the major replicative polymerase in archaea, excluding the Crenarchaeota branch, and bear little sequence homology to other DNA polymerase families. Here we report a detailed kinetic analysis of nucleotide incorporation and exonuclease activity for a Family D DNA polymerase from Thermococcus sp. 9°N. Pre-steady-state single-turnover nucleotide incorporation assays were performed to obtain the kinetic parameters, kpol and Kd, for correct nucleotide incorporation, incorrect nucleotide incorporation, and ribonucleotide incorporation by exonuclease-deficient polD. Correct nucleotide incorporation kinetics revealed a relatively slow maximal rate of polymerization (kpol ∼2.5 s−1) and especially tight nucleotide binding (Kd(dNTP) ∼1.7 μm), compared with DNA polymerases from Families A, B, C, X, and Y. Furthermore, pre-steady-state nucleotide incorporation assays revealed that polD prevents the incorporation of incorrect nucleotides and ribonucleotides primarily through reduced nucleotide binding affinity. Pre-steady-state single-turnover assays on wild-type 9°N polD were used to examine 3′-5′ exonuclease hydrolysis activity in the presence of Mg2+ and Mn2+. Interestingly, substituting Mn2+ for Mg2+ accelerated hydrolysis rates >40-fold (kexo ≥110 s−1 versus ≥2.5 s−1). Preference for Mn2+ over Mg2+ in exonuclease hydrolysis activity is a property unique to the polD family. The kinetic assays performed in this work provide critical insight into the mechanisms that polD employs to accurately and efficiently replicate the archaeal genome. Furthermore, despite the unique properties of polD, this work suggests that a conserved polymerase kinetic pathway is present in all known DNA polymerase families. PMID:26160179

  17. Seeking the chemical roots of darwinism: bridging between chemistry and biology.

    PubMed

    Pross, Addy

    2009-08-24

    Chemistry and biology are intimately connected sciences yet the chemistry-biology interface remains problematic and central issues regarding the very essence of living systems remain unresolved. In this essay we build on a kinetic theory of replicating systems that encompasses the idea that there are two distinct kinds of stability in nature-thermodynamic stability, associated with "regular" chemical systems, and dynamic kinetic stability, associated with replicating systems. That fundamental distinction is utilized to bridge between chemistry and biology by demonstrating that within the parallel world of replicating systems there is a second law analogue to the second law of thermodynamics, and that Darwinian theory may, through scientific reductionism, be related to that second law analogue. Possible implications of these ideas to the origin of life problem and the relationship between chemical emergence and biological evolution are discussed.

  18. Quantitative pharmacological analysis of antagonist binding kinetics at CRF1 receptors in vitro and in vivo

    PubMed Central

    Ramsey, Simeon J; Attkins, Neil J; Fish, Rebecca; van der Graaf, Piet H

    2011-01-01

    BACKGROUND AND PURPOSE A series of novel non-peptide corticotropin releasing factor type-1 receptor (CRF1) antagonists were found to display varying degrees of insurmountable and non-competitive behaviour in functional in vitro assays. We describe how we attempted to relate this behaviour to ligand receptor-binding kinetics in a quantitative manner and how this resulted in the development and implementation of an efficient pharmacological screening method based on principles described by Motulsky and Mahan. EXPERIMENTAL APPROACH A non-equilibrium binding kinetic assay was developed to determine the receptor binding kinetics of non-peptide CRF1 antagonists. Nonlinear, mixed-effects modelling was used to obtain estimates of the compounds association and dissociation rates. We present an integrated pharmacokinetic–pharmacodynamic (PKPD) approach, whereby the time course of in vivo CRF1 receptor binding of novel compounds can be predicted on the basis of in vitro assays. KEY RESULTS The non-competitive antagonist behaviour appeared to be correlated to the CRF1 receptor off-rate kinetics. The integrated PKPD model suggested that, at least in a qualitative manner, the in vitro assay can be used to triage and select compounds for further in vivo investigations. CONCLUSIONS AND IMPLICATIONS This study provides evidence for a link between ligand offset kinetics and insurmountable/non-competitive antagonism at the CRF1 receptor. The exact molecular pharmacological nature of this association remains to be determined. In addition, we have developed a quantitative framework to study and integrate in vitro and in vivo receptor binding kinetic behaviour of CRF1 receptor antagonists in an efficient manner in a drug discovery setting. PMID:21449919

  19. Amyloid fibrils: formation, replication, and physics behind them

    NASA Astrophysics Data System (ADS)

    Saric, Andela

    The assembly of normally soluble proteins into long fibrils, known as amyloids, is associated with a range of pathologies, including Alzheimer's and Parkinson's diseases. A large number of structurally unrelated proteins form this type of fibrils, and we are in a pursuit of physical principles that underlie the amyloid formation and propagation. We show that small disorders oligomers, which are increasingly believed to be the prime cause for cellular toxicity, serve as nucleation centers for the fibril formation. We then relate experimentally measurable kinetic descriptors of amyloid aggregation to the microscopic mechanisms of the process. Once formed, amyloid fibrils can catalyse the formation of new oligomers and fibrils in a process that resembles self-replication. By combining simulations with biosensing and kinetic measurements of the aggregation of Alzheimer's A β peptide, we propose a mechanistic explanation for the self-replication of protein fibrils, and discuss its thermodynamic signature. Finally, we consider the design of possible inhibitors of the fibril self-replication process. Mechanistic understandings provided here not only have implications for future efforts to control pathological protein aggregation, but are also of interest for the rational assembly of bionanomaterials, where achieving and controlling self-replication is one of the unfulfilled goals.

  20. Developing Inhibitors of Translesion DNA Synthesis as Therapeutic Agents Against Lung Cancer

    DTIC Science & Technology

    2014-10-01

    pol eta when replicating damaged DNA. 1S. SUBJECT TERMS: Mutagenesis, DNA polymerases, nucleoside analogs, chemotherapeutic agents 16. SECURITY ...such as polymerase eta, iota , and kappa that are involved in replicating damaged DNA. Our kinetic data obtained under Task 1B indicates that pol eta

  1. Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro

    PubMed Central

    Rudorf, Sophia; Thommen, Michael; Rodnina, Marina V.; Lipowsky, Reinhard

    2014-01-01

    The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics. PMID:25358034

  2. In vitro replication of poliovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis ofmore » the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' /sup 32/P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed.« less

  3. Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee?

    PubMed

    Varadarajan, Kartik M; Harry, Rubash E; Johnson, Todd; Li, Guoan

    2009-10-01

    In vitro systems provide a powerful means to evaluate the efficacy of total knee arthroplasty (TKA) in restoring normal knee kinematics. The Oxford knee rig (OKR) and the robotic knee testing system (RKTS) represent two systems that have been extensively used to study TKA biomechanics. Nonetheless, a frequently asked question is whether in vitro simulations can capture the in vivo behavior of the knee. Here, we compared the flexion-extension kinematics of intact knees and knees after TKA tested on the OKR and RKTS, to results of representative in vivo studies. The goal was to determine if the in vitro systems could capture the key kinematic features of knees in healthy subjects and TKA patients. Results showed that the RKTS and the OKR can replicate the femoral rollback and 'screw home' tibial rotation between 0 degrees and 30 degrees flexion seen in healthy subjects, and the reduced femoral rollback and absence of 'screw home' motion in TKA patients. The RKTS also replicated the overall internally rotated position of the tibia beyond 30 degrees flexion. However, ability of the OKR to replicate the internally rotated position of the knee beyond 30 degrees flexion was inconsistent. These data could aid in validation of new in vitro systems and physiologic interpretations of in vitro results.

  4. Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro.

    PubMed

    Workman, Rob G; Maddison, Ben C; Gough, Kevin C

    2017-07-04

    Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.

  5. Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1.

    PubMed

    Tietjen, Ian; Gatonye, Teresia; Ngwenya, Barbara N; Namushe, Amos; Simonambanga, Sundana; Muzila, Mbaki; Mwimanzi, Philip; Xiao, Jianbo; Fedida, David; Brumme, Zabrina L; Brockman, Mark A; Andrae-Marobela, Kerstin

    2016-09-15

    Human Immunodeficiency Virus (HIV) strains resistant to licensed anti-retroviral drugs (ARVs) continue to emerge. On the African continent, uneven access to ARVs combined with occurrence of side-effects after prolonged ARV therapy have led to searches for traditional medicines as alternative or complementary remedies to conventional HIV/AIDS management. Here we characterize a specific three-step traditional HIV/AIDS treatment regimen consisting of Cassia sieberiana root, Vitex doniana root, and Croton megalobotrys bark by combining qualitative interviews of traditional medical knowledge users in Botswana with in vitro HIV replication studies. Crude extracts from a total of seven medicinal plants were tested for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4+ T-cell line. C. sieberiana root, V. doniana root, and C. megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity. C. sieberiana and V. doniana extracts inhibited HIV-1 replication by 50% at 84.8µg/mL and at 25µg/mL, respectively, while C. megalobotrys extracts inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05µg/mL. Extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. We report for the first time a three-step traditional HIV/AIDS regimen, used alone or in combination with standard ARV regimens, where each step exhibited more potent ability to inhibit HIV replication in vitro. Our observations support the "reverse pharmacology" model where documented clinical experiences are used to identify natural products of therapeutic value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  7. Emergence of a replicating species from an in vitro RNA evolution reaction

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.

  8. In vitro inhibition of human influenza A virus replication by chloroquine

    PubMed Central

    Ooi, Eng Eong; Chew, Janet Seok Wei; Loh, Jin Phang; Chua, Robert CS

    2006-01-01

    Chloroquine is a 9-aminoquinolone with well-known anti-malarial effects. It has biochemical properties that could be applied to inhibit viral replication. We report here that chloroquine is able to inhibit influenza A virus replication, in vitro, and the IC50s of chloroquine against influenza A viruses H1N1 and H3N2 are lower than the plasma concentrations reached during treatment of acute malaria. The potential of chloroquine to be added to the limited range of anti-influenza drugs should be explored further, particularly since antiviral drugs play a vital role in influenza pandemic preparedness. PMID:16729896

  9. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor.

    PubMed

    Schimer, Jiří; Pávová, Marcela; Anders, Maria; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, Hans-Georg; Müller, Barbara; Konvalinka, Jan

    2015-03-09

    HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time.

  10. Triggering HIV polyprotein processing by light using rapid photodegradation of a tight-binding protease inhibitor

    PubMed Central

    Schimer, Jiří; Pávová, Marcela; Anders, Maria; Pachl, Petr; Šácha, Pavel; Cígler, Petr; Weber, Jan; Majer, Pavel; Řezáčová, Pavlína; Kräusslich, Hans-Georg; Müller, Barbara; Konvalinka, Jan

    2015-01-01

    HIV protease (PR) is required for proteolytic maturation in the late phase of HIV replication and represents a prime therapeutic target. The regulation and kinetics of viral polyprotein processing and maturation are currently not understood in detail. Here we design, synthesize, validate and apply a potent, photodegradable HIV PR inhibitor to achieve synchronized induction of proteolysis. The compound exhibits subnanomolar inhibition in vitro. Its photolabile moiety is released on light irradiation, reducing the inhibitory potential by 4 orders of magnitude. We determine the structure of the PR-inhibitor complex, analyze its photolytic products, and show that the enzymatic activity of inhibited PR can be fully restored on inhibitor photolysis. We also demonstrate that proteolysis of immature HIV particles produced in the presence of the inhibitor can be rapidly triggered by light enabling thus to analyze the timing, regulation and spatial requirements of viral processing in real time. PMID:25751579

  11. Effects of transforming growth factor-alpha (TGF-alpha) in vitro and in vivo on reovirus replication.

    PubMed

    Organ, Edward L; Nalbantyan, Christopher D; Nanney, Lillian B; Woodward, Stephen C; Sheng, Jinsong; Dubois, Raymond N; Price, James; Sutcliffe, Marilyn; Coffey, Robert J; Rubin, Donald H

    2004-07-01

    We have utilized growth factors in in vitro and in vivo systems to examine the role of cellular proliferation in reovirus replication. In vitro, proliferating RIE-1 cells can be infected with whole reovirus virions, but are relatively resistant to infection once confluent (Go arrest). It has been shown that TGF-alpha, which signals through the EGF-receptor (EGF-R), is capable of dramatically increasing the number of RIE-1 cells entering the S-phase in the presence of additional serum factors. Stimulation of the EGF-R without serum results in minimal increases in cells entering the S-phase with a restriction in reovirus replication. Therefore, other factors in serum are essential for fully permissive infection. In vivo, we used metallothionein (MT) promoter/enhancer-TGF-alpha transgenic mice to study the effect of cytokine activation on reovirus type 1 infection. Virus replication decreased following oral infection in these transgenic mice at 1 month of age, concordant with increased mucin production. Titers of reovirus obtained from the livers of 1 year old transgenic mice were approximately 10-fold higher than titers obtained in control mice. Taken together, these data indicate that while growth factor activation ultimately leads to an increase in virus infectivity, other factors may be necessary for reovirus replication.

  12. Amino Acids 257 to 288 of Mouse p48 Control the Cooperation of Polyomavirus Large T Antigen, Replication Protein A, and DNA Polymerase α-Primase To Synthesize DNA In Vitro

    PubMed Central

    Kautz, Armin R.; Weisshart, Klaus; Schneider, Annerose; Grosse, Frank; Nasheuer, Heinz-Peter

    2001-01-01

    Although p48 is the most conserved subunit of mammalian DNA polymerase α-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag. PMID:11507202

  13. Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo.

    PubMed Central

    Gille, H; Messer, W

    1991-01-01

    The leftmost region of the Escherichia coli origin of DNA replication (oriC) contains three tandemly repeated AT-rich 13mers which have been shown to become single-stranded during the early stages of initiation in vitro. Melting is induced by the ATP form of DnaA, the initiator protein of DNA replication. KMnO4 was used to probe for single-stranded regions and altered DNA conformation during the initiation of DNA replication at oriC in vitro and in vivo. Unpairing in the AT-rich 13mer region is thermodynamically stable even in the absence of DnaA protein, but only when divalent cations are omitted from the reaction. In the presence of Mg2+, oriC melting is strictly DnaA dependent. The sensitive region is distinct from that detected in the absence of DnaA as it is located further to the left within the minimal origin. In addition, the DNA is severely distorted between the three 13mers and the IHF binding site in oriC. A change of conformation can also be observed during the initiation of DNA replication in vivo. This is the first in vivo evidence for a structural change at the 13mers during initiation complex formation. Images PMID:2026151

  14. Genotoxic effects of Roundup Full II® on lymphocytes of Chaetophractus villosus (Xenarthra, Mammalia): In vitro studies.

    PubMed

    Luaces, Juan Pablo; Rossi, Luis Francisco; Chirino, Mónica Gabriela; Browne, Melanie; Merani, María Susana; Mudry, Marta Dolores

    2017-01-01

    In Argentina, Chaetophractus villosus has a wide distribution that overlaps with agricultural areas where soybean is the predominant crop. In such areas the pesticide Roundup Full II® (RU) is widely applied. The genotoxic effect of its active ingredient glyphosate (RU is 66.2% glyphosate) on the peripheral blood lymphocytes of C. villosus was tested over a range of concentrations (280, 420, 560, 1120 μmol/L). Culture medium without glyphosate served as negative control, while medium containing mitomycin C served as positive control. Genetic damage was characterized in terms of the percentage of cells with chromosome aberrations (CA), the mean number of sister chromatid exchanges (SCE) per cell, and the modification of cell proliferation kinetics via the calculation of the replication index. Significant increases (p < 0.0001) were seen in the CA frequency and the mean number of SCEs per cell compared to negative controls at all the RU concentrations tested. Chromatid breaks, the only form of CA observed, under the 560 μmol/L RU conditions and in presence of mitomycin C were four to five times more common than at lower concentrations, while no viable cells were seen in the 1120 μmol/L treatment. The mean number of SCEs per cell was significantly higher under the 280 μmol/L RU conditions than the 420 or 560 μmol/L RU conditions; cells cultivated in the presence of MMC also showed significantly more SCEs. All the RU concentrations tested (except in the 1120 μmol/L RU treatment [no viable cells]) induced a significant reduction in the replication index (p < 0.0001). The present results confirm the genotoxic effects of RU on C. villosus lymphocytes in vitro, strongly suggesting that exposure to RU could induce DNA damage in C. villosus wildlife.

  15. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  16. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity

    PubMed Central

    Gu, Shoujin; Li, Wenjuan; Zhang, Hongtai; Fleming, Joy; Yang, Weiqiang; Wang, Shihua; Wei, Wenjing; Zhou, Jie; Zhu, Guofeng; Deng, Jiaoyu; Hou, Jian; Zhou, Ying; Lin, Shiqiang; Zhang, Xian-En; Bi, Lijun

    2016-01-01

    DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb. PMID:26822057

  17. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells

    DTIC Science & Technology

    1998-07-01

    synthesome has been extensively demonstrated to carry out full length DNA replication in vitro, and to accurately depict the DNA replication process as it...occurs in the intact cell. By examining the fidelity of the DNA replication process carried out by the DNA synthesome from a number of breast cell types...we have demonstrated for the first time, that the cellular DNA replication machinery of malignant human breast cells is significantly more error-prone than that of non- malignant human breast cells.

  18. Human FEN1 Expression and Solubility Patterson in DNA Replication and Repair

    DTIC Science & Technology

    1999-11-03

    following DNA replication from the simian virus 40 (SV40) origin of replication in vitro. Human FEN1, and FEN1 homologues from yeast to mammals, are...also implicated in different forms of DNA repair. In this thesis, I provide additional evidence supporting human FEN1’s role in nuclear DNA replication in...coincident with S phase DNA replication in both primary and transformed cells. Using novel antibodies that recognize human FEN1, I further show that very

  19. Differences Between Human and Rat Intestinal and Hepatic Bisphenol-A Glucuronidation and the Influence of Alamethicin on In vitro Kinetic Measurements

    EPA Science Inventory

    The extent to which membrane disrupting agents, such as alamethicin, may alter cofactor transport and influence in vitro kinetic measurements of glucurondiation is a major concern regarding the characterization and extrapolation of inter-and intra-species pharmacokinetics of bisp...

  20. APPLICATION OF ADVANCED IN VITRO TECHNIQUES TO MEASURE, UNDERSTAND AND PREDICT THE KINETICS AND MECHANISMS OF XENOBIOTIC METABOLISM

    EPA Science Inventory

    We have developed a research program in metabolism that involves numerous collaborators across EPA as well as other federal and academic labs. A primary goal is to develop and apply advanced in vitro techniques to measure, understand and predict the kinetics and mechanisms of xen...

  1. Strand displacement amplification as an in vitro model for rolling-circle replication: deletion formation and evolution during serial transfer.

    PubMed Central

    Walter, N G; Strunk, G

    1994-01-01

    Strand displacement amplification is an isothermal DNA amplification reaction based on a restriction endonuclease nicking its recognition site and a polymerase extending the nick at its 3' end, displacing the downstream strand. The reaction resembles rolling-circle replication of single-stranded phages and small plasmids. The displaced sense strand serves as target for an antisense reaction and vice versa, resulting in exponential growth and the autocatalytic nature of this in vitro reaction as long as the template is the limiting agent. We describe the optimization of strand displacement amplification for in vitro evolution experiments under serial transfer conditions. The reaction was followed and controlled by use of the fluorescent dye thiazole orange binding to the amplified DNA. We were able to maintain exponential growth conditions with a doubling time of 3.0 min throughout 100 transfers or approximately 350 molecular generations by using an automatic handling device. Homology of in vitro amplification with rolling-circle replication was mirrored by the occurring evolutionary processes. Deletion events most likely caused by a slipped mispairing mechanism as postulated for in vivo replication took place. Under our conditions, the mutation rate was high and a molecular quasi-species formed with a mutant lacking internal hairpin formation ability and thus outgrowing all other species under dGTP/dCTP deficiency. Images PMID:8058737

  2. Identification of novel inhibitors of non-replicating Mycobacterium tuberculosis using a carbon starvation model

    PubMed Central

    Grant, Sarah Schmidt; Kawate, Tomohiko; Nag, Partha P.; Silvis, Melanie R.; Gordon, Katherine; Stanley, Sarah A.; Kazyanskaya, Ed; Nietupski, Ray; Golas, Aaron; Fitzgerald, Michael; Cho, Sanghyun; Franzblau, Scott G.; Hung, Deborah T.

    2013-01-01

    During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a non-replicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the non-replicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel non-replicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and non-replicating M. tuberculosis as well as compounds that inhibit the transition from non-replicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of non-replicating M. tuberculosis. In order to understand the relationship among different non-replicating models, we teste 52 of these molecules in a hypoxia model and four different chemical scaffolds in a stochastic persist model and a streptomycin dependent model. We found that compounds display varying levels of activity in different models for the non-replicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different non-replicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development. PMID:23898841

  3. Isolation and Characterization of a Neuropathogenic Simian Immunodeficiency Virus Derived from a Sooty Mangabey

    PubMed Central

    Novembre, Francis J.; De Rosayro, Juliette; O’Neil, Shawn P.; Anderson, Daniel C.; Klumpp, Sherry A.; McClure, Harold M.

    1998-01-01

    Transfusion of blood from a simian immunodeficiency virus (SIV)- and simian T-cell lymphotropic virus-infected sooty mangabey (designated FGb) to rhesus and pig-tailed macaques resulted in the development of neurologic disease in addition to AIDS. To investigate the role of SIV in neurologic disease, virus was isolated from a lymph node of a pig-tailed macaque (designated PGm) and the cerebrospinal fluid of a rhesus macaque (designated ROn2) and passaged to additional macaques. SIV-related neuropathogenic effects were observed in 100% of the pig-tailed macaques inoculated with either virus. Lesions in these animals included extensive formation of SIV RNA-positive giant cells in the brain parenchyma and meninges. Based upon morphology, the majority of infected cells in both lymphoid and brain tissue appeared to be of macrophage lineage. The virus isolates replicated very well in pig-tailed and rhesus macaque peripheral blood mononuclear cells (PBMC) with rapid kinetics. Differential replicative abilities were observed in both PBMC and macrophage populations, with viruses growing to higher titers in pig-tailed macaque cells than in rhesus macaque cells. An infectious molecular clone of virus derived from the isolate from macaque PGm (PGm5.3) was generated and was shown to have in vitro replication characteristics similar to those of the uncloned virus stock. While molecular analyses of this virus revealed its similarity to SIV isolates from sooty mangabeys, significant amino acid differences in Env and Nef were observed. This virus should provide an excellent system for investigating the mechanism of lentivirus-induced neurologic disease. PMID:9765429

  4. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.

    PubMed

    Baxter, Melissa A; Wynn, Robert F; Jowitt, Simon N; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria

    2004-01-01

    Human marrow stromal cells (MSCs) can be isolated from bone marrow and differentiate into multiple tissues in vitro and in vivo. These properties make them promising tools in cell and gene therapy. The lack of a specific MSC marker and the low frequency of MSCs in bone marrow necessitate their isolation by in vitro expansion prior to clinical use. This may severely reduce MSC proliferative capacity to the point that the residual proliferative potential is insufficient to maintain long-term tissue regeneration upon reinfusion. In this study we determined the effect of in vitro expansion on the replicative capacity of MSCs by correlating their rate of telomere loss during in vitro expansion with their behavior in vivo. We report that even protocols that involve minimal expansion induce a rapid aging of MSCs, with losses equivalent to about half their total replicative lifespan.

  5. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    USDA-ARS?s Scientific Manuscript database

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  6. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion?

    PubMed

    Effros, R B; Pawelec, G

    1997-09-01

    Extensive in vitro research on fibroblasts has defined numerous genetic and phenotypic changes associated with replicative senescence. Identification of T-cell replicative senescence as a feature of human immunodeficiency virus (HIV) disease and ageing suggests this phenomenon merits more careful consideration by immunologists, especially with regard to chronic infection, memory and adoptive immunotherapy.

  7. The Regulatory Interactions of p21 and PCNA in Human Breast Cancer

    DTIC Science & Technology

    2000-07-01

    To better understand the role of DNA replication in breast cancer, it is essential to examine the machinery that carries out the DNA synthetic...origin specific DNA replication in vitro, which we have termed the DNA synthesome. Analysis of the constituent proteins of the DNA synthesome of...and effectively competes away polymerase 8 leading to the efficient inhibition of DNA replication . This inhibition impedes the replication of damaged

  8. Kinetic measurement of 2-aminopurine X cytosine and 2-aminopurine X thymine base pairs as a test of DNA polymerase fidelity mechanisms.

    PubMed Central

    Watanabe, S M; Goodman, M F

    1982-01-01

    Enzyme kinetic measurements are presented showing that Km rather than maximum velocity (Vmax) discrimination governs the frequency of forming 2-aminopurine X cytosine base mispairs by DNA polymerase alpha. An in vitro system is used in which incorporation of dTMP or dCMP occurs opposite a template 2-aminopurine, and values for Km and Vmax are obtained. Results from a previous study in which dTTP and dCTP were competing simultaneously for insertion opposite 2-aminopurine indicated that dTMP is inserted 22 times more frequently than dCMP. We now report that the ratio of Km values KCm/KTm = 25 +/- 6, which agrees quantitatively with the dTMP/dCMP incorporation ratio obtained previously. We also report that VCmax is indistinguishable from VTmax. These Km and Vmax data are consistent with predictions from a model, the Km discrimination model, in which replication fidelity is determined by free energy differences between matched and mismatched base pairs. Central to this model is the prediction that the ratio of Km values for insertion of correct and incorrect nucleotides specifies the insertion fidelity, and the maximum velocities of insertion are the same for both nucleotides. PMID:6959128

  9. A single mutation in the PBC loop of VP2 is involved in the in vitro replication of infectious bursal disease virus.

    PubMed

    Qi, Xiaole; Gao, Xiang; Lu, Zhen; Zhang, Lizhou; Wang, Yongqiang; Gao, Li; Gao, Yulong; Li, Kai; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Wang, Xiaomei

    2016-07-01

    To test whether amino acid mutations in the PBC and PHI loops of VP2 are involved in the replication and virulence of infectious bursal disease virus (IBDV), a pair of viruses, namely the moderately virulent IBDV (rGx-F9VP2) and the attenuated strain (rGt), were used. Residue mutations A222P (PBC) and S330R (PHI), selected by sequence comparison, were introduced individually into rGx-F9VP2 by using a reverse genetics system. In addition, the reverse mutation of either P222A or R330S was introduced into rGt. The four modified viruses were then rescued and evaluated in vitro (CEF cells) and in vivo (SPF chickens). Results showed that A222P elevated the replication efficiency of rGx-F9VP2 while P222A reduced that of rGt in CEF cells. A mutation at residue 330 did not alter IBDV replication. In addition, animal experiments showed that a single mutation at either residue 222 or 330 did not significantly influence the virulence of IBDV. In conclusion, residue 222 in PBC of VP2 is involved in the replication efficiency of IBDV in vitro but does not affect its virulence in vivo, further facilitating our understanding of the gene-function of IBDV.

  10. Kinetic tetrazolium microtiter assay

    NASA Technical Reports Server (NTRS)

    Pierson, Duane L. (Inventor); Stowe, Raymond P. (Inventor); Koeing, David W. (Inventor)

    1992-01-01

    A method for conducting an in vitro cell assay using a tetrazolium indicator is disclosed. The indicator includes a nonionic detergent which solubilizes a tetrazolium reduction product in vitro and has low toxicity for the cells. The incubation of test cells in the presence of zolium bromide and octoxynol (TRITON X-100) permits kinetics of the cell metabolism to be determined.

  11. [Synergistic effect of cell kinetics-directed chemo-endocrine therapy on experimental mammary tumors].

    PubMed

    Ueki, H

    1987-11-01

    We tried to demonstrate that the cell kinetics-directed chemoendocrine therapy is more effective on hormone dependent breast cancer than empirical combination of the endocrine therapy and chemotherapy. Cell kinetics of each tumor was measured by flow cytometric analysis. Estrogen dependent human breast cancer cell line MCF-7 was used in vitro. In vivo, androgen dependent SC-115 carcinoma was transplanted to DDS mice. In vitro, tamoxifen was administered as the endocrine therapy. In vivo, we carried out testectomy on DDS mice. Effect of the endocrine therapy on the cell kinetics of the tumor was thought to be G1-S depression. High density 5FU was administered as the chemotherapeutic agents, whose content was 1 microgram/ml in vitro and 40 mg/kg in vivo. 5FU brought temporary decrease of cells in S phase. Only anteceding 5FU administration had synergistic effect in combination of 5FU and the endocrine therapy. 5FU was convinced to act more effectively on cells in S phase, so it was shown that cell kinetics-directed schedule was superior to the empirical treatment schedule in chemoendocrine therapy.

  12. Evidence of a conserved role for Chlamydia HtrA in the replication phase of the chlamydial developmental cycle.

    PubMed

    Patel, Pooja; De Boer, Leonore; Timms, Peter; Huston, Wilhelmina May

    2014-08-01

    Identification of the HtrA inhibitor JO146 previously enabled us to demonstrate an essential function for HtrA during the mid-replicative phase of the Chlamydia trachomatis developmental cycle. Here we extend our investigations to other members of the Chlamydia genus. C. trachomatis isolates with distinct replicative phase growth kinetics showed significant loss of viable infectious progeny after HtrA was inhibited during the replicative phase. Mid-replicative phase addition of JO146 was also significantly detrimental to Chlamydia pecorum, Chlamydia suis and Chlamydia cavie. These data combined indicate that HtrA has a conserved critical role during the replicative phase of the chlamydial developmental cycle. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  13. Development of gold-immobilized P450 platform for exploring the effect of oligomer formation on P450-mediated metabolism for in vitro to in vivo drug metabolism predictions

    NASA Astrophysics Data System (ADS)

    Kabulski, Jarod L.

    The cytochrome P450 (P450) enzyme family is responsible for the biotransformation of a wide range of endogenous and xenobiotic compounds, as well as being the major metabolic enzyme in first pass drug metabolism. In vivo drug metabolism for P450 enzymes is predicted using in vitro data obtained from a reconstituted expressed P450 system, but these systems have not always been proven to accurately represent in vivo enzyme kinetics, due to interactions caused by oligomer formation. These in vitro systems use soluble P450 enzymes prone to oligomer formation and studies have shown that increased states of protein aggregation directly affect the P450 enzyme kinetics. We have developed an immobilized enzyme system that isolates the enzyme and can be used to elucidate the effect of P450 aggregation on metabolism kinetics. The long term goal of my research is to develop a tool that will help improve the assessment of pharmaceuticals by better predicting in vivo kinetics in an in vitro system. The central hypothesis of this research is that P450-mediated kinetics measured in vitro is dependent on oligomer formation and that the accurate prediction of in vivo P450-mediated kinetics requires elucidation of the effect of oligomer formation. The rationale is that the development of a P450 bound to a Au platform can be used to control the aggregation of enzymes and bonding to Au may also permit replacement of the natural redox partners with an electrode capable of supplying a constant flow of electrons. This dissertation explains the details of the enzyme attachment, monitoring substrate binding, and metabolism using physiological and electrochemical methods, determination of enzyme kinetics, and the development of an immobilized-P450 enzyme bioreactor. This work provides alternative approaches to studying P450-mediated kinetics, a platform for controlling enzyme aggregation, electrochemically-driven P450 metabolism, and for investigating the effect of protein-protein interactions on drug metabolism.

  14. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics.

    PubMed

    Kaul, Artur; Stauffer, Sarah; Berger, Carola; Pertel, Thomas; Schmitt, Jennifer; Kallis, Stephanie; Zayas, Margarita; Lopez, Margarita Zayas; Lohmann, Volker; Luban, Jeremy; Bartenschlager, Ralf

    2009-08-01

    Viruses are obligate intracellular parasites and therefore their replication completely depends on host cell factors. In case of the hepatitis C virus (HCV), a positive-strand RNA virus that in the majority of infections establishes persistence, cyclophilins are considered to play an important role in RNA replication. Subsequent to the observation that cyclosporines, known to sequester cyclophilins by direct binding, profoundly block HCV replication in cultured human hepatoma cells, conflicting results were obtained as to the particular cyclophilin (Cyp) required for viral RNA replication and the underlying possible mode of action. By using a set of cell lines with stable knock-down of CypA or CypB, we demonstrate in the present work that replication of subgenomic HCV replicons of different genotypes is reduced by CypA depletion up to 1,000-fold whereas knock-down of CypB had no effect. Inhibition of replication was rescued by over-expression of wild type CypA, but not by a mutant lacking isomerase activity. Replication of JFH1-derived full length genomes was even more sensitive to CypA depletion as compared to subgenomic replicons and virus production was completely blocked. These results argue that CypA may target an additional viral factor outside of the minimal replicase contributing to RNA amplification and assembly, presumably nonstructural protein 2. By selecting for resistance against the cyclosporine analogue DEBIO-025 that targets CypA in a dose-dependent manner, we identified two mutations (V2440A and V2440L) close to the cleavage site between nonstructural protein 5A and the RNA-dependent RNA polymerase in nonstructural protein 5B that slow down cleavage kinetics at this site and reduce CypA dependence of viral replication. Further amino acid substitutions at the same cleavage site accelerating processing increase CypA dependence. Our results thus identify an unexpected correlation between HCV polyprotein processing and CypA dependence of HCV replication.

  15. Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture.

    PubMed

    Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador

    2017-10-01

    Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.

  16. Kinetics of Mismatch Formation opposite Lesions by the Replicative DNA Polymerase from Bacteriophage RB69

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogg, Matthew; Rudnicki, Jean; Midkiff, John

    2010-04-12

    The fidelity of DNA replication is under constant threat from the formation of lesions within the genome. Oxidation of DNA bases leads to the formation of altered DNA bases such as 8-oxo-7,8-dihydroguanine, commonly called 8-oxoG, and 2-hydroxyadenenine, or 2-OHA. In this work we have examined the incorporation kinetics opposite these two oxidatively derived lesions as well as an abasic site analogue by the replicative DNA polymerase from bacteriophage RB69. We compared the kinetic parameters for both wild type and the low fidelity L561A variant. While nucleotide incorporation rates (k{sub pol}) were generally higher for the variant, the presence of amore » lesion in the templating position reduced the ability of both the wild-type and variant DNA polymerases to form ternary enzyme-DNA-dNTP complexes. Thus, the L561A substitution does not significantly affect the ability of the RB69 DNA polymerase to recognize damaged DNA; instead, the mutation increases the probability that nucleotide incorporation will occur. We have also solved the crystal structure of the L561A variant forming an 8-oxoG {center_dot} dATP mispair and show that the propensity for forming this mispair depends on an enlarged polymerase active site.« less

  17. Variability of interferon-λ induction and antiviral activity in Nipah virus infected differentiated human bronchial epithelial cells of two human donors.

    PubMed

    Sauerhering, Lucie; Müller, Helena; Behner, Laura; Elvert, Mareike; Fehling, Sarah Katharina; Strecker, Thomas; Maisner, Andrea

    2017-10-01

    Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.

  18. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2003-05-01

    Alkylating minor groove DNA binder adozelesin is capable of inhibiting DNA replication in treated cells through a trans-acting mechanism. The trans... replication in vitro. Using purified proteins in DNA replication initiation assays, we found that RPA purified from cells treated with adozelesin in not...adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40 DNA

  19. Causation and the origin of life. Metabolism or replication first?

    PubMed

    Pross, Addy

    2004-06-01

    The conceptual gulf that separates the 'metabolism first' and 'replication first' mechanisms for the emergence of life continues to cloud the origin of life debate. In the present paper we analyze this aspect of the origin of life problem and offer arguments in favor of the 'replication first' school. Utilizing Wicken's two-tier approach to causation we argue that a causal connection between replication and metabolism can only be demonstrated if replication would have preceded metabolism. In conjunction with existing empirical evidence and theoretical reasoning, our analysis concludes that there is no substantive evidence for a 'metabolism first' mechanism for life's emergence, while a coherent case can be made for the 'replication first' group of mechanisms. The analysis reaffirms our conviction that life is an extreme expression of kinetic control, and that the emergence of metabolic pathways can be understood by considering life as a manifestation of 'replicative chemistry'.

  20. Effects of varying dietary ratios of corn silage to alfalfa silage on digestion of neutral detergent fiber in lactating dairy cows.

    PubMed

    Lopes, F; Cook, D E; Combs, D K

    2015-09-01

    An in vivo study was performed to test an in vitro procedure and model that predicts total-tract neutral detergent fiber (NDF) digestibility for lactating dairy cattle. Corn silage (CS) and alfalfa silage (AS) were used as forages for this study. These forages had similar NDF composition, but fiber in the CS contained less indigestible NDF compared with AS (35.5 and 47.8% of indigestible NDF, respectively). The in vitro method estimated rate of digestion of alfalfa potentially digestible NDF to be approximately 2 times faster than CS fiber (6.11 and 3.21%/h, respectively). Four diets were formulated containing different proportions of CS to AS: 100CS:0AS, 67CS:33AS, 33CS:67AS, and 0CS:100AS, as percentage of diet DM basis. The objective was to construct diets that contained approximately similar levels of NDF but with different pool sizes and rates of digestion of potentially digestible NDF. Diets were fed to 8 ruminally cannulated, multiparous, lactating dairy cows in a replicated 4×4 Latin square with 21-d periods. Total-tract fiber digestibility and fiber digestion kinetic parameters observed in vivo were compared with the values predicted by the in vitro assay and model. Total-tract NDF digestibility coefficients were similar (41.8 and 40.6% of total NDF) for the in vitro and in vivo methods, respectively. As the proportion of dietary alfalfa increased, the digestibility of NDF increased. The rate of digestion of potentially digestible NDF predicted from the in vitro assay was also similar to what was observed in vivo. Results suggest that the in vitro total-tract NDF digestibility model could be used to predict rate of fiber digestion and NDF digestibility for lactating dairy cattle. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  1. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms.

    PubMed Central

    Ermak, G; Paszkowski, U; Wohlmuth, M; Scheid, O M; Paszkowski, J

    1993-01-01

    Extrachromosomally replicating viral DNA is usually free of cytosine methylation and viral templates methylated in vitro are poor substrates when used in replication assays. We have investigated the mechanism of inhibition of viral replication by DNA methylation using as a model the DNA A of African cassava mosaic virus. We have constructed two component helper systems which allow for separation of the transcriptional inhibition of viral genes necessary for replication from replication inhibition due to altered interaction between the replication complex and methylated viral DNA. Our results suggest that methylation-mediated reduction of viral replication is due to both repression mechanisms and that this provides two independent selection pressures for the maintenance of methylation-free replicons in infected cells. Images PMID:7688453

  2. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    PubMed

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  3. The West Nile Virus-Like Flavivirus Koutango Is Highly Virulent in Mice due to Delayed Viral Clearance and the Induction of a Poor Neutralizing Antibody Response

    PubMed Central

    Setoh, Yin X.; Biron, Rebecca M.; Sester, David P.; Kim, Kwang Sik; Hobson-Peters, Jody; Hall, Roy A.; Bielefeldt-Ohmann, Helle

    2014-01-01

    ABSTRACT The mosquito-borne West Nile virus (WNV) is responsible for outbreaks of viral encephalitis in humans, horses, and birds, with particularly virulent strains causing recent outbreaks of disease in eastern Europe, the Middle East, North America, and Australia. Previous studies have phylogenetically separated WNV strains into two main genetic lineages (I and II) containing virulent strains associated with neurological disease. Several WNV-like strains clustering outside these lineages have been identified and form an additional five proposed lineages. However, little is known about whether these strains have the potential to induce disease. In a comparative analysis with the highly virulent lineage I American strain (WNVNY99), the low-pathogenicity lineage II strain (B956), a benign Australian strain, Kunjin (WNVKUN), the African WNV-like Koutango virus (WNVKOU), and a WNV-like isolate from Sarawak, Malaysia (WNVSarawak), were assessed for neuroinvasive properties in a murine model and for their replication kinetics in vitro. While WNVNY99 replicated to the highest levels in vitro, in vivo mouse challenge revealed that WNVKOU was more virulent, with a shorter time to onset of neurological disease and higher morbidity. Histological analysis of WNVKOU- and WNVNY99-infected brain and spinal cords demonstrated more prominent meningoencephalitis and the presence of viral antigen in WNVKOU-infected mice. Enhanced virulence of WNVKOU also was associated with poor viral clearance in the periphery (sera and spleen), a skewed innate immune response, and poor neutralizing antibody development. These data demonstrate, for the first time, potent neuroinvasive and neurovirulent properties of a WNV-like virus outside lineages I and II. IMPORTANCE In this study, we characterized the in vitro and in vivo properties of previously uncharacterized West Nile virus strains and West Nile-like viruses. We identified a West Nile-like virus, Koutango virus (WNVKOU), that was more virulent than a known virulent lineage I virus, WNVNY99. The enhanced virulence of WNVKOU was associated with poor viral clearance and the induction of a poor neutralizing antibody response. These findings provide new insights into the pathogenesis of West Nile virus. PMID:24942584

  4. Radiation-induced senescence-like phenotype in proliferating and plateau-phase vascular endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Igarashi, Kaori; Sakimoto, Ippei; Kataoka, Keiko

    The effects of ionizing radiation (IR) on tumor angiogenesis still remain largely unknown. In this study, we found that IR (8 Gy) induces a high-frequency (80-90%) senescence-like phenotype in vascular endothelial cells (ECs) undergoing exponential growth. This finding allowed us to characterize the IR-induced senescence-like (IRSL) phenotype by examining the gene expression profiles and in vitro angiogenic activities of these ECs. The expression levels of genes associated with cell cycle progression and DNA replication were remarkably reduced in the IRSL ECs. Additionally, the in vitro invasion and migration activities of these cells through Matrigel were significantly suppressed. We also foundmore » that confluent ECs exhibited a high-frequency IRSL phenotype when they were replated immediately after irradiation, whereas incubation in plateau-phase conditions reduced the induction of this phenotype and enhanced colony formation. The kinetics of DNA double-strand break repair, which showed a faster time course in confluent ECs than in growing ECs, may contribute to the protective mechanism associated with the IRSL phenotype. These results imply that the IRSL phenotype may be important for determining the angiogenic activity of ECs following irradiation. The present study should contribute to the understanding of the effects of IR on tumor angiogenesis.« less

  5. Role of an Iron-Dependent Transcriptional Regulator in the Pathogenesis and Host Response to Infection with Streptococcus pneumoniae

    PubMed Central

    Gupta, Radha; Bhatty, Minny; Swiatlo, Edwin; Nanduri, Bindu

    2013-01-01

    Iron is a critical cofactor for many enzymes and is known to regulate gene expression in many bacterial pathogens. Streptococcus pneumoniae normally inhabits the upper respiratory mucosa but can also invade and replicate in lungs and blood. These anatomic sites vary considerably in both the quantity and form of available iron. The genome of serotype 4 pneumococcal strain TIGR4 encodes a putative iron-dependent transcriptional regulator (IDTR). A mutant deleted at idtr (Δidtr) exhibited growth kinetics similar to parent strain TIGR4 in vitro and in mouse blood for up to 48 hours following infection. However, Δidtr was significantly attenuated in a murine model of sepsis. IDTR down-regulates the expression of ten characterized and putative virulence genes in nasopharyngeal colonization and pneumonia. The host cytokine response was significantly suppressed in sepsis with Δidtr. Since an exaggerated inflammatory response is associated with a poor prognosis in sepsis, the decreased inflammatory response could explain the increased survival with Δidtr. Our results suggest that IDTR, which is dispensable for pneumococcal growth in vitro, is associated with regulation of pneumococcal virulence in specific host environments. Additionally, IDTR ultimately modulates the host cytokine response and systemic inflammation that contributes to morbidity and mortality of invasive pneumococcal disease. PMID:23437050

  6. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication.

    PubMed

    Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario

    2016-06-02

    Nitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection.

  7. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    PubMed Central

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. PMID:21364930

  8. Development of bioluminescence imaging of respiratory syncytial virus (RSV) in virus-infected live mice and its use for evaluation of therapeutics and vaccines.

    PubMed

    Fuentes, Sandra; Arenas, Diego; Moore, Martin M; Golding, Hana; Khurana, Surender

    2017-01-23

    Respiratory Syncytial virus (RSV) is one of the leading causes of pneumonia among infants with no human vaccine or efficient curative treatments. Efforts are underway to develop new RSV vaccines and therapeutics. There is a dire need for animal models for preclinical evaluation and selection of products against RSV. Herein, we developed a whole body bioluminescence imaging to follow replication of RSV A2 virus strain expressing firefly luciferase (RSVA2-line19-FFL) in live BALB/c mice that can be used as an extremely sensitive readout for studying effects of antiviral and vaccines in living mice. Strong bioluminescence signal was detected in the nasal cavity and in the lungs following intranasal infection of mice with RSVA2-line19-FFL. The kinetics of viral replication in lungs quantified by daily live imaging strongly correlated with viral titers measured by ex-vivo plaque assay and by assessing viral RNA by qRT-PCR. Vaccination of mice with a pre-fusion F protein elicited high neutralizing antibody titers conferring strong protective immunity against virus replication in the nasal cavity and lungs. In contrast, post-challenge treatment of mice with the monoclonal antibody Palivizumab two days after infection reduced viral replication in the nasal cavity at day 4, but only modestly reduced virus loads in the lungs by day 5. In contrast to RSV bioluminescence, plaque assay did not detect viral titers in lungs on day 5 in Palivizumab-treated animals. This difference between viral loads measured by the two assays was found to be due to coating of virions with the Palivizumab that blocked infection of target cells in vitro and shows importance of live imaging in evaluation of RSV therapeutics. This recombinant RSV based live imaging animal model is convenient and valuable tool that can be used to study host dissemination of RSV and evaluation of antiviral compounds and vaccines against RSV. Published by Elsevier Ltd.

  9. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    PubMed

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  10. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system

    PubMed Central

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-01-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant’s immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (−)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing. PMID:23535144

  11. Effect of 2',3'-dideoxythymidine-5'-triphosphate on HeLa cell in vitro DNA synthesis: evidence that DNA polymerase alpha is the only polymerase required for cellular DNA replication.

    PubMed Central

    Waqar, M A; Evans, M J; Huberman, J A

    1978-01-01

    We have studied the effects of the nucleotide analogue, 2',3'-dideoxythymidine-5'-triphosphate (ddTTP) on replicative DNA synthesis in HeLa cell lysates. As previously demonstrated (1), such lysates carry out extensive DNA synthesis in vitro, at rates and in a fashion similar to in vivo DNA replication. We report here that all aspects of DNA synthesis in such lysates (total dNTP incorporation, elongation of continuous nascent strands, and the initiation, elongation, and joining of Okazaki pieces) are only slightly inhibited by concentrations of ddTTP as high as 100-500 micrometer when the dTTP concentration is maintained at 10 micrometer. This finding is consistent with the report by Edenberg, Anderson, and DePamphilis (2) that all aspects of replicative in vitro simian virus 40 DNA synthesis are also resistant to ddTTP. We also find, in agreement with Edenberg, Anderson, and DePamphilis (2), that DNA synthesis catalyzed by DNA polymerases beta or gamma is easily inhibited by ddTTP, while synthesis catalyzed by DNA polymerase alpha is very resistant. These observations suggest that DNA polymerase alpha may be the only DNA polymerase required for all aspects of cellular DNA synthesis. PMID:673840

  12. Effects of RNA interference therapy against herpes simplex virus type 1 encephalitis.

    PubMed

    da Silva, Alexandre S; Raposo, Jéssica V; Pereira, Tiago C; Pinto, Marcelo A; de Paula, Vanessa S

    2016-01-01

    Herpetic encephalitis (HSE) is caused mainly by herpes simplex virus type 1 (HSV-1) with an annual incidence of 1-4 cases/million inhabitants. Currently, HSE treatment faces difficulties such as the use of antivirals with elevated toxicity, metabolic side effects and HSV-1 resistance. An alternative to antivirals is the use of small interfering RNA (siRNA) as a viral replication inhibitor. In this work, siRNA targeting the UL-39 region was evaluated for HSE treatment in vivo. BALB/c mice were inoculated with HSV-1 and treated with siRNA. The treatment was evaluated through kinetics of HSV-1 replication inhibition, number of siRNA doses administered and treatment with siRNA plus acyclovir. All groups were evaluated for signs of HSE, mortality and HSV-1 replication inhibition. The treated group of the kinetic experiment demonstrated a reduction of HSE signs and an HSV-1 replication inhibition of 43.6-99.9% in the brain and 53-98% in trigeminal ganglia (TG). Animals treated with one or two doses of siRNA had a prolonged survival time, reduced clinical signs of HSE and HSV-1 replication inhibition of 67.7% in brains and 85.7% in TG of animals treated with two doses of siRNA. Also, animals treated with siRNA plus acyclovir demonstrated reduced signs of HSE and mortality, as well as HSV-1 replication inhibition in the brain (83.2%) and TG (74.5%). These findings demonstrated that siRNA was capable of reducing HSE clinical signs, prolonging survival time and inhibiting HSV-1 replication in mice. Thus, siRNA can be a potential alternative to the standard HSE treatment especially to reduce clinical signs and extend survival time in vivo.

  13. Human CST has independent functions during telomere duplex replication and C-strand fill-in

    PubMed Central

    Wang, Feng; Stewart, Jason A.; Kasbek, Christopher; Zhao, Yong; Wright, Woodring E.; Price, Carolyn M.

    2012-01-01

    Summary Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S-phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide the first direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a novel replication factor that solves diverse replication-associated problems. PMID:23142664

  14. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    PubMed

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha; Abdul-Careem, Mohamed Faizal

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  15. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions

    PubMed Central

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens. PMID:28763472

  16. Phenotypic Differences in Virulence and Immune Response in Closely Related Clinical Isolates of Influenza A 2009 H1N1 Pandemic Viruses in Mice

    PubMed Central

    Camp, Jeremy V.; Chu, Yong-Kyu; Chung, Dong-Hoon; McAllister, Ryan C.; Adcock, Robert S.; Gerlach, Rachael L.; Wiemken, Timothy L.; Peyrani, Paula; Ramirez, Julio A.; Summersgill, James T.; Jonsson, Colleen B.

    2013-01-01

    To capture the possible genotypic and phenotypic differences of the 2009 influenza A virus H1N1 pandemic (H1N1pdm) strains circulating in adult hospitalized patients, we isolated and sequenced nine H1N1pdm viruses from patients hospitalized during 2009–2010 with severe influenza pneumonia in Kentucky. Each viral isolate was characterized in mice along with two additional H1N1 pandemic strains and one seasonal strain to assess replication and virulence. All isolates showed similar levels of replication in nasal turbinates and lung, but varied in their ability to cause morbidity. Further differences were identified in cytokine and chemokine responses. IL-6 and KC were expressed early in mice infected with strains associated with higher virulence. Strains that showed lower pathogenicity in mice had greater IFNγ, MIG, and IL-10 responses. A principal component analysis (PCA) of the cytokine and chemokine profiles revealed 4 immune response phenotypes that correlated with the severity of disease. A/KY/180/10, which showed the greatest virulence with a rapid onset of disease progression, was compared in additional studies with A/KY/136/09, which showed low virulence in mice. Analyses comparing a low (KY/136) versus a high (KY/180) virulent isolate showed a significant difference in the kinetics of infection within the lower respiratory tract and immune responses. Notably by 4 DPI, virus titers within the lung, bronchoalveolar lavage fluid (BALf), and cells within the BAL (BALc) revealed that the KY/136 replicated in BALc, while KY/180 replication persisted in lungs and BALc. In summary, our studies suggest four phenotypic groups based on immune responses that result in different virulence outcomes in H1N1pdm isolates with a high degree of genetic similarity. In vitro studies with two of these isolates suggested that the more virulent isolate, KY/180, replicates productively in macrophages and this may be a key determinant in tipping the response toward a more severe disease progression. PMID:23441208

  17. NS Segment of a 1918 Influenza A Virus-Descendent Enhances Replication of H1N1pdm09 and Virus-Induced Cellular Immune Response in Mammalian and Avian Systems

    PubMed Central

    Petersen, Henning; Mostafa, Ahmed; Tantawy, Mohamed A.; Iqbal, Azeem A.; Hoffmann, Donata; Tallam, Aravind; Selvakumar, Balachandar; Pessler, Frank; Beer, Martin; Rautenschlein, Silke; Pleschka, Stephan

    2018-01-01

    The 2009 pandemic influenza A virus (IAV) H1N1 strain (H1N1pdm09) has widely spread and is circulating in humans and swine together with other human and avian IAVs. This fact raises the concern that reassortment between H1N1pdm09 and co-circulating viruses might lead to an increase of H1N1pdm09 pathogenicity in different susceptible host species. Herein, we explored the potential of different NS segments to enhance the replication dynamics, pathogenicity and host range of H1N1pdm09 strain A/Giessen/06/09 (Gi-wt). The NS segments were derived from (i) human H1N1- and H3N2 IAVs, (ii) highly pathogenic- (H5- or H7-subtypes) or (iii) low pathogenic avian influenza viruses (H7- or H9-subtypes). A significant increase of growth kinetics in A549 (human lung epithelia) and NPTr (porcine tracheal epithelia) cells was only noticed in vitro for the reassortant Gi-NS-PR8 carrying the NS segment of the 1918-descendent A/Puerto Rico/8/34 (PR8-wt, H1N1), whereas all other reassortants showed either reduced or comparable replication efficiencies. Analysis using ex vivo tracheal organ cultures of turkeys (TOC-Tu), a species susceptible to IAV H1N1 infection, demonstrated increased replication of Gi-NS-PR8 compared to Gi-wt. Also, Gi-NS-PR8 induced a markedly higher expression of immunoregulatory and pro-inflammatory cytokines, chemokines and interferon-stimulated genes in A549 cells, THP-1-derived macrophages (dHTP) and TOC-Tu. In vivo, Gi-NS-PR8 induced an earlier onset of mortality than Gi-wt in mice, whereas, 6-week-old chickens were found to be resistant to both viruses. These data suggest that the specific characteristics of the PR8 NS segments can impact on replication, virus induced cellular immune responses and pathogenicity of the H1N1pdm09 in different avian and mammalian host species. PMID:29623073

  18. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter.

    PubMed

    Scott, K; Saul, J; Crooks, I; Camacho, O M; Dillon, D; Meredith, C

    2013-06-01

    In vitro genotoxicity assays are often used to compare tobacco smoke particulate matter (PM) from different cigarettes. The quantitative aspect of the comparisons requires appropriate statistical methods and replication levels, to support the interpretation in terms of power and significance. This paper recommends a uniform statistical analysis for the Ames test, mouse lymphoma mammalian cell mutation assay (MLA) and the in vitro micronucleus test (IVMNT); involving a hierarchical decision process with respect to slope, fixed effect and single dose comparisons. With these methods, replication levels of 5 (Ames test TA98), 4 (Ames test TA100), 10 (Ames test TA1537), 6 (MLA) and 4 (IVMNT) resolved a 30% difference in PM genotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Attenuation and protection efficacy of ORF C gene-deleted recombinant of infectious laryngotracheitis virus.

    PubMed

    Garcia, Maricarmen; Spatz, S J; Cheng, Y; Riblet, S M; Volkening, J D; Schneiders, G H

    2016-09-01

    Infectious laryngotracheitis (ILT) is a highly contagious respiratory disease of chickens caused by infectious laryngotracheitis virus (ILTV). The disease is controlled by the use of live-attenuated vaccines. Previously we reported the complete nucleotide sequence of the ILTV vaccine strain (TCO) and identified a nonsense mutation in the gene encoding the ORF C protein. This suggested that the ORF C protein might be associated with viral virulence. To investigate this, an ILTV recombinant with a deletion in the gene encoding ORF C was constructed using the genome of the virulent United States Department of Agriculture (USDA) challenge strain (USDAch). Compared to the parental virus, the ΔORF C recombinant replicated in chicken kidney (CK) cells with similar kinetics and generated similar titres. This demonstrated that the ORF C deletion had no deleterious effects on replication efficacy in vitro. In chickens, the recombinant induced only minor microscopic tracheal lesions when inoculated via the intra-tracheal/ocular route, while the parental strain induced moderate to severe microscopic tracheal lesions, even though virus load in the tracheas were comparable. Groups of chickens vaccinated via eye-drop with the ∆ORFC-ILTV were protected to levels comparable to those elicited by TCO vaccination. To our knowledge, this is the first report that demonstrates the suitability of ∆ORFC as a live-attenuated vaccine to prevent the losses caused by ILTV.

  20. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription.

    PubMed

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-07-10

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  1. A novel sheet-like virus particle array is a hallmark of Zika virus infection.

    PubMed

    Liu, Jun; Kline, Brandon A; Kenny, Tara A; Smith, Darci R; Soloveva, Veronica; Beitzel, Brett; Pang, Song; Lockett, Stephen; Hess, Harald F; Palacios, Gustavo; Kuhn, Jens H; Sun, Mei G; Zeng, Xiankun

    2018-04-25

    Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.

  2. In vitro dissolution kinetic study of theophylline from hydrophilic and hydrophobic matrices.

    PubMed

    Maswadeh, Hamzah M; Semreen, Mohammad H; Abdulhalim, Abdulatif A

    2006-01-01

    Oral dosage forms containing 300 mg theophylline in matrix type tablets, were prepared by direct compression method using two kinds of matrices, glycerylbehenate (hydrophobic), and (hydroxypropyl)methyl cellulose (hydrophilic). The in vitro release kinetics of these formulations were studied at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process were studied by analyzing the dissolution data using four kinetic equations, the zero-order equation, the first-order equation, the Higuchi square root equation and the Hixson-Crowell cube root law. The analysis of the dissolution kinetic data for the theophylline preparations in this study shows that it follows the first order kinetics and the release process involves erosion / diffusion and an alteration in the surface area and diameter of the matrix system, as well as in the diffusion path length from the matrix drug load during the dissolution process. This relation is best described by the use of both the first-order equation and the Hixson-Crowell cube root law.

  3. Use of in vitro dry matter digestibility and gas production to predict apparent total tract digestibility of total dietary fiber for growing pigs.

    PubMed

    Huang, Z; Urriola, P E; Shurson, G C

    2017-12-01

    In vitro DM disappearance (IVDMD) and gas production methods have been developed and used to measure in vivo nutrient digestibility of feed ingredients, but further validation is needed for ingredients containing high concentrations of insoluble fiber such as corn distiller's dried grains with solubles (DDGS). A 3-step in vitro procedure and resulting gas production were used to predict in vivo apparent total tract digestibility (ATTD) of total dietary fiber (TDF) among 3 sources each of wheat straw (WS), soybean hulls (SBH), and DDGS. A total of 34 barrows and 2 gilts (84 ± 7 kg BW) were used in a changeover design to determine the ATTD of 9 dietary treatments. The WS, SBH, or DDGS sources were the only ingredients containing fiber in each diet, and all diets were formulated to contain the same TDF concentration (22.3%). The in vivo experiment was conducted in 2 consecutive 13-d periods, each including a 10-d adaptation and a 3-d collection period to provide 8 replications/dietary treatment, and 0.5% TiO was added to each diet as an indigestible marker. Pigs had ad libitum access to water and were fed an amount of feed equivalent to 2.5% of initial BW in each period. The in vitro experiment was used to determine IVDMD and gas production of the 9 ingredients (5 to 8 replicates/ingredient) fed during the in vivo experiment. Gas production kinetics were fitted using a nonlinear model and analyzed using a mixed model, and predictions were evaluated using correlations and regression models. There were differences ( < 0.01) in ATTD of TDF among WS (26.7%), SBH (78.9%), and DDGS (43.0%) and among sources of DDGS (36.0 to 49.8%). Differences ( < 0.05) in IVDMD from simulated gastric and small intestinal hydrolysis were observed among WS (13.3%), SBH (18.9%), and DDGS (53.7%) and among sources of WS (12.8 to 13.8%), SBH (17.0 to 20.5%), and DDGS (52.0 to 56.9%). Differences ( < 0.05) in IVDMD from simulated large intestine fermentation (IVDMDf) were also observed among WS (23.3%), SBH (84.6%), and DDGS (69.6%) and among sources of WS (18.7 vs. 26.8%). In vitro DM disappearance from simulated total tract digestion of SBH (88.9%) and DDGS (86.1%) were greater ( < 0.01) than that of WS (33.5%). Differences ( < 0.01) in asymptotic gas production (A; mL/g DM substrate) were observed among WS (121), SBH (412), and DDGS (317), and ATTD of TDF was highly correlated with IVDMDf and A. In conclusion, low variability in ATTD of TDF and IVDMD among sources of WS and SBH evaluated in the current study may not justify the use of in vitro measurements, but in vitro fermentation accurately predicts ATTD of TDF among sources of corn DDGS.

  4. Biological evolution of replicator systems: towards a quantitative approach.

    PubMed

    Martin, Osmel; Horvath, J E

    2013-04-01

    The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

  5. Biological Evolution of Replicator Systems: Towards a Quantitative Approach

    NASA Astrophysics Data System (ADS)

    Martin, Osmel; Horvath, J. E.

    2013-04-01

    The aim of this work is to study the features of a simple replicator chemical model of the relation between kinetic stability and entropy production under the action of external perturbations. We quantitatively explore the different paths leading to evolution in a toy model where two independent replicators compete for the same substrate. To do that, the same scenario described originally by Pross (J Phys Org Chem 17:312-316, 2004) is revised and new criteria to define the kinetic stability are proposed. Our results suggest that fast replicator populations are continually favored by the effects of strong stochastic environmental fluctuations capable to determine the global population, the former assumed to be the only acting evolution force. We demonstrate that the process is continually driven by strong perturbations only, and that population crashes may be useful proxies for these catastrophic environmental fluctuations. As expected, such behavior is particularly enhanced under very large scale perturbations, suggesting a likely dynamical footprint in the recovery patterns of new species after mass extinction events in the Earth's geological past. Furthermore, the hypothesis that natural selection always favors the faster processes may give theoretical support to different studies that claim the applicability of maximum principles like the Maximum Metabolic Flux (MMF) or Maximum Entropy Productions Principle (MEPP), seen as the main goal of biological evolution.

  6. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  7. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors.

    PubMed

    Crosby, Catherine M; Barry, Michael A

    2017-02-18

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.

  8. How and why multiple MCMs are loaded at origins of DNA replication.

    PubMed

    Das, Shankar P; Rhind, Nicholas

    2016-07-01

    Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research. © 2016 WILEY Periodicals, Inc.

  9. Influence of genome-scale RNA structure disruption on the replication of murine norovirus—similar replication kinetics in cell culture but attenuation of viral fitness in vivo

    PubMed Central

    McFadden, Nora; Arias, Armando; Dry, Inga; Bailey, Dalan; Witteveldt, Jeroen; Evans, David J.; Goodfellow, Ian; Simmonds, Peter

    2013-01-01

    Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo. PMID:23630317

  10. A Novel Model System to Examine Agents Used in Breast Cancer Therapy.

    DTIC Science & Technology

    1996-07-01

    DNA replication (DNA synthesome) isolated from MDA MB 468 human breast cancer cells, human breast tumor tissue and human breast tumor cell xenografts In the presence of the viral large T-antigen and simian virus 40 (SV40) origin sequences, the DNA synthesome executes all of the steps required for the in vitro replication of the SV40 genome. Furthermore, the DNA synthesome isolated from human breast cancer cells possesses a lower fidelity for DNA synthesis in vitro than the synthesome purified from a non-malignant breast cell line. Our studies indicate that the following

  11. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids

    PubMed Central

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A.; Greene, Eric C.; Dockendorff, Chris

    2017-01-01

    Abstract An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. PMID:28934470

  12. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.

    PubMed

    Kurihara, Takeshi; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Uemura, Kentaro; Okamoto, Toru; Sugiyama, Masaya; Motooka, Daisuke; Nakamura, Shota; Ikawa, Masato; Mizokami, Masashi; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2017-07-21

    Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

  13. In vitro infection of salmonid epidermal tissues by infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus

    USGS Publications Warehouse

    Yamamoto, T.; Batts, W.N.; Winton, J.R.

    1992-01-01

    The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.

  14. Matrix Conditions and KLF2-Dependent Induction of Heme Oxygenase-1 Modulate Inhibition of HCV Replication by Fluvastatin

    PubMed Central

    Singethan, Katrin; Sirma, Hüseyin; Keller, Amelie Dorothea; Rosal, Sergio René Perez; Schrader, Jörg; Loscher, Christine; Volz, Tassilo; Bartenschlager, Ralf; Lohmann, Volker; Protzer, Ulrike; Dandri, Maura; Lohse, Ansgar W.; Tiegs, Gisa; Sass, Gabriele

    2014-01-01

    Background & Aims HMG-CoA-reductase-inhibitors (statins) have been shown to interfere with HCV replication in vitro. We investigated the mechanism, requirements and contribution of heme oxygenase-1(HO-1)-induction by statins to interference with HCV replication. Methods HO-1-induction by fluva-, simva-, rosuva-, atorva- or pravastatin was correlated to HCV replication, using non-infectious replicon systems as well as the infectious cell culture system. The mechanism of HO-1-induction by statins as well as its relevance for interference with HCV replication was investigated using transient or permanent knockdown cell lines. Polyacrylamide(PAA) gels of different density degrees or the Rho-kinase-inhibitor Hydroxyfasudil were used in order to mimic matrix conditions corresponding to normal versus fibrotic liver tissue. Results All statins used, except pravastatin, decreased HCV replication and induced HO-1 expression, as well as interferon response in vitro. HO-1-induction was mediated by reduction of Bach1 expression and induction of the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) cofactor Krueppel-like factor 2 (KLF2). Knockdown of KLF2 or HO-1 abrogated effects of statins on HCV replication. HO-1-induction and anti-viral effects of statins were more pronounced under cell culture conditions mimicking advanced stages of liver disease. Conclusions Statin-mediated effects on HCV replication seem to require HO-1-induction, which is more pronounced in a microenvironment resembling fibrotic liver tissue. This implicates that certain statins might be especially useful to support HCV therapy of patients at advanced stages of liver disease. PMID:24801208

  15. Mammalian DNA enriched for replication origins is enriched for snap-back sequences.

    PubMed

    Zannis-Hadjopoulos, M; Kaufmann, G; Martin, R G

    1984-11-15

    Using the instability of replication loops as a method for the isolation of double-stranded nascent DNA, extruded DNA enriched for replication origins was obtained and denatured. Snap-back DNA, single-stranded DNA with inverted repeats (palindromic sequences), reassociates rapidly into stem-loop structures with zero-order kinetics when conditions are changed from denaturing to renaturing, and can be assayed by chromatography on hydroxyapatite. Origin-enriched nascent DNA strands from mouse, rat and monkey cells growing either synchronously or asynchronously were purified and assayed for the presence of snap-back sequences. The results show that origin-enriched DNA is also enriched for snap-back sequences, implying that some origins for mammalian DNA replication contain or lie near palindromic sequences.

  16. Ruminant organotypic brain-slice cultures as a model for the investigation of CNS listeriosis

    PubMed Central

    Guldimann, Claudia; Lejeune, Beatrice; Hofer, Sandra; Leib, Stephen L; Frey, Joachim; Zurbriggen, Andreas; Seuberlich, Torsten; Oevermann, Anna

    2012-01-01

    Central nervous system (CNS) infections in ruminant livestock, such as listeriosis, are of major concern for veterinary and public health. To date, no host-specific in vitro models for ruminant CNS infections are available. Here, we established and evaluated the suitability of organotypic brain-slices of ruminant origin as in vitro model to study mechanisms of Listeria monocytogenes CNS infection. Ruminants are frequently affected by fatal listeric rhombencephalitis that closely resembles the same condition occurring in humans. Better insight into host–pathogen interactions in ruminants is therefore of interest, not only from a veterinary but also from a public health perspective. Brains were obtained at the slaughterhouse, and hippocampal and cerebellar brain-slices were cultured up to 49 days. Viability as well as the composition of cell populations was assessed weekly. Viable neurons, astrocytes, microglia and oligodendrocytes were observed up to 49 days in vitro. Slice cultures were infected with L. monocytogenes, and infection kinetics were monitored. Infected brain cells were identified by double immunofluorescence, and results were compared to natural cases of listeric rhombencephalitis. Similar to the natural infection, infected brain-slices showed focal replication of L. monocytogenes and bacteria were predominantly observed in microglia, but also in astrocytes, and associated with axons. These results demonstrate that organotypic brain-slice cultures of bovine origin survive for extended periods and can be infected easily with L. monocytogenes. Therefore, they are a suitable model to study aspects of host–pathogen interaction in listeric encephalitis and potentially in other neuroinfectious diseases. PMID:22804762

  17. Prereplicative events involving simian virus 40 DNA in permissive cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinaldy, A.; Feunteun, J.; Rosenberg, B.H.

    1982-01-01

    Simian virus 40 DNA molecules were found to be unable to replicate for 9 h after infection, even in cells that were already replicating the DNA of preinfecting simian virus 40; after 9 h, the ability of the DNA to replicate began to rise sharply. The kinetics of activation indicated that each DNA molecule undergoes a series of slow consecutive reactions, not involving T-antigen, before it can replicate. These pre-replicative molecular transformations probably involve configurational changes; their nature and their relation to the initiation of viral DNA synthesis is discussed. Observation of the replicative behavior of one viral DNA inmore » the presence of another was made possible by the use of two different mutants with distinguishable DNAs: a viable deletion mutant containing DNA insensitive to TaqI restriction enzyme was used to provide viral functions required for replication, and is a tsA mutant with TaqI-sensitive DNA was introduced at various times as a probe to determine the ability of the DNA to replicate under different conditions.« less

  18. Functional exchangeability of the nuclear localization signal (NLS) of capsid protein between PCV1 and PCV2 in vitro: Implications for the role of NLS in viral replication

    PubMed Central

    2011-01-01

    Background Porcine circovirus type 2 (PCV2) is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS). It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. Results The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively). When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1) still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2), which was consistent with the distinction between wild type PCV1 and PCV2. Conclusions Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found that ORF2 NLS was not responsible for the distinction of in vitro growth characteristic between PCV1 and PCV2. Further studies are required to determine the in vivo viral replication and pathogenicity of the NLS chimeric DNA clones. PMID:21733152

  19. Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells.

    PubMed Central

    Collis, P S; O'Donnell, B J; Barton, D J; Rogers, J A; Flanegan, J B

    1992-01-01

    Full-length and subgenomic poliovirus RNAs were transcribed in vitro and transfected into HeLa cells to study viral RNA replication in vivo. RNAs with deletion mutations were analyzed for the ability to replicate in either the absence or the presence of helper RNA by using a cotransfection procedure and Northern (RNA) blot analysis. An advantage of this approach was that viral RNA replication and genetic complementation could be characterized without first isolating conditional-lethal mutants. A subgenomic RNA with a large in-frame deletion in the capsid coding region (P1) replicated more efficiently than full-length viral RNA transcripts. In cotransfection experiments, both the full-length and subgenomic RNAs replicated at slightly reduced levels and appeared to interfere with each other's replication. In contrast, a subgenomic RNA with a similarly sized out-of-frame deletion in P1 did not replicate in transfected cells, either alone or in the presence of helper RNA. Similar results were observed with an RNA transcript containing a large in-frame deletion spanning the P1, P2, and P3 coding regions. A mutant RNA with an in-frame deletion in the P1-2A coding sequence was self-replicating but at a significantly reduced level. The replication of this RNA was fully complemented after cotransfection with a helper RNA that provided 2A in trans. A P1-2A-2B in-frame deletion, however, totally blocked RNA replication and was not complemented. Control experiments showed that all of the expected viral proteins were both synthesized and processed when the RNA transcripts were translated in vitro. Thus, our results indicated that 2A was a trans-acting protein and that 2B and perhaps other viral proteins were cis acting during poliovirus RNA replication in vivo. Our data support a model for poliovirus RNA replication which directly links the translation of a molecule of plus-strand RNA with the formation of a replication complex for minus-strand RNA synthesis. Images PMID:1328676

  20. Replication of damaged DNA in vitro is blocked by p53

    PubMed Central

    Zhou, Jianmin; Prives, Carol

    2003-01-01

    The tumor suppressor protein p53 may have other roles and functions in addition to its well-documented ability to serve as a sequence-specific transcriptional activator in response to DNA damage. We showed previously that p53 can block the replication of polyomavirus origin-containing DNA (Py ori-DNA) in vitro when p53 binding sites are present on the late side of the Py ori. Here we have both further extended these observations and have also examined whether p53 might be able to bind directly to and inhibit the replication of damaged DNA. We found that p53 strongly inhibits replication of γ-irradiated Py ori-DNA and such inhibition requires both the central DNA binding domain and the extreme C-terminus of the p53 protein. An endogenous p53 binding site lies within the Py origin and is required for the ability of p53 to block initiation of replication from γ-irradiated Py ori-DNA, suggesting the possibility of DNA looping caused by p53 binding both non-specifically to sites of DNA damage and specifically to the endogenous site in the polyomavirus origin. Our results thus suggest the possibility that under some circumstances p53 might serve as a direct regulator of DNA replication and suggest as well an additional function for cooperation between its two autonomous DNA binding domains. PMID:12853603

  1. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro.

    PubMed

    Zhou, Xin; Wang, Yupei; Si, Jing; Zhou, Rong; Gan, Lu; Di, Cuixia; Xie, Yi; Zhang, Hong

    2015-11-18

    Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen ((1)O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce (1)O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial (1)O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by (1)O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.

  2. New types of experimental data shape the use of enzyme kinetics for dynamic network modeling.

    PubMed

    Tummler, Katja; Lubitz, Timo; Schelker, Max; Klipp, Edda

    2014-01-01

    Since the publication of Leonor Michaelis and Maude Menten's paper on the reaction kinetics of the enzyme invertase in 1913, molecular biology has evolved tremendously. New measurement techniques allow in vivo characterization of the whole genome, proteome or transcriptome of cells, whereas the classical enzyme essay only allows determination of the two Michaelis-Menten parameters V and K(m). Nevertheless, Michaelis-Menten kinetics are still commonly used, not only in the in vitro context of enzyme characterization but also as a rate law for enzymatic reactions in larger biochemical reaction networks. In this review, we give an overview of the historical development of kinetic rate laws originating from Michaelis-Menten kinetics over the past 100 years. Furthermore, we briefly summarize the experimental techniques used for the characterization of enzymes, and discuss web resources that systematically store kinetic parameters and related information. Finally, describe the novel opportunities that arise from using these data in dynamic mathematical modeling. In this framework, traditional in vitro approaches may be combined with modern genome-scale measurements to foster thorough understanding of the underlying complex mechanisms. © 2013 FEBS.

  3. In vitro evaluation of flow patterns and turbulent kinetic energy in trans-catheter aortic valve prostheses.

    PubMed

    Giese, Daniel; Weiss, Kilian; Baeßler, Bettina; Madershahian, Navid; Choi, Yeong-Hoon; Maintz, David; Bunck, Alexander C

    2018-02-01

    The objective of the current work was to evaluate flow and turbulent kinetic energy in different transcatheter aortic valve implants using highly undersampled time-resolved multi-point 3-directional phase-contrast measurements (4D Flow MRI) in an in vitro setup. A pulsatile flow setup was used with a compliant tubing mimicking a stiff left ventricular outflow tract and ascending aorta. Five different implants were measured using a highly undersampled multi-point 4D Flow MRI sequence. Velocities and turbulent kinetic energy values were analysed and compared. Strong variations of turbulent kinetic energy distributions between the valves were observed. Maximum turbulent kinetic energy values ranged from 100 to over 500 J/m 3 while through-plane velocities were similar between all valves. Highly accelerated 4D Flow MRI for the measurement of velocities and turbulent kinetic energy values allowed for the assessment of hemodynamic parameters in five different implant models. The presented setup, measurement protocol and analysis methods provides an efficient approach to compare different valve implants and could aid future novel valve designs.

  4. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  5. A mutation in the hepatitis E virus RNA polymerase promotes its replication and associates with ribavirin treatment failure in organ transplant recipients.

    PubMed

    Debing, Yannick; Gisa, Anett; Dallmeier, Kai; Pischke, Sven; Bremer, Birgit; Manns, Michael; Wedemeyer, Heiner; Suneetha, Pothakamuri Venkata; Neyts, Johan

    2014-11-01

    We analyzed blood samples collected from 15 patients with chronic hepatitis E who were recipients of solid-organ transplants. All patients cleared the hepatitis E virus (HEV) except for 2 (nonresponders); 1 patient died. A G1634R mutation in viral polymerase was detected in the HEV RNA of the nonresponders; this mutation did not provide the virus with resistance to ribavirin in vitro. However, the mutant form of a subgenomic replicon of genotype 3 HEV replicated more efficiently in vitro than HEV without this mutation, and the same was true for infectious virus, including in competition assays. Similar results were obtained for genotype 1 HEV. The G1634R mutation therefore appears to increase the replicative capacity of HEV in the human liver and hence reduce the efficacy of ribavirin. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  7. Attenuation of monkeypox virus by deletion of genomic regions.

    PubMed

    Lopera, Juan G; Falendysz, Elizabeth A; Rocke, Tonie E; Osorio, Jorge E

    2015-01-15

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems.

    PubMed

    Paula, E M; Monteiro, H F; Silva, L G; Benedeti, P D B; Daniel, J L P; Shenkoru, T; Broderick, G A; Faciola, A P

    2017-07-01

    Previous research indicated that there were significant differences in rumen-undegradable protein (RUP) among canola meals (CM), which could influence the nutritional value of CM. The objectives of this study were to (1) evaluate the effects of feeding CM with different RUP contents on ruminal fermentation, nutrient digestion, and microbial growth using a dual-flow continuous culture system (experiment 1) and (2) evaluate ruminal gas production kinetics, in vitro organic matter (OM) digestibility, and methane (CH 4 ) production of soybean meal (SBM) and CM with low or high RUP in the diet or as a sole ingredient using a gas production system (experiments 2 and 3). In experiment 1, diets were randomly assigned to 6 fermentors in a replicated 3 × 3 Latin square. The only ingredient that differed among diets was the protein supplement. The treatments were (1) solvent-extracted SBM, (2) low-RUP solvent-extracted CM (38% RUP as a percentage of crude protein), and (3) high-RUP solvent-extracted CM (50% RUP). Diets were prepared as 3 concentrate mixtures that were combined with 25% orchardgrass hay and 15% wheat straw (dry matter basis). Experiments 2 and 3 had the same design with 24 bottles incubated 3 times for 48 h each. During the 48-h incubation, the cumulative pressure was recorded to determine gas production kinetics, in vitro OM digestibility, and CH 4 production. In experiment 1, N flow (g/d), efficiency of N use, efficiency of bacterial N synthesis, total volatile fatty acids (mM), and molar proportion of acetate, propionate, and isobutyrate were not affected by treatments. There were tendencies for a decrease in ruminal NH 3 -N and an increase in molar proportion of butyrate for the SBM diet compared with both CM diets. The molar proportion of valerate was greater in both CM diets, whereas the molar proportion of isovalerate and total branched-chain volatile fatty acids was lower for the CM diets compared with the SBM diet. In experiments 2 and 3, the SBM diet had a greater gas pool size than both CM diets. The SBM diet increased in vitro OM digestibility; however, it also tended to increase CH 4 production (mM and g/kg of DM) compared with both CM diets. Based on the results of this study, CM with RUP varying from 38 to 50% of crude protein does not affect ruminal fermentation, nutrient digestion, and microbial growth when CM is included at up to 34% of the diet. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  9. A SELEX-Screened Aptamer of Human Hepatitis B Virus RNA Encapsidation Signal Suppresses Viral Replication

    PubMed Central

    Feng, Hui; Beck, Jürgen; Nassal, Michael; Hu, Kang-hong

    2011-01-01

    Background The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the ε RNA stem-loop on pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. Methodology/Principal Findings Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP), to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. Conclusions/Significance This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B. PMID:22125633

  10. Nutritional demands and metabolic characteristics of the DSIR-HA-1179 insect cell line during growth and infection with the Oryctes nudivirus.

    PubMed

    Pushparajan, Charlotte; Claus, Juan Daniel; Marshall, Sean D G; Visnovsky, Gabriel

    2017-12-01

    The DSIR-HA-1179 coleopteran cell line has been identified as a susceptible and permissive host for the in vitro replication of the Oryctes nudivirus, which can be used as a biopesticide against the coconut rhinoceros beetle, pest of palms. The major challenge to in vitro large-scale Oryctes nudivirus production is ensuring process economy. This rests, among other requisites, on the use of low-cost culture media tailored to the nutritional and metabolic needs of the cell line, both in uninfected and infected cultures. The aim of the present study was to characterize the nutritional demands and the metabolic characteristics of the DSIR-HA-1179 cell line during growth and subsequent infection with Oryctes nudivirus in the TC-100 culture medium. Serum-supplementation of the culture medium was found to be critical for cell growth, and addition of 10% fetal bovine serum v/v led to a maximum viable cell density (16.8 × 10 5 cells ml -1 ) with a population doubling time of 4.2 d. Nutritional and metabolic characterization of the cell line revealed a trend of glucose and glutamine consumption but minimal uptake of other amino acids, negligible production of lactate and ammonia, and the accumulation of alanine, both before and after infection. The monitoring of virus production kinetics showed that the TC-100 culture medium was nutritionally sufficient to give a peak yield of 7.38 × 10 7 TCID 50 ml -1 of OrNV at the 6th day post-infection in attached cultures of DSIR-HA-1179 cells in 25 cm 2 T-flasks. Knowledge of the cell line's nutritional demands and virus production kinetics will aid in the formulation of a low-cost culture medium and better process design for large-scale OrNV production in future.

  11. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  12. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro

    PubMed Central

    Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M.

    2015-01-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes. (185 words). PMID:25855056

  13. Haemocytes from Crassostrea gigas and OsHV-1: A promising in vitro system to study host/virus interactions.

    PubMed

    Morga, Benjamin; Faury, Nicole; Guesdon, Stéphane; Chollet, Bruno; Renault, Tristan

    2017-11-01

    Since 2008, mass mortality outbreaks associated with the detection of particular variants of OsHV-1 have been reported in Crassostrea gigas spat and juveniles in several countries. Recent studies have reported information on viral replication during experimental infection. Viral DNA and RNA were also detected in the haemolymph and haemocytes suggesting that the virus could circulate through the circulatory system. However, it is unknown if the virus is free in the haemolymph, passively associated at the surface of haemocytes, or able to infect and replicate inside these cells inducing (or not) virion production. In the present study, we collected haemocytes from the haemolymphatic sinus of the adductor muscle of healthy C. gigas spat and exposed them in vitro to a viral suspension. Results showed that viral RNAs were detectable one hour after contact and the number of virus transcripts increased over time in association with an increase of viral DNA detection. These results suggested that the virus is able to initiate replication rapidly inside haemocytes maintained in vitro. These in vitro trials were also used to carry out a dual transcriptomic study. We analyzed concomitantly the expression of some host immune genes and 15 viral genes. Results showed an up regulation of oyster genes currently studied during OsHV-1 infection. Additionally, transmission electron microscopy examination was carried out and did not allow the detection of viral particles. Moreover, All the results suggested that the in vitro model using haemocytes can be valuable for providing new perspective on virus-oyster interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. The eukaryotic bell-shaped temporal rate of DNA replication origin firing emanates from a balance between origin activation and passivation.

    PubMed

    Arbona, Jean-Michel; Goldar, Arach; Hyrien, Olivier; Arneodo, Alain; Audit, Benjamin

    2018-06-01

    The time-dependent rate I(t) of origin firing per length of unreplicated DNA presents a universal bell shape in eukaryotes that has been interpreted as the result of a complex time-evolving interaction between origins and limiting firing factors. Here we show that a normal diffusion of replication fork components towards localized potential replication origins (p-oris) can more simply account for the I(t) universal bell shape, as a consequence of a competition between the origin firing time and the time needed to replicate DNA separating two neighboring p-oris . We predict the I(t) maximal value to be the product of the replication fork speed with the squared p-ori density. We show that this relation is robustly observed in simulations and in experimental data for several eukaryotes. Our work underlines that fork-component recycling and potential origins localization are sufficient spatial ingredients to explain the universality of DNA replication kinetics. © 2018, Arbona et al.

  15. Transcriptionally Driven DNA Replication Program of the Human Parasite Leishmania major.

    PubMed

    Lombraña, Rodrigo; Álvarez, Alba; Fernández-Justel, José Miguel; Almeida, Ricardo; Poza-Carrión, César; Gomes, Fábia; Calzada, Arturo; Requena, José María; Gómez, María

    2016-08-09

    Faithful inheritance of eukaryotic genomes requires the orchestrated activation of multiple DNA replication origins (ORIs). Although origin firing is mechanistically conserved, how origins are specified and selected for activation varies across different model systems. Here, we provide a complete analysis of the nucleosomal landscape and replication program of the human parasite Leishmania major, building on a better evolutionary understanding of replication organization in Eukarya. We found that active transcription is a driving force for the nucleosomal organization of the L. major genome and that both the spatial and the temporal program of DNA replication can be explained as associated to RNA polymerase kinetics. This simple scenario likely provides flexibility and robustness to deal with the environmental changes that impose alterations in the genetic programs during parasitic life cycle stages. Our findings also suggest that coupling replication initiation to transcription elongation could be an ancient solution used by eukaryotic cells for origin maintenance. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  16. RFWD3-Dependent Ubiquitination of RPA Regulates Repair at Stalled Replication Forks.

    PubMed

    Elia, Andrew E H; Wang, David C; Willis, Nicholas A; Boardman, Alexander P; Hajdu, Ildiko; Adeyemi, Richard O; Lowry, Elizabeth; Gygi, Steven P; Scully, Ralph; Elledge, Stephen J

    2015-10-15

    We have used quantitative proteomics to profile ubiquitination in the DNA damage response (DDR). We demonstrate that RPA, which functions as a protein scaffold in the replication stress response, is multiply ubiquitinated upon replication fork stalling. Ubiquitination of RPA occurs on chromatin, involves sites outside its DNA binding channel, does not cause proteasomal degradation, and increases under conditions of fork collapse, suggesting a role in repair at stalled forks. We demonstrate that the E3 ligase RFWD3 mediates RPA ubiquitination. RFWD3 is necessary for replication fork restart, normal repair kinetics during replication stress, and homologous recombination (HR) at stalled replication forks. Mutational analysis suggests that multisite ubiquitination of the entire RPA complex is responsible for repair at stalled forks. Multisite protein group sumoylation is known to promote HR in yeast. Our findings reveal a similar requirement for multisite protein group ubiquitination during HR at stalled forks in mammalian cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced themore » amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.« less

  18. A Novel Model System to Examine Agents Used in Breast Cancer Therapy.

    DTIC Science & Technology

    1995-07-01

    We have recently characterized a multiprotein DNA replication complex (MRC) that was purified from NODA NIB 468 human breast cancer cells by a series...proliferating cell nuclear antigen (PCNA), RE-C RP-A and DNA topoisomerase I. Based upon its requirements for DNA replication activity and its...SV4O) origin sequences, the MRC executes all of the steps required for the in vitro, bidirectional replication of the SV4O genome. Several of the DNA

  19. Understanding DNA replication by the bacteriophage T4 replisome.

    PubMed

    Benkovic, Stephen J; Spiering, Michelle M

    2017-11-10

    The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. The MCM Helicase Motor of the Eukaryotic Replisome.

    PubMed

    Abid Ali, Ferdos; Costa, Alessandro

    2016-05-08

    The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate. Copyright © 2016. Published by Elsevier Ltd.

  1. Crimean-Congo haemorrhagic fever virus replication in adult Hyalomma truncatum and Amblyomma variegatum ticks.

    PubMed

    Gonzalez, J P; Cornet, J P; Wilson, M L; Camicas, J L

    1991-01-01

    The kinetics of the replication of the Crimean-Congo haemorrhagic fever virus (CCHFV) was studied in intra-anally inoculated adult Hyalomma truncatum and Amblyomma variegatum ticks. The virus was re-isolated by suckling mouse inoculation and revealed by antigen capture with ground ticks and indirect immunofluorescence of haemolymph. The virus was detected in ticks in the first hours post-inoculation (p.i.) and its replication was observed from 36 h p.i. onwards. Virus titre reached a maximum within 3-5 days then decreased slowly to a level of at 2 log LD50/ml for several months until the end of observations. Several specific, non-identified factors seem to favour CCHFV replication in H. truncatum. Long-term virus persistence seems to occur in CCHFV-infected adult ticks.

  2. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair.

    PubMed Central

    Ayyagari, R; Impellizzeri, K J; Yoder, B L; Gary, S L; Burgers, P M

    1995-01-01

    The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions between repair-specific protein(s) and PCNA, which are distinct from those required for DNA replication. PMID:7623835

  3. Viruses within the Flaviviridae Decrease CD4 Expression and Inhibit HIV Replication in Human CD4+ Cells1

    PubMed Central

    Xiang, Jinhua; McLinden, James H.; Rydze, Robert A.; Chang, Qing; Kaufman, Thomas M.; Klinzman, Donna; Stapleton, Jack T.

    2013-01-01

    Viral infections alter host cell homeostasis and this may lead to immune evasion and/or interfere with the replication of other microbes in coinfected hosts. Two flaviviruses are associated with a reduction in HIV replication or improved survival in HIV-infected people (dengue virus (DV) and GB virus type C (GBV-C)). GBV-C infection and expression of the GBV-C nonstructural protein 5A (NS5A) and the DV NS5 protein in CD4+ T cells inhibit HIV replication in vitro. To determine whether the inhibitory effect on HIV replication is conserved among other flaviviruses and to characterize mechanism(s) of HIV inhibition, the NS5 proteins of GBV-C, DV, hepatitis C virus, West Nile virus, and yellow fever virus (YFV; vaccine strain 17D) were expressed in CD4+ T cells. All NS5 proteins inhibited HIV replication. This correlated with decreased steady-state CD4 mRNA levels and reduced cell surface CD4 protein expression. Infection of CD4+ T cells and macrophages with YFV (17D vaccine strain) also inhibited HIV replication and decreased CD4 gene expression. In contrast, mumps virus was not inhibited by the expression of flavivirus NS5 protein or by YFV infection, and mumps infection did not alter CD4 mRNA or protein levels. In summary, CD4 gene expression is decreased by all human flavivirus NS5 proteins studied. CD4 regulation by flaviviruses may interfere with innate and adaptive immunity and contribute to in vitro HIV replication inhibition. Characterization of the mechanisms by which flaviviruses regulate CD4 expression may lead to novel therapeutic strategies for HIV and immunological diseases. PMID:19923460

  4. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  5. In vitro modulation of cytochrome P450 reductase supported indoleamine 2,3-dioxygenase activity by allosteric effectors cytochrome b(5) and methylene blue.

    PubMed

    Pearson, Josh T; Siu, Sophia; Meininger, David P; Wienkers, Larry C; Rock, Dan A

    2010-03-30

    Indoleamine 2,3-dioxygenase (IDO) is a heme-containing dioxygenase involved in the degradation of several indoleamine derivatives and has been indicated as an immunosuppressive. IDO is an attractive target for therapeutic intervention in diseases which are known to capitalize on immune suppression, including cancer, HIV, and inflammatory diseases. Conventionally, IDO activity is measured through chemical reduction by the addition of ascorbate and methylene blue. Identification of potential coenzymes involved in the reduction of IDO in vivo should improve in vitro reconstitution systems used to identify potential IDO inhibitors. In this study we show that NADPH-cytochrome P450 reductase (CPR) is capable of supporting IDO activity in vitro and that oxidation of l-Trp follows substrate inhibition kinetics (k(cat) = 0.89 +/- 0.04 s(-1), K(m) = 0.72 +/- 0.15 microM, and K(i) = 9.4 +/- 2.0 microM). Addition of cytochrome b(5) to CPR-supported l-Trp incubations results in modulation from substrate inhibition to sigmoidal kinetics (k(cat) = 1.7 +/- 0.3 s(-1), K(m) = 1.5 +/- 0.9 microM, and K(i) = 1.9 +/- 0.3). CPR-supported d-Trp oxidations (+/-cytochrome b(5)) exhibit Michaelis-Menten kinetics. Addition of methylene blue (minus ascorbate) to CPR-supported reactions resulted in inhibition of d-Trp turnover and modulation of l-Trp kinetics from allosteric to Michaelis-Menten with a concurrent decrease in substrate affinity for IDO. Our data indicate that CPR is capable of supporting IDO activity in vitro and oxidation of tryptophan by IDO displays substrate stereochemistry dependent atypical kinetics which can be modulated by the addition of cytochrome b(5).

  6. Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B.

    PubMed

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2017-02-01

    Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis-transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis-transisomerase active sites of Cyps might be required for FCoV replication.

  7. Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication

    PubMed Central

    Martinez, Matthew P.; Wacker, Amanda L.; Bruck, Irina; Kaplan, Daniel L.

    2017-01-01

    The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described. PMID:28383499

  8. CpG Distribution and Methylation Pattern in Porcine Parvovirus

    PubMed Central

    Tóth, Renáta; Mészáros, István; Stefancsik, Rajmund; Bartha, Dániel; Bálint, Ádám; Zádori, Zoltán

    2013-01-01

    Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome. PMID:24392033

  9. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    NASA Astrophysics Data System (ADS)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  10. In-vitro replication of Chelonid herpesvirus 5 in organotypic skin cultures from Hawaiian green turtles (Chelonia mydas)

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Weatherby, Tina; Ackermann, Mathias; Balazs, George H.

    2017-01-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.

  11. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  12. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  13. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    PubMed

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are heterogeneous and highly dynamic nanoscale structures usurped by various viruses. Here, we demonstrate that TBSV p33 and p92 replication proteins can bind to sterol in vitro Mutagenesis analysis of p33 within the CRAC and CARC sequences involved in sterol binding shows the important connection between the abilities of p33 to bind to sterol and to support TBSV replication in yeast and plant cells. Together, the results further strengthen the model that cellular sterols are essential as proviral lipids during viral replication. Copyright © 2017 American Society for Microbiology.

  14. Different rates of DNA replication at early versus late S-phase sections: multiscale modeling of stochastic events related to DNA content/EdU (5-ethynyl-2'deoxyuridine) incorporation distributions.

    PubMed

    Li, Biao; Zhao, Hong; Rybak, Paulina; Dobrucki, Jurek W; Darzynkiewicz, Zbigniew; Kimmel, Marek

    2014-09-01

    Mathematical modeling allows relating molecular events to single-cell characteristics assessed by multiparameter cytometry. In the present study we labeled newly synthesized DNA in A549 human lung carcinoma cells with 15-120 min pulses of EdU. All DNA was stained with DAPI and cellular fluorescence was measured by laser scanning cytometry. The frequency of cells in the ascending (left) side of the "horseshoe"-shaped EdU/DAPI bivariate distributions reports the rate of DNA replication at the time of entrance to S phase while their frequency in the descending (right) side is a marker of DNA replication rate at the time of transition from S to G2 phase. To understand the connection between molecular-scale events and scatterplot asymmetry, we developed a multiscale stochastic model, which simulates DNA replication and cell cycle progression of individual cells and produces in silico EdU/DAPI scatterplots. For each S-phase cell the time points at which replication origins are fired are modeled by a non-homogeneous Poisson Process (NHPP). Shifted gamma distributions are assumed for durations of cell cycle phases (G1, S and G2 M), Depending on the rate of DNA synthesis being an increasing or decreasing function, simulated EdU/DAPI bivariate graphs show predominance of cells in left (early-S) or right (late-S) side of the horseshoe distribution. Assuming NHPP rate estimated from independent experiments, simulated EdU/DAPI graphs are nearly indistinguishable from those experimentally observed. This finding proves consistency between the S-phase DNA-replication rate based on molecular-scale analyses, and cell population kinetics ascertained from EdU/DAPI scatterplots and demonstrates that DNA replication rate at entrance to S is relatively slow compared with its rather abrupt termination during S to G2 transition. Our approach opens a possibility of similar modeling to study the effect of anticancer drugs on DNA replication/cell cycle progression and also to quantify other kinetic events that can be measured during S-phase. © 2014 International Society for Advancement of Cytometry.

  15. Monitoring Replication Protein A (RPA) dynamics in homologous recombination through site-specific incorporation of non-canonical amino acids.

    PubMed

    Pokhrel, Nilisha; Origanti, Sofia; Davenport, Eric Parker; Gandhi, Disha; Kaniecki, Kyle; Mehl, Ryan A; Greene, Eric C; Dockendorff, Chris; Antony, Edwin

    2017-09-19

    An essential coordinator of all DNA metabolic processes is Replication Protein A (RPA). RPA orchestrates these processes by binding to single-stranded DNA (ssDNA) and interacting with several other DNA binding proteins. Determining the real-time kinetics of single players such as RPA in the presence of multiple DNA processors to better understand the associated mechanistic events is technically challenging. To overcome this hurdle, we utilized non-canonical amino acids and bio-orthogonal chemistry to site-specifically incorporate a chemical fluorophore onto a single subunit of heterotrimeric RPA. Upon binding to ssDNA, this fluorescent RPA (RPAf) generates a quantifiable change in fluorescence, thus serving as a reporter of its dynamics on DNA in the presence of multiple other DNA binding proteins. Using RPAf, we describe the kinetics of facilitated self-exchange and exchange by Rad51 and mediator proteins during various stages in homologous recombination. RPAf is widely applicable to investigate its mechanism of action in processes such as DNA replication, repair and telomere maintenance. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  16. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication

    USGS Publications Warehouse

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-01-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2′-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae.

  17. The sequential tissue distribution of duck Tembusu virus in adult ducks.

    PubMed

    Wu, Li; Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Ding, Leilei; Lin, Yuan; Li, Qimeng; He, Xijun; Chen, Qiusheng; Chen, Hualan

    2014-01-01

    In 2010, a novel Tembusu virus (TMUV) that caused a severe decrease in the egg production of ducks was isolated in southeast China. Given the novelty of this duck pathogen, little information is available regarding its pathogenesis. Here, we systematically investigated the replication kinetics of TMUV PTD2010 in adult male and female ducks. We found that PTD2010 was detectable in most of the parenchymatous organs as well as the oviduct and intestinal tract from days 1 to 7 after inoculation. Viral titers were maintained at high levels for at least 9 days in the spleen, kidney, bursa of Fabricius, brain, and ovary. No virus was detected in any of these organs or tissues at 18 days after inoculation. PTD2010, thus, causes systemic infections in male and female ducks; its replication kinetics show similar patterns in most organs, with the exception of the ovaries and testes.

  18. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs.

    PubMed

    Sehata, Go; Sato, Hiroaki; Ito, Toshihiro; Imaizumi, Yoshitaka; Noro, Taichi; Oishi, Eiji

    2015-07-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication.

  19. Use of quantitative real-time RT-PCR to investigate the correlation between viremia and viral shedding of canine distemper virus, and infection outcomes in experimentally infected dogs

    PubMed Central

    SEHATA, Go; SATO, Hiroaki; ITO, Toshihiro; IMAIZUMI, Yoshitaka; NORO, Taichi; OISHI, Eiji

    2015-01-01

    We used real-time RT-PCR and virus titration to examine canine distemper virus (CDV) kinetics in peripheral blood and rectal and nasal secretions from 12 experimentally infected dogs. Real-time RT-PCR proved extremely sensitive, and the correlation between the two methods for rectal and nasal (r=0.78, 0.80) samples on the peak day of viral RNA was good. Although the dogs showed diverse symptoms, viral RNA kinetics were similar; the peak of viral RNA in the symptomatic dogs was consistent with the onset of symptoms. These results indicate that real-time RT-PCR is sufficiently sensitive to monitor CDV replication in experimentally infected dogs regardless of the degree of clinical manifestation and suggest that the peak of viral RNA reflects active CDV replication. PMID:25728411

  20. Multiplicity of genome equivalents in the radiation-resistant bacterium Micrococcus radiodurans.

    PubMed Central

    Hansen, M T

    1978-01-01

    The complexity of the genome of Micrococcus radiodurans was determined to be (2.0 +/- 0.3) X 10(9) daltons by DNA renaturation kinetics. The number of genome equivalents of DNA per cell was calculated from the complexity and the content of DNA. A lower limit of four genome equivalents per cell was approached with decreasing growth rate. Thus, no haploid stage appeared to be realized in this organism. The replication time was estimated from the kinetics and amount of residual DNA synthesis after inhibiting initiation of new rounds of replication. From this, the redundancy of terminal genetic markers was calculated to vary with growth rate from four to approximately eight copies per cell. All genetic material, including the least abundant, is thus multiply represented in each cell. The potential significance of the maintenance in each cell of multiple gene copies is discussed in relation to the extreme radiation resistance of M. radiodurans. PMID:649572

  1. Peptide concentration alters intermediate species in amyloid β fibrillation kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garvey, M., E-mail: megan.garvey@molbiotech.rwth-aachen.de; Morgado, I., E-mail: immorgado@ualg.pt

    2013-04-12

    Highlights: ► Aβ(1–40) aggregation in vitro has been monitored at different concentrations. ► Aβ(1–40) fibrillation does not always follow conventional kinetic mechanisms. ► We demonstrate non-linear features in the kinetics of Aβ(1–40) fibril formation. ► At high Aβ(1–40) concentrations secondary processes dictate fibrillation speed. ► Intermediate species may play significant roles on final amyloid fibril development. -- Abstract: The kinetic mechanism of amyloid aggregation remains to be fully understood. Investigations into the species present in the different kinetic phases can assist our comprehension of amyloid diseases and further our understanding of the mechanism behind amyloid β (Aβ) (1–40) peptide aggregation.more » Thioflavin T (ThT) fluorescence and transmission electron microscopy (TEM) have been used in combination to monitor Aβ(1–40) aggregation in vitro at both normal and higher than standard concentrations. The observed fibrillation behaviour deviates, in several respects, from standard concepts of the nucleation–polymerisation models and shows such features as concentration-dependent non-linear effects in the assembly mechanism. Aβ(1–40) fibrillation kinetics do not always follow conventional kinetic mechanisms and, specifically at high concentrations, intermediate structures become populated and secondary processes may further modify the fibrillation mechanism.« less

  2. Comparison of egg and high yielding MDCK cell-derived live attenuated influenza virus for commercial production of trivalent influenza vaccine: in vitro cell susceptibility and influenza virus replication kinetics in permissive and semi-permissive cells.

    PubMed

    Hussain, Althaf I; Cordeiro, Melissa; Sevilla, Elizabeth; Liu, Jonathan

    2010-05-14

    Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006-2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. A first step towards a consensus static in vitro model for simulating full-term infant digestion.

    PubMed

    Ménard, O; Bourlieu, C; De Oliveira, S C; Dellarosa, N; Laghi, L; Carrière, F; Capozzi, F; Dupont, D; Deglaire, A

    2018-02-01

    In vitro alternatives to clinical trials are used for studying human food digestion. For simulating infant digestion, only a few models, lacking physiological relevance, are available. Thanks to an extensive literature review of the in vivo infant digestive conditions, a gastrointestinal static in vitro model was developed for infants born at term and aged 28days. The model was applied to the digestion of a commercial infant formula. Kinetics of digestion, as well as the structural evolution, were compared with those obtained while submitting the same formula to the adult international consensus protocol of in vitro static digestion. The kinetics of proteolysis and lipolysis differed according to the physiological stage resulting mainly from the reduced level of enzymes and bile salts, as well as the higher gastric pH in the infant model. This in vitro static model of infant digestion is of interest for scientists, food or pharmaceutical manufacturers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. G4 motifs affect origin positioning and efficiency in two vertebrate replicators

    PubMed Central

    Valton, Anne-Laure; Hassan-Zadeh, Vahideh; Lema, Ingrid; Boggetto, Nicole; Alberti, Patrizia; Saintomé, Carole; Riou, Jean-François; Prioleau, Marie-Noëlle

    2014-01-01

    DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation. PMID:24521668

  5. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants.

    PubMed

    Inaba, Jun-Ichi; Nagy, Peter D

    2018-06-01

    Similar to other (+)RNA viruses, tomato bushy stunt virus (TBSV) utilizes metabolites, lipids, membranes, and co-opted host factors during replication. The coordination of cell metabolism and growth with environmental cues is performed by the target of rapamycin (TOR) kinase in eukaryotic cells. In this paper, we find that TBSV replication partially inhibits TOR activity, likely due to recruitment of glycolytic enzymes to the viral replication compartment, which results in reduced ATP levels in the cytosol. Complete inhibition of TOR activity with rapamycin in yeast or AZD8055 inhibitor in plants reduces tombusvirus replication. We find that high glucose concentration, which stimulates TOR activity, enhanced tombusvirus replication in yeast. Depletion of yeast Sch9 or plant S6K1 kinase, a downstream effector of TOR, also inhibited tombusvirus replication in yeast and plant or the assembly of the viral replicase in vitro. Altogether, the TOR pathway is crucial for TBSV to replicate efficiently in hosts. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Kinetics and thermodynamics of exonuclease-deficient DNA polymerases

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    A kinetic theory is developed for exonuclease-deficient DNA polymerases, based on the experimental observation that the rates depend not only on the newly incorporated nucleotide, but also on the previous one, leading to the growth of Markovian DNA sequences from a Bernoullian template. The dependencies on nucleotide concentrations and template sequence are explicitly taken into account. In this framework, the kinetic and thermodynamic properties of DNA replication, in particular, the mean growth velocity, the error probability, and the entropy production are calculated analytically in terms of the rate constants and the concentrations. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  7. Development of a Physiologically Relevant Population Pharmacokinetic in Vitro-in Vivo Correlation Approach for Designing Extended-Release Oral Dosage Formulation.

    PubMed

    Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo

    2017-01-03

    Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.

  8. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    PubMed

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development of antiviral strategies utilizing non-psychoactive derivatives of THC.

  9. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. IV. Influence of DNA replication and excision repair on REV2 dependent UV-mutagenesis and repair.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    A double mutant being thermoconditionally defective in mutation induction as well as in repair of pre-lethal UV-induced DNA damage (rev2ts) and deficient in excision repair (rad3-2) was studied in temperature-shift experiments. The influence of inhibitors of DNA replication (hydroxyurea, aphidicolin) was determined. Additionally, an analysis of the dose-response pattern of mutation induction ("mutation kinetics") at several ochre alleles was carried out. It was concluded that the UV-inducible REV2 dependent mutagenic repair process is not induced in excision-deficient cells. In excision-deficient cells, REV2 dependent mutation fixation is slow and mostly post-replicative though not dependent on DNA replication. The REV2 mediated mutagenic process could be separated from the repair function.

  10. Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

    PubMed Central

    Niimi, Atsuko; Limsirichaikul, Siripan; Yoshida, Shonen; Iwai, Shigenori; Masutani, Chikahide; Hanaoka, Fumio; Kool, Eric T.; Nishiyama, Yukihiro; Suzuki, Motoshi

    2004-01-01

    We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes. PMID:15024063

  11. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. T135I substitution in the nonstructural protein 2C enhances foot-and-mouth disease virus replication.

    PubMed

    Yuan, Tiangang; Wang, Haiwei; Li, Chen; Yang, Decheng; Zhou, Guohui; Yu, Li

    2017-12-01

    The foot-and-mouth disease virus (FMDV) nonstructural protein 3A plays an important role in viral replication, virulence, and host range. It has been shown that deletions of 10 or 19-20 amino acids in the C-terminal half of 3A attenuate serotype O and C FMDVs, which replicate poorly in bovine cells but normally in porcine-derived cells, and the C-terminal half of 3A is not essential for serotype Asia1 FMDV replication in BHK-21 cells. In this study, we constructed a 3A deletion FMDV mutant based on a serotype O FMDV, the wild-type virus O/YS/CHA/05, with a 60-amino acid deletion in the 3A protein sequence, between residues 84 and 143. The rescued virus O/YS/CHA/05-Δ3A exhibited slower growth kinetics and formed smaller plaques compared to O/YS/CHA/05 in both BHK-21 and IBRS-2 cells, indicating that the 60-amino acid deletion in the 3A protein impaired FMDV replication. After 14 passages in BHK-21 cells, the replication capacity of the passaged virus O/YS/CHA/05-Δ3A-P14 returned to a level similar to the wild-type virus, suggesting that amino acid substitutions responsible for the enhanced replication capacity occurred in the genome of O/YS/CHA/05-Δ3A-P14. By sequence analysis, two amino acid substitutions, P153L in VP1 and T135I in 2C, were found in the O/YS/CHA/05-Δ3A-P14 genome compared to the O/YS/CHA/05-Δ3A genome. Subsequently, the amino acid substitutions VP1 P153L and 2C T135I were separately introduced into O/YS/CHA/05-Δ3A to rescue mutant viruses for examining their growth kinetics. Results showed that the 2C T135I instead of the VP1 P153L enhanced the virus replication capacity. The 2C T135I substitution also improved the replication of the wild-type virus, indicating that the effect of 2C T135I substitution on FMDV replication is not associated with the 3A deletion. Furthermore, our results showed that the T135I substitution in the nonstructural protein 2C enhanced O/YS/CHA/05 replication through promoting viral RNA synthesis.

  13. Tissue-engineered human bioartificial muscles expressing a foreign recombinant protein for gene therapy

    NASA Technical Reports Server (NTRS)

    Powell, C.; Shansky, J.; Del Tatto, M.; Forman, D. E.; Hennessey, J.; Sullivan, K.; Zielinski, B. A.; Vandenburgh, H. H.

    1999-01-01

    Murine skeletal muscle cells transduced with foreign genes and tissue engineered in vitro into bioartificial muscles (BAMs) are capable of long-term delivery of soluble growth factors when implanted into syngeneic mice (Vandenburgh et al., 1996b). With the goal of developing a therapeutic cell-based protein delivery system for humans, similar genetic tissue-engineering techniques were designed for human skeletal muscle stem cells. Stem cell myoblasts were isolated, cloned, and expanded in vitro from biopsied healthy adult (mean age, 42 +/- 2 years), and elderly congestive heart failure patient (mean age, 76 +/- 1 years) skeletal muscle. Total cell yield varied widely between biopsies (50 to 672 per 100 mg of tissue, N = 10), but was not significantly different between the two patient groups. Percent myoblasts per biopsy (73 +/- 6%), number of myoblast doublings prior to senescence in vitro (37 +/- 2), and myoblast doubling time (27 +/- 1 hr) were also not significantly different between the two patient groups. Fusion kinetics of the myoblasts were similar for the two groups after 20-22 doublings (74 +/- 2% myoblast fusion) when the biopsy samples had been expanded to 1 to 2 billion muscle cells, a number acceptable for human gene therapy use. The myoblasts from the two groups could be equally transduced ex vivo with replication-deficient retroviral expression vectors to secrete 0.5 to 2 microg of a foreign protein (recombinant human growth hormone, rhGH)/10(6) cells/day, and tissue engineered into human BAMs containing parallel arrays of differentiated, postmitotic myofibers. This work suggests that autologous human skeletal myoblasts from a potential patient population can be isolated, genetically modified to secrete foreign proteins, and tissue engineered into implantable living protein secretory devices for therapeutic use.

  14. A simple solid phase, peptide-based fluorescent assay for the efficient and universal screening of HRV 3C protease inhibitors.

    PubMed

    Schünemann, Katrin; Connelly, Stephen; Kowalczyk, Renata; Sperry, Jonathan; Wilson, Ian A; Fraser, John D; Brimble, Margaret A

    2012-08-01

    With over a 100 different serotypes, the human rhinovirus (HRV) is the major aetiological agent for the common cold, for which only symptomatic treatment is available. HRV maturation and replication is entirely dependent on the activity of a virally encoded 3C protease that represents an attractive target for the development of therapeutics to treat the common cold. Although a variety of small molecules and peptidomimetics have been found to inhibit HRV 3C protease, no universally compatible assay exists to reliably quantify the activity of the enzyme in vitro. Herein we report the development of a universal and robust solid phase peptide assay that utilizes the full HRV-14 3C protease recognition sequence and the release of 5(6)-carboxyfluorescein to sensitively quantify protease activity. This novel assay overcomes several limitations of existing assays allowing for the simple and efficient analysis of HRV-14 3C protease activity facilitating both high-throughput screening and the accurate kinetic study of HRV-14 3C protease inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A ring test of in vitro neutral detergent fiber digestibility: analytical variability and sample ranking

    USDA-ARS?s Scientific Manuscript database

    In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...

  16. A ring test of in vitro neutral detergent fiber digestibility: Analytical variability and sample ranking

    USDA-ARS?s Scientific Manuscript database

    In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...

  17. Dose response and repair kinetics of gamma-H2AX foci induced by in vitro irradiation of whole blood and T-lymphocytes with X- and gamma-radiation.

    PubMed

    Beels, Laurence; Werbrouck, Joke; Thierens, Hubert

    2010-09-01

    Dose response and repair kinetics of phosphorylated histone H2A isoform X (gamma-H2AX) foci in T-lymphocytes were investigated in the low-dose range after in vitro irradiation of whole blood and T-lymphocytes with 100 kVp X-rays and (60)Co gamma-rays. Whole blood or isolated T-lymphocytes were irradiated in vitro and gamma-H2AX foci were scored. Dose response was determined in the 0-500 mGy dose range. Foci kinetics were studied at doses of 5 and 200 mGy up to 24 h post-irradiation. After X-irradiation, the dose response for whole blood shows a biphasic behaviour with a low-dose hypersensitivity, which is less pronounced for isolated T-lymphocytes. In contrast, gamma-radiation shows a linear dose response for both irradiation conditions. Concerning repair kinetics, delayed repair was found after X-ray whole blood irradiation (5 and 200 mGy) with 40% of the foci persisting 24 h post-irradiation. This number of foci is reduced to 10% after irradiation of isolated T-lymphocytes with 200 mGy X-rays. On the contrary, gamma-H2AX foci are reduced to background levels 24 h post-irradiation with 200 mGy (60)Co gamma-rays. gamma-H2AX foci response and repair kinetics depend on irradiation conditions and radiation quality, possibly linked to Bystander response.

  18. Kinetic analysis of interactions of paraoxon and oximes with human, Rhesus monkey, swine, rabbit, rat and guinea pig acetylcholinesterase.

    PubMed

    Worek, Franz; Aurbek, Nadine; Wille, Timo; Eyer, Peter; Thiermann, Horst

    2011-01-15

    Previous in vitro studies showed marked species differences in the reactivating efficiency of oximes between human and animal acetylcholinesterase (AChE) inhibited by organophosphorus (OP) nerve agents. These findings provoked the present in vitro study which was designed to determine the inhibition, aging, spontaneous and oxime-induced reactivation kinetics of the pesticide paraoxon, serving as a model compound for diethyl-OP, and the oximes obidoxime, pralidoxime, HI 6 and MMB-4 with human, Rhesus monkey, swine, rabbit, rat and guinea pig erythrocyte AChE. Comparable results were obtained with human and monkey AChE. Differences between human, swine, rabbit, rat and guinea pig AChE were determined for the inhibition and reactivation kinetics. A six-fold difference of the inhibitory potency of paraoxon with human and guinea pig AChE was recorded while only moderate differences of the reactivation constants between human and animal AChE were determined. Obidoxime was by far the most effective reactivator with all tested species. Only minor species differences were found for the aging and spontaneous reactivation kinetics. The results of the present study underline the necessity to determine the inhibition, aging and reactivation kinetics in vitro as a basis for the development of meaningful therapeutic animal models, for the proper assessment of in vivo animal data and for the extrapolation of animal data to humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  19. Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy.

    PubMed

    Workenhe, Samuel T; Simmons, Graydon; Pol, Jonathan G; Lichty, Brian D; Halford, William P; Mossman, Karen L

    2014-01-01

    Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.

  20. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    PubMed

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Replication of Murine Cytomegalovirus in Differentiated Macrophages as a Determinant of Viral Pathogenesis

    PubMed Central

    Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.

    1999-01-01

    Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349

  2. Sofosbuvir inhibits hepatitis A virus replication in vitro assessed by a cell-based fluorescent reporter system.

    PubMed

    Jiang, Wang; Muhammad, Fawad; Ma, Pengjuan; Liu, Xiyu; Long, Gang

    2018-06-01

    Hepatitis A virus (HAV) infection remains a major cause of acute hepatitis worldwide and even leads to fulminant hepatitis. For screening antivirals against HAV in vitro, we develop a cell-based fluorescent reporter system named Huh-7.5.1-GA, in which HAV infection is visualized by green fluorescence protein (GFP) translocation from the cytosol into the nucleus. The reliability of Huh-7.5.1-GA for antiviral studies is validated by IFN-α, a known inhibitor of HAV replication, which impedes GFP translocation. Utilizing this in-vitro reporter system, we find that sofosbuvir, an FDA approved prodrug for the treatment of chronic hepatitis C, disturbs GFP translocation and inhibits HAV replication efficiently. In addition, we find that inhibition of HAV by sofosbuvir is hepatic-cell dependent, with IC50 (half-maximal inhibitory concentration) being 6.3 μM and 9.9 μM in Huh-7.5.1, quantified separately by RT-qPCR and image-based analysis. Therefore, our reporter system may serve as a high-throughput platform for screening potent antivirals against HAV. Sofosbuvir may be considered for treatment of hepatitis A, especially in re-infected patients who undergo liver transplantation due to HAV-induced liver failure. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  4. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore,more » using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.« less

  5. In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling*

    PubMed Central

    Lindsey-Boltz, Laura A.; Reardon, Joyce T.; Wold, Marc S.; Sancar, Aziz

    2012-01-01

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair. PMID:22948311

  6. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling.

    PubMed

    Lindsey-Boltz, Laura A; Reardon, Joyce T; Wold, Marc S; Sancar, Aziz

    2012-10-19

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.

  7. Kinetics and thermodynamics of DNA polymerases with exonuclease proofreading

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-04-01

    Kinetic theory and thermodynamics are applied to DNA polymerases with exonuclease activity, taking into account the dependence of the rates on the previously incorporated nucleotide. The replication fidelity is shown to increase significantly thanks to this dependence at the basis of the mechanism of exonuclease proofreading. In particular, this dependence can provide up to a 100-fold lowering of the error probability under physiological conditions. Theory is compared with numerical simulations for the DNA polymerases of T7 viruses and human mitochondria.

  8. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    PubMed Central

    Cui, Xiao-Xian; Yang, Xiao; Wang, Hui-Jing; Rong, Xing-Yu; Jing, Sha; Xie, You-Hua; Huang, Dan-Feng; Zhao, Chao

    2017-01-01

    Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy. PMID:29270164

  9. Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

    PubMed Central

    Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.

    2011-01-01

    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234

  10. Inside the lifestyle of the virophage.

    PubMed

    Desnues, C; Raoult, D

    2010-01-01

    We sought to better characterize Sputnik, the first isolated virophage, and to analyze its parasitic lifestyle during co-infection with Marseillevirus (a new giant virus) in Acanthamoeba castellanii. A combination of electron microscopy, immunofluorescence microscopy, and real-time PCR was used to characterize the kinetics of the viral replication cycle. RT-PCR was performed to detect RNAs inside the Sputnik virions. Sputnik is a new viral entity carrying an almost complete ready-to-use set of viral RNAs (20 out of 21). Sputnik does not replicate with Marseillevirus but delays its replication cycle. While Marseillevirus is successfully internalized by A. castellanii following co-infections with Mamavirus and Sputnik, it does not initiate a replication cycle. In contrast, both Marseillevirus and Mamavirus can replicate in the amoeba in case of co-infection, but the development of one is exclusive from the other inside a single amoeba cell. This work provides new insight into the Sputnik replication cycle with another giant virus and confirms that Sputnik is a virophage. It shows new dimensions of the interactions existing among giant viruses. Copyright 2010 S. Karger AG, Basel.

  11. ISG15 Functions as an Interferon-Mediated Antiviral Effector Early in the Murine Norovirus Life Cycle

    PubMed Central

    Rodriguez, Marisela R.; Monte, Kristen; Thackray, Larissa B.

    2014-01-01

    ABSTRACT Human noroviruses (HuNoV) are the leading cause of nonbacterial gastroenteritis worldwide. Similar to HuNoV, murine noroviruses (MNV) are enteric pathogens spread via the fecal-oral route and have been isolated from numerous mouse facilities worldwide. Type I and type II interferons (IFN) restrict MNV-1 replication; however, the antiviral effectors impacting MNV-1 downstream of IFN signaling are largely unknown. Studies using dendritic cells, macrophages, and mice deficient in free and conjugated forms of interferon-stimulated gene 15 (ISG15) revealed that ISG15 conjugation contributes to protection against MNV-1 both in vitro and in vivo. ISG15 inhibited a step early in the viral life cycle upstream of viral genome transcription. Directly transfecting MNV-1 RNA into IFN-stimulated mouse embryonic fibroblasts (MEFs) and bone marrow-derived dendritic cells (BMDC) lacking ISG15 conjugates bypassed the antiviral activity of ISG15, further suggesting that ISG15 conjugates restrict the MNV-1 life cycle at the viral entry/uncoating step. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of early stages of MNV-1 replication. IMPORTANCE Type I IFNs are important in controlling murine norovirus 1 (MNV-1) infections; however, the proteins induced by IFNs that restrict viral growth are largely unknown. This report reveals that interferon-stimulated gene 15 (ISG15) mitigates MNV-1 replication both in vitro and in vivo. In addition, it shows that ISG15 inhibits MNV-1 replication by targeting an early step in the viral life cycle, MNV-1 entry and/or uncoating. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of viral entry/uncoating. PMID:24899198

  12. A Compilation of In Vitro Rate and Affinity Values for Xenobiotic Biotransformation in Fish, Measured Under Physiological Conditions

    EPA Science Inventory

    This manuscript presents a summary of in vitro rate and affinity data for xenobiotic biotransformation enzymes in fish...One potential use of this data summary is to support in vitro to in vivo metabolism extrapolations which can be used as inputs to chemical kinetic models for f...

  13. Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.

    PubMed

    Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-04-12

    To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.

  14. Different concentrations of grape seed extract affect in vitro starch fermentation by porcine small and large intestinal inocula.

    PubMed

    Wang, Dongjie; Williams, Barbara A; Ferruzzi, Mario G; D'Arcy, Bruce R

    2013-01-01

    Grape seed extract (GSE) phenolics have potential health-promoting properties, either from compounds present within the extract, or metabolites resulting from gastrointestinal tract (GIT) fermentation of these compounds. This study describes how GSE affected the kinetics and end-products of starch fermentation in vitro using pig intestinal and fecal inocula. Six GSE concentrations (0, 60, 125, 250, 500, and 750 µg ml⁻¹ were fermented in vitro by porcine ileal and fecal microbiota using starch as the energy source. Cumulative gas production, and end-point short chain fatty acids and ammonia were measured. GSE phenolics altered the pattern (gas kinetics, and end-products such as SCFA and NH₄⁺) of starch fermentation by both inocula, at concentrations above 250 µg ml⁻¹ . Below this level, neither inoculum showed any significant (P > 0.05) effect of the GSE. The results show that GSE phenolics at a concentration over 250 µg ml⁻¹ can have measurable effects on microbial activity in an in vitro fermentation system, as evidenced by the changes in kinetics and end-products from starch fermentation. This suggests that fermentation patterns could be conceivably shifted in the actual GIT, though further evidence will be required from in vivo studies. Copyright © 2012 Society of Chemical Industry.

  15. Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products.

    PubMed

    Weisser, Karin; Stübler, Sabine; Matheis, Walter; Huisinga, Wilhelm

    2017-08-01

    As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Impact of physicochemical parameters on in vitro assembly and disassembly kinetics of recombinant triple-layered rotavirus-like particles.

    PubMed

    Mellado, Maria Candida M; Mena, Jimmy A; Lopes, António; Ramírez, Octavio T; Carrondo, Manuel J T; Palomares, Laura A; Alves, Paula M

    2009-11-01

    Virus-like particles constitute potentially relevant vaccine candidates. Nevertheless, their behavior in vitro and assembly process needs to be understood in order to improve their yield and quality. In this study we aimed at addressing these issues and for that purpose triple- and double-layered rotavirus-like particles (TLP 2/6/7 and DLP 2/6, respectively) size and zeta potential were measured using dynamic light scattering at different physicochemical conditions, namely pH, ionic strength, and temperature. Both TLP and DLP were stable within a pH range of 3-7 and at 5-25 degrees C. Aggregation occurred at 35-45 degrees C and their disassembly became evident at 65 degrees C. The isoelectric points of TLP and DLP were 3.0 and 3.8, respectively. In vitro kinetics of TLP disassembly was monitored. Ionic strength, temperature, and the chelating agent employed determined disassembly kinetics. Glycerol (10%) stabilized TLP by preventing its disassembly. Disassembled TLP was able to reassemble by dialysis at high calcium conditions. VP7 monomers were added to DLP in the presence of calcium to follow in vitro TLP assembly kinetics; its assembly rate being mostly affected by pH. Finally, DLP and TLP were found to coexist under certain conditions as determined from all reaction products analyzed by capillary electrophoresis. Overall, these results contribute to the design of new strategies for the improvement of TLP yield and quality by reducing the VP7 detachment from TLP. Copyright 2009 Wiley Periodicals, Inc.

  17. Development and evaluation of intestinal targeted mucoadhesive microspheres of Bacillus coagulans.

    PubMed

    Alli, Sk Md Athar; Ali, Sk Md Ajhar; Samanta, Amalesh

    2011-11-01

    Intestinal targeted mucoadhesive microsphere of probiotics may provide numerous associated health benefits. To develop mucoadhesive microspheres that will deliver viable probiotic cells into gut protectively against harsh environmental conditions of stomach for extended period. Core mucoadhesive microspheres of Bacillus coagulans were prepared using hypromellose, following coacervation and phase separation technique and were then coated with hypromellose phthalate to achieve their site-specific release. Microspheres were evaluated for percent yield, entrapment efficiency, surface morphology, particle size and size distribution, flow property, swelling property, mucoadhesion property by the in vitro wash-off and the ex vivo mucoadhesive strength tests, in vitro release profile and release kinetic, in vivo probiotic activity, and stability. The values for kinetic constant and regression coefficient of model-dependent approaches and the difference factor, the similarity factor, and the Rescigno index of model-independent approaches were determined for accessing and comparing in vitro performance. Microsphere formulation batches have percent yield value between 56.26% and 69.13% and entrapment efficiency value between 66.95% and 77.89%. Microspheres were coarser with spherical shape having mean particle size from 28.03 to 48.31 μm. In vitro B. coagulans release profile follows zero-order kinetics and depends on the grade of hypromellose and the B. coagulans-to-hypromellose ratio. Experimental microspheres rendered adequate stability to B. coagulans at room temperature. Microspheres had delivered B. coagulans in simulated intestinal condition following zero-order kinetics, protectively in simulated gastric condition, exhibiting appreciable mucoadhesion in intestinal condition, which could be useful to achieve site-specific delivery for extended period.

  18. Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy

    PubMed Central

    2017-01-01

    We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7–10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear entry was independent of proteasome function and resistant to inhibitors of nuclear export. Together with additional data our results reveal new insight into the spatiotemporal dynamics of HSV genome uncoating, transport and organisation. PMID:29121649

  19. Genomic sequencing and analyses of HearMNPV—a new Multinucleocapsid nucleopolyhedrovirus isolated from Helicoverpa armigera

    PubMed Central

    2012-01-01

    Background HearMNPV, a nucleopolyhedrovirus (NPV), which infects the cotton bollworm, Helicoverpa armigera, comprises multiple rod-shaped nucleocapsids in virion(as detected by electron microscopy). HearMNPV shows a different host range compared with H. armigera single-nucleocapsid NPV (HearSNPV). To better understand HearMNPV, the HearMNPV genome was sequenced and analyzed. Methods The morphology of HearMNPV was observed by electron microscope. The qPCR was used to determine the replication kinetics of HearMNPV infectious for H. armigera in vivo. A random genomic library of HearMNPV was constructed according to the “partial filling-in” method, the sequence and organization of the HearMNPV genome was analyzed and compared with sequence data from other baculoviruses. Results Real time qPCR showed that HearMNPV DNA replication included a decreasing phase, latent phase, exponential phase, and a stationary phase during infection of H. armigera. The HearMNPV genome consists of 154,196 base pairs, with a G + C content of 40.07%. 162 putative ORFs were detected in the HearMNPV genome, which represented 90.16% of the genome. The remaining 9.84% constitute four homologous regions and other non-coding regions. The gene content and gene arrangement in HearMNPV were most similar to those of Mamestra configurata NPV-B (MacoNPV-B), but was different to HearSNPV. Comparison of the genome of HearMNPV and MacoNPV-B suggested that HearMNPV has a deletion of a 5.4-kb fragment containing five ORFs. In addition, HearMNPV orf66, bro genes, and hrs are different to the corresponding parts of the MacoNPV-B genome. Conclusions HearMNPV can replicate in vivo in H. armigera and in vitro, and is a new NPV isolate distinguished from HearSNPV. HearMNPV is most closely related to MacoNPV-B, but has a distinct genomic structure, content, and organization. PMID:22913743

  20. Intersubtype Differences in the Effect of a Rare p24 Gag Mutation on HIV-1 Replicative Fitness

    PubMed Central

    Chopera, Denis R.; Cotton, Laura A.; Zawaira, Alexander; Mann, Jaclyn K.; Ngandu, Nobubelo K.; Ntale, Roman; Carlson, Jonathan M.; Mlisana, Koleka; Woodman, Zenda; de Assis Rosa, Debra; Martin, Eric; Miura, Toshiyuki; Pereyra, Florencia; Walker, Bruce D.; Gray, Clive M.; Martin, Darren P.; Ndung'u, Thumbi; Brockman, Mark A.; Karim, Salim Abdool

    2012-01-01

    Certain immune-driven mutations in HIV-1, such as those arising in p24Gag, decrease viral replicative capacity. However, the intersubtype differences in the replicative consequences of such mutations have not been explored. In HIV-1 subtype B, the p24Gag M250I mutation is a rare variant (0.6%) that is enriched among elite controllers (7.2%) (P = 0.0005) and appears to be a rare escape variant selected by HLA-B58 supertype alleles (P < 0.01). In contrast, in subtype C, it is a relatively common minor polymorphic variant (10 to 15%) whose appearance is not associated with a particular HLA allele. Using site-directed mutant viruses, we demonstrate that M250I reduces in vitro viral replicative capacity in both subtype B and subtype C sequences. However, whereas in subtype C downstream compensatory mutations at p24Gag codons 252 and 260 reduce the adverse effects of M250I, fitness costs in subtype B appear difficult to restore. Indeed, patient-derived subtype B sequences harboring M250I exhibited in vitro replicative defects, while those from subtype C did not. The structural implications of M250I were predicted by protein modeling to be greater in subtype B versus C, providing a potential explanation for its lower frequency and enhanced replicative defects in subtype B. In addition to accounting for genetic differences between HIV-1 subtypes, the design of cytotoxic-T-lymphocyte-based vaccines may need to account for differential effects of host-driven viral evolution on viral fitness. PMID:23015721

  1. Spermine Attenuates the Action of the DNA Intercalator, Actinomycin D, on DNA Binding and the Inhibition of Transcription and DNA Replication

    PubMed Central

    Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800

  2. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    PubMed

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  3. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication.

    PubMed

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-10-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2'-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.

  5. Identification of HIV-1 determinants for replication in vivo.

    PubMed

    Su, L; Kaneshima, H; Bonyhadi, M L; Lee, R; Auten, J; Wolf, A; Du, B; Rabin, L; Hahn, B H; Terwilliger, E; Mccune, J M

    1997-01-06

    Pathogenic organisms are frequently attenuated after long-term culture in vitro. The mechanisms of the attenuation process are not clear, but probably involve mutations of functions required for replication and pathogenicity in vivo. To identify these functions, a direct comparison must be made between attenuated genomes and those that remain pathogenic in vivo. In this study, we used the heterochimeric SCID-hu Thy/Liv mouse as an in vivo model to define human immunodeficiency virus type 1 (HIV-1) determinants which are uniquely required for replication in vivo. The Lai/IIIB isolate and its associated infectious molecular clones (e.g., HXB2) were found to infect T cell lines but failed to replicate in the SCID-hu Thy/Liv model. When a lab worker was accidentally infected by Lai/IIIB, however, HIV-1 was isolated only from infection of primary PBMC, and not from infection of T cell lines. We hypothesized that the lab worker was exposed to a heterogeneous viral stock which had been attenuated by passage in immortalized T cell lines. Either a rare family member from this stock was selected for in vivo replication or, alternatively, an attenuated genotype dominant in vitro may have reverted to become more infectious in vivo. To address this hypothesis, we have used the SCID-hu Thy/Liv model to study the replication of HXB2 and of HXB2 recombinant viruses with HIV-1 fragments isolated from the infected lab worker. HXB2 showed no or very low levels of replication in the Thy/Liv organ. Replacement of its subgenomic fragment encoding the envelope gene with a corresponding fragment from the lab worker isolate generated a recombinant virus (HXB2/LW) which replicated actively in SCID-hu mice. The NEF mutation in the HXB2 genome is still present in HXB2/LW. Thus, the LW sequences encode HIV-1 determinants which enhance HIV replication in vivo in a NEF-independent mechanism. The specific determinants have been mapped to the V1-V3 regions of the HIV-1 genome. Six unique mutations in the V3 loop region of HXB2/LW have been identified which contribute to the increased replication in vivo.

  6. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  7. Genotoxicity Assessment of Perfluorodecanoic Acid Using a Battery of In Vitro and In Vivo/in Vitro Assays.

    DTIC Science & Technology

    1990-12-01

    Maximum 200 words) Perfluoro -n-decanoic acid ( PFDA ), a perfluorinated fatty acid was evaluated in in vitro bioassays to assess its potential...PolychlorotrifluoroethyleneDU.TBL PFDA Perfluoro -n-decanoic acid PFOA Perfluoro -n-octanoic acid ..... RI Replicative index rpm Revolutions per minute By...an increase in the amount of S-phase DNA synthesis. The perfluorinated carboxylic acid, perfluoro -n-decanoic acid ( PFDA ), has previously been shown to

  8. The relationship between in vitro cellular aging and in vivo human age.

    PubMed Central

    Schneider, E L; Mitsui, Y

    1976-01-01

    Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470

  9. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling

    PubMed Central

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-01-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis–Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species’ climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species’ growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species’ thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized photosynthesis. PMID:27406782

  10. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication

    PubMed Central

    On, Kin Fan; Beuron, Fabienne; Frith, David; Snijders, Ambrosius P; Morris, Edward P; Diffley, John F X

    2014-01-01

    Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins. PMID:24566989

  11. [Effects of ciclosporin and tacrolimus on replication of hepatitis B virus in vitro: a comparative study].

    PubMed

    Xia, Wei-liang; Xie, Hai-yang; Shen, Yan; Wu, Li-ming; Zhang, Feng; Zheng, Shu-sen

    2006-01-10

    To investigate the effects of ciclosporin (CsA) and tacrolimus (FK506) on replication of hepatitis B virus (HBV) in vitro. HBV genome permanently transfected human liver cancer cells of the line HepG2.2.15 were cultured. CsA and FK506 at different concentrations were added into the culture fluid so as to identify the nontoxic concentrations by MTT method. Then the HepG2.2.15 cells were treated by CsA and FK506 at different nontoxic concentrations respectively for 4 days. ELISA was used to detect the HB surface antigen (HBsAg) and HB e antigen (HBeAg) in the supernatant. The relative replication level of HBV DNA was detected by slot blot analysis. MTT method confirmed that the nontoxic concentrations of CsA and FK506 were 0-40.0 microg/ml and 0-400 ng/ml respectively. After the treatment of CsA at the concentration of 1.3, 2.5, and 5.0 microg/ml, in comparison to the control group, the suppression rates of HBsAg expression in the HepG2.2.15 cells were 16.5% +/- 9.4%, 21.5% +/- 8.9%, and 33.1% +/- 5.3% respectively (all P < 0.05); the suppression rates of HBeAg expression in the HepG2.2.15 cells were 7.8% +/- 2.2%, 11.0% +/- 2.3%, and 20.8% +/- 1.5% respectively (all P < 0.05); and the HBV DNA replication levels were 56 +/- 16, 42 +/- 11, and 40 +/- 10 respectively (P > 0.05, P < 0.05, and P > 0.05). However, FK506 at different nontoxic concentrations showed no significant inhibitory effect on the levels of HBsAg, HBeAg, and HBV DNA. CsA dose-dependently inhibits the HBV replication in vitro, and FK506 does not exercise similar effects.

  12. In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas).

    PubMed

    Work, Thierry M; Dagenais, Julie; Weatherby, Tina M; Balazs, George H; Ackermann, Mathias

    2017-09-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture. IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans. Copyright © 2017 American Society for Microbiology.

  13. From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action.

    PubMed

    Nederpelt, Indira; Kuzikov, Maria; de Witte, Wilbert E A; Schnider, Patrick; Tuijt, Bruno; Gul, Sheraz; IJzerman, Adriaan P; de Lange, Elizabeth C M; Heitman, Laura H

    2017-10-26

    An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.

  14. Disruption of the Opal Stop Codon Attenuates Chikungunya Virus-Induced Arthritis and Pathology

    PubMed Central

    Jones, Jennifer E.; Long, Kristin M.; Whitmore, Alan C.; Sanders, Wes; Thurlow, Lance R.; Brown, Julia A.; Morrison, Clayton R.; Vincent, Heather; Browning, Christian; Moorman, Nathaniel; Lim, Jean K.

    2017-01-01

    ABSTRACT Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. PMID:29138302

  15. The Artemisinin Derivative Artemisone Is a Potent Inhibitor of Human Cytomegalovirus Replication.

    PubMed

    Oiknine-Djian, E; Weisblum, Y; Panet, A; Wong, H N; Haynes, R K; Wolf, D G

    2018-04-30

    Human cytomegalovirus (HCMV) is a major cause of disease in immunocompromised individuals and the most common cause of congenital infection and neuro-sensorial disease. The expanding target populations for HCMV antiviral treatment along with the limitations of the currently available HCMV DNA polymerase inhibitors underscore the need for new antiviral agents with alternative modes of action. The anti-malarial artemisinin derivative artesunate was shown to inhibit HCMV in vitro , yet has demonstrated limited antiviral efficacy in vivo , prompting our search for more potent anti-HCMV artemisinin derivatives. Here we show that the innovative artemisinin derivative artemisone, which has been screened against malaria in human clinical studies, is a potent and non-cytotoxic inhibitor of HCMV. Artemisone exhibited an antiviral efficacy comparable to ganciclovir (EC 50 1.20 ± 0.46 μM) in human foreskin fibroblasts, with enhanced relative potency in lung fibroblasts and epithelial cells. Significantly, the antiviral efficacy of artemisone was consistently ≥10-fold superior to that of artesunate in all cells. Artemisone effectively inhibited both laboratory-adapted and low-passage clinical strains, as well as drug-resistant HCMV strains. By using quantitative viral kinetics and gene expression studies, we showed that artemisone is a reversible inhibitor, targeting an earlier phase of the viral replication cycle than ganciclovir. Importantly, artemisone most effectively inhibited HCMV infection ex vivo in a clinically-relevant multicellular model of integral human placental tissues maintained in organ culture. Our promising findings encourage preclinical and clinical studies of artemisone as a new inhibitor against HCMV. Copyright © 2018 American Society for Microbiology.

  16. Hepatitis B "e" antigen-mediated inhibition of HBV replication fitness and transcription efficiency in vitro.

    PubMed

    Samal, Jasmine; Kandpal, Manish; Vivekanandan, Perumal

    2015-10-01

    A mutation at nucleotide 1896 (G1896A) is the most common cause for the loss of HBeAg. In contrast to clinical data, cell culture studies report a high-replicating phenotype for the G1896A mutant. Differences between the wild-type and the G1896A mutant in early steps of HBV replication including the synthesis of pre-genomic RNA and transcripts have not been investigated. The G1896A mutant is associated with higher replication fitness, transcription efficiency and higher levels of secreted HBsAg than the wild-type. Interestingly, trans-complementation of the G1896A mutant with HBeAg lowers the replication fitness and transcriptionefficiency to levels comparable to that of the wild-type. Our results highlight the role of HBeAg in modulating the early steps in HBV replication. In sum, our findings highlight the role of HBeAg in regulating hepatitis B virus replication fitness and transcription efficiency and new insights on the early steps of replication in the G1896A mutant. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    PubMed Central

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  18. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics.

    PubMed

    Okinaka, Richard T; Price, Erin P; Wolken, Spenser R; Gruendike, Jeffrey M; Chung, Wai Kwan; Pearson, Talima; Xie, Gary; Munk, Chris; Hill, Karen K; Challacombe, Jean; Ivins, Bruce E; Schupp, James M; Beckstrom-Sternberg, Stephen M; Friedlander, Arthur; Keim, Paul

    2011-09-30

    An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990. We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media. We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence.

  19. An attenuated strain of Bacillus anthracis (CDC 684) has a large chromosomal inversion and altered growth kinetics

    PubMed Central

    2011-01-01

    Background An isolate originally labeled Bacillus megaterium CDC 684 was found to contain both pXO1 and pXO2, was non-hemolytic, sensitive to gamma-phage, and produced both the protective antigen and the poly-D-glutamic acid capsule. These phenotypes prompted Ezzell et al., (J. Clin. Microbiol. 28:223) to reclassify this isolate to Bacillus anthracis in 1990. Results We demonstrate that despite these B. anthracis features, the isolate is severely attenuated in a guinea pig model. This prompted whole genome sequencing and closure. The comparative analysis of CDC 684 to other sequenced B. anthracis isolates and further analysis reveals: a) CDC 684 is a close relative of a virulent strain, Vollum A0488; b) CDC 684 defines a new B. anthracis lineage (at least 51 SNPs) that includes 15 other isolates; c) the genome of CDC 684 contains a large chromosomal inversion that spans 3.3 Mbp; d) this inversion has caused a displacement of the usual spatial orientation of the origin of replication (ori) to the termination of replication (ter) from 180° in wild-type B. anthracis to 120° in CDC 684 and e) this isolate also has altered growth kinetics in liquid media. Conclusions We propose two alternative hypotheses explaining the attenuated phenotype of this isolate. Hypothesis 1 suggests that the skewed ori/ter relationship in CDC 684 has altered its DNA replication and/or transcriptome processes resulting in altered growth kinetics and virulence capacity. Hypothesis 2 suggests that one or more of the single nucleotide polymorphisms in CDC 684 has altered the expression of a regulatory element or other genes necessary for virulence. PMID:21962024

  20. Thioesters for the in vitro evaluation of agents to image brain cholinesterases.

    PubMed

    Macdonald, Ian R; Jollymore, Courtney T; Reid, G Andrew; Pottie, Ian R; Martin, Earl; Darvesh, Sultan

    2013-06-01

    Cholinesterases are associated with pathology characteristic of conditions such as Alzheimer's disease and are therefore, considered targets for neuroimaging. Ester derivatives of N-methylpiperidinol are promising potential imaging agents; however, methodology is lacking for evaluating these compounds in vitro. Here, we report the synthesis and evaluation of a series of N-methylpiperidinyl thioesters, possessing comparable properties to their corresponding esters, which can be directly evaluated for cholinesterase kinetics and histochemical distribution in human brain tissue. N-methylpiperidinyl esters and thioesters were synthesized and they demonstrated comparable cholinesterase kinetics. Furthermore, thioesters were capable, using histochemical method, to visualize cholinesterase activity in human brain tissue. N-methylpiperidinyl thioesters can be rapidly evaluated for cholinesterase kinetics and visualization of enzyme distribution in brain tissue which may facilitate development of cholinesterase imaging agents for application to conditions such as Alzheimer's disease.

  1. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    PubMed

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  2. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  3. Functional centromeres determine the activation time of pericentric origins of DNA replication in Saccharomyces cerevisiae.

    PubMed

    Pohl, Thomas J; Brewer, Bonita J; Raghuraman, M K

    2012-01-01

    The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation.

  4. Functional Centromeres Determine the Activation Time of Pericentric Origins of DNA Replication in Saccharomyces cerevisiae

    PubMed Central

    Pohl, Thomas J.; Brewer, Bonita J.; Raghuraman, M. K.

    2012-01-01

    The centromeric regions of all Saccharomyces cerevisiae chromosomes are found in early replicating domains, a property conserved among centromeres in fungi and some higher eukaryotes. Surprisingly, little is known about the biological significance or the mechanism of early centromere replication; however, the extensive conservation suggests that it is important for chromosome maintenance. Do centromeres ensure their early replication by promoting early activation of nearby origins, or have they migrated over evolutionary time to reside in early replicating regions? In Candida albicans, a neocentromere contains an early firing origin, supporting the first hypothesis but not addressing whether the new origin is intrinsically early firing or whether the centromere influences replication time. Because the activation time of individual origins is not an intrinsic property of S. cerevisiae origins, but is influenced by surrounding sequences, we sought to test the hypothesis that centromeres influence replication time by moving a centromere to a late replication domain. We used a modified Meselson-Stahl density transfer assay to measure the kinetics of replication for regions of chromosome XIV in which either the functional centromere or a point-mutated version had been moved near origins that reside in a late replication region. We show that a functional centromere acts in cis over a distance as great as 19 kb to advance the initiation time of origins. Our results constitute a direct link between establishment of the kinetochore and the replication initiation machinery, and suggest that the proposed higher-order structure of the pericentric chromatin influences replication initiation. PMID:22589733

  5. Activation of human herpesvirus replication by apoptosis.

    PubMed

    Prasad, Alka; Remick, Jill; Zeichner, Steven L

    2013-10-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance.

  6. Activation of Human Herpesvirus Replication by Apoptosis

    PubMed Central

    Prasad, Alka; Remick, Jill

    2013-01-01

    A central feature of herpesvirus biology is the ability of herpesviruses to remain latent within host cells. Classically, exposure to inducing agents, like activating cytokines or phorbol esters that stimulate host cell signal transduction events, and epigenetic agents (e.g., butyrate) was thought to end latency. We recently showed that Kaposi's sarcoma-associated herpesvirus (KSHV, or human herpesvirus-8 [HHV-8]) has another, alternative emergency escape replication pathway that is triggered when KSHV's host cell undergoes apoptosis, characterized by the lack of a requirement for the replication and transcription activator (RTA) protein, accelerated late gene kinetics, and production of virus with decreased infectivity. Caspase-3 is necessary and sufficient to initiate the alternative replication program. HSV-1 was also recently shown to initiate replication in response to host cell apoptosis. These observations suggested that an alternative apoptosis-triggered replication program might be a general feature of herpesvirus biology and that apoptosis-initiated herpesvirus replication may have clinical implications, particularly for herpesviruses that almost universally infect humans. To explore whether an alternative apoptosis-initiated replication program is a common feature of herpesvirus biology, we studied cell lines latently infected with Epstein-Barr virus/HHV-4, HHV-6A, HHV-6B, HHV-7, and KSHV. We found that apoptosis triggers replication for each HHV studied, with caspase-3 being necessary and sufficient for HHV replication. An alternative apoptosis-initiated replication program appears to be a common feature of HHV biology. We also found that commonly used cytotoxic chemotherapeutic agents activate HHV replication, which suggests that treatments that promote apoptosis may lead to activation of latent herpesviruses, with potential clinical significance. PMID:23885073

  7. Effect of morin on pharmacokinetics of piracetam in rats, in vitro enzyme kinetics and metabolic stability assay using rapid UPLC method.

    PubMed

    Sahu, Kapendra; Shaharyar, Mohammad; Siddiqui, Anees A

    2013-07-01

    The aim of this study was to investigate the effect of Morin on the pharmacokinetics of Piracetam in rats, in vitro enzyme kinetics and metabolic stability (high throughput) studies using human liver microsomes in UPLC. For pharmacokinetics studies, male Wistar rats were pretreated with Morin (10 mg/kg) for one week and on the last day, a single dose of Piracetam (50 mg/kg) was given orally. In another group, both Morin and Piracetam were co-administered to evaluate the acute effect of Morin on Piracetam. The control group received oral distilled water for one week and administered with Piracetam on the last day. As Morin is an inhibitor of P- Glycoprotein (P-gp) and CYP 3A, it was anticipated to improve the bioavailability of Piracetam. Amazingly, relative to control, the areas under the concentration time curve and peak plasma concentration of Piracetam were 1.50- and 1.45-fold, respectively, greater in the Morin-pretreated group. However, co-administration of Morin had no significant effect on these parameters. Apart from the aforementioned merits, the results of this study are further confirmed by clinical trials; Piracetam dosages should be adjusted to avoid potential drug interaction when Piracetam is used clinically in combination with Morin and Morin-containing dietary supplements. The in vitro enzyme kinetics were performed to determined km, Vmax & CLins . The in vitro metabolic stability executed for the estimation of metabolic rate constant and half-life of Piracetam. These studies also extrapolate to in vivo intrinsic hepatic clearance (Clint, in vivo ) from in vitro intrinsic hepatic clearance (CLint, in vitro ). Copyright © 2012 John Wiley & Sons, Ltd.

  8. Kinetic analysis of hyperpolarized data with minimum a priori knowledge: Hybrid maximum entropy and nonlinear least squares method (MEM/NLS).

    PubMed

    Mariotti, Erika; Veronese, Mattia; Dunn, Joel T; Southworth, Richard; Eykyn, Thomas R

    2015-06-01

    To assess the feasibility of using a hybrid Maximum-Entropy/Nonlinear Least Squares (MEM/NLS) method for analyzing the kinetics of hyperpolarized dynamic data with minimum a priori knowledge. A continuous distribution of rates obtained through the Laplace inversion of the data is used as a constraint on the NLS fitting to derive a discrete spectrum of rates. Performance of the MEM/NLS algorithm was assessed through Monte Carlo simulations and validated by fitting the longitudinal relaxation time curves of hyperpolarized [1-(13) C] pyruvate acquired at 9.4 Tesla and at three different flip angles. The method was further used to assess the kinetics of hyperpolarized pyruvate-lactate exchange acquired in vitro in whole blood and to re-analyze the previously published in vitro reaction of hyperpolarized (15) N choline with choline kinase. The MEM/NLS method was found to be adequate for the kinetic characterization of hyperpolarized in vitro time-series. Additional insights were obtained from experimental data in blood as well as from previously published (15) N choline experimental data. The proposed method informs on the compartmental model that best approximate the biological system observed using hyperpolarized (13) C MR especially when the metabolic pathway assessed is complex or a new hyperpolarized probe is used. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc.

  9. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    PubMed

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  10. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  11. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  12. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies.

    PubMed

    Neumann, Friederike; Czech-Sioli, Manja; Dobner, Thomas; Grundhoff, Adam; Schreiner, Sabrina; Fischer, Nicole

    2016-11-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.

  13. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    PubMed

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  14. Effects of dendritic cells from hepatitis B virus transgenic mice-stimulated autologous lymphocytes on hepatitis B virus replication: a study on the impact of specific sensitized effector cells on in vitro virus replication.

    PubMed

    Shen, Zhong-Yang; Zheng, Wei-Ping; Liu, Tao; Yang, Yang; Song, Hong-Li

    2015-03-01

    The objective of this study was to explore the effects of dendritic cells (DCs) from hepatitis B virus (HBV) transgenic mice-stimulated autologous lymphocytes on in vitro HBV replication. DCs from HBV transgenic mice were induced to maturity by lipopolysaccharide, followed by incubation with hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in vitro. Mature DCs and autologous lymphocytes were co-stimulated to form specific sensitized immune effector cells (IEC), which were then co-cultured with the human hepatoma cell line HepG2.2.15. Changes in morphology and activity of hepatocytes were then observed, as well as analysis of changes in liver enzyme, and HBV DNA and inflammatory cytokine levels in the culture supernatant. Intracellular HBV DNA and covalently closed circular DNA (cccDNA) concentration were measured by real-time polymerase chain reaction. Co-stimulation by mature DCs and IEC showed no impact on the morphology and liver enzyme expression level of HepG2.2.15 cells, but the supernatant HBV DNA and intracellular HBV DNA and cccDNA levels decreased significantly compared with those cells co-cultured with immature DCs. Secretion of inflammatory cytokines in the supernatant showed that when HBV DNA was highly expressed, the concentration of IFN-γ and IL-2 decreased, while IL-10 increased. Contrastingly, when HBV DNA had low expression, the concentration of IFN-γ and IL-2 increased and IL-10 decreased. Co-stimulation of HBV-related antigen-induced mature DCs and autologous lymphocytes showed inhibitory effects on ex vivo HBV replication, and cytokines were suggested to mediate this effect.

  15. In Vitro Coinfection and Replication of Classical Swine Fever Virus and Porcine Circovirus Type 2 in PK15 Cells

    PubMed Central

    Zhou, Niu; Xing, Gang; Zhou, Jianwei; Jin, Yulan; Liang, Cuiqin; Gu, Jinyan; Hu, Boli; Liao, Min; Wang, Qin; Zhou, Jiyong

    2015-01-01

    Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection. PMID:26431319

  16. Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture.

    PubMed

    Furlund, Camilla B; Kristoffersen, Anja B; Devold, Tove G; Vegarud, Gerd E; Jonassen, Christine M

    2012-07-01

    Many infant formulas are enriched with lactoferrin (Lf) because of its claimed beneficial effects on health. Native bovine Lf (bLf) is known to inhibit in vitro replication of human enteroviruses, a group of pathogenic viruses that replicate in the gut as their primary infection site. On the basis of a model digestion and human gastrointestinal enzymes, we hypothesized that bLf could retain its antiviral properties against enterovirus in the gastrointestinal tract, either as an intact protein or through bioactive peptide fragments released by digestive enzymes. To test our hypothesis, bLf was digested with human gastric juice and duodenal juice in a 2-step in vitro digestion model. Two gastric pH levels and reduction conditions were used to simulate physiological conditions in adults and infants. The antiviral activity of native bLf and of the digested fractions was studied on echovirus 5 in vitro, using various assay conditions, addressing several mechanisms for replication inhibition. Both native and digested bLf fractions revealed a significant inhibitory effect, when added before or simultaneously with the virus onto the cells. Furthermore, a significant stronger sustained antiviral effect was observed when bLf was fully digested in the gastric phase with fast pH reduction to 2.5, compared with native bLf, suggesting the release of antiviral peptides from bLf during the human digestion process. In conclusion, this study demonstrates that bLf may have a role in the prevention of human gastrointestinal virus infection under physiological conditions and that food containing bLf may protect against infection in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes.

    PubMed

    Zhang, Zhenfeng; Filzmayer, Christina; Ni, Yi; Sültmann, Holger; Mutz, Pascal; Hiet, Marie-Sophie; Vondran, Florian W R; Bartenschlager, Ralf; Urban, Stephan

    2018-07-01

    Hepatitis B virus (HBV) and D virus (HDV) co-infections cause the most severe form of viral hepatitis. HDV induces an innate immune response, but it is unknown how the host cell senses HDV and if this defense affects HDV replication. We aim to characterize interferon (IFN) activation by HDV, identify the responsible sensor and evaluate the effect of IFN on HDV replication. HDV and HBV susceptible hepatoma cell lines and primary human hepatocytes (PHH) were used for infection studies. Viral markers and cellular gene expression were analyzed at different time points after infection. Pattern recognition receptors (PRRs) required for HDV-mediated IFN activation and the impact on HDV replication were studied using stable knock-down or overexpression of the PRRs. Microarray analysis revealed that HDV but not HBV infection activated a broad range of interferon stimulated genes (ISGs) in HepG2 NTCP cells. HDV strongly activated IFN-β and IFN-λ in cell lines and PHH. HDV induced IFN levels remained unaltered upon RIG-I (DDX58) or TLR3 knock-down, but were almost completely abolished upon MDA5 (IFIH1) depletion. Conversely, overexpression of MDA5 but not RIG-I and TLR3 in HuH7.5 NTCP cells partially restored ISG induction. During long-term infection, IFN levels gradually diminished in both HepG2 NTCP and HepaRG NTCP cell lines. MDA5 depletion had little effect on HDV replication despite dampening HDV-induced IFN response. Moreover, treatment with type I or type III IFNs did not abolish HDV replication. Active replication of HDV induces an IFN-β/λ response, which is predominantly mediated by MDA5. This IFN response and exogenous IFN treatment have only a moderate effect on HDV replication in vitro indicating the adaption of HDV replication to an IFN-activated state. In contrast to hepatitis B virus, infection with hepatitis D virus induces a strong IFN-β/λ response in innate immune competent cell lines. MDA5 is the key sensor for the recognition of hepatitis D virus replicative intermediates. An IFN-activated state did not prevent hepatitis D virus replication in vitro, indicating that hepatitis D virus is resistant to self-induced innate immune responses and therapeutic IFN treatment. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  18. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    PubMed Central

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  19. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

    PubMed Central

    Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank

    2015-01-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928

  20. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    PubMed

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  1. Phenolic profile and fermentation patterns of different commercial gluten-free pasta during in vitro large intestine fermentation.

    PubMed

    Rocchetti, Gabriele; Lucini, Luigi; Chiodelli, Giulia; Giuberti, Gianluca; Gallo, Antonio; Masoero, Francesco; Trevisan, Marco

    2017-07-01

    The fate of phenolic compounds, along with short-chain fatty acids (SCFAs) production kinetics, was evaluated on six different commercial gluten-free (GF) pasta samples varying in ingredient compositions, focussing on the in vitro faecal fermentation after the gastrointestinal digestion. A general reduction of both total phenolics and reducing power was observed in all samples, together with a substantial change in phenolic profile over 24h of faecal fermentation, with differences among GF pasta samples. Flavonoids, hydroxycinnamics and lignans degraded over time, with a concurrent increase in low-molecular-weight phenolic acids (hydroxybenzoic acids), alkylphenols, hydroxybenzoketones and tyrosols. Interestingly, discriminant analysis also identified several alkyl derivatives of resorcinol as markers of the changes in phenolic profile during in vitro fermentation. Furthermore, degradation pathways of phenolics by intestinal microbiota have been proposed. Considering the total SCFAs and butyrate production during the in vitro fermentation, different fermentation kinetics were observed among GF pasta post-hydrolysis residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Functional Role for Humoral Antibodies in Leishmaniasis in Laboratory Animal.

    DTIC Science & Technology

    1982-12-01

    vitro; inhibition of growth of intracellular Mycobacterium leprae with lymphokines. Clin. Exp. Immunol. 8:625-637. Herman, R. 1980. Cytophilic and...lymphocytes. Thus, inhibition of intracellular replication of Listeria monocytogenes (Simon and Sheagren, 1972), Mycobacterium tuberculosis (North, 1974...M. leprae (Godal et al., 1971) and Rickettsia tsutsugamushi (Nacy and Meltzer, 1979) have all been demonstrated after infected cells, in vitro, were

  3. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng

    2018-03-23

    Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.

  4. Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?

    PubMed Central

    Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda

    2010-01-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  5. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  6. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  7. Antiviral Activities of Sulfated Polysaccharides Isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales)

    PubMed Central

    Bouhlal, Rhimou; Haslin, Camille; Chermann, Jean-Claude; Colliec-Jouault, Sylvia; Sinquin, Corinne; Simon, Gaelle; Cerantola, Stephane; Riadi, Hassane; Bourgougnon, Nathalie

    2011-01-01

    Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively. PMID:21822410

  8. Protective role of Indoleamine 2,3 dioxygenase in Respiratory Syncytial Virus associated immune response in airway epithelial cells.

    PubMed

    Rajan, Devi; Chinnadurai, Raghavan; Keefe, Evan O; Boyoglu-Barnum, Seyhan; Todd, Sean O; Hartert, Tina V; Galipeau, Jacques; Anderson, Larry J

    2017-12-01

    RSV is a major cause of severe lower respiratory infection in infants and young children. With no vaccine yet available, it is important to clarify mechanisms of disease pathogenesis. Since indoleamine-2,3-dioxygenase (IDO) is an immunomodulatory enzyme and is upregulated with RSV infection, we studied it in vivo during infection of BALB/c mice and in vitro in A549 cells. RSV infection upregulated IDO transcripts in vivo and in vitro. IDO siRNA decreased IDO transcripts ~2 fold compared to control siRNA after RSV infection but this decrease did not affect RSV replication. In the presence of IFN-γ, siRNA-induced a decrease in IDO expression that was associated with an increase in virus replication and increased levels of IL-6, IL-8, CXCL10 and CCL4. Thus, our results show IDO is upregulated with RSV infection and this upregulation likely participates with IFN-γ in inhibition of virus replication and suppression of some host cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1

    PubMed Central

    Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee

    2017-01-01

    R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700

  10. Subnuclear systems for synthesis of simian virus 40 DNA in vitro.

    PubMed Central

    Edenberg, H J; Waqar, M A; Huberman, J A

    1976-01-01

    We have developed two subnuclear systems for synthesis of DNA of simian virus 40 in vitro. We prepare chromatin from infected cells by the method of Hancock [(1974) J. Mol. Biol. 86, 649-663]; these "chromatin bodies" can be disrupted and large debris can be pelleted, leaving a supernatant ("soluble system"). Both chromatin bodies and the soluble system incorporate deoxyribonucleoside triphosphates into nucleoprotein complexes that contain simian virus 40 DNA. The DNA labeled in short pulses sediments in neutral sucrose gradients slightly faster than mature simian virus 40 DNA, as expected for replicating intermediate. When rebanded in alkaline sucrose gradients, about half of the radioactivity is found in short strands (200-300 nucleotides) and half in longer strands (up to full viral size). When these systems are supplemented with a cytoplasmic preparation from HeLa cells, synthesis is stimulated about 5-fold, and the short strands are converted into strands of up to full viral length as well as into covalently closed circles. These subnuclear DNA-replicating systems should be useful for biochemical fractionation and characterization of some of the proteins required for DNA replication. PMID:188037

  11. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  12. Single Cell Analysis of Human RAD18-Dependent DNA Post-Replication Repair by Alkaline Bromodeoxyuridine Comet Assay

    PubMed Central

    Mórocz, Mónika; Gali, Himabindu; Raskó, István; Downes, C. Stephen; Haracska, Lajos

    2013-01-01

    Damage to DNA can block replication progression resulting in gaps in the newly synthesized DNA. Cells utilize a number of post-replication repair (PRR) mechanisms such as the RAD18 controlled translesion synthesis or template switching to overcome the discontinuities formed opposite the DNA lesions and to complete DNA replication. Gaining more insights into the role of PRR genes promotes better understanding of DNA damage tolerance and of how their malfunction can lead to increased genome instability and cancer. However, a simple and efficient method to characterise gene specific PRR deficiencies at a single cell level has not been developed. Here we describe the so named BrdU comet PRR assay to test the contribution of human RAD18 to PRR at a single cell level, by which we kinetically characterized the consequences of the deletion of human RAD18 on the replication of UV-damaged DNA. Moreover, we demonstrate the capability of our method to evaluate PRR at a single cell level in unsynchronized cell population. PMID:23936422

  13. Species-specific and individual differences in Nipah virus replication in porcine and human airway epithelial cells.

    PubMed

    Sauerhering, Lucie; Zickler, Martin; Elvert, Mareike; Behner, Laura; Matrosovich, Tatyana; Erbar, Stephanie; Matrosovich, Mikhail; Maisner, Andrea

    2016-07-01

    Highly pathogenic Nipah virus (NiV) causes symptomatic infections in pigs and humans. The severity of respiratory symptoms is much more pronounced in pigs than in humans, suggesting species-specific differences of NiV replication in porcine and human airways. Here, we present a comparative study on productive NiV replication in primary airway epithelial cell cultures of the two species. We reveal that NiV growth substantially differs in primary cells between pigs and humans, with a more rapid spread of infection in human airway epithelia. Increased replication, correlated with higher endogenous expression levels of the main NiV entry receptor ephrin-B2, not only significantly differed between airway cells of the two species but also varied between cells from different human donors. To our knowledge, our study provides the first experimental evidence of species-specific and individual differences in NiV receptor expression and replication kinetics in primary airway epithelial cells. It remains to be determined whether and how these differences contribute to the viral host range and pathogenicity.

  14. Viral kinetic modeling: state of the art

    DOE PAGES

    Canini, Laetitia; Perelson, Alan S.

    2014-06-25

    Viral kinetic modeling has led to increased understanding of the within host dynamics of viral infections and the effects of therapy. Here we review recent developments in the modeling of viral infection kinetics with emphasis on two infectious diseases: hepatitis C and influenza. We review how viral kinetic modeling has evolved from simple models of viral infections treated with a drug or drug cocktail with an assumed constant effectiveness to models that incorporate drug pharmacokinetics and pharmacodynamics, as well as phenomenological models that simply assume drugs have time varying-effectiveness. We also discuss multiscale models that include intracellular events in viralmore » replication, models of drug-resistance, models that include innate and adaptive immune responses and models that incorporate cell-to-cell spread of infection. Overall, viral kinetic modeling has provided new insights into the understanding of the disease progression and the modes of action of several drugs. In conclusion, we expect that viral kinetic modeling will be increasingly used in the coming years to optimize drug regimens in order to improve therapeutic outcomes and treatment tolerability for infectious diseases.« less

  15. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.

    PubMed

    Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A

    2008-11-01

    Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.

  16. Evaluation of hepatitis B virus replication and proteomic analysis of HepG2.2.15 cell line after cyclosporine A treatment.

    PubMed

    Xie, Hai-Yang; Xia, Wei-Liang; Zhang, Chun-Chao; Wu, Li-Ming; Ji, Hao-Feng; Cheng, Yu; Zheng, Shu-Sen

    2007-07-01

    The effect of cyclosporine A (CsA) on hepatitis B virus (HBV) replication was investigated, and proteomics expression differentiation after CsA treatment was studied in order to provide clues to explore the effect of CsA on HBV replication. Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cytotoxicity of CsA. The HBV replication level in the HBV genomic DNA transfected HepG2.2.15 cell line was determined by an ELISA analysis of hepatitis B surface antigens (HBsAg) and Hepatitis B e antigens (HBeAg) in culture supernatant, while the intracellular HBV DNA replication level was analyzed by slot blot hybridization. Two-dimensional electrophoresis was used to investigate the alteration of protein expression in HepG2.2.15 after CsA treatment in vitro. The differentially-expressed proteins were identified by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with an online database search. CsA was able to inhibit the expression of HBsAg, HBeAg, and HBV DNA replication in vitro in a dose-dependent manner. A proteomics analysis indicated that the expression of 17 proteins changed significantly in the CsA treatment group compared to the control group. Eleven of the 17 proteins were identified, including the overexpression of eukaryotic translation initiation factors (eIF) 3k, otubain 1, 14.3.3 protein, eIF2-1 alpha, eIF5A, and the tyrosine 3/tryptophan 5-mono-oxygenase activation protein in CsA-treated HepG2.2.15 cells. The downregulation of the ferritin light subunit, erythrocyte cytosolic protein of 51 kDa (ECP-51), stathmin 1/oncoprotein, adenine phosphoribosyl-transferase, and the position of a tumor protein, translationally controlled 1, was shifted, suggesting it had undergone posttranslational modifications. Our study identified the inhibitory effect of CsA on HBV replication, and found that a group of proteins may be responsible for this inhibitory effect.

  17. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification

    PubMed Central

    Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.

    2015-01-01

    DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution. PMID:26700858

  18. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    PubMed

    Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K

    2015-12-01

    DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.

  19. Kinetics and thermodynamics of living copolymerization processes

    PubMed Central

    2016-01-01

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution. This article is part of the themed issue ‘Multiscale modelling at the physics–chemistry–biology interface’. PMID:27698043

  20. Kinetics and thermodynamics of living copolymerization processes.

    PubMed

    Gaspard, Pierre

    2016-11-13

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution.This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  1. Kinetics and thermodynamics of living copolymerization processes

    NASA Astrophysics Data System (ADS)

    Gaspard, Pierre

    2016-11-01

    Theoretical advances are reported on the kinetics and thermodynamics of free and template-directed living copolymerizations. Until recently, the kinetic theory of these processes had only been established in the fully irreversible regime, in which the attachment rates are only considered. However, the entropy production is infinite in this regime and the approach to thermodynamic equilibrium cannot be investigated. For this purpose, the detachment rates should also be included. Inspite of this complication, the kinetics can be exactly solved in the regimes of steady growth and depolymerization. In this way, analytical expressions are obtained for the mean growth velocity, the statistical properties of the copolymer sequences, as well as the thermodynamic entropy production. The results apply to DNA replication, transcription and translation, allowing us to understand important aspects of molecular evolution. This article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'.

  2. Involvement of rainbow trout leucocytes in the pathogenesis of infectious hematopoietic necrosis

    USGS Publications Warehouse

    Chilmonczyk, S.; Winton, J.R.

    1994-01-01

    Rainbow trout Oncorhynchus myluss leucocytes were tested for their ability to support replication of infectious hematopoietic necrosis virus (IHNV). Viral replication occurred in vitro uslng leucocytes cultured from peripheral blood, kidney, and thymus where viral titers peaked at 2 to 4 d post-inoculation. Leucocytes collected from trout following waterborne challenge with IHNV were cocultured on EPC cell monolayers. These assays detected IHNV in leucocytes infected in vivo as early as 6 h post-exposure before the challenge virus had undergone replication. These data showed that leucocyte populations could serve as target cells in the initial phase of IHNV infection.

  3. The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1.

    PubMed

    Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie

    2011-06-01

    Mutations in HepA-related protein (HARP, or SMARCAL1) cause Schimke immunoosseous dysplasia (SIOD). HARP has ATP-dependent annealing helicase activity, which helps to stabilize stalled replication forks and facilitate DNA repair during replication. Here, we show that the conserved tandem HARP (2HP) domain dictates this annealing helicase activity. Furthermore, chimeric proteins generated by fusing the 2HP domain of HARP with the SNF2 domain of BRG1 or HELLS show annealing helicase activity in vitro and, when targeted to replication forks, mimic the functions of HARP in vivo. We propose that the HARP domain endows HARP with this ATP-driven annealing helicase activity.

  4. Study of drug concentration effects on in vitro lipolysis kinetics in medium-chain triglycerides by considering oil viscosity and surface tension.

    PubMed

    Arnold, Yvonne Elisabeth; Imanidis, Georgios; Kuentz, Martin

    2011-10-09

    Simple oil formulations are widely used in oral drug delivery and the fate of these systems is governed mainly by the dispersion and digestion process. The current work aimed to study concentration effects of six poorly water-soluble drugs on the in vitro lipolysis rate of medium-chain triglycerides. The results were compared with drug effects on oil viscosity and surface tension. First the different drugs were characterized by molecular modeling and their influence on physical oil properties was assessed. Herein capillary viscosimetry was employed as well as dynamic surface tensiometry. Subsequently, an apparent in vitro lipolysis rate was determined in biorelevant medium using an automated pH stat titrator linked to a thermo-controlled vessel. The different drugs exhibited varying effects on oil viscosity and surface tension. However, all drugs significantly lowered the apparent lipolysis rate of the oil. This effect was very similar among the different compounds with exception of orlistat, which practically blocked lipolysis because of a potent direct inhibition. The other drugs affected lipolysis kinetics most likely by different mechanism(s). In light of the obtained results, a drug effect on oil viscosity or surface tension appeared to play a minor role in reducing the lipolysis rate. The lipolysis kinetics was further not affected by the drug load, which was deemed advantageous from a pharmaceutical viewpoint. Different dose strengths are therefore not assumed to alter lipolysis kinetics, which is beneficial for limiting the variability of in vivo drug release. Further studies of drug solubility kinetics in the evolving digestion phases are, however, needed to finally assess potential effects of dosage strength in simple oil formulations. Copyright © 2011. Published by Elsevier B.V.

  5. An evaluation of the inhibition of human butyrylcholinesterase and acetylcholinesterase by the organophosphate chlorpyrifos oxon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shenouda, Josephine; Green, Paula; Sultatos, Lester, E-mail: sultatle@umdnj.ed

    2009-12-01

    Acetylcholinesterase (EC 3.1.1.7) and butyrylcholinesterase (EC 3.1.1.8) are enzymes that belong to the superfamily of alpha/beta-hydrolase fold proteins. While they share many characteristics, they also possess many important differences. For example, whereas they have about 54% amino acid sequence identity, the active site gorge of acetylcholinesterase is considerably smaller than that of butyrylcholinesterase. Moreover, both have been shown to display simple and complex kinetic mechanisms, depending on the particular substrate examined, the substrate concentration, and incubation conditions. In the current study, incubation of butyrylthiocholine in a concentration range of 0.005-3.0 mM, with 317 pM human butyrylcholinesterase in vitro, resulted inmore » rates of production of thiocholine that were accurately described by simple Michaelis-Menten kinetics, with a K{sub m} of 0.10 mM. Similarly, the inhibition of butyrylcholinesterase in vitro by the organophosphate chlorpyrifos oxon was described by simple Michaelis-Menten kinetics, with a k{sub i} of 3048 nM{sup -1} h{sup -1}, and a K{sub D} of 2.02 nM. In contrast to inhibition of butyrylcholinesterase, inhibition of human acetylcholinesterase by chlorpyrifos oxon in vitro followed concentration-dependent inhibition kinetics, with the k{sub i} increasing as the inhibitor concentration decreased. Chlorpyrifos oxon concentrations of 10 and 0.3 nM gave k{sub i}s of 1.2 and 19.3 nM{sup -1} h{sup -1}, respectively. Although the mechanism of concentration-dependent inhibition kinetics is not known, the much smaller, more restrictive active site gorge of acetylcholinesterase almost certainly plays a role. Similarly, the much larger active site gorge of butyrylcholinesterase likely contributes to its much greater reactivity towards chlorpyrifos oxon, compared to acetylcholinesterase.« less

  6. IN VITRO METABOLISM OF THE FUNGICIDE AND ENVIRONMENTAL CONTAMINANT TRANS-BROMUCONAZOLE AND IMPLICATIONS FOR RISK ASSESSMENT

    EPA Science Inventory

    Trans-Bromuconazole is a chiral chemical representative of a class of triazole-derivatives known to inhibit specific fungal cytochrome P450 (CYP) reactions. Kinetic measurements and delineation of metabolic pathways for triazole chemicals within in vitro hepatic microsomes are ne...

  7. A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus

    PubMed Central

    Moradi, Mohammad-Taghi; Rafieian-Kopaei, Mahmoud; Karimi, Ali

    2016-01-01

    Objective: There are a number of published data indicating in vitro anti-HSV activity of some of Iranian herbal extracts with no systematic review to discuss these results. Therefore, this article was aimed to review and discuss the methods carried out and the phytochemistry and bioactivity of the extracts used and also conclusions provided in these publications. Materials and Methods: Published articles both in English (from Medline, Science Direct, EMBASE, Scopus, Pro Quest, Google scholar, Cochrane Library) and in Persian (from SID, Iran Medex and Magiran) databases, from 1966 to October 2014 were incorporated in this review. The in vitro studies that lacked CC50, IC50, were excluded. Results: Only 42 published reports were found to examine Iranian herbs against HSV replication in vitro. Seventeen out of 42 studies in which 23 kinds of medicinal plants were subjected to crude extraction were included. The review of data showed that some of the herbal extracts including Hyssopus officinalis methanolic extract, Melissa officinalis aqueous extract, Quercus persica L. hydroalcoholic extract and Securigeras ecuridaca methanolic extract with selective index (SI) of 234, 877, >778 and 250, respectively were highly effective against HSV in vitro. Conclusion: More comprehensive studies using more advanced methods are needed to be done to achieve promising anti-HSV agents from the bioactive compounds isolated from these herbs. PMID:27761420

  8. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    PubMed

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  9. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication

    PubMed Central

    Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong

    2016-01-01

    ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro. Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication. PMID:27630238

  10. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    PubMed

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  11. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  12. Differential virulence mechanisms of infectious hematopoietic necrosis virus in rainbow trout (Oncorhynchus mykiss) include host entry and virus replication kinetics

    USGS Publications Warehouse

    Penaranda, M.M.D.; Purcell, M.K.; Kurath, G.

    2009-01-01

    Host specificity is a phenomenon exhibited by all viruses. For the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV), differential specificity of virus strains from the U and M genogroups has been established both in the field and in experimental challenges. In rainbow trout (Oncorhynchus mykiss), M IHNV strains are consistently more prevalent and more virulent than U IHNV. The basis of the differential ability of these two IHNV genogroups to cause disease in rainbow trout was investigated in live infection challenges with representative U and M IHNV strains. When IHNV was delivered by intraperitoneal injection, the mortality caused by U IHNV increased, indicating that the low virulence of U IHNV is partly due to inefficiency in entering the trout host. Analyses of in vivo replication showed that U IHNV consistently had lower prevalence and lower viral load than M IHNV during the course of infection. In analyses of the host immune response, M IHNV-infected fish consistently had higher and longer expression of innate immune-related genes such as Mx-1. This suggests that the higher virulence of M IHNV is not due to suppression of the immune response in rainbow trout. Taken together, the results support a kinetics hypothesis wherein faster replication enables M IHNV to rapidly achieve a threshold level of virus necessary to override the strong host innate immune response. ?? 2009 SGM.

  13. Inhibition of hepatitis B virus gene expression & replication by crude destruxins from Metarhizium anisopliae var. dcjhyium

    PubMed Central

    Dong, Cong; Yu, Jiuru; Zhu, Ying; Dong, Changjin

    2013-01-01

    Background & objectives: Destruxin A, destruxin B and destruxin E isolated from entomopathogenic fungus Metarhizium anisopliae showed a strong suppressive effect on the replication of hepatitis B virus (HBV) in human hepatoma cells. In this study, the anti-HBV effects of the crude destruxins extracted from M. anisopliae var. dcjhyium were detected both in vitro and in vivo. Methods: HepG2.2.15 cells were cultured to observe the inhibitory effects of the crude destruxins on the gene expression and replication of HBV by radioimmunoassay detection and real-time quantitative PCR. In vivo, duck HBV (DHBV)-infected ducks were treated with the crude destruxins at 2.0, 4.0, 6.0 μg/kg once a day for 15 days, DHBV DNA was examined by real-time quantitative PCR. Results: The crude destruxins suppressed the replication of HBV-DNA and the production of HBsAg and HBeAg with IC50 of about 1.2 and 1.4 μg/ml. Transcript of viral mRNA was significantly suppressed by the crude destruxins in HepG2.2.15 cells. In vivo, the duck serum DHBV-DNA levels were markedly reduced in the group of the crude destruxins. Interpretation & conclusions: The crude destruxins inhibited the gene expression and replication of HBV both in vitro and in vivo, and their anti-HBV effect was stronger than that with destruxin B. Our results indicate that the crude destruxins from M.anisopliae var. dcjhyium may be potential antivirus agents. Further studies need to be done to confirm these findings. PMID:24521644

  14. A compendium of temperature responses of Rubisco kinetic traits: variability among and within photosynthetic groups and impacts on photosynthesis modeling.

    PubMed

    Galmés, Jeroni; Hermida-Carrera, Carmen; Laanisto, Lauri; Niinemets, Ülo

    2016-09-01

    The present study provides a synthesis of the in vitro and in vivo temperature responses of Rubisco Michaelis-Menten constants for CO2 (Kc) and O2 (Ko), specificity factor (Sc,o) and maximum carboxylase turnover rate (kcatc) for 49 species from all the main photosynthetic kingdoms of life. Novel correction routines were developed for in vitro data to remove the effects of study-to-study differences in Rubisco assays. The compilation revealed differences in the energy of activation (∆Ha) of Rubisco kinetics between higher plants and other photosynthetic groups, although photosynthetic bacteria and algae were under-represented and very few species have been investigated so far. Within plants, the variation in Rubisco temperature responses was related to species' climate and photosynthetic mechanism, with differences in ∆Ha for kcatc among C3 plants from cool and warm environments, and in ∆Ha for kcatc and Kc among C3 and C4 plants. A negative correlation was observed among ∆Ha for Sc/o and species' growth temperature for all data pooled, supporting the convergent adjustment of the temperature sensitivity of Rubisco kinetics to species' thermal history. Simulations of the influence of varying temperature dependences of Rubisco kinetics on Rubisco-limited photosynthesis suggested improved photosynthetic performance of C3 plants from cool habitats at lower temperatures, and C3 plants from warm habitats at higher temperatures, especially at higher CO2 concentration. Thus, variation in Rubisco kinetics for different groups of photosynthetic organisms might need consideration to improve prediction of photosynthesis in future climates. Comparisons between in vitro and in vivo data revealed common trends, but also highlighted a large variability among both types of Rubisco kinetics currently used to simulate photosynthesis, emphasizing the need for more experimental work to fill in the gaps in Rubisco datasets and improve scaling from enzyme kinetics to realized photosynthesis. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. A ribonucleotide Origin for Life - Fluctuation and Near-ideal Reactions

    NASA Astrophysics Data System (ADS)

    Yarus, Michael

    2013-02-01

    Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.

  16. A ribonucleotide Origin for Life--fluctuation and near-ideal reactions.

    PubMed

    Yarus, Michael

    2013-02-01

    Oligoribonucleotides are potentially capable of Darwinian evolution - they may replicate and can express an independent chemical phenotype, as embodied in modern enzymatic cofactors. Using quantitative chemical kinetics on a sporadically fed ribonucleotide pool, unreliable supplies of unstable activated ribonucleotides A and B at low concentrations recurrently yield a replicating AB polymer with a potential chemical phenotype. Self-complementary replication in the pool occurs during a minority (here ≈ 35 %) of synthetic episodes that exploit coincidental overlaps between 4, 5 or 6 spikes of arbitrarily arriving substrates. Such uniquely productive synthetic episodes, in which near-ideal reaction sequences recur at random, account for most AB oligonucleotide synthesis, and therefore underlie the emergence of net replication under realistic primordial conditions. Because overlapping substrate spikes are unexpectedly frequent, and in addition, complex spike sequences appear disproportionately, a sporadically fed pool can host unexpectedly complex syntheses. Thus, primordial substrate fluctuations are not necessarily a barrier to Darwinism, but instead can facilitate early evolution.

  17. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-03-18

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.

  18. Interferon-β 1a and SARS Coronavirus Replication

    PubMed Central

    Hensley, Lisa E.; Fritz, Elizabeth A.; Karp, Christopher; Huggins, John W.; Geisbert, Thomas W.

    2004-01-01

    A global outbreak of severe acute respiratory syndrome (SARS) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and the substantial illness and death it caused have made it a critical public health issue. Because no effective treatments are available, an intensive effort is under way to identify and test promising antiviral drugs. Here, we report that recombinant human interferon (IFN)-β 1a potently inhibits SARS coronavirus replication in vitro. PMID:15030704

  19. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1)

    PubMed Central

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-01-01

    Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384

  20. Epstein-Barr virus WZhet DNA can induce lytic replication in epithelial cells in vitro, although WZhet is not detectable in many human tissues in vivo.

    PubMed

    Ryan, Julie L; Jones, Richard J; Elmore, Sandra H; Kenney, Shannon C; Miller, George; Schroeder, Jane C; Gulley, Margaret L

    2009-01-01

    WZhet is a rearranged and partially deleted form of the Epstein-Barr virus (EBV) genome in which the BamH1W region becomes juxtaposed with and activates BZLF1, resulting in constitutive viral replication. We tested whether WZhet induces viral replication in epithelial cells, and we studied its prevalence in a wide range of lesional tissues arising in vivo. A quantitative real-time PCR assay targeting EBV WZhet DNA was developed to measure this recombinant form of the EBV genome. WZhet DNA was undetectable in any of 324 plasma or paraffin-embedded tissue samples from patients with EBV-associated and EBV-negative disorders. These included specimens from patients with Hodgkin or non-Hodgkin lymphoma, post-transplant lymphoproliferation, nasopharyngeal or gastric adenocarcinoma, and infectious mononucleosis. However, WZhet DNA was detected in vitro in EBV-infected AGS gastric cancer cells. Additionally, transient transfection of infected AGS gastric cancer cells showed that viral replication could be induced by a WZhet plasmid. This is the first evidence that WZhet induces the EBV lytic cycle in an epithelial cell line. Our negative findings in natural settings suggest that WZhet is a defective viral product that thrives in the absence of a host immune system but is rarely present in vivo. Copyright 2009 S. Karger AG, Basel.

  1. Mutant DnaAs of Escherichia coli that are refractory to negative control

    PubMed Central

    Chodavarapu, Sundari; Felczak, Magdalena M.; Simmons, Lyle A.; Murillo, Alec; Kaguni, Jon M.

    2013-01-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli. PMID:23990329

  2. Mutant DnaAs of Escherichia coli that are refractory to negative control.

    PubMed

    Chodavarapu, Sundari; Felczak, Magdalena M; Simmons, Lyle A; Murillo, Alec; Kaguni, Jon M

    2013-12-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.

  3. Derivation and Characterization of Pathogenic Transmitted/Founder Molecular Clones from Simian Immunodeficiency Virus SIVsmE660 and SIVmac251 following Mucosal Infection

    PubMed Central

    Lopker, Michael J.; Del Prete, Gregory Q.; Estes, Jacob D.; Li, Hui; Reid, Carolyn; Newman, Laura; Lipkey, Leslie; Camus, Celine; Easlick, Juliet L.; Wang, Shuyi; Decker, Julie M.; Bar, Katharine J.; Learn, Gerald; Pal, Ranajit; Weiss, Deborah E.; Hahn, Beatrice H.; Lifson, Jeffrey D.; Shaw, George M.

    2016-01-01

    ABSTRACT Currently available simian immunodeficiency virus (SIV) infectious molecular clones (IMCs) and isolates used in nonhuman primate (NHP) models of AIDS were originally derived from infected macaques during chronic infection or end stage disease and may not authentically recapitulate features of transmitted/founder (T/F) genomes that are of particular interest in transmission, pathogenesis, prevention, and treatment studies. We therefore generated and characterized T/F IMCs from genetically and biologically heterogeneous challenge stocks of SIVmac251 and SIVsmE660. Single-genome amplification (SGA) was used to identify full-length T/F genomes present in plasma during acute infection resulting from atraumatic rectal inoculation of Indian rhesus macaques with low doses of SIVmac251 or SIVsmE660. All 8 T/F clones yielded viruses that were infectious and replication competent in vitro, with replication kinetics similar to those of the widely used chronic-infection-derived IMCs SIVmac239 and SIVsmE543. Phenotypically, the new T/F virus strains exhibited a range of neutralization sensitivity profiles. Four T/F virus strains were inoculated into rhesus macaques, and each exhibited typical SIV replication kinetics. The SIVsm T/F viruses were sensitive to TRIM5α restriction. All T/F viruses were pathogenic in rhesus macaques, resulting in progressive CD4+ T cell loss in gastrointestinal tissues, peripheral blood, and lymphatic tissues. The animals developed pathological immune activation; lymphoid tissue damage, including fibrosis; and clinically significant immunodeficiency leading to AIDS-defining clinical endpoints. These T/F clones represent a new molecular platform for the analysis of virus transmission and immunopathogenesis and for the generation of novel “bar-coded” challenge viruses and next-generation simian-human immunodeficiency viruses that may advance the HIV/AIDS vaccine agenda. IMPORTANCE Nonhuman primate research has relied on only a few infectious molecular clones for a myriad of diverse research projects, including pathogenesis, preclinical vaccine evaluations, transmission, and host-versus-pathogen interactions. With new data suggesting a selected phenotype of the virus that causes infection (i.e., the transmitted/founder virus), we sought to generate and characterize infectious molecular clones from two widely used simian immunodeficiency virus lineages (SIVmac251 and SIVsmE660). Although the exact requirements necessary to be a T/F virus are not yet fully understood, we generated cloned viruses with all the necessary characteristic of a successful T/F virus. The cloned viruses revealed typical acute and set point viral-load dynamics with pathological immune activation, lymphoid tissue damage progressing to significant immunodeficiency, and AIDS-defining clinical endpoints in some animals. These T/F clones represent a new molecular platform for studies requiring authentic T/F viruses. PMID:27412591

  4. Advanced Image Acquisition and Analytical Techniques for Studies of Living Cells and Tissue Sections.

    PubMed

    Franek, Michal; Suchánková, Jana; Sehnalová, Petra; Krejčí, Jana; Legartová, Soňa; Kozubek, Stanislav; Večeřa, Josef; Sorokin, Dmitry V; Bártová, Eva

    2016-04-01

    Studies on fixed samples or genome-wide analyses of nuclear processes are useful for generating snapshots of a cell population at a particular time point. However, these experimental approaches do not provide information at the single-cell level. Genome-wide studies cannot assess variability between individual cells that are cultured in vitro or originate from different pathological stages. Immunohistochemistry and immunofluorescence are fundamental experimental approaches in clinical laboratories and are also widely used in basic research. However, the fixation procedure may generate artifacts and prevents monitoring of the dynamics of nuclear processes. Therefore, live-cell imaging is critical for studying the kinetics of basic nuclear events, such as DNA replication, transcription, splicing, and DNA repair. This review is focused on the advanced microscopy analyses of the cells, with a particular focus on live cells. We note some methodological innovations and new options for microscope systems that can also be used to study tissue sections. Cornerstone methods for the biophysical research of living cells, such as fluorescence recovery after photobleaching and fluorescence resonance energy transfer, are also discussed, as are studies on the effects of radiation at the individual cellular level.

  5. Does adaptation to vertebrate codon usage relate to flavivirus emergence potential?

    PubMed Central

    Freire, Caio César de Melo

    2018-01-01

    Codon adaptation index (CAI) is a measure of synonymous codon usage biases given a usage reference. Through mutation, selection, and drift, viruses can optimize their replication efficiency and produce more offspring, which could increase the chance of secondary transmission. To evaluate how higher CAI towards the host has been associated with higher viral titers, we explored temporal trends of several historic and extensively sequenced zoonotic flaviviruses and relationships within the genus itself. To showcase evolutionary and epidemiological relationships associated with silent, adaptive synonymous changes of viruses, we used codon usage tables from human housekeeping and antiviral immune genes, as well as tables from arthropod vectors and vertebrate species involved in the flavivirus maintenance cycle. We argue that temporal trends of CAI changes could lead to a better understanding of zoonotic emergences, evolutionary dynamics, and host adaptation. CAI appears to help illustrate historically relevant trends of well-characterized viruses, in different viral species and genetic diversity within a single species. CAI can be a useful tool together with in vivo and in vitro kinetics, phylodynamics, and additional functional genomics studies to better understand species trafficking and viral emergence in a new host. PMID:29385205

  6. Comparative analysis of seven viral nuclear export signals (NESs) reveals the crucial role of nuclear export mediated by the third NES consensus sequence of nucleoprotein (NP) in influenza A virus replication.

    PubMed

    Chutiwitoonchai, Nopporn; Kakisaka, Michinori; Yamada, Kazunori; Aida, Yoko

    2014-01-01

    The assembly of influenza virus progeny virions requires machinery that exports viral genomic ribonucleoproteins from the cell nucleus. Currently, seven nuclear export signal (NES) consensus sequences have been identified in different viral proteins, including NS1, NS2, M1, and NP. The present study examined the roles of viral NES consensus sequences and their significance in terms of viral replication and nuclear export. Mutation of the NP-NES3 consensus sequence resulted in a failure to rescue viruses using a reverse genetics approach, whereas mutation of the NS2-NES1 and NS2-NES2 sequences led to a strong reduction in viral replication kinetics compared with the wild-type sequence. While the viral replication kinetics for other NES mutant viruses were also lower than those of the wild-type, the difference was not so marked. Immunofluorescence analysis after transient expression of NP-NES3, NS2-NES1, or NS2-NES2 proteins in host cells showed that they accumulated in the cell nucleus. These results suggest that the NP-NES3 consensus sequence is mostly required for viral replication. Therefore, each of the hydrophobic (Φ) residues within this NES consensus sequence (Φ1, Φ2, Φ3, or Φ4) was mutated, and its viral replication and nuclear export function were analyzed. No viruses harboring NP-NES3 Φ2 or Φ3 mutants could be rescued. Consistent with this, the NP-NES3 Φ2 and Φ3 mutants showed reduced binding affinity with CRM1 in a pull-down assay, and both accumulated in the cell nucleus. Indeed, a nuclear export assay revealed that these mutant proteins showed lower nuclear export activity than the wild-type protein. Moreover, the Φ2 and Φ3 residues (along with other Φ residues) within the NP-NES3 consensus were highly conserved among different influenza A viruses, including human, avian, and swine. Taken together, these results suggest that the Φ2 and Φ3 residues within the NP-NES3 protein are important for its nuclear export function during viral replication.

  7. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo.

    PubMed

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-03-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues.

  8. A history of studies that examine the interactions of Toxoplasma with its host cell: Emphasis on in vitro models.

    PubMed

    Boyle, Jon P; Radke, Jay R

    2009-07-01

    This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.

  9. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials.

    PubMed

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less

  11. Biophysical stimulation for in vitro engineering of functional cardiac tissues.

    PubMed

    Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica

    2017-07-01

    Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  12. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiberg, M.; Aloni, Y.; Levine, A.J.

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuatormore » RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.« less

  14. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo

    PubMed Central

    Röhme, Dan

    1981-01-01

    The replicative life spans of mammalian fibroblasts in vitro were studied in a number of cell cultures representing eight species. Emphasis was placed on determining the population doubling level at which phase III (a period of decrease in the rate of proliferation) and chromosomal alterations occur. All the cell cultures studied went through a growth crisis, a period of apparent growth cessation lasting for at least 2 weeks. In most cultures, the crisis represented the end of their replicative capacities, but in some cultures cell proliferation was resumed after the crisis. A predominantly diploid chromosome constitution (more than 75%) was demonstrated prior to the growth crisis. In cultures in which cell proliferation was resumed after the crisis, a nondiploid constitution prevailed in all cases except the rat (with 90% or more diploid cells all the time). The growth crisis occurred at population doubling levels that were characteristic for the species and was shown to be related to the species' maximal life span by a strict power law, being proportional to the square root of the maximal life span. Based on data in the literature, the same relationship was also valid for the lifespans of circulating mammalian erythrocytes in vivo. These results may indicate the prevalence of a common functional basis regulating the life span of fibroblasts and erythrocytes and thus operating in replicative as well as postmitotic cells in vitro and in vivo. PMID:6946449

  15. Adeno-associated virus rep protein synthesis during productive infection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redemann, B.E.; Mendelson, E.; Carter, B.J.

    1989-02-01

    Adeno-associated virus (AAV) Rep proteins mediate viral DNA replication and can regulate expression from AAV genes. The authors studied the kinetics of synthesis of the four Rep proteins, Rep78, Rep68, Rep52, and Rep40, during infection of human 293 or KB cells with AAV and helper adenovirus by in vivo labeling with (/sup 35/S)methionine, immunoprecipitation, and immunoblotting analyses. Rep78 and Rep52 were readily detected concomitantly with detection of viral monomer duplex DNA replicating about 10 to 12 h after infection, and Rep68 and Rep40 were detected 2 h later. Rep78 and Rep52 were more abundant than Rep68 and Rep40 owing tomore » a higher synthesis rate throughout the infectious cycle. In some experiments, very low levels of Rep78 could be detected as early as 4 h after infection. The synthesis rates of Rep proteins were maximal between 14 and 24 h and then decreased later after infection. Isotopic pulse-chase experiments showed that each of the Rep proteins was synthesized independently and was stable for at least 15 h. A slower-migrating, modified form of Rep78 was identified late after infection. AAV capsid protein synthesis was detected at 10 to 12 h after infection and also exhibited synthesis kinetics similar to those of the Rep proteins. AAV DNA replication showed at least two clearly defined stages. Bulk duplex replicating DNA accumulation began around 10 to 12 h and reached a maximum level at about 20 h when Rep and capsid protein synthesis was maximal. Progeny single-stranded DNA accumulation began about 12 to 13 h, but most of this DNA accumulated after 24 h when Rep and capsid protein synthesis had decreased.« less

  16. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine

    PubMed Central

    Ouzon-Shubeita, Hala; Lee, Seongmin

    2014-01-01

    N7-Methyl-2′-deoxyguanosine (m7dG) is the predominant lesion formed by methylating agents. A systematic investigation on the effect of m7dG on DNA replication has been difficult due to the chemical instability of m7dG. To gain insights into the m7dG effect, we employed a 2′-fluorine-mediated transition-state destabilzation strategy. Specifically, we determined kinetic parameters for dCTP insertion opposite a chemically stable m7dG analogue, 2′-fluoro-m7dG (Fm7dG), by human DNA polymerase β (polβ) and solved three X-ray structures of polβ in complex with the templating Fm7dG paired with incoming dCTP or dTTP analogues. The kinetic studies reveal that the templating Fm7dG slows polβ catalysis ∼300-fold, suggesting that m7dG in genomic DNA may impede replication by some DNA polymerases. The structural analysis reveals that Fm7dG forms a canonical Watson–Crick base pair with dCTP, but metal ion coordination is suboptimal for catalysis in the polβ-Fm7dG:dCTP complex, which partially explains the slow insertion of dCTP opposite Fm7dG by polβ. In addition, the polβ-Fm7dG:dTTP structure shows open protein conformations and staggered base pair conformations, indicating that N7-methylation of dG does not promote a promutagenic replication. Overall, the first systematic studies on the effect of m7dG on DNA replication reveal that polβ catalysis across m7dG is slow, yet highly accurate. PMID:24966350

  17. Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells

    PubMed Central

    Maddur, Mohan S.; O’Neal, Justin T.; Fedorova, Nadia B.; Puri, Vinita; Pulendran, Bali; Suthar, Mehul S.

    2017-01-01

    Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target. PMID:28152048

  18. Kinetic modeling of non-ideal explosives with CHEETAH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fried, L E; Howard, W M; Souers, P C

    1998-08-06

    We report an implementation of the Wood-Kirkwood kinetic detonation model based on multi-species equations of state and multiple reaction rate laws. Finite rate laws are used for the slowest chemical reactions. Other reactions are given infinite rates and are kept in constant thermodynamic equilibrium. We model a wide range of ideal and non-ideal composite energetic materials. We find that we can replicate experimental detonation velocities to within a few per cent, while obtaining good agreement with estimated reaction zone lengths. The detonation velocity as a function of charge radius is also correctly reproduced.

  19. 5',5'''-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication.

    PubMed

    Baril, E F; Coughlin, S A; Zamecnik, P C

    1985-01-01

    The proposal that Ap4A acts as an inducer of DNA replication is based primarily on two pieces of evidence (7). The intracellular levels of Ap4A increase ten- to 1000-fold as cells progress into S phase and the introduction of Ap4A into nonproliferating cells stimulated DNA synthesis. There is also some additional suggestive evidence such as the binding of Ap4A to a protein that is associated with multiprotein forms of the replicative DNA polymerase alpha and the ability of this enzyme to use Ap4A as a primer for DNA synthesis in vitro with single-stranded DNA templates. These observations have stimulated interest in the cellular metabolism of Ap4A. This is well since there is a great need for additional experimentation in order to clearly establish Ap4A as an inducer of DNA replication. Microinjection experiments of Ap4A into quiescent cells are needed in order to ascertain if Ap4A will stimulate DNA replication and possibly cell division in intact cells. Studies of the effects of nonhydrolyzable analogs of Ap4A on DNA replication in intact quiescent cells could also prove valuable. Although Ap4A can function as a primer for in vitro DNA synthesis by DNA polymerase alpha this may not be relevant in regard to its in vivo role in DNA replication. Ap4A in vivo could interact with key protein(s) in DNA replication and in this way act as an effector molecule in the initiation of DNA replication. In this regard the interaction of Ap4A with a protein associated with a multiprotein form of DNA polymerase alpha isolated from S-phase cells is of interest. More experiments are required to determine if there is a specific target protein(s) for Ap4A in vivo and what its role in DNA replication is. The cofractionation of tryptophanyl-tRNA synthetase with the replicative DNA polymerase alpha from animal and plant cells is of interest. The DNA polymerase alpha from synchronized animal cells also interacted with Ap4A. Although the plant cell alpha-like DNA polymerase did not interact with Ap4A this DNA polymerase was not a multiprotein form of polymerase alpha and the synchrony of the wheat germ embryos was not known. A possible tie between protein-synthesizing systems and the regulation of proteins involved in DNA replication may exist. The requirement of protein synthesis for the initiation of DNA replication has long been known. Also, it is well established that many temperature-sensitive mutants for tRNA synthetases are also DNA-synthesizing mutants. More investigation in this area may be warranted.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. IN-VITRO FORMATION OF PYROMORPHITE VIA REACTION OF PB SOURCES WITH SOFT-DRINK PHOSPHORIC ACID

    EPA Science Inventory

    Similar results were observed Pyromorphite (Pb5(PO4)3C1) is a Pb mineral whose rapid kinetic formation and thermodynamic stability (Nriagu, 1973, 1974) has gained much attention in recent years as a mechanism to diminish Pb toxicity. Our research examined the in-vitro formation o...

  1. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end products.

    PubMed

    Bosch, G; Wrigglesworth, D J; Cone, J W; Pellikaan, W F; Hendriks, W H

    2013-01-01

    This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end product profiles from carbohydrate-rich (in vitro run 1) and protein-rich (in vitro run 2) substrates. Feces were collected from 3 adult retriever-type dogs fed a canned diet for at least 2 wk. Each fecal sample was divided into 3 portions: 1 portion was used immediately as an inoculum (fresh) and the other 2 portions were used after either chilling to 5°C for 30 min and storage in crushed ice for 23.5 h (chilling) or freezing to -20°C for 30 min and storage in a prefrozen (-20°C) container for 23.5 h (freezing). The medium solution for run 1 contained N whereas that for run 2 was N free. Substrates included fructooligosaccharide (FOS), sugar beet pulp, and wheat middlings in run 1 and soybean meal, poultry meat meal, and feather meal in run 2. Gas production kinetics were calculated from cumulative gas production data measured for 72 h. After incubation, fermentation liquids were analyzed for short-chain fatty acids, NH3, and aromatic compounds. For both in vitro runs, chilling feces did not affect gas production kinetics and end product profiles of substrates compared with inocula from fresh feces. Freezing feces decreased the maximum rate of gas production in phase 2 for FOS (P<0.001) and across substrates increased gas produced (P≤0.005) and time of maximum gas production in phase 2 (P<0.001). Furthermore, compared with fresh fecal inocula, inocula from frozen feces resulted in increased overall indole concentrations in run 1 (P=0.006) and indole concentrations from soybean meal and poultry meat meal in run 2 (P<0.001). In run 2, phenol concentrations were greater (P=0.015) for frozen feces than for fresh feces (P=0.015). In conclusion, freezing canine feces for 24 h slightly altered fermentative characteristics of fecal inoculum whereas chilling feces in crushed ice for 24 h maintained fermentative characteristics. Chilling feces in crushed ice is a practical method to preserve feces during transport between laboratories within 24 h for in vitro fermentation studies evaluating dietary ingredients.

  2. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Daniel; Xu, Kai; Sharma, Monika

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation andmore » enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.« less

  3. Replication kinetics of neurovirulent versus non-neurovirulent equine herpesvirus type 1 strains in equine nasal mucosal explants.

    PubMed

    Vandekerckhove, Annelies P; Glorieux, S; Gryspeerdt, A C; Steukers, L; Duchateau, L; Osterrieder, N; Van de Walle, G R; Nauwynck, H J

    2010-08-01

    Equine herpesvirus type 1 (EHV-1) is the causative agent of equine herpes myeloencephalopathy, of which outbreaks are reported with increasing frequency throughout North America and Europe. This has resulted in its classification as a potentially emerging disease by the US Department of Agriculture. Recently, it was found that a single nucleotide polymorphism (SNP) in the viral DNA polymerase gene (ORF30) at aa 752 (N-->D) is associated with the neurovirulent potential of EHV-1. In the present study, equine respiratory mucosal explants were inoculated with several Belgian isolates typed in their ORF30 as D(752) or N(752), to evaluate a possible difference in replication in the upper respiratory tract. In addition, to evaluate whether any observed differences could be attributed to the SNP associated with neurovirulence, the experiments were repeated with parental Ab4 (reference neurovirulent strain), parental NY03 (reference non-neurovirulent strain) and their N/D revertant recombinant viruses. The salient findings were that EHV-1 spreads plaquewise in the epithelium, but plaques never cross the basement membrane (BM). However, single EHV-1-infected cells could be observed below the BM at 36 h post-inoculation (p.i.) for all N(752) isolates and at 24 h p.i. for all D(752) isolates, and were identified as monocytic cells and T lymphocytes. Interestingly, the number of infected cells was two to five times higher for D(752) isolates compared with N(752) isolates at every time point analysed. Finally, this study showed that equine respiratory explants are a valuable and reproducible model to study EHV-1 neurovirulence in vitro, thereby reducing the need for horses as experimental animals.

  4. Last 20 aa of the West Nile virus NS1' protein are responsible for its retention in cells and the formation of unique heat-stable dimers.

    PubMed

    Young, Lucy B; Melian, Ezequiel Balmori; Setoh, Yin Xiang; Young, Paul R; Khromykh, Alexander A

    2015-05-01

    West Nile virus (WNV), a mosquito-borne flavivirus, is the major cause of arboviral encephalitis in the USA. As with other members of the Japanese encephalitis virus serogroup, WNV produces an additional non-structural protein, NS1', a C-terminal extended product of NS1 generated as the result of a -1 programmed ribosomal frameshift (PRF). We have previously shown that mutations abolishing the PRF, and consequently NS1', resulted in reduced neuroinvasiveness. However, whether this was caused by the PRF event itself or by the lack of a PRF product, NS1', or a combination of both, remains undetermined. Here, we showed that WNV NS1' formed a unique subpopulation of heat- and low-pH-stable dimers. C-terminal truncations and mutational analysis employing an NS1'-expressing plasmid showed that stability of NS1' dimers was linked to the penultimate 10 aa. To examine the role of NS1' heat-stable dimers in virus replication and pathogenicity, a stop codon mutation was introduced into NS1' to create a WNV producing a truncated version of NS1' lacking the last 20 aa, but not affecting the PRF. NS1' protein produced by this mutant virus was secreted more efficiently than WT NS1', indicating that the sequence of the last 20 aa of NS1' was responsible for its cellular retention. Further analysis of this mutant showed growth kinetics in cells and virulence in weanling mice after peripheral infection similar to the WT WNVKUN, suggesting that full-length NS1' was not essential for virus replication in vitro and for virulence in mice. © 2015 The Authors.

  5. Establishment and characterization of a telomerase immortalized human gingival epithelial cell line.

    PubMed

    Moffatt-Jauregui, C E; Robinson, B; de Moya, A V; Brockman, R D; Roman, A V; Cash, M N; Culp, D J; Lamont, R J

    2013-12-01

    Gingival keratinocytes are used in model systems to investigate the interaction between periodontal bacteria and the epithelium in the initial stages of the periodontal disease process. Primary gingival epithelial cells (GECs) have a finite lifespan in culture before they enter senescence and cease to replicate, while epithelial cells immortalized with viral proteins can exhibit chromosomal rearrangements. The aim of this study was to generate a telomerase immortalized human gingival epithelial cell line and compare its in vitro behaviour to that of human GECs. Human primary GECs were immortalized with a bmi1/hTERT combination to prevent cell cycle triggers of senescence and telomere shortening. The resultant cell-line, telomerase immortalized gingival keratinocytes (TIGKs), were compared to GECs for cell morphology, karyotype, growth and cytokeratin expression, and further characterized for replicative lifespan, expression of toll-like receptors and invasion by P. gingivalis. TIGKs showed morphologies, karyotype, proliferation rates and expression of characteristic cytokeratin proteins comparable to GECs. TIGKs underwent 36 passages without signs of senescence and expressed transcripts for toll-like receptors 1-6, 8 and 9. A subpopulation of cells underwent stratification after extended time in culture. The cytokeratin profiles of TIGK monolayers were consistent with basal cells. When allowed to stratify, cytokeratin profiles of TIGKs were consistent with suprabasal cells of the junctional epithelium. Further, TIGKs were comparable to GECs in previously reported levels and kinetics of invasion by wild-type P. gingivalis and an invasion defective ΔserB mutant. Results confirm bmi1/hTERT immortalization of primary GECs generated a robust cell line with similar characteristics to the parental cell type. TIGKs represent a valuable model system for the study of oral bacteria interactions with host gingival cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  7. Replication and Immunogenicity of Swine, Equine, and Avian H3 Subtype Influenza Viruses in Mice and Ferrets

    PubMed Central

    Baz, Mariana; Paskel, Myeisha; Matsuoka, Yumiko; Zengel, James; Cheng, Xing; Jin, Hong

    2013-01-01

    Since it is difficult to predict which influenza virus subtype will cause an influenza pandemic, it is important to prepare influenza virus vaccines against different subtypes and evaluate the safety and immunogenicity of candidate vaccines in preclinical and clinical studies prior to a pandemic. In addition to infecting humans, H3 influenza viruses commonly infect pigs, horses, and avian species. We selected 11 swine, equine, and avian H3 influenza viruses and evaluated their kinetics of replication and ability to induce a broadly cross-reactive antibody response in mice and ferrets. The swine and equine viruses replicated well in the upper respiratory tract of mice. With the exception of one avian virus that replicated poorly in the lower respiratory tract, all of the viruses replicated in mouse lungs. In ferrets, all of the viruses replicated well in the upper respiratory tract, but the equine viruses replicated poorly in the lungs. Extrapulmonary spread was not observed in either mice or ferrets. No single virus elicited antibodies that cross-reacted with viruses from all three animal sources. Avian and equine H3 viruses elicited broadly cross-reactive antibodies against heterologous viruses isolated from the same or other species, but the swine viruses did not. We selected an equine and an avian H3 influenza virus for further development as vaccines. PMID:23576512

  8. Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation

    PubMed Central

    Yunus, Ali A.; Lima, Christopher D.

    2009-01-01

    SUMO conjugation to protein substrates requires the concerted action of a dedicated E2 ubiquitin conjugation enzyme (Ubc9) and associated E3 ligases. Although Ubc9 can directly recognize and modify substrate lysine residues that occur within a consensus site for SUMO modification, E3 ligases can redirect specificity and enhance conjugation rates during SUMO conjugation in vitro and in vivo. In this chapter, we will describe methods utilized to purify SUMO conjugating enzymes and model substrates which can be used for analysis of SUMO conjugation in vitro. We will also describe methods to extract kinetic parameters during E3-dependent or E3-independent substrate conjugation. PMID:19107417

  9. DNA fusion product of phage P2 with plasmid pBR322 - A new phasmid

    NASA Technical Reports Server (NTRS)

    Nicoletti, M.; Bertani, G.

    1983-01-01

    The chromosome of the temperate bacteriophage P2 and that of the plasmid pBR322 have been joined in vitro after treatment with restriction endonuclease EcoRI. The fusion product - a phasmid - can behave as a plasmid, as a phage and as a prophage. It can replicate its DNA under the control of either the specific replication mechanism of the parent phage in a polA mutant or that of the parent plasmid in a rep mutant. Several interesting interactions between the two replication modes are indicated. In particular, phage particles may be produced even when the phage mode of DNA replication is blocked, and this throws new light on the involvement of the early gene A in the regulation of late gene expression in phage P2.

  10. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts

    PubMed Central

    Komoda, Keisuke; Naito, Satoshi; Ishikawa, Masayuki

    2004-01-01

    The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses. PMID:14769932

  11. Alkylating agent (MNU)-induced mutation in space environment

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  12. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  13. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  14. Porcine Endogenous Retrovirus (PERV) – Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells

    PubMed Central

    Łopata, Krzysztof; Wojdas, Emilia; Nowak, Roman; Łopata, Paweł; Mazurek, Urszula

    2018-01-01

    The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk. PMID:29755422

  15. Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells

    PubMed Central

    Radtke, Andrea L.; Lay, Margarita K.; Hjelm, Brooke E.; Bolick, Alice N.; Sarker, Shameema S.; Atmar, Robert L.; Kingsley, David H.; Arntzen, Charles J.; Estes, Mary K.; Nickerson, Cheryl A.

    2013-01-01

    Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication. PMID:23622517

  16. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli

    PubMed Central

    Kato, Jun-ichi; Katayama, Tsutomu

    2001-01-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the β-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA+, as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA+ proteins that comprise the apparatus regulating the activity of the initiator of replication. PMID:11483528

  17. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli.

    PubMed

    Kato , J; Katayama, T

    2001-08-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.

  18. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres

    PubMed Central

    Kosiyatrakul, Settapong T.

    2015-01-01

    Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis. PMID:26195664

  19. One Minute Ultraviolet Exposure Inhibits Toxoplasma gondii Tachyzoite Replication and Cyst Conversion without Diminishing Host Humoral-Mediated Immune Response

    PubMed Central

    Kannan, Geetha; Prandovszky, Emese; Steinfeldt, Curtis B.; Gressitt, Kristin L.; Yang, ChunXia; Yolken, Robert H.; Severance, Emily G.; Jones-Brando, Lorraine; Pletnikov, Mikhail V.

    2015-01-01

    We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 minute of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection. PMID:25131777

  20. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    PubMed Central

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  1. Experimental transmission of equine hepacivirus in horses as a model for hepatitis C virus

    USDA-ARS?s Scientific Manuscript database

    Equine hepacivirus (EHCV; non-primate hepacivirus) is a hepatotropic member of the Flaviviridae family that infects horses. Although EHCV is the closest known relative to hepatitis C virus (HCV), its complete replication kinetics in vivo have not been described, and direct evidence that it causes he...

  2. Second-order advantage obtained from standard addition first-order instrumental data and multivariate curve resolution-alternating least squares. Calculation of the feasible bands of results.

    PubMed

    Mohseni, Naimeh; Bahram, Morteza; Olivieri, Alejandro C

    2014-03-25

    In order to achieve the second-order advantage, second-order data per sample is usually required, e.g., kinetic-spectrophotometric data. In this study, instead of monitoring the time evolution of spectra (and collecting the kinetic-spectrophotometric data) replicate spectra are used to build a virtual second order data. This data matrix (replicate mode×λ) is rank deficient. Augmentation of these data with standard addition data [or standard sample(s)] will break the rank deficiency, making the quantification of the analyte of interest possible. The MCR-ALS algorithm was applied for the resolution and quantitation of the analyte in both simulated and experimental data sets. In order to evaluate the rotational ambiguity in the retrieved solutions, the MCR-BANDS algorithm was employed. It has been shown that the reliability of the quantitative results significantly depends on the amount of spectral overlap in the spectral region of occurrence of the compound of interest and the remaining constituent(s). Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Suitability of [18F]altanserin and PET to determine 5-HT2A receptor availability in the rat brain: in vivo and in vitro validation of invasive and non-invasive kinetic models.

    PubMed

    Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas

    2013-08-01

    While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats. Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions. In vivo 5-HT2AR quantification with PET was validated by in vitro autoradiographic saturation experiments in the same animals. Overall brain uptake of [18F]altanserin was reliably quantified by invasive and non-invasive models with the cerebellum as reference region shown by linear correlation of outcome parameters. Unlike in humans, no lipophilic metabolites occurred so that brain activity derived solely from parent compound. PET data correlated very well with in vitro autoradiographic data of the same animals. [18F]Altanserin PET is a reliable tool for in vivo quantification of 5-HT2AR availability in albino rats. Models based on both blood input and reference tissue describe radiotracer kinetics adequately. Low cerebral tracer uptake might, however, cause restrictions in experimental usage.

  4. Raman-based noninvasive metabolic profile evaluation of in vitro bovine embryos

    NASA Astrophysics Data System (ADS)

    dos Santos, Érika Cristina; Martinho, Herculano; Annes, Kelly; da Silva, Thais; Soares, Carlos Alexandre; Leite, Roberta Ferreira; Milazzotto, Marcella Pecora

    2016-07-01

    The timing of the first embryonic cell divisions may predict the ability of an embryo to establish pregnancy. Similarly, metabolic profiles may be markers of embryonic viability. However, in bovine, data about the metabolomics profile of these embryos are still not available. In the present work, we describe Raman-based metabolomic profiles of culture media of bovine embryos with different developmental kinetics (fast x slow) throughout the in vitro culture. The principal component analysis enabled us to classify embryos with different developmental kinetics since they presented specific spectroscopic profiles for each evaluated time point. We noticed that bands at 1076 cm-1 (lipids), 1300 cm-1 (Amide III), and 2719 cm-1 (DNA nitrogen bases) gave the most relevant spectral features, enabling the separation between fast and slow groups. Bands at 1001 cm-1 (phenylalanine) and 2892 cm-1 (methylene group of the polymethylene chain) presented specific patterns related to embryonic stage and can be considered as biomarkers of embryonic development by Raman spectroscopy. The culture media analysis by Raman spectroscopy proved to be a simple and sensitive technique that can be applied with high efficiency to characterize the profiles of in vitro produced bovine embryos with different development kinetics and different stages of development.

  5. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  6. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli.

    PubMed

    Petit, M A; Bedale, W; Osipiuk, J; Lu, C; Rajagopalan, M; McInerney, P; Goodman, M F; Echols, H

    1994-09-23

    Replication-blocking lesions generate a signal in Escherichia coli that leads to the induction of the multigene SOS response. Among the SOS-induced genes are umuD and umuC, whose products are necessary for the increased mutation rate in induced bacteria. The mutations are likely to result from replication across the DNA lesion, and such a bypass event has been reconstituted in vitro (Rajagopalan, M., L, C., Woodgate, R., O'Donnel, M., Goodman, M. F., Echols, H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10777-10781). In this work, we show that the chaperone proteins promote the proper folding of UmuC protein in vitro. We treated purified and inactive UmuC with Hsp70 and Hsp60. After Hsp70 treatment, the DNA binding activity of UmuC was recovered, but the ability to promote replication across DNA lesions was not. However, lesion bypass activity was recovered upon further treatment with Hsp60. The biological significance of such a folding pathway for UmuC protein is strengthened by in vivo evidence for a role of DnaK in UV-induced mutagenesis.

  7. Tumor-specific cytolysis caused by an E1B55K-attenuated adenovirus in nasopharyngeal carcinoma is augmented by cisplatin.

    PubMed

    Liu, Ran-Yi; Peng, Ji-Lin; Li, Yong-Qiang; Huang, Bi-Jun; Lin, Huan-Xin; Zhou, Ling; Luo, Hui-Ling; Huang, Wenlin

    2013-12-01

    An E1B55K-attenuated adenovirus, dl1520, has been shown to replicate selectively in and lyse tumor cells. In this study, the antitumor activities of dl1520, alone or in combination with the chemotherapeutic agent cisplatin, were investigated in nasopharyngeal carcinoma (NPC) cells. The results demonstrated that dl1520 replicated in and destroyed NPC cells, and induced apoptosis in vitro. In a nude mouse xenograft model, dl1520 significantly inhibited the growth of NPC cell xenografts, and the viral replication was associated with tumor regression. Importantly, the antitumor activity of dl1520 was augmented by the addition of cisplatin both in vitro and in vivo, showing that dl1520 and cisplatin have a synergistic anti-NPC effect. These data suggest that dl1520 exerts an efficient anti-NPC activity through oncolysis and the induction of apoptosis, which is enhanced synergistically by cisplatin. These findings indicate that oncolytic viral therapeutics using the E1B55K-attenuated adenovirus dl1520 could be promising in the comprehensive treatment of NPC, especially in combination with platinum-based chemotherapy. Copyright © 2013 Wiley Periodicals, Inc.

  8. Comparison of biological and genomic characteristics between a newly isolated mink enteritis parvovirus MEV-LHV and an attenuated strain MEV-L.

    PubMed

    Mao, Yaping; Wang, Jigui; Hou, Qiang; Xi, Ji; Zhang, Xiaomei; Bian, Dawei; Yu, Yongle; Wang, Xi; Liu, Weiquan

    2016-06-01

    A virus isolated from mink showing clinical signs of enteritis was identified as a high virulent mink enteritis parvovirus (MEV) based on its biological characteristics in vivo and in vitro. Mink, challenged with this strain named MEV-LHV, exhibited severe pathological lesions as compared to those challenged with attenuated strain MEV-L. MEV-LHV also showed higher infection and replication efficiencies in vitro than MEV-L. Sequence of the complete genome of MEV-LHV was determined and analyzed in comparison with those in GenBank, which revealed that MEV-LHV shared high homology with virulent strain MEV SD12/01, whereas MEV-L was closely related to Abashiri and vaccine strain MEVB, and belonged to a different branch of the phylogenetic tree. The genomes of the two strains differed by insertions and deletions in their palindromic termini and specific unique mutations (especially VP2 300) in coding sequences which may be involved in viral replication and pathogenicity. The results of this study provide a better understanding of the biological and genomic characteristics of MEV and identify certain regions and sites that may be involved in viral replication and pathogenicity.

  9. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.

    PubMed

    Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo

    2014-10-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.

  10. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus

    PubMed Central

    Carvalho, Otávio V.; Saraiva, Giuliana L.; Ferreira, Caroline G.T.; Felix, Daniele M.; Fietto, Juliana L.R.; Bressan, Gustavo C.; Almeida, Márcia R.; Silva Júnior, Abelardo

    2014-01-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection. PMID:25355997

  11. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  12. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    PubMed

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  13. Structural basis for DNA binding by replication initiator Mcm10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less

  14. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture.

    PubMed

    Lin, Ying-Ju; Chen, Chia-Yen; Jeang, Kuan-Teh; Liu, Xiang; Wang, Jen-Hsien; Hung, Chien-Hui; Tsang, Hsinyi; Lin, Ting-Hsu; Liao, Chiu-Chu; Huang, Shao-Mei; Lin, Cheng-Wen; Ho, Mao-Wang; Chien, Wen-Kuei; Chen, Jin-Hua; Ho, Tsung-Jung; Tsai, Fuu-Jen

    2014-01-01

    The human immunodeficiency virus (HIV-1) exploits host proteins to complete its life cycle. Genome-wide siRNA approaches suggested that host proteins affect HIV-1 replication. However, the results barely overlapped. RING finger protein 39 (RNF39) has been identified from genome-wide association studies. However, its function during HIV-1 replication remains unclear. We investigated the relationship between common RNF39 genetic variants and HIV-1 viral loads. The effect of RNF39 protein knockdown or overexpression on HIV-1 replication was then investigated in different cell lines. Two genetic variants were associated with HIV-1 viral loads. Patients with the ht1-GG/GG haplotype presented lower RNF39 expression levels and lower HIV-1 viral load. RNF39 knockdown inhibited HIV-1 expression. RNF39 protein may be involved in HIV-1 replication as observed in genetic studies on patients with HIV-1 and in in vitro cell cultures.

  15. Plasmid P1 replication: negative control by repeated DNA sequences.

    PubMed Central

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro. Images PMID:6387706

  16. Potent activity of the HIV-1 maturation inhibitor bevirimat in SCID-hu Thy/Liv mice.

    PubMed

    Stoddart, Cheryl A; Joshi, Pheroze; Sloan, Barbara; Bare, Jennifer C; Smith, Philip C; Allaway, Graham P; Wild, Carl T; Martin, David E

    2007-11-28

    The HIV-1 maturation inhibitor, 3-O-(3',3'-dimethylsuccinyl) betulinic acid (bevirimat, PA-457) is a promising drug candidate with 10 nM in vitro antiviral activity against multiple wild-type (WT) and drug-resistant HIV-1 isolates. Bevirimat has a novel mechanism of action, specifically inhibiting cleavage of spacer peptide 1 (SP1) from the C-terminus of capsid which results in defective core condensation. Oral administration of bevirimat to HIV-1-infected SCID-hu Thy/Liv mice reduced viral RNA by >2 log(10) and protected immature and mature T cells from virus-mediated depletion. This activity was observed at plasma concentrations that are achievable in humans after oral dosing, and bevirimat was active up to 3 days after inoculation with both WT HIV-1 and an AZT-resistant HIV-1 clinical isolate. Consistent with its mechanism of action, bevirimat caused a dose-dependent inhibition of capsid-SP1 cleavage in HIV-1-infected human thymocytes obtained from these mice. HIV-1 NL4-3 with an alanine-to-valine substitution at the N-terminus of SP1 (SP1/A1V), which is resistant to bevirimat in vitro, was also resistant to bevirimat treatment in the mice, and SP1/AIV had replication and thymocyte kinetics similar to that of WT NL4-3 with no evidence of fitness impairment in in vivo competition assays. Interestingly, protease inhibitor-resistant HIV-1 with impaired capsid-SP1 cleavage was hypersensitive to bevirimat in vitro with a 50% inhibitory concentration 140 times lower than for WT HIV-1. These results support further clinical development of this first-in-class maturation inhibitor and confirm the usefulness of the SCID-hu Thy/Liv model for evaluation of in vivo antiretroviral efficacy, drug resistance, and viral fitness.

  17. Efficient Parvovirus Replication Requires CRL4Cdt2-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA

    PubMed Central

    Pintel, David J.

    2014-01-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA. PMID:24699724

  18. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA.

    PubMed

    Adeyemi, Richard O; Fuller, Matthew S; Pintel, David J

    2014-04-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA.

  19. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2)more » replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.« less

  20. The role of template superhelicity in the initiation of bacteriophage lambda DNA replication.

    PubMed Central

    Alfano, C; McMacken, R

    1988-01-01

    The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands. Images PMID:2847118

  1. In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display

    PubMed Central

    Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain

    2014-01-01

    The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763

  2. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas)

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.

    2009-01-01

    Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.

  3. In vitro gas production of foliage from three browse tree species treated with different dose levels of exogenous fibrolytic enzymes.

    PubMed

    López, D; Vázquez-Armijo, J F; López-Villalobos, N; Lee-Rangel, H A; Salem, A Z M; Borquez-Gastelum, J L; Domínguez-Vara, I A; Rojo-Rubio, R

    2016-10-01

    The aim of this study was to evaluate the effect of different dose levels of exogenous fibrolytic enzymes (EFE) on in vitro ruminal fermentation kinetics and energy utilization of foliages from three browse trees (Pithecellobium dulce, Heliocarpus velutinus and Guazuma ulmifolia). Mixture of EFE product was added to the leaves of the three browse tree species at three dose levels: 0 (control), 3.5 and 7.0 mg/g of DM. Chemical composition of the foliages, including plant secondary metabolites such as total phenolics (TP), saponins (SAP) and aqueous fraction (AF), was determined. In addition, in vitro assaying of ruminal gas production kinetics was determined for the three browse three foliages treated with EFE. P. dulce had the highest crude protein content (p < 0.05), whereas G. ulmifolia had the highest content of neutral detergent fibre and SAP (p < 0.05) and H. velutinus had the lowest content of TP (p < 0.05). The interaction between tree species and dose level of EFE was significant (p < 0.05) for gas production (GP) at 24 h of incubation, parameters b and c of the accumulated GP curve, short-chain fatty acids (SCFA) and metabolizable energy (ME). The lowest (p < 0.01) extent of accumulated GP as well as the b and c values occurred in G. ulmifolia at 0 mg EFE/g DM. P. dulce had the highest (p < 0.05) values for ME and SCFA at the highest dose of EFE. Tree species and dose level had significant (p < 0.05) effects on all parameters describing in vitro ruminal fermentation kinetics and energy utilization. Addition of EFE improved the fermentation kinetics of the browse species considered in this study. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  4. In vivo and in vitro kinetics of ethylene oxide metabolism in rats and mice.

    PubMed

    Brown, C D; Wong, B A; Fennell, T R

    1996-01-01

    Ethylene oxide (EO) is a direct-acting mutagen and animal carcinogen used as an industrial intermediate and sterilant with a high potential for human exposure. Kinetics of EO metabolism in rodents can be used to develop human EO dosimetry models. This study examined the kinetics of EO metabolism in vivo and in vitro in male and female F-344 rats and B6C3F1 mice. In vivo studies measured blood and tissue EO levels during and 2-20 min following whole-body inhalation exposure (4 hr, 100 or 330 ppm EO). At 100 ppm EO, the half-life of elimination (t1/2) in rats was 13.8 +/- 0.3 (mean +/- SD) and 10.8 +/- 2.4 min for males and females, respectively, compared to a t1/2 in mice of 3.12 +/- 0.2 and 2.4 +/- 0.2 min in males and females, respectively. On exposure to 330 ppm EO, the t1/2 in mice increased approx twofold, while no change in t1/2 was observed in rats. In vitro kinetic parameters (Vmax and KM) of EO metabolism were determined using tissue cytosol and microsomes. EO metabolism in vitro occurred primarily via cytosolic glutathione S-transferase-mediated EO-GSH conjugation (cGST-EO), with highest activity in the liver. Liver cGST-EO activity (Vmax) was 258 +/- 86.9 and 287 +/- 49.0 nmol/mg protein/min (mean +/- SD) in male and female mice, respectively, compared to 52.7 +/- 10.8 and 29.3 +/- 4.9 in male and female rats, respectively. In rats, but not mice, there was a statistically significant (p < 0.05) gender difference in the Vmax for liver cGST. The KM for liver cGST-EO was approximately 10 mM in both species. The higher Vmax values observed in mice are consistent with the more rapid elimination of EO observed for this species in vivo compared to rats.

  5. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  6. Single-Molecule Imaging of an in Vitro-Evolved RNA Aptamer Reveals Homogeneous Ligand Binding Kinetics

    PubMed Central

    2009-01-01

    Many studies of RNA folding and catalysis have revealed conformational heterogeneity, metastable folding intermediates, and long-lived states with distinct catalytic activities. We have developed a single-molecule imaging approach for investigating the functional heterogeneity of in vitro-evolved RNA aptamers. Monitoring the association of fluorescently labeled ligands with individual RNA aptamer molecules has allowed us to record binding events over the course of multiple days, thus providing sufficient statistics to quantitatively define the kinetic properties at the single-molecule level. The ligand binding kinetics of the highly optimized RNA aptamer studied here displays a remarkable degree of uniformity and lack of memory. Such homogeneous behavior is quite different from the heterogeneity seen in previous single-molecule studies of naturally derived RNA and protein enzymes. The single-molecule methods we describe may be of use in analyzing the distribution of functional molecules in heterogeneous evolving populations or even in unselected samples of random sequences. PMID:19572753

  7. Formulation, in vitro evaluation and kinetic analysis of chitosan-gelatin bilayer muco-adhesive buccal patches of insulin nanoparticles.

    PubMed

    Mahdizadeh Barzoki, Zahra; Emam-Djomeh, Zahra; Mortazavian, Elaheh; Akbar Moosavi-Movahedi, Ali; Rafiee Tehrani, M

    2016-11-01

    The present study was performed to optimise the formulation of a muco-adhesive buccal patch for insulin nanoparticles (NPs) delivery. Insulin NPs were synthesised by an ionic gelation technique using N-di methyl ethyl chitosan cysteine (DMEC-Cys) as permeation enhancer biopolymer, tripolyphosphate (TPP) and insulin. Buccal patches were developed by solvent-casting technique using chitosan and gelatine as muco-adhesive polymers. Optimised patches were embedded with 3 mg of insulin-loaded NPs with a homogeneous distribution of NPs in the muco-adhesive matrix, which displayed adequate physico-mechanical properties. The drug release characteristics, release mechanism and kinetics were investigated. Data fitting to Peppas equation with a correlation coefficient indicated that the mechanism of drug release followed an anomalous transport that means drug release was afforded through drug diffusion along with polymer erosion. In vitro drug release, release kinetics, physical and mechanical studies for all patch formulations reflected the ideal characteristics of this buccal patch for the delivery of insulin NPs.

  8. Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro.

    PubMed

    Zhang, Shijian; Wang, Jinlan; Wang, Qiang; Toyoda, Tetsuya

    2010-12-24

    Influenza virus transcription is a prototype of primer-dependent initiation. Its replication mechanism is thought to be primer-independent. The internal initiation and realignment model for influenza virus genome replication has been recently proposed (Deng, T., Vreede, F. T., and Brownlee, G. G. (2006) J. Virol. 80, 2337-2348). We obtained new results, which led us to propose a novel model for the initiation of viral RNA (vRNA) replication. In our study, we analyzed the initiation mechanisms of influenza virus vRNA and complementary RNA (cRNA) synthesis in vitro, using purified RNA polymerase (RdRp) and 84-nt model RNA templates. We found that, for vRNA → cRNA →, RdRp initiated replication from the second nucleotide of the 3'-end. Therefore, host RNA-specific ribonucleotidyltransferases are required to add one nucleotide (purine residues are preferred) to the 3'-end of vRNA to make the complete copy of vRNA. This hypothesis was experimentally proven using poly(A) polymerase. For cRNA → vRNA, the dinucleotide primer AG was synthesized from UC (fourth and fifth from the 3'-end) by RdRp pausing at the sixth U of UUU and realigning at the 3'-end of cRNA template; then RdRp was able to read through the entire template RNA. The RdRp initiation complex was not stable until it had read through the UUU of cRNA and the UUUU of vRNA at their respective 3'-ends. This was because primers overlapping with the first U of the clusters did not initiate transcription efficiently, and the initiation product of v84+G (the v84 template with an extra G at its 3'-end), AGC, realigned to the 3'-end.

  9. Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus

    PubMed Central

    Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro

    2015-01-01

    Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241

  10. Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast.

    PubMed

    Lin, Jing-Yi; Nagy, Peter D

    2013-12-01

    A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.

  11. Gepotidacin (GSK2140944) In Vitro Activity against Gram-Positive and Gram-Negative Bacteria

    PubMed Central

    Farrell, D. J.; Rhomberg, P. R.; Scangarella-Oman, N. E.; Sader, H. S.

    2017-01-01

    ABSTRACT Gepotidacin is a first-in-class, novel triazaacenaphthylene antibiotic that inhibits bacterial DNA replication and has in vitro activity against susceptible and drug-resistant pathogens. Reference in vitro methods were used to investigate the MICs and minimum bactericidal concentrations (MBCs) of gepotidacin and comparator agents for Staphylococcus aureus, Streptococcus pneumoniae, and Escherichia coli. Gepotidacin in vitro activity was also evaluated by using time-kill kinetics and broth microdilution checkerboard methods for synergy testing and for postantibiotic and subinhibitory effects. The MIC90 of gepotidacin for 50 S. aureus (including methicillin-resistant S. aureus [MRSA]) and 50 S. pneumoniae (including penicillin-nonsusceptible) isolates was 0.5 μg/ml, and for E. coli (n = 25 isolates), it was 4 μg/ml. Gepotidacin was bactericidal against S. aureus, S. pneumoniae, and E. coli, with MBC/MIC ratios of ≤4 against 98, 98, and 88% of the isolates tested, respectively. Time-kill curves indicated that the bactericidal activity of gepotidacin was observed at 4× or 10× MIC at 24 h for all of the isolates. S. aureus regrowth was observed in the presence of gepotidacin, and the resulting gepotidacin MICs were 2- to 128-fold higher than the baseline gepotidacin MICs. Checkerboard analysis of gepotidacin combined with other antimicrobials demonstrated no occurrences of antagonism with agents from multiple antimicrobial classes. The most common interaction when testing gepotidacin was indifference (fractional inhibitory concentration index of >0.5 to ≤4; 82.7% for Gram-positive isolates and 82.6% for Gram-negative isolates). The postantibiotic effect (PAE) of gepotidacin was short when it was tested against S. aureus (≤0.6 h against MRSA and MSSA), and the PAE–sub-MIC effect (SME) was extended (>8 h; three isolates at 0.5× MIC). The PAE of levofloxacin was modest (0.0 to 2.4 h), and the PAE-SME observed varied from 1.2 to >9 h at 0.5× MIC. These in vitro data indicate that gepotidacin is a bactericidal agent that exhibits a modest PAE and an extended PAE-SME against Gram-positive and -negative bacteria and merits further study for potential use in treating infections caused by these pathogens. PMID:28483959

  12. Encapsulation of Naproxen in Lipid-Based Matrix Microspheres: Characterization and Release Kinetics

    PubMed Central

    Bhoyar, PK; Morani, DO; Biyani, DM; Umekar, MJ; Mahure, JG; Amgaonkar, YM

    2011-01-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix. PMID:21731354

  13. Encapsulation of naproxen in lipid-based matrix microspheres: characterization and release kinetics.

    PubMed

    Bhoyar, P K; Morani, D O; Biyani, D M; Umekar, M J; Mahure, J G; Amgaonkar, Y M

    2011-04-01

    The objective of this study was to microencapsulate the anti-inflammatory drug (naproxen) to provide controlled release and minimizing or eliminating local side effect by avoiding the drug release in the upper gastrointestinal track. Naproxen was microencapsulated with lipid-like carnauba wax, hydrogenated castor oil using modified melt dispersion (modified congealable disperse phase encapsulation) technique. Effect of various formulation and process variables such as drug-lipid ratio, concentration of modifier, concentration of dispersant, stirring speed, stirring time, temperature of external phase, on evaluatory parameters such as size, entrapment efficiency, and in vitro release of naproxen were studied. The microspheres were characterized for particle size, scanning electron microscopy (SEM), FT-IR spectroscopy, drug entrapment efficiency, in vitro release studies, for in vitro release kinetics. The shape of microspheres was found to be spherical by SEM. The drug entrapment efficiency of various batches of microspheres was found to be ranging from 60 to 90 %w/w. In vitro drug release studies were carried out up to 24 h in pH 7.4 phosphate buffer showing 50-65% drug release. In vitro drug release from all the batches showed better fitting with the Korsmeyer-Peppas model, indicating the possible mechanism of drug release to be by diffusion and erosion of the lipid matrix.

  14. Mechanism-based inactivation of human cytochrome P450 enzymes: strategies for diagnosis and drug-drug interaction risk assessment.

    PubMed

    Venkatakrishnan, K; Obach, R S; Rostami-Hodjegan, A

    2007-01-01

    Among drugs that cause pharmacokinetic drug-drug interactions, mechanism-based inactivators of cytochrome P450 represent several of those agents that cause interactions of the greatest magnitude. In vitro inactivation kinetic data can be used to predict the potential for new drugs to cause drug interactions in the clinic. However, several factors exist, each with its own uncertainty, that must be taken into account in order to predict the magnitude of interactions reliably. These include aspects of in vitro experimental design, an understanding of relevant in vivo concentrations of the inactivator, and the extent to which the inactivated enzyme is involved in the clearance of the affected drug. Additionally, the rate of enzyme degradation in vivo is also an important factor that needs to be considered in the prediction of the drug interaction magnitudes. To address mechanism-based inactivation for new drugs, various in vitro experimental approaches have been employed. The selection of approaches for in vitro kinetic characterization of inactivation as well as in vitro-in vivo extrapolation should be guided by the purpose of the exercise and the stage of drug discovery and development, with an increase in the level of sophistication throughout the research and development process.

  15. S-phase arrest after vincristine treatment may promote hepatitis B virus replication

    PubMed Central

    Xu, Lei; Tu, Zeng; Xu, Ge; Hu, Jie-Li; Cai, Xue-Fei; Zhan, Xing-Xing; Wang, Yu-Wei; Huang, Yuan; Chen, Juan; Huang, Ai-Long

    2015-01-01

    AIM: To observe the effect of vincristine on hepatitis B virus (HBV) replication in vitro and to study its possible mechanisms. METHODS: Vincristine was added to the cultures of two cell lines stably expressing HBV. Then, the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core antigen (HBcAg) in the supernatants or cytoplasm were examined using by enzyme-linked immunosorbent assay and Western blot. The HBV pregenome RNA (pgRNA) was detected using reverse transcription-PCR and real-time fluorescent quantitative PCR (RT-qPCR), and viral DNA was detected using Southern blot and RT-qPCR. Cell proliferation after drug treatment was detected using the BrdU incorporation test and the trypan blue exclusion assay. Cell cycle and cell apoptosis were examined using flow cytometry and Western blot. RESULTS: Vincristine up-regulated HBV replication directly in vitro in a dose-dependent manner, and 24-h exposure to 0.1 μmol/L vincristine induced more than 4-fold and 3-fold increases in intracellular HBV DNA and the secretion of viral DNA, respectively. The expression of HBV pgRNA, intracellular HBsAg and HBcAg, and the secretion of HBeAg were also increased significantly after drug treatment. Most importantly, vincristine promoted the cell excretion of HBV nucleocapsids instead of HBV Dane particles, and the nucleocapsids are closely related to the HBV pathogenesis. Furthermore, vincristine inhibited the proliferation of cells stably expressing HBV. The higher the concentration of the drug, the more significant the inhibition of the cell proliferation and the stronger the HBV replication ability in cells. Flow cytometry indicated that cell cycle arrest at S-phase was responsible for the cell proliferation inhibition. CONCLUSION: Vincristine has a strong stimulatory effect on HBV replication and induces cell cycle arrest, and cell proliferation inhibition may be conducive to viral replication. PMID:25663769

  16. Transduction of hematopoietic stem cells to stimulate RNA interference against feline infectious peritonitis.

    PubMed

    Anis, Eman A; Dhar, Madhu; Legendre, Alfred M; Wilkes, Rebecca P

    2017-06-01

    Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID 50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.

  17. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    PubMed

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  18. RNA Synthesis by in Vitro Selected Ribozymes for Recreating an RNA World

    PubMed Central

    Martin, Lyssa L.; Unrau, Peter J.; Müller, Ulrich F.

    2015-01-01

    The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory. PMID:25610978

  19. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo

    PubMed Central

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-01-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137

  20. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model.

    PubMed

    Dowall, Stuart D; Bosworth, Andrew; Watson, Robert; Bewley, Kevin; Taylor, Irene; Rayner, Emma; Hunter, Laura; Pearson, Geoff; Easterbrook, Linda; Pitman, James; Hewson, Roger; Carroll, Miles W

    2015-12-01

    Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. Owing to the lack of approved therapies, screening programmes of potentially efficacious drugs have been undertaken. One of these studies has demonstrated the possible utility of chloroquine against EBOV using pseudotyped assays. In mouse models of EBOV disease there are conflicting reports of the therapeutic effects of chloroquine. There are currently no reports of its efficacy using the larger and more stringent guinea pig model of infection. In this study we have shown that replication of live EBOV is impaired by chloroquine in vitro. However, no protective effects were observed in vivo when EBOV-infected guinea pigs were treated with chloroquine. These results advocate that chloroquine should not be considered as a treatment strategy for EBOV.

  1. Kinetics, Structure, and Mechanism of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Human DNA Polymerase η*♦

    PubMed Central

    Patra, Amritraj; Nagy, Leslie D.; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F. Peter; Egli, Martin

    2014-01-01

    DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2′-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. PMID:24759104

  2. Kinetics, structure, and mechanism of 8-Oxo-7,8-dihydro-2'-deoxyguanosine bypass by human DNA polymerase η.

    PubMed

    Patra, Amritraj; Nagy, Leslie D; Zhang, Qianqian; Su, Yan; Müller, Livia; Guengerich, F Peter; Egli, Martin

    2014-06-13

    DNA damage incurred by a multitude of endogenous and exogenous factors constitutes an inevitable challenge for the replication machinery. Cells rely on various mechanisms to either remove lesions or bypass them in a more or less error-prone fashion. The latter pathway involves the Y-family polymerases that catalyze trans-lesion synthesis across sites of damaged DNA. 7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxoG) is a major lesion that is a consequence of oxidative stress and is associated with cancer, aging, hepatitis, and infertility. We have used steady-state and transient-state kinetics in conjunction with mass spectrometry to analyze in vitro bypass of 8-oxoG by human DNA polymerase η (hpol η). Unlike the high fidelity polymerases that show preferential insertion of A opposite 8-oxoG, hpol η is capable of bypassing 8-oxoG in a mostly error-free fashion, thus preventing GC→AT transversion mutations. Crystal structures of ternary hpol η-DNA complexes and incoming dCTP, dATP, or dGTP opposite 8-oxoG reveal that an arginine from the finger domain assumes a key role in avoiding formation of the nascent 8-oxoG:A pair. That hpol η discriminates against dATP exclusively at the insertion stage is confirmed by structures of ternary complexes that allow visualization of the extension step. These structures with G:dCTP following either 8-oxoG:C or 8-oxoG:A pairs exhibit virtually identical active site conformations. Our combined data provide a detailed understanding of hpol η bypass of the most common oxidative DNA lesion. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. New approaches for the reliable in vitro assessment of binding affinity based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics.

    PubMed

    Zeilinger, Markus; Pichler, Florian; Nics, Lukas; Wadsak, Wolfgang; Spreitzer, Helmut; Hacker, Marcus; Mitterhauser, Markus

    2017-12-01

    Resolving the kinetic mechanisms of biomolecular interactions have become increasingly important in early-phase drug development. Since traditional in vitro methods belong to dose-dependent assessments, binding kinetics is usually overlooked. The present study aimed at the establishment of two novel experimental approaches for the assessment of binding affinity of both, radiolabelled and non-labelled compounds targeting the A 3 R, based on high-resolution real-time data acquisition of radioligand-receptor binding kinetics. A novel time-resolved competition assay was developed and applied to determine the K i of eight different A 3 R antagonists, using CHO-K1 cells stably expressing the hA 3 R. In addition, a new kinetic real-time cell-binding approach was established to quantify the rate constants k on and k off , as well as the dedicated K d of the A 3 R agonist [ 125 I]-AB-MECA. Furthermore, lipophilicity measurements were conducted to control influences due to physicochemical properties of the used compounds. Two novel real-time cell-binding approaches were successfully developed and established. Both experimental procedures were found to visualize the kinetic binding characteristics with high spatial and temporal resolution, resulting in reliable affinity values, which are in good agreement with values previously reported with traditional methods. Taking into account the lipophilicity of the A 3 R antagonists, no influences on the experimental performance and the resulting affinity were investigated. Both kinetic binding approaches comprise tracer administration and subsequent binding to living cells, expressing the dedicated target protein. Therefore, the experiments resemble better the true in vivo physiological conditions and provide important markers of cellular feedback and biological response.

  4. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells.

    PubMed

    Greaves, Erin A; Copeland, Nikki A; Coverley, Dawn; Ainscough, Justin F X

    2012-05-15

    CIZ1 is a nuclear-matrix-associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro, the CIZ1 N-terminus interacts with cyclin E and cyclin A at distinct sites, enabling functional cooperation with cyclin-A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix, imposing spatial constraint on cyclin-dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as a predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably downregulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes before meiotic division. Sequence analysis identifies at least seven alternatively spliced variants, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells, CIZ1 interacts with germ-cell-specific cyclin A1, which has been implicated in the repair of DNA double-strand breaks. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply post-replicative roles for CIZ1 in germ cell differentiation that might include meiotic recombination - a process intrinsic to genome stability and diversification.

  5. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways

    PubMed Central

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways. PMID:29385192

  6. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    PubMed

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng; Dai, Jian-Ping

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  7. Construction and characterization of poliovirus subgenomic replicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, G.; Racaniello, V.R.

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3,064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blotmore » (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of ({sup 35}S-labeled) viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2A{sup pro}, 2C, and 3D{sup pol} and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs.« less

  8. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers.

    PubMed

    Lauridsen, Holly M; Gonzalez, Anjelica L

    2017-01-01

    The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.

  9. Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene: In Vivo and In Vitro Evidences of a Cell Replication Process.

    PubMed

    Bacalini, Maria Giulia; Deelen, Joris; Pirazzini, Chiara; De Cecco, Marco; Giuliani, Cristina; Lanzarini, Catia; Ravaioli, Francesco; Marasco, Elena; van Heemst, Diana; Suchiman, H Eka D; Slieker, Roderick; Giampieri, Enrico; Recchioni, Rina; Mercheselli, Fiorella; Salvioli, Stefano; Vitale, Giovanni; Olivieri, Fabiola; Spijkerman, Annemieke M W; Dollé, Martijn E T; Sedivy, John M; Castellani, Gastone; Franceschi, Claudio; Slagboom, Pieternella E; Garagnani, Paolo

    2017-08-01

    Epigenetic remodeling is one of the major features of the aging process. We recently demonstrated that DNA methylation of ELOVL2 and FHL2 CpG islands is highly correlated with age in whole blood. Here we investigated several aspects of age-associated hypermethylation of ELOVL2 and FHL2. We showed that ELOVL2 methylation is significantly different in primary dermal fibroblast cultures from donors of different ages. Using epigenomic data from public resources, we demonstrated that most of the tissues show ELOVL2 and FHL2 hypermethylation with age. Interestingly, ELOVL2 hypermethylation was not found in tissues with very low replication rate. We demonstrated that ELOVL2 hypermethylation is associated with in vitro cell replication rather than with senescence. We confirmed intra-individual hypermethylation of ELOVL2 and FHL2 in longitudinally assessed participants from the Doetinchem Cohort Study. Finally we showed that, although the methylation of the two loci is not associated with longevity/mortality in the Leiden Longevity Study, ELOVL2 methylation is associated with cytomegalovirus status in nonagenarians, which could be informative of a higher number of replication events in a fraction of whole-blood cells. Collectively, these results indicate that ELOVL2 methylation is a marker of cell divisions occurring during human aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  10. Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows

    PubMed Central

    Aljofan, Mohamad; Lo, Michael K.; Rota, Paul A.; Michalski, Wojtek P.; Mungall, Bruce A.

    2010-01-01

    Hendra and Nipah viruses are recently emerged zoonotic paramyxoviruses for which there is no vaccine or protective therapy available. While a number of experimental therapeutics and vaccines have recently been reported, all of these will require lengthy approval processes, limiting their usefulness in the short term. To address the urgent need for henipavirus therapeutics, a number of currently licensed pharmaceuticals have been evaluated for off label efficacy against henipavirus replication in vitro. Initially it was observed that compounds which released intracellular calcium stores induced a potent inhibition of henipaviruses replication, prompting the evaluation of known drugs with a similar effect on calcium mobilisation. Of the eight compounds randomly selected based on existing literature, seven inhibited virus replication in the micromolar range while the remaining compound also inhibited virus replication but only at millimolar concentrations. Pretreatment experiments with various calcium chelators, channel antagonists or endoplasmic reticulum release inhibitors supported a calcium mediated mechanism of action for five of these compounds. The mechanism of antiviral action for the remaining three compounds is currently unknown. Additionally, a number of other modulators of calcium flux, including calcium channel and calmodulin antagonists also exhibited potent antiviral activity in vitro providing a broad range of potential therapeutic options for the treatment of henipavirus infections. Importantly, as many of these compounds are currently licensed drugs, regulatory approval should be a much more streamlined process, with the caveat that appropriate in vivo efficacy can be demonstrated in animal models. PMID:20668647

  11. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  12. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis

    PubMed Central

    Nagata, Mariko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki

    2017-01-01

    Abstract The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. PMID:28977567

  13. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  14. VZV Replication Assays

    PubMed Central

    Griffiths, Samantha J.; Haas, Jürgen

    2017-01-01

    Varicella zoster virus (VZV) is a human herpesvirus which causes Varicella (chickenpox) upon primary infection and Zoster (shingles) following reactivation from latency (von Bokay, 1909). Whilst VZV is extensively studied, inherent features of VZV replication, such as cell-association of virus particles during in vitro culture and a restricted host range (limited to humans and some other primates) mean the cellular and viral mechanisms underlying VZV reactivation and pathogenesis remain largely uncharacterised. Much remains to be learnt about VZV, interactions with its host, and the development of disease. This protocol describes a basic VZV replication assay using a recombinant VZV-GFP reporter virus. As VZV is highly cell-associated in tissue culture, the reporter virus inoculum described here is a preparation of infected cells. This reporter virus-infected cell line can be used in combination with siRNA gene depletion or cDNA overexpression transfection protocols to determine the effect of individual cellular genes on virus replication. PMID:29085851

  15. Evaluation of an edible blue-green alga, Aphanothece sacrum, for its inhibitory effect on replication of herpes simplex virus type 2 and influenza virus type A.

    PubMed

    Ogura, Fumie; Hayashi, Kyoko; Lee, Jung-Bum; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2010-01-01

    A hot-water extract of Aphanothece sacrum, an edible aquacultured blue-green alga, was found to show a remarkable inhibitory effect on the replication of enveloped viruses including herpes simplex virus type 2 (HSV-2) and influenza virus type A (IFV-A, H1N1) in vitro. The main active components were suggested to be sulfated polysaccharides in non-dialyzable portion (ASWPH). ASWPH was found to inhibit the viral adsorption to the receptor of the host cells involved in the replication process of HSV-2 and IFV-A. In addition, while the penetration stage of HSV-2 was also significantly suppressed with ASWPH, no such effect was observed in the replication of IFV-A. These results suggest that ASWPH might be useful in the prevention of infectious diseases caused by HSV-2 as well as IFV-A.

  16. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  17. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    PubMed

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  18. Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro.

    PubMed

    Rodriguez, Myosotys; Kaushik, Ajeet; Lapierre, Jessica; Dever, Seth M; El-Hage, Nazira; Nair, Madhavan

    2017-03-01

    The purpose of this study was to evaluate a novel drug delivery system comprised of ferric-cobalt electro-magnetic nano-material (CoFe2O4@ BaTiO3; MENP) bound to siRNA targeting Beclin1 (MENP-siBeclin1) to cross the blood-brain barrier (BBB) and attenuate the neurotoxic effects of HIV-1 infection in the central nervous system following on-demand release of siRNA using an in vitro primary human BBB model. Beclin1 is a key protein in the regulation of the autophagy pathway and we have recently demonstrated the importance of Beclin1 in regulating viral replication and viral-induced inflammation in HIV-1-infected microglia. The MENP-siBeclin1 nano-formulation did not compromise the physiological function or integrity of the BBB model. Furthermore, the in vitro BBB data revealed that MENP-siBeclin1 could efficiently attenuate viral replication and viral-induced inflammation, likely due to STAT1/ NF-κB signaling pathways. MENP-siBeclin1 also silenced Beclin1 protein expression in HIV-1-infected microglial cells within the model system. In addition, the cytotoxic effects of direct treatment with siBeclin1 and MENP alone or in nano-formulation on primary human neuronal cells showed a minimal amount of cell death. Overall, the data shows that the nano-formulation can silence the BECN1 gene as an effective mechanism to attenuate HIV-1 replication and viral-induced inflammation in the context of the BBB.

  19. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins

    PubMed Central

    Hegde, Muralidhar L.; Hegde, Pavana M.; Bellot, Larry J.; Mandal, Santi M.; Hazra, Tapas K.; Li, Guo-Min; Boldogh, Istvan; Tomkinson, Alan E.; Mitra, Sankar

    2013-01-01

    Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a “cowcatcher” and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function. PMID:23898192

  20. From in vitro to in vivo: Integration of the virtual cell based assay with physiologically based kinetic modelling.

    PubMed

    Paini, Alicia; Sala Benito, Jose Vicente; Bessems, Jos; Worth, Andrew P

    2017-12-01

    Physiologically based kinetic (PBK) models and the virtual cell based assay can be linked to form so called physiologically based dynamic (PBD) models. This study illustrates the development and application of a PBK model for prediction of estragole-induced DNA adduct formation and hepatotoxicity in humans. To address the hepatotoxicity, HepaRG cells were used as a surrogate for liver cells, with cell viability being used as the in vitro toxicological endpoint. Information on DNA adduct formation was taken from the literature. Since estragole induced cell damage is not directly caused by the parent compound, but by a reactive metabolite, information on the metabolic pathway was incorporated into the model. In addition, a user-friendly tool was developed by implementing the PBK/D model into a KNIME workflow. This workflow can be used to perform in vitro to in vivo extrapolation and forward as backward dosimetry in support of chemical risk assessment. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Kinetic assay for high-throughput screening of in vitro transthyretin amyloid fibrillogenesis inhibitors.

    PubMed

    Dolado, Ignacio; Nieto, Joan; Saraiva, Maria João M; Arsequell, Gemma; Valencia, Gregori; Planas, Antoni

    2005-01-01

    Stabilization of tetrameric transthyretin (TTR) by binding of small ligands is a current strategy aimed at inhibiting amyloid fibrillogenesis in transthyretin-associated pathologies, such as senile systemic amyloidosis (SSA) and familial amyloidotic polyneuropathy (FAP). A kinetic assay is developed for rapid evaluation of compounds as potential in vitro inhibitors in a high-throughput screening format. It is based on monitoring the time-dependent increase of absorbance due to turbidity occurring by acid-induced protein aggregation. The method uses the highly amyloidogenic Y78F mutant of human transthyretin (heterogously expressed in Escherichia coli cells). Initial rates of protein aggregation at different inhibitor concentrations follow a monoexponential dose-response curve from which inhibition parameters are calculated. For the assay development, thyroid hormones and nonsteroidal antiinflamatory drugs were chosen among other reference compounds. Some of them are already known to be in vitro inhibitors of TTR amyloidogenesis. Analysis time is optimized to last 1.5 h, and the method is implemented in microtiter plates for screening of libraries of potential fibrillogenesis inhibitors.

  2. Cross-Neutralization between Human and African Bat Mumps Viruses.

    PubMed

    Katoh, Hiroshi; Kubota, Toru; Ihara, Toshiaki; Maeda, Ken; Takeda, Makoto; Kidokoro, Minoru

    2016-04-01

    Recently, a new paramyxovirus closely related to human mumps virus (MuV) was detected in bats. We generated recombinant MuVs carrying either or both of the fusion and hemagglutinin-neuraminidase bat virus glycoproteins. These viruses showed replication kinetics similar to human MuV in cultured cells and were neutralized efficiently by serum from healthy humans.

  3. Two Asian highly pathogenic strains of Type 2 PRRSV in United States swine

    USDA-ARS?s Scientific Manuscript database

    Highly pathogenic PRRSV (HP-PRRSV) has been circulating in Asia for 7 years. rJXwn06 and rSRV07 were rescued from infectious clones of two HP-PRRSV for investigation at the National Animal Disease Center. The clinical disease and viral replication kinetics of HP-PRRSV were compared to prototype stra...

  4. Mutations in Replicative Stress Response Pathways Are Associated with S Phase-specific Defects in Nucleotide Excision Repair*

    PubMed Central

    Bélanger, François; Angers, Jean-Philippe; Fortier, Émile; Hammond-Martel, Ian; Costantino, Santiago; Drobetsky, Elliot; Wurtele, Hugo

    2016-01-01

    Nucleotide excision repair (NER) is a highly conserved pathway that removes helix-distorting DNA lesions induced by a plethora of mutagens, including UV light. Our laboratory previously demonstrated that human cells deficient in either ATM and Rad3-related (ATR) kinase or translesion DNA polymerase η (i.e. key proteins that promote the completion of DNA replication in response to UV-induced replicative stress) are characterized by profound inhibition of NER exclusively during S phase. Toward elucidating the mechanistic basis of this phenomenon, we developed a novel assay to quantify NER kinetics as a function of cell cycle in the model organism Saccharomyces cerevisiae. Using this assay, we demonstrate that in yeast, deficiency of the ATR homologue Mec1 or of any among several other proteins involved in the cellular response to replicative stress significantly abrogates NER uniquely during S phase. Moreover, initiation of DNA replication is required for manifestation of this defect, and S phase NER proficiency is correlated with the capacity of individual mutants to respond to replicative stress. Importantly, we demonstrate that partial depletion of Rfa1 recapitulates defective S phase-specific NER in wild type yeast; moreover, ectopic RPA1–3 overexpression rescues such deficiency in either ATR- or polymerase η-deficient human cells. Our results strongly suggest that reduction of NER capacity during periods of enhanced replicative stress, ostensibly caused by inordinate sequestration of RPA at stalled DNA replication forks, represents a conserved feature of the multifaceted eukaryotic DNA damage response. PMID:26578521

  5. Cosegregation of chromosomes containing immortal DNA strands in cells that cycle with asymmetric stem cell kinetics.

    PubMed

    Merok, Joshua R; Lansita, Janice A; Tunstead, James R; Sherley, James L

    2002-12-01

    A long-standing intriguing hypothesis in cancer biology is that adult stem cells avoid mutations from DNA replication errors by a unique pattern of chromosome segregation. At each asymmetric cell division, adult stem cells have been postulated to selectively retain a set of chromosomes that contain old template DNA strands (i.e., "immortal DNA strands"). Using cultured cells that cycle with asymmetric cell kinetics, we confirmed both the existence of immortal DNA strands and the cosegregation of chromosomes that bear them. Our findings also lead us to propose a role for immortal DNA strands in tissue aging as well as cancer.

  6. Generation of Recombinant Polioviruses Harboring RNA Affinity Tags in the 5′ and 3′ Noncoding Regions of Genomic RNAs

    PubMed Central

    Flather, Dylan; Cathcart, Andrea L.; Cruz, Casey; Baggs, Eric; Ngo, Tuan; Gershon, Paul D.; Semler, Bert L.

    2016-01-01

    Despite being intensely studied for more than 50 years, a complete understanding of the enterovirus replication cycle remains elusive. Specifically, only a handful of cellular proteins have been shown to be involved in the RNA replication cycle of these viruses. In an effort to isolate and identify additional cellular proteins that function in enteroviral RNA replication, we have generated multiple recombinant polioviruses containing RNA affinity tags within the 3′ or 5′ noncoding region of the genome. These recombinant viruses retained RNA affinity sequences within the genome while remaining viable and infectious over multiple passages in cell culture. Further characterization of these viruses demonstrated that viral protein production and growth kinetics were unchanged or only slightly altered relative to wild type poliovirus. However, attempts to isolate these genetically-tagged viral genomes from infected cells have been hindered by high levels of co-purification of nonspecific proteins and the limited matrix-binding efficiency of RNA affinity sequences. Regardless, these recombinant viruses represent a step toward more thorough characterization of enterovirus ribonucleoprotein complexes involved in RNA replication. PMID:26861382

  7. CCR5 Signal Transduction in Macrophages by Human Immunodeficiency Virus and Simian Immunodeficiency Virus Envelopes

    PubMed Central

    Arthos, James; Rubbert, Andrea; Rabin, Ronald L.; Cicala, Claudia; Machado, Elizabeth; Wildt, Kathryne; Hanbach, Meredith; Steenbeke, Tavis D.; Swofford, Ruth; Farber, Joshua M.; Fauci, Anthony S.

    2000-01-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1β. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1α, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages. PMID:10864653

  8. CCR5 signal transduction in macrophages by human immunodeficiency virus and simian immunodeficiency virus envelopes.

    PubMed

    Arthos, J; Rubbert, A; Rabin, R L; Cicala, C; Machado, E; Wildt, K; Hanbach, M; Steenbeke, T D; Swofford, R; Farber, J M; Fauci, A S

    2000-07-01

    The capacity of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) envelopes to transduce signals through chemokine coreceptors on macrophages was examined by measuring the ability of recombinant envelope proteins to mobilize intracellular calcium stores. Both HIV and SIV envelopes mobilized calcium via interactions with CCR5. The kinetics of these responses were similar to those observed when macrophages were treated with MIP-1beta. Distinct differences in the capacity of envelopes to mediate calcium mobilization were observed. Envelopes derived from viruses capable of replicating in macrophages mobilized relatively high levels of calcium, while envelopes derived from viruses incapable of replicating in macrophages mobilized relatively low levels of calcium. The failure to efficiently mobilize calcium was not restricted to envelopes derived from CXCR4-utilizing isolates but also included envelopes derived from CCR5-utilizing isolates that fail to replicate in macrophages. We characterized one CCR5-utilizing isolate, 92MW959, which entered macrophages but failed to replicate. A recombinant envelope derived from this virus mobilized low levels of calcium. When macrophages were inoculated with 92MW959 in the presence of MIP-1alpha, viral replication was observed, indicating that a CC chemokine-mediated signal provided the necessary stimulus to allow the virus to complete its replication cycle. Although the role that envelope-CCR5 signal transduction plays in viral replication is not yet understood, it has been suggested that envelope-mediated signals facilitate early postfusion events in viral replication. The data presented here are consistent with this hypothesis and suggest that the differential capacity of viral envelopes to signal through CCR5 may influence their ability to replicate in macrophages.

  9. Absence of MutSbeta leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks

    PubMed Central

    Slean, Meghan M.; Panigrahi, Gagan B.; Castel, Arturo López; Pearson, August B.; Tomkinson, Alan E.; Pearson, Christopher E.

    2016-01-01

    Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats. PMID:27155933

  10. Different enzyme kinetic models.

    PubMed

    Seibert, Eleanore; Tracy, Timothy S

    2014-01-01

    As described in Chapter 2 , a large number of enzymatic reactions can be adequately described by Michaelis-Menten kinetics. The Michaelis-Menten equation represents a rectangular hyperbola, with a y-asymptote at the V max value. In many cases, more complex kinetic models are required to explain the observed data. Atypical kinetic profiles are believed to arise from the simultaneous binding of multiple molecules within the active site of the enzyme (Tracy and Hummel, Drug Metab Rev 36:231-242, 2004). Several cytochromes P450 have large active sites that enable binding of multiple molecules (Wester et al. J Biol Chem 279:35630-35637, 2004; Yano et al. J Biol Chem 279:38091-38094, 2004). Thus, atypical kinetics are not uncommon in in vitro drug metabolism studies. This chapter covers enzyme kinetic reactions in which a single enzyme has multiple binding sites for substrates and/or inhibitors as well as reactions catalyzed by multiple enzymes.

  11. A Device for Comparing Callus Growth Rates in Vitro

    PubMed Central

    Krul, William R.; Combs, Michael

    1975-01-01

    A device to compare the kinetics of callus growth in vitro is described. Changes in volumes of callus grown in scintillation vials were monitored photometrically without removing the sample from the solid support and medium. It is shown that a fiberglass-paper solid support is superior to a plastic foam solid support for the growth of American chestnut callus. PMID:16659126

  12. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  13. Matrix Metalloproteinase-9 Mediates RSV Infection in Vitro and in Vivo

    PubMed Central

    Kong, Michele Y.F.; Whitley, Richard J.; Peng, Ning; Oster, Robert; Schoeb, Trenton R.; Sullender, Wayne; Ambalavanan, Namasivayam; Clancy, John Paul; Gaggar, Amit; Blalock, J. Edwin

    2015-01-01

    Respiratory Syncytial Virus (RSV) is an important human pathogen associated with substantial morbidity and mortality. The present study tested the hypothesis that RSV infection would increase matrix metalloproteinase (MMP)-9 expression, and that MMP-9 inhibition would decrease RSV replication both in vitro and in vivo. RSV A2 infection of human bronchial epithelial cells increased MMP-9 mRNA and protein release. Cells transfected with siRNA against MMP-9 following RSV infection had lower viral titers. In RSV infected wild-type (WT) mice, MMP-9, airway resistance and viral load peaked at day 2 post infection, and remained elevated on days 4 and 7. RSV infected MMP-9 knockout (KO) mice had decreased lung inflammation. On days 2 and 4 post inoculation, the RSV burden was lower in the MMP-9 KO mice compared to WT controls. In conclusion, our studies demonstrate that RSV infection is a potent stimulus of MMP-9 expression both in vitro and in vivo. Reduction of MMP-9 (via siRNA knockdown, and in MMP-9 KO mice) resulted in decreased viral replication. Our findings suggest MMP-9 is a potential therapeutic target for RSV disease. PMID:26264019

  14. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  15. Directed evolution of polymerase function by compartmentalized self-replication.

    PubMed

    Ghadessy, F J; Ong, J L; Holliger, P

    2001-04-10

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.

  16. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway.

    PubMed

    Xue, Hongxia; Gan, Fang; Zhang, Zheqian; Hu, Junfa; Chen, Xingxiang; Huang, Kehe

    2015-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Kinetic analysis on the skin disposition of cytotoxicity as an index of skin irritation produced by cetylpyridinium chloride: comparison of in vitro data using a three-dimensional cultured human skin model with in vivo results in hairless mice.

    PubMed

    Kano, Satoshi; Sugibayashi, Kenji

    2006-02-01

    The aim of this study was to kinetically and dynamically analyze in vitro cytotoxicity as an index of skin irritation by use of a three-dimensional cultured human skin model and to compare the in vitro assay data with data from living animals. A cationic surfactant, cetylpyridinium chloride (CPC), was selected as a model irritant. Living skin equivalent-high (LSE-high) and hairless mice were used for the in vitro and in vivo tests, respectively. Skin irritation dermatodynamics was evaluated by calorimetric thiazoyl blue (MTT) conversion assay both for in vitro and in vivo tests, whereas dermatokinetics of CPC in LSE-high and mouse skin were evaluated using HPLC. The time course of cell viability in the skin after application of CPC to intact skin was distinctly different from that of stratum-corneum-stripped skin in both LSE-high and hairless mice. Biphasic behavior characterized by two first-order rates with an inflection time point was observed in intact skin, whereas cell viability monoexponentially decreased immediately after CPC application in stripped skin. The time courses of cell viability in the skin and dermatodynamics were closely related to that of dermatokinetics of CPC. The present study demonstrates that the in vitro cytotoxic profile was similar to the in vivo cytotoxicity test and that dermatodynamics was related to dermatokinetics of CPC.

  18. Development of a modified in vitro skin absorption method to study the epidermal/dermal disposition of a contact allergen in human skin.

    PubMed

    Pendlington, Ruth U; Minter, Helen J; Stupart, Leanne; MacKay, Cameron; Roper, Clive S; Sanders, David J; Pease, Camilla K

    2008-01-01

    In vitro skin absorption methods exist in Organisation for Economic Co-operation and Development (OECD) guideline form (No. 428) and are used to estimate the degree of systemic penetration of chemicals through skin. More detailed kinetics of permeation through skin compartments are not described well by existing methods. This study was designed to assess the practical feasibility of generating compartmental (stratum corneum/epidermal/dermal) disposition and kinetic data of topically applied chemicals. For chemically induced effects initiated in the skin (e.g., skin allergy), the delivery of tissue concentrations of chemical will impact the incidence and severity of biological effect. Explicit data on the kinetics of chemical disposition in skin have not traditionally been needed for skin allergy risk assessment: current in vivo assays embody delivery implicitly. Under the 7th Amendment to the European Cosmetics Directive, in vivo assays (such as the local lymph node assay for skin sensitization) will not be permitted to assess cosmetic ingredients. New in vitro and in silico alternative approaches and ways of predicting risk of adverse effects in humans need to be developed, and new methods such as that described here provide a way of estimating delivered concentrations and the effect of formulation changes on that delivery. As we continue to deconstruct the contributing factors of skin allergy in humans, it will be useful to have methods available that can measure skin tissue compartment exposure levels delivered from different exposure use scenarios. Here we provide such a method. The method could also be used to generate useful data for developing in silico kinetic models of compartmental skin delivery and for refining data for skin delivery in relation to the evaluation of systemic toxicity.

  19. Determination of physicochemical properties and degradation kinetics of triamcinolone acetonide palmitate in vitro.

    PubMed

    Peng, Cuilian; Liu, Cong; Tang, Xing

    2010-12-01

    Triamcinolone acetonide palmitate (TAP) is a lipophilic prodrug of triamcinolone acetonide (TAA) to improve the insoluble TAA physicochemical properties for the preparation of emulsions. This investigation has focused on the preformulation study of TAP, including its physicochemical properties and hydrolysis kinetics in vitro. The solubility of TAP in medium-chain triglyceride is about twice greater than that in soybean oil (long-chain triglyceride) (19.17 versus 9.55 mg/g) at 25°C, and in all investigated cases, lecithin (80, 160, and 240 mg/g) as solubilizer provided increased solubility of drugs in medium-chain triglyceride and long-chain triglyceride, whereas the maximum water solubility of TAP was 0.10 μg/mL. The partition coefficient (log P) of TAP was 5.79 irrespective of the pH conditions. The hydrolysis of TAP followed pseudo-first-order kinetics in aqueous solutions, and the stable pH range was from pH 5.0 to 9.0. The in vitro enzymolysis kinetics of TAP in rat plasma and liver homogenate was evaluated by measuring the decrease of TAP as well as the increase of TAA at 37°C for 96 hours. The results demonstrated that the TAP may be hydrolyzed mainly by rat plasma esterase and, to a minor extent, by liver esterase, and the hydrolysis half-life of TAP in 100% rat plasma was 17.53 ± 6.85 hours at pH 7.4. All these results indicated that TAP had successfully obtained higher lipid-soluble property for the preparation of intravenous emulsion and may be an effective prodrug for sustained release of TAA in vivo.

  20. Sustained Release of Green Tea Polyphenols from Liposomal Nanoparticles; Release Kinetics and Mathematical Modelling.

    PubMed

    Prakash Upputuri, Ravi Theaj; Azad Mandal, Abul Kalam

    2017-01-01

    Background: Green tea polyphenols (GTP) are known to have several health benefits. In spite of these benefits, its application as a therapeutic agent is limited due to some of its limitations such as stability, bioavailability, and biotransformation. To overcome these limitations, liposomal nanoparticles have been used as a carrier of the GTP. Objective: Encapsulation of GTP to the liposomal nanoparticles in order to achieve a sustained release of the GTP and to determine the drug release kinetics and the mechanism of the release. Materials and Methods: GTP encapsulated liposomal nanoparticles were prepared using phosphatidyl choline and cholesterol. The synthesized particles were characterized for their particle size and morphology. In vitro release studies were carried out, followed by drug release kinetics, and determining the mechanism of release. In vitro , antioxidant assay was determined following 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Results: Atomic force microscope (AFM) and high resolution scanning electron microscope (HR SEM) images showed spherical particles of the size of 64.5 and 252 nm. An encapsulation efficiency as high as 77.7% was observed with GTP concentration of 5 mg.mL -1 . In vitro release studies showed that the loading concentrations of GTP were independent to the cumulative percentage of the drug release. GTP release by varying the pH and temperature showed a direct correlation between the release parameter and the percentage of drug release. The higher the pH and temperature, the higher was the percentage of the drug release. The release data showed a good correlation with Zero order kinetics and the mechanism of the release being anomalous mode. Radical scavenging activity of the released GTP showed a potent scavenging activity. Conclusion: GTP encapsulated liposomal nanoparticles could be used as a delivery vehicle for achieving a sustained release.

  1. Human Adipose‐Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress

    PubMed Central

    Renoud, Marie‐Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe

    2016-01-01

    Abstract Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68–76 PMID:28170194

  2. Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    PubMed Central

    Levy, David N.; Li, Yonghua; Kumar, Rajnish; Burke, Sean A.; Dawson, Rodney; Hioe, Catarina E.; Borkowsky, William; Rom, William N.; Hoshino, Yoshihiko

    2014-01-01

    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages. PMID:25272020

  3. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions*

    PubMed Central

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-01-01

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrPSc. Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrPC production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrPC present in each part of the brain. Our results suggest that the variable regional distribution of PrPSc in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. PMID:27056328

  4. Quercetin inhibits rhinovirus replication in vitro and in vivo

    PubMed Central

    Ganesan, Shyamala; Faris, Andrea N.; Comstock, Adam T.; Wang, Qiong; Nanua, Suparna; Hershenson, Marc B.; Sajjan, Uma S.

    2012-01-01

    Summary Rhinovirus (RV), which is responsible for the majority of common colds, also causes exacerbations in patients with asthma and chronic obstructive pulmonary disease. So far, there are no drugs available for treatment of rhinovirus infection. We examined the effect of quercetin, a plant flavanol on RV infection in vitro and in vivo. Pretreatment of airway epithelial cells with quercetin decreased Akt phosphosphorylation, viral endocytosis and IL-8 responses. Addition of quercetin 6 h after RV infection (after viral endocytosis) reduced viral load, IL-8 and IFN responses in airway epithelial cells. This was associated with decreased levels of negative and positive strand viral RNA, and RV capsid protein, abrogation of RV-induced eIF4GI cleavage and increased phosphorylation of eIF2α. In mice infected with RV, quercetin treatment decreased viral replication as well as expression of chemokines and cytokines. Quercetin treatment also attenuated RV-induced airway cholinergic hyperresponsiveness. Together, our results suggest that quercetin inhibits RV endocytosis and replication in airway epithelial cells at multiple stages of the RV life cycle. Quercetin also decreases expression of pro-inflammatory cytokines and improves lung function in RV-infected mice. Based on these observations, further studies examining the potential benefits of quercetin in the prevention and treatment of RV infection are warranted. PMID:22465313

  5. Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei Li; Liu Jue

    Postweaning multisystemic wasting syndrome, which is primarily caused by porcine circovirus type 2 (PCV2), is an emerging and important swine disease. We have recently shown that PCV2 induces nuclear factor kappa B activation and its activation is required for active replication, but the other cellular factors involved in PCV2 replication are not well defined. The extracellular signal-regulated kinase (ERK) which served as an important component of cellular signal transduction pathways has been shown to regulate many viral infections. In this report, we show that PCV2 activates ERK1/2 in PCV2-infected PK15 cells dependent on viral replication. The PCV2-induced ERK1/2 leads tomore » phosphorylation of the ternary complex factor Elk-1, which kinetically paralleled ERK1/2 activation. Inhibition of ERK activation with U0126, a specific MEK1/2 inhibitor, significantly reduced viral progeny release. Investigations into the mechanism of ERK1/2 regulation revealed that inhibition of ERK activation leads to decreased viral transcription and lower virus protein expression. These data indicate that the ERK signaling pathway is involved in PCV2 infection and beneficial to PCV2 replication in the cultured cells.« less

  6. Dynamic binding of replication protein a is required for DNA repair

    PubMed Central

    Chen, Ran; Subramanyam, Shyamal; Elcock, Adrian H.; Spies, Maria; Wold, Marc S.

    2016-01-01

    Replication protein A (RPA), the major eukaryotic single-stranded DNA (ssDNA) binding protein, is essential for replication, repair and recombination. High-affinity ssDNA-binding by RPA depends on two DNA binding domains in the large subunit of RPA. Mutation of the evolutionarily conserved aromatic residues in these two domains results in a separation-of-function phenotype: aromatic residue mutants support DNA replication but are defective in DNA repair. We used biochemical and single-molecule analyses, and Brownian Dynamics simulations to determine the molecular basis of this phenotype. Our studies demonstrated that RPA binds to ssDNA in at least two modes characterized by different dissociation kinetics. We also showed that the aromatic residues contribute to the formation of the longer-lived state, are required for stable binding to short ssDNA regions and are needed for RPA melting of partially duplex DNA structures. We conclude that stable binding and/or the melting of secondary DNA structures by RPA is required for DNA repair, including RAD51 mediated DNA strand exchange, but is dispensable for DNA replication. It is likely that the binding modes are in equilibrium and reflect dynamics in the RPA–DNA complex. This suggests that dynamic binding of RPA to DNA is necessary for different cellular functions. PMID:27131385

  7. Embryonic Stem Cell-Derived Mesenchymal Stem Cells (MSCs) Have a Superior Neuroprotective Capacity Over Fetal MSCs in the Hypoxic-Ischemic Mouse Brain.

    PubMed

    Hawkins, Kate E; Corcelli, Michelangelo; Dowding, Kate; Ranzoni, Anna M; Vlahova, Filipa; Hau, Kwan-Leong; Hunjan, Avina; Peebles, Donald; Gressens, Pierre; Hagberg, Henrik; de Coppi, Paolo; Hristova, Mariya; Guillot, Pascale V

    2018-05-01

    Human mesenchymal stem cells (MSCs) have huge potential for regenerative medicine. In particular, the use of pluripotent stem cell-derived mesenchymal stem cells (PSC-MSCs) overcomes the hurdle of replicative senescence associated with the in vitro expansion of primary cells and has increased therapeutic benefits in comparison to the use of various adult sources of MSCs in a wide range of animal disease models. On the other hand, fetal MSCs exhibit faster growth kinetics and possess longer telomeres and a wider differentiation potential than adult MSCs. Here, for the first time, we compare the therapeutic potential of PSC-MSCs (ES-MSCs from embryonic stem cells) to fetal MSCs (AF-MSCs from the amniotic fluid), demonstrating that ES-MSCs have a superior neuroprotective potential over AF-MSCs in the mouse brain following hypoxia-ischemia. Further, we demonstrate that nuclear factor (NF)-κB-stimulated interleukin (IL)-13 production contributes to an increased in vitro anti-inflammatory potential of ES-MSC-conditioned medium (CM) over AF-MSC-CM, thus suggesting a potential mechanism for this observation. Moreover, we show that induced pluripotent stem cell-derived MSCs (iMSCs) exhibit many similarities to ES-MSCs, including enhanced NF-κB signaling and IL-13 production in comparison to AF-MSCs. Future studies should assess whether iMSCs also exhibit similar neuroprotective potential to ES-MSCs, thus presenting a potential strategy to overcome the ethical issues associated with the use of embryonic stem cells and providing a potential source of cells for autologous use against neonatal hypoxic-ischemic encephalopathy in humans. Stem Cells Translational Medicine 2018;7:439-449. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  8. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  10. Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off.

    PubMed

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2012-08-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.

  11. Influence of calcium oxide level and time of exposure to sugarcane on in vitro and in situ digestion kinetics

    USDA-ARS?s Scientific Manuscript database

    Experiments were carried out to evaluate, using in vitro and in situ techniques, the effects of three inclusion levels of calcium oxide (0, 5, and 10 g/kg of sugarcane fresh matter) and four exposure times (0, 24, 48, and 72 h) of sugarcane to calcium oxide on the chemical composition and digestive ...

  12. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jain, Rinku; Choudhury, Jayati Roy; Buku, Angeliki

    N1-methyl-deoxyadenosine (1-MeA) is formed by methylation of deoxyadenosine at the N1 atom. 1-MeA presents a block to replicative DNA polymerases due to its inability to participate in Watson-Crick (W-C) base pairing. Here we determine how human DNA polymerase-ι (Polι) promotes error-free replication across 1-MeA. Steady state kinetic analyses indicate that Polι is ~100 fold more efficient in incorporating the correct nucleotide T versus the incorrect nucleotide C opposite 1-MeA. To understand the basis of this selectivity, we determined ternary structures of Polι bound to template 1-MeA and incoming dTTP or dCTP. In both structures, template 1-MeA rotates to the synmore » conformation but pairs differently with dTTP versus dCTP. Thus, whereas dTTP partakes in stable Hoogsteen base pairing with 1-MeA, dCTP fails to gain a “foothold” and is largely disordered. Together, our kinetic and structural studies show how Polι maintains discrimination between correct and incorrect incoming nucleotide opposite 1-MeA in preserving genome integrity.« less

  13. Dynamic basis for dG•dT misincorporation via tautomerization and ionization

    NASA Astrophysics Data System (ADS)

    Kimsey, Isaac J.; Szymanski, Eric S.; Zahurancik, Walter J.; Shakya, Anisha; Xue, Yi; Chu, Chia-Chieh; Sathyamoorthy, Bharathwaj; Suo, Zucai; Al-Hashimi, Hashim M.

    2018-02-01

    Tautomeric and anionic Watson-Crick-like mismatches have important roles in replication and translation errors through mechanisms that are not fully understood. Here, using NMR relaxation dispersion, we resolve a sequence-dependent kinetic network connecting G•T/U wobbles with three distinct Watson-Crick mismatches: two rapidly exchanging tautomeric species (Genol•T/UG•Tenol/Uenol population less than 0.4%) and one anionic species (G•T-/U- population around 0.001% at neutral pH). The sequence-dependent tautomerization or ionization step was inserted into a minimal kinetic mechanism for correct incorporation during replication after the initial binding of the nucleotide, leading to accurate predictions of the probability of dG•dT misincorporation across different polymerases and pH conditions and for a chemically modified nucleotide, and providing mechanisms for sequence-dependent misincorporation. Our results indicate that the energetic penalty for tautomerization and/or ionization accounts for an approximately 10-2 to 10-3-fold discrimination against misincorporation, which proceeds primarily via tautomeric dGenol•dT and dG•dTenol, with contributions from anionic dG•dT- dominant at pH 8.4 and above or for some mutagenic nucleotides.

  14. Biophysical modeling of in vitro and in vivo processes underlying regulated photoprotective mechanism in cyanobacteria.

    PubMed

    Shirshin, Evgeny A; Nikonova, Elena E; Kuzminov, Fedor I; Sluchanko, Nikolai N; Elanskaya, Irina V; Gorbunov, Maxim Y; Fadeev, Victor V; Friedrich, Thomas; Maksimov, Eugene G

    2017-09-01

    Non-photochemical quenching (NPQ) is a mechanism responsible for high light tolerance in photosynthetic organisms. In cyanobacteria, NPQ is realized by the interplay between light-harvesting complexes, phycobilisomes (PBs), a light sensor and effector of NPQ, the photoactive orange carotenoid protein (OCP), and the fluorescence recovery protein (FRP). Here, we introduced a biophysical model, which takes into account the whole spectrum of interactions between PBs, OCP, and FRP and describes the experimental PBs fluorescence kinetics, unraveling interaction rate constants between the components involved and their relative concentrations in the cell. We took benefit from the possibility to reconstruct the photoprotection mechanism and its parts in vitro, where most of the parameters could be varied, to develop the model and then applied it to describe the NPQ kinetics in the Synechocystis sp. PCC 6803 mutant lacking photosystems. Our analyses revealed  that while an excess of the OCP over PBs is required to obtain substantial PBs fluorescence quenching in vitro, in vivo the OCP/PBs ratio is less than unity, due to higher local concentration of PBs, which was estimated as ~10 -5 M, compared to in vitro experiments. The analysis of PBs fluorescence recovery on the basis of the generalized model of enzymatic catalysis resulted in determination of the FRP concentration in vivo close to 10% of the OCP concentration. Finally, the possible role of the FRP oligomeric state alteration in the kinetics of PBs fluorescence was shown. This paper provides the most comprehensive model of the OCP-induced PBs fluorescence quenching to date and the results are important for better understanding of the regulatory molecular mechanisms underlying NPQ in cyanobacteria.

  15. A DEAD-box RNA helicase promotes thermodynamic equilibration of kinetically trapped RNA structures in vivo.

    PubMed

    Ruminski, Dana J; Watson, Peter Y; Mahen, Elisabeth M; Fedor, Martha J

    2016-03-01

    RNAs must assemble into specific structures in order to carry out their biological functions, but in vitro RNA folding reactions produce multiple misfolded structures that fail to exchange with functional structures on biological time scales. We used carefully designed self-cleaving mRNAs that assemble through well-defined folding pathways to identify factors that differentiate intracellular and in vitro folding reactions. Our previous work showed that simple base-paired RNA helices form and dissociate with the same rate and equilibrium constants in vivo and in vitro. However, exchange between adjacent secondary structures occurs much faster in vivo, enabling RNAs to quickly adopt structures with the lowest free energy. We have now used this approach to probe the effects of an extensively characterized DEAD-box RNA helicase, Mss116p, on a series of well-defined RNA folding steps in yeast. Mss116p overexpression had no detectable effect on helix formation or dissociation kinetics or on the stability of interdomain tertiary interactions, consistent with previous evidence that intracellular factors do not affect these folding parameters. However, Mss116p overexpression did accelerate exchange between adjacent helices. The nonprocessive nature of RNA duplex unwinding by DEAD-box RNA helicases is consistent with a branch migration mechanism in which Mss116p lowers barriers to exchange between otherwise stable helices by the melting and annealing of one or two base pairs at interhelical junctions. These results suggest that the helicase activity of DEAD-box proteins like Mss116p distinguish intracellular RNA folding pathways from nonproductive RNA folding reactions in vitro and allow RNA structures to overcome kinetic barriers to thermodynamic equilibration in vivo. © 2016 Ruminski et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  16. Synthesis, characterisation, and in vitro cellular uptake kinetics of nanoprecipitated poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA) polymeric nanoparticle micelles for nanomedicine applications

    NASA Astrophysics Data System (ADS)

    Salvage, Jonathan P.; Smith, Tia; Lu, Tao; Sanghera, Amendeep; Standen, Guy; Tang, Yiqing; Lewis, Andrew L.

    2016-10-01

    Nanoscience offers the potential for great advances in medical technology and therapies in the form of nanomedicine. As such, developing controllable, predictable, and effective, nanoparticle-based therapeutic systems remains a significant challenge. Many polymer-based nanoparticle systems have been reported to date, but few harness materials with accepted biocompatibility. Phosphorylcholine (PC) based biomimetic materials have a long history of successful translation into effective commercial medical technologies. This study investigated the synthesis, characterisation, nanoprecipitation, and in vitro cellular uptake kinetics of PC-based polymeric nanoparticle micelles (PNM) formed by the biocompatible and pH responsive block copolymer poly(2-methacryloyloxyethyl phosphorylcholine)- b-poly(2-(diisopropylamino)ethyl methacrylate) (MPC-DPA). Atom transfer radical polymerisation (ATRP), and gel permeation chromatography (GPC) were used to synthesise and characterise the well-defined MPC100-DPA100 polymer, revealing organic GPC, using evaporative light scatter detection, to be more accurate than aqueous GPC for this application. Subsequent nanoprecipitation investigations utilising photon correlation spectroscopy (PCS) revealed PNM size increased with polymer concentration, and conferred Cryo-stability. PNM diameters ranged from circa 64-69 nm, and increased upon hydrophobic compound loading, circa 65-71 nm, with loading efficiencies of circa 60 % achieved, whilst remaining monodisperse. In vitro studies demonstrated that the PNM were of low cellular toxicity, with colony formation and MTT assays, utilising V79 and 3T3 cells, yielding comparable results. Investigation of the in vitro cellular uptake kinetics revealed rapid, 1 h, cellular uptake of MPC100-DPA100 PNM delivered fluorescent probes, with fluorescence persistence for 48 h. This paper presents the first report of these novel findings, which highlight the potential of the system for nanomedicine application development.

  17. Characterization of infectious Murray Valley encephalitis virus derived from a stably cloned genome-length cDNA.

    PubMed

    Hurrelbrink, R J; Nestorowicz, A; McMinn, P C

    1999-12-01

    An infectious cDNA clone of Murray Valley encephalitis virus prototype strain 1-51 (MVE-1-51) was constructed by stably inserting genome-length cDNA into the low-copy-number plasmid vector pMC18. Designated pMVE-1-51, the clone consisted of genome-length cDNA of MVE-1-51 under the control of a T7 RNA polymerase promoter. The clone was constructed by using existing components of a cDNA library, in addition to cDNA of the 3' terminus derived by RT-PCR of poly(A)-tailed viral RNA. Upon comparison with other flavivirus sequences, the previously undetermined sequence of the 3' UTR was found to contain elements conserved throughout the genus FLAVIVIRUS: RNA transcribed from pMVE-1-51 and subsequently transfected into BHK-21 cells generated infectious virus. The plaque morphology, replication kinetics and antigenic profile of clone-derived virus (CDV-1-51) was similar to the parental virus in vitro. Furthermore, the virulence properties of CDV-1-51 and MVE-1-51 (LD(50) values and mortality profiles) were found to be identical in vivo in the mouse model. Through site-directed mutagenesis, the infectious clone should serve as a valuable tool for investigating the molecular determinants of virulence in MVE virus.

  18. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.

    PubMed

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-02-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.

  19. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae

    PubMed Central

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-01-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning—possibly mediated by intrinsically disordered protein segments—is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication. PMID:18033802

  20. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation.

    PubMed

    Xia, Yisui; Niu, Yanling; Cui, Jiamin; Fu, Yang; Chen, Xiaojiang S; Lou, Huiqiang; Cao, Qinhong

    2015-01-01

    Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea.

  1. The Helicase Activity of Hyperthermophilic Archaeal MCM is Enhanced at High Temperatures by Lysine Methylation

    PubMed Central

    Xia, Yisui; Niu, Yanling; Cui, Jiamin; Fu, Yang; Chen, Xiaojiang S.; Lou, Huiqiang; Cao, Qinhong

    2015-01-01

    Lysine methylation and methyltransferases are widespread in the third domain of life, archaea. Nevertheless, the effects of methylation on archaeal proteins wait to be defined. Here, we report that recombinant sisMCM, an archaeal homolog of Mcm2-7 eukaryotic replicative helicase, is methylated by aKMT4 in vitro. Mono-methylation of these lysine residues occurs coincidently in the endogenous sisMCM protein purified from the hyperthermophilic Sulfolobus islandicus cells as indicated by mass spectra. The helicase activity of mini-chromosome maintenance (MCM) is stimulated by methylation, particularly at temperatures over 70°C. The methylated MCM shows optimal DNA unwinding activity after heat-treatment between 76 and 82°C, which correlates well with the typical growth temperatures of hyperthermophilic Sulfolobus. After methylation, the half life of MCM helicase is dramatically extended at 80°C. The methylated sites are located on the accessible protein surface, which might modulate the intra- and inter- molecular interactions through changing the hydrophobicity and surface charge. Furthermore, the methylation-mimic mutants of MCM show heat resistance helicase activity comparable to the methylated MCM. These data provide the biochemical evidence that posttranslational modifications such as methylation may enhance kinetic stability of proteins under the elevated growth temperatures of hyperthermophilic archaea. PMID:26617586

  2. Impact of α-amylase during breadmaking on in vitro kinetics of starch hydrolysis and glycaemic index of enriched bread with bran.

    PubMed

    Sanz-Penella, Juan Mario; Laparra, José Moisés; Haros, Monika

    2014-09-01

    Nowadays, the use of enzymes has become a common practice in the bakery industry, as they can improve dough quality and texture of final product. However, the use of α-amylases could have a negative effect in the glycaemic load of product, due to the released sugars from the starch hydrolysis that are not used by yeasts during the fermentation process. This study evaluated the effect of the addition of α-amylase in bakery products with bran on in vitro kinetics of starch hydrolysis. The use of flour with a high degree of extraction or high bran amount could decrease the GI even with the inclusion of α-amylase in the formulation. It should be taken into account the amount of bran and α-amylase when formulating breads in order to obtain products with lower GI than white bread. However, the fact that kinetics of starch hydrolysis remained unaltered indicates that the use of α-amylase in bread-making processes could provide technological advantages improving quality of breads without markedly changes in their glycaemic index.

  3. Nitrates and NO-NSAIDs in Cancer Chemoprevention & Therapy: In Vitro Evidence Querying the NO Donor Functionality

    PubMed Central

    Dunlap, Tareisha; Abdul-Hay, Samer; Chandrasena, R. Esala P.; Hagos, Ghenet K; Sinha, Vaishali; Wang, Zhiqiang; Wang, Huali; Thatcher, Gregory R. J.

    2008-01-01

    Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than a hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural “linker” as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery. PMID:18485921

  4. Nitrates and NO-NSAIDs in cancer chemoprevention and therapy: in vitro evidence querying the NO donor functionality.

    PubMed

    Dunlap, Tareisha; Abdul-Hay, Samer O; Chandrasena, R Esala P; Hagos, Ghenet K; Sinha, Vaishali; Wang, Zhiqiang; Wang, Huali; Thatcher, Gregory R J

    2008-09-01

    Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than one hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural "linker" as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery.

  5. Edwardsiella ictaluri Encodes an Acid-Activated Urease That Is Required for Intracellular Replication in Channel Catfish (Ictalurus punctatus) Macrophages▿

    PubMed Central

    Booth, Natha J.; Beekman, Judith B.; Thune, Ronald L.

    2009-01-01

    Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome. PMID:19749068

  6. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.

    PubMed

    Nagata, Mariko; Ishino, Sonoko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki; Ishino, Yoshizumi

    2017-10-13

    The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  8. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus.

    PubMed

    Elderfield, Ruth A; Parker, Lauren; Stilwell, Peter; Roberts, Kim L; Schepelmann, Silke; Barclay, Wendy S

    2015-08-01

    Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.

  9. The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex

    PubMed Central

    Prasanth, K. Reddisiva; Barajas, Daniel

    2014-01-01

    ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. PMID:25540361

  10. Cytometry of DNA Replication and RNA Synthesis: Historical Perspective and Recent Advances Based on “Click Chemistry”

    PubMed Central

    Darzynkiewicz, Zbigniew; Traganos, Frank; Zhao, Hong; Halicka, H. Dorota; Li, Jiangwei

    2011-01-01

    This review covers progress in the development of cytometric methodologies designed to assess DNA replication and RNA synthesis. The early approaches utilizing autoradiography to detect incorporation of 3H- or 14C-labeled thymidine were able to identify the four fundamental phases of the cell cycle G1, S, G2, and M, and by analysis of the fraction of labeled mitosis (FLM), to precisely define the kinetics of cell progression through these phases. Analysis of 3H-uridine incorporation and RNA content provided the means to distinguish quiescent G0 from cycling G1 cells. Subsequent progress in analysis of DNA replication was based on the use of BrdU as a DNA precursor and its detection by the quenching of the fluorescence intensity of DNA-bound fluorochromes such as Hoechst 33358 or acridine orange as measured by flow cytometry. Several variants of this methodology have been designed and used in studies to detect anticancer drug-induced perturbations of cell cycle kinetics. The next phase of method development, which was particularly useful in studies of the cell cycle in vivo, including clinical applications, relied on immunocytochemical detection of incorporated halogenated DNA or RNA precursors. This approach however was hampered by the need for DNA denaturation, which made it difficult to concurrently detect other cell constituents for multiparametric analysis. The recently introduced “click chemistry” approach has no such limitation and is the method of choice for analysis of DNA replication and RNA synthesis. This method is based on the use of 5-ethynyl-2′deoxyuridine (EdU) as a DNA precursor or 5-ethynyluridine (EU) as an RNA precursor and their detection with fluorochrome-tagged azides utilizing a copper (I) catalyzed [3+2] cycloaddition. Several examples are presented that illustrate incorporation of EdU or EU in cells subjected to DNA damage detected as histone H2AX phosphorylation that have been analyzed by flow or laser scanning cytometry. PMID:21425239

  11. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  12. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells.

    PubMed

    Zhang, Zhigang; Vu, Gia-Phong; Gong, Hao; Xia, Chuan; Chen, Yuan-Chuan; Liu, Fenyong; Wu, Jianguo; Lu, Sangwei

    2013-01-01

    External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.

  13. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.

    PubMed

    Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre

    2016-01-01

    Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.

  14. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro

    PubMed Central

    JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU

    2015-01-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539

  15. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.

    PubMed

    Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu

    2015-11-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .

  16. In vitro characterization of Multi-Drug Resistant HIV-1 Isolates from a Recently Infected Patient Associated with Dual Tropism and Rapid Disease Progression

    PubMed Central

    Mohri, Hiroshi; Markowitz, Martin

    2013-01-01

    Objective: Multi-drug resistant (MDR)-HIV-1 variants are thought to be less fit than wild type virus. In 2005 we reported a case of transmitted MDR-HIV-1 infection associated with dual tropism and rapid clinical progression. Here, we report the in vitro characterization of the virus isolates. Methods: Replication characteristics of bulk and clonal isolates from this case (MDR-1) were examined and compared with these to a panel of transmitted MDR and wild type viruses (MDR-2~4, WT-1, 2). Results: Infectivity and frequency of infectious virion of propagated isolates were high in MDR-1 biological clones (mean titer, 3.5×105 TCID50/ml; mean frequency of infectious virion, 1/2,444) and its bulk isolate (3.2×106TCID50/ml; 1/301), as compared to the other biological clones (7.3×103TCID50/ml; 1/21,320). Up-slope (log10p24/ml/d) of viral replication in PBMC culture was much higher in MDR-1 clones (1.30±0.30: mean±SD) than those of MDR-2~4 (0.75±0.08) or WT-1, -2 clones (0.82±0.03). The bulk isolate and dual tropic biological clones from MDR-1 depleted CD4+ T cells very rapidly in vitro compared to the other viruses tested. Conclusion: These findings support the hypothesis that multi-drug resistant HIV-1 can effectively evolve and compensate to not only retain high level replication but exhibit virulence associated with rapid disease progression. PMID:18645523

  17. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo.

    PubMed

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.

  18. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo

    PubMed Central

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N.; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model. PMID:27612283

  19. Towards Self-Replicating Chemical Systems Based on Cytidylic and Guanylic Acids

    NASA Technical Reports Server (NTRS)

    Kanavarioti, Anastassia; Bernasconi, Claude F.

    1997-01-01

    This project is aimed towards a better understanding of template-directed reactions and, based on this, towards the development of efficient non-enzymatic RNA replicating systems. These systems could serve as models for the prebiotic synthesis of an RNA world. The major objectives of this project were: (a) To elucidate the mechanistic aspects of template-directed (TD) chemistry, (b) to identify the conditions, environmental and other, that favor "organized chemistry" and stereo selective polymerization of nucleotides and (c) to search and, hopefully, find catalysts that will improve the efficiency of these reactions. Enhanced efficiency is expected to facilitate the road towards a self-replicating chemical system based on all four nucleic acid bases. During the first nine months of the granting period from January 1997 to October 1997, we have made substantial progress towards the first two objectives. During this period our activities were directed towards (1) synthesizing activated nucleotides to be used as substrates, (2) using these substrates in order to determine the effect of the leaving group (imidazole (Im), 2-methylimidazole (2-MeIm), and 2,4-dimethylimidazole (2,4-diMeIm)) in the product distribution, (3) developing techniques for analysis of mixtures by LC/MS, (4) creating a protocol in order to obtain kinetic parameters of the dimerization reaction and (5) analyzing kinetic data obtained with the poly(C)/2-MeImpG system. With the exception of item (5), the experimental work for the projects (1) - (4) is still in progress. A list of publications and manuscripts resulted from this research is enclosed.

  20. Identification of Key Amino Acid Residues Modulating Intracellular and In vitro Microcin E492 Amyloid Formation

    PubMed Central

    Aguilera, Paulina; Marcoleta, Andrés; Lobos-Ruiz, Pablo; Arranz, Rocío; Valpuesta, José M.; Monasterio, Octavio; Lagos, Rosalba

    2016-01-01

    Microcin E492 (MccE492) is a pore-forming bacteriocin produced and exported by Klebsiella pneumoniae RYC492. Besides its antibacterial activity, excreted MccE492 can form amyloid fibrils in vivo as well as in vitro. It has been proposed that bacterial amyloids can be functional playing a biological role, and in the particular case of MccE492 it would control the antibacterial activity. MccE492 amyloid fibril’s morphology and formation kinetics in vitro have been well-characterized, however, it is not known which amino acid residues determine its amyloidogenic propensity, nor if it forms intracellular amyloid inclusions as has been reported for other bacterial amyloids. In this work we found the conditions in which MccE492 forms intracellular amyloids in Escherichia coli cells, that were visualized as round-shaped inclusion bodies recognized by two amyloidophilic probes, 2-4′-methylaminophenyl benzothiazole and thioflavin-S. We used this property to perform a flow cytometry-based assay to evaluate the aggregation propensity of MccE492 mutants, that were designed using an in silico prediction of putative aggregation hotspots. We established that the predicted amino acid residues 54–63, effectively act as a pro-amyloidogenic stretch. As in the case of other amyloidogenic proteins, this region presented two gatekeeper residues (P57 and P59), which disfavor both intracellular and in vitro MccE492 amyloid formation, preventing an uncontrolled aggregation. Mutants in each of these gatekeeper residues showed faster in vitro aggregation and bactericidal inactivation kinetics, and the two mutants were accumulated as dense amyloid inclusions in more than 80% of E. coli cells expressing these variants. In contrast, the MccE492 mutant lacking residues 54–63 showed a significantly lower intracellular aggregation propensity and slower in vitro polymerization kinetics. Electron microscopy analysis of the amyloids formed in vitro by these mutants revealed that, although with different efficiency, all formed fibrils morphologically similar to wild-type MccE492. The physiological implication of MccE492 intracellular amyloid formation is probably similar to the inactivation process observed for extracellular amyloids, and could be used as a mean of sequestering potentially toxic species inside the cell when this bacteriocin is produced in large amounts. PMID:26858708

Top