Sample records for vitro replication system

  1. In Vitro "Evolutionary Arms-Races" Between Hosts and Parasites in an Artificial RNA Replication System

    NASA Astrophysics Data System (ADS)

    Furubayashi, T.; Bansho, Y.; Motooka, D.; Nakamura, S.; Ichihashi, N.

    2017-07-01

    We performed coevolution of artificial RNA self-replicators and parasitic replicators in microdroplets. We observed evolutionary arms-races with oscillating population dynamics and faster evolution of self-replicators caused by parasitic replicators.

  2. Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee?

    PubMed

    Varadarajan, Kartik M; Harry, Rubash E; Johnson, Todd; Li, Guoan

    2009-10-01

    In vitro systems provide a powerful means to evaluate the efficacy of total knee arthroplasty (TKA) in restoring normal knee kinematics. The Oxford knee rig (OKR) and the robotic knee testing system (RKTS) represent two systems that have been extensively used to study TKA biomechanics. Nonetheless, a frequently asked question is whether in vitro simulations can capture the in vivo behavior of the knee. Here, we compared the flexion-extension kinematics of intact knees and knees after TKA tested on the OKR and RKTS, to results of representative in vivo studies. The goal was to determine if the in vitro systems could capture the key kinematic features of knees in healthy subjects and TKA patients. Results showed that the RKTS and the OKR can replicate the femoral rollback and 'screw home' tibial rotation between 0 degrees and 30 degrees flexion seen in healthy subjects, and the reduced femoral rollback and absence of 'screw home' motion in TKA patients. The RKTS also replicated the overall internally rotated position of the tibia beyond 30 degrees flexion. However, ability of the OKR to replicate the internally rotated position of the knee beyond 30 degrees flexion was inconsistent. These data could aid in validation of new in vitro systems and physiologic interpretations of in vitro results.

  3. Mink parvoviruses and interferons: in vitro studies.

    PubMed Central

    Wiedbrauk, D L; Bloom, M E; Lodmell, D L

    1986-01-01

    Although interferons can inhibit the replication of a number of viruses, little is known about their ability to inhibit parvovirus replication. Therefore, in vitro experiments were done to determine if Aleutian disease virus and mink enteritis virus, two autonomously replicating mink parvoviruses, induced interferon, were sensitive to the effects of interferon, or inhibited the production of interferon. The results indicated that these parvoviruses neither induced nor were sensitive to the effects of interferon. Furthermore, preexisting parvovirus infections did not inhibit poly(I).poly(C)-induced interferon production. This independence from the interferon system may, therefore, be a general property of the autonomously replicating parvoviruses. PMID:2431162

  4. Cooperative working of bacterial chromosome replication proteins generated by a reconstituted protein expression system

    PubMed Central

    Fujiwara, Kei; Katayama, Tsutomu; Nomura, Shin-ichiro M.

    2013-01-01

    Replication of all living cells relies on the multirounds flow of the central dogma. Especially, expression of DNA replication proteins is a key step to circulate the processes of the central dogma. Here we achieved the entire sequential transcription–translation–replication process by autonomous expression of chromosomal DNA replication machineries from a reconstituted transcription–translation system (PURE system). We found that low temperature is essential to express a complex protein, DNA polymerase III, in a single tube using the PURE system. Addition of the 13 genes, encoding initiator, DNA helicase, helicase loader, RNA primase and DNA polymerase III to the PURE system gave rise to a DNA replication system by a coupling manner. An artificial genetic circuit demonstrated that the DNA produced as a result of the replication is able to provide genetic information for proteins, indicating the in vitro central dogma can sequentially undergo two rounds. PMID:23737447

  5. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore,more » using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.« less

  6. Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro.

    PubMed

    Workman, Rob G; Maddison, Ben C; Gough, Kevin C

    2017-07-04

    Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.

  7. Host-parasite oscillation dynamics and evolution in a compartmentalized RNA replication system.

    PubMed

    Bansho, Yohsuke; Furubayashi, Taro; Ichihashi, Norikazu; Yomo, Tetsuya

    2016-04-12

    To date, various cellular functions have been reconstituted in vitro such as self-replication systems using DNA, RNA, and proteins. The next important challenges include the reconstitution of the interactive networks of self-replicating species and investigating how such interactions generate complex ecological behaviors observed in nature. Here, we synthesized a simple replication system composed of two self-replicating host and parasitic RNA species. We found that the parasitic RNA eradicates the host RNA under bulk conditions; however, when the system is compartmentalized, a continuous oscillation pattern in the population dynamics of the two RNAs emerges. The oscillation pattern changed as replication proceeded mainly owing to the evolution of the host RNA. These results demonstrate that a cell-like compartment plays an important role in host-parasite ecological dynamics and suggest that the origin of the host-parasite coevolution might date back to the very early stages of the evolution of life.

  8. Subnuclear systems for synthesis of simian virus 40 DNA in vitro.

    PubMed Central

    Edenberg, H J; Waqar, M A; Huberman, J A

    1976-01-01

    We have developed two subnuclear systems for synthesis of DNA of simian virus 40 in vitro. We prepare chromatin from infected cells by the method of Hancock [(1974) J. Mol. Biol. 86, 649-663]; these "chromatin bodies" can be disrupted and large debris can be pelleted, leaving a supernatant ("soluble system"). Both chromatin bodies and the soluble system incorporate deoxyribonucleoside triphosphates into nucleoprotein complexes that contain simian virus 40 DNA. The DNA labeled in short pulses sediments in neutral sucrose gradients slightly faster than mature simian virus 40 DNA, as expected for replicating intermediate. When rebanded in alkaline sucrose gradients, about half of the radioactivity is found in short strands (200-300 nucleotides) and half in longer strands (up to full viral size). When these systems are supplemented with a cytoplasmic preparation from HeLa cells, synthesis is stimulated about 5-fold, and the short strands are converted into strands of up to full viral length as well as into covalently closed circles. These subnuclear DNA-replicating systems should be useful for biochemical fractionation and characterization of some of the proteins required for DNA replication. PMID:188037

  9. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system.

    PubMed

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-05-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant's immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (-)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing.

  10. AGO/RISC-mediated antiviral RNA silencing in a plant in vitro system

    PubMed Central

    Schuck, Jana; Gursinsky, Torsten; Pantaleo, Vitantonio; Burgyán, Jozsef; Behrens, Sven-Erik

    2013-01-01

    AGO/RISC-mediated antiviral RNA silencing, an important component of the plant’s immune response against RNA virus infections, was recapitulated in vitro. Cytoplasmic extracts of tobacco protoplasts were applied that supported Tombusvirus RNA replication, as well as the formation of RNA-induced silencing complexes (RISC) that could be functionally reconstituted with various plant ARGONAUTE (AGO) proteins. For example, when RISC containing AGO1, 2, 3 or 5 were programmed with exogenous siRNAs that specifically targeted the viral RNA, endonucleolytic cleavages occurred and viral replication was inhibited. Antiviral RNA silencing was disabled by the viral silencing suppressor p19 when this was present early during RISC formation. Notably, with replicating viral RNA, only (+)RNA molecules were accessible to RISC, whereas (−)RNA replication intermediates were not. The vulnerability of viral RNAs to RISC activity also depended on the RNA structure of the target sequence. This was most evident when we characterized viral siRNAs (vsiRNAs) that were particularly effective in silencing with AGO1- or AGO2/RISC. These vsiRNAs targeted similar sites, suggesting that accessible parts of the viral (+)RNA may be collectively attacked by different AGO/RISC. The in vitro system was, hence, established as a valuable tool to define and characterize individual molecular determinants of antiviral RNA silencing. PMID:23535144

  11. Sofosbuvir inhibits hepatitis A virus replication in vitro assessed by a cell-based fluorescent reporter system.

    PubMed

    Jiang, Wang; Muhammad, Fawad; Ma, Pengjuan; Liu, Xiyu; Long, Gang

    2018-06-01

    Hepatitis A virus (HAV) infection remains a major cause of acute hepatitis worldwide and even leads to fulminant hepatitis. For screening antivirals against HAV in vitro, we develop a cell-based fluorescent reporter system named Huh-7.5.1-GA, in which HAV infection is visualized by green fluorescence protein (GFP) translocation from the cytosol into the nucleus. The reliability of Huh-7.5.1-GA for antiviral studies is validated by IFN-α, a known inhibitor of HAV replication, which impedes GFP translocation. Utilizing this in-vitro reporter system, we find that sofosbuvir, an FDA approved prodrug for the treatment of chronic hepatitis C, disturbs GFP translocation and inhibits HAV replication efficiently. In addition, we find that inhibition of HAV by sofosbuvir is hepatic-cell dependent, with IC50 (half-maximal inhibitory concentration) being 6.3 μM and 9.9 μM in Huh-7.5.1, quantified separately by RT-qPCR and image-based analysis. Therefore, our reporter system may serve as a high-throughput platform for screening potent antivirals against HAV. Sofosbuvir may be considered for treatment of hepatitis A, especially in re-infected patients who undergo liver transplantation due to HAV-induced liver failure. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Emergence of a replicating species from an in vitro RNA evolution reaction

    NASA Technical Reports Server (NTRS)

    Breaker, R. R.; Joyce, G. F.

    1994-01-01

    The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.

  13. Preparation and use of Xenopus egg extracts to study DNA replication and chromatin associated proteins

    PubMed Central

    Gillespie, Peter J.; Gambus, Agnieszka; Blow, J. Julian

    2012-01-01

    The use of cell-free extracts prepared from eggs of the South African clawed toad, Xenopus laevis, has led to many important discoveries in cell cycle research. These egg extracts recapitulate the key nuclear transitions of the eukaryotic cell cycle in vitro under apparently the same controls that exist in vivo. DNA added to the extract is first assembled into a nucleus and is then efficiently replicated. Progression of the extract into mitosis then allows the separation of paired sister chromatids. The Xenopus cell-free system is therefore uniquely suited to the study of the mechanisms, dynamics and integration of cell cycle regulated processes at a biochemical level. In this article we describe methods currently in use in our laboratory for the preparation of Xenopus egg extracts and demembranated sperm nuclei for the study of DNA replication in vitro. We also detail how DNA replication can be quantified in this system. In addition, we describe methods for isolating chromatin and chromatin-bound protein complexes from egg extracts. These recently developed and revised techniques provide a practical starting point for investigating the function of proteins involved in DNA replication. PMID:22521908

  14. In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling*

    PubMed Central

    Lindsey-Boltz, Laura A.; Reardon, Joyce T.; Wold, Marc S.; Sancar, Aziz

    2012-01-01

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair. PMID:22948311

  15. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling.

    PubMed

    Lindsey-Boltz, Laura A; Reardon, Joyce T; Wold, Marc S; Sancar, Aziz

    2012-10-19

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.

  16. In vitro replication of poliovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lubinski, J.M.

    1986-01-01

    Poliovirus is a member of the Picornaviridae whose genome is a single stranded RNA molecule of positive polarity surrounded by a proteinaceous capsid. Replication of poliovirus occurs via negative strand intermediates in infected cells using a virally encoded RNA-dependent RNA polymerase and host cell proteins. The authors have exploited the fact that complete cDNA copies of the viral genome when transfected onto susceptible cells generate virus. Utilizing the bacteriophage SP6 DNA dependent RNA polymerase system to synthesize negative strands in vitro and using these in an in vitro reaction the authors have generated full length infectious plus strands. Mutagenesis ofmore » the 5' and 3' ends of the negative and positive strands demonstrated that replication could occur either de novo or be extensions of the templates from their 3' ends or from nicks occurring during replication. The appearance of dimeric RNA molecules generated in these reactions was not dependent upon the same protein required for de novo initiation. Full length dimeric RNA molecules using a 5' /sup 32/P end-labelled oligo uridylic acid primer and positive strand template were demonstrated in vitro containing only the 35,000 Mr host protein and the viral RNA-dependent RNA polymerase. A model for generating positive strands without protein priming by cleavage of dimeric RNA molecules was proposed.« less

  17. Human stem cell–derived astrocytes replicate human prions in a PRNP genotype–dependent manner

    PubMed Central

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Rzechorzek, Nina M.; Ullian, Erik M.; Manson, Jean

    2017-01-01

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt–Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype–dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. PMID:29141869

  18. Cytosine methylation inhibits replication of African cassava mosaic virus by two distinct mechanisms.

    PubMed Central

    Ermak, G; Paszkowski, U; Wohlmuth, M; Scheid, O M; Paszkowski, J

    1993-01-01

    Extrachromosomally replicating viral DNA is usually free of cytosine methylation and viral templates methylated in vitro are poor substrates when used in replication assays. We have investigated the mechanism of inhibition of viral replication by DNA methylation using as a model the DNA A of African cassava mosaic virus. We have constructed two component helper systems which allow for separation of the transcriptional inhibition of viral genes necessary for replication from replication inhibition due to altered interaction between the replication complex and methylated viral DNA. Our results suggest that methylation-mediated reduction of viral replication is due to both repression mechanisms and that this provides two independent selection pressures for the maintenance of methylation-free replicons in infected cells. Images PMID:7688453

  19. Replicative Functions of Minute Virus of Mice NS1 Protein Are Regulated In Vitro by Phosphorylation through Protein Kinase C

    PubMed Central

    Nüesch, Jürg P. F.; Dettwiler, Sabine; Corbau, Romuald; Rommelaere, Jean

    1998-01-01

    NS1, the major nonstructural protein of the parvovirus minute virus of mice, is a multifunctional phosphoprotein which is involved in cytotoxicity, transcriptional regulation, and initiation of viral DNA replication. For coordination of these various functions during virus propagation, NS1 has been proposed to be regulated by posttranslational modifications, in particular phosphorylation. Recent in vitro studies (J. P. F. Nüesch, R. Corbau, P. Tattersall, and J. Rommelaere, J. Virol. 72:8002–8012, 1998) provided evidence that distinct NS1 activities, notably the intrinsic helicase function, are modulated by the phosphorylation state of the protein. In order to study the dependence of the initiation of viral DNA replication on NS1 phosphorylation and to identify the protein kinases involved, we established an in vitro replication system that is devoid of endogenous protein kinases and is based on plasmid substrates containing the minimal left-end origins of replication. Cellular components necessary to drive NS1-dependent rolling-circle replication (RCR) were freed from endogenous serine/threonine protein kinases by affinity chromatography, and the eukaryotic DNA polymerases were replaced by the bacteriophage T4 DNA polymerase. While native NS1 (NS1P) supported RCR under these conditions, dephosphorylated NS1 (NS1O) was impaired. Using fractionated HeLa cell extracts, we identified two essential protein components which are able to phosphorylate NS1O, are enriched in protein kinase C (PKC), and, when present together, reactivate NS1O for replication. One of these components, containing atypical PKC, was sufficient to restore NS1O helicase activity. The requirement of NS1O reactivation for characteristic PKC cofactors such as Ca2+/phosphatidylserine or phorbol esters strongly suggests the involvement of this protein kinase family in regulation of NS1 replicative functions in vitro. PMID:9811734

  20. Effects of transforming growth factor-alpha (TGF-alpha) in vitro and in vivo on reovirus replication.

    PubMed

    Organ, Edward L; Nalbantyan, Christopher D; Nanney, Lillian B; Woodward, Stephen C; Sheng, Jinsong; Dubois, Raymond N; Price, James; Sutcliffe, Marilyn; Coffey, Robert J; Rubin, Donald H

    2004-07-01

    We have utilized growth factors in in vitro and in vivo systems to examine the role of cellular proliferation in reovirus replication. In vitro, proliferating RIE-1 cells can be infected with whole reovirus virions, but are relatively resistant to infection once confluent (Go arrest). It has been shown that TGF-alpha, which signals through the EGF-receptor (EGF-R), is capable of dramatically increasing the number of RIE-1 cells entering the S-phase in the presence of additional serum factors. Stimulation of the EGF-R without serum results in minimal increases in cells entering the S-phase with a restriction in reovirus replication. Therefore, other factors in serum are essential for fully permissive infection. In vivo, we used metallothionein (MT) promoter/enhancer-TGF-alpha transgenic mice to study the effect of cytokine activation on reovirus type 1 infection. Virus replication decreased following oral infection in these transgenic mice at 1 month of age, concordant with increased mucin production. Titers of reovirus obtained from the livers of 1 year old transgenic mice were approximately 10-fold higher than titers obtained in control mice. Taken together, these data indicate that while growth factor activation ultimately leads to an increase in virus infectivity, other factors may be necessary for reovirus replication.

  1. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts

    PubMed Central

    Komoda, Keisuke; Naito, Satoshi; Ishikawa, Masayuki

    2004-01-01

    The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses. PMID:14769932

  2. A Novel Model System to Examine Agents Used in Breast Cancer Therapy.

    DTIC Science & Technology

    1996-07-01

    DNA replication (DNA synthesome) isolated from MDA MB 468 human breast cancer cells, human breast tumor tissue and human breast tumor cell xenografts In the presence of the viral large T-antigen and simian virus 40 (SV40) origin sequences, the DNA synthesome executes all of the steps required for the in vitro replication of the SV40 genome. Furthermore, the DNA synthesome isolated from human breast cancer cells possesses a lower fidelity for DNA synthesis in vitro than the synthesome purified from a non-malignant breast cell line. Our studies indicate that the following

  3. Matrix Conditions and KLF2-Dependent Induction of Heme Oxygenase-1 Modulate Inhibition of HCV Replication by Fluvastatin

    PubMed Central

    Singethan, Katrin; Sirma, Hüseyin; Keller, Amelie Dorothea; Rosal, Sergio René Perez; Schrader, Jörg; Loscher, Christine; Volz, Tassilo; Bartenschlager, Ralf; Lohmann, Volker; Protzer, Ulrike; Dandri, Maura; Lohse, Ansgar W.; Tiegs, Gisa; Sass, Gabriele

    2014-01-01

    Background & Aims HMG-CoA-reductase-inhibitors (statins) have been shown to interfere with HCV replication in vitro. We investigated the mechanism, requirements and contribution of heme oxygenase-1(HO-1)-induction by statins to interference with HCV replication. Methods HO-1-induction by fluva-, simva-, rosuva-, atorva- or pravastatin was correlated to HCV replication, using non-infectious replicon systems as well as the infectious cell culture system. The mechanism of HO-1-induction by statins as well as its relevance for interference with HCV replication was investigated using transient or permanent knockdown cell lines. Polyacrylamide(PAA) gels of different density degrees or the Rho-kinase-inhibitor Hydroxyfasudil were used in order to mimic matrix conditions corresponding to normal versus fibrotic liver tissue. Results All statins used, except pravastatin, decreased HCV replication and induced HO-1 expression, as well as interferon response in vitro. HO-1-induction was mediated by reduction of Bach1 expression and induction of the Nuclear factor (erythroid-derived 2)-like 2 (NRF2) cofactor Krueppel-like factor 2 (KLF2). Knockdown of KLF2 or HO-1 abrogated effects of statins on HCV replication. HO-1-induction and anti-viral effects of statins were more pronounced under cell culture conditions mimicking advanced stages of liver disease. Conclusions Statin-mediated effects on HCV replication seem to require HO-1-induction, which is more pronounced in a microenvironment resembling fibrotic liver tissue. This implicates that certain statins might be especially useful to support HCV therapy of patients at advanced stages of liver disease. PMID:24801208

  4. A Novel Model System to Examine Agents Used in Breast Cancer Therapy.

    DTIC Science & Technology

    1995-07-01

    We have recently characterized a multiprotein DNA replication complex (MRC) that was purified from NODA NIB 468 human breast cancer cells by a series...proliferating cell nuclear antigen (PCNA), RE-C RP-A and DNA topoisomerase I. Based upon its requirements for DNA replication activity and its...SV4O) origin sequences, the MRC executes all of the steps required for the in vitro, bidirectional replication of the SV4O genome. Several of the DNA

  5. Understanding DNA replication by the bacteriophage T4 replisome.

    PubMed

    Benkovic, Stephen J; Spiering, Michelle M

    2017-11-10

    The T4 replisome has provided a unique opportunity to investigate the intricacies of DNA replication. We present a comprehensive review of this system focusing on the following: its 8-protein composition, their individual and synergistic activities, and assembly in vitro and in vivo into a replisome capable of coordinated leading/lagging strand DNA synthesis. We conclude with a brief comparison with other replisomes with emphasis on how coordinated DNA replication is achieved. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Human stem cell-derived astrocytes replicate human prions in a PRNP genotype-dependent manner.

    PubMed

    Krejciova, Zuzana; Alibhai, James; Zhao, Chen; Krencik, Robert; Rzechorzek, Nina M; Ullian, Erik M; Manson, Jean; Ironside, James W; Head, Mark W; Chandran, Siddharthan

    2017-12-04

    Prions are infectious agents that cause neurodegenerative diseases such as Creutzfeldt-Jakob disease (CJD). The absence of a human cell culture model that replicates human prions has hampered prion disease research for decades. In this paper, we show that astrocytes derived from human induced pluripotent stem cells (iPSCs) support the replication of prions from brain samples of CJD patients. For experimental exposure of astrocytes to variant CJD (vCJD), the kinetics of prion replication occur in a prion protein codon 129 genotype-dependent manner, reflecting the genotype-dependent susceptibility to clinical vCJD found in patients. Furthermore, iPSC-derived astrocytes can replicate prions associated with the major sporadic CJD strains found in human patients. Lastly, we demonstrate the subpassage of prions from infected to naive astrocyte cultures, indicating the generation of prion infectivity in vitro. Our study addresses a long-standing gap in the repertoire of human prion disease research, providing a new in vitro system for accelerated mechanistic studies and drug discovery. © 2017 Krejciova et al.

  7. Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.

    DTIC Science & Technology

    1995-08-31

    cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast

  8. A single mutation in the PBC loop of VP2 is involved in the in vitro replication of infectious bursal disease virus.

    PubMed

    Qi, Xiaole; Gao, Xiang; Lu, Zhen; Zhang, Lizhou; Wang, Yongqiang; Gao, Li; Gao, Yulong; Li, Kai; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Wang, Xiaomei

    2016-07-01

    To test whether amino acid mutations in the PBC and PHI loops of VP2 are involved in the replication and virulence of infectious bursal disease virus (IBDV), a pair of viruses, namely the moderately virulent IBDV (rGx-F9VP2) and the attenuated strain (rGt), were used. Residue mutations A222P (PBC) and S330R (PHI), selected by sequence comparison, were introduced individually into rGx-F9VP2 by using a reverse genetics system. In addition, the reverse mutation of either P222A or R330S was introduced into rGt. The four modified viruses were then rescued and evaluated in vitro (CEF cells) and in vivo (SPF chickens). Results showed that A222P elevated the replication efficiency of rGx-F9VP2 while P222A reduced that of rGt in CEF cells. A mutation at residue 330 did not alter IBDV replication. In addition, animal experiments showed that a single mutation at either residue 222 or 330 did not significantly influence the virulence of IBDV. In conclusion, residue 222 in PBC of VP2 is involved in the replication efficiency of IBDV in vitro but does not affect its virulence in vivo, further facilitating our understanding of the gene-function of IBDV.

  9. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  10. Haemocytes from Crassostrea gigas and OsHV-1: A promising in vitro system to study host/virus interactions.

    PubMed

    Morga, Benjamin; Faury, Nicole; Guesdon, Stéphane; Chollet, Bruno; Renault, Tristan

    2017-11-01

    Since 2008, mass mortality outbreaks associated with the detection of particular variants of OsHV-1 have been reported in Crassostrea gigas spat and juveniles in several countries. Recent studies have reported information on viral replication during experimental infection. Viral DNA and RNA were also detected in the haemolymph and haemocytes suggesting that the virus could circulate through the circulatory system. However, it is unknown if the virus is free in the haemolymph, passively associated at the surface of haemocytes, or able to infect and replicate inside these cells inducing (or not) virion production. In the present study, we collected haemocytes from the haemolymphatic sinus of the adductor muscle of healthy C. gigas spat and exposed them in vitro to a viral suspension. Results showed that viral RNAs were detectable one hour after contact and the number of virus transcripts increased over time in association with an increase of viral DNA detection. These results suggested that the virus is able to initiate replication rapidly inside haemocytes maintained in vitro. These in vitro trials were also used to carry out a dual transcriptomic study. We analyzed concomitantly the expression of some host immune genes and 15 viral genes. Results showed an up regulation of oyster genes currently studied during OsHV-1 infection. Additionally, transmission electron microscopy examination was carried out and did not allow the detection of viral particles. Moreover, All the results suggested that the in vitro model using haemocytes can be valuable for providing new perspective on virus-oyster interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. A reverse genetics system for the Great Lakes strain of viral hemorrhagic septicemia virus: the NV gene is required for pathogenicity

    USGS Publications Warehouse

    Ammayappan, Arun; Kurath, Gael; Thompson, Tarin M.; Vakharia, Vikram N.

    2011-01-01

    Viral hemorrhagic septicemia virus (VHSV), belonging to the genus Novirhabdovirus in the family of Rhabdoviridae, causes a highly contagious disease of fresh and saltwater fish worldwide. Recently, a novel genotype of VHSV, designated IVb, has invaded the Great Lakes in North America, causing large-scale epidemics in wild fish. An efficient reverse genetics system was developed to generate a recombinant VHSV of genotype IVb from cloned cDNA. The recombinant VHSV (rVHSV) was comparable to the parental wild-type strain both in vitro and in vivo, causing high mortality in yellow perch (Perca flavescens). A modified recombinant VHSV was generated in which the NV gene was substituted with an enhanced green fluorescent protein gene (rVHSV-ΔNV-EGFP), and another recombinant was made by inserting the EGFP gene into the full-length viral clone between the P and M genes (rVHSV-EGFP). The in vitro replication kinetics of rVHSV-EGFP was similar to rVHSV; however, the rVHSV-ΔNV-EGFP grew 2 logs lower. In yellow perch challenges, wtVHSV and rVHSV induced 82-100% cumulative per cent mortality (CPM), respectively, whereas rVHSV-EGFP produced 62% CPM and rVHSV-ΔNV-EGFP caused only 15% CPM. No reversion of mutation was detected in the recovered viruses and the recombinant viruses stably maintained the foreign gene after several passages. These results indicate that the NV gene of VHSV is not essential for viral replication in vitro and in vivo, but it plays an important role in viral replication efficiency and pathogenicity. This system will facilitate studies of VHSV replication, virulence, and production of viral vectored vaccines.

  12. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors.

    PubMed

    Crosby, Catherine M; Barry, Michael A

    2017-02-18

    Most adenovirus (Ad) vectors are E1 gene deleted replication defective (RD-Ad) vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad) vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed "single cycle" Ad (SC-Ad) vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP) expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG) cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In immunodeficient mice, SC-Ad drove stronger luciferase expression than RC- or RD-Ad. These data demonstrate better transgene expression by SC- and RC-Ad in vitro and in vivo than RD-Ad. This higher expression by the replicating vectors results in a peak of expression within 1 to 2 days followed by cell death of infected cells and release of transgene products. While SC- and RC-Ad expression were similar in mice and in Syrian hamsters, RC-Ad provoked much stronger ISG induction which may explain in part SC-Ad's ability to generate stronger and more persistent immune responses than RC-Ad in Ad permissive hamsters.

  13. The relationship between in vitro cellular aging and in vivo human age.

    PubMed Central

    Schneider, E L; Mitsui, Y

    1976-01-01

    Differences between early and late passage cell cultures on the organelle and macromolecular levels have been attributed to cellular "aging". However, concern has been expressed over whether changes in diploid cell populations after serial passage in vitro accurately reflect human cellular aging in vivo. Studies were therefore undertaken to determine if significant differences would be observed in the in vitro lifespans of skin fibroblast cultures from old and young normal, non-hospitalized volunteers and to examine if parameters that change with in vitro "aging" are altered as a function of age in vivo. Statistically signigificant (P less than 0.05) decreases were found in the rate of fibroblast migration, onset of cell culture senescence, in vitro lifespan, cell population replication rate, and cell number at confluency of fibroblast cultures derived from the old donor group when compared to parallel cultures from young donors. No significant differences were observed in modal cell volumes and cellular macromolecular contents. The differences observed in cell cultures from old and young donors were quantitatively and qualitatively distinct from those cellular alterations observed in early and late passage WI-38 cells (in vitro "aging"). Therefore, although early and late passage cultures of human diploid cells may provide an important cell system for examining loss of replicative potential, fibroblast cultures derived from old and young human donors may be a more appropriate model system for studying human cellular aging. PMID:1068470

  14. Long-Term Culture of Genome-Stable Bipotent Stem Cells from Adult Human Liver

    PubMed Central

    Huch, Meritxell; Gehart, Helmuth; van Boxtel, Ruben; Hamer, Karien; Blokzijl, Francis; Verstegen, Monique M.A.; Ellis, Ewa; van Wenum, Martien; Fuchs, Sabine A.; de Ligt, Joep; van de Wetering, Marc; Sasaki, Nobuo; Boers, Susanne J.; Kemperman, Hans; de Jonge, Jeroen; Ijzermans, Jan N.M.; Nieuwenhuis, Edward E.S.; Hoekstra, Ruurdtje; Strom, Stephen; Vries, Robert R.G.; van der Laan, Luc J.W.; Cuppen, Edwin; Clevers, Hans

    2015-01-01

    Summary Despite the enormous replication potential of the human liver, there are currently no culture systems available that sustain hepatocyte replication and/or function in vitro. We have shown previously that single mouse Lgr5+ liver stem cells can be expanded as epithelial organoids in vitro and can be differentiated into functional hepatocytes in vitro and in vivo. We now describe conditions allowing long-term expansion of adult bile duct-derived bipotent progenitor cells from human liver. The expanded cells are highly stable at the chromosome and structural level, while single base changes occur at very low rates. The cells can readily be converted into functional hepatocytes in vitro and upon transplantation in vivo. Organoids from α1-antitrypsin deficiency and Alagille syndrome patients mirror the in vivo pathology. Clonal long-term expansion of primary adult liver stem cells opens up experimental avenues for disease modeling, toxicology studies, regenerative medicine, and gene therapy. PMID:25533785

  15. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.

    PubMed

    Kurihara, Takeshi; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Uemura, Kentaro; Okamoto, Toru; Sugiyama, Masaya; Motooka, Daisuke; Nakamura, Shota; Ikawa, Masato; Mizokami, Masashi; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2017-07-21

    Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

  16. Laser controlled singlet oxygen generation in mitochondria to promote mitochondrial DNA replication in vitro.

    PubMed

    Zhou, Xin; Wang, Yupei; Si, Jing; Zhou, Rong; Gan, Lu; Di, Cuixia; Xie, Yi; Zhang, Hong

    2015-11-18

    Reports have shown that a certain level of reactive oxygen species (ROS) can promote mitochondrial DNA (mtDNA) replication. However, it is unclear whether it is the mitochondrial ROS that stimulate mtDNA replication and this requires further investigation. Here we employed a photodynamic system to achieve controlled mitochondrial singlet oxygen ((1)O2) generation. HeLa cells incubated with 5-aminolevulinic acid (ALA) were exposed to laser irradiation to induce (1)O2 generation within mitochondria. Increased mtDNA copy number was detected after low doses of 630 nm laser light in ALA-treated cells. The stimulated mtDNA replication was directly linked to mitochondrial (1)O2 generation, as verified using specific ROS scavengers. The stimulated mtDNA replication was regulated by mitochondrial transcription factor A (TFAM) and mtDNA polymerase γ. MtDNA control region modifications were induced by (1)O2 generation in mitochondria. A marked increase in 8-Oxoguanine (8-oxoG) level was detected in ALA-treated cells after irradiation. HeLa cell growth stimulation and G1-S cell cycle transition were also observed after laser irradiation in ALA-treated cells. These cellular responses could be due to a second wave of ROS generation detected in mitochondria. In summary, we describe a controllable method of inducing mtDNA replication in vitro.

  17. Replication-Competent Influenza A Viruses Expressing Reporter Genes.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Martínez-Sobrido, Luis

    2016-06-23

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo.

  18. Replication-Competent Influenza A Viruses Expressing Reporter Genes

    PubMed Central

    Breen, Michael; Nogales, Aitor; Baker, Steven F.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A viruses (IAV) cause annual seasonal human respiratory disease epidemics. In addition, IAV have been implicated in occasional pandemics with inordinate health and economic consequences. Studying IAV, in vitro or in vivo, requires the use of laborious secondary methodologies to identify virus-infected cells. To circumvent this requirement, replication-competent IAV expressing an easily traceable reporter protein can be used. Here we discuss the development and applications of recombinant replication-competent IAV harboring diverse fluorescent or bioluminescent reporter genes in different locations of the viral genome. These viruses have been employed for in vitro and in vivo studies, such as the screening of neutralizing antibodies or antiviral compounds, the identification of host factors involved in viral replication, cell tropism, the development of vaccines, or the assessment of viral infection dynamics. In summary, reporter-expressing, replicating-competent IAV represent a powerful tool for the study of IAV both in vitro and in vivo. PMID:27347991

  19. Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood-Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro.

    PubMed

    Rodriguez, Myosotys; Kaushik, Ajeet; Lapierre, Jessica; Dever, Seth M; El-Hage, Nazira; Nair, Madhavan

    2017-03-01

    The purpose of this study was to evaluate a novel drug delivery system comprised of ferric-cobalt electro-magnetic nano-material (CoFe2O4@ BaTiO3; MENP) bound to siRNA targeting Beclin1 (MENP-siBeclin1) to cross the blood-brain barrier (BBB) and attenuate the neurotoxic effects of HIV-1 infection in the central nervous system following on-demand release of siRNA using an in vitro primary human BBB model. Beclin1 is a key protein in the regulation of the autophagy pathway and we have recently demonstrated the importance of Beclin1 in regulating viral replication and viral-induced inflammation in HIV-1-infected microglia. The MENP-siBeclin1 nano-formulation did not compromise the physiological function or integrity of the BBB model. Furthermore, the in vitro BBB data revealed that MENP-siBeclin1 could efficiently attenuate viral replication and viral-induced inflammation, likely due to STAT1/ NF-κB signaling pathways. MENP-siBeclin1 also silenced Beclin1 protein expression in HIV-1-infected microglial cells within the model system. In addition, the cytotoxic effects of direct treatment with siBeclin1 and MENP alone or in nano-formulation on primary human neuronal cells showed a minimal amount of cell death. Overall, the data shows that the nano-formulation can silence the BECN1 gene as an effective mechanism to attenuate HIV-1 replication and viral-induced inflammation in the context of the BBB.

  20. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  1. Mechanism of Archaeal MCM Helicase Recruitment to DNA Replication Origins

    PubMed Central

    Samson, Rachel Y.; Abeyrathne, Priyanka D.; Bell, Stephen D.

    2015-01-01

    Summary Cellular DNA replication origins direct the recruitment of replicative helicases via the action of initiator proteins belonging to the AAA+ superfamily of ATPases. Archaea have a simplified subset of the eukaryotic DNA replication machinery proteins and possess initiators that appear ancestral to both eukaryotic Orc1 and Cdc6. We have reconstituted origin-dependent recruitment of the homohexameric archaeal MCM in vitro with purified recombinant proteins. Using this system, we reveal that archaeal Orc1-1 fulfills both Orc1 and Cdc6 functions by binding to a replication origin and directly recruiting MCM helicase. We identify the interaction interface between these proteins and reveal how ATP binding by Orc1-1 modulates recruitment of MCM. Additionally, we provide evidence that an open-ring form of the archaeal MCM homohexamer is loaded at origins. PMID:26725007

  2. Spatial distribution and specification of mammalian replication origins during G1 phase

    PubMed Central

    Li, Feng; Chen, Jianhua; Solessio, Eduardo; Gilbert, David M.

    2003-01-01

    We have examined the distribution of early replicating origins on stretched DNA fibers when nuclei from CHO cells synchronized at different times during G1 phase initiate DNA replication in Xenopus egg extracts. Origins were differentially labeled in vivo versus in vitro to allow a comparison of their relative positions and spacing. With nuclei isolated in the first hour of G1 phase, in vitro origins were distributed throughout a larger number of DNA fibers and did not coincide with in vivo origins. With nuclei isolated 1 h later, a similar total number of in vitro origins were clustered within a smaller number of DNA fibers but still did not coincide with in vivo origins. However, with nuclei isolated later in G1 phase, the positions of many in vitro origins coincided with in vivo origin sites without further change in origin number or density. These results highlight two distinct G1 steps that establish a spatial and temporal program for replication. PMID:12707307

  3. Cellular respiration: replicating in vivo systems biology for in vitro exploration of human exposome, microbiome, and disease pathogenesis biomarkers

    EPA Science Inventory

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The ex...

  4. Cytologic Effects of Air Force Chemicals

    DTIC Science & Technology

    1980-11-01

    Studies of DNA replication and repair in cell cultures have shown that hydrazine, although highly toxic to cells, does not damage DNA and thus...interfere directly with DNA replication in Chinese hamster ovary cells grown in vitro, nor does it affect DNA repair synthesis in CCL-185 human lung cells...vitro with chemicals and monitoring their effect on DNA replication and repair. This method has been used to show that the alkylating agents MMS and 4

  5. A SELEX-Screened Aptamer of Human Hepatitis B Virus RNA Encapsidation Signal Suppresses Viral Replication

    PubMed Central

    Feng, Hui; Beck, Jürgen; Nassal, Michael; Hu, Kang-hong

    2011-01-01

    Background The specific interaction between hepatitis B virus (HBV) polymerase (P protein) and the ε RNA stem-loop on pregenomic (pg) RNA is crucial for viral replication. It triggers both pgRNA packaging and reverse transcription and thus represents an attractive antiviral target. RNA decoys mimicking ε in P protein binding but not supporting replication might represent novel HBV inhibitors. However, because generation of recombinant enzymatically active HBV polymerase is notoriously difficult, such decoys have as yet not been identified. Methodology/Principal Findings Here we used a SELEX approach, based on a new in vitro reconstitution system exploiting a recombinant truncated HBV P protein (miniP), to identify potential ε decoys in two large ε RNA pools with randomized upper stem. Selection of strongly P protein binding RNAs correlated with an unexpected strong enrichment of A residues. Two aptamers, S6 and S9, displayed particularly high affinity and specificity for miniP in vitro, yet did not support viral replication when part of a complete HBV genome. Introducing S9 RNA into transiently HBV producing HepG2 cells strongly suppressed pgRNA packaging and DNA synthesis, indicating the S9 RNA can indeed act as an ε decoy that competitively inhibits P protein binding to the authentic ε signal on pgRNA. Conclusions/Significance This study demonstrates the first successful identification of human HBV ε aptamers by an in vitro SELEX approach. Effective suppression of HBV replication by the S9 aptamer provides proof-of-principle for the ability of ε decoy RNAs to interfere with viral P-ε complex formation and suggests that S9-like RNAs may further be developed into useful therapeutics against chronic hepatitis B. PMID:22125633

  6. Promotion and Rescue of Intracellular Brucella neotomae Replication during Coinfection with Legionella pneumophila.

    PubMed

    Kang, Yoon-Suk; Kirby, James E

    2017-05-01

    We established a new Brucella neotomae in vitro model system for study of type IV secretion system-dependent (T4SS) pathogenesis in the Brucella genus. Importantly, B. neotomae is a rodent pathogen, and unlike B. abortus , B. melitensis , and B. suis , B. neotomae has not been observed to infect humans. It therefore can be handled more facilely using biosafety level 2 practices. More particularly, using a series of novel fluorescent protein and lux operon reporter systems to differentially label pathogens and track intracellular replication, we confirmed T4SS-dependent intracellular growth of B. neotomae in macrophage cell lines. Furthermore, B. neotomae exhibited early endosomal (LAMP-1) and late endoplasmic reticulum (calreticulin)-associated phagosome maturation. These findings recapitulate prior observations for human-pathogenic Brucella spp. In addition, during coinfection experiments with Legionella pneumophila , we found that defective intracellular replication of a B. neotomae T4SS virB4 mutant was rescued and baseline levels of intracellular replication of wild-type B. neotomae were significantly stimulated by coinfection with wild-type but not T4SS mutant L. pneumophila Using confocal microscopy, it was determined that intracellular colocalization of B. neotomae and L. pneumophila was required for rescue and that colocalization came at a cost to L. pneumophila fitness. These findings were not completely expected based on known temporal and qualitative differences in the intracellular life cycles of these two pathogens. Taken together, we have developed a new system for studying in vitro Brucella pathogenesis and found a remarkable T4SS-dependent interplay between Brucella and Legionella during macrophage coinfection. Copyright © 2017 American Society for Microbiology.

  7. Canine and feline host ranges of canine parvovirus and feline panleukopenia virus: distinct host cell tropisms of each virus in vitro and in vivo.

    PubMed Central

    Truyen, U; Parrish, C R

    1992-01-01

    Canine parvovirus (CPV) emerged as an apparently new virus during the mid-1970s. The origin of CPV is unknown, but a variation from feline panleukopenia virus (FPV) or another closely related parvovirus is suspected. Here we examine the in vitro and in vivo canine and feline host ranges of CPV and FPV. Examination of three canine and six feline cell lines and mitogen-stimulated canine and feline peripheral blood lymphocytes revealed that CPV replicates in both canine and feline cells, whereas FPV replicates efficiently only in feline cells. The in vivo host ranges were unexpectedly complex and distinct from the in vitro host ranges. Inoculation of dogs with FPV revealed efficient replication in the thymus and, to some degree, in the bone marrow, as shown by virus isolation, viral DNA recovery, and Southern blotting and by strand-specific in situ hybridization. FPV replication could not be demonstrated in mesenteric lymph nodes or in the small intestine, which are important target tissues in CPV infection. Although CPV replicated well in all the feline cells tested in vitro, it did not replicate in any tissue of cats after intramuscular or intravenous inoculation. These results indicate that these viruses have complex and overlapping host ranges and that distinct tissue tropisms exist in the homologous and heterologous hosts. Images PMID:1323703

  8. Influenza B virus: alpha-amanitin sensitivity of replication and primer-dependence of in vitro transcription.

    PubMed

    Mowshowitz, S L; Deval, J

    1980-01-01

    The replication of influenza B/Lee/40 virus in MDCK (canine kidney) cells was sensitive to alpha-amanitin and actinomycin D. In vitro, virion transcriptase activity was stimulated by dinucleotide primers such as ApG. The above characteristics are shared by A/WSN virus.

  9. Role of the Adenovirus DNA-Binding Protein in In Vitro Adeno-Associated Virus DNA Replication

    PubMed Central

    Ward, Peter; Dean, Frank B.; O’Donnell, Michael E.; Berns, Kenneth I.

    1998-01-01

    A basic question in adeno-associated virus (AAV) biology has been whether adenovirus (Ad) infection provided any function which directly promoted replication of AAV DNA. Previously in vitro assays for AAV DNA replication, using linear duplex AAV DNA as the template, uninfected or Ad-infected HeLa cell extracts, and exogenous AAV Rep protein, demonstrated that Ad infection provides a direct helper effect for AAV DNA replication. It was shown that the nature of this helper effect was to increase the processivity of AAV DNA replication. Left unanswered was the question of whether this effect was the result of cellular factors whose activity was enhanced by Ad infection or was the result of direct participation of Ad proteins in AAV DNA replication. In this report, we show that in the in vitro assay, enhancement of processivity occurs with the addition of either the Ad DNA-binding protein (Ad-DBP) or the human single-stranded DNA-binding protein (replication protein A [RPA]). Clearly Ad-DBP is present after Ad infection but not before, whereas the cellular level of RPA is not apparently affected by Ad infection. However, we have not measured possible modifications of RPA which might occur after Ad infection and affect AAV DNA replication. When the substrate for replication was an AAV genome inserted into a plasmid vector, RPA was not an effective substitute for Ad-DBP. Extracts supplemented with Ad-DBP preferentially replicated AAV sequences rather than adjacent vector sequences; in contrast, extracts supplemented with RPA preferentially replicated vector sequences. PMID:9420241

  10. Effect of Leflunomide, Cidofovir and Ciprofloxacin on replication of BKPyV in a salivary gland in vitro culture system.

    PubMed

    Jeffers-Francis, Liesl K; Burger-Calderon, Raquel; Webster-Cyriaque, Jennifer

    2015-06-01

    BK polyomavirus (BKPyV) is a known kidney tropic virus that has been detected at high levels in HIV-associated salivary gland disease (HIV-SGD), one of the most important AIDS associated oral lesions. BKPyV has been detected in HIV-SGD patient saliva and replicates in salivary gland cells in vitro. BKPyV antivirals are currently in wide use to guard against BKPyV mediated organ rejection in kidney transplant recipients. The goal of this study was to investigate the inhibitory effects of three such antiviral agents, Ciprofloxacin, Cidofovir, and Leflunomide in BKPyV infected salivary gland cells. Human salivary gland cells, and Vero cells, were infected with BKPyV, treated with antiviral drugs and assessed for BKPyV gene expression and viral replication for up to 5 days post infection. The kinetics of BKPyV replication were different in salivary gland cells compared to kidney cells. Ciprofloxacin and Cidofovir had minimal effect on metabolic activity and host cell DNA replication, however, cell toxicity was detected at the protein level with Leflunomide treatment. Ciprofloxacin decreased BKV T Ag and VP1 mRNA expression by at least 50% in both cell types, and decreased T Ag protein expression at days 3 and 4 post infection. A 2.5-4 log decrease in intracellular DNA replication and a 2-3 log decrease in progeny release were detected with Ciprofloxacin treatment. Cidofovir and Leflunomide also inhibited BKPyV gene expression and DNA replication. The three drugs diminished progeny release by 30-90% and 2- to 6-fold decreases in infectious virus were detected post drug treatment by fluorescence focus assay. Additionally, three clinical BKPyV isolates were assessed for their responses to these agents in vitro. Cidofovir and Leflunomide, but not Ciprofloxacin treatment resulted in statistically significant inhibition of BKPyV progeny release from salivary gland cells infected with HIVSGD BKPyV isolates. All three drugs decreased progeny release from cells infected with a transplant derived viral isolate. In conclusion, treatment of human salivary gland cells with each of the three drugs produced modest decreases in BKPyV genome replication. These data highlight the need for continued studies to discover more effective and less toxic drugs that inhibit BKPyV replication in salivary gland cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Prereplicative complexes assembled in vitro support origin-dependent and independent DNA replication

    PubMed Central

    On, Kin Fan; Beuron, Fabienne; Frith, David; Snijders, Ambrosius P; Morris, Edward P; Diffley, John F X

    2014-01-01

    Eukaryotic DNA replication initiates from multiple replication origins. To ensure each origin fires just once per cell cycle, initiation is divided into two biochemically discrete steps: the Mcm2-7 helicase is first loaded into prereplicative complexes (pre-RCs) as an inactive double hexamer by the origin recognition complex (ORC), Cdt1 and Cdc6; the helicase is then activated by a set of “firing factors.” Here, we show that plasmids containing pre-RCs assembled with purified proteins support complete and semi-conservative replication in extracts from budding yeast cells overexpressing firing factors. Replication requires cyclin-dependent kinase (CDK) and Dbf4-dependent kinase (DDK). DDK phosphorylation of Mcm2-7 does not by itself promote separation of the double hexamer, but is required for the recruitment of firing factors and replisome components in the extract. Plasmid replication does not require a functional replication origin; however, in the presence of competitor DNA and limiting ORC concentrations, replication becomes origin-dependent in this system. These experiments indicate that Mcm2-7 double hexamers can be precursors of replication and provide insight into the nature of eukaryotic DNA replication origins. PMID:24566989

  12. Promotion of Hendra Virus Replication by MicroRNA 146a

    PubMed Central

    Marsh, Glenn A.; Jenkins, Kristie A.; Gantier, Michael P.; Tizard, Mark L.; Middleton, Deborah; Lowenthal, John W.; Haining, Jessica; Izzard, Leonard; Gough, Tamara J.; Deffrasnes, Celine; Stambas, John; Robinson, Rachel; Heine, Hans G.; Pallister, Jackie A.; Foord, Adam J.; Bean, Andrew G.; Wang, Lin-Fa

    2013-01-01

    Hendra virus is a highly pathogenic zoonotic paramyxovirus in the genus Henipavirus. Thirty-nine outbreaks of Hendra virus have been reported since its initial identification in Queensland, Australia, resulting in seven human infections and four fatalities. Little is known about cellular host factors impacting Hendra virus replication. In this work, we demonstrate that Hendra virus makes use of a microRNA (miRNA) designated miR-146a, an NF-κB-responsive miRNA upregulated by several innate immune ligands, to favor its replication. miR-146a is elevated in the blood of ferrets and horses infected with Hendra virus and is upregulated by Hendra virus in human cells in vitro. Blocking miR-146a reduces Hendra virus replication in vitro, suggesting a role for this miRNA in Hendra virus replication. In silico analysis of miR-146a targets identified ring finger protein (RNF)11, a member of the A20 ubiquitin editing complex that negatively regulates NF-κB activity, as a novel component of Hendra virus replication. RNA interference-mediated silencing of RNF11 promotes Hendra virus replication in vitro, suggesting that increased NF-κB activity aids Hendra virus replication. Furthermore, overexpression of the IκB superrepressor inhibits Hendra virus replication. These studies are the first to demonstrate a host miRNA response to Hendra virus infection and suggest an important role for host miRNAs in Hendra virus disease. PMID:23345523

  13. Generation and Characterization of JCV Permissive Hybrid Cell Lines

    PubMed Central

    Sariyer, Ilker K.; Safak, Mahmut; Gordon, Jennifer; Khalili, Kamel

    2009-01-01

    JC virus (JCV) is a human neurotropic polyomavirus whose replication in the central nervous system induces the fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). JCV particles have been detected primarily in oligodendrocytes and astrocytes of the brains of patients with PML and in the laboratory its propagation is limited to primary cultures of human fetal glial cells. In this short communication, the development of a new cell culture system is described through the fusion of primary human fetal astrocytes with the human glioblastoma cell line, U-87MG. The new hybrid cell line obtained from this fusion has the capacity to support efficiently expression of JCV and replication of viral DNA in vitro up to 16 passages. This cell line can serve as a reliable culture system to study the biology of JCV host cell interaction, determine the mechanisms involved in cell type specific replication of JCV, and provide a convenient cell culture system for high throughput screening of anti-viral agents. PMID:19442856

  14. Directed evolution of polymerase function by compartmentalized self-replication.

    PubMed

    Ghadessy, F J; Ong, J L; Holliger, P

    2001-04-10

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication.

  15. Progesterone improves porcine in vitro fertilisation system.

    PubMed

    Malo, Clara; Gil, Lydia; Cano, Rafael; Martinez, Felisa; Gonzalez, Noelia

    2014-03-01

    In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens - progesterone analogues - on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.

  16. Chromatin Controls DNA Replication Origin Selection, Lagging-Strand Synthesis, and Replication Fork Rates.

    PubMed

    Kurat, Christoph F; Yeeles, Joseph T P; Patel, Harshil; Early, Anne; Diffley, John F X

    2017-01-05

    The integrity of eukaryotic genomes requires rapid and regulated chromatin replication. How this is accomplished is still poorly understood. Using purified yeast replication proteins and fully chromatinized templates, we have reconstituted this process in vitro. We show that chromatin enforces DNA replication origin specificity by preventing non-specific MCM helicase loading. Helicase activation occurs efficiently in the context of chromatin, but subsequent replisome progression requires the histone chaperone FACT (facilitates chromatin transcription). The FACT-associated Nhp6 protein, the nucleosome remodelers INO80 or ISW1A, and the lysine acetyltransferases Gcn5 and Esa1 each contribute separately to maximum DNA synthesis rates. Chromatin promotes the regular priming of lagging-strand DNA synthesis by facilitating DNA polymerase α function at replication forks. Finally, nucleosomes disrupted during replication are efficiently re-assembled into regular arrays on nascent DNA. Our work defines the minimum requirements for chromatin replication in vitro and shows how multiple chromatin factors might modulate replication fork rates in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1).

    PubMed

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-12-01

    A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

  18. Replication of Merkel cell polyomavirus induces reorganization of promyelocytic leukemia nuclear bodies.

    PubMed

    Neumann, Friederike; Czech-Sioli, Manja; Dobner, Thomas; Grundhoff, Adam; Schreiner, Sabrina; Fischer, Nicole

    2016-11-01

    Merkel cell polyomavirus (MCPyV) is associated with Merkel cell carcinoma (MCC), a rare but aggressive skin cancer. The virus is highly prevalent: 60-80 % of adults are seropositive; however, cells permissive for MCPyV infection are unknown. Consequently, very little information about the MCPyV life cycle is available. Until recently, MCPyV replication could only be studied using a semi-permissive in vitro replication system (Neumann et al., 2011; Feng et al., 2011, Schowalter et al., 2011). MCPyV replication most likely depends on subnuclear structures such as promyelocytic leukemia protein nuclear bodies (PML-NBs), which are known to play regulatory roles in the infection of many DNA viruses. Here, we investigated PML-NB components as candidate host factors to control MCPyV DNA replication. We showed that PML-NBs change in number and size in cells actively replicating MCPyV proviral DNA. We observed a significant increase in PML-NBs in cells positive for MCPyV viral DNA replication. Interestingly, a significant amount of cells actively replicating MCPyV did not show any Sp100 expression. While PML and Daxx had no effect on MCPyV DNA replication, MCPyV replication was increased in cells depleted for Sp100, strongly suggesting that Sp100 is a negative regulator of MCPyV DNA replication.

  19. SUMO Modification Stabilizes Enterovirus 71 Polymerase 3D To Facilitate Viral Replication

    PubMed Central

    Liu, Yan; Shu, Bo; Meng, Jin; Zhang, Yuan; Zheng, Caishang; Ke, Xianliang; Gong, Peng; Hu, Qinxue; Wang, Hanzhong

    2016-01-01

    ABSTRACT Accumulating evidence suggests that viruses hijack cellular proteins to circumvent the host immune system. Ubiquitination and SUMOylation are extensively studied posttranslational modifications (PTMs) that play critical roles in diverse biological processes. Cross talk between ubiquitination and SUMOylation of both host and viral proteins has been reported to result in distinct functional consequences. Enterovirus 71 (EV71), an RNA virus belonging to the family Picornaviridae, is a common cause of hand, foot, and mouth disease. Little is known concerning how host PTM systems interact with enteroviruses. Here, we demonstrate that the 3D protein, an RNA-dependent RNA polymerase (RdRp) of EV71, is modified by small ubiquitin-like modifier 1 (SUMO-1) both during infection and in vitro. Residues K159 and L150/D151/L152 were responsible for 3D SUMOylation as determined by bioinformatics prediction combined with site-directed mutagenesis. Also, primer-dependent polymerase assays indicated that mutation of SUMOylation sites impaired 3D polymerase activity and virus replication. Moreover, 3D is ubiquitinated in a SUMO-dependent manner, and SUMOylation is crucial for 3D stability, which may be due to the interplay between the two PTMs. Importantly, increasing the level of SUMO-1 in EV71-infected cells augmented the SUMOylation and ubiquitination levels of 3D, leading to enhanced replication of EV71. These results together suggested that SUMO and ubiquitin cooperatively regulated EV71 infection, either by SUMO-ubiquitin hybrid chains or by ubiquitin conjugating to the exposed lysine residue through SUMOylation. Our study provides new insight into how a virus utilizes cellular pathways to facilitate its replication. IMPORTANCE Infection with enterovirus 71 (EV71) often causes neurological diseases in children, and EV71 is responsible for the majority of fatalities. Based on a better understanding of interplay between virus and host cell, antiviral drugs against enteroviruses may be developed. As a dynamic cellular process of posttranslational modification, SUMOylation regulates global cellular protein localization, interaction, stability, and enzymatic activity. However, little is known concerning how SUMOylation directly influences virus replication by targeting viral polymerase. Here, we found that EV71 polymerase 3D was SUMOylated during EV71 infection and in vitro. Moreover, the SUMOylation sites were determined, and in vitro polymerase assays indicated that mutations at SUMOylation sites could impair polymerase synthesis. Importantly, 3D is ubiquitinated in a SUMOylation-dependent manner that enhances the stability of the viral polymerase. Our findings indicate that the two modifications likely cooperatively enhance virus replication. Our study may offer a new therapeutic strategy against virus replication. PMID:27630238

  20. Delta-9 tetrahydrocannabinol (THC) inhibits lytic replication of gamma oncogenic herpesviruses in vitro.

    PubMed

    Medveczky, Maria M; Sherwood, Tracy A; Klein, Thomas W; Friedman, Herman; Medveczky, Peter G

    2004-09-15

    The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC), has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV) and Epstein-Barr virus (EBV) replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS) of monkeys, murine gamma herpesvirus 68 (MHV 68), and herpes simplex type 1 (HSV-1) was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC. These studies may also provide the foundation for the development of antiviral strategies utilizing non-psychoactive derivatives of THC.

  1. Structural Protein VP2 of African Horse Sickness Virus Is Not Essential for Virus Replication In Vitro

    PubMed Central

    van de Water, Sandra G. P.; Potgieter, Christiaan A.; van Rijn, Piet A.

    2016-01-01

    ABSTRACT The Reoviridae family consists of nonenveloped multilayered viruses with a double-stranded RNA genome consisting of 9 to 12 genome segments. The Orbivirus genus of the Reoviridae family contains African horse sickness virus (AHSV), bluetongue virus, and epizootic hemorrhagic disease virus, which cause notifiable diseases and are spread by biting Culicoides species. Here, we used reverse genetics for AHSV to study the role of outer capsid protein VP2, encoded by genome segment 2 (Seg-2). Expansion of a previously found deletion in Seg-2 indicates that structural protein VP2 of AHSV is not essential for virus replication in vitro. In addition, in-frame replacement of RNA sequences in Seg-2 by that of green fluorescence protein (GFP) resulted in AHSV expressing GFP, which further confirmed that VP2 is not essential for virus replication. In contrast to virus replication without VP2 expression in mammalian cells, virus replication in insect cells was strongly reduced, and virus release from insect cells was completely abolished. Further, the other outer capsid protein, VP5, was not copurified with virions for virus mutants without VP2 expression. AHSV without VP5 expression, however, could not be recovered, indicating that outer capsid protein VP5 is essential for virus replication in vitro. Our results demonstrate for the first time that a structural viral protein is not essential for orbivirus replication in vitro, which opens new possibilities for research on other members of the Reoviridae family. IMPORTANCE Members of the Reoviridae family cause major health problems worldwide, ranging from lethal diarrhea caused by rotavirus in humans to economic losses in livestock production caused by different orbiviruses. The Orbivirus genus contains many virus species, of which bluetongue virus, epizootic hemorrhagic disease virus, and African horse sickness virus (AHSV) cause notifiable diseases according to the World Organization of Animal Health. Recently, it has been shown that nonstructural proteins NS3/NS3a and NS4 are not essential for virus replication in vitro, whereas it is generally assumed that structural proteins VP1 to -7 of these nonenveloped, architecturally complex virus particles are essential. Here we demonstrate for the first time that structural protein VP2 of AHSV is not essential for virus replication in vitro. Our findings are very important for virologists working in the field of nonenveloped viruses, in particular reoviruses. PMID:27903804

  2. Alkylating agent (MNU)-induced mutation in space environment

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  3. Novel infectivity-enhanced oncolytic adenovirus with a capsid-incorporated dual-imaging moiety for monitoring virotherapy in ovarian cancer.

    PubMed

    Kimball, Kristopher J; Rivera, Angel A; Zinn, Kurt R; Icyuz, Mert; Saini, Vaibhav; Li, Jing; Zhu, Zeng B; Siegal, Gene P; Douglas, Joanne T; Curiel, David T; Alvarez, Ronald D; Borovjagin, Anton V

    2009-01-01

    We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for noninvasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk) and monomeric red fluorescent protein 1 (mRFP1) into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  4. Relative resistance of HIV-1 founder viruses to control by interferon-alpha

    PubMed Central

    2013-01-01

    Background Following mucosal human immunodeficiency virus type 1 (HIV-1) transmission, type 1 interferons (IFNs) are rapidly induced at sites of initial virus replication in the mucosa and draining lymph nodes. However, the role played by IFN-stimulated antiviral activity in restricting HIV-1 replication during the initial stages of infection is not clear. We hypothesized that if type 1 IFNs exert selective pressure on HIV-1 replication in the earliest stages of infection, the founder viruses that succeed in establishing systemic infection would be more IFN-resistant than viruses replicating during chronic infection, when type 1 IFNs are produced at much lower levels. To address this hypothesis, the relative resistance of virus isolates derived from HIV-1-infected individuals during acute and chronic infection to control by type 1 IFNs was analysed. Results The replication of plasma virus isolates generated from subjects acutely infected with HIV-1 and molecularly cloned founder HIV-1 strains could be reduced but not fully suppressed by type 1 IFNs in vitro. The mean IC50 value for IFNα2 (22 U/ml) was lower than that for IFNβ (346 U/ml), although at maximally-inhibitory concentrations both IFN subtypes inhibited virus replication to similar extents. Individual virus isolates exhibited differential susceptibility to inhibition by IFNα2 and IFNβ, likely reflecting variation in resistance to differentially up-regulated IFN-stimulated genes. Virus isolates from subjects acutely infected with HIV-1 were significantly more resistant to in vitro control by IFNα than virus isolates generated from the same individuals during chronic, asymptomatic infection. Viral IFN resistance declined rapidly after the acute phase of infection: in five subjects, viruses derived from six-month consensus molecular clones were significantly more sensitive to the antiviral effects of IFNs than the corresponding founder viruses. Conclusions The establishment of systemic HIV-1 infection by relatively IFNα-resistant founder viruses lends strong support to the hypothesis that IFNα plays an important role in the control of HIV-1 replication during the earliest stages of infection, prior to systemic viral spread. These findings suggest that it may be possible to harness the antiviral activity of type 1 IFNs in prophylactic and potentially also therapeutic strategies to combat HIV-1 infection. PMID:24299076

  5. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2001-05-01

    We are interested in the molecular mechanisms involved in DNA replication arrest by the S phase DNA damage checkpoints. Using in vitro simian virus...40 DNA replication assays, we have found three factors that directly contribute to DNA damage-induced DNA replication arrest: Replication Protein A...trans-acting inhibitors. RPA is the major eukaryotic single-stranded DNA binding protein required for DNA replication , repair and recombination. Upon DNA

  6. Specific interaction of the nonstructural protein NS1 of minute virus of mice (MVM) with [ACCA](2) motifs in the centre of the right-end MVM DNA palindrome induces hairpin-primed viral DNA replication.

    PubMed

    Willwand, Kurt; Moroianu, Adela; Hörlein, Rita; Stremmel, Wolfgang; Rommelaere, Jean

    2002-07-01

    The linear single-stranded DNA genome of minute virus of mice (MVM) is replicated via a double-stranded replicative form (RF) intermediate DNA. Amplification of viral RF DNA requires the structural transition of the right-end palindrome from a linear duplex into a double-hairpin structure, which serves for the repriming of unidirectional DNA synthesis. This conformational transition was found previously to be induced by the MVM nonstructural protein NS1. Elimination of the cognate NS1-binding sites, [ACCA](2), from the central region of the right-end palindrome next to the axis of symmetry was shown to markedly reduce the efficiency of hairpin-primed DNA replication, as measured in a reconstituted in vitro replication system. Thus, [ACCA](2) sequence motifs are essential as NS1-binding elements in the context of the structural transition of the right-end MVM palindrome.

  7. Use of a highly sensitive strand-specific quantitative PCR to identify abortive replication in the mouse model of respiratory syncytial virus disease

    PubMed Central

    2010-01-01

    Background The BALB/c mouse is commonly used to study RSV infection and disease. However, despite the many advantages of this well-characterised model, the inoculum is large, viral replication is restricted and only a very small amount of virus can be recovered from infected animals. A key question in this model is the fate of the administered virus. Is replication really being measured or is the model measuring the survival of the virus over time? To answer these questions we developed a highly sensitive strand-specific quantitative PCR (QPCR) able to accurately quantify the amount of RSV replication in the BALB/c mouse lung, allowing characterisation of RSV negative and positive strand RNA dynamics. Results In the mouse lung, no increase in RSV genome was seen above the background of the original inoculum whilst only a limited transient increase (< 1 log) in positive strand, replicative intermediate (RI) RNA occurred. This RNA did however persist at detectable levels for 59 days post infection. As expected, ribavirin therapy reduced levels of infectious virus and RI RNA in the mouse lung. However, whilst Palivizumab therapy was also able to reduce levels of infectious virus, it failed to prevent production of intracellular RI RNA. A comparison of RSV RNA kinetics in human (A549) and mouse (KLN205) cell lines demonstrated that RSV replication was also severely delayed and impaired in vitro in the mouse cells. Conclusions This is the first time that such a sensitive strand-specific QPCR technique has been to the RSV mouse system. We have accurately quantified the restricted and abortive nature of RSV replication in the mouse. Further in vitro studies in human and mouse cells suggest this restricted replication is due at least in part to species-specific host cell-viral interactions. PMID:20860795

  8. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  9. Isolation and Characterization of Highly Replicable Hepatitis C Virus Genotype 1a Strain HCV-RMT

    PubMed Central

    Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori

    2013-01-01

    Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient’s serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo. PMID:24358200

  10. Isolation and characterization of highly replicable hepatitis C virus genotype 1a strain HCV-RMT.

    PubMed

    Arai, Masaaki; Tokunaga, Yuko; Takagi, Asako; Tobita, Yoshimi; Hirata, Yuichi; Ishida, Yuji; Tateno, Chise; Kohara, Michinori

    2013-01-01

    Multiple genotype 1a clones have been reported, including the very first hepatitis C virus (HCV) clone called H77. The replication ability of some of these clones has been confirmed in vitro and in vivo, although this ability is somehow compromised. We now report a newly isolated genotype 1a clone, designated HCV-RMT, which has the ability to replicate efficiently in patients, chimeric mice with humanized liver, and cultured cells. An authentic subgenomic replicon cell line was established from the HCV-RMT sequence with spontaneous introduction of three adaptive mutations, which were later confirmed to be responsible for efficient replication in HuH-7 cells as both subgenomic replicon RNA and viral genome RNA. Following transfection, the HCV-RMT RNA genome with three adaptive mutations was maintained for more than 2 months in HuH-7 cells. One clone selected from the transfected cells had a high copy number, and its supernatant could infect naïve HuH-7 cells. Direct injection of wild-type HCV-RMT RNA into the liver of chimeric mice with humanized liver resulted in vigorous replication, similar to inoculation with the parental patient's serum. A study of virus replication using HCV-RMT derivatives with various combinations of adaptive mutations revealed a clear inversely proportional relationship between in vitro and in vivo replication abilities. Thus, we suggest that HCV-RMT and its derivatives are important tools for HCV genotype 1a research and for determining the mechanism of HCV replication in vitro and in vivo.

  11. Replication of human noroviruses in stem cell-derived human enteroids

    USDA-ARS?s Scientific Manuscript database

    The major barrier to research and development of effective interventions for human noroviruses (HuNoVs) has been the lack of a robust and reproducible in vitro cultivation system. HuNoVs are the leading cause of gastroenteritis worldwide. We report successful cultivation of multiple HuNoV strains in...

  12. Construction and Cloning of Reporter-Tagged Replicon cDNA for an In Vitro Replication Study of Murine Norovirus-1 (MNV-1)

    PubMed Central

    Ahmad, Muhammad Khairi; Tabana, Yasser M; Ahmed, Mowaffaq Adam; Sandai, Doblin Anak; Mohamed, Rafeezul; Ismail, Ida Shazrina; Zulkiflie, Nurulisa; Yunus, Muhammad Amir

    2017-01-01

    Background A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication. Methods The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3′end of the reporter gene and the VP2 start sequence to allow co-translational ‘cleavage’ of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones. Results Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing. Conclusion NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication. PMID:29379384

  13. Epstein-Barr virus WZhet DNA can induce lytic replication in epithelial cells in vitro, although WZhet is not detectable in many human tissues in vivo.

    PubMed

    Ryan, Julie L; Jones, Richard J; Elmore, Sandra H; Kenney, Shannon C; Miller, George; Schroeder, Jane C; Gulley, Margaret L

    2009-01-01

    WZhet is a rearranged and partially deleted form of the Epstein-Barr virus (EBV) genome in which the BamH1W region becomes juxtaposed with and activates BZLF1, resulting in constitutive viral replication. We tested whether WZhet induces viral replication in epithelial cells, and we studied its prevalence in a wide range of lesional tissues arising in vivo. A quantitative real-time PCR assay targeting EBV WZhet DNA was developed to measure this recombinant form of the EBV genome. WZhet DNA was undetectable in any of 324 plasma or paraffin-embedded tissue samples from patients with EBV-associated and EBV-negative disorders. These included specimens from patients with Hodgkin or non-Hodgkin lymphoma, post-transplant lymphoproliferation, nasopharyngeal or gastric adenocarcinoma, and infectious mononucleosis. However, WZhet DNA was detected in vitro in EBV-infected AGS gastric cancer cells. Additionally, transient transfection of infected AGS gastric cancer cells showed that viral replication could be induced by a WZhet plasmid. This is the first evidence that WZhet induces the EBV lytic cycle in an epithelial cell line. Our negative findings in natural settings suggest that WZhet is a defective viral product that thrives in the absence of a host immune system but is rarely present in vivo. Copyright 2009 S. Karger AG, Basel.

  14. Human mixed lymphocyte cultures. Evaluation of microculture technique utilizing the multiple automated sample harvester (MASH)

    PubMed Central

    Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.

    1973-01-01

    Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568

  15. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    PubMed

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. Bacteriophage homologous recombination systems are widely used for in vivo genetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single-strand regions may be created during DNA replication or by single-strand exonuclease digestion of linear duplex DNA. Previously, in vitro studies reported that these recombinases promote the single-strand annealing of two complementary DNAs and also strand invasion of a single DNA strand into duplex DNA to create a three-stranded region. Here, in vivo experiments show that recombinase-mediated annealing of complementary single-stranded DNA is the predominant recombination pathway in E. coli. Copyright © 2016 Thomason et al.

  16. Chronic wasting disease prion infection of differentiated neurospheres.

    PubMed

    Iwamaru, Yoshifumi; Mathiason, Candace K; Telling, Glenn C; Hoover, Edward A

    2017-07-04

    A possible strategy to develop more diverse cell culture systems permissive to infection with naturally occurring prions is to exploit culture of neurospheres from transgenic mice expressing the normal prion protein (PrP) of the native host species. Accordingly, we developed differentiated neurosphere cultures from the cervid PrP-expressing mice to investigate whether this in vitro system would support replication of non-adapted cervid-origin chronic wasting disease (CWD) prions. Here we report the successful amplification of disease-associated PrP in differentiated neurosphere cultures within 3 weeks after exposure to CWD prions from both white-tailed deer or elk. This neurosphere culture system provides a new in vitro tool that can be used to assess non-adapted CWD prion propagation and transmission.

  17. Croton megalobotrys Müll Arg. and Vitex doniana (Sweet): Traditional medicinal plants in a three-step treatment regimen that inhibit in vitro replication of HIV-1.

    PubMed

    Tietjen, Ian; Gatonye, Teresia; Ngwenya, Barbara N; Namushe, Amos; Simonambanga, Sundana; Muzila, Mbaki; Mwimanzi, Philip; Xiao, Jianbo; Fedida, David; Brumme, Zabrina L; Brockman, Mark A; Andrae-Marobela, Kerstin

    2016-09-15

    Human Immunodeficiency Virus (HIV) strains resistant to licensed anti-retroviral drugs (ARVs) continue to emerge. On the African continent, uneven access to ARVs combined with occurrence of side-effects after prolonged ARV therapy have led to searches for traditional medicines as alternative or complementary remedies to conventional HIV/AIDS management. Here we characterize a specific three-step traditional HIV/AIDS treatment regimen consisting of Cassia sieberiana root, Vitex doniana root, and Croton megalobotrys bark by combining qualitative interviews of traditional medical knowledge users in Botswana with in vitro HIV replication studies. Crude extracts from a total of seven medicinal plants were tested for in vitro cytotoxicity and inhibition of wild-type (NL4.3) and ARV-resistant HIV-1 replication in an immortalized GFP-reporter CD4+ T-cell line. C. sieberiana root, V. doniana root, and C. megalobotrys bark extracts inhibited HIV-1NL4.3 replication with dose-dependence and without concomitant cytotoxicity. C. sieberiana and V. doniana extracts inhibited HIV-1 replication by 50% at 84.8µg/mL and at 25µg/mL, respectively, while C. megalobotrys extracts inhibited HIV-1 replication by a maximum of 45% at concentrations as low as 0.05µg/mL. Extracts did not interfere with antiviral activities of licensed ARVs when applied in combination and exhibited comparable efficacies against viruses harboring major resistance mutations to licensed protease, reverse-transcriptase, or integrase inhibitors. We report for the first time a three-step traditional HIV/AIDS regimen, used alone or in combination with standard ARV regimens, where each step exhibited more potent ability to inhibit HIV replication in vitro. Our observations support the "reverse pharmacology" model where documented clinical experiences are used to identify natural products of therapeutic value. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Hydroxyurea inhibits parvovirus B19 replication in erythroid progenitor cells.

    PubMed

    Bonvicini, Francesca; Bua, Gloria; Conti, Ilaria; Manaresi, Elisabetta; Gallinella, Giorgio

    2017-07-15

    Parvovirus B19 (B19V) infection is restricted to erythroid progenitor cells (EPCs) of the human bone marrow, leading to transient arrest of erythropoiesis and severe complications mainly in subjects with underlying hematological disorders or with immune system deficits. Currently, there are no specific antiviral drugs for B19V treatment, but identification of compounds inhibiting B19V replication can be pursued by a drug repositioning strategy. In this frame, the present study investigates the activity of hydroxyurea (HU), the only disease-modifying therapy approved for sickle cell disease (SCD), towards B19V replication in the two relevant cellular systems, the UT7/EpoS1 cell line and EPCs. Results demonstrate that HU inhibits B19V replication with EC 50 values of 96.2µM and 147.1µM in UT7/EpoS1 and EPCs, respectively, providing experimental evidence of the antiviral activity of HU towards B19V replication, and confirming the efficacy of a drug discovery process by drug repositioning strategy. The antiviral activity occurs in vitro at concentrations lower than those affecting cellular DNA replication and viability, and at levels measured in plasma samples of SCD patients undergoing HU therapy. HU might determine a dual beneficial effect on SCD patients, not only for the treatment of the disease but also towards a virus responsible for severe complications. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. In vitro inhibition of human influenza A virus replication by chloroquine

    PubMed Central

    Ooi, Eng Eong; Chew, Janet Seok Wei; Loh, Jin Phang; Chua, Robert CS

    2006-01-01

    Chloroquine is a 9-aminoquinolone with well-known anti-malarial effects. It has biochemical properties that could be applied to inhibit viral replication. We report here that chloroquine is able to inhibit influenza A virus replication, in vitro, and the IC50s of chloroquine against influenza A viruses H1N1 and H3N2 are lower than the plasma concentrations reached during treatment of acute malaria. The potential of chloroquine to be added to the limited range of anti-influenza drugs should be explored further, particularly since antiviral drugs play a vital role in influenza pandemic preparedness. PMID:16729896

  20. Amino Acids 257 to 288 of Mouse p48 Control the Cooperation of Polyomavirus Large T Antigen, Replication Protein A, and DNA Polymerase α-Primase To Synthesize DNA In Vitro

    PubMed Central

    Kautz, Armin R.; Weisshart, Klaus; Schneider, Annerose; Grosse, Frank; Nasheuer, Heinz-Peter

    2001-01-01

    Although p48 is the most conserved subunit of mammalian DNA polymerase α-primase (pol-prim), the polypeptide is the major species-specific factor for mouse polyomavirus (PyV) DNA replication. Human and murine p48 contain two regions (A and B) that show significantly lower homology than the rest of the protein. Chimerical human-murine p48 was prepared and coexpressed with three wild-type subunits of pol-prim, and four subunit protein complexes were purified. All enzyme complexes synthesized DNA on single-stranded (ss) DNA and replicated simian virus 40 DNA. Although the recombinant protein complexes physically interacted with PyV T antigen (Tag), we determined that the murine region A mediates the species specificity of PyV DNA replication in vitro. More precisely, the nonconserved phenylalanine 262 of mouse p48 is crucial for this activity, and pol-prim with mutant p48, h-S262F, supports PyV DNA replication in vitro. DNA synthesis on RPA-bound ssDNA revealed that amino acid (aa) 262, aa 266, and aa 273 to 288 are involved in the functional cooperation of RPA, pol-prim, and PyV Tag. PMID:11507202

  1. Localized DNA melting and structural pertubations in the origin of replication, oriC, of Escherichia coli in vitro and in vivo.

    PubMed Central

    Gille, H; Messer, W

    1991-01-01

    The leftmost region of the Escherichia coli origin of DNA replication (oriC) contains three tandemly repeated AT-rich 13mers which have been shown to become single-stranded during the early stages of initiation in vitro. Melting is induced by the ATP form of DnaA, the initiator protein of DNA replication. KMnO4 was used to probe for single-stranded regions and altered DNA conformation during the initiation of DNA replication at oriC in vitro and in vivo. Unpairing in the AT-rich 13mer region is thermodynamically stable even in the absence of DnaA protein, but only when divalent cations are omitted from the reaction. In the presence of Mg2+, oriC melting is strictly DnaA dependent. The sensitive region is distinct from that detected in the absence of DnaA as it is located further to the left within the minimal origin. In addition, the DNA is severely distorted between the three 13mers and the IHF binding site in oriC. A change of conformation can also be observed during the initiation of DNA replication in vivo. This is the first in vivo evidence for a structural change at the 13mers during initiation complex formation. Images PMID:2026151

  2. In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display

    PubMed Central

    Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain

    2014-01-01

    The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763

  3. Covalent antibody display—an in vitro antibody-DNA library selection system

    PubMed Central

    Reiersen, Herald; Løbersli, Inger; Løset, Geir Å.; Hvattum, Else; Simonsen, Bjørg; Stacy, John E.; McGregor, Duncan; FitzGerald, Kevin; Welschof, Martin; Brekke, Ole H.; Marvik, Ole J.

    2005-01-01

    The endonuclease P2A initiates the DNA replication of the bacteriophage P2 by making a covalent bond with its own phosphate backbone. This enzyme has now been exploited as a new in vitro display tool for antibody fragments. We have constructed genetic fusions of P2A with single-chain antibodies (scFvs). Linear DNA of these fusion proteins were processed in an in vitro coupled transcription–translation mixture of Escherichia coli S30 lysate. Complexes of scFv–P2A fusion proteins covalently bound to their own DNA were isolated after panning on immobilized antigen, and the enriched DNAs were recovered by PCR and prepared for the subsequent cycles of panning. We have demonstrated the enrichment of scFvs from spiked libraries and the specific selection of different anti-tetanus toxoid scFvs from a V-gene library with 50 million different members prepared from human lymphocytes. This covalent antibody display technology offers a complete in vitro selection system based exclusively on DNA–protein complexes. PMID:15653626

  4. Applications of Replicating-Competent Reporter-Expressing Viruses in Diagnostic and Molecular Virology.

    PubMed

    Li, Yongfeng; Li, Lian-Feng; Yu, Shaoxiong; Wang, Xiao; Zhang, Lingkai; Yu, Jiahui; Xie, Libao; Li, Weike; Ali, Razim; Qiu, Hua-Ji

    2016-05-06

    Commonly used tests based on wild-type viruses, such as immunostaining, cannot meet the demands for rapid detection of viral replication, high-throughput screening for antivirals, as well as for tracking viral proteins or virus transport in real time. Notably, the development of replicating-competent reporter-expressing viruses (RCREVs) has provided an excellent option to detect directly viral replication without the use of secondary labeling, which represents a significant advance in virology. This article reviews the applications of RCREVs in diagnostic and molecular virology, including rapid neutralization tests, high-throughput screening systems, identification of viral receptors and virus-host interactions, dynamics of viral infections in vitro and in vivo, vaccination approaches and others. However, there remain various challenges associated with RCREVs, including pathogenicity alterations due to the insertion of a reporter gene, instability or loss of the reporter gene expression, or attenuation of reporter signals in vivo. Despite all these limitations, RCREVs have become powerful tools for both basic and applied virology with the development of new technologies for generating RCREVs, the inventions of novel reporters and the better understanding of regulation of viral replication.

  5. The β2 clamp in the Mycobacterium tuberculosis DNA polymerase III αβ2ε replicase promotes polymerization and reduces exonuclease activity

    PubMed Central

    Gu, Shoujin; Li, Wenjuan; Zhang, Hongtai; Fleming, Joy; Yang, Weiqiang; Wang, Shihua; Wei, Wenjing; Zhou, Jie; Zhu, Guofeng; Deng, Jiaoyu; Hou, Jian; Zhou, Ying; Lin, Shiqiang; Zhang, Xian-En; Bi, Lijun

    2016-01-01

    DNA polymerase III (DNA pol III) is a multi-subunit replication machine responsible for the accurate and rapid replication of bacterial genomes, however, how it functions in Mycobacterium tuberculosis (Mtb) requires further investigation. We have reconstituted the leading-strand replication process of the Mtb DNA pol III holoenzyme in vitro, and investigated the physical and functional relationships between its key components. We verify the presence of an αβ2ε polymerase-clamp-exonuclease replicase complex by biochemical methods and protein-protein interaction assays in vitro and in vivo and confirm that, in addition to the polymerase activity of its α subunit, Mtb DNA pol III has two potential proofreading subunits; the α and ε subunits. During DNA replication, the presence of the β2 clamp strongly promotes the polymerization of the αβ2ε replicase and reduces its exonuclease activity. Our work provides a foundation for further research on the mechanism by which the replication machinery switches between replication and proofreading and provides an experimental platform for the selection of antimicrobials targeting DNA replication in Mtb. PMID:26822057

  6. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells

    DTIC Science & Technology

    1998-07-01

    synthesome has been extensively demonstrated to carry out full length DNA replication in vitro, and to accurately depict the DNA replication process as it...occurs in the intact cell. By examining the fidelity of the DNA replication process carried out by the DNA synthesome from a number of breast cell types...we have demonstrated for the first time, that the cellular DNA replication machinery of malignant human breast cells is significantly more error-prone than that of non- malignant human breast cells.

  7. Human FEN1 Expression and Solubility Patterson in DNA Replication and Repair

    DTIC Science & Technology

    1999-11-03

    following DNA replication from the simian virus 40 (SV40) origin of replication in vitro. Human FEN1, and FEN1 homologues from yeast to mammals, are...also implicated in different forms of DNA repair. In this thesis, I provide additional evidence supporting human FEN1’s role in nuclear DNA replication in...coincident with S phase DNA replication in both primary and transformed cells. Using novel antibodies that recognize human FEN1, I further show that very

  8. In vitro blood-brain barrier models: current and perspective technologies.

    PubMed

    Naik, Pooja; Cucullo, Luca

    2012-04-01

    Even in the 21st century, studies aimed at characterizing the pathological paradigms associated with the development and progression of central nervous system diseases are primarily performed in laboratory animals. However, limited translational significance, high cost, and labor to develop the appropriate model (e.g., transgenic or inbred strains) have favored parallel in vitro approaches. In vitro models are of particular interest for cerebrovascular studies of the blood-brain barrier (BBB), which plays a critical role in maintaining the brain homeostasis and neuronal functions. Because the BBB dynamically responds to many events associated with rheological and systemic impairments (e.g., hypoperfusion), including the exposure of potentially harmful xenobiotics, the development of more sophisticated artificial systems capable of replicating the vascular properties of the brain microcapillaries are becoming a major focus in basic, translational, and pharmaceutical research. In vitro BBB models are valuable and easy to use supporting tools that can precede and complement animal and human studies. In this article, we provide a detailed review and analysis of currently available in vitro BBB models ranging from static culture systems to the most advanced flow-based and three-dimensional coculture apparatus. We also discuss recent and perspective developments in this ever expanding research field. Copyright © 2011 Wiley Periodicals, Inc.

  9. Biomimetic, ultrathin and elastic hydrogels regulate human neutrophil extravasation across endothelial-pericyte bilayers.

    PubMed

    Lauridsen, Holly M; Gonzalez, Anjelica L

    2017-01-01

    The vascular basement membrane-a thin, elastic layer of extracellular matrix separating and encasing vascular cells-provides biological and mechanical cues to endothelial cells, pericytes, and migrating leukocytes. In contrast, experimental scaffolds typically used to replicate basement membranes are stiff and bio-inert. Here, we present thin, porated polyethylene glycol hydrogels to replicate human vascular basement membranes. Like commercial transwells, our hydrogels are approximately 10μm thick, but like basement membranes, the hydrogels presented here are elastic (E: 50-80kPa) and contain a dense network of small pores. Moreover, the inclusion of bioactive domains introduces receptor-mediated biochemical signaling. We compare elastic hydrogels to common culture substrates (E: >2GPa) for human endothelial cell and pericyte monolayers and bilayers to replicate postcapillary venules in vitro. Our data demonstrate that substrate elasticity facilitates differences in vascular phenotype, supporting expression of vascular markers that are increasingly replicative of venules. Endothelial cells differentially express vascular markers, like EphB4, and leukocyte adhesion molecules, such as ICAM-1, with decreased mechanical stiffness. With porated PEG hydrogels we demonstrate the ability to evaluate and observe leukocyte recruitment across endothelial cell and pericyte monolayers and bilayers, reporting that basement membrane scaffolds can significantly alter the rate of vascular migration in experimental systems. Overall, this study demonstrates the creation and utility of a new and accessible method to recapture the mechanical and biological complexity of human basement membranes in vitro.

  10. Systemic Age-Associated DNA Hypermethylation of ELOVL2 Gene: In Vivo and In Vitro Evidences of a Cell Replication Process.

    PubMed

    Bacalini, Maria Giulia; Deelen, Joris; Pirazzini, Chiara; De Cecco, Marco; Giuliani, Cristina; Lanzarini, Catia; Ravaioli, Francesco; Marasco, Elena; van Heemst, Diana; Suchiman, H Eka D; Slieker, Roderick; Giampieri, Enrico; Recchioni, Rina; Mercheselli, Fiorella; Salvioli, Stefano; Vitale, Giovanni; Olivieri, Fabiola; Spijkerman, Annemieke M W; Dollé, Martijn E T; Sedivy, John M; Castellani, Gastone; Franceschi, Claudio; Slagboom, Pieternella E; Garagnani, Paolo

    2017-08-01

    Epigenetic remodeling is one of the major features of the aging process. We recently demonstrated that DNA methylation of ELOVL2 and FHL2 CpG islands is highly correlated with age in whole blood. Here we investigated several aspects of age-associated hypermethylation of ELOVL2 and FHL2. We showed that ELOVL2 methylation is significantly different in primary dermal fibroblast cultures from donors of different ages. Using epigenomic data from public resources, we demonstrated that most of the tissues show ELOVL2 and FHL2 hypermethylation with age. Interestingly, ELOVL2 hypermethylation was not found in tissues with very low replication rate. We demonstrated that ELOVL2 hypermethylation is associated with in vitro cell replication rather than with senescence. We confirmed intra-individual hypermethylation of ELOVL2 and FHL2 in longitudinally assessed participants from the Doetinchem Cohort Study. Finally we showed that, although the methylation of the two loci is not associated with longevity/mortality in the Leiden Longevity Study, ELOVL2 methylation is associated with cytomegalovirus status in nonagenarians, which could be informative of a higher number of replication events in a fraction of whole-blood cells. Collectively, these results indicate that ELOVL2 methylation is a marker of cell divisions occurring during human aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Strand displacement amplification as an in vitro model for rolling-circle replication: deletion formation and evolution during serial transfer.

    PubMed Central

    Walter, N G; Strunk, G

    1994-01-01

    Strand displacement amplification is an isothermal DNA amplification reaction based on a restriction endonuclease nicking its recognition site and a polymerase extending the nick at its 3' end, displacing the downstream strand. The reaction resembles rolling-circle replication of single-stranded phages and small plasmids. The displaced sense strand serves as target for an antisense reaction and vice versa, resulting in exponential growth and the autocatalytic nature of this in vitro reaction as long as the template is the limiting agent. We describe the optimization of strand displacement amplification for in vitro evolution experiments under serial transfer conditions. The reaction was followed and controlled by use of the fluorescent dye thiazole orange binding to the amplified DNA. We were able to maintain exponential growth conditions with a doubling time of 3.0 min throughout 100 transfers or approximately 350 molecular generations by using an automatic handling device. Homology of in vitro amplification with rolling-circle replication was mirrored by the occurring evolutionary processes. Deletion events most likely caused by a slipped mispairing mechanism as postulated for in vivo replication took place. Under our conditions, the mutation rate was high and a molecular quasi-species formed with a mutant lacking internal hairpin formation ability and thus outgrowing all other species under dGTP/dCTP deficiency. Images PMID:8058737

  12. RNA interference inhibits yellow fever virus replication in vitro and in vivo.

    PubMed

    Pacca, Carolina C; Severino, Adriana A; Mondini, Adriano; Rahal, Paula; D'avila, Solange G P; Cordeiro, José Antonio; Nogueira, Mara Correa Lelles; Bronzoni, Roberta V M; Nogueira, Maurício L

    2009-04-01

    RNA interference (RNAi) is a process that is induced by double stranded RNA and involves the degradation of specific sequences of mRNA in the cytoplasm of the eukaryotic cells. It has been used as an antiviral tool against many viruses, including flaviviruses. The genus Flavivirus contains the most important arboviruses in the world, i.e., dengue (DENV) and yellow fever (YFV). In our study, we investigated the in vitro and in vivo effect of RNAi against YFV. Using stable cell lines that expressed RNAi against YFV, the cell lines were able to inhibit as much as 97% of the viral replication. Two constructions (one against NS1 and the other against E region of YFV genome) were able to protect the adult Balb/c mice against YFV challenge. The histopathologic analysis demonstrated an important protection of the central nervous system by RNAi after 10 days of viral challenge. Our data suggests that RNAi is a potential viable therapeutic weapon against yellow fever.

  13. Identification of novel inhibitors of non-replicating Mycobacterium tuberculosis using a carbon starvation model

    PubMed Central

    Grant, Sarah Schmidt; Kawate, Tomohiko; Nag, Partha P.; Silvis, Melanie R.; Gordon, Katherine; Stanley, Sarah A.; Kazyanskaya, Ed; Nietupski, Ray; Golas, Aaron; Fitzgerald, Michael; Cho, Sanghyun; Franzblau, Scott G.; Hung, Deborah T.

    2013-01-01

    During Mycobacterium tuberculosis infection, a population of bacteria is thought to exist in a non-replicating state, refractory to antibiotics, which may contribute to the need for prolonged antibiotic therapy. The identification of inhibitors of the non-replicating state provides tools that can be used to probe this hypothesis and the physiology of this state. The development of such inhibitors also has the potential to shorten the duration of antibiotic therapy required. Here we describe the development of a novel non-replicating assay amenable to high-throughput chemical screening coupled with secondary assays that use carbon starvation as the in vitro model. Together these assays identify compounds with activity against replicating and non-replicating M. tuberculosis as well as compounds that inhibit the transition from non-replicating to replicating stages of growth. Using these assays we successfully screened over 300,000 compounds and identified 786 inhibitors of non-replicating M. tuberculosis. In order to understand the relationship among different non-replicating models, we teste 52 of these molecules in a hypoxia model and four different chemical scaffolds in a stochastic persist model and a streptomycin dependent model. We found that compounds display varying levels of activity in different models for the non-replicating state, suggesting important differences in bacterial physiology between models. Therefore, chemical tools identified in this assay may be useful for determining the relevance of different non-replicating in vitro models to in vivo M. tuberculosis infection. Given our current limited understanding, molecules that are active across multiple models may represent more promising candidates for further development. PMID:23898841

  14. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-daltonmore » DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.« less

  15. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.

    PubMed

    Baxter, Melissa A; Wynn, Robert F; Jowitt, Simon N; Wraith, J Ed; Fairbairn, Leslie J; Bellantuono, Ilaria

    2004-01-01

    Human marrow stromal cells (MSCs) can be isolated from bone marrow and differentiate into multiple tissues in vitro and in vivo. These properties make them promising tools in cell and gene therapy. The lack of a specific MSC marker and the low frequency of MSCs in bone marrow necessitate their isolation by in vitro expansion prior to clinical use. This may severely reduce MSC proliferative capacity to the point that the residual proliferative potential is insufficient to maintain long-term tissue regeneration upon reinfusion. In this study we determined the effect of in vitro expansion on the replicative capacity of MSCs by correlating their rate of telomere loss during in vitro expansion with their behavior in vivo. We report that even protocols that involve minimal expansion induce a rapid aging of MSCs, with losses equivalent to about half their total replicative lifespan.

  16. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    USDA-ARS?s Scientific Manuscript database

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  17. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion?

    PubMed

    Effros, R B; Pawelec, G

    1997-09-01

    Extensive in vitro research on fibroblasts has defined numerous genetic and phenotypic changes associated with replicative senescence. Identification of T-cell replicative senescence as a feature of human immunodeficiency virus (HIV) disease and ageing suggests this phenomenon merits more careful consideration by immunologists, especially with regard to chronic infection, memory and adoptive immunotherapy.

  18. The Regulatory Interactions of p21 and PCNA in Human Breast Cancer

    DTIC Science & Technology

    2000-07-01

    To better understand the role of DNA replication in breast cancer, it is essential to examine the machinery that carries out the DNA synthetic...origin specific DNA replication in vitro, which we have termed the DNA synthesome. Analysis of the constituent proteins of the DNA synthesome of...and effectively competes away polymerase 8 leading to the efficient inhibition of DNA replication . This inhibition impedes the replication of damaged

  19. Hepatitis B virus (HBV)-specific short hairpin RNA is capable of reducing the formation of HBV covalently closed circular (CCC) DNA but has no effect on established CCC DNA in vitro.

    PubMed

    Starkey, Jason L; Chiari, Estelle F; Isom, Harriet C

    2009-01-01

    Hepatitis B virus (HBV) covalently closed circular (CCC) DNA is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV-expressing HepG2 cells at 10 days post-transduction generates a system in which HBV replication is ongoing and HBV is expressed largely from CCC DNA, thus simulating chronic HBV infection. HepG2 cells were transduced with short hairpin RNA (shRNA)-expressing baculovirus prior to initiation of HBV replication or during chronic HBV replication, and the levels of HBV RNA, HBV surface antigens (HBsAg) and replicative intermediates (RI), extracellular (EC) and CCC DNA species were measured. HBsAg, HBV RNA and DNA levels were markedly reduced until day 8 whether cells were transduced with shRNA prior to or during a chronic infection; however, the CCC DNA species were only affected when shRNA was administered prior to initiation of infection. We conclude that RNAi may have a therapeutic value for controlling HBV replication at the level of RI and EC DNA and for reducing establishment of CCC DNA during HBV infection. Our data support previous findings demonstrating the stability of HBV CCC DNA following antiviral therapy. This study also reports the development of a novel HBV baculovirus subculture system that can be used to evaluate antiviral effects on chronic HBV replication.

  20. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles.

    PubMed

    Tu, Thomas; Budzinska, Magdalena A; Vondran, Florian W R; Shackel, Nicholas A; Urban, Stephan

    2018-02-07

    Chronic infection by the Hepatitis B Virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (cccDNA), integration of HBV DNA into the host cell genome is regularly observed in the liver of infected patients. While reported as a pro-oncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well-understood, chiefly due to the lack of in vitro infection models that have detectable integration events. Here, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10000 cells, with the most consistent detection in Huh7-NTCP cells. Integration rate remained stable between 3 and 9 days post-infection. HBV DNA integration was efficiently blocked by treatment with 200nM of the HBV entry inhibitor Myrcludex B, but not with 10μM Tenofovir, 100U Interferon alpha, or 1μM of the capsid assembly inhibitor GLS4. This suggests integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration. Importance Hepatitis B Virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs is not clear. Here, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we show that integration already occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation. Copyright © 2018 American Society for Microbiology.

  1. Reconstitution of RPA-covered single-stranded DNA-activated ATR-Chk1 signaling.

    PubMed

    Choi, Jun-Hyuk; Lindsey-Boltz, Laura A; Kemp, Michael; Mason, Aaron C; Wold, Marc S; Sancar, Aziz

    2010-08-03

    ATR kinase is a critical upstream regulator of the checkpoint response to various forms of DNA damage. Previous studies have shown that ATR is recruited via its binding partner ATR-interacting protein (ATRIP) to replication protein A (RPA)-covered single-stranded DNA (RPA-ssDNA) generated at sites of DNA damage where ATR is then activated by TopBP1 to phosphorylate downstream targets including the Chk1 signal transducing kinase. However, this critical feature of the human ATR-initiated DNA damage checkpoint signaling has not been demonstrated in a defined system. Here we describe an in vitro checkpoint system in which RPA-ssDNA and TopBP1 are essential for phosphorylation of Chk1 by the purified ATR-ATRIP complex. Checkpoint defective RPA mutants fail to activate ATR kinase in this system, supporting the conclusion that this system is a faithful representation of the in vivo reaction. Interestingly, we find that an alternative form of RPA (aRPA), which does not support DNA replication, can substitute for the checkpoint function of RPA in vitro, thus revealing a potential role for aRPA in the activation of ATR kinase. We also find that TopBP1 is recruited to RPA-ssDNA in a manner dependent on ATRIP and that the N terminus of TopBP1 is required for efficient recruitment and activation of ATR kinase.

  2. Unnatural selection in chemical systems

    NASA Technical Reports Server (NTRS)

    Orgel, Leslie E.

    1995-01-01

    The theory of evolution through natural selection was proposed by Darwin and Wallace to explain how the characteristics of populations of animals change with time. An examination of their assumptions shows that the theory has much broader application than they originally envisaged. We now know that in appropriate environments RNA molecules or computer viruses, for example, can evolve. The adventure with which we are concerned is the quest for chemical systems that undergo processes analogous to Darwinian selection in the test tube. The search is not restricted to systems that are closely related to nucleic acids, although most of the available experimental evidence concerns such systems. A population of molecules satisfies all the requirements of the theory is there are different kinds of molecules in the population and if each individual molecule can direct the formation of copies of itself, then a population of molecules will adapt to a varying environment by changing its composition so as to maintain as high as possible a rate of replication. Sol Spiegelman is the inventor of 'unnatural selection'. He showed clearly that populations of RNA molecules evolve when replicated repeatedly by Q beta RNA polymerase under a chosen set of adverse reaction conditions. In the systems that he studied, the initial population was fairly homogeneous and much of the variation was created during the course of the experiment by mutation, that is, error of replication. The term 'unnatural selection' will be used loosely to describe evolution of nucleic acids or other replicatable polymers in vitro. The term 'Natural Selection' will be reserved for the evolution of living organisms and their viruses. Natural Section usually involves the coevolution of nucleic acids and proteins, while 'unnatural selection', as practiced so far, allows replicating nucleic acids to evolve but hold constant the enzymes that catalyze replication. It is widely believed that biology based on DNA, RNA, and proteins was preceded by the biology of an 'RNA world' in which enzymes were composed of RNA alone. The origin of RNA replication is thus the central puzzle of the origins of life. Consequently, RNA-catalyzed RNA replication is presently one of the main goals of experimental work on unnatural selection. However, there is also a more distant goal, namely, to achieve replication and selection in systems unrelated to RNA. These different systems are discussed in this article.

  3. Expression of the lef5 gene from Spodoptera exigua multiple nucleopolyhedrovirus contributes to the baculovirus stability in cell culture.

    PubMed

    Martínez-Solís, María; Jakubowska, Agata K; Herrero, Salvador

    2017-10-01

    Baculoviruses are a broad group of viruses infecting insects, predominately of the order Lepidoptera. They are used worldwide as biological insecticides and as expression vectors to produce recombinant proteins. Baculoviruses replicate in their host, although several cell lines have been developed for in vitro replication. Nevertheless, replication of baculoviruses in cell culture involves the generation of defective viruses with a decrease in productivity and virulence. Transcriptional studies of the Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) and the Autographa californica multiple nucleopolyhedrovirus (AcMNPV) infective process revealed differences in the expression patterns when the virus replicated under in vitro (Se301 cells) or in vivo (S. exigua larvae) conditions. The late expression factor 5 (lef5) gene was found to be highly overexpressed when the virus replicates in larvae. To test the possible role of lef5 expression in viral stability, recombinant AcMNPV expressing the lef5 gene from SeMNPV (Se-lef5) was generated and its stability was monitored during successive infection passages in Sf21 cells by evaluating the loss of several essential and non-essential genes. The gfp transgene was more stable in those viruses expressing the Se-LEF5 protein and the GFP-defective viruses were accumulated at a lower level when compared to its control viruses, confirming the positive influence of lef5 in viral stability during the multiplication process. This work describes for the first time a viral factor involved in transgene stability when baculoviruses replicate in cell culture, opening new ways to facilitate the in vitro production of recombinant proteins using baculovirus.

  4. Expression and in vitro functional analyses of recombinant Gam1 protein

    PubMed Central

    Avila, Gustavo A.; Ramirez, Daniel H.; Hildenbrand, Zacariah L.; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2014-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1’s roles in viral replication. PMID:25450237

  5. Expression and in vitro functional analyses of recombinant Gam1 protein.

    PubMed

    Avila, Gustavo A; Ramirez, Daniel H; Hildenbrand, Zacariah L; Jacquez, Pedro; Chiocca, Susanna; Sun, Jianjun; Rosas-Acosta, German; Xiao, Chuan

    2015-01-01

    Gam1, an early gene product of an avian adenovirus, is essential for viral replication. Gam1 is the first viral protein found to globally inhibit cellular SUMOylation, a critical posttranslational modification that alters the function and cellular localization of proteins. The interaction details at the interface between Gam1 and its cellular targets remain unclear due to the lack of structural information. Although Gam1 has been previously characterized, the purity of the protein was not suitable for structural investigations. In the present study, the gene of Gam1 was cloned and expressed in various bacterial expression systems to obtain pure and soluble recombinant Gam1 protein for in vitro functional and structural studies. While Gam1 was insoluble in most expression systems tested, it became soluble when it was expressed as a fusion protein with trigger factor (TF), a ribosome associated bacterial chaperone, under the control of a cold shock promoter. Careful optimization indicates that both low temperature induction and the chaperone function of TF play critical roles in increasing Gam1 solubility. Soluble Gam1 was purified to homogeneity through sequential chromatography techniques. Monomeric Gam1 was obtained via size exclusion chromatography and analyzed by dynamic light scattering. The SUMOylation inhibitory function of the purified Gam1 was confirmed in an in vitro assay. These results have built the foundation for further structural investigations that will broaden our understanding of Gam1's roles in viral replication. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. DNA Replication Arrest and DNA Damage Responses Induced by Alkylating Minor Groove Binders

    DTIC Science & Technology

    2003-05-01

    Alkylating minor groove DNA binder adozelesin is capable of inhibiting DNA replication in treated cells through a trans-acting mechanism. The trans... replication in vitro. Using purified proteins in DNA replication initiation assays, we found that RPA purified from cells treated with adozelesin in not...adozelesin has the same single-stranded DNA binding activity and support nucleotide excision repair as normal RPA, but is not able to support SV40 DNA

  7. In Vitro Synthesized RNA Generated from cDNA Clones of Both Genomic Components of Cucurbit yellow stunting disorder virus Replicates in Cucumber Protoplasts

    PubMed Central

    Owen, Carolyn A.; Moukarzel, Romy; Huang, Xiao; Kassem, Mona A.; Eliasco, Eleonora; Aranda, Miguel A.; Coutts, Robert H. A.; Livieratos, Ioannis C.

    2016-01-01

    Cucurbit yellow stunting disorder virus (CYSDV), a bipartite whitefly-transmitted virus, constitutes a major threat to commercial cucurbit production worldwide. Here, construction of full-length CYSDV RNA1 and RNA2 cDNA clones allowed the in vitro synthesis of RNA transcripts able to replicate in cucumber protoplasts. CYSDV RNA1 proved competent for replication; transcription of both polarities of the genomic RNA was detectable 24 h post inoculation. Hybridization of total RNA extracted from transfected protoplasts or from naturally CYSDV-infected cucurbits revealed high-level transcription of the p22 subgenomic RNA species. Replication of CYSDV RNA2 following co-transfection with RNA1 was also observed, with similar transcription kinetics. A CYSDV RNA2 cDNA clone (T3CM8Δ) comprising the 5′- and 3′-UTRs plus the 3′-terminal gene, generated a 2.8 kb RNA able to replicate to high levels in protoplasts in the presence of CYSDV RNA1. The clone T3CM8Δ will facilitate reverse genetics studies of CYSDV gene function and RNA replication determinants. PMID:27314380

  8. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy

    PubMed Central

    Etheridge, Thomas J.; Boulineau, Rémi L.; Herbert, Alex; Watson, Adam T.; Daigaku, Yasukazu; Tucker, Jem; George, Sophie; Jönsson, Peter; Palayret, Matthieu; Lando, David; Laue, Ernest; Osborne, Mark A.; Klenerman, David; Lee, Steven F.; Carr, Antony M.

    2014-01-01

    Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds. PMID:25106872

  9. Optimization of a one-step heat-inducible in vivo mini DNA vector production system.

    PubMed

    Nafissi, Nafiseh; Sum, Chi Hong; Wettig, Shawn; Slavcev, Roderick A

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called "Super Sequences" that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼ 90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics.

  10. Optimization of a One-Step Heat-Inducible In Vivo Mini DNA Vector Production System

    PubMed Central

    Wettig, Shawn; Slavcev, Roderick A.

    2014-01-01

    While safer than their viral counterparts, conventional circular covalently closed (CCC) plasmid DNA vectors offer a limited safety profile. They often result in the transfer of unwanted prokaryotic sequences, antibiotic resistance genes, and bacterial origins of replication that may lead to unwanted immunostimulatory responses. Furthermore, such vectors may impart the potential for chromosomal integration, thus potentiating oncogenesis. Linear covalently closed (LCC), bacterial sequence free DNA vectors have shown promising clinical improvements in vitro and in vivo. However, the generation of such minivectors has been limited by in vitro enzymatic reactions hindering their downstream application in clinical trials. We previously characterized an in vivo temperature-inducible expression system, governed by the phage λ pL promoter and regulated by the thermolabile λ CI[Ts]857 repressor to produce recombinant protelomerase enzymes in E. coli. In this expression system, induction of recombinant protelomerase was achieved by increasing culture temperature above the 37°C threshold temperature. Overexpression of protelomerase led to enzymatic reactions, acting on genetically engineered multi-target sites called “Super Sequences” that serve to convert conventional CCC plasmid DNA into LCC DNA minivectors. Temperature up-shift, however, can result in intracellular stress responses and may alter plasmid replication rates; both of which may be detrimental to LCC minivector production. We sought to optimize our one-step in vivo DNA minivector production system under various induction schedules in combination with genetic modifications influencing plasmid replication, processing rates, and cellular heat stress responses. We assessed different culture growth techniques, growth media compositions, heat induction scheduling and temperature, induction duration, post-induction temperature, and E. coli genetic background to improve the productivity and scalability of our system, achieving an overall LCC DNA minivector production efficiency of ∼90%.We optimized a robust technology conferring rapid, scalable, one-step in vivo production of LCC DNA minivectors with potential application to gene transfer-mediated therapeutics. PMID:24586704

  11. Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro.

    PubMed

    Torisawa, Yu-suke; Spina, Catherine S; Mammoto, Tadanori; Mammoto, Akiko; Weaver, James C; Tat, Tracy; Collins, James J; Ingber, Donald E

    2014-06-01

    Current in vitro hematopoiesis models fail to demonstrate the cellular diversity and complex functions of living bone marrow; hence, most translational studies relevant to the hematologic system are conducted in live animals. Here we describe a method for fabricating 'bone marrow-on-a-chip' that permits culture of living marrow with a functional hematopoietic niche in vitro by first engineering new bone in vivo, removing it whole and perfusing it with culture medium in a microfluidic device. The engineered bone marrow (eBM) retains hematopoietic stem and progenitor cells in normal in vivo-like proportions for at least 1 week in culture. eBM models organ-level marrow toxicity responses and protective effects of radiation countermeasure drugs, whereas conventional bone marrow culture methods do not. This biomimetic microdevice offers a new approach for analysis of drug responses and toxicities in bone marrow as well as for study of hematopoiesis and hematologic diseases in vitro.

  12. Aptamer redesigned tRNA is nonfunctional and degraded in cells

    PubMed Central

    LEE, DENNIS; MCCLAIN, WILLIAM H.

    2004-01-01

    An RNA aptamer derived from tRNAGln isolated in vitro and a rationally redesigned tRNAGln were used to address the relationship between structure and function of tRNAGln aminoacylation in Escherichia coli. Two mutant tRNAGln sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNAGln in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNAGln knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro. PMID:14681579

  13. In vitro and in vivo antiviral activity of 2'-fluorinated arabinosides of 5-(2-haloalkyl)uracil.

    PubMed

    Rosenwirth, B; Streicher, W; De Clercq, E; Wanek, E; Schwarz, W; Griengl, H

    1987-06-01

    5-(2-Fluoroethyl)-2'-deoxyuridine (FEDU), its 2'-fluoroarabinofuranosyl analog (FEFAU) and the 2'-fluoroarabinofuranosyl analog (CEFAU) of the potent anti-herpesvirus compound 5-(2-chloroethyl)-2'-deoxyuridine (CEDU) were evaluated for activity against herpes simplex virus type 1 (HSV-1) and HSV-2 in vitro and in vivo. FEDU, FEFAU and CEFAU proved to be potent and selective anti-herpesvirus agents in vitro. Their potency is evident from their low minimum inhibitory concentrations for HSV-1 and HSV-2, and their selectivity is attested by the marginal inhibition of cell proliferation at relatively high concentrations, and by the high concentrations at which DNA-, RNA- or protein synthesis in normal uninfected host cells is inhibited. Their activity spectrum is broader than that of CEDU: in addition to being highly effective against HSV-1 replication, these derivatives, in particular FEFAU, inhibit HSV-2 replication at concentrations comparable to acyclovir (ACV). In the systemic and cutaneous HSV-1 infection models in mice, FEDU, FEFAU and CEFAU were markedly less potent than CEDU in suppressing the development of lesions and in reducing the mortality rate. In HSV-2 infections in mice and in guinea pigs FEDU, FEFAU and CEFAU were virtually ineffective. CEDU, however, exerted a protective effect in these animal models, albeit at relatively high concentrations.

  14. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    PubMed

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Evaluating the Biostability of Yellow and Clear Intraocular Lenses with a System Simulating Natural Intraocular Environment

    PubMed Central

    Hayashi, Rijo; Hayashi, Shimmin; Arai, Kiyomi; Yoshida, Shinichirou; Chikuda, Makoto; Machida, Shigeki

    2016-01-01

    Purpose Blue light–filtering intraocular lenses (IOLs) are thought to protect the retina from blue light damage after cataract surgery, and the implantation of yellow-tinted IOLs has been commonly used in cataract surgery. To our knowledge, this is the first investigation measuring the long-term biostability of yellow-tinted IOLs using an in vitro system simulating natural intraocular environment. Methods Six hydrophobic acrylic IOLs, three clear IOLs, and three yellow-tinted IOLs were included in the study. Each yellow-tinted IOL was a matching counterpart of a clear IOL, with the only difference being the lens color. The IOLs were kept in conditions replicating the intraocular environment using a perfusion culture system for 7 months. Resolution, light transmittance rate, and the modulation transfer function (MTF) were measured before and after culturing. Surface roughness of the anterior and posterior surfaces was also measured. Results After culturing for 7 months, there were no changes in the resolution, the light transmittance rate, and MTF. The surface roughness of the anterior and posterior surfaces increased after culturing; however, this increase was clinically insignificant. There were no differences in surface roughness between the clear and yellow-tinted IOLs, either before or after culturing. Conclusions A novel in vitro system replicating intraocular environment was used to investigate the biostability of yellow-tinted IOLs. The surface roughness showed no clinically significant increase after culturing for 7 months. Translational Relevance This system is useful for evaluating the biostability of IOLs. PMID:27933221

  16. Thermoelectric technique to precisely control hyperthermic exposures of human whole blood.

    PubMed

    DuBose, D A; Langevin, R C; Morehouse, D H

    1996-12-01

    The need in military research to avoid exposing humans to harsh environments and reduce animal use requires the development of in vitro models for the study of hyperthermic injury. A thermoelectric module (TEM) system was employed to heat human whole blood (HWB) in a manner similar to that experienced by heat-stroked rats. This system precisely and accurately replicated mild, moderate, and extreme heat-stress exposures. Temperature changes could be monitored without the introduction of a test sample thermistor, which reduced contamination problems. HWB with hematocrits of 45 or 50% had similar heating curves, indicating that the system compensated for differences in sample character. The unit's size permitted its containment within a standard carbon dioxide incubator to further control sample environment. These results indicate that the TEM system can precisely control temperature change in this heat stress in vitro model employing HWB. Information obtained from such a model could contribute to military preparedness.

  17. Development of in vitro and in vivo neutralization assays based on the pseudotyped H7N9 virus.

    PubMed

    Tian, Yabin; Zhao, Hui; Liu, Qiang; Zhang, Chuntao; Nie, Jianhui; Huang, Weijing; Li, Changgui; Li, Xuguang; Wang, Youchun

    2018-05-31

    H7N9 viral infections pose a great threat to both animal and human health. This avian virus cannot be handled in level 2 biocontainment laboratories, substantially hindering evaluation of prophylactic vaccines and therapeutic agents. Here, we report a high-titer pseudoviral system with a bioluminescent reporter gene, enabling us to visually and quantitatively conduct analyses of virus replications in both tissue cultures and animals. For evaluation of immunogenicity of H7N9 vaccines, we developed an in vitro assay for neutralizing antibody measurement based on the pseudoviral system; results generated by the in vitro assay were found to be strongly correlated with those by either hemagglutination inhibition (HI) or micro-neutralization (MN) assay. Furthermore, we injected the viruses into Balb/c mice and observed dynamic distributions of the viruses in the animals, which provides an ideal imaging model for quantitative analyses of prophylactic and therapeutic monoclonal antibodies. Taken together, the pseudoviral systems reported here could be of great value for both in vitro and in vivo evaluations of vaccines and antiviral agents without the need of wild type H7N9 virus.

  18. 5',5'''-P1, P4 diadenosine tetraphosphate (Ap4A): a putative initiator of DNA replication.

    PubMed

    Baril, E F; Coughlin, S A; Zamecnik, P C

    1985-01-01

    The proposal that Ap4A acts as an inducer of DNA replication is based primarily on two pieces of evidence (7). The intracellular levels of Ap4A increase ten- to 1000-fold as cells progress into S phase and the introduction of Ap4A into nonproliferating cells stimulated DNA synthesis. There is also some additional suggestive evidence such as the binding of Ap4A to a protein that is associated with multiprotein forms of the replicative DNA polymerase alpha and the ability of this enzyme to use Ap4A as a primer for DNA synthesis in vitro with single-stranded DNA templates. These observations have stimulated interest in the cellular metabolism of Ap4A. This is well since there is a great need for additional experimentation in order to clearly establish Ap4A as an inducer of DNA replication. Microinjection experiments of Ap4A into quiescent cells are needed in order to ascertain if Ap4A will stimulate DNA replication and possibly cell division in intact cells. Studies of the effects of nonhydrolyzable analogs of Ap4A on DNA replication in intact quiescent cells could also prove valuable. Although Ap4A can function as a primer for in vitro DNA synthesis by DNA polymerase alpha this may not be relevant in regard to its in vivo role in DNA replication. Ap4A in vivo could interact with key protein(s) in DNA replication and in this way act as an effector molecule in the initiation of DNA replication. In this regard the interaction of Ap4A with a protein associated with a multiprotein form of DNA polymerase alpha isolated from S-phase cells is of interest. More experiments are required to determine if there is a specific target protein(s) for Ap4A in vivo and what its role in DNA replication is. The cofractionation of tryptophanyl-tRNA synthetase with the replicative DNA polymerase alpha from animal and plant cells is of interest. The DNA polymerase alpha from synchronized animal cells also interacted with Ap4A. Although the plant cell alpha-like DNA polymerase did not interact with Ap4A this DNA polymerase was not a multiprotein form of polymerase alpha and the synchrony of the wheat germ embryos was not known. A possible tie between protein-synthesizing systems and the regulation of proteins involved in DNA replication may exist. The requirement of protein synthesis for the initiation of DNA replication has long been known. Also, it is well established that many temperature-sensitive mutants for tRNA synthetases are also DNA-synthesizing mutants. More investigation in this area may be warranted.(ABSTRACT TRUNCATED AT 400 WORDS)

  19. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene

    PubMed Central

    Sukhodolets, Karen E.; Hickman, Alison B.; Agarwal, Sunita K.; Sukhodolets, Maxim V.; Obungu, Victor H.; Novotny, Elizabeth A.; Crabtree, Judy S.; Chandrasekharappa, Settara C.; Collins, Francis S.; Spiegel, Allen M.; Burns, A. Lee; Marx, Stephen J.

    2003-01-01

    Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. PMID:12509449

  20. 3D is not enough: Building up a cell instructive microenvironment for tumoral stroma microtissues.

    PubMed

    Brancato, Virginia; Garziano, Alessandro; Gioiella, Filomena; Urciuolo, Francesco; Imparato, Giorgia; Panzetta, Valeria; Fusco, Sabato; Netti, Paolo A

    2017-01-01

    We fabricated three-dimensional microtissues with the aim to replicate in vitro the composition and the functionalities of the tumor microenvironment. By arranging either normal fibroblasts (NF) or cancer-activated fibroblasts (CAF) in two different three dimensional (3D) configurations, two kinds of micromodules were produced: spheroids and microtissues. Spheroids were obtained by means of the traditional cell aggregation technique resulting in a 3D model characterized by high cell density and low amount of extracellular proteins. The microtissues were obtained by culturing cells into porous gelatin microscaffolds. In this latter configuration, cells assembled an intricate network of collagen, fibronectin and hyaluronic acid. We investigated the biophysical properties of both 3D models in terms of cell growth, metabolic activity, texture and composition of the extracellular matrix (via histological analysis and multiphoton imaging) and cell mechanical properties (via Particle Tracking Microrheology). In the spheroid models such biophysical properties remained unchanged regardless to the cell type used. In contrast, normal-microtissues and cancer-activated-microtissues displayed marked differences. CAF-microtissues possessed higher proliferation rate, superior contraction capability, different micro-rheological properties and an extracellular matrix richer in collagen fibronectin and hyaluronic acid. At last, multiphoton investigation revealed differences in the collagen network architecture. Taken together, these results suggested that despite to cell spheroids, microtissues better recapitulate the important differences existing in vivo between normal and cancer-activated stroma representing a more suitable system to mimic in vitro the stromal element of the tumor tissues. This work concerns the engineering of tumor tissue in vitro. Tumor models serve as biological equivalent to study pathologic progression and to screen or validate the drugs efficacy. Tumor tissue is composed by malignant cells surviving in a microenvironment, or stroma. Stroma plays a pivotal role in cancer progression. Current in vitro models, i.e. spheroids, can't replicate the phenomena related to the tumor stroma remodeling. For this reason, to better replicate the tumor physiology in vitro that include functional and morphological changes, a novel 3D cancer model is proposed. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  1. The multi-replication protein A (RPA) system--a new perspective.

    PubMed

    Sakaguchi, Kengo; Ishibashi, Toyotaka; Uchiyama, Yukinobu; Iwabata, Kazuki

    2009-02-01

    Replication protein A (RPA) complex has been shown, using both in vivo and in vitro approaches, to be required for most aspects of eukaryotic DNA metabolism: replication, repair, telomere maintenance and homologous recombination. Here, we review recent data concerning the function and biological importance of the multi-RPA complex. There are distinct complexes of RPA found in the biological kingdoms, although for a long time only one type of RPA complex was believed to be present in eukaryotes. Each complex probably serves a different role. In higher plants, three distinct large and medium subunits are present, but only one species of the smallest subunit. Each of these protein subunits forms stable complexes with their respective partners. They are paralogs as complex. Humans possess two paralogs and one analog of RPA. The multi-RPA system can be regarded as universal in eukaryotes. Among eukaryotic kingdoms, paralogs, orthologs, analogs and heterologs of many DNA synthesis-related factors, including RPA, are ubiquitous. Convergent evolution seems to be ubiquitous in these processes. Using recent findings, we review the composition and biological functions of RPA complexes.

  2. Thiazolides Elicit Anti-Viral Innate Immunity and Reduce HIV Replication.

    PubMed

    Trabattoni, Daria; Gnudi, Federica; Ibba, Salomè V; Saulle, Irma; Agostini, Simone; Masetti, Michela; Biasin, Mara; Rossignol, Jean-Francois; Clerici, Mario

    2016-06-02

    Nitazoxanide (Alinia(®), NTZ) and tizoxanide (TIZ), its active circulating metabolite, belong to a class of agents known as thiazolides (TZD) endowed with broad anti-infective activities. TIZ and RM-4848, the active metabolite of RM-5038, were shown to stimulate innate immunity in vitro. Because natural resistance to HIV-1 infection in HIV-exposed seronegative (HESN) individuals is suggested to be associated with strong innate immune responses, we verified whether TIZ and RM-4848 could reduce the in vitro infectiousness of HIV-1. Peripheral blood mononuclear cells (PBMCs) from 20 healthy donors were infected in vitro with HIV-1BaL in the presence/absence of TIZ or RM4848. HIV-1 p24 were measured at different timepoints. The immunomodulatory abilities of TZD were evaluated by the expression of type I IFN pathway genes and the production of cytokines and chemokines. TZD drastically inhibited in vitro HIV-1 replication (>87%). This was associated with the activation of innate immune responses and with the up-regulation of several interferon-stimulated genes (ISGs), including those involved in cholesterol pathway, particularly the cholesterol-25 hydroxylase (CH25H). TZD inhibition of HIV-1 replication in vitro could be due to their ability to stimulate potent and multifaceted antiviral immune responses. These data warrant the exploration of TZD as preventive/therapeutic agent in HIV infection.

  3. Genome-Wide Association Study Identifies Single Nucleotide Polymorphism in DYRK1A Associated with Replication of HIV-1 in Monocyte-Derived Macrophages

    PubMed Central

    Bol, Sebastiaan M.; Moerland, Perry D.; Limou, Sophie; van Remmerden, Yvonne; Coulonges, Cédric; van Manen, Daniëlle; Herbeck, Joshua T.; Fellay, Jacques; Sieberer, Margit; Sietzema, Jantine G.; van 't Slot, Ruben; Martinson, Jeremy; Zagury, Jean-François; Schuitemaker, Hanneke; van 't Wout, Angélique B.

    2011-01-01

    Background HIV-1 infected macrophages play an important role in rendering resting T cells permissive for infection, in spreading HIV-1 to T cells, and in the pathogenesis of AIDS dementia. During highly active anti-retroviral treatment (HAART), macrophages keep producing virus because tissue penetration of antiretrovirals is suboptimal and the efficacy of some is reduced. Thus, to cure HIV-1 infection with antiretrovirals we will also need to efficiently inhibit viral replication in macrophages. The majority of the current drugs block the action of viral enzymes, whereas there is an abundance of yet unidentified host factors that could be targeted. We here present results from a genome-wide association study identifying novel genetic polymorphisms that affect in vitro HIV-1 replication in macrophages. Methodology/Principal Findings Monocyte-derived macrophages from 393 blood donors were infected with HIV-1 and viral replication was determined using Gag p24 antigen levels. Genomic DNA from individuals with macrophages that had relatively low (n = 96) or high (n = 96) p24 production was used for SNP genotyping with the Illumina 610 Quad beadchip. A total of 494,656 SNPs that passed quality control were tested for association with HIV-1 replication in macrophages, using linear regression. We found a strong association between in vitro HIV-1 replication in monocyte-derived macrophages and SNP rs12483205 in DYRK1A (p = 2.16×10−5). While the association was not genome-wide significant (p<1×10−7), we could replicate this association using monocyte-derived macrophages from an independent group of 31 individuals (p = 0.0034). Combined analysis of the initial and replication cohort increased the strength of the association (p = 4.84×10−6). In addition, we found this SNP to be associated with HIV-1 disease progression in vivo in two independent cohort studies (p = 0.035 and p = 0.0048). Conclusions/Significance These findings suggest that the kinase DYRK1A is involved in the replication of HIV-1, in vitro in macrophages as well as in vivo. PMID:21364930

  4. Protein Kinase LegK2 Is a Type IV Secretion System Effector Involved in Endoplasmic Reticulum Recruitment and Intracellular Replication of Legionella pneumophila ▿

    PubMed Central

    Hervet, Eva; Charpentier, Xavier; Vianney, Anne; Lazzaroni, Jean-Claude; Gilbert, Christophe; Atlan, Danièle; Doublet, Patricia

    2011-01-01

    Legionella pneumophila is the etiological agent of Legionnaires' disease. Crucial to the pathogenesis of this intracellular pathogen is its ability to subvert host cell defenses, permitting intracellular replication in specialized vacuoles within host cells. The Dot/Icm type IV secretion system (T4SS), which translocates a large number of bacterial effectors into host cell, is absolutely required for rerouting the Legionella phagosome. Many Legionella effectors display distinctive eukaryotic domains, among which are protein kinase domains. In silico analysis and in vitro phosphorylation assays identified five functional protein kinases, LegK1 to LegK5, encoded by the epidemic L. pneumophila Lens strain. Except for LegK5, the Legionella protein kinases are all T4SS effectors. LegK2 plays a key role in bacterial virulence, as demonstrated by gene inactivation. The legK2 mutant containing vacuoles displays less-efficient recruitment of endoplasmic reticulum markers, which results in delayed intracellular replication. Considering that a kinase-dead substitution mutant of legK2 exhibits the same virulence defects, we highlight here a new molecular mechanism, namely, protein phosphorylation, developed by L. pneumophila to establish a replicative niche and evade host cell defenses. PMID:21321072

  5. Incorporation of the catalytic domain of a hammerhead ribozyme into antisense RNA enhances its inhibitory effect on the replication of human immunodeficiency virus type 1.

    PubMed Central

    Homann, M; Tzortzakaki, S; Rittner, K; Sczakiel, G; Tabler, M

    1993-01-01

    The catalytic domain of a hammerhead ribozyme was incorporated into a 413 nucleotides long antisense RNA directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1) (pos. +222 to +634). The resulting catalytic antisense RNA was shown to cleave its target RNA in vitro specifically at physiological ion strength and temperature. We compared the antiviral effectiveness of this catalytic antisense RNA with that of the corresponding unmodified antisense RNA and with a mutated catalytic antisense RNA, which did not cleave the substrate RNA in vitro. Each of these RNAs was co-transfected into human SW480 cells together with infectious complete proviral HIV-1 DNA, followed by analysis of HIV-1 replication. The presence of the catalytically active domain resulted in 4 to 7 fold stronger inhibition of HIV-1 replication as compared to the parental antisense RNA and the inactive mutant. Kinetic and structural studies performed in vitro indicated that the ability for double strand formation was not changed in catalytic antisense RNA versus parental antisense RNA. Together, these data suggest that the ability to cleave target RNA is a crucial prerequisite for the observed increase of inhibition of the replication of HIV-1. Images PMID:8332489

  6. Effect of 2',3'-dideoxythymidine-5'-triphosphate on HeLa cell in vitro DNA synthesis: evidence that DNA polymerase alpha is the only polymerase required for cellular DNA replication.

    PubMed Central

    Waqar, M A; Evans, M J; Huberman, J A

    1978-01-01

    We have studied the effects of the nucleotide analogue, 2',3'-dideoxythymidine-5'-triphosphate (ddTTP) on replicative DNA synthesis in HeLa cell lysates. As previously demonstrated (1), such lysates carry out extensive DNA synthesis in vitro, at rates and in a fashion similar to in vivo DNA replication. We report here that all aspects of DNA synthesis in such lysates (total dNTP incorporation, elongation of continuous nascent strands, and the initiation, elongation, and joining of Okazaki pieces) are only slightly inhibited by concentrations of ddTTP as high as 100-500 micrometer when the dTTP concentration is maintained at 10 micrometer. This finding is consistent with the report by Edenberg, Anderson, and DePamphilis (2) that all aspects of replicative in vitro simian virus 40 DNA synthesis are also resistant to ddTTP. We also find, in agreement with Edenberg, Anderson, and DePamphilis (2), that DNA synthesis catalyzed by DNA polymerases beta or gamma is easily inhibited by ddTTP, while synthesis catalyzed by DNA polymerase alpha is very resistant. These observations suggest that DNA polymerase alpha may be the only DNA polymerase required for all aspects of cellular DNA synthesis. PMID:673840

  7. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator.

    PubMed

    Raabe, D; Harrison, A; Ireland, A; Alemzadeh, K; Sandy, J; Dogramadzi, S; Melhuish, C; Burgess, S

    2012-03-01

    This paper presents a new in vitro wear simulator based on spatial parallel kinematics and a biologically inspired implicit force/position hybrid controller to replicate chewing movements and dental wear formations on dental components, such as crowns, bridges or a full set of teeth. The human mandible, guided by passive structures such as posterior teeth and the two temporomandibular joints, moves with up to 6 degrees of freedom (DOF) in Cartesian space. The currently available wear simulators lack the ability to perform these chewing movements. In many cases, their lack of sufficient DOF enables them only to replicate the sliding motion of a single occlusal contact point by neglecting rotational movements and the motion along one Cartesian axis. The motion and forces of more than one occlusal contact points cannot accurately be replicated by these instruments. Furthermore, the majority of wear simulators are unable to control simultaneously the main wear-affecting parameters, considering abrasive mechanical wear, which are the occlusal sliding motion and bite forces in the constraint contact phase of the human chewing cycle. It has been shown that such discrepancies between the true in vivo and the simulated in vitro condition influence the outcome and the quality of wear studies. This can be improved by implementing biological features of the human masticatory system such as tooth compliance realized through the passive action of the periodontal ligament and active bite force control realized though the central nervous system using feedback from periodontal preceptors. The simulator described in this paper can be used for single- and multi-occlusal contact testing due to its kinematics and ability to exactly replicate human translational and rotational mandibular movements with up to 6 DOF without neglecting movements along or around the three Cartesian axes. Recorded human mandibular motion and occlusal force data are the reference inputs of the simulator. Experimental studies of wear using this simulator demonstrate that integrating the biological feature of combined force/position hybrid control in dental material testing improves the linearity and reduces the variability of results. In addition, it has been shown that present biaxially operated dental wear simulators are likely to provide misleading results in comparative in vitro/in vivo one-contact studies due to neglecting the occlusal sliding motion in one plane which could introduce an error of up to 49% since occlusal sliding motion D and volumetric wear loss V(loss) are proportional.

  8. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo.

    PubMed

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model.

  9. A Novel Peptide Derived from the Fusion Protein Heptad Repeat Inhibits Replication of Subacute Sclerosing Panencephalitis Virus In Vitro and In Vivo

    PubMed Central

    Watanabe, Masahiro; Hashimoto, Koichi; Abe, Yusaku; Kodama, Eiichi N.; Nabika, Ryota; Oishi, Shinya; Ohara, Shinichiro; Sato, Masatoki; Kawasaki, Yukihiko; Fujii, Nobutaka; Hosoya, Mitsuaki

    2016-01-01

    Subacute sclerosing panencephalitis (SSPE) is a persistent, progressive, and fatal degenerative disease resulting from persistent measles virus (MV) infection of the central nervous system. Most drugs used to treat SSPE have been reported to have limited effects. Therefore, novel therapeutic strategies are urgently required. The SSPE virus, a variant MV strain, differs virologically from wild-type MV strain. One characteristic of the SSPE virus is its defective production of cell-free virus, which leaves cell-to-cell infection as the major mechanism of viral dissemination. The fusion protein plays an essential role in this cell-to-cell spread. It contains two critical heptad repeat regions that form a six-helix bundle in the trimer similar to most viral fusion proteins. In the case of human immunodeficiency virus type-1 (HIV-1), a synthetic peptide derived from the heptad repeat region of the fusion protein enfuvirtide inhibits viral replication and is clinically approved as an anti-HIV-1 agent. The heptad repeat regions of HIV-1 are structurally and functionally similar to those of the MV fusion protein. We therefore designed novel peptides derived from the fusion protein heptad repeat region of the MV and examined their effects on the measles and SSPE virus replication in vitro and in vivo. Some of these synthetic novel peptides demonstrated high antiviral activity against both the measles (Edmonston strain) and SSPE (Yamagata-1 strain) viruses at nanomolar concentrations with no cytotoxicity in vitro. In particular, intracranial administration of one of the synthetic peptides increased the survival rate from 0% to 67% in an SSPE virus-infected nude mouse model. PMID:27612283

  10. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions.

    PubMed

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha; Abdul-Careem, Mohamed Faizal

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens.

  11. Infectious bronchitis corona virus establishes productive infection in avian macrophages interfering with selected antimicrobial functions

    PubMed Central

    Amarasinghe, Aruna; Abdul-Cader, Mohamed Sarjoon; Nazir, Sadiya; De Silva Senapathi, Upasama; van der Meer, Frank; Cork, Susan Catherine; Gomis, Susantha

    2017-01-01

    Infectious bronchitis virus (IBV) causes respiratory disease leading to loss of egg and meat production in chickens. Although it is known that macrophage numbers are elevated in the respiratory tract of IBV infected chickens, the role played by macrophages in IBV infection, particularly as a target cell for viral replication, is unknown. In this study, first, we investigated the ability of IBV to establish productive replication in macrophages in lungs and trachea in vivo and in macrophage cell cultures in vitro using two pathogenic IBV strains. Using a double immunofluorescent technique, we observed that both IBV Massachusetts-type 41 (M41) and Connecticut A5968 (Conn A5968) strains replicate in avian macrophages at a low level in vivo. This in vivo observation was substantiated by demonstrating IBV antigens in macrophages following in vitro IBV infection. Further, IBV productive infection in macrophages was confirmed by demonstrating corona viral particles in macrophages and IBV ribonucleic acid (RNA) in culture supernatants. Evaluation of the functions of macrophages following infection of macrophages with IBV M41 and Conn A5968 strains revealed that the production of antimicrobial molecule, nitric oxide (NO) is inhibited. It was also noted that replication of IBV M41 and Conn A5968 strains in macrophages does not interfere with the induction of type 1 IFN activity by macrophages. In conclusion, both M41 and Con A5968 IBV strains infect macrophages in vivo and in vitro resulting productive replications. During the replication of IBV in macrophages, their ability to produce NO can be affected without affecting the ability to induce type 1 IFN activity. Further studies are warranted to uncover the significance of macrophage infection of IBV in the pathogenesis of IBV infection in chickens. PMID:28763472

  12. The resolving power of in vitro genotoxicity assays for cigarette smoke particulate matter.

    PubMed

    Scott, K; Saul, J; Crooks, I; Camacho, O M; Dillon, D; Meredith, C

    2013-06-01

    In vitro genotoxicity assays are often used to compare tobacco smoke particulate matter (PM) from different cigarettes. The quantitative aspect of the comparisons requires appropriate statistical methods and replication levels, to support the interpretation in terms of power and significance. This paper recommends a uniform statistical analysis for the Ames test, mouse lymphoma mammalian cell mutation assay (MLA) and the in vitro micronucleus test (IVMNT); involving a hierarchical decision process with respect to slope, fixed effect and single dose comparisons. With these methods, replication levels of 5 (Ames test TA98), 4 (Ames test TA100), 10 (Ames test TA1537), 6 (MLA) and 4 (IVMNT) resolved a 30% difference in PM genotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Expanding the host range of small insect RNA viruses: Providence virus (Carmotetraviridae) infects and replicates in a human tissue culture cell line.

    PubMed

    Jiwaji, Meesbah; Short, James Roswell; Dorrington, Rosemary Ann

    2016-10-01

    Tetraviruses are small, positive (+ve)-sense ssRNA viruses that infect the midgut cells of lepidopteran larvae. Providence virus (PrV) is the only member of the family Carmotetraviridae (previously Tetraviridae). PrV particles exhibit the characteristic tetraviral T=4 icosahedral symmetry, but PrV is distinct from other tetraviruses with respect to genome organization and viral non-structural proteins. Currently, PrV is the only tetravirus known to infect and replicate in lepidopteran cell culture lines. In this report we demonstrate, using immunofluorescence microscopy, that PrV infects and replicates in a human tissue culture cell line (HeLa), producing infectious virus particles. We also provide evidence for PrV replication in vitro in insect, mammalian and plant cell-free systems. This study challenges the long-held view that tetraviruses have a narrow host range confined to one or a few lepidopteran species and highlights the need to consider the potential for apparently non-infectious viruses to be transferred to new hosts in the laboratory.

  14. Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ

    PubMed Central

    Kuzminov, Andrei

    1999-01-01

    Although homologous recombination and DNA repair phenomena in bacteria were initially extensively studied without regard to any relationship between the two, it is now appreciated that DNA repair and homologous recombination are related through DNA replication. In Escherichia coli, two-strand DNA damage, generated mostly during replication on a template DNA containing one-strand damage, is repaired by recombination with a homologous intact duplex, usually the sister chromosome. The two major types of two-strand DNA lesions are channeled into two distinct pathways of recombinational repair: daughter-strand gaps are closed by the RecF pathway, while disintegrated replication forks are reestablished by the RecBCD pathway. The phage λ recombination system is simpler in that its major reaction is to link two double-stranded DNA ends by using overlapping homologous sequences. The remarkable progress in understanding the mechanisms of recombinational repair in E. coli over the last decade is due to the in vitro characterization of the activities of individual recombination proteins. Putting our knowledge about recombinational repair in the broader context of DNA replication will guide future experimentation. PMID:10585965

  15. Characterization of a nucleocapsid-like region and of two distinct primer tRNALys,2 binding sites in the endogenous retrovirus Gypsy.

    PubMed

    Gabus, Caroline; Ivanyi-Nagy, Roland; Depollier, Julien; Bucheton, Alain; Pelisson, Alain; Darlix, Jean-Luc

    2006-01-01

    Mobile LTR-retroelements comprising retroviruses and LTR-retrotransposons form a large part of eukaryotic genomes. Their mode of replication and abundance favour the notion that they are major actors in eukaryote evolution. The Gypsy retroelement can spread in the germ line of the fruit fly Drosophila melanogaster via both env-independent and env-dependent processes. Thus, Gypsy is both an active retrotransposon and an infectious retrovirus resembling the gammaretrovirus MuLV. However, unlike gammaretroviruses, the Gypsy Gag structural precursor is not processed into Matrix, Capsid and Nucleocapsid (NC) proteins. In contrast, it has features in common with Gag of the ancient yeast TY1 retroelement. These characteristics of Gypsy make it a very interesting model to study replication of a retroelement at the frontier between ancient retrotransposons and retroviruses. We investigated Gypsy replication using an in vitro model system and transfection of insect cells. Results show that an unstructured domain of Gypsy Gag has all the properties of a retroviral NC. This NC-like peptide forms ribonucleoparticle-like complexes upon binding Gypsy RNA and directs the annealing of primer tRNA(Lys,2) to two distinct primer binding sites (PBS) at the genome 5' and 3' ends. Only the 5' PBS is indispensable for cDNA synthesis in vitro and in Drosophila cells.

  16. Characterization of a nucleocapsid-like region and of two distinct primer tRNALys,2 binding sites in the endogenous retrovirus Gypsy

    PubMed Central

    Gabus, Caroline; Ivanyi-Nagy, Roland; Depollier, Julien; Bucheton, Alain; Pelisson, Alain; Darlix, Jean-Luc

    2006-01-01

    Mobile LTR-retroelements comprising retroviruses and LTR-retrotransposons form a large part of eukaryotic genomes. Their mode of replication and abundance favour the notion that they are major actors in eukaryote evolution. The Gypsy retroelement can spread in the germ line of the fruit fly Drosophila melanogaster via both env-independent and env-dependent processes. Thus, Gypsy is both an active retrotransposon and an infectious retrovirus resembling the gammaretrovirus MuLV. However, unlike gammaretroviruses, the Gypsy Gag structural precursor is not processed into Matrix, Capsid and Nucleocapsid (NC) proteins. In contrast, it has features in common with Gag of the ancient yeast TY1 retroelement. These characteristics of Gypsy make it a very interesting model to study replication of a retroelement at the frontier between ancient retrotransposons and retroviruses. We investigated Gypsy replication using an in vitro model system and transfection of insect cells. Results show that an unstructured domain of Gypsy Gag has all the properties of a retroviral NC. This NC-like peptide forms ribonucleoparticle-like complexes upon binding Gypsy RNA and directs the annealing of primer tRNALys,2 to two distinct primer binding sites (PBS) at the genome 5′ and 3′ ends. Only the 5′ PBS is indispensable for cDNA synthesis in vitro and in Drosophila cells. PMID:17040893

  17. In vitro-reconstituted nucleoids can block mitochondrial DNA replication and transcription.

    PubMed

    Farge, Géraldine; Mehmedovic, Majda; Baclayon, Marian; van den Wildenberg, Siet M J L; Roos, Wouter H; Gustafsson, Claes M; Wuite, Gijs J L; Falkenberg, Maria

    2014-07-10

    The mechanisms regulating the number of active copies of mtDNA are still unclear. A mammalian cell typically contains 1,000-10,000 copies of mtDNA, which are packaged into nucleoprotein complexes termed nucleoids. The main protein component of these structures is mitochondrial transcription factor A (TFAM). Here, we reconstitute nucleoid-like particles in vitro and demonstrate that small changes in TFAM levels dramatically impact the fraction of DNA molecules available for transcription and DNA replication. Compaction by TFAM is highly cooperative, and at physiological ratios of TFAM to DNA, there are large variations in compaction, from fully compacted nucleoids to naked DNA. In compacted nucleoids, TFAM forms stable protein filaments on DNA that block melting and prevent progression of the replication and transcription machineries. Based on our observations, we suggest that small variations in the TFAM-to-mtDNA ratio may be used to regulate mitochondrial gene transcription and DNA replication. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  18. A novel sheet-like virus particle array is a hallmark of Zika virus infection.

    PubMed

    Liu, Jun; Kline, Brandon A; Kenny, Tara A; Smith, Darci R; Soloveva, Veronica; Beitzel, Brett; Pang, Song; Lockett, Stephen; Hess, Harald F; Palacios, Gustavo; Kuhn, Jens H; Sun, Mei G; Zeng, Xiankun

    2018-04-25

    Zika virus (ZIKV) is an emerging flavivirus that caused thousands of human infections in recent years. Compared to other human flaviviruses, ZIKV replication is not well understood. Using fluorescent, transmission electron, and focused ion beam-scanning electron microscopy, we examined ZIKV replication dynamics in Vero 76 cells and in the brains of infected laboratory mice. We observed the progressive development of a perinuclear flaviviral replication factory both in vitro and in vivo. In vitro, we illustrated the ZIKV lifecycle from particle cell entry to egress. ZIKV particles assembled and aggregated in an induced convoluted membrane structure and ZIKV strain-specific membranous vesicles. While most mature virus particles egressed via membrane budding, some particles also likely trafficked through late endosomes and egressed through membrane abscission. Interestingly, we consistently observed a novel sheet-like virus particle array consisting of a single layer of ZIKV particles. Our study further defines ZIKV replication and identifies a novel hallmark of ZIKV infection.

  19. Three-dimensional in vitro cancer spheroid models for Photodynamic Therapy: Strengths and Opportunities

    NASA Astrophysics Data System (ADS)

    Evans, Conor

    2015-03-01

    Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.

  20. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus.

    PubMed

    Liu, Yu; Zhao, Miaoxian; Gong, Mingxing; Xu, Ying; Xie, Cantao; Deng, Haohui; Li, Xueying; Wu, Hongkai; Wang, Zhanhui

    2018-04-01

    Chronic hepatitis B virus (HBV) infection is difficult to cure due to the presence of covalently closed circular DNA (cccDNA). Accumulating evidence indicates that the CRISPR/Cas9 system effectively disrupts HBV genome, including cccDNA, in vitro and in vivo. However, efficient delivery of CRISPR/Cas9 system to the liver or hepatocytes using an adeno-associated virus (AAV) vector remains challenging due to the large size of Cas9 from Streptococcus pyogenes (Sp). The recently identified Cas9 protein from Staphylococcus aureus (Sa) is smaller than SpCas9 and thus is able to be packaged into the AAV vector. To examine the efficacy of SaCas9 system on HBV genome destruction, we designed 5 guide RNAs (gRNAs) that targeted different HBV genotypes, 3 of which were shown to be effective. The SaCas9 system significantly reduced HBV antigen expression, as well as pgRNA and cccDNA levels, in Huh7, HepG2.2.15 and HepAD38 cells. The dual expression of gRNAs/SaCas9 in these cell lines resulted in more efficient HBV genome cleavage. In the mouse model, hydrodynamic injection of gRNA/SaCas9 plasmids resulted in significantly lower levels of HBV protein expression. We also delivered the SaCas9 system into mice with persistent HBV replication using an AAV vector. Both the AAV vector and the mRNA of Cas9 could be detected in the C3H mouse liver cells. Decreased hepatitis B surface antigen (HBsAg), HBV DNA and pgRNA levels were observed when a higher titer of AAV was injected, although this decrease was not significantly different from the control. In summary, the SaCas9 system accurately and efficiently targeted the HBV genome and inhibited HBV replication both in vitro and in vivo. The system was delivered by an AAV vector and maybe used as a novel therapeutic strategy against chronic HBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium.

    PubMed

    Wang, Yuli; Gunasekara, Dulan B; Reed, Mark I; DiSalvo, Matthew; Bultman, Scott J; Sims, Christopher E; Magness, Scott T; Allbritton, Nancy L

    2017-06-01

    The human small intestinal epithelium possesses a distinct crypt-villus architecture and tissue polarity in which proliferative cells reside inside crypts while differentiated cells are localized to the villi. Indirect evidence has shown that the processes of differentiation and migration are driven in part by biochemical gradients of factors that specify the polarity of these cellular compartments; however, direct evidence for gradient-driven patterning of this in vivo architecture has been hampered by limitations of the in vitro systems available. Enteroid cultures are a powerful in vitro system; nevertheless, these spheroidal structures fail to replicate the architecture and lineage compartmentalization found in vivo, and are not easily subjected to gradients of growth factors. In the current work, we report the development of a micropatterned collagen scaffold with suitable extracellular matrix and stiffness to generate an in vitro self-renewing human small intestinal epithelium that replicates key features of the in vivo small intestine: a crypt-villus architecture with appropriate cell-lineage compartmentalization and an open and accessible luminal surface. Chemical gradients applied to the crypt-villus axis promoted the creation of a stem/progenitor-cell zone and supported cell migration along the crypt-villus axis. This new approach combining microengineered scaffolds, biophysical cues and chemical gradients to control the intestinal epithelium ex vivo can serve as a physiologically relevant mimic of the human small intestinal epithelium, and is broadly applicable to model other tissues that rely on gradients for physiological function. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Hibiscus Chlorotic Ringspot Virus Coat Protein Is Essential for Cell-to-Cell and Long-Distance Movement but Not for Viral RNA Replication

    PubMed Central

    Niu, Shengniao; Gil-Salas, Francisco M.; Tewary, Sunil Kumar; Samales, Ashwin Kuppusamy; Johnson, John; Swaminathan, Kunchithapadam; Wong, Sek-Man

    2014-01-01

    Hibiscus chlorotic ringspot virus (HCRSV) is a member of the genus Carmovirus in the family Tombusviridae. In order to study its coat protein (CP) functions on virus replication and movement in kenaf (Hibiscus cannabinus L.), two HCRSV mutants, designated as p2590 (A to G) in which the first start codon ATG was replaced with GTG and p2776 (C to G) in which proline 63 was replaced with alanine, were constructed. In vitro transcripts of p2590 (A to G) were able to replicate to a similar level as wild type without CP expression in kenaf protoplasts. However, its cell-to-cell movement was not detected in the inoculated kenaf cotyledons. Structurally the proline 63 in subunit C acts as a kink for β-annulus formation during virion assembly. Progeny of transcripts derived from p2776 (C to G) was able to move from cell-to-cell in inoculated cotyledons but its long-distance movement was not detected. Virions were not observed in partially purified mutant virus samples isolated from 2776 (C to G) inoculated cotyledons. Removal of the N-terminal 77 amino acids of HCRSV CP by trypsin digestion of purified wild type HCRSV virions resulted in only T = 1 empty virus-like particles. Taken together, HCRSV CP is dispensable for viral RNA replication but essential for cell-to-cell movement, and virion is required for the virus systemic movement. The proline 63 is crucial for HCRSV virion assembly in kenaf plants and the N-terminal 77 amino acids including the β-annulus domain is required in T = 3 assembly in vitro. PMID:25402344

  3. A plasmid-based reverse genetics system for influenza A virus.

    PubMed Central

    Pleschka, S; Jaskunas, R; Engelhardt, O G; Zürcher, T; Palese, P; García-Sastre, A

    1996-01-01

    A reverse genetics system for negative-strand RNA viruses was first successfully developed for influenza viruses. This technology involved the transfection of in vitro-reconstituted ribonucleoprotein (RNP) complexes into influenza virus-infected cells. We have now developed a method that allows intracellular reconstitution of RNP complexes from plasmid-based expression vectors. Expression of a viral RNA-like transcript is achieved from a plasmid containing a truncated human polymerase I (polI) promoter and a ribozyme sequence that generates the desired 3' end by autocatalytic cleavage. The polI-driven plasmid is cotransfected into human 293 cells with polII-responsive plasmids that express the viral PB1, PB2, PA, and NP proteins. This exclusively plasmid-driven system results in the efficient transcription and replication of the viral RNA-like reporter and allows the study of cis- and trans-acting signals involved in the transcription and replication of influenza virus RNAs. Using this system, we have also been able to rescue a synthetic neuraminidase gene into a recombinant influenza virus. This method represents a convenient alternative to the previously established RNP transfection system. PMID:8648766

  4. In vitro infection of salmonid epidermal tissues by infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus

    USGS Publications Warehouse

    Yamamoto, T.; Batts, W.N.; Winton, J.R.

    1992-01-01

    The ability of two rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) and viral hemorrhagic septicemia virus (VHSV), to infect fish skin was investigated by in vitro infection of excised tissues. Virus replication was determined by plaque assay of homogenized tissue extracts, and the virus antigen was detected by immunohistology of tissue sections. Gill, fin, and ventral abdominal skin tissues of rainbow trout Oncorhynchus mykiss that had been infected in vitro with a virulent strain of IHNV (193–110) produced substantial increases in virus titer within 24 h. Titers continued to increase up until day 3 of incubation; by this time, virus had increased 1,000-fold or more. This increase in IHNV titer occurred in epidermal tissues of fingerlings and of older fish. In another experiment, IHNV replicated in excised rainbow trout tissues whether the fish had been subject to prior infection with a virulent strain of IHNV (Western Regional Aquaculture Consortium isolate) or whether the fish had been infected previously with an attenuated strain of the virus (Nan Scott Lake, with 100 passes in culture). A virulent strain of VHSV (23/75) replicated effectively in excised gill tissues and epidermal tissues of rainbow trout and chinook salmon O. tshawytscha; however, the avirulent North American strain of VHSV (Makah) replicated poorly or not at all.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhrymuk, Ivan; Frolov, Ilya; Frolova, Elena I., E-mail: evfrolova@UAB.edu

    Alphaviruses are a family of positive-strand RNA viruses that circulate on all continents between mosquito vectors and vertebrate hosts. Despite a significant public health threat, their biology is not sufficiently investigated, and the mechanisms of alphavirus replication and virus–host interaction are insufficiently understood. In this study, we have applied a variety of experimental systems to further understand the mechanism by which infected cells detect replicating alphaviruses. Our new data strongly suggest that activation of the antiviral response by alphavirus-infected cells is determined by the integrity of viral genes encoding proteins with nuclear functions, and by the presence of two cellularmore » pattern recognition receptors (PRRs), RIG-I and MDA5. No type I IFN response is induced in their absence. The presence of either of these PRRs is sufficient for detecting virus replication. However, type I IFN activation in response to pathogenic alphaviruses depends on the basal levels of RIG-I or MDA5. - Highlights: • Both RIG-I and MDA5 detect alphavirus replication. • Alphavirus-induced transcriptional shutoff affects type I IFN induction. • Sensing of alphavirus replication by RIG-I and MDA5 depends on their concentrations. • High basal level of RIG-I and MDA5 allows IFN induction by pathogenic alphaviruses. • This dependence determines the discrepancy between the in vivo and in vitro data.« less

  6. Functional exchangeability of the nuclear localization signal (NLS) of capsid protein between PCV1 and PCV2 in vitro: Implications for the role of NLS in viral replication

    PubMed Central

    2011-01-01

    Background Porcine circovirus type 2 (PCV2) is believed to be the primary causative agent of postweaning multisystemic wasting syndrome (PMWS). It is supposed that capsid protein of PCV may contribute to replication control via interaction between Cap and Rep in the nucleoplasm. In this study, we described the construction and in vitro characterization of NLS-exchanged PCV DNA clones based on a PMWS-associated PCV2b isolate from China to determine the role of ORF2 NLS in PCV replication. Results The PCV1, PCV2, PCV2-NLS1 and PCV1-NLS2 DNA clone were generated by ligating a copy of respective genome in tandem with a partial duplication. The PCV2-NLS1 and PCV1-NLS2 DNA clone contained a chimeric genome in which the ORF2 NLS was exchanged. The four DNA clones were all confirmed to be infectious in vitro when transfected into PK-15 cells, as PCV capsid protein were expressed in approximately 10-20% of the transfected cells. The in vitro growth characteristics of the DNA clones were then determined and compared. All the recovered progeny viruses gave rise to increasing infectious titers during passages and were genetically stable by genomic sequencing. The chimeric PCV1-NLS2 and PCV2-NLS1 viruses had the final titers of about 104.2 and 103.8 TCID50/ml, which were significantly lower than that of PCV1 and PCV2 (105.6 and 105.0 TCID50/ml, respectively). When the ORF2 NLS exchanged, the mutant PCV2 (PCV2-NLS1) still replicated less efficiently and showed lower infectious titer than did PCV1 mutant (PCV1-NLS2), which was consistent with the distinction between wild type PCV1 and PCV2. Conclusions Recovery of the chimeiric PCV1-NLS2 and PCV2-NLS1 progeny viruses indicate that the nuclear localization signal sequence of capsid protein are functionally exchangeable between PCV1 and PCV2 with respect to the role of nuclear importing and propagation. The findings also reveal that ORF2 NLS play an accessory role in the replication of PCV. However, we found that ORF2 NLS was not responsible for the distinction of in vitro growth characteristic between PCV1 and PCV2. Further studies are required to determine the in vivo viral replication and pathogenicity of the NLS chimeric DNA clones. PMID:21733152

  7. The Hepatitis C Virus NS4B Protein Can trans-Complement Viral RNA Replication and Modulates Production of Infectious Virus▿

    PubMed Central

    Jones, Daniel M.; Patel, Arvind H.; Targett-Adams, Paul; McLauchlan, John

    2009-01-01

    Studies of the hepatitis C virus (HCV) life cycle have been aided by development of in vitro systems that enable replication of viral RNA and production of infectious virus. However, the functions of the individual proteins, especially those engaged in RNA replication, remain poorly understood. It is considered that NS4B, one of the replicase components, creates sites for genome synthesis, which appear as punctate foci at the endoplasmic reticulum (ER) membrane. In this study, a panel of mutations in NS4B was generated to gain deeper insight into its functions. Our analysis identified five mutants that were incapable of supporting RNA replication, three of which had defects in production of foci at the ER membrane. These mutants also influenced posttranslational modification and intracellular mobility of another replicase protein, NS5A, suggesting that such characteristics are linked to focus formation by NS4B. From previous studies, NS4B could not be trans-complemented in replication assays. Using the mutants that blocked RNA synthesis, defective NS4B expressed from two mutants could be rescued in trans-complementation replication assays by wild-type protein produced by a functional HCV replicon. Moreover, active replication could be reconstituted by combining replicons that were defective in NS4B and NS5A. The ability to restore replication from inactive replicons has implications for our understanding of the mechanisms that direct viral RNA synthesis. Finally, one of the NS4B mutations increased the yield of infectious virus by five- to sixfold. Hence, NS4B not only functions in RNA replication but also contributes to the processes engaged in virus assembly and release. PMID:19073716

  8. To peep into Pif1 helicase: multifaceted all the way from genome stability to repair-associated DNA synthesis.

    PubMed

    Chung, Woo-Hyun

    2014-02-01

    Pif1 DNA helicase is the prototypical member of a 5' to 3' helicase superfamily conserved from bacteria to humans. In Saccharomyces cerevisiae, Pif1 and its homologue Rrm3, localize in both mitochondria and nucleus playing multiple roles in the maintenance of genomic homeostasis. They display relatively weak processivities in vitro, but have largely non-overlapping functions on common genomic loci such as mitochondrial DNA, telomeric ends, and many replication forks especially at hard-to-replicate regions including ribosomal DNA and G-quadruplex structures. Recently, emerging evidence shows that Pif1, but not Rrm3, has a significant new role in repair-associated DNA synthesis with Polδ during homologous recombination stimulating D-loop migration for conservative DNA replication. Comparative genetic and biochemical studies on the structure and function of Pif1 family helicases across different biological systems are further needed to elucidate both diversity and specificity of their mechanisms of action that contribute to genome stability.

  9. Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells.

    PubMed Central

    Collis, P S; O'Donnell, B J; Barton, D J; Rogers, J A; Flanegan, J B

    1992-01-01

    Full-length and subgenomic poliovirus RNAs were transcribed in vitro and transfected into HeLa cells to study viral RNA replication in vivo. RNAs with deletion mutations were analyzed for the ability to replicate in either the absence or the presence of helper RNA by using a cotransfection procedure and Northern (RNA) blot analysis. An advantage of this approach was that viral RNA replication and genetic complementation could be characterized without first isolating conditional-lethal mutants. A subgenomic RNA with a large in-frame deletion in the capsid coding region (P1) replicated more efficiently than full-length viral RNA transcripts. In cotransfection experiments, both the full-length and subgenomic RNAs replicated at slightly reduced levels and appeared to interfere with each other's replication. In contrast, a subgenomic RNA with a similarly sized out-of-frame deletion in P1 did not replicate in transfected cells, either alone or in the presence of helper RNA. Similar results were observed with an RNA transcript containing a large in-frame deletion spanning the P1, P2, and P3 coding regions. A mutant RNA with an in-frame deletion in the P1-2A coding sequence was self-replicating but at a significantly reduced level. The replication of this RNA was fully complemented after cotransfection with a helper RNA that provided 2A in trans. A P1-2A-2B in-frame deletion, however, totally blocked RNA replication and was not complemented. Control experiments showed that all of the expected viral proteins were both synthesized and processed when the RNA transcripts were translated in vitro. Thus, our results indicated that 2A was a trans-acting protein and that 2B and perhaps other viral proteins were cis acting during poliovirus RNA replication in vivo. Our data support a model for poliovirus RNA replication which directly links the translation of a molecule of plus-strand RNA with the formation of a replication complex for minus-strand RNA synthesis. Images PMID:1328676

  10. Replication of damaged DNA in vitro is blocked by p53

    PubMed Central

    Zhou, Jianmin; Prives, Carol

    2003-01-01

    The tumor suppressor protein p53 may have other roles and functions in addition to its well-documented ability to serve as a sequence-specific transcriptional activator in response to DNA damage. We showed previously that p53 can block the replication of polyomavirus origin-containing DNA (Py ori-DNA) in vitro when p53 binding sites are present on the late side of the Py ori. Here we have both further extended these observations and have also examined whether p53 might be able to bind directly to and inhibit the replication of damaged DNA. We found that p53 strongly inhibits replication of γ-irradiated Py ori-DNA and such inhibition requires both the central DNA binding domain and the extreme C-terminus of the p53 protein. An endogenous p53 binding site lies within the Py origin and is required for the ability of p53 to block initiation of replication from γ-irradiated Py ori-DNA, suggesting the possibility of DNA looping caused by p53 binding both non-specifically to sites of DNA damage and specifically to the endogenous site in the polyomavirus origin. Our results thus suggest the possibility that under some circumstances p53 might serve as a direct regulator of DNA replication and suggest as well an additional function for cooperation between its two autonomous DNA binding domains. PMID:12853603

  11. A mutation in the hepatitis E virus RNA polymerase promotes its replication and associates with ribavirin treatment failure in organ transplant recipients.

    PubMed

    Debing, Yannick; Gisa, Anett; Dallmeier, Kai; Pischke, Sven; Bremer, Birgit; Manns, Michael; Wedemeyer, Heiner; Suneetha, Pothakamuri Venkata; Neyts, Johan

    2014-11-01

    We analyzed blood samples collected from 15 patients with chronic hepatitis E who were recipients of solid-organ transplants. All patients cleared the hepatitis E virus (HEV) except for 2 (nonresponders); 1 patient died. A G1634R mutation in viral polymerase was detected in the HEV RNA of the nonresponders; this mutation did not provide the virus with resistance to ribavirin in vitro. However, the mutant form of a subgenomic replicon of genotype 3 HEV replicated more efficiently in vitro than HEV without this mutation, and the same was true for infectious virus, including in competition assays. Similar results were obtained for genotype 1 HEV. The G1634R mutation therefore appears to increase the replicative capacity of HEV in the human liver and hence reduce the efficacy of ribavirin. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. Attenuation of monkeypox virus by deletion of genomic regions

    USGS Publications Warehouse

    Lopera, Juan G.; Falendysz, Elizabeth A.; Rocke, Tonie E.; Osorio, Jorge E.

    2015-01-01

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivostudies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence.

  13. Attenuation of monkeypox virus by deletion of genomic regions.

    PubMed

    Lopera, Juan G; Falendysz, Elizabeth A; Rocke, Tonie E; Osorio, Jorge E

    2015-01-15

    Monkeypox virus (MPXV) is an emerging pathogen from Africa that causes disease similar to smallpox. Two clades with different geographic distributions and virulence have been described. Here, we utilized bioinformatic tools to identify genomic regions in MPXV containing multiple virulence genes and explored their roles in pathogenicity; two selected regions were then deleted singularly or in combination. In vitro and in vivo studies indicated that these regions play a significant role in MPXV replication, tissue spread, and mortality in mice. Interestingly, while deletion of either region led to decreased virulence in mice, one region had no effect on in vitro replication. Deletion of both regions simultaneously also reduced cell culture replication and significantly increased the attenuation in vivo over either single deletion. Attenuated MPXV with genomic deletions present a safe and efficacious tool in the study of MPX pathogenesis and in the identification of genetic factors associated with virulence. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence.

    PubMed

    Menachery, Vineet D; Yount, Boyd L; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E; Plante, Jessica A; Graham, Rachel L; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F; Randell, Scott H; Lanzavecchia, Antonio; Marasco, Wayne A; Shi, Zhengli-Li; Baric, Ralph S

    2015-12-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. Here we examine the disease potential of a SARS-like virus, SHC014-CoV, which is currently circulating in Chinese horseshoe bat populations. Using the SARS-CoV reverse genetics system, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse-adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild-type backbone can efficiently use multiple orthologs of the SARS receptor human angiotensin converting enzyme II (ACE2), replicate efficiently in primary human airway cells and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from infection with CoVs using the novel spike protein. On the basis of these findings, we synthetically re-derived an infectious full-length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Our work suggests a potential risk of SARS-CoV re-emergence from viruses currently circulating in bat populations.

  15. Site-specific integration of Streptomyces PhiC31 integrase-based vectors in the chromosome of Rhodococcus equi.

    PubMed

    Hong, Yang; Hondalus, Mary K

    2008-10-01

    Streptomyces PhiC31-based site-specific integration was used to transform the facultative intracellular pathogen Rhodococcus equi. The transformation efficiency of vectors incorporating the PhiC31 integrase and attP sites was comparable to that of replication plasmids using the same electroporation procedure. A single attB integration site was identified within an ORF encoding a pirin-like protein, which deviates slightly from the consensus sequence of Streptomyces attB sites. Vector integration was stably maintained in the R. equi chromosome for as many as 100 generations during unselected passage in vitro. In addition, integration does not appear to affect the replication of bacteria inside macrophages. Finally, this integration system was also used to successfully complement an R. equi mutant.

  16. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro.

    PubMed

    de Cabo, Rafael; Liu, Lijuan; Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M

    2015-03-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes.

  17. Serum from calorie-restricted animals delays senescence and extends the lifespan of normal human fibroblasts in vitro

    PubMed Central

    Ali, Ahmed; Price, Nathan; Zhang, Jing; Wang, Mingyi; Lakatta, Edward; Irusta, Pablo M.

    2015-01-01

    The cumulative effects of cellular senescence and cell loss over time in various tissues and organs are considered major contributing factors to the ageing process. In various organisms, caloric restriction (CR) slows ageing and increases lifespan, at least in part, by activating nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases of the sirtuin family. Here, we use an in vitro model of CR to study the effects of this dietary regime on replicative senescence, cellular lifespan and modulation of the SIRT1 signaling pathway in normal human diploid fibroblasts. We found that serum from calorie-restricted animals was able to delay senescence and significantly increase replicative lifespan in these cells, when compared to serum from ad libitum fed animals. These effects correlated with CR-mediated increases in SIRT1 and decreases in p53 expression levels. In addition, we show that manipulation of SIRT1 levels by either over-expression or siRNA-mediated knockdown resulted in delayed and accelerated cellular senescence, respectively. Our results demonstrate that CR can delay senescence and increase replicative lifespan of normal human diploid fibroblasts in vitro and suggest that SIRT1 plays an important role in these processes. (185 words). PMID:25855056

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wakui, Yuta; Inoue, Jun; Ueno, Yoshiyuki, E-mail: yueno@mail.tains.tohoku.ac.jp

    Although chronic infection of hepatitis B virus (HBV) is currently managed with nucleot(s)ide analogues or interferon-{alpha}, the control of HBV infection still remains a clinical challenge. Peroxisome proliferator-activated receptor (PPAR) is a ligand-activated transcription factor, that plays a role in glucose and lipid metabolism, immune reactions, and inflammation. In this study, the suppressive effect of PPAR ligands on HBV replication was examined in vitro using a PPAR{alpha} ligand, bezafibrate, and a PPAR{gamma} ligand, rosiglitazone. The effects were examined in HepG2 cells transfected with a plasmid containing 1.3-fold HBV genome. Whereas bezafibrate showed no effect against HBV replication, rosiglitazone reduced themore » amount of HBV DNA, hepatitis B surface antigen, and hepatitis B e antigen in the culture supernatant. Southern blot analysis showed that the replicative intermediates of HBV in the cells were also inhibited. It was confirmed that GW9662, an antagonist of PPAR{gamma}, reduced the suppressive effect of rosiglitazone on HBV. Moreover, rosiglitazone showed a synergistic effect on HBV replication with lamivudine or interferon-{alpha}-2b. In conclusion, this study showed that rosiglitazone inhibited the replication of HBV in vitro, and suggested that the combination therapy of rosiglitazone and nucleot(s)ide analogues or interferon could be a therapeutic option for chronic HBV infection.« less

  19. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.

    1986-10-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T/sub 1/-resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized /sup 32/P-RNA. Incubation ofmore » preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor.« less

  20. The MCM Helicase Motor of the Eukaryotic Replisome.

    PubMed

    Abid Ali, Ferdos; Costa, Alessandro

    2016-05-08

    The MCM motor of the CMG helicase powers ahead of the eukaryotic replication machinery to unwind DNA, in a process that requires ATP hydrolysis. The reconstitution of DNA replication in vitro has established the succession of events that lead to replication origin activation by the MCM and recent studies have started to elucidate the structural basis of duplex DNA unwinding. Despite the exciting progress, how the MCM translocates on DNA remains a matter of debate. Copyright © 2016. Published by Elsevier Ltd.

  1. A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair.

    PubMed Central

    Ayyagari, R; Impellizzeri, K J; Yoder, B L; Gary, S L; Burgers, P M

    1995-01-01

    The saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA), encoded by the POL30 gene, is essential for DNA replication and DNA repair processes. Twenty-one site-directed mutations were constructed in the POL30 gene, each mutation changing two adjacently located charged amino acids to alanines. Although none of the mutant strains containing these double-alanine mutations as the sole source of PCNA were temperature sensitive or cold sensitive for growth, about a third of the mutants showed sensitivity to UV light. Some of those UV-sensitive mutants had elevated spontaneous mutation rates. In addition, several mutants suppressed a cold-sensitive mutation in the CDC44 gene, which encodes the large subunit of replication factor C. A cold-sensitive mutant, which was isolated by random mutagenesis, showed a terminal phenotype at the restrictive temperature consistent with a defect in DNA replication. Several mutant PCNAs were expressed and purified from Escherichia coli, and their in vitro properties were determined. The cold-sensitive mutant (pol30-52, S115P) was a monomer, rather than a trimer, in solution. This mutant was deficient for DNA synthesis in vitro. Partial restoration of DNA polymerase delta holoenzyme activity was achieved at 37 degrees C but not at 14 degrees C by inclusion of the macromolecular crowding agent polyethylene glycol in the assay. The only other mutant (pol30-6, DD41,42AA) that showed a growth defect was partially defective for interaction with replication factor C and DNA polymerase delta but completely defective for interaction with DNA polymerase epsilon. Two other mutants sensitive to DNA damage showed no defect in vitro. These results indicate that the latter mutants are specifically impaired in one or more DNA repair processes whereas pol30-6 and pol30-52 mutants show their primary defects in the basic DNA replication machinery with probable associated defects in DNA repair. Therefore, DNA repair requires interactions between repair-specific protein(s) and PCNA, which are distinct from those required for DNA replication. PMID:7623835

  2. Accessory genes confer a high replication rate to virulent feline immunodeficiency virus.

    PubMed

    Troyer, Ryan M; Thompson, Jesse; Elder, John H; VandeWoude, Sue

    2013-07-01

    Feline immunodeficiency virus (FIV) is a lentivirus that causes AIDS in domestic cats, similar to human immunodeficiency virus (HIV)/AIDS in humans. The FIV accessory protein Vif abrogates the inhibition of infection by cat APOBEC3 restriction factors. FIV also encodes a multifunctional OrfA accessory protein that has characteristics similar to HIV Tat, Vpu, Vpr, and Nef. To examine the role of vif and orfA accessory genes in FIV replication and pathogenicity, we generated chimeras between two FIV molecular clones with divergent disease potentials: a highly pathogenic isolate that replicates rapidly in vitro and is associated with significant immunopathology in vivo, FIV-C36 (referred to here as high-virulence FIV [HV-FIV]), and a less-pathogenic strain, FIV-PPR (referred to here as low-virulence FIV [LV-FIV]). Using PCR-driven overlap extension, we produced viruses in which vif, orfA, or both genes from virulent HV-FIV replaced equivalent genes in LV-FIV. The generation of these chimeras is more straightforward in FIV than in primate lentiviruses, since FIV accessory gene open reading frames have very little overlap with other genes. All three chimeric viruses exhibited increased replication kinetics in vitro compared to the replication kinetics of LV-FIV. Chimeras containing HV-Vif or Vif/OrfA had replication rates equivalent to those of the virulent HV-FIV parental virus. Furthermore, small interfering RNA knockdown of feline APOBEC3 genes resulted in equalization of replication rates between LV-FIV and LV-FIV encoding HV-FIV Vif. These findings demonstrate that Vif-APOBEC interactions play a key role in controlling the replication and pathogenicity of this immunodeficiency-inducing virus in its native host species and that accessory genes act as mediators of lentiviral strain-specific virulence.

  3. Viruses within the Flaviviridae Decrease CD4 Expression and Inhibit HIV Replication in Human CD4+ Cells1

    PubMed Central

    Xiang, Jinhua; McLinden, James H.; Rydze, Robert A.; Chang, Qing; Kaufman, Thomas M.; Klinzman, Donna; Stapleton, Jack T.

    2013-01-01

    Viral infections alter host cell homeostasis and this may lead to immune evasion and/or interfere with the replication of other microbes in coinfected hosts. Two flaviviruses are associated with a reduction in HIV replication or improved survival in HIV-infected people (dengue virus (DV) and GB virus type C (GBV-C)). GBV-C infection and expression of the GBV-C nonstructural protein 5A (NS5A) and the DV NS5 protein in CD4+ T cells inhibit HIV replication in vitro. To determine whether the inhibitory effect on HIV replication is conserved among other flaviviruses and to characterize mechanism(s) of HIV inhibition, the NS5 proteins of GBV-C, DV, hepatitis C virus, West Nile virus, and yellow fever virus (YFV; vaccine strain 17D) were expressed in CD4+ T cells. All NS5 proteins inhibited HIV replication. This correlated with decreased steady-state CD4 mRNA levels and reduced cell surface CD4 protein expression. Infection of CD4+ T cells and macrophages with YFV (17D vaccine strain) also inhibited HIV replication and decreased CD4 gene expression. In contrast, mumps virus was not inhibited by the expression of flavivirus NS5 protein or by YFV infection, and mumps infection did not alter CD4 mRNA or protein levels. In summary, CD4 gene expression is decreased by all human flavivirus NS5 proteins studied. CD4 regulation by flaviviruses may interfere with innate and adaptive immunity and contribute to in vitro HIV replication inhibition. Characterization of the mechanisms by which flaviviruses regulate CD4 expression may lead to novel therapeutic strategies for HIV and immunological diseases. PMID:19923460

  4. STN1 OB Fold Mutation Alters DNA Binding and Affects Selective Aspects of CST Function

    PubMed Central

    Bhattacharjee, Anukana; Stewart, Jason; Chaiken, Mary; Price, Carolyn M.

    2016-01-01

    Mammalian CST (CTC1-STN1-TEN1) participates in multiple aspects of telomere replication and genome-wide recovery from replication stress. CST resembles Replication Protein A (RPA) in that it binds ssDNA and STN1 and TEN1 are structurally similar to RPA2 and RPA3. Conservation between CTC1 and RPA1 is less apparent. Currently the mechanism underlying CST action is largely unknown. Here we address CST mechanism by using a DNA-binding mutant, (STN1 OB-fold mutant, STN1-OBM) to examine the relationship between DNA binding and CST function. In vivo, STN1-OBM affects resolution of endogenous replication stress and telomere duplex replication but telomeric C-strand fill-in and new origin firing after exogenous replication stress are unaffected. These selective effects indicate mechanistic differences in CST action during resolution of different replication problems. In vitro binding studies show that STN1 directly engages both short and long ssDNA oligonucleotides, however STN1-OBM preferentially destabilizes binding to short substrates. The finding that STN1-OBM affects binding to only certain substrates starts to explain the in vivo separation of function observed in STN1-OBM expressing cells. CST is expected to engage DNA substrates of varied length and structure as it acts to resolve different replication problems. Since STN1-OBM will alter CST binding to only some of these substrates, the mutant should affect resolution of only a subset of replication problems, as was observed in the STN1-OBM cells. The in vitro studies also provide insight into CST binding mechanism. Like RPA, CST likely contacts DNA via multiple OB folds. However, the importance of STN1 for binding short substrates indicates differences in the architecture of CST and RPA DNA-protein complexes. Based on our results, we propose a dynamic DNA binding model that provides a general mechanism for CST action at diverse forms of replication stress. PMID:27690379

  5. High IL-10 production by aged AIDS patients is related to high frequency of Tr-1 phenotype and low in vitro viral replication.

    PubMed

    Andrade, Regis M; Hygino, Joana; Kasahara, Taissa M; Vieira, Morgana M; Xavier, Luciana F; Blanco, Bernardo; Damasco, Paulo V; Silva, Rodrigo M; Lima, Dirce B; Oliveira, Ariane L; Lemos, Alberto S; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-10-01

    This work aims to elucidate the effects of age and HIV-1 infection on the frequency and function of T cell subsets in response to HIV-specific and non-specific stimuli. As compared with the younger AIDS group, the frequencies of naive and central memory T cells were significantly lower in aged AIDS patients. Although there was also a dramatic loss of classical CD4(+)FoxP3(+)CD25(+)Treg cells in this patient group, high frequencies of IL-10-producing CD4(+)FoxP3(-) T cells were observed. In our system, the increased production of IL-10 in aged AIDS patients was mainly derived from Env-specific CD4(+)FoxP3(-)CD152(+) T cells. Interestingly, while the blockade of IL-10 activity by monoclonal antibody clearly enhanced the release of IL-6 and IL-1β by Env-stimulated PBMC cultures from aged AIDS patients, this monoclonal antibody enhanced in vitro HIV-1-replication. In conclusion, HIV infection and aging undoubtedly contribute synergistically to a complex immune dysfunction in T cell compartment of HAART-treated older HIV-infected individuals. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. The impact of pregnancy on the HIV-1-specific T cell function in infected pregnant women.

    PubMed

    Hygino, Joana; Vieira, Morgana M; Kasahara, Taissa M; Xavier, Luciana F; Blanco, Bernardo; Guillermo, Landi V C; Filho, Renato G S; Saramago, Carmen S M; Lima-Silva, Agostinho A; Oliveira, Ariane L; Guimarães, Vander; Andrade, Arnaldo F B; Bento, Cleonice A M

    2012-12-01

    Evidences indicate that pregnancy can alter the Ag-specific T-cell responses. This work aims to evaluate the impact of pregnancy on the in vitro HIV-1-specific immune response. As compared with non-pregnant patients, lower T-cell proliferation and higher IL-10 production were observed in T-cell cultures from pregnant patients following addition of either mitogens or HIV-1 antigens. In our system, the main T lymphocyte subset involved in producing IL-10 was CD4(+)FoxP3(-). Depletion of CD4(+) cells elevated TNF-α and IFN-γ production. Interestingly, the in vitro HIV-1 replication was lower in cell cultures from pregnant patients, and it was inversely related to IL-10 production. In these cultures, the neutralization of IL-10 by anti-IL-10 mAb elevated TNF-α release and HIV-1 replication. In conclusion, our results reveal that pregnancy-related events should favor the expansion of HIV-1-specific IL-10-secreting CD4(+) T-cells in HIV-1-infected women, which should, in the scenario of pregnancy, help to reduce the risk of vertical HIV-1 transmission. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Feline coronavirus replication is affected by both cyclophilin A and cyclophilin B.

    PubMed

    Tanaka, Yoshikazu; Sato, Yuka; Sasaki, Takashi

    2017-02-01

    Feline coronavirus (FCoV) causes the fatal disease feline infectious peritonitis, which is currently incurable by drug treatment, and no effective vaccines are available. Cyclosporin A (CsA), a cyclophilin (Cyp) inhibitor, inhibits the replication of FCoV in vitro and in vivo as well as the replication of human and animal coronaviruses. However, the mechanism underlying the regulation of coronavirus replication by CsA is unknown. In this study, we analysed the role of Cyps in FCoV replication using knockdown and knockout cells specific to Cyps. Inhibition of CypA and CypB reduced FCoV replication, with replication in knockout cells being much less than that in knockdown cells. Furthermore, the proteins expressed by CypA and CypB harbouring mutations in their respective predicted peptidyl-prolyl cis-transisomerase active sites, which also alter the affinities between Cyps and CsA, inhibited FCoV replication. These findings indicate that the peptidyl-prolyl cis-transisomerase active sites of Cyps might be required for FCoV replication.

  8. Eukaryotic Replicative Helicase Subunit Interaction with DNA and Its Role in DNA Replication

    PubMed Central

    Martinez, Matthew P.; Wacker, Amanda L.; Bruck, Irina; Kaplan, Daniel L.

    2017-01-01

    The replicative helicase unwinds parental double-stranded DNA at a replication fork to provide single-stranded DNA templates for the replicative polymerases. In eukaryotes, the replicative helicase is composed of the Cdc45 protein, the heterohexameric ring-shaped Mcm2-7 complex, and the tetrameric GINS complex (CMG). The CMG proteins bind directly to DNA, as demonstrated by experiments with purified proteins. The mechanism and function of these DNA-protein interactions are presently being investigated, and a number of important discoveries relating to how the helicase proteins interact with DNA have been reported recently. While some of the protein-DNA interactions directly relate to the unwinding function of the enzyme complex, other protein-DNA interactions may be important for minichromosome maintenance (MCM) loading, origin melting or replication stress. This review describes our current understanding of how the eukaryotic replicative helicase subunits interact with DNA structures in vitro, and proposed models for the in vivo functions of replicative helicase-DNA interactions are also described. PMID:28383499

  9. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication

    PubMed Central

    2013-01-01

    Background Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. Methods To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. Results In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Conclusions Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication. PMID:23800076

  10. The eukaryotic translation initiation factor 3 subunit L protein interacts with Flavivirus NS5 and may modulate yellow fever virus replication.

    PubMed

    Morais, Ana Ts; Terzian, Ana Cb; Duarte, Danilo Vb; Bronzoni, Roberta Vm; Madrid, Maria Cfs; Gavioli, Arieli F; Gil, Laura Hvg; Oliveira, Amanda G; Zanelli, Cleslei F; Valentini, Sandro R; Rahal, Paula; Nogueira, Mauricio L

    2013-06-22

    Yellow fever virus (YFV) belongs to the Flavivirus genus and causes an important disease. An alarming resurgence of viral circulation and the expansion of YFV-endemic zones have been detected in Africa and South America in recent years. NS5 is a viral protein that contains methyltransferase and RNA-dependent RNA polymerase (RdRp) domains, which are essential for viral replication, and the interactions between NS5 and cellular proteins have been studied to better understand viral replication. The aim of this study was to characterize the interaction of the NS5 protein with eukaryotic translation initiation factor 3 subunit L (eIF3L) and to evaluate the role of eIF3L in yellow fever replication. To identify interactions of YFV NS5 with cellular proteins, we performed a two-hybrid screen using the YFV NS5 RdRp domain as bait with a human cDNA library, and RNApol deletion mutants were generated and analyzed using the two-hybrid system for mapping the interactions. The RNApol region involved was segmented into three fragments and analyzed using an eIF3L-expressing yeast strain. To map the NS5 residues that are critical for the interactions, we performed site-direct mutagenesis in segment 3 of the interaction domain (ID) and confirmed the interaction using in vitro assays and in vivo coimmunoprecipitation. The significance of eIF3L for YFV replication was investigated using eIF3L overexpression and RNA interference. In this work, we describe and characterize the interaction of NS5 with the translation factor eIF3L. The interaction between NS5 and eIF3L was confirmed using in vitro binding and in vivo coimmunoprecipitation assays. This interaction occurs at a region (the interaction domain of the RNApol domain) that is conserved in several flaviviruses and that is, therefore, likely to be relevant to the genus. eIF3L overexpression and plaque reduction assays showed a slight effect on YFV replication, indicating that the interaction of eIF3L with YFV NS5 may play a role in YFV replication. Although the precise function of eIF3L on interactions with viral proteins is not entirely understood, these results indicate an interaction of eIF3L with YF NS5 and that eIF3L overexpression facilitates translation, which has potential implications for virus replication.

  11. CpG Distribution and Methylation Pattern in Porcine Parvovirus

    PubMed Central

    Tóth, Renáta; Mészáros, István; Stefancsik, Rajmund; Bartha, Dániel; Bálint, Ádám; Zádori, Zoltán

    2013-01-01

    Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome. PMID:24392033

  12. Neutrality of the canonical NF-kappaB-dependent pathway for human and murine cytomegalovirus transcription and replication in vitro.

    PubMed

    Benedict, Chris A; Angulo, Ana; Patterson, Ginelle; Ha, Sukwon; Huang, Huang; Messerle, Martin; Ware, Carl F; Ghazal, Peter

    2004-01-01

    Cytomegalovirus (CMV) is known to rapidly induce activation of nuclear factor kappaB (NF-kappaB) after infection of fibroblast and macrophage cells. NF-kappaB response elements are present in the enhancer region of the CMV major immediate-early promoter (MIEP), and activity of the MIEP is strongly upregulated by NF-kappaB in transient-transfection assays. Here we investigate whether the NF-kappaB-dependent pathway is required for initiating or potentiating human and murine CMV replication in vitro. We show that expression of a dominant negative mutant of the inhibitor of NF-kappaB-alpha (IkappaBalphaM) does not alter the replication kinetics of human or mouse CMV in cultured cells. In addition, mouse embryo fibroblasts genetically deficient for p65/RelA actually showed elevated levels of MCMV replication. Mutation of all NF-kappaB response elements within the enhancer of the MIEP in a recombinant mouse CMV containing the human MIEP (hMCMV-ES), which we have previously shown to replicate in murine fibroblasts with kinetics equivalent to that of wild-type mouse CMV, did not negatively affect replication in fibroblasts. Taken together, these data show that, for CMV replication in cultured fibroblasts activation of the canonical NF-kappaB pathway and binding of NF-kappaB to the MIEP are dispensable, and in the case of p65 may even interfere, thus uncovering a previously unrecognized level of complexity in the host regulatory network governing MIE gene expression in the context of a viral infection.

  13. In-vitro replication of Chelonid herpesvirus 5 in organotypic skin cultures from Hawaiian green turtles (Chelonia mydas)

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Weatherby, Tina; Ackermann, Mathias; Balazs, George H.

    2017-01-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with Chelonid herpesvirus 5 (ChHV5) that has historically been refractory to growth in tissue culture. Here, we show for the first time de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative for active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included 1) either in-vitro culturing of ChHV5-positive tumor biopsies (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and 2) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies revealing intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegumentation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign for active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures where most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as model to culture other viruses that are resistant to replication in conventional cell culture.

  14. Enhanced replication of herpes simplex virus type 1 in human cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, C.S.; Smith, K.O.

    1991-02-01

    The effects of DNA-damaging agents on the replication of herpes simplex virus type 1 (HSV-1) were assessed in vitro. Monolayers of human lung fibroblast cell lines were exposed to DNA-damaging agents (methyl methanesulfonate (MMS), methyl methanethiosulfonate (MMTS), ultraviolet light (UV), or gamma radiation (GR)) at specific intervals, before or after inoculation with low levels of HSV-1. The ability of cell monolayers to support HSV-1 replication was measured by direct plaque assay and was compared with that of untreated control samples. In this system, monolayers of different cell lines infected with identical HSV-1 strains demonstrated dissimilar levels of recovery of themore » infectious virus. Exposure of DNA-repair-competent cell cultures to DNA-damaging agents produced time-dependent enhanced virus replication. Treatment with agent before virus inoculation significantly (p less than 0.025) increased the number of plaques by 10 to 68%, compared with untreated control cultures, while treatment with agent after virus adsorption significantly increased (p less than 0.025) the number of plaques by 7 to 15%. In a parallel series of experiments, cells deficient in DNA repair (xeroderma pigmentosum) failed to support enhanced virus replication. These results suggest that after exposure to DNA-damaging agents, fibroblasts competent in DNA repair amplify the replication of HSV-1, and that DNA-repair mechanisms that act on a variety of chromosomal lesions may be involved in the repair and biological activation of HSV-1 genomes.« less

  15. Enhanced inhibition of parvovirus B19 replication by cidofovir in extendedly exposed erythroid progenitor cells.

    PubMed

    Bonvicini, Francesca; Bua, Gloria; Manaresi, Elisabetta; Gallinella, Giorgio

    2016-07-15

    Human parvovirus B19 (B19V) commonly induces self-limiting infections but can also cause severe clinical manifestations in patients with underlying haematological disorders or with immune system deficits. Currently, therapeutic options for B19V entirely rely on symptomatic and supportive treatments since a specific antiviral therapy is not yet available. Recently a first step in the research for active compounds inhibiting B19V replication has allowed identifying the acyclic nucleoside phosphonate cidofovir (CDV). Herein, the effect of CDV against B19V replication was characterized in human erythroid progenitor cells (EPCs) cultured and infected following different experimental approaches to replicate in vitro the infection of an expanding erythroid cell population in the bone marrow. B19V replication was selectively inhibited both in infected EPCs extendedly exposed to CDV 500μM (viral inhibition 82%) and in serially infected EPCs cultures with passage of the virus progeny, constantly under drug exposure (viral inhibition 99%). In addition, a potent inhibitory effect against B19V (viral inhibition 92%) was assessed in a short-term infection of EPCs treated with CDV 500μM 1day before viral infection. In the evaluated experimental conditions, the enhanced effect of CDV against B19V might be ascribed both to the increased intracellular drug concentration achieved by extended exposure, and to a progressive reduction in efficiency of the replicative process within treated EPCs population. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells.

    PubMed

    Dong, Zhan-Qi; Chen, Ting-Ting; Zhang, Jun; Hu, Nan; Cao, Ming-Ya; Dong, Fei-Fan; Jiang, Ya-Ming; Chen, Peng; Lu, Cheng; Pan, Min-Hui

    2016-06-01

    Although current antiviral strategies can inhibit baculovirus infection and decrease viral DNA replication to a certain extent, novel tools are required for specific and accurate elimination of baculovirus genomes from infected insects. Using the newly developed clustered regularly interspaced short palindromic repeats/associated protein 9 nuclease (CRISPR/Cas9) technology, we disrupted a viral genome in infected insect cells in vitro as a defense against viral infection. We optimized the CRISPR/Cas9 system to edit foreign and viral genome in insect cells. Using Bombyx mori nucleopolyhedrovirus (BmNPV) as a model, we found that the CRISPR/Cas9 system was capable of cleaving the replication key factor ie-1 in BmNPV thus effectively inhibiting virus proliferation. Furthermore, we constructed a virus-inducible CRISPR/Cas9 editing system, which minimized the probability of off-target effects and was rapidly activated after viral infection. This is the first report describing the application of the CRISPR/Cas9 system in insect antiviral research. Establishment of a highly efficient virus-inducible CRISPR/Cas9 system in insect cells provides insights to produce virus-resistant transgenic strains for future. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. The babesia bovis hap2 gene is not required for blood stage replication, but expressed upon in vitro sexual stage induction

    USDA-ARS?s Scientific Manuscript database

    Babesia bovis, is a tick borne apicomplexan parasite responsible for important cattle losses globally. Babesia parasites have a complex life cycle including asexual replication in the mammalian host and sexual reproduction in the tick vector. Novel control strategies aimed at limiting transmission o...

  18. Estimation of the physiological mechanical conditioning in vascular tissue engineering by a predictive fluid-structure interaction approach.

    PubMed

    Tresoldi, Claudia; Bianchi, Elena; Pellegata, Alessandro Filippo; Dubini, Gabriele; Mantero, Sara

    2017-08-01

    The in vitro replication of physiological mechanical conditioning through bioreactors plays a crucial role in the development of functional Small-Caliber Tissue-Engineered Blood Vessels. An in silico scaffold-specific model under pulsatile perfusion provided by a bioreactor was implemented using a fluid-structure interaction (FSI) approach for viscoelastic tubular scaffolds (e.g. decellularized swine arteries, DSA). Results of working pressures, circumferential deformations, and wall shear stress on DSA fell within the desired physiological range and indicated the ability of this model to correctly predict the mechanical conditioning acting on the cells-scaffold system. Consequently, the FSI model allowed us to a priori define the stimulation pattern, driving in vitro physiological maturation of scaffolds, especially with viscoelastic properties.

  19. Sterol Binding by the Tombusviral Replication Proteins Is Essential for Replication in Yeast and Plants.

    PubMed

    Xu, Kai; Nagy, Peter D

    2017-04-01

    Membranous structures derived from various organelles are important for replication of plus-stranded RNA viruses. Although the important roles of co-opted host proteins in RNA virus replication have been appreciated for a decade, the equally important functions of cellular lipids in virus replication have been gaining full attention only recently. Previous work with Tomato bushy stunt tombusvirus (TBSV) in model host yeast has revealed essential roles for phosphatidylethanolamine and sterols in viral replication. To further our understanding of the role of sterols in tombusvirus replication, in this work we showed that the TBSV p33 and p92 replication proteins could bind to sterols in vitro The sterol binding by p33 is supported by cholesterol recognition/interaction amino acid consensus (CRAC) and CARC-like sequences within the two transmembrane domains of p33. Mutagenesis of the critical Y amino acids within the CRAC and CARC sequences blocked TBSV replication in yeast and plant cells. We also showed the enrichment of sterols in the detergent-resistant membrane (DRM) fractions obtained from yeast and plant cells replicating TBSV. The DRMs could support viral RNA synthesis on both the endogenous and exogenous templates. A lipidomic approach showed the lack of enhancement of sterol levels in yeast and plant cells replicating TBSV. The data support the notion that the TBSV replication proteins are associated with sterol-rich detergent-resistant membranes in yeast and plant cells. Together, the results obtained in this study and the previously published results support the local enrichment of sterols around the viral replication proteins that is critical for TBSV replication. IMPORTANCE One intriguing aspect of viral infections is their dependence on efficient subcellular assembly platforms serving replication, virion assembly, or virus egress via budding out of infected cells. These assembly platforms might involve sterol-rich membrane microdomains, which are heterogeneous and highly dynamic nanoscale structures usurped by various viruses. Here, we demonstrate that TBSV p33 and p92 replication proteins can bind to sterol in vitro Mutagenesis analysis of p33 within the CRAC and CARC sequences involved in sterol binding shows the important connection between the abilities of p33 to bind to sterol and to support TBSV replication in yeast and plant cells. Together, the results further strengthen the model that cellular sterols are essential as proviral lipids during viral replication. Copyright © 2017 American Society for Microbiology.

  20. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication

    USGS Publications Warehouse

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-01-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2′-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae.

  1. Functional characterization of replication and stability factors of an incompatibility group P-1 plasmid from Xylella fastidiosa.

    PubMed

    Lee, Min Woo; Rogers, Elizabeth E; Stenger, Drake C

    2010-12-01

    Xylella fastidiosa strain riv11 harbors a 25-kbp plasmid (pXF-RIV11) belonging to the IncP-1 incompatibility group. Replication and stability factors of pXF-RIV11 were identified and used to construct plasmids able to replicate in X. fastidiosa and Escherichia coli. Replication in X. fastidiosa required a 1.4-kbp region from pXF-RIV11 containing a replication initiation gene (trfA) and the adjacent origin of DNA replication (oriV). Constructs containing trfA and oriV from pVEIS01, a related IncP-1 plasmid of the earthworm symbiont Verminephrobacter eiseniae, also were competent for replication in X. fastidiosa. Constructs derived from pXF-RIV11 but not pVEIS01 replicated in Agrobacterium tumefaciens, Xanthomonas campestris, and Pseudomonas syringae. Although plasmids bearing replication elements from pXF-RIV11 or pVEIS01 could be maintained in X. fastidiosa under antibiotic selection, removal of selection resulted in plasmid extinction after 3 weekly passages. Addition of a toxin-antitoxin addiction system (pemI/pemK) from pXF-RIV11 improved plasmid stability such that >80 to 90% of X. fastidiosa cells retained plasmid after 5 weekly passages in the absence of antibiotic selection. Expression of PemK in E. coli was toxic for cell growth, but toxicity was nullified by coexpression of PemI antitoxin. Deletion of N-terminal sequences of PemK containing the conserved motif RGD abolished toxicity. In vitro assays revealed a direct interaction of PemI with PemK, suggesting that antitoxin activity of PemI is mediated by toxin sequestration. IncP-1 plasmid replication and stability factors were added to an E. coli cloning vector to constitute a stable 6.0-kbp shuttle vector (pXF20-PEMIK) suitable for use in X. fastidiosa.

  2. A stochastic step model of replicative senescence explains ROS production rate in ageing cell populations.

    PubMed

    Lawless, Conor; Jurk, Diana; Gillespie, Colin S; Shanley, Daryl; Saretzki, Gabriele; von Zglinicki, Thomas; Passos, João F

    2012-01-01

    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells.One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence.

  3. A Stochastic Step Model of Replicative Senescence Explains ROS Production Rate in Ageing Cell Populations

    PubMed Central

    Lawless, Conor; Jurk, Diana; Gillespie, Colin S.; Shanley, Daryl; Saretzki, Gabriele; von Zglinicki, Thomas; Passos, João F.

    2012-01-01

    Increases in cellular Reactive Oxygen Species (ROS) concentration with age have been observed repeatedly in mammalian tissues. Concomitant increases in the proportion of replicatively senescent cells in ageing mammalian tissues have also been observed. Populations of mitotic human fibroblasts cultured in vitro, undergoing transition from proliferation competence to replicative senescence are useful models of ageing human tissues. Similar exponential increases in ROS with age have been observed in this model system. Tracking individual cells in dividing populations is difficult, and so the vast majority of observations have been cross-sectional, at the population level, rather than longitudinal observations of individual cells. One possible explanation for these observations is an exponential increase in ROS in individual fibroblasts with time (e.g. resulting from a vicious cycle between cellular ROS and damage). However, we demonstrate an alternative, simple hypothesis, equally consistent with these observations which does not depend on any gradual increase in ROS concentration: the Stochastic Step Model of Replicative Senescence (SSMRS). We also demonstrate that, consistent with the SSMRS, neither proliferation-competent human fibroblasts of any age, nor populations of hTERT overexpressing human fibroblasts passaged beyond the Hayflick limit, display high ROS concentrations. We conclude that longitudinal studies of single cells and their lineages are now required for testing hypotheses about roles and mechanisms of ROS increase during replicative senescence. PMID:22359661

  4. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk.

    PubMed

    Garlíková, Zuzana; Silva, Ana Catarina; Rabata, Anas; Potěšil, David; Ihnatová, Ivana; Dumková, Jana; Koledová, Zuzana; Zdráhal, Zbyněk; Vinarský, Vladimír; Hampl, Aleš; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos

    2018-01-01

    Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.

  5. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  6. A 5′ Noncoding Exon Containing Engineered Intron Enhances Transgene Expression from Recombinant AAV Vectors in vivo

    PubMed Central

    Lu, Jiamiao; Williams, James A.; Luke, Jeremy; Zhang, Feijie; Chu, Kirk; Kay, Mark A.

    2017-01-01

    We previously developed a mini-intronic plasmid (MIP) expression system in which the essential bacterial elements for plasmid replication and selection are placed within an engineered intron contained within a universal 5′ UTR noncoding exon. Like minicircle DNA plasmids (devoid of bacterial backbone sequences), MIP plasmids overcome transcriptional silencing of the transgene. However, in addition MIP plasmids increase transgene expression by 2 and often >10 times higher than minicircle vectors in vivo and in vitro. Based on these findings, we examined the effects of the MIP intronic sequences in a recombinant adeno-associated virus (AAV) vector system. Recombinant AAV vectors containing an intron with a bacterial replication origin and bacterial selectable marker increased transgene expression by 40 to 100 times in vivo when compared with conventional AAV vectors. Therefore, inclusion of this noncoding exon/intron sequence upstream of the coding region can substantially enhance AAV-mediated gene expression in vivo. PMID:27903072

  7. Using barcoded Zika virus to assess virus population structure in vitro and in Aedes aegypti mosquitoes.

    PubMed

    Weger-Lucarelli, James; Garcia, Selene M; Rückert, Claudia; Byas, Alex; O'Connor, Shelby L; Aliota, Matthew T; Friedrich, Thomas C; O'Connor, David H; Ebel, Gregory D

    2018-06-20

    Arboviruses such as Zika virus (ZIKV, Flaviviridae; Flavivirus) must replicate in both mammalian and insect hosts possessing strong immune defenses. Accordingly, transmission between and replication within hosts involves genetic bottlenecks, during which viral population size and genetic diversity may be significantly reduced. To help quantify these bottlenecks and their effects, we constructed 4 "barcoded" ZIKV populations that theoretically contain thousands of barcodes each. After identifying the most diverse barcoded virus, we passaged this virus 3 times in 2 mammalian and mosquito cell lines and characterized the population using deep sequencing of the barcoded region of the genome. C6/36 maintain higher barcode diversity, even after 3 passages, than Vero. Additionally, field-caught mosquitoes exposed to the virus to assess bottlenecks in a natural host. A progressive reduction in barcode diversity occurred throughout systemic infection of these mosquitoes. Differences in bottlenecks during systemic spread were observed between different populations of Aedes aegypti. Copyright © 2018. Published by Elsevier Inc.

  8. To Compare the Effects of Storage Solutions 0.05% Thymol vs. 6% Sodium Hypochlorite vs. Hank’s Balanced Salt Solution on the Flexural Strength of Dentin Bars

    DTIC Science & Technology

    2016-05-20

    ridge thicknesses, restored with composite resin and composite resin reinforced with Ribbond . Indian Journal of Dental Research . Manisha, T. (2014...in the internal structure of an extracted tooth, used to test dental materials in vitro could result in findings that cannot be replicated or...roots restored with different post systems. International Endodontic Journal . Barbosa, S. V. (1994). Influence of sodium hypochlorite on the

  9. T CELL REPLICATIVE SENESCENCE IN HUMAN AGING

    PubMed Central

    Chou, Jennifer P.; Effros, Rita B.

    2013-01-01

    The decline of the immune system appears to be an intractable consequence of aging, leading to increased susceptibility to infections, reduced effectiveness of vaccination and higher incidences of many diseases including osteoporosis and cancer in the elderly. These outcomes can be attributed, at least in part, to a phenomenon known as T cell replicative senescence, a terminal state characterized by dysregulated immune function, loss of the CD28 costimulatory molecule, shortened telomeres and elevated production of pro-inflammatory cytokines. Senescent CD8 T cells, which accumulate in the elderly, have been shown to frequently bear antigen specificity against cytomegalovirus (CMV), suggesting that this common and persistent infection may drive immune senescence and result in functional and phenotypic changes to the T cell repertoire. Senescent T cells have also been identified in patients with certain cancers, autoimmune diseases and chronic infections, such as HIV. This review discusses the in vivo and in vitro evidence for the contribution of CD8 T cell replicative senescence to a plethora of age-related pathologies and a few possible therapeutic avenues to delay or prevent this differentiative end-state in T cells. The age-associated remodeling of the immune system, through accumulation of senescent T cells has far-reaching consequences on the individual and society alike, for the current healthcare system needs to meet the urgent demands of the increasing proportions of the elderly in the US and abroad. PMID:23061726

  10. G4 motifs affect origin positioning and efficiency in two vertebrate replicators

    PubMed Central

    Valton, Anne-Laure; Hassan-Zadeh, Vahideh; Lema, Ingrid; Boggetto, Nicole; Alberti, Patrizia; Saintomé, Carole; Riou, Jean-François; Prioleau, Marie-Noëlle

    2014-01-01

    DNA replication ensures the accurate duplication of the genome at each cell cycle. It begins at specific sites called replication origins. Genome-wide studies in vertebrates have recently identified a consensus G-rich motif potentially able to form G-quadruplexes (G4) in most replication origins. However, there is no experimental evidence to demonstrate that G4 are actually required for replication initiation. We show here, with two model origins, that G4 motifs are required for replication initiation. Two G4 motifs cooperate in one of our model origins. The other contains only one critical G4, and its orientation determines the precise position of the replication start site. Point mutations affecting the stability of this G4 in vitro also impair origin function. Finally, this G4 is not sufficient for origin activity and must cooperate with a 200-bp cis-regulatory element. In conclusion, our study strongly supports the predicted essential role of G4 in replication initiation. PMID:24521668

  11. Tombusvirus RNA replication depends on the TOR pathway in yeast and plants.

    PubMed

    Inaba, Jun-Ichi; Nagy, Peter D

    2018-06-01

    Similar to other (+)RNA viruses, tomato bushy stunt virus (TBSV) utilizes metabolites, lipids, membranes, and co-opted host factors during replication. The coordination of cell metabolism and growth with environmental cues is performed by the target of rapamycin (TOR) kinase in eukaryotic cells. In this paper, we find that TBSV replication partially inhibits TOR activity, likely due to recruitment of glycolytic enzymes to the viral replication compartment, which results in reduced ATP levels in the cytosol. Complete inhibition of TOR activity with rapamycin in yeast or AZD8055 inhibitor in plants reduces tombusvirus replication. We find that high glucose concentration, which stimulates TOR activity, enhanced tombusvirus replication in yeast. Depletion of yeast Sch9 or plant S6K1 kinase, a downstream effector of TOR, also inhibited tombusvirus replication in yeast and plant or the assembly of the viral replicase in vitro. Altogether, the TOR pathway is crucial for TBSV to replicate efficiently in hosts. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Palm Mutants in DNA Polymerases α and η Alter DNA Replication Fidelity and Translesion Activity

    PubMed Central

    Niimi, Atsuko; Limsirichaikul, Siripan; Yoshida, Shonen; Iwai, Shigenori; Masutani, Chikahide; Hanaoka, Fumio; Kool, Eric T.; Nishiyama, Yukihiro; Suzuki, Motoshi

    2004-01-01

    We isolated active mutants in Saccharomyces cerevisiae DNA polymerase α that were associated with a defect in error discrimination. Among them, L868F DNA polymerase α has a spontaneous error frequency of 3 in 100 nucleotides and 570-fold lower replication fidelity than wild-type (WT) polymerase α. In vivo, mutant DNA polymerases confer a mutator phenotype and are synergistic with msh2 or msh6, suggesting that DNA polymerase α-dependent replication errors are recognized and repaired by mismatch repair. In vitro, L868F DNA polymerase α catalyzes efficient bypass of a cis-syn cyclobutane pyrimidine dimer, extending the 3′ T 26,000-fold more efficiently than the WT. Phe34 is equivalent to residue Leu868 in translesion DNA polymerase η, and the F34L mutant of S. cerevisiae DNA polymerase η has reduced translesion DNA synthesis activity in vitro. These data suggest that high-fidelity DNA synthesis by DNA polymerase α is required for genomic stability in yeast. The data also suggest that the phenylalanine and leucine residues in translesion and replicative DNA polymerases, respectively, might have played a role in the functional evolution of these enzyme classes. PMID:15024063

  13. Novel dengue virus NS2B/NS3 protease inhibitors.

    PubMed

    Wu, Hongmei; Bock, Stefanie; Snitko, Mariya; Berger, Thilo; Weidner, Thomas; Holloway, Steven; Kanitz, Manuel; Diederich, Wibke E; Steuber, Holger; Walter, Christof; Hofmann, Daniela; Weißbrich, Benedikt; Spannaus, Ralf; Acosta, Eliana G; Bartenschlager, Ralf; Engels, Bernd; Schirmeister, Tanja; Bodem, Jochen

    2015-02-01

    Dengue fever is a severe, widespread, and neglected disease with more than 2 million diagnosed infections per year. The dengue virus NS2B/NS3 protease (PR) represents a prime target for rational drug design. At the moment, there are no clinical PR inhibitors (PIs) available. We have identified diaryl (thio)ethers as candidates for a novel class of PIs. Here, we report the selective and noncompetitive inhibition of the serotype 2 and 3 dengue virus PR in vitro and in cells by benzothiazole derivatives exhibiting 50% inhibitory concentrations (IC50s) in the low-micromolar range. Inhibition of replication of DENV serotypes 1 to 3 was specific, since all substances influenced neither hepatitis C virus (HCV) nor HIV-1 replication. Molecular docking suggests binding at a specific allosteric binding site. In addition to the in vitro assays, a cell-based PR assay was developed to test these substances in a replication-independent way. The new compounds inhibited the DENV PR with IC50s in the low-micromolar or submicromolar range in cells. Furthermore, these novel PIs inhibit viral replication at submicromolar concentrations. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Single-molecule visualization of Saccharomyces cerevisiae leading-strand synthesis reveals dynamic interaction between MTC and the replisome

    PubMed Central

    Lewis, Jacob S.; Spenkelink, Lisanne M.; Schauer, Grant D.; Hill, Flynn R.; Georgescu, Roxanna E.; O’Donnell, Michael E.; van Oijen, Antoine M.

    2017-01-01

    The replisome, the multiprotein system responsible for genome duplication, is a highly dynamic complex displaying a large number of different enzyme activities. Recently, the Saccharomyces cerevisiae minimal replication reaction has been successfully reconstituted in vitro. This provided an opportunity to uncover the enzymatic activities of many of the components in a eukaryotic system. Their dynamic behavior and interactions in the context of the replisome, however, remain unclear. We use a tethered-bead assay to provide real-time visualization of leading-strand synthesis by the S. cerevisiae replisome at the single-molecule level. The minimal reconstituted leading-strand replisome requires 24 proteins, forming the CMG helicase, the Pol ε DNA polymerase, the RFC clamp loader, the PCNA sliding clamp, and the RPA single-stranded DNA binding protein. We observe rates and product lengths similar to those obtained from ensemble biochemical experiments. At the single-molecule level, we probe the behavior of two components of the replication progression complex and characterize their interaction with active leading-strand replisomes. The Minichromosome maintenance protein 10 (Mcm10), an important player in CMG activation, increases the number of productive replication events in our assay. Furthermore, we show that the fork protection complex Mrc1–Tof1–Csm3 (MTC) enhances the rate of the leading-strand replisome threefold. The introduction of periods of fast replication by MTC leads to an average rate enhancement of a factor of 2, similar to observations in cellular studies. We observe that the MTC complex acts in a dynamic fashion with the moving replisome, leading to alternating phases of slow and fast replication. PMID:28923950

  15. A ring test of in vitro neutral detergent fiber digestibility: analytical variability and sample ranking

    USDA-ARS?s Scientific Manuscript database

    In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...

  16. A ring test of in vitro neutral detergent fiber digestibility: Analytical variability and sample ranking

    USDA-ARS?s Scientific Manuscript database

    In vitro neutral detergent fiber (NDF) digestibility (NDFD) is an empirical measurement used to describe fermentability of NDF by rumen microbes. Variability is inherent in assays and affects the precision that can be expected for replicated samples. The study objective was to evaluate variability w...

  17. In vitro neutralization of HCV by goat antibodies against peptides encompassing regions downstream of HVR-1 of E2 glycoprotein.

    PubMed

    Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K

    2014-01-01

    This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.

  18. Novel Cell Culture-Adapted Genotype 2a Hepatitis C Virus Infectious Clone

    PubMed Central

    Date, Tomoko; Kato, Takanobu; Kato, Junko; Takahashi, Hitoshi; Morikawa, Kenichi; Akazawa, Daisuke; Murayama, Asako; Tanaka-Kaneko, Keiko; Sata, Tetsutaro; Tanaka, Yasuhito; Mizokami, Masashi

    2012-01-01

    Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones. PMID:22787209

  19. Immunogenic HSV-mediated oncolysis shapes the antitumor immune response and contributes to therapeutic efficacy.

    PubMed

    Workenhe, Samuel T; Simmons, Graydon; Pol, Jonathan G; Lichty, Brian D; Halford, William P; Mossman, Karen L

    2014-01-01

    Within the oncolytic virus field, the extent of virus replication that is essential for immune stimulation to control tumor growth remains unresolved. Using infected cell protein 0 (ICP0)-defective oncolytic Herpes simplex virus type 1 (HSV-1) and HSV-2 viruses (dICP0 and dNLS) that show differences in their in vitro replication and cytotoxicity, we investigated the inherent features of oncolytic HSV viruses that are required for potent antitumor activity. In vitro, the HSV-2 vectors showed rapid cytotoxicity despite lower viral burst sizes compared to HSV-1 vectors. In vivo, although both of the dICP0 vectors initially replicated to a similar level, HSV-1 dICP0 was rapidly cleared from the tumors. In spite of this rapid clearance, HSV-1 dICP0 treatment conferred significant survival benefit. HSV-1 dICP0-treated tumors showed significantly higher levels of danger-associated molecular patterns that correlated with higher numbers of antigen-presenting cells within the tumor and increased antigen-specific CD8+ T-cell levels in the peripheral blood. This study suggests that, at least in the context of oncolytic HSV, the initial stages of immunogenic virus replication leading to activation of antitumor immunity are more important than persistence of a replicating virus within the tumor. This knowledge provides important insight for the design of therapeutically successful oncolytic viruses.

  20. An Mcm10 Mutant Defective in ssDNA Binding Shows Defects in DNA Replication Initiation.

    PubMed

    Perez-Arnaiz, Patricia; Kaplan, Daniel L

    2016-11-20

    Mcm10 is an essential protein that functions to initiate DNA replication after the formation of the replication fork helicase. In this manuscript, we identified a budding yeast Mcm10 mutant (Mcm10-m2,3,4) that is defective in DNA binding in vitro. Moreover, this Mcm10-m2,3,4 mutant does not stimulate the phosphorylation of Mcm2 by Dbf4-dependent kinase (DDK) in vitro. When we expressed wild-type levels of mcm10-m2,3,4 in budding yeast cells, we observed a severe growth defect and a substantially decreased DNA replication. We also observed a substantially reduced replication protein A- chromatin immunoprecipitation signal at origins of replication, reduced levels of DDK-phosphorylated Mcm2, and diminished Go, Ichi, Ni, and San (GINS) association with Mcm2-7 in vivo. mcm5-bob1 bypasses the growth defect conferred by DDK-phosphodead Mcm2 in budding yeast. However, the growth defect observed by expressing mcm10-m2,3,4 is not bypassed by the mcm5-bob1 mutation. Furthermore, origin melting and GINS association with Mcm2-7 are substantially decreased for cells expressing mcm10-m2,3,4 in the mcm5-bob1 background. Thus, the origin melting and GINS-Mcm2-7 interaction defects we observed for mcm10-m2,3,4 are not explained by decreased Mcm2 phosphorylation by DDK, since the defects persist in an mcm5-bob1 background. These data suggest that DNA binding by Mcm10 is essential for the initiation of DNA replication. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Replication of Murine Cytomegalovirus in Differentiated Macrophages as a Determinant of Viral Pathogenesis

    PubMed Central

    Hanson, Laura K.; Slater, Jacquelyn S.; Karabekian, Zaruhi; Virgin, Herbert W.; Biron, Christine A.; Ruzek, Melanie C.; van Rooijen, Nico; Ciavarra, Richard P.; Stenberg, Richard M.; Campbell, Ann E.

    1999-01-01

    Blood monocytes or tissue macrophages play a pivotal role in the pathogenesis of murine cytomegalovirus (MCMV) infection, providing functions beneficial to both the virus and the host. In vitro and in vivo studies have indicated that differentiated macrophages support MCMV replication, are target cells for MCMV infection within tissues, and harbor latent MCMV DNA. However, this cell type presumably initiates early, antiviral immune responses as well. In addressing this paradoxical role of macrophages, we provide evidence that the proficiency of MCMV replication in macrophages positively correlates with virulence in vivo. An MCMV mutant from which the open reading frames M139, M140, and M141 had been deleted (RV10) was defective in its ability to replicate in macrophages in vitro and was highly attenuated for growth in vivo. However, depletion of splenic macrophages significantly enhanced, rather than deterred, replication of both wild-type (WT) virus and RV10 in the spleen. The ability of RV10 to replicate in intact or macrophage-depleted spleens was independent of cytokine production, as this mutant virus was a poor inducer of cytokines compared to WT virus in both intact organs and macrophage-depleted organs. Macrophages were, however, a major contributor to the production of tumor necrosis factor alpha and gamma interferon in response to WT virus infection. Thus, the data indicate that tissue macrophages serve a net protective role and may function as “filters” in protecting other highly permissive cell types from MCMV infection. The magnitude of virus replication in tissue macrophages may dictate the amount of virus accessible to the other cells. Concomitantly, infection of this cell type initiates the production of antiviral immune responses to guarantee efficient clearance of acute MCMV infection. PMID:10364349

  2. Small-Molecule Effectors of Hepatitis B Virus Capsid Assembly Give Insight into Virus Life Cycle▿

    PubMed Central

    Bourne, Christina; Lee, Sejin; Venkataiah, Bollu; Lee, Angela; Korba, Brent; Finn, M. G.; Zlotnick, Adam

    2008-01-01

    The relationship between the physical chemistry and biology of self-assembly is poorly understood, but it will be critical to quantitatively understand infection and for the design of antivirals that target virus genesis. Here we take advantage of heteroaryldihydropyrimidines (HAPs), which affect hepatitis B virus (HBV) assembly, to gain insight and correlate in vitro assembly with HBV replication in culture. Based on a low-resolution crystal structure of a capsid-HAP complex, a closely related series of HAPs were designed and synthesized. These differentially strengthen the association between neighboring capsid proteins, alter the kinetics of assembly, and give rise to aberrant structures incompatible with a functional capsid. The chemical nature of the HAP variants correlated well with the structure of the HAP binding pocket. The thermodynamics and kinetics of in vitro assembly had strong and predictable effects on product morphology. However, only the kinetics of in vitro assembly had a strong correlation with inhibition of HBV replication in HepG2.2.15 cells; there was at best a weak correlation between assembly thermodynamics and replication. The correlation between assembly kinetics and virus suppression implies a competition between successful assembly and misassembly, small molecule induced or otherwise. This is a predictive and testable model for the mechanism of action of assembly effectors. PMID:18684823

  3. Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism

    PubMed Central

    Farsang, Attila; Zádori, Zoltán; Hornyák, Ákos; Dencső, László; Almazán, Fernando; Enjuanes, Luis; Belák, Sándor

    2012-01-01

    The full-length genome of the highly lethal feline infectious peritonitis virus (FIPV) strain DF-2 was sequenced and cloned into a bacterial artificial chromosome (BAC) to study the role of ORF3abc in the FIPV-feline enteric coronavirus (FECV) transition. The reverse genetic system allowed the replacement of the truncated ORF3abc of the original FIPV DF-2 genome with the intact ORF3abc of the canine coronavirus (CCoV) reference strain Elmo/02. The in vitro replication kinetics of these two viruses was studied in CrFK and FCWF-4 cell lines, as well as in feline peripheral blood monocytes. Both viruses showed similar replication kinetics in established cell lines. However, the strain with a full-length ORF3 showed markedly lower replication of more than 2 log10 titers in feline peripheral blood monocytes. Our results suggest that the truncated ORF3abc plays an important role in the efficient macrophage/monocyte tropism of type II FIPV. PMID:22438554

  4. Coordinate Deletion of N-Glycans from the Heptad Repeats of the Fusion F Protein of Newcastle Disease Virus Yields a Hyperfusogenic Virus with Increased Replication, Virulence, and Immunogenicity

    PubMed Central

    Samal, Sweety; Khattar, Sunil K.; Kumar, Sachin; Collins, Peter L.

    2012-01-01

    The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence. PMID:22205748

  5. Coordinate deletion of N-glycans from the heptad repeats of the fusion F protein of Newcastle disease virus yields a hyperfusogenic virus with increased replication, virulence, and immunogenicity.

    PubMed

    Samal, Sweety; Khattar, Sunil K; Kumar, Sachin; Collins, Peter L; Samal, Siba K

    2012-03-01

    The role of N-linked glycosylation of the Newcastle disease virus (NDV) fusion (F) protein in viral replication and pathogenesis was examined by eliminating potential acceptor sites using a reverse genetics system for the moderately pathogenic strain Beaudette C (BC). The NDV-BC F protein contains six potential acceptor sites for N-linked glycosylation at residues 85, 191, 366, 447, 471, and 541 (sites Ng1 to Ng6, respectively). The sites at Ng2 and Ng5 are present in heptad repeat (HR) domains HR1 and HR2, respectively, and thus might affect fusion. Each N-glycosylation site was eliminated individually by replacing asparagine (N) with glutamine (Q), and a double mutant (Ng2 + 5) involving the two HR domains was also made. Each mutant was successfully recovered by reverse genetics except for the one involving Ng6, which is present in the cytoplasmic domain. All of the F proteins expressed by the recovered mutant viruses were efficiently cleaved and transported to the infected-cell surface. None of the individual mutations affected viral fusogenicity, but the double mutation at Ng2 and Ng5 in HR1 and HR2 increased fusogenicity >12-fold. The single mutations at sites Ng1, Ng2, and Ng5 resulted in modestly reduced multicycle growth in vitro. These three single mutations were also the most attenuating in eggs and 1-day-old chicks and were associated with decreased replication and spread in 2-week-old chickens. In contrast, the combination of the mutations at Ng2 and Ng5 yielded a virus that, compared to the BC parent, replicated >100-fold more efficiently in vitro, was more virulent in eggs and chicks, replicated more efficiently in chickens with enhanced tropism for the brain and gut, and elicited stronger humoral cell responses. These results illustrate the effects of N-glycosylation of the F protein on NDV pathobiology and suggest that the N-glycans in HR1 and HR2 coordinately downregulate viral fusion and virulence.

  6. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    NASA Astrophysics Data System (ADS)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  7. A Microfabricated Platform for Generating Physiologically-Relevant Hepatocyte Zonation

    NASA Astrophysics Data System (ADS)

    McCarty, William J.; Usta, O. Berk; Yarmush, Martin L.

    2016-05-01

    In vitro liver models have been important tools for more than 40 years for academic research and preclinical toxicity screening by the pharmaceutical industry. Hepatocytes, the highly metabolic parenchymal cells of the liver, are efficient at different metabolic chemistries depending on their relative spatial location along the sinusoid from the portal triad to the central vein. Although replicating hepatocyte metabolic zonation is vitally important for physiologically-relevant in vitro liver tissue and organ models, it is most often completely overlooked. Here, we demonstrate the creation of spatially-controlled zonation across multiple hepatocyte metabolism levels through the application of precise concentration gradients of exogenous hormone (insulin and glucagon) and chemical (3-methylcholanthrene) induction agents in a microfluidic device. Observed gradients in glycogen storage via periodic acid-Schiff staining, urea production via carbamoyl phosphatase synthetase I staining, and cell viability after exposure to allyl alcohol and acetaminophen demonstrated the in vitro creation of hepatocyte carbohydrate, nitrogen, alcohol degradation, and drug conjugation metabolic zonation. This type of advanced control system will be crucial for studies evaluating drug metabolism and toxicology using in vitro constructs.

  8. Luteolin-7-O-Glucoside Present in Lettuce Extracts Inhibits Hepatitis B Surface Antigen Production and Viral Replication by Human Hepatoma Cells in Vitro

    PubMed Central

    Cui, Xiao-Xian; Yang, Xiao; Wang, Hui-Jing; Rong, Xing-Yu; Jing, Sha; Xie, You-Hua; Huang, Dan-Feng; Zhao, Chao

    2017-01-01

    Hepatitis B virus (HBV) infection is endemic in Asia and chronic hepatitis B (CHB) is a major public health issue worldwide. Current treatment strategies for CHB are not satisfactory as they induce a low rate of hepatitis B surface antigen (HBsAg) loss. Extracts were prepared from lettuce hydroponically cultivated in solutions containing glycine or nitrate as nitrogen sources. The lettuce extracts exerted potent anti-HBV effects in HepG2 cell lines in vitro, including significant HBsAg inhibition, HBV replication and transcription inhibition, without exerting cytotoxic effects. When used in combination interferon-alpha 2b (IFNα-2b) or lamivudine (3TC), the lettuce extracts synergistically inhibited HBsAg expression and HBV replication. By using differential metabolomics analysis, Luteolin-7-O-glucoside was identified and confirmed as a functional component of the lettuce extracts and exhibited similar anti-HBV activity as the lettuce extracts in vitro. The inhibition rate on HBsAg was up to 77.4%. Moreover, both the lettuce extracts and luteolin-7-O-glucoside functioned as organic antioxidants and, significantly attenuated HBV-induced intracellular reactive oxygen species (ROS) accumulation. Luteolin-7-O-glucoside also normalized ROS-induced mitochondrial membrane potential damage, which suggests luteolin-7-O-glucoside inhibits HBsAg and HBV replication via a mechanism involving the mitochondria. Our findings suggest luteolin-7-O-glucoside may have potential value for clinical application in CHB and may enhance HBsAg and HBV clearance when used as a combination therapy. PMID:29270164

  9. Improved Innate and Adaptive Immunostimulation by Genetically Modified HIV-1 Protein Expressing NYVAC Vectors

    PubMed Central

    Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.

    2011-01-01

    Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234

  10. ISG15 Functions as an Interferon-Mediated Antiviral Effector Early in the Murine Norovirus Life Cycle

    PubMed Central

    Rodriguez, Marisela R.; Monte, Kristen; Thackray, Larissa B.

    2014-01-01

    ABSTRACT Human noroviruses (HuNoV) are the leading cause of nonbacterial gastroenteritis worldwide. Similar to HuNoV, murine noroviruses (MNV) are enteric pathogens spread via the fecal-oral route and have been isolated from numerous mouse facilities worldwide. Type I and type II interferons (IFN) restrict MNV-1 replication; however, the antiviral effectors impacting MNV-1 downstream of IFN signaling are largely unknown. Studies using dendritic cells, macrophages, and mice deficient in free and conjugated forms of interferon-stimulated gene 15 (ISG15) revealed that ISG15 conjugation contributes to protection against MNV-1 both in vitro and in vivo. ISG15 inhibited a step early in the viral life cycle upstream of viral genome transcription. Directly transfecting MNV-1 RNA into IFN-stimulated mouse embryonic fibroblasts (MEFs) and bone marrow-derived dendritic cells (BMDC) lacking ISG15 conjugates bypassed the antiviral activity of ISG15, further suggesting that ISG15 conjugates restrict the MNV-1 life cycle at the viral entry/uncoating step. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of early stages of MNV-1 replication. IMPORTANCE Type I IFNs are important in controlling murine norovirus 1 (MNV-1) infections; however, the proteins induced by IFNs that restrict viral growth are largely unknown. This report reveals that interferon-stimulated gene 15 (ISG15) mitigates MNV-1 replication both in vitro and in vivo. In addition, it shows that ISG15 inhibits MNV-1 replication by targeting an early step in the viral life cycle, MNV-1 entry and/or uncoating. These results identify ISG15 as the first type I IFN effector regulating MNV-1 infection both in vitro and in vivo and for the first time implicate the ISG15 pathway in the regulation of viral entry/uncoating. PMID:24899198

  11. Mechanism of inhibition of adenovirus DNA replication by the acyclic nucleoside triphosphate analogue (S)-HPMPApp: influence of the adenovirus DNA binding protein.

    PubMed Central

    Mul, Y M; van Miltenburg, R T; De Clercq, E; van der Vliet, P C

    1989-01-01

    The acyclic adenosine analogue (S)-9-(3-hydroxy-2-phosphonylmethoxypropyl)adenine [S]-HPMPA) is a potent and selective inhibitor of adenovirus (Ad) replication in cell culture. We studied the mechanism of inhibition using a reconstituted in vitro DNA replication system. The diphosphoryl derivative (S)-HPMPApp, but not (S)-HPMPA, inhibited the DNA replication of origin containing fragments strongly. The inhibitory effect was exerted at the level of elongation, while initiation was resistant to the drug. Remarkably, the elongation of short strands was only slightly impaired, while inhibition was maximal upon synthesis of long DNA fragments. (S)-HPMPApp appeared to be competitive with dATP, suggesting that the Ad DNA polymerase is the prime target for the drug. We purified the Ad DNA polymerase in complex to the precursor terminal protein to homogeneity from cells infected with overproducing recombinant vaccinia viruses. Employing gapped DNA or poly(dT).oligo(dA) templates, only a weak inhibition was observed. However, inhibition was strongly enhanced in the presence of the adenovirus DNA binding protein (DBP). We interpret this to mean that the increased processivity of the polymerization reaction in the presence of DBP leads to increased drug sensitivity. Images PMID:2587248

  12. Effects of dimethyl prostaglandin A1 on herpes simplex virus and human immunodeficiency virus replication

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; McGrath, M. S.; Hanks, D.; Erickson, S.; Pulliam, L.

    1992-01-01

    We have investigated the direct effect of dimethyl prostaglandin A1 (dmPGA1) on the replication of herpes simplex virus (HSV) and human immunodeficiency virus type 1 (HIV-1). dmPGA1 significantly inhibited viral replication in both HSV and HIV infection systems at concentrations of dmPGA1 that did not adversely alter cellular DNA synthesis. The 50% inhibitory concentration (ID50) for several HSV type 1 (HSV-1) strains ranged from 3.8 to 5.6 micrograms/ml for Vero cells and from 4.6 to 7.3 micrograms/ml for human foreskin fibroblasts. The ID50s for two HSV-2 strains varied from 3.8 to 4.5 micrograms/ml for Vero cells; the ID50 was 5.7 micrograms/ml for human foreskin fibroblasts. We found that closely related prostaglandins did not have the same effect on the replication of HSV; dmPGE2 and dmPGA2 caused up to a 60% increase in HSV replication compared with that in untreated virus-infected cells. HIV-1 replication in acutely infected T cells (VB line) and chronically infected macrophages was assessed by quantitative decreases in p24 concentration. The effective ID50s were 2.5 micrograms/ml for VB cells acutely infected with HIV-1 and 5.2 micrograms/m for chronically infected macrophages. dmPGA1 has an unusual broad-spectrum antiviral activity against both HSV and HIV-1 in vitro and offers a new class of potential therapeutic agents for in vivo use.

  13. Intersubtype Differences in the Effect of a Rare p24 Gag Mutation on HIV-1 Replicative Fitness

    PubMed Central

    Chopera, Denis R.; Cotton, Laura A.; Zawaira, Alexander; Mann, Jaclyn K.; Ngandu, Nobubelo K.; Ntale, Roman; Carlson, Jonathan M.; Mlisana, Koleka; Woodman, Zenda; de Assis Rosa, Debra; Martin, Eric; Miura, Toshiyuki; Pereyra, Florencia; Walker, Bruce D.; Gray, Clive M.; Martin, Darren P.; Ndung'u, Thumbi; Brockman, Mark A.; Karim, Salim Abdool

    2012-01-01

    Certain immune-driven mutations in HIV-1, such as those arising in p24Gag, decrease viral replicative capacity. However, the intersubtype differences in the replicative consequences of such mutations have not been explored. In HIV-1 subtype B, the p24Gag M250I mutation is a rare variant (0.6%) that is enriched among elite controllers (7.2%) (P = 0.0005) and appears to be a rare escape variant selected by HLA-B58 supertype alleles (P < 0.01). In contrast, in subtype C, it is a relatively common minor polymorphic variant (10 to 15%) whose appearance is not associated with a particular HLA allele. Using site-directed mutant viruses, we demonstrate that M250I reduces in vitro viral replicative capacity in both subtype B and subtype C sequences. However, whereas in subtype C downstream compensatory mutations at p24Gag codons 252 and 260 reduce the adverse effects of M250I, fitness costs in subtype B appear difficult to restore. Indeed, patient-derived subtype B sequences harboring M250I exhibited in vitro replicative defects, while those from subtype C did not. The structural implications of M250I were predicted by protein modeling to be greater in subtype B versus C, providing a potential explanation for its lower frequency and enhanced replicative defects in subtype B. In addition to accounting for genetic differences between HIV-1 subtypes, the design of cytotoxic-T-lymphocyte-based vaccines may need to account for differential effects of host-driven viral evolution on viral fitness. PMID:23015721

  14. Spermine Attenuates the Action of the DNA Intercalator, Actinomycin D, on DNA Binding and the Inhibition of Transcription and DNA Replication

    PubMed Central

    Chen, Jeremy J. W.; Wu, Wen-Lin; Yuann, Jeu-Ming P.; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion. PMID:23144800

  15. Spermine attenuates the action of the DNA intercalator, actinomycin D, on DNA binding and the inhibition of transcription and DNA replication.

    PubMed

    Wang, Sheng-Yu; Lee, Alan Yueh-Luen; Lee, Yueh-Luen; Lai, Yi-Hua; Chen, Jeremy J W; Wu, Wen-Lin; Yuann, Jeu-Ming P; Su, Wang-Lin; Chuang, Show-Mei; Hou, Ming-Hon

    2012-01-01

    The anticancer activity of DNA intercalators is related to their ability to intercalate into the DNA duplex with high affinity, thereby interfering with DNA replication and transcription. Polyamines (spermine in particular) are almost exclusively bound to nucleic acids and are involved in many cellular processes that require nucleic acids. Until now, the effects of polyamines on DNA intercalator activities have remained unclear because intercalation is the most important mechanism employed by DNA-binding drugs. Herein, using actinomycin D (ACTD) as a model, we have attempted to elucidate the effects of spermine on the action of ACTD, including its DNA-binding ability, RNA and DNA polymerase interference, and its role in the transcription and replication inhibition of ACTD within cells. We found that spermine interfered with the binding and stabilization of ACTD to DNA. The presence of increasing concentrations of spermine enhanced the transcriptional and replication activities of RNA and DNA polymerases, respectively, in vitro treated with ActD. Moreover, a decrease in intracellular polyamine concentrations stimulated by methylglyoxal-bis(guanylhydrazone) (MGBG) enhanced the ACTD-induced inhibition of c-myc transcription and DNA replication in several cancer cell lines. The results indicated that spermine attenuates ACTD binding to DNA and its inhibition of transcription and DNA replication both in vitro and within cells. Finally, a synergistic antiproliferative effect of MGBG and ACTD was observed in a cell viability assay. Our findings will be of significant relevance to future developments in combination with cancer therapy by enhancing the anticancer activity of DNA interactors through polyamine depletion.

  16. Cutthroat trout virus as a surrogate in vitro infection model for testing inhibitors of hepatitis E virus replication.

    PubMed

    Debing, Yannick; Winton, James; Neyts, Johan; Dallmeier, Kai

    2013-10-01

    Hepatitis E virus (HEV) is one of the most important causes of acute hepatitis worldwide. Although most infections are self-limiting, mortality is particularly high in pregnant women. Chronic infections can occur in transplant and other immune-compromised patients. Successful treatment of chronic hepatitis E has been reported with ribavirin and pegylated interferon-alpha, however severe side effects were observed. We employed the cutthroat trout virus (CTV), a non-pathogenic fish virus with remarkable similarities to HEV, as a potential surrogate for HEV and established an antiviral assay against this virus using the Chinook salmon embryo (CHSE-214) cell line. Ribavirin and the respective trout interferon were found to efficiently inhibit CTV replication. Other known broad-spectrum inhibitors of RNA virus replication such as the nucleoside analog 2'-C-methylcytidine resulted only in a moderate antiviral activity. In its natural fish host, CTV levels largely fluctuate during the reproductive cycle with the virus detected mainly during spawning. We wondered whether this aspect of CTV infection may serve as a surrogate model for the peculiar pathogenesis of HEV in pregnant women. To that end the effect of three sex steroids on in vitro CTV replication was evaluated. Whereas progesterone resulted in marked inhibition of virus replication, testosterone and 17β-estradiol stimulated viral growth. Our data thus indicate that CTV may serve as a surrogate model for HEV, both for antiviral experiments and studies on the replication biology of the Hepeviridae. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Development of an infectious clone and replicon system of norovirus GII.4.

    PubMed

    Oliveira, L M; Blawid, R; Orílio, A F; Andrade, B Y G; Souza, A C A; Nagata, T

    2018-08-01

    Human norovirus (HuNoV) is one of the main causes of acute gastroenteritis worldwide and is responsible for at least 20% of all cases. The detailed molecular mechanism of this norovirus remains unknown due to the lack of a suitable in vitro culturing system. An infectious clone of HuNoV would be a useful tool for elucidating the processes of viral infection and the mechanisms of replication. We developed an infectious cDNA clone of HuNoV using the rapid technique of Gibson Assembly. The complete genome of the HuNoV GII.4 Sydney subtype was cloned into a previously modified pcDNA3.1-based plasmid vector downstream from a cytomegaloviral promoter. We monitored the viral infection in vitro by inserting the reporter gene of the green fluorescent protein (GFP) between the NTPase and p22 genes, also by Gibson Assembly, to construct a HuNoV-GFP replicon. Human Caco-2 cells were transfected with the full-length genomic clone and the replicon containing GFP. The gene encoding the VP1/VP2 capsid protein was expressed, which was indirect evidence of the synthesis of subgenomic RNAs and thus the negative strand of the genome. We successfully constructed the infectious clone and its replicon containing GFP for the HuNoV GII.4 Sydney subtype, a valuable tool that will help the study of noroviral infection and replication. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Reovirus Nonstructural Protein σNS Acts as an RNA-Stability Factor Promoting Viral Genome Replication.

    PubMed

    Zamora, Paula F; Hu, Liya; Knowlton, Jonathan J; Lahr, Roni M; Moreno, Rodolfo A; Berman, Andrea J; Prasad, B V Venkataram; Dermody, Terence S

    2018-05-16

    Viral nonstructural proteins, which are not packaged into virions, are essential for replication of most viruses. Reovirus, a nonenveloped, double-stranded RNA (dsRNA) virus, encodes three nonstructural proteins that are required for viral replication and dissemination in the host. Reovirus nonstructural protein σNS is a single-stranded RNA (ssRNA)-binding protein that must be expressed in infected cells for production of viral progeny. However, activities of σNS during individual steps of the reovirus replication cycle are poorly understood. We explored the function of σNS by disrupting its expression during infection using cells expressing a small interfering RNA (siRNA) targeting the σNS-encoding S3 gene and found that σNS is required for viral genome replication. Using complementary biochemical assays, we determined that σNS forms complexes with viral and nonviral RNAs. We also discovered that σNS increases RNA half-life using in vitro and cell-based RNA degradation experiments. Cryo-electron microscopy revealed that σNS and ssRNAs organize into long, filamentous structures. Collectively, our findings indicate that σNS functions as an RNA-binding protein that increases viral RNA half-life. These results suggest that σNS forms RNA-protein complexes in preparation for genome replication. IMPORTANCE Following infection, viruses synthesize nonstructural proteins that mediate viral replication and promote dissemination. Viruses from the Reoviridae family encode nonstructural proteins that are required for the formation of progeny viruses. Although nonstructural proteins of different Reoviridae family viruses are diverged in primary sequence, these proteins are functionally homologous and appear to facilitate conserved mechanisms of dsRNA virus replication. Using in vitro and cell-culture approaches, we found that the mammalian reovirus nonstructural protein σNS binds and stabilizes viral RNA and is required for genome synthesis. This work contributes new knowledge about basic mechanisms of dsRNA virus replication and provides a foundation for future studies to determine how viruses in the Reoviridae family assort and replicate their genomes. Copyright © 2018 American Society for Microbiology.

  19. Identification of HIV-1 determinants for replication in vivo.

    PubMed

    Su, L; Kaneshima, H; Bonyhadi, M L; Lee, R; Auten, J; Wolf, A; Du, B; Rabin, L; Hahn, B H; Terwilliger, E; Mccune, J M

    1997-01-06

    Pathogenic organisms are frequently attenuated after long-term culture in vitro. The mechanisms of the attenuation process are not clear, but probably involve mutations of functions required for replication and pathogenicity in vivo. To identify these functions, a direct comparison must be made between attenuated genomes and those that remain pathogenic in vivo. In this study, we used the heterochimeric SCID-hu Thy/Liv mouse as an in vivo model to define human immunodeficiency virus type 1 (HIV-1) determinants which are uniquely required for replication in vivo. The Lai/IIIB isolate and its associated infectious molecular clones (e.g., HXB2) were found to infect T cell lines but failed to replicate in the SCID-hu Thy/Liv model. When a lab worker was accidentally infected by Lai/IIIB, however, HIV-1 was isolated only from infection of primary PBMC, and not from infection of T cell lines. We hypothesized that the lab worker was exposed to a heterogeneous viral stock which had been attenuated by passage in immortalized T cell lines. Either a rare family member from this stock was selected for in vivo replication or, alternatively, an attenuated genotype dominant in vitro may have reverted to become more infectious in vivo. To address this hypothesis, we have used the SCID-hu Thy/Liv model to study the replication of HXB2 and of HXB2 recombinant viruses with HIV-1 fragments isolated from the infected lab worker. HXB2 showed no or very low levels of replication in the Thy/Liv organ. Replacement of its subgenomic fragment encoding the envelope gene with a corresponding fragment from the lab worker isolate generated a recombinant virus (HXB2/LW) which replicated actively in SCID-hu mice. The NEF mutation in the HXB2 genome is still present in HXB2/LW. Thus, the LW sequences encode HIV-1 determinants which enhance HIV replication in vivo in a NEF-independent mechanism. The specific determinants have been mapped to the V1-V3 regions of the HIV-1 genome. Six unique mutations in the V3 loop region of HXB2/LW have been identified which contribute to the increased replication in vivo.

  20. Overcoming a nucleosomal barrier to replication

    PubMed Central

    Chang, Han-Wen; Pandey, Manjula; Kulaeva, Olga I.; Patel, Smita S.; Studitsky, Vasily M.

    2016-01-01

    Efficient overcoming and accurate maintenance of chromatin structure and associated histone marks during DNA replication are essential for normal functioning of the daughter cells. However, the molecular mechanisms of replication through chromatin are unknown. We have studied traversal of uniquely positioned mononucleosomes by T7 replisome in vitro. Nucleosomes present a strong, sequence-dependent barrier for replication, with particularly strong pausing of DNA polymerase at the +(31–40) and +(41–65) regions of the nucleosomal DNA. The exonuclease activity of T7 DNA polymerase increases the overall rate of progression of the replisome through a nucleosome, likely by resolving nonproductive complexes. The presence of nucleosome-free DNA upstream of the replication fork facilitates the progression of DNA polymerase through the nucleosome. After replication, at least 50% of the nucleosomes assume an alternative conformation, maintaining their original positions on the DNA. Our data suggest a previously unpublished mechanism for nucleosome maintenance during replication, likely involving transient formation of an intranucleosomal DNA loop. PMID:27847876

  1. Genotoxicity Assessment of Perfluorodecanoic Acid Using a Battery of In Vitro and In Vivo/in Vitro Assays.

    DTIC Science & Technology

    1990-12-01

    Maximum 200 words) Perfluoro -n-decanoic acid ( PFDA ), a perfluorinated fatty acid was evaluated in in vitro bioassays to assess its potential...PolychlorotrifluoroethyleneDU.TBL PFDA Perfluoro -n-decanoic acid PFOA Perfluoro -n-octanoic acid ..... RI Replicative index rpm Revolutions per minute By...an increase in the amount of S-phase DNA synthesis. The perfluorinated carboxylic acid, perfluoro -n-decanoic acid ( PFDA ), has previously been shown to

  2. [Effects of ciclosporin and tacrolimus on replication of hepatitis B virus in vitro: a comparative study].

    PubMed

    Xia, Wei-liang; Xie, Hai-yang; Shen, Yan; Wu, Li-ming; Zhang, Feng; Zheng, Shu-sen

    2006-01-10

    To investigate the effects of ciclosporin (CsA) and tacrolimus (FK506) on replication of hepatitis B virus (HBV) in vitro. HBV genome permanently transfected human liver cancer cells of the line HepG2.2.15 were cultured. CsA and FK506 at different concentrations were added into the culture fluid so as to identify the nontoxic concentrations by MTT method. Then the HepG2.2.15 cells were treated by CsA and FK506 at different nontoxic concentrations respectively for 4 days. ELISA was used to detect the HB surface antigen (HBsAg) and HB e antigen (HBeAg) in the supernatant. The relative replication level of HBV DNA was detected by slot blot analysis. MTT method confirmed that the nontoxic concentrations of CsA and FK506 were 0-40.0 microg/ml and 0-400 ng/ml respectively. After the treatment of CsA at the concentration of 1.3, 2.5, and 5.0 microg/ml, in comparison to the control group, the suppression rates of HBsAg expression in the HepG2.2.15 cells were 16.5% +/- 9.4%, 21.5% +/- 8.9%, and 33.1% +/- 5.3% respectively (all P < 0.05); the suppression rates of HBeAg expression in the HepG2.2.15 cells were 7.8% +/- 2.2%, 11.0% +/- 2.3%, and 20.8% +/- 1.5% respectively (all P < 0.05); and the HBV DNA replication levels were 56 +/- 16, 42 +/- 11, and 40 +/- 10 respectively (P > 0.05, P < 0.05, and P > 0.05). However, FK506 at different nontoxic concentrations showed no significant inhibitory effect on the levels of HBsAg, HBeAg, and HBV DNA. CsA dose-dependently inhibits the HBV replication in vitro, and FK506 does not exercise similar effects.

  3. In Vitro Replication of Chelonid Herpesvirus 5 in Organotypic Skin Cultures from Hawaiian Green Turtles (Chelonia mydas).

    PubMed

    Work, Thierry M; Dagenais, Julie; Weatherby, Tina M; Balazs, George H; Ackermann, Mathias

    2017-09-01

    Fibropapillomatosis (FP) is a tumor disease of marine turtles associated with chelonid herpesvirus 5 (ChHV5), which has historically been refractory to growth in tissue culture. Here we show, for the first time, de novo formation of ChHV5-positive intranuclear inclusions in cultured green turtle cells, which is indicative of active lytic replication of the virus. The minimal requirements to achieve lytic replication in cultured cells included (i) either in vitro cultures of ChHV5-positive tumor biopsy specimens (plugs) or organotypic cultures (rafts) consisting of ChHV5-positive turtle fibroblasts in collagen rafts seeded with turtle keratinocytes and (ii) keratinocyte maturation induced by raising raft or biopsy cultures to the air-liquid interface. Virus growth was confirmed by detailed electron microscopic studies that revealed intranuclear sun-shaped capsid factories, tubules, various stages of capsid formation, nuclear export by budding into the perinuclear space, tegument formation, and envelopment to complete de novo virus production. Membrane synthesis was also observed as a sign of active viral replication. Interestingly, cytoplasmic particles became associated with keratin filaments, a feature not seen in conventional monolayer cell cultures, in which most studies of herpesvirus replication have been performed. Our findings draw a rich and realistic picture of ChHV5 replication in cells derived from its natural host and may be crucial not only to better understand ChHV5 circulation but also to eventually complete Koch's postulates for FP. Moreover, the principles described here may serve as a model for culture of other viruses that are resistant to replication in conventional cell culture. IMPORTANCE A major challenge in virology is the study of viruses that cannot be grown in the laboratory. One example is chelonid herpesvirus 5 (ChHV5), which is associated with fibropapillomatosis, a globally distributed, debilitating, and fatal tumor disease of endangered marine turtles. Pathological examination shows that ChHV5 is shed in skin. Here we show that ChHV5 will grow in vitro if we replicate the complex three-dimensional structure of turtle skin. Moreover, lytic virus growth requires a close interplay between fibroblasts and keratinocytes. Finally, the morphogenesis of herpesviral growth in three-dimensional cultures reveals a far richer, and likely more realistic, array of capsid morphologies than that encountered in traditional monolayer cell cultures. Our findings have applications to other viruses, including those of humans. Copyright © 2017 American Society for Microbiology.

  4. Microfluidic cardiac cell culture model (μCCCM).

    PubMed

    Giridharan, Guruprasad A; Nguyen, Mai-Dung; Estrada, Rosendo; Parichehreh, Vahidreza; Hamid, Tariq; Ismahil, Mohamed Ameen; Prabhu, Sumanth D; Sethu, Palaniappan

    2010-09-15

    Physiological heart development and cardiac function rely on the response of cardiac cells to mechanical stress during hemodynamic loading and unloading. These stresses, especially if sustained, can induce changes in cell structure, contractile function, and gene expression. Current cell culture techniques commonly fail to adequately replicate physical loading observed in the native heart. Therefore, there is a need for physiologically relevant in vitro models that recreate mechanical loading conditions seen in both normal and pathological conditions. To fulfill this need, we have developed a microfluidic cardiac cell culture model (μCCCM) that for the first time allows in vitro hemodynamic stimulation of cardiomyocytes by directly coupling cell structure and function with fluid induced loading. Cells are cultured in a small (1 cm diameter) cell culture chamber on a thin flexible silicone membrane. Integrating the cell culture chamber with a pump, collapsible pulsatile valve and an adjustable resistance element (hemostatic valve) in series allow replication of various loading conditions experienced in the heart. This paper details the design, modeling, fabrication and characterization of fluid flow, pressure and stretch generated at various frequencies to mimic hemodynamic conditions associated with the normal and failing heart. Proof-of-concept studies demonstrate successful culture of an embryonic cardiomyoblast line (H9c2 cells) and establishment of an in vivo like phenotype within this system.

  5. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  6. BK virus has tropism for human salivary gland cells in vitro: Implications for transmission

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeffers, Liesl K.; Madden, Vicki; Webster-Cyriaque, Jennifer, E-mail: jennifer@med.unc.ed

    Background: In this study, it was determined that BKV is shed in saliva and an in vitro model system was developed whereby BKV can productively infect both submandibular (HSG) and parotid (HSY) salivary gland cell lines. Results: BKV was detected in oral fluids using quantitative real-time PCR (QRTPCR). BKV infection was determined using quantitative RT-PCR, immunofluorescence and immunoblotting assays. The infectivity of BKV was inhibited by pre-incubation of the virus with gangliosides that saturated the major capsid protein, VP1, halting receptor mediated BKV entry into salivary gland cells. Examination of infected cultures by transmission electron microscopy revealed 45-50 nm BKmore » virions clearly visible within the cells. Subsequent to infection, encapsidated BK virus was detected in the supernatant. Conclusion: We thus demonstrated that BKV was detected in oral fluids and that BK infection and replication occur in vitro in salivary gland cells. These data collectively suggest the potential for BKV oral route of transmission and oral pathogenesis.« less

  7. Hepatitis B "e" antigen-mediated inhibition of HBV replication fitness and transcription efficiency in vitro.

    PubMed

    Samal, Jasmine; Kandpal, Manish; Vivekanandan, Perumal

    2015-10-01

    A mutation at nucleotide 1896 (G1896A) is the most common cause for the loss of HBeAg. In contrast to clinical data, cell culture studies report a high-replicating phenotype for the G1896A mutant. Differences between the wild-type and the G1896A mutant in early steps of HBV replication including the synthesis of pre-genomic RNA and transcripts have not been investigated. The G1896A mutant is associated with higher replication fitness, transcription efficiency and higher levels of secreted HBsAg than the wild-type. Interestingly, trans-complementation of the G1896A mutant with HBeAg lowers the replication fitness and transcriptionefficiency to levels comparable to that of the wild-type. Our results highlight the role of HBeAg in modulating the early steps in HBV replication. In sum, our findings highlight the role of HBeAg in regulating hepatitis B virus replication fitness and transcription efficiency and new insights on the early steps of replication in the G1896A mutant. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Development of an in vitro PIG-A gene mutation assay in human cells

    PubMed Central

    Rees, Benjamin J; Tate, Matthew; Lynch, Anthony M; Thornton, Catherine A; Jenkins, Gareth J; Walmsley, Richard M; Johnson, George E

    2017-01-01

    Abstract Mutagens can be carcinogens, and traditionally, they have been identified in vitro using the Salmonella ‘Ames’ reverse mutation assay. However, prokaryotic DNA packaging, replication and repair systems are mechanistically very different to those in the humans we inevitably seek to protect. Therefore, for many years, mammalian cell line genotoxicity assays that can detect eukaryotic mutagens as well as clastogens and aneugens have been used. The apparent lack of specificity in these largely rodent systems, due partly to their mutant p53 status, has contributed to the use of animal studies to resolve data conflicts. Recently, silencing mutations at the PIG-A locus have been demonstrated to prevent glycophosphatidylinositol (GPI) anchor synthesis and consequentially result in loss of GPI-anchored proteins from the cell’s extracellular surface. The successful exploitation of this mutant phenotype in animal studies has triggered interest in the development of an analogous in vitro PIG-A mutation screening assay. This article describes the development of a robust assay design using metabolically active human cells. The assay includes viability and cell membrane integrity assessment and conforms to the future ideas of the 21st-century toxicology testing. PMID:28057708

  9. A novel anticancer agent ARC antagonizes HIV-1 and HCV.

    PubMed

    Nekhai, S; Bhat, U G; Ammosova, T; Radhakrishnan, S K; Jerebtsova, M; Niu, X; Foster, A; Layden, T J; Gartel, A L

    2007-05-31

    Human immunodeficiency virus (HIV) and hepatitis C virus (HCV) pose major public health concerns worldwide. HCV is clearly associated with the occurrence of hepatocellular carcinoma, and recently HIV infection has also been linked to the development of a multitude of cancers. Previously, we identified a novel nucleoside analog transcriptional inhibitor ARC (4-amino-6-hydrazino-7-beta-D-ribofuranosyl-7H-pyrrolo[2,3-d]-pyrimidine-5-carboxamide) that exhibited proapoptotic and antiangiogenic properties in vitro. Here, we evaluated the effect of ARC on HIV-1 transcription and HCV replication. Using reporter assays, we found that ARC inhibited HIV-1 Tat-based transactivation in different cell systems. Also, using hepatoma cells that harbor subgenomic and full-length replicons of HCV, we found that ARC inhibited HCV replication. Together, our data indicate that ARC could be a promising candidate for the development of antiviral therapeutics against HIV and HCV.

  10. In vitro and in vivo antiviral activity of scopadulcic acid B from Scoparia dulcis, Scrophulariaceae, against herpes simplex virus type 1.

    PubMed

    Hayashi, K; Niwayama, S; Hayashi, T; Nago, R; Ochiai, H; Morita, N

    1988-09-01

    The antiviral activity of five diterpenoids isolated from Scoparia dulcis L., Scrophulariaceae, was examined in vitro against herpes simplex virus type 1. Among these compounds, only scopadulcic acid B was found to inhibit the viral replication with the in vitro therapeutic index of 16.7. The action of scopadulcic acid B was not due to a direct virucidal effect or inhibition of virus attachment to host cells. Single-cycle replication experiments indicated that the compound interfered with considerably early events of virus growth. The influence of scopadulcic acid B on the course of the primary corneal herpes simplex virus infection was investigated by means of a hamster test model. When the treatment was initiated immediately after virus inoculation, scopadulcic acid B, when applied orally or intraperitoneally, effectively prolonged both the appearance of herpetic lesions and the survival time at the dose of 100 and 200 mg/kg per day.

  11. Baicalin, a metabolite of baicalein with antiviral activity against dengue virus

    PubMed Central

    Moghaddam, Ehsan; Teoh, Boon-Teong; Sam, Sing-Sin; Lani, Rafidah; Hassandarvish, Pouya; Chik, Zamri; Yueh, Andrew; Abubakar, Sazaly; Zandi, Keivan

    2014-01-01

    Baicalin, a flavonoid derived from Scutellaria baicalensis, is the main metabolite of baicalein released following administration in different animal models and human. We previously reported the antiviral activity of baicalein against dengue virus (DENV). Here, we examined the anti-DENV properties of baicalin in vitro, and described the inhibitory potentials of baicalin at different steps of DENV-2 (NGC strain) replication. Our in vitro antiviral experiments showed that baicalin inhibited virus replication at IC50 = 13.5 ± 0.08 μg/ml with SI = 21.5 following virus internalization by Vero cells. Baicalin exhibited virucidal activity against DENV-2 extracellular particles at IC50 = 8.74 ± 0.08 μg/ml and showed anti-adsorption effect with IC50 = 18.07 ± 0.2 μg/ml. Our findings showed that baicalin as the main metabolite of baicalein exerting in vitro anti-DENV activity. Further investigations on baicalein and baicalin to deduce its antiviral therapeutic effects are warranted. PMID:24965553

  12. Interleukin-34 inhibits hepatitis B virus replication in vitro and in vivo.

    PubMed

    Cheng, Sheng-Tao; Tang, Hua; Ren, Ji-Hua; Chen, Xiang; Huang, Ai-Long; Chen, Juan

    2017-01-01

    The hepatitis B virus (HBV) infection could activate the immune system and induce extensive inflammatory response. As the most important inflammatory factor, interleukins are critical for anti-viral immunity. Here we investigated whether interleukin-34 (IL-34) play a role in HBV infection. In this study, we first found that both serum IL-34 and IL-34 mRNA in PBMCs in chronic HBV patients was significantly decreased compared to the healthy controls. Furthermore, both IL-34 protein and mRNA levels were declined hepatoma cells expressing HBV. In addition, the clinical parameters analysis found that serum IL-34 was significantly associated with HBV DNA (P = 0.0066), ALT (P = 0.0327), AST (P = 0.0435), TB (P = 0.0406), DB (P = 0.0368) and AFP (P = 0.0225). Correlation analysis also found that serum IL-34 negatively correlated with HBV DNA copies, ALT and AST. In vitro studies found that IL-34 treatment in HepAD38 and HepG2.2.15 cells markedly inhibited HBV DNA, total RNA, 3.5kb mRNA and HBc protein. In vivo studies further demonstrated IL-34 treatment in HBV transgenic mice exhibited greater inhibition on HBV DNA, total RNA, 3.5kb mRNA and HBc protein, suggesting the effect to IL-34 on HBV is likely due to host innate or adaptive immune response. Our study identified a novel interleukin, IL-34, which has anti-viral activity in HBV replication in hepatocytes in vitro and in vivo. These data suggest a rationale for the use of IL-34 in the HBV treatment.

  13. Therapeutic Effect of Duck Interferon-Alpha Against H5N1 Highly Pathogenic Avian Influenza Virus Infection in Peking Ducks.

    PubMed

    Gao, Pei; Xiang, Bin; Li, Yulian; Li, Yaling; Sun, Minhua; Kang, Yinfeng; Xie, Peng; Chen, Libin; Lin, Qiuyan; Liao, Ming; Ren, Tao

    2018-04-01

    The antiviral cytokine interferon-alpha (IFN-α) plays a critical role in the innate immune system. Previous studies have shown that recombinant chicken IFN-α inhibits avian influenza virus (AIV) replication in vivo; however, the antiviral effect of recombinant duck IFN-α (rDuIFN-α) on highly pathogenic AIV remains unknown. In this study, the duck IFN-α gene was cloned, expressed, and purified. The antiviral effects of the resulting rDuIFN-α were further evaluated in vitro and in vivo. Our results showed that rDuIFN-α inhibited the replication of vesicular stomatitis virus (VSV) and AIV in duck embryo fibroblasts in vitro, with antiviral activities against VSV and AIV of 2.1 × 10 5 and 4.1 × 10 5 U/mg, respectively. We next investigated the anti-H5N1 AIV effect of intramuscular injection of rDuIFN-α in vivo. rDuIFN-α reduced viral titers in the brains, lungs, and spleens of 2-day-old (2D) ducks compared with that in the virus-challenged control group, and pretreatment with rDuIFN-α reduced mortality from 60% to 10% in 2D ducks. Moreover, rDuIFN-α increased the expression of IFN-stimulated genes in the brains and spleens of 2D ducks. Our results demonstrate that rDuIFN-α blocks VSV and H5N1 influenza virus infection in vitro and exhibits antiviral effects against H5N1 influenza virus infection in 2D ducks.

  14. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities.

    PubMed

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10(5)-10(8) cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT(50)) using commercially available drugs which further correlated well with published in vivo LD(50) values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Leflunomide/teriflunomide inhibit Epstein-Barr virus (EBV)- induced lymphoproliferative disease and lytic viral replication.

    PubMed

    Bilger, Andrea; Plowshay, Julie; Ma, Shidong; Nawandar, Dhananjay; Barlow, Elizabeth A; Romero-Masters, James C; Bristol, Jillian A; Li, Zhe; Tsai, Ming-Han; Delecluse, Henri-Jacques; Kenney, Shannon C

    2017-07-04

    EBV infection causes mononucleosis and is associated with specific subsets of B cell lymphomas. Immunosuppressed patients such as organ transplant recipients are particularly susceptible to EBV-induced lymphoproliferative disease (LPD), which can be fatal. Leflunomide (a drug used to treat rheumatoid arthritis) and its active metabolite teriflunomide (used to treat multiple sclerosis) inhibit de novo pyrimidine synthesis by targeting the cellular dihydroorotate dehydrogenase, thereby decreasing T cell proliferation. Leflunomide also inhibits the replication of cytomegalovirus and BK virus via both "on target" and "off target" mechanisms and is increasingly used to treat these viruses in organ transplant recipients. However, whether leflunomide/teriflunomide block EBV replication or inhibit EBV-mediated B cell transformation is currently unknown. We show that teriflunomide inhibits cellular proliferation, and promotes apoptosis, in EBV-transformed B cells in vitro at a clinically relevant dose. In addition, teriflunomide prevents the development of EBV-induced lymphomas in both a humanized mouse model and a xenograft model. Furthermore, teriflunomide inhibits lytic EBV infection in vitro both by preventing the initial steps of lytic viral reactivation, and by blocking lytic viral DNA replication. Leflunomide/teriflunomide might therefore be clinically useful for preventing EBV-induced LPD in patients who have high EBV loads yet require continued immunosuppression.

  16. Antiviral activity of silymarin against chikungunya virus

    PubMed Central

    Lani, Rafidah; Hassandarvish, Pouya; Chiam, Chun Wei; Moghaddam, Ehsan; Chu, Justin Jang Hann; Rausalu, Kai; Merits, Andres; Higgs, Stephen; Vanlandingham, Dana; Abu Bakar, Sazaly; Zandi, Keivan

    2015-01-01

    The mosquito-borne chikungunya virus (CHIKV) causes chikungunya fever, with clinical presentations such as severe back and small joint pain, and debilitating arthritis associated with crippling pains that persist for weeks and even years. Although there are several studies to evaluate the efficacy of drugs against CHIKV, the treatment for chikungunya fever is mainly symptom-based and no effective licensed vaccine or antiviral are available. Here, we investigated the antiviral activity of three types of flavonoids against CHIKV in vitro replication. Three compounds: silymarin, quercetin and kaempferol were evaluated for their in vitro antiviral activities against CHIKV using a CHIKV replicon cell line and clinical isolate of CHIKV of Central/East African genotype. A cytopathic effect inhibition assay was used to determine their activities on CHIKV viral replication and quantitative reverse transcription PCR was used to calculate virus yield. Antiviral activity of effective compound was further investigated by evaluation of CHIKV protein expression using western blotting for CHIKV nsP1, nsP3, and E2E1 proteins. Briefly, silymarin exhibited significant antiviral activity against CHIKV, reducing both CHIKV replication efficiency and down-regulating production of viral proteins involved in replication. This study may have important consequence for broaden the chance of getting the effective antiviral for CHIKV infection. PMID:26078201

  17. [Efficacy of siRNA on feline leukemia virus replication in vitro].

    PubMed

    Lehmann, Melanie; Weber, Karin; Rauch, Gisep; Hofmann-Lehmann, Regina; Hosie, Margaret J; Meli, Marina L; Hartmann, Katrin

    2015-01-01

    Feline leukemia virus (FeLV) can lead to severe clinical signs in cats. Until now, there is no effective therapy for FeLV-infected cats. RNA interference-based antiviral therapy is a new concept. Specific small interfering RNA (siRNA) are designed complementary to the mRNA of a target region, and thus inhibit replication. Several studies have proven efficacy of siRNAs in inhibiting virus replication. The aim of this study was to evaluate the inhibitory potential of siRNAs against FeLV replication in vitro. siRNAs against the FeLV env gene and the host cell surface receptor (feTHTR1) which is used by FeLV-A for entry as well as siRNA that were not complementary to the FeLV or cat genome, were tested. Crandell feline kidney cells (CrFK cells) were transfected with FeLV-A/Glasgow-1. On day 13, infected cells were transfected with siRNAs. As control, cells were mock-transfected or treated with azidothymidine (AZT) (5 μg/ml). Culture supernatants were analyzed for FeLV RNA using quantitative real-time RT-PCR and for FeLV p27 by ELISA every 24 hours for five days. All siRNAs significantly reduced viral RNA and p27 production, starting after 48 hours. The fact that non-complementary siRNAs also inhibited virus replication may lead to the conclusion that unspecific mechanisms rather than specific binding lead to inhibition.

  18. Effects of dendritic cells from hepatitis B virus transgenic mice-stimulated autologous lymphocytes on hepatitis B virus replication: a study on the impact of specific sensitized effector cells on in vitro virus replication.

    PubMed

    Shen, Zhong-Yang; Zheng, Wei-Ping; Liu, Tao; Yang, Yang; Song, Hong-Li

    2015-03-01

    The objective of this study was to explore the effects of dendritic cells (DCs) from hepatitis B virus (HBV) transgenic mice-stimulated autologous lymphocytes on in vitro HBV replication. DCs from HBV transgenic mice were induced to maturity by lipopolysaccharide, followed by incubation with hepatitis B surface antigen (HBsAg) and hepatitis B core antigen (HBcAg) in vitro. Mature DCs and autologous lymphocytes were co-stimulated to form specific sensitized immune effector cells (IEC), which were then co-cultured with the human hepatoma cell line HepG2.2.15. Changes in morphology and activity of hepatocytes were then observed, as well as analysis of changes in liver enzyme, and HBV DNA and inflammatory cytokine levels in the culture supernatant. Intracellular HBV DNA and covalently closed circular DNA (cccDNA) concentration were measured by real-time polymerase chain reaction. Co-stimulation by mature DCs and IEC showed no impact on the morphology and liver enzyme expression level of HepG2.2.15 cells, but the supernatant HBV DNA and intracellular HBV DNA and cccDNA levels decreased significantly compared with those cells co-cultured with immature DCs. Secretion of inflammatory cytokines in the supernatant showed that when HBV DNA was highly expressed, the concentration of IFN-γ and IL-2 decreased, while IL-10 increased. Contrastingly, when HBV DNA had low expression, the concentration of IFN-γ and IL-2 increased and IL-10 decreased. Co-stimulation of HBV-related antigen-induced mature DCs and autologous lymphocytes showed inhibitory effects on ex vivo HBV replication, and cytokines were suggested to mediate this effect.

  19. In Vitro Coinfection and Replication of Classical Swine Fever Virus and Porcine Circovirus Type 2 in PK15 Cells

    PubMed Central

    Zhou, Niu; Xing, Gang; Zhou, Jianwei; Jin, Yulan; Liang, Cuiqin; Gu, Jinyan; Hu, Boli; Liao, Min; Wang, Qin; Zhou, Jiyong

    2015-01-01

    Increasing clinical lines of evidence have shown the coinfection/superinfection of porcine circovirus type 2 (PCV2) and classical swine fever virus (CSFV). Here, we investigated whether PCV2 and CSFV could infect the same cell productively by constructing an in vitro coinfection model. Our results indicated that PCV2-free PK15 cells but not ST cells were more sensitive to PCV2, and the PK15 cell line could stably harbor replicating CSFV (PK15-CSFV cells) with a high infection rate. Confocal and super-resolution microscopic analysis showed that PCV2 and CSFV colocalized in the same PK15-CSFV cell, and the CSFV E2 protein translocated from the cytoplasm to the nucleus in PK15-CSFV cells infected with PCV2. Moreover, PCV2-CSFV dual-positive cells increased gradually in PK15-CSFV cells in a PCV2 dose-dependent manner. In PK15-CSFV cells, PCV2 replicated well, and the production of PCV2 progeny was not influenced by CSFV infection. However, CSFV reproduction decreased in a PCV2 dose-dependent manner. In addition, cellular apoptosis was not strengthened in PK15-CSFV cells infected with PCV2 in comparison with PCV2-infected PK15 cells. Moreover, using this coinfection model we further demonstrated PCV2-induced apoptosis might contribute to the impairment of CSFV HCLV strain replication in coinfected cells. Taken together, our results demonstrate for the first time the coinfection/superinfection of PCV2 and CSFV within the same cell, providing an in vitro model to facilitate further investigation of the underlying mechanism of CSFV and PCV2 coinfection. PMID:26431319

  20. Bovine lactoferrin digested with human gastrointestinal enzymes inhibits replication of human echovirus 5 in cell culture.

    PubMed

    Furlund, Camilla B; Kristoffersen, Anja B; Devold, Tove G; Vegarud, Gerd E; Jonassen, Christine M

    2012-07-01

    Many infant formulas are enriched with lactoferrin (Lf) because of its claimed beneficial effects on health. Native bovine Lf (bLf) is known to inhibit in vitro replication of human enteroviruses, a group of pathogenic viruses that replicate in the gut as their primary infection site. On the basis of a model digestion and human gastrointestinal enzymes, we hypothesized that bLf could retain its antiviral properties against enterovirus in the gastrointestinal tract, either as an intact protein or through bioactive peptide fragments released by digestive enzymes. To test our hypothesis, bLf was digested with human gastric juice and duodenal juice in a 2-step in vitro digestion model. Two gastric pH levels and reduction conditions were used to simulate physiological conditions in adults and infants. The antiviral activity of native bLf and of the digested fractions was studied on echovirus 5 in vitro, using various assay conditions, addressing several mechanisms for replication inhibition. Both native and digested bLf fractions revealed a significant inhibitory effect, when added before or simultaneously with the virus onto the cells. Furthermore, a significant stronger sustained antiviral effect was observed when bLf was fully digested in the gastric phase with fast pH reduction to 2.5, compared with native bLf, suggesting the release of antiviral peptides from bLf during the human digestion process. In conclusion, this study demonstrates that bLf may have a role in the prevention of human gastrointestinal virus infection under physiological conditions and that food containing bLf may protect against infection in vivo. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Application of 3D printing to prototype and develop novel plant tissue culture systems.

    PubMed

    Shukla, Mukund R; Singh, Amritpal S; Piunno, Kevin; Saxena, Praveen K; Jones, A Maxwell P

    2017-01-01

    Due to the complex process of designing and manufacturing new plant tissue culture vessels through conventional means there have been limited efforts to innovate improved designs. Further, development and availability of low cost, energy efficient LEDs of various spectra has made it a promising light source for plant growth in controlled environments. However, direct replacement of conventional lighting sources with LEDs does not address problems with uniformity, spectral control, or the challenges in conducting statistically valid experiments to assess the effects of light. Prototyping using 3D printing and LED based light sources could help overcome these limitations and lead to improved culture systems. A modular culture vessel design in which the fluence rate and spectrum of light are independently controlled was designed, prototyped using 3D printing, and evaluated for plant growth. This design is compatible with semi-solid and liquid based culture systems. Observations on morphology, chlorophyll content, and chlorophyll fluorescence based stress parameters from in vitro plants cultured under different light spectra with similar overall fluence rate indicated different responses in Nicotiana tabacum and Artemisia annua plantlets. This experiment validates the utility of 3D printing to design and test functional vessels and demonstrated that optimal light spectra for in vitro plant growth is species-specific. 3D printing was successfully used to prototype novel culture vessels with independently controlled variable fluence rate/spectra LED lighting. This system addresses several limitations associated with current lighting systems, providing more uniform lighting and allowing proper replication/randomization for experimental plant biology while increasing energy efficiency. A complete procedure including the design and prototyping of a culture vessel using 3D printing, commercial scale injection molding of the prototype, and conducting a properly replicated experiment are discussed. This open source design has the scope for further improvement and adaptation and demonstrates the power of 3D printing to improve the design of culture systems.

  2. Hepatitis D virus replication is sensed by MDA5 and induces IFN-β/λ responses in hepatocytes.

    PubMed

    Zhang, Zhenfeng; Filzmayer, Christina; Ni, Yi; Sültmann, Holger; Mutz, Pascal; Hiet, Marie-Sophie; Vondran, Florian W R; Bartenschlager, Ralf; Urban, Stephan

    2018-07-01

    Hepatitis B virus (HBV) and D virus (HDV) co-infections cause the most severe form of viral hepatitis. HDV induces an innate immune response, but it is unknown how the host cell senses HDV and if this defense affects HDV replication. We aim to characterize interferon (IFN) activation by HDV, identify the responsible sensor and evaluate the effect of IFN on HDV replication. HDV and HBV susceptible hepatoma cell lines and primary human hepatocytes (PHH) were used for infection studies. Viral markers and cellular gene expression were analyzed at different time points after infection. Pattern recognition receptors (PRRs) required for HDV-mediated IFN activation and the impact on HDV replication were studied using stable knock-down or overexpression of the PRRs. Microarray analysis revealed that HDV but not HBV infection activated a broad range of interferon stimulated genes (ISGs) in HepG2 NTCP cells. HDV strongly activated IFN-β and IFN-λ in cell lines and PHH. HDV induced IFN levels remained unaltered upon RIG-I (DDX58) or TLR3 knock-down, but were almost completely abolished upon MDA5 (IFIH1) depletion. Conversely, overexpression of MDA5 but not RIG-I and TLR3 in HuH7.5 NTCP cells partially restored ISG induction. During long-term infection, IFN levels gradually diminished in both HepG2 NTCP and HepaRG NTCP cell lines. MDA5 depletion had little effect on HDV replication despite dampening HDV-induced IFN response. Moreover, treatment with type I or type III IFNs did not abolish HDV replication. Active replication of HDV induces an IFN-β/λ response, which is predominantly mediated by MDA5. This IFN response and exogenous IFN treatment have only a moderate effect on HDV replication in vitro indicating the adaption of HDV replication to an IFN-activated state. In contrast to hepatitis B virus, infection with hepatitis D virus induces a strong IFN-β/λ response in innate immune competent cell lines. MDA5 is the key sensor for the recognition of hepatitis D virus replicative intermediates. An IFN-activated state did not prevent hepatitis D virus replication in vitro, indicating that hepatitis D virus is resistant to self-induced innate immune responses and therapeutic IFN treatment. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  3. The DNA Replication Checkpoint Directly Regulates MBF-Dependent G1/S Transcription▿

    PubMed Central

    Dutta, Chaitali; Patel, Prasanta K.; Rosebrock, Adam; Oliva, Anna; Leatherwood, Janet; Rhind, Nicholas

    2008-01-01

    The DNA replication checkpoint transcriptionally upregulates genes that allow cells to adapt to and survive replication stress. Our results show that, in the fission yeast Schizosaccharomyces pombe, the replication checkpoint regulates the entire G1/S transcriptional program by directly regulating MBF, the G1/S transcription factor. Instead of initiating a checkpoint-specific transcriptional program, the replication checkpoint targets MBF to maintain the normal G1/S transcriptional program during replication stress. We propose a mechanism for this regulation, based on in vitro phosphorylation of the Cdc10 subunit of MBF by the Cds1 replication-checkpoint kinase. Replacement of two potential phosphorylation sites with phosphomimetic amino acids suffices to promote the checkpoint transcriptional program, suggesting that Cds1 phosphorylation directly regulates MBF-dependent transcription. The conservation of MBF between fission and budding yeast, and recent results implicating MBF as a target of the budding yeast replication checkpoint, suggests that checkpoint regulation of the MBF transcription factor is a conserved strategy for coping with replication stress. Furthermore, the structural and regulatory similarity between MBF and E2F, the metazoan G1/S transcription factor, suggests that this checkpoint mechanism may be broadly conserved among eukaryotes. PMID:18662996

  4. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization

    PubMed Central

    Maxfield, Lori F.; Abbink, Peter; Stephenson, Kathryn E.; Borducchi, Erica N.; Ng'ang'a, David; Kirilova, Marinela M.; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank

    2015-01-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. PMID:26376928

  5. Attenuation of Replication-Competent Adenovirus Serotype 26 Vaccines by Vectorization.

    PubMed

    Maxfield, Lori F; Abbink, Peter; Stephenson, Kathryn E; Borducchi, Erica N; Ng'ang'a, David; Kirilova, Marinela M; Paulino, Noelix; Boyd, Michael; Shabram, Paul; Ruan, Qian; Patel, Mayank; Barouch, Dan H

    2015-11-01

    Replication-competent adenovirus (rcAd)-based vaccine vectors may theoretically provide immunological advantages over replication-incompetent Ad vectors, but they also raise additional potential clinical and regulatory issues. We produced replication-competent Ad serotype 26 (rcAd26) vectors by adding the E1 region back into a replication-incompetent Ad26 vector backbone with the E3 or E3/E4 regions deleted. We assessed the effect of vectorization on the replicative capacity of the rcAd26 vaccines. Attenuation occurred in a stepwise fashion, with E3 deletion, E4 deletion, and human immunodeficiency virus type 1 (HIV-1) envelope (Env) gene insertion all contributing to reduced replicative capacity compared to that with the wild-type Ad26 vector. The rcAd26 vector with E3 and E4 deleted and containing the Env transgene exhibited 2.7- to 4.4-log-lower replicative capacity than that of the wild-type Ad26 in vitro. This rcAd26 vector is currently being evaluated in a phase 1 clinical trial. Attenuation as a result of vectorization and transgene insertion has implications for the clinical development of replication-competent vaccine vectors. Copyright © 2015, Maxfield et al.

  6. Mechanism of Cell Culture Adaptation of an Enteric Calicivirus, the Porcine Sapovirus Cowden Strain.

    PubMed

    Lu, Zhongyan; Yokoyama, Masaru; Chen, Ning; Oka, Tomoichiro; Jung, Kwonil; Chang, Kyeong-Ok; Annamalai, Thavamathi; Wang, Qiuhong; Saif, Linda J

    2016-02-01

    The porcine sapovirus (SaV) (PoSaV) Cowden strain is one of only a few culturable enteric caliciviruses. Compared to the wild-type (WT) PoSaV Cowden strain, tissue culture-adapted (TC) PoSaV has two conserved amino acid substitutions in the RNA-dependent RNA polymerase (RdRp) and six in the capsid protein (VP1). By using the reverse-genetics system, we identified that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328), but not the substitutions in the RdRp region, were critical for the cell culture adaptation of the PoSaV Cowden strain. The other two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro. Three-dimensional (3D) structural analysis of VP1 showed that residue 178 was located near the dimer-dimer interface, which may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 were located at protruding subdomain 2 (P2) of VP1, which may influence virus binding to cellular receptors; and residue 295 was located at the interface of two monomeric VP1 proteins, which may influence VP1 dimerization. Although reversion of the mutation at residue 291 or 295 from that of the TC strain to that of the WT reduced virus replication in vitro, it enhanced virus replication in vivo, and the revertants induced higher-level serum and mucosal antibody responses than those induced by the TC PoSaV Cowden strain. Our findings reveal the molecular basis for PoSaV adaptation to cell culture. These findings may provide new, critical information for the cell culture adaptation of other PoSaV strains and human SaVs or noroviruses. The tissue culture-adapted porcine sapovirus Cowden strain is one of only a few culturable enteric caliciviruses. We discovered that 4 amino acid substitutions in VP1 (residues 178, 289, 324, and 328) were critical for its adaptation to LLC-PK cells. Two substitutions in VP1 (residues 291 and 295) reduced virus replication in vitro but enhanced virus replication and induced higher-level serum and mucosal antibody responses in gnotobiotic pigs than those induced by the tissue culture-adapted strain. Structural modeling analysis of VP1 suggested that residue 178 may affect VP1 assembly and oligomerization; residues 289, 291, 324, and 328 may influence virus binding to cellular receptors; and residue 295 may influence VP1 dimerization. Our findings will provide new information for the cell culture adaptation of other sapoviruses and possibly noroviruses. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Functional Role for Humoral Antibodies in Leishmaniasis in Laboratory Animal.

    DTIC Science & Technology

    1982-12-01

    vitro; inhibition of growth of intracellular Mycobacterium leprae with lymphokines. Clin. Exp. Immunol. 8:625-637. Herman, R. 1980. Cytophilic and...lymphocytes. Thus, inhibition of intracellular replication of Listeria monocytogenes (Simon and Sheagren, 1972), Mycobacterium tuberculosis (North, 1974...M. leprae (Godal et al., 1971) and Rickettsia tsutsugamushi (Nacy and Meltzer, 1979) have all been demonstrated after infected cells, in vitro, were

  8. Oxymatrine Inhibits Influenza A Virus Replication and Inflammation via TLR4, p38 MAPK and NF-κB Pathways.

    PubMed

    Dai, Jian-Ping; Wang, Qian-Wen; Su, Yun; Gu, Li-Ming; Deng, Hui-Xiong; Chen, Xiao-Xuan; Li, Wei-Zhong; Li, Kang-Sheng

    2018-03-23

    Oxymatrine (OMT) is a strong immunosuppressive agent that has been used in the clinic for many years. In the present study, by using plaque inhibition, luciferase reporter plasmids, qRT-PCR, western blotting, and ELISA assays, we have investigated the effect and mechanism of OMT on influenza A virus (IAV) replication and IAV-induced inflammation in vitro and in vivo. The results showed that OMT had excellent anti-IAV activity on eight IAV strains in vitro. OMT could significantly decrease the promoter activity of TLR3, TLR4, TLR7, MyD88, and TRAF6 genes, inhibit IAV-induced activations of Akt, ERK1/2, p38 MAPK, and NF-κB pathways, and suppress the expressions of inflammatory cytokines and MMP-2/-9. Activators of TLR4, p38 MAPK and NF-κB pathways could significantly antagonize the anti-IAV activity of OMT in vitro, including IAV replication and IAV-induced cytopathogenic effect (CPE). Furthermore, OMT could reduce the loss of body weight, significantly increase the survival rate of IAV-infected mice, decrease the lung index, pulmonary inflammation and lung viral titter, and improve pulmonary histopathological changes. In conclusion, OMT possesses anti-IAV and anti-inflammatory activities, the mechanism of action may be linked to its ability to inhibit IAV-induced activations of TLR4, p38 MAPK, and NF-κB pathways.

  9. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    PubMed

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  10. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    PubMed Central

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  11. Influence of long-term equine herpesvirus type 1 (EHV-1) infection on primary murine neurons-the possible effects of the multiple passages of EHV-1 on its neurovirulence.

    PubMed

    Cymerys, Joanna; Słońska, A; Tucholska, A; Golke, A; Chmielewska, A; Bańbura, M W

    2018-01-01

    Equine herpesvirus 1 (EHV-1), like other members of the Alphaherpesvirinae subfamily, is a neurotropic virus causing latent infections in the nervous system of the natural host. In the present study, we have investigated EHV-1 replication (wild-type Jan-E strain and Rac-H laboratory strain) during long-term infection and during the passages of the virus in cultured neurons. The studies were performed on primary murine neurons, which are an excellent in vitro model for studying neurotropism and neurovirulence of EHV-1. Using real-time cell growth analysis, we have demonstrated for the first time that primary murine neurons are able to survive long-term EHV-1 infection. Positive results of real-time PCR test indicated a high level of virus DNA in cultured neurons, and during long-term infection, these neurons were still able to transmit the virus to the other cells. We also compared the neurovirulence of Rac-H and Jan-E EHV-1 strains after multiple passages of these strains in neuron cell culture. The results showed that multiple passages of EHV-1 in neurons lead to the inhibition of viral replication as early as in the third passage. Interestingly, the inhibition of the EHV-1 replication occurred exclusively in neurons, because the equine dermal (ED) cells co-cultivated with neuroculture medium from the third passage showed the presence of large amount of viral DNA. In conclusion, our results showed that certain balance between EHV-1 and neurons has been established during in vitro infection allowing neurons to survive long-term infection.

  12. Synthetic biology approach for plant protection using dsRNA.

    PubMed

    Niehl, Annette; Soininen, Marjukka; Poranen, Minna M; Heinlein, Manfred

    2018-02-26

    Pathogens induce severe damages on cultivated plants and represent a serious threat to global food security. Emerging strategies for crop protection involve the external treatment of plants with double-stranded (ds)RNA to trigger RNA interference. However, applying this technology in greenhouses and fields depends on dsRNA quality, stability and efficient large-scale production. Using components of the bacteriophage phi6, we engineered a stable and accurate in vivo dsRNA production system in Pseudomonas syringae bacteria. Unlike other in vitro or in vivo dsRNA production systems that rely on DNA transcription and postsynthetic alignment of single-stranded RNA molecules, the phi6 system is based on the replication of dsRNA by an RNA-dependent RNA polymerase, thus allowing production of high-quality, long dsRNA molecules. The phi6 replication complex was reprogrammed to multiply dsRNA sequences homologous to tobacco mosaic virus (TMV) by replacing the coding regions within two of the three phi6 genome segments with TMV sequences and introduction of these constructs into P. syringae together with the third phi6 segment, which encodes the components of the phi6 replication complex. The stable production of TMV dsRNA was achieved by combining all the three phi6 genome segments and by maintaining the natural dsRNA sizes and sequence elements required for efficient replication and packaging of the segments. The produced TMV-derived dsRNAs inhibited TMV propagation when applied to infected Nicotiana benthamiana plants. The established dsRNA production system enables the broad application of dsRNA molecules as an efficient, highly flexible, nontransgenic and environmentally friendly approach for protecting crops against viruses and other pathogens. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response

    PubMed Central

    Grant, Sarah Schmidt; Hung, Deborah T.

    2013-01-01

    Certain bacterial pathogens are able to evade the host immune system and persist within the human host. The consequences of persistent bacterial infections potentially include increased morbidity and mortality from the infection itself as well as an increased risk of dissemination of disease. Eradication of persistent infections is difficult, often requiring prolonged or repeated courses of antibiotics. During persistent infections, a population or subpopulation of bacteria exists that is refractory to traditional antibiotics, possibly in a non-replicating or metabolically altered state. This review highlights the clinical significance of persistent infections and discusses different in vitro models used to investigate the altered physiology of bacteria during persistent infections. We specifically focus on recent work establishing increased protection against oxidative stress as a key element of the altered physiologic state across different in vitro models and pathogens. PMID:23563389

  14. Orally Bioavailable and Effective Buparvaquone Lipid-Based Nanomedicines for Visceral Leishmaniasis.

    PubMed

    Smith, Lindsay; Serrano, Dolores R; Mauger, Marion; Bolás-Fernández, Francisco; Dea-Ayuela, Maria Auxiliadora; Lalatsa, Aikaterini

    2018-05-24

    Nanoenabled lipid-based drug delivery systems offer a platform to overcome challenges encountered with current failed leads in the treatment of parasitic and infectious diseases. When prepared with FDA or EMA approved excipients, they can be readily translated without the need for further toxicological studies, while they remain affordable and amenable to scale-up. Buparvaquone (BPQ), a hydroxynapthoquinone with in vitro activity in the nanomolar range, failed to clinically translate as a viable treatment for visceral leishmaniasis due to its poor oral bioavailability limited by its poor aqueous solubility (BCS Class II drug). Here we describe a self-nanoemulsifying system (SNEDDS) with high loading and thermal stability up to 6 months in tropical conditions and the ability to enhance the solubilization capacity of BPQ in gastrointestinal media as demonstrated by flow-through cell and dynamic in vitro lipolysis studies. BPQ SNEDDS demonstrated an enhanced oral bioavailability compared to aqueous BPQ dispersions (probe-sonicated), resulting in an increased plasma AUC 0-24 by 55% that is 4-fold higher than any previous reported values for BPQ formulations. BPQ SNEDDS can be adsorbed on low molecular glycol chitosan polymers forming solid dispersions that when compressed into tablets allow the complete dissolution of BPQ in gastrointestinal media. BPQ SNEDDS and BPQ solid SNEDDS demonstrated potent in vitro efficacy in the nanomolar range (<37 nM) and were able to near completely inhibit parasite replication in the spleen while also demonstrating 48 ± 48 and 56 ± 23% inhibition of the parasite replication in the liver, respectively, compared to oral miltefosine after daily administration over 10 days. The proposed platform technology can be used to elicit a range of cost-effective and orally bioavailable noninvasive formulations for a range of antiparasitic and infectious disease drugs that are needed for closing the global health innovation gap.

  15. Antiviral activity and specific modes of action of bacterial prodigiosin against Bombyx mori nucleopolyhedrovirus in vitro.

    PubMed

    Zhou, Wei; Zeng, Cheng; Liu, RenHua; Chen, Jie; Li, Ru; Wang, XinYan; Bai, WenWen; Liu, XiaoYuan; Xiang, TingTing; Zhang, Lin; Wan, YongJi

    2016-05-01

    Prodigiosin, the tripyrrole red pigment, is a bacterial secondary metabolite with multiple bioactivities; however, the antiviral activity has not been reported yet. In the present study, we found the antiviral activity of bacterial prodigiosin on Bombyx mori nucleopolyhedrovirus (BmNPV)-infected cells in vitro, with specific modes of action. Prodigiosin at nontoxic concentrations selectively killed virus-infected cells, inhibited viral gene transcription, especially viral early gene ie-1, and prevented virus-mediated membrane fusion. Under prodigiosin treatment, both progeny virus production and viral DNA replication were significantly inhibited. Fluorescent assays showed that prodigiosin predominantly located in cytoplasm which suggested it might interact with cytoplasm factors to inhibit virus replication. In conclusion, the present study clearly indicates that prodigiosin possesses significant antiviral activity against BmNPV.

  16. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  17. Possible Increased Pathogenicity of Pandemic (H1N1) 2009 Influenza Virus upon Reassortment

    PubMed Central

    Schrauwen, Eefje J.A.; Herfst, Sander; Chutinimitkul, Salin; Bestebroer, Theo M.; Rimmelzwaan, Guus F.; Osterhaus, Albert D.M.E.; Kuiken, Thijs

    2011-01-01

    Since emergence of the pandemic (H1N1) 2009 virus in April 2009, three influenza A viruses—seasonal (H3N2), seasonal (H1N1), and pandemic (H1N1) 2009—have circulated in humans. Genetic reassortment between these viruses could result in enhanced pathogenicity. We compared 4 reassortant viruses with favorable in vitro replication properties with the wild-type pandemic (H1N1) 2009 virus with respect to replication kinetics in vitro and pathogenicity and transmission in ferrets. Pandemic (H1N1) 2009 viruses containing basic polymerase 2 alone or in combination with acidic polymerase of seasonal (H1N1) virus were attenuated in ferrets. In contrast, pandemic (H1N1) 2009 with neuraminidase of seasonal (H3N2) virus resulted in increased virus replication and more severe pulmonary lesions. The data show that pandemic (H1N1) 2009 virus has the potential to reassort with seasonal influenza viruses, which may result in increased pathogenicity while it maintains the capacity of transmission through aerosols or respiratory droplets. PMID:21291589

  18. Antiviral Activities of Sulfated Polysaccharides Isolated from Sphaerococcus coronopifolius (Rhodophytha, Gigartinales) and Boergeseniella thuyoides (Rhodophyta, Ceramiales)

    PubMed Central

    Bouhlal, Rhimou; Haslin, Camille; Chermann, Jean-Claude; Colliec-Jouault, Sylvia; Sinquin, Corinne; Simon, Gaelle; Cerantola, Stephane; Riadi, Hassane; Bourgougnon, Nathalie

    2011-01-01

    Water-soluble sulfated polysaccharides isolated from two red algae Sphaerococcus coronopifolius (Gigartinales, Sphaerococcaceae) and Boergeseniella thuyoides (Ceramiales, Rhodomelaceae) collected on the coast of Morocco inhibited in vitro replication of the Human Immunodeficiency Virus (HIV) at 12.5 μg/mL. In addition, polysaccharides were capable of inhibiting the in vitro replication of Herpes simplex virus type 1 (HSV-1) on Vero cells values of EC50 of 4.1 and 17.2 μg/mL, respectively. The adsorption step of HSV-1 to the host cell seems to be the specific target for polysaccharide action. While for HIV-1, these results suggest a direct inhibitory effect on HIV-1 replication by controlling the appearance of the new generations of virus and potential virucidal effect. The polysaccharides from S. coronopifolius (PSC) and B. thuyoides (PBT) were composed of galactose, 3,6-anhydrogalactose, uronics acids, sulfate in ratios of 33.1, 11.0, 7.7 and 24.0% (w/w) and 25.4, 16.0, 3.2, 7.6% (w/w), respectively. PMID:21822410

  19. Protective role of Indoleamine 2,3 dioxygenase in Respiratory Syncytial Virus associated immune response in airway epithelial cells.

    PubMed

    Rajan, Devi; Chinnadurai, Raghavan; Keefe, Evan O; Boyoglu-Barnum, Seyhan; Todd, Sean O; Hartert, Tina V; Galipeau, Jacques; Anderson, Larry J

    2017-12-01

    RSV is a major cause of severe lower respiratory infection in infants and young children. With no vaccine yet available, it is important to clarify mechanisms of disease pathogenesis. Since indoleamine-2,3-dioxygenase (IDO) is an immunomodulatory enzyme and is upregulated with RSV infection, we studied it in vivo during infection of BALB/c mice and in vitro in A549 cells. RSV infection upregulated IDO transcripts in vivo and in vitro. IDO siRNA decreased IDO transcripts ~2 fold compared to control siRNA after RSV infection but this decrease did not affect RSV replication. In the presence of IFN-γ, siRNA-induced a decrease in IDO expression that was associated with an increase in virus replication and increased levels of IL-6, IL-8, CXCL10 and CCL4. Thus, our results show IDO is upregulated with RSV infection and this upregulation likely participates with IFN-γ in inhibition of virus replication and suppression of some host cell responses to infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Functions of Replication Protein A as a Sensor of R Loops and a Regulator of RNaseH1

    PubMed Central

    Nguyen, Hai Dang; Yadav, Tribhuwan; Giri, Sumanprava; Saez, Borja; Graubert, Timothy A.; Zou, Lee

    2017-01-01

    R loop, a transcription intermediate containing RNA:DNA hybrids and displaced single-stranded DNA (ssDNA), has emerged as a major source of genomic instability. RNaseH1, which cleaves the RNA in RNA:DNA hybrids, plays an important role in R loop suppression. Here, we show that replication protein A (RPA), a ssDNA-binding protein, interacts with RNaseH1 and colocalizes with both RNaseH1 and R loops in cells. In vitro, purified RPA directly enhances the association of RNaseH1 with RNA:DNA hybrids and stimulates the activity of RNaseH1 on R loops. An RPA binding-defective RNaseH1 mutant is not efficiently stimulated by RPA in vitro, fails to accumulate at R loops in cells, and loses the ability to suppress R loops and associated genomic instability. Thus, in addition to sensing DNA damage and replication stress, RPA is a sensor of R loops and a regulator of RNaseH1, extending the versatile role of RPA in suppression of genomic instability. PMID:28257700

  1. Intracellular oxidant activity, antioxidant enzyme defense system, and cell senescence in fibroblasts with trisomy 21.

    PubMed

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS.

  2. Intracellular Oxidant Activity, Antioxidant Enzyme Defense System, and Cell Senescence in Fibroblasts with Trisomy 21

    PubMed Central

    Rodríguez-Sureda, Víctor; Vilches, Ángel; Sánchez, Olga; Audí, Laura; Domínguez, Carmen

    2015-01-01

    Down's syndrome (DS) is characterized by a complex phenotype associated with chronic oxidative stress and mitochondrial dysfunction. Overexpression of genes on chromosome-21 is thought to underlie the pathogenesis of the major phenotypic features of DS, such as premature aging. Using cultured fibroblasts with trisomy 21 (T21F), this study aimed to ascertain whether an imbalance exists in activities, mRNA, and protein expression of the antioxidant enzymes SOD1, SOD2, glutathione-peroxidase, and catalase during the cell replication process in vitro. T21F had high SOD1 expression and activity which led to an interenzymatic imbalance in the antioxidant defense system, accentuated with replicative senescence. Intracellular ROS production and oxidized protein levels were significantly higher in T21F compared with control cells; furthermore, a significant decline in intracellular ATP content was detected in T21F. Cell senescence was found to appear prematurely in DS cells as shown by SA-β-Gal assay and p21 assessment, though not apoptosis, as neither p53 nor the proapoptotic proteins cytochrome c and caspase 9 were altered in T21F. These novel findings would point to a deleterious role of oxidatively modified molecules in early cell senescence of T21F, thereby linking replicative and stress-induced senescence in cultured cells to premature aging in DS. PMID:25852816

  3. Plasmid Vectors for Xylella fastidiosa Utilizing a Toxin-Antitoxin System for Stability in the Absence of Antibiotic Selection.

    PubMed

    Burbank, Lindsey P; Stenger, Drake C

    2016-08-01

    The phytopathogen Xylella fastidiosa causes disease in a variety of important crop and landscape plants. Functional genetic studies have led to a broader understanding of virulence mechanisms used by this pathogen in the grapevine host. Plasmid shuttle vectors are important tools in studies of bacterial genetics but there are only a limited number of plasmid vectors available that replicate in X. fastidiosa, and even fewer that are retained without antibiotic selection. Two plasmids are described here that show stable replication in X. fastidiosa and are effective for gene complementation both in vitro and in planta. Plasmid maintenance is facilitated by incorporation of the PemI/PemK plasmid addiction system, consisting of PemK, an endoribonuclease toxin, and its cognate antitoxin, PemI. Vector pXf20pemIK utilizes a native X. fastidiosa replication origin as well as a high-copy-number pUC origin for propagation in Escherichia coli cloning strains. Broad-host-range vector pBBR5pemIK is a medium- to low-copy-number plasmid based on the pBBR1 backbone. Both plasmids are maintained for extended periods of time in the absence of antibiotic selection, as well as up to 14 weeks in grapevine, without affecting bacterial fitness. These plasmids present an alternative to traditional complementation and expression vectors which rely on antibiotic selection for plasmid retention.

  4. Stress-induced premature senescence (SIPS)--influence of SIPS on radiotherapy.

    PubMed

    Suzuki, Masatoshi; Boothman, David A

    2008-03-01

    Replicative senescence is a fundamental feature in normal human diploid cells and results from dysfunctional telomeres at the Hayflick cell division limit. Ionizing radiation (IR) prematurely induces the same phenotypes as replicative senescence prior to the Hayflick limit. This process is known as stress-induced premature senescence (SIPS). Since the cell cycle is irreversibly arrested in SIPS-induced cells, even if they are stimulated by various growth factors, it is thought that SIPS is a form of cell death, irreversibly eliminating replicating cells. IR-induced-focus formation of DNA repair proteins, a marker of DNA damage, is detected in SIPS as well as replicative senescent cells. Furthermore, both processes persistently induce cell cycle checkpoint mechanisms, indicating DNA damage created by ionizing radiation induces SIPS in normal cells, possibly by the same mechanisms as those occurring in replicative senescence. Interestingly, IR induces SIPS not only in normal cells, but also in tumor cells. Due to the expression of telomerase in tumor cells, telomere-dependent replicative senescence does not occur. However, SIPS is induced under certain conditions after IR exposure. Thus, cell death triggered by IR can be attributed to apoptosis or SIPS in tumor cells. However, metabolic function remains intact in SIPS-induced cancer cells, and recent studies show that senescence eliminate cells undergoing SIPS secrete various kinds of factors outside the cell, changing the microenvironment. Evidence using co-culture systems containing normal senescent stromal cells and epithelial tumor cells show that factors secreted from senescent stroma cells promote the growth of tumor epithelial cells both in vitro and in vivo. Thus, regulation of factors secreted from SIPS-induced stromal cells, as well as tumor cells, may affect radiotherapy.

  5. The Fission Yeast Minichromosome Maintenance (MCM)-binding Protein (MCM-BP), Mcb1, Regulates MCM Function during Prereplicative Complex Formation in DNA Replication*

    PubMed Central

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-01-01

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1+, two temperature-sensitive mcb1 gene mutants (mcb1ts) were isolated. Extensive genetic analysis showed that the mcb1ts mutants were suppressed by a mcm5+ multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1ts mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1ts mutants. Furthermore, the mcb1ts mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex. PMID:23322785

  6. The fission yeast minichromosome maintenance (MCM)-binding protein (MCM-BP), Mcb1, regulates MCM function during prereplicative complex formation in DNA replication.

    PubMed

    Santosa, Venny; Martha, Sabrina; Hirose, Noriaki; Tanaka, Katsunori

    2013-03-08

    The minichromosome maintenance (MCM) complex is a replicative helicase, which is essential for chromosome DNA replication. In recent years, the identification of a novel MCM-binding protein (MCM-BP) in most eukaryotes has led to numerous studies investigating its function and its relationship to the MCM complex. However, the mechanisms by which MCM-BP functions and associates with MCM complexes are not well understood; in addition, the functional role of MCM-BP remains controversial and may vary between model organisms. The present study aims to elucidate the nature and biological function of the MCM-BP ortholog, Mcb1, in fission yeast. The Mcb1 protein continuously interacts with MCM proteins during the cell cycle in vivo and can interact with any individual MCM subunit in vitro. To understand the detailed characteristics of mcb1(+), two temperature-sensitive mcb1 gene mutants (mcb1(ts)) were isolated. Extensive genetic analysis showed that the mcb1(ts) mutants were suppressed by a mcm5(+) multicopy plasmid and displayed synthetic defects with many S-phase-related gene mutants. Moreover, cyclin-dependent kinase modulation by Cig2 repression or Rum1 overproduction suppressed the mcb1(ts) mutants, suggesting the involvement of Mcb1 in pre-RC formation during DNA replication. These data are consistent with the observation that Mcm7 loading onto replication origins is reduced and S-phase progression is delayed in mcb1(ts) mutants. Furthermore, the mcb1(ts) mutation led to the redistribution of MCM subunits to the cytoplasm, and this redistribution was dependent on an active nuclear export system. These results strongly suggest that Mcb1 promotes efficient pre-RC formation during DNA replication by regulating the MCM complex.

  7. Attenuated Salmonella Typhimurium Lacking the Pathogenicity Island-2 Type 3 Secretion System Grow to High Bacterial Numbers inside Phagocytes in Mice

    PubMed Central

    Grant, Andrew J.; Morgan, Fiona J. E.; McKinley, Trevelyan J.; Foster, Gemma L.; Maskell, Duncan J.; Mastroeni, Pietro

    2012-01-01

    Intracellular replication within specialized vacuoles and cell-to-cell spread in the tissue are essential for the virulence of Salmonella enterica. By observing infection dynamics at the single-cell level in vivo, we have discovered that the Salmonella pathogenicity island 2 (SPI-2) type 3 secretory system (T3SS) is dispensable for growth to high intracellular densities. This challenges the concept that intracellular replication absolutely requires proteins delivered by SPI-2 T3SS, which has been derived largely by inference from in vitro cell experiments and from unrefined measurement of net growth in mouse organs. Furthermore, we infer from our data that the SPI-2 T3SS mediates exit from infected cells, with consequent formation of new infection foci resulting in bacterial spread in the tissues. This suggests a new role for SPI-2 in vivo as a mediator of bacterial spread in the body. In addition, we demonstrate that very similar net growth rates of attenuated salmonellae in organs can be derived from very different underlying intracellular growth dynamics. PMID:23236281

  8. Ribozyme-catalysed RNA synthesis using triplet building blocks.

    PubMed

    Attwater, James; Raguram, Aditya; Morgunov, Alexey S; Gianni, Edoardo; Holliger, Philipp

    2018-05-15

    RNA-catalyzed RNA replication is widely believed to have supported a primordial biology. However, RNA catalysis is dependent upon RNA folding, and this yields structures that can block replication of such RNAs. To address this apparent paradox we have re-examined the building blocks used for RNA replication. We report RNA-catalysed RNA synthesis on structured templates when using trinucleotide triphosphates (triplets) as substrates, catalysed by a general and accurate triplet polymerase ribozyme that emerged from in vitro evolution as a mutualistic RNA heterodimer. The triplets cooperatively invaded and unraveled even highly stable RNA secondary structures, and support non-canonical primer-free and bidirectional modes of RNA synthesis and replication. Triplet substrates thus resolve a central incongruity of RNA replication, and here allow the ribozyme to synthesise its own catalytic subunit '+' and '-' strands in segments and assemble them into a new active ribozyme. © 2018, Attwater et al.

  9. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication

    PubMed Central

    Seco, Elena M.

    2017-01-01

    Abstract Firmicutes have two distinct replicative DNA polymerases, the PolC leading strand polymerase, and PolC and DnaE synthesizing the lagging strand. We have reconstituted in vitro Bacillus subtilis bacteriophage SPP1 θ-type DNA replication, which initiates unidirectionally at oriL. With this system we show that DnaE is not only restricted to lagging strand synthesis as previously suggested. DnaG primase and DnaE polymerase are required for initiation of DNA replication on both strands. DnaE and DnaG synthesize in concert a hybrid RNA/DNA ‘initiation primer’ on both leading and lagging strands at the SPP1 oriL region, as it does the eukaryotic Pol α complex. DnaE, as a RNA-primed DNA polymerase, extends this initial primer in a reaction modulated by DnaG and one single-strand binding protein (SSB, SsbA or G36P), and hands off the initiation primer to PolC, a DNA-primed DNA polymerase. Then, PolC, stimulated by DnaG and the SSBs, performs the bulk of DNA chain elongation at both leading and lagging strands. Overall, these modulations by the SSBs and DnaG may contribute to the mechanism of polymerase switch at Firmicutes replisomes. PMID:28575448

  10. Two novel families of plasmids from hyperthermophilic archaea encoding new families of replication proteins

    PubMed Central

    Soler, Nicolas; Marguet, Evelyne; Cortez, Diego; Desnoues, Nicole; Keller, Jenny; van Tilbeurgh, Herman; Sezonov, Guennadi; Forterre, Patrick

    2010-01-01

    Thermococcales (phylum Euryarchaeota) are model organisms for physiological and molecular studies of hyperthermophiles. Here we describe three new plasmids from Thermococcales that could provide new tools and model systems for genetic and molecular studies in Archaea. The plasmids pTN2 from Thermococcus nautilus sp. 30-1 and pP12-1 from Pyrococcus sp. 12-1 belong to the same family. They have similar size (∼12 kb) and share six genes, including homologues of genes encoded by the virus PAV1 from Pyrococcus abyssi. The plasmid pT26-2 from Thermococcus sp. 26-2 (21.5 kb), that corresponds to another plasmid family, encodes many proteins having homologues in virus-like elements integrated in several genomes of Thermococcales and Methanococcales. Our analyses confirm that viruses and plasmids are evolutionary related and co-evolve with their hosts. Whereas all plasmids previously isolated from Thermococcales replicate by the rolling circle mechanism, the three plasmids described here probably replicate by the theta mechanism. The plasmids pTN2 and pP12-1 encode a putative helicase of the SFI superfamily and a new family of DNA polymerase, whose activity was demonstrated in vitro, whereas pT26-2 encodes a putative new type of helicase. This strengthens the idea that plasmids and viruses are a reservoir of novel protein families involved in DNA replication. PMID:20403814

  11. Mutation of mapped TIA-1/TIAR binding sites in the 3' terminal stem-loop of West Nile virus minus-strand RNA in an infectious clone negatively affects genomic RNA amplification.

    PubMed

    Emara, Mohamed M; Liu, Hsuan; Davis, William G; Brinton, Margo A

    2008-11-01

    Previous data showed that the cellular proteins TIA-1 and TIAR bound specifically to the West Nile virus 3' minus-strand stem-loop [WNV3'(-)SL] RNA (37) and colocalized with flavivirus replication complexes in WNV- and dengue virus-infected cells (21). In the present study, the sites on the WNV3'(-)SL RNA required for efficient in vitro T-cell intracellular antigen-related (TIAR) and T-cell intracellular antigen-1 (TIA-1) protein binding were mapped to short AU sequences (UAAUU) located in two internal loops of the WNV3'(-)SL RNA structure. Infectious clone RNAs with all or most of the binding site nucleotides in one of the 3' (-)SL loops deleted or substituted did not produce detectable virus after transfection or subsequent passage. With one exception, deletion/mutation of a single terminal nucleotide in one of the binding sequences had little effect on the efficiency of protein binding or virus production, but mutation of a nucleotide in the middle of a binding sequence reduced both the in vitro protein binding efficiency and virus production. Plaque size, intracellular genomic RNA levels, and virus production progressively decreased with decreasing in vitro TIAR/TIA-1 binding activity, but the translation efficiency of the various mutant RNAs was similar to that of the parental RNA. Several of the mutant RNAs that inefficiently interacted with TIAR/TIA-1 in vitro rapidly reverted in vivo, indicating that they could replicate at a low level and suggesting that an interaction between TIAR/TIA-1 and the viral 3'(-)SL RNA is not required for initial low-level symmetric RNA replication but instead facilitates the subsequent asymmetric amplification of genome RNA from the minus-strand template.

  12. The Roles of Family B and D DNA Polymerases in Thermococcus Species 9°N Okazaki Fragment Maturation*

    PubMed Central

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F.

    2015-01-01

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. PMID:25814667

  13. Evaluation of hepatitis B virus replication and proteomic analysis of HepG2.2.15 cell line after cyclosporine A treatment.

    PubMed

    Xie, Hai-Yang; Xia, Wei-Liang; Zhang, Chun-Chao; Wu, Li-Ming; Ji, Hao-Feng; Cheng, Yu; Zheng, Shu-Sen

    2007-07-01

    The effect of cyclosporine A (CsA) on hepatitis B virus (HBV) replication was investigated, and proteomics expression differentiation after CsA treatment was studied in order to provide clues to explore the effect of CsA on HBV replication. Methyl thiazolyl tetrazolium (MTT) assay was used to evaluate the cytotoxicity of CsA. The HBV replication level in the HBV genomic DNA transfected HepG2.2.15 cell line was determined by an ELISA analysis of hepatitis B surface antigens (HBsAg) and Hepatitis B e antigens (HBeAg) in culture supernatant, while the intracellular HBV DNA replication level was analyzed by slot blot hybridization. Two-dimensional electrophoresis was used to investigate the alteration of protein expression in HepG2.2.15 after CsA treatment in vitro. The differentially-expressed proteins were identified by Matrix-assisted laser desorption/ionization-time of flight mass spectrometry combined with an online database search. CsA was able to inhibit the expression of HBsAg, HBeAg, and HBV DNA replication in vitro in a dose-dependent manner. A proteomics analysis indicated that the expression of 17 proteins changed significantly in the CsA treatment group compared to the control group. Eleven of the 17 proteins were identified, including the overexpression of eukaryotic translation initiation factors (eIF) 3k, otubain 1, 14.3.3 protein, eIF2-1 alpha, eIF5A, and the tyrosine 3/tryptophan 5-mono-oxygenase activation protein in CsA-treated HepG2.2.15 cells. The downregulation of the ferritin light subunit, erythrocyte cytosolic protein of 51 kDa (ECP-51), stathmin 1/oncoprotein, adenine phosphoribosyl-transferase, and the position of a tumor protein, translationally controlled 1, was shifted, suggesting it had undergone posttranslational modifications. Our study identified the inhibitory effect of CsA on HBV replication, and found that a group of proteins may be responsible for this inhibitory effect.

  14. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification

    PubMed Central

    Brewer, Bonita J.; Payen, Celia; Di Rienzi, Sara C.; Higgins, Megan M.; Ong, Giang; Dunham, Maitreya J.; Raghuraman, M. K.

    2015-01-01

    DNA replication errors are a major driver of evolution—from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model—Origin-Dependent Inverted-Repeat Amplification (ODIRA)—proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error—the ligation of leading and lagging nascent strands to create “closed” forks—can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent—a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution. PMID:26700858

  15. Origin-Dependent Inverted-Repeat Amplification: Tests of a Model for Inverted DNA Amplification.

    PubMed

    Brewer, Bonita J; Payen, Celia; Di Rienzi, Sara C; Higgins, Megan M; Ong, Giang; Dunham, Maitreya J; Raghuraman, M K

    2015-12-01

    DNA replication errors are a major driver of evolution--from single nucleotide polymorphisms to large-scale copy number variations (CNVs). Here we test a specific replication-based model to explain the generation of interstitial, inverted triplications. While no genetic information is lost, the novel inversion junctions and increased copy number of the included sequences create the potential for adaptive phenotypes. The model--Origin-Dependent Inverted-Repeat Amplification (ODIRA)-proposes that a replication error at pre-existing short, interrupted, inverted repeats in genomic sequences generates an extrachromosomal, inverted dimeric, autonomously replicating intermediate; subsequent genomic integration of the dimer yields this class of CNV without loss of distal chromosomal sequences. We used a combination of in vitro and in vivo approaches to test the feasibility of the proposed replication error and its downstream consequences on chromosome structure in the yeast Saccharomyces cerevisiae. We show that the proposed replication error-the ligation of leading and lagging nascent strands to create "closed" forks-can occur in vitro at short, interrupted inverted repeats. The removal of molecules with two closed forks results in a hairpin-capped linear duplex that we show replicates in vivo to create an inverted, dimeric plasmid that subsequently integrates into the genome by homologous recombination, creating an inverted triplication. While other models have been proposed to explain inverted triplications and their derivatives, our model can also explain the generation of human, de novo, inverted amplicons that have a 2:1 mixture of sequences from both homologues of a single parent--a feature readily explained by a plasmid intermediate that arises from one homologue and integrates into the other homologue prior to meiosis. Our tests of key features of ODIRA lend support to this mechanism and suggest further avenues of enquiry to unravel the origins of interstitial, inverted CNVs pivotal in human health and evolution.

  16. Involvement of rainbow trout leucocytes in the pathogenesis of infectious hematopoietic necrosis

    USGS Publications Warehouse

    Chilmonczyk, S.; Winton, J.R.

    1994-01-01

    Rainbow trout Oncorhynchus myluss leucocytes were tested for their ability to support replication of infectious hematopoietic necrosis virus (IHNV). Viral replication occurred in vitro uslng leucocytes cultured from peripheral blood, kidney, and thymus where viral titers peaked at 2 to 4 d post-inoculation. Leucocytes collected from trout following waterborne challenge with IHNV were cocultured on EPC cell monolayers. These assays detected IHNV in leucocytes infected in vivo as early as 6 h post-exposure before the challenge virus had undergone replication. These data showed that leucocyte populations could serve as target cells in the initial phase of IHNV infection.

  17. The HARP domain dictates the annealing helicase activity of HARP/SMARCAL1.

    PubMed

    Ghosal, Gargi; Yuan, Jingsong; Chen, Junjie

    2011-06-01

    Mutations in HepA-related protein (HARP, or SMARCAL1) cause Schimke immunoosseous dysplasia (SIOD). HARP has ATP-dependent annealing helicase activity, which helps to stabilize stalled replication forks and facilitate DNA repair during replication. Here, we show that the conserved tandem HARP (2HP) domain dictates this annealing helicase activity. Furthermore, chimeric proteins generated by fusing the 2HP domain of HARP with the SNF2 domain of BRG1 or HELLS show annealing helicase activity in vitro and, when targeted to replication forks, mimic the functions of HARP in vivo. We propose that the HARP domain endows HARP with this ATP-driven annealing helicase activity.

  18. A review study on the effect of Iranian herbal medicines against in vitro replication of herpes simplex virus

    PubMed Central

    Moradi, Mohammad-Taghi; Rafieian-Kopaei, Mahmoud; Karimi, Ali

    2016-01-01

    Objective: There are a number of published data indicating in vitro anti-HSV activity of some of Iranian herbal extracts with no systematic review to discuss these results. Therefore, this article was aimed to review and discuss the methods carried out and the phytochemistry and bioactivity of the extracts used and also conclusions provided in these publications. Materials and Methods: Published articles both in English (from Medline, Science Direct, EMBASE, Scopus, Pro Quest, Google scholar, Cochrane Library) and in Persian (from SID, Iran Medex and Magiran) databases, from 1966 to October 2014 were incorporated in this review. The in vitro studies that lacked CC50, IC50, were excluded. Results: Only 42 published reports were found to examine Iranian herbs against HSV replication in vitro. Seventeen out of 42 studies in which 23 kinds of medicinal plants were subjected to crude extraction were included. The review of data showed that some of the herbal extracts including Hyssopus officinalis methanolic extract, Melissa officinalis aqueous extract, Quercus persica L. hydroalcoholic extract and Securigeras ecuridaca methanolic extract with selective index (SI) of 234, 877, >778 and 250, respectively were highly effective against HSV in vitro. Conclusion: More comprehensive studies using more advanced methods are needed to be done to achieve promising anti-HSV agents from the bioactive compounds isolated from these herbs. PMID:27761420

  19. Enhancing the Delivery of Anti Retroviral Drug “Saquinavir” Across the Blood Brain Barrier Using Nanoparticles

    PubMed Central

    Mahajan, Supriya D.; Roy, Indrajit; Xu, GaiXia; Yong, Ken-Tye; Ding, Hong; Aalinkeel, Ravikumar; Reynolds, Jessica L.; Sykes, Donald E.; Nair, Bindukumar B.; Lin, Elaine Y.; Prasad, Paras N.; Schwartz, Stanley A.

    2010-01-01

    Antiretroviral drugs are ineffective at treating viral infection in the brain because they cannot freely diffuse across the blood-brain barrier (BBB). Therefore, HIV-1 viral replication persists in the central nervous system (CNS) and continues to augment the neuropathogenesis process. Nanotechnology can play a pivotal role in HIV-1 therapeutics as it can increase drug solubility, enhance systemic bioavailability, and at the same time offer multifunctionality. Moreover, following conjugation with transferrin (Tf), these drug-loaded nanoformulations can permeate across biological barriers such as the blood brain barrier (BBB) via a receptor mediated transport mechanism. In the current study, we have stably incorporated the antiviral drug, Saquinavir, within Tf-conjugated quantum rods (QRs), which are novel nanoparticles with unique optical properties. We have evaluated the transversing ability of the QR-Tf-Saquinavir nanoformulation across an in vitro model of BBB. In addition, we have analyzed the subsequent antiviral efficacy of this targeted nanoformulation in HIV-1 infected peripheral blood mononuclear cells (PBMCs), which are cultured on the basolateral end of the in vitro BBB model. Our results show a significant uptake of QR-Tf-Saquinavir by brain microvascular endothelial cells (BMVECs), which constitute the BBB. In addition, we observed a significant enhancement in the transversing capability of QR-Tf-Saquinavir across the BBB, along with a marked decrease in HIV-1 viral replication in the PBMCs. These observations indicate that drug-loaded nanoparticles can deliver therapeutics across the BBB. These results highlight the potential of this nanoformulation in the treatment of Neuro-AIDS and other neurological disorders. PMID:20426757

  20. Protein associations in DnaA-ATP hydrolysis mediated by the Hda-replicase clamp complex.

    PubMed

    Su'etsugu, Masayuki; Shimuta, Toh-Ru; Ishida, Takuma; Kawakami, Hironori; Katayama, Tsutomu

    2005-02-25

    In Escherichia coli, the activity of ATP-bound DnaA protein in initiating chromosomal replication is negatively controlled in a replication-coordinated manner. The RIDA (regulatory inactivation of DnaA) system promotes DnaA-ATP hydrolysis to produce the inactivated form DnaA-ADP in a manner depending on the Hda protein and the DNA-loaded form of the beta-sliding clamp, a subunit of the replicase holoenzyme. A highly functional form of Hda was purified and shown to form a homodimer in solution, and two Hda dimers were found to associate with a single clamp molecule. Purified mutant Hda proteins were used in a staged in vitro RIDA system followed by a pull-down assay to show that Hda-clamp binding is a prerequisite for DnaA-ATP hydrolysis and that binding is mediated by an Hda N-terminal motif. Arg(168) in the AAA(+) Box VII motif of Hda plays a role in stable homodimer formation and in DnaA-ATP hydrolysis, but not in clamp binding. Furthermore, the DnaA N-terminal domain is required for the functional interaction of DnaA with the Hda-clamp complex. Single cells contain approximately 50 Hda dimers, consistent with the results of in vitro experiments. These findings and the features of AAA(+) proteins, including DnaA, suggest the following model. DnaA-ATP is hydrolyzed at a binding interface between the AAA(+) domains of DnaA and Hda; the DnaA N-terminal domain supports this interaction; and the interaction of DnaA-ATP with the Hda-clamp complex occurs in a catalytic mode.

  1. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  2. Mcm10 regulates DNA replication elongation by stimulating the CMG replicative helicase.

    PubMed

    Lõoke, Marko; Maloney, Michael F; Bell, Stephen P

    2017-02-01

    Activation of the Mcm2-7 replicative DNA helicase is the committed step in eukaryotic DNA replication initiation. Although Mcm2-7 activation requires binding of the helicase-activating proteins Cdc45 and GINS (forming the CMG complex), an additional protein, Mcm10, drives initial origin DNA unwinding by an unknown mechanism. We show that Mcm10 binds a conserved motif located between the oligonucleotide/oligosaccharide fold (OB-fold) and A subdomain of Mcm2. Although buried in the interface between these domains in Mcm2-7 structures, mutations predicted to separate the domains and expose this motif restore growth to conditional-lethal MCM10 mutant cells. We found that, in addition to stimulating initial DNA unwinding, Mcm10 stabilizes Cdc45 and GINS association with Mcm2-7 and stimulates replication elongation in vivo and in vitro. Furthermore, we identified a lethal allele of MCM10 that stimulates initial DNA unwinding but is defective in replication elongation and CMG binding. Our findings expand the roles of Mcm10 during DNA replication and suggest a new model for Mcm10 function as an activator of the CMG complex throughout DNA replication. © 2017 Lõoke et al.; Published by Cold Spring Harbor Laboratory Press.

  3. Porcine Mx1 Protein Inhibits Classical Swine Fever Virus Replication by Targeting Nonstructural Protein NS5B.

    PubMed

    Zhou, Jing; Chen, Jing; Zhang, Xiao-Min; Gao, Zhi-Can; Liu, Chun-Chun; Zhang, Yun-Na; Hou, Jin-Xiu; Li, Zhao-Yao; Kan, Lin; Li, Wen-Liang; Zhou, Bin

    2018-04-01

    Mx proteins are interferon (IFN)-induced GTPases that have broad antiviral activity against a wide range of RNA and DNA viruses; they belong to the dynamin superfamily of large GTPases. In this study, we confirmed the anti-classical swine fever virus (CSFV) activity of porcine Mx1 in vitro and showed that porcine Mx2 (poMx2), human MxA (huMxA), and mouse Mx1 (mmMx1) also have anti-CSFV activity in vitro Small interfering RNA (siRNA) experiments revealed that depletion of endogenous poMx1 or poMx2 enhanced CSFV replication, suggesting that porcine Mx proteins are responsible for the antiviral activity of interferon alpha (IFN-α) against CSFV infection. Confocal microscopy, immunoprecipitation, glutathione S -transferase (GST) pulldown, and bimolecular fluorescence complementation (BiFC) demonstrated that poMx1 associated with NS5B, the RNA-dependent RNA polymerase (RdRp) of CSFV. We used mutations in the poMx1 protein to elucidate the mechanism of their anti-CSFV activity and found that mutants that disrupted the association with NS5B lost all anti-CSV activity. Moreover, an RdRp activity assay further revealed that poMx1 undermined the RdRp activities of NS5B. Together, these results indicate that porcine Mx proteins exert their antiviral activity against CSFV by interacting with NS5B. IMPORTANCE Our previous studies have shown that porcine Mx1 (poMx1) inhibits classical swine fever virus (CSFV) replication in vitro and in vivo , but the molecular mechanism of action remains largely unknown. In this study, we dissect the molecular mechanism of porcine Mx1 and Mx2 against CSFV in vitro Our results show that poMx1 associates with NS5B, the RNA-dependent RNA polymerase of CSFV, resulting in the reduction of CSFV replication. Moreover, the mutants of poMx1 further elucidate the mechanism of their anti-CSFV activities. Copyright © 2018 American Society for Microbiology.

  4. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex.

    PubMed

    Ganaie, Safder S; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve; Qiu, Jianming

    2017-05-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases.

  5. Replication protein A (RPA) hampers the processive action of APOBEC3G cytosine deaminase on single-stranded DNA.

    PubMed

    Lada, Artem G; Waisertreiger, Irina S-R; Grabow, Corinn E; Prakash, Aishwarya; Borgstahl, Gloria E O; Rogozin, Igor B; Pavlov, Youri I

    2011-01-01

    Editing deaminases have a pivotal role in cellular physiology. A notable member of this superfamily, APOBEC3G (A3G), restricts retroviruses, and Activation Induced Deaminase (AID) generates antibody diversity by localized deamination of cytosines in DNA. Unconstrained deaminase activity can cause genome-wide mutagenesis and cancer. The mechanisms that protect the genomic DNA from the undesired action of deaminases are unknown. Using the in vitro deamination assays and expression of A3G in yeast, we show that replication protein A (RPA), the eukaryotic single-stranded DNA (ssDNA) binding protein, severely inhibits the deamination activity and processivity of A3G. We found that mutations induced by A3G in the yeast genomic reporter are changes of a single nucleotide. This is unexpected because of the known property of A3G to catalyze multiple deaminations upon one substrate encounter event in vitro. The addition of recombinant RPA to the oligonucleotide deamination assay severely inhibited A3G activity. Additionally, we reveal the inverse correlation between RPA concentration and the number of deaminations induced by A3G in vitro on long ssDNA regions. This resembles the "hit and run" single base substitution events observed in yeast. Our data suggest that RPA is a plausible antimutator factor limiting the activity and processivity of editing deaminases in the model yeast system. Because of the similar antagonism of yeast RPA and human RPA with A3G in vitro, we propose that RPA plays a role in the protection of the human genome cell from A3G and other deaminases when they are inadvertently diverged from their natural targets. We propose a model where RPA serves as one of the guardians of the genome that protects ssDNA from the destructive processive activity of deaminases by non-specific steric hindrance.

  6. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice

    PubMed Central

    Brostoff, Terza; Pesavento, Patricia A.; Barker, Christopher M.; Kenney, Joan L.; Dietrich, Elizabeth A.; Duggal, Nisha K.; Bosco-Lauth, Angela M.; Brault, Aaron C.

    2017-01-01

    West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority (~75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3′-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93–100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development. PMID:27637937

  7. MicroRNA reduction of neuronal West Nile virus replication attenuates and affords a protective immune response in mice.

    PubMed

    Brostoff, Terza; Pesavento, Patricia A; Barker, Christopher M; Kenney, Joan L; Dietrich, Elizabeth A; Duggal, Nisha K; Bosco-Lauth, Angela M; Brault, Aaron C

    2016-10-17

    West Nile virus (WNV) is an important agent of human encephalitis that has quickly become endemic across much of the United States since its identification in North America in 1999. While the majority (∼75%) of infections are subclinical, neurologic disease can occur in a subset of cases, with outcomes including permanent neurologic damage and death. Currently, there are no WNV vaccines approved for use in humans. This study introduces a novel vaccine platform for WNV to reduce viral replication in the central nervous system while maintaining peripheral replication to elicit strong neutralizing antibody titers. Vaccine candidates were engineered to incorporate microRNA (miRNA) target sequences for a cognate miRNA expressed only in neurons, allowing the host miRNAs to target viral transcription through endogenous RNA silencing. To maintain stability, these targets were incorporated in multiple locations within the 3'-untranslated region, flanking sequences essential for viral replication without affecting the viral open reading frame. All candidates replicated comparably to wild type WNV in vitro within cells that did not express the cognate miRNA. Insertional control viruses were also capable of neuroinvasion and neurovirulence in vivo in CD-1 mice. Vaccine viruses were safe at all doses tested and did not demonstrate mutations associated with a reversion to virulence when serially passaged in mice. All vaccine constructs were protective from lethal challenge in mice, producing 93-100% protection at the highest dose tested. Overall, this is a safe and effective attenuation strategy with broad potential application for vaccine development. Published by Elsevier Ltd.

  8. Cell-free protein synthesis: the state of the art.

    PubMed

    Whittaker, James W

    2013-02-01

    Cell-free protein synthesis harnesses the synthetic power of biology, programming the ribosomal translational machinery of the cell to create macromolecular products. Like PCR, which uses cellular replication machinery to create a DNA amplifier, cell-free protein synthesis is emerging as a transformative technology with broad applications in protein engineering, biopharmaceutical development, and post-genomic research. By breaking free from the constraints of cell-based systems, it takes the next step towards synthetic biology. Recent advances in reconstituted cell-free protein synthesis (Protein synthesis Using Recombinant Elements expression systems) are creating new opportunities to tailor the reactions for specialized applications including in vitro protein evolution, printing protein microarrays, isotopic labeling, and incorporating nonnatural amino acids.

  9. Inhibition of hepatitis B virus gene expression & replication by crude destruxins from Metarhizium anisopliae var. dcjhyium

    PubMed Central

    Dong, Cong; Yu, Jiuru; Zhu, Ying; Dong, Changjin

    2013-01-01

    Background & objectives: Destruxin A, destruxin B and destruxin E isolated from entomopathogenic fungus Metarhizium anisopliae showed a strong suppressive effect on the replication of hepatitis B virus (HBV) in human hepatoma cells. In this study, the anti-HBV effects of the crude destruxins extracted from M. anisopliae var. dcjhyium were detected both in vitro and in vivo. Methods: HepG2.2.15 cells were cultured to observe the inhibitory effects of the crude destruxins on the gene expression and replication of HBV by radioimmunoassay detection and real-time quantitative PCR. In vivo, duck HBV (DHBV)-infected ducks were treated with the crude destruxins at 2.0, 4.0, 6.0 μg/kg once a day for 15 days, DHBV DNA was examined by real-time quantitative PCR. Results: The crude destruxins suppressed the replication of HBV-DNA and the production of HBsAg and HBeAg with IC50 of about 1.2 and 1.4 μg/ml. Transcript of viral mRNA was significantly suppressed by the crude destruxins in HepG2.2.15 cells. In vivo, the duck serum DHBV-DNA levels were markedly reduced in the group of the crude destruxins. Interpretation & conclusions: The crude destruxins inhibited the gene expression and replication of HBV both in vitro and in vivo, and their anti-HBV effect was stronger than that with destruxin B. Our results indicate that the crude destruxins from M.anisopliae var. dcjhyium may be potential antivirus agents. Further studies need to be done to confirm these findings. PMID:24521644

  10. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels.

    PubMed

    Chen, Xingxiang; Shi, Xiuli; Gan, Fang; Huang, Da; Huang, Kehe

    2015-03-18

    Glutamine has a positive effect on ameliorating reproductive failure caused by porcine circovirus type 2 (PCV2). However, the mechanism by which glutamine affects PCV2 replication remains unclear. This study was conducted to investigate the effects of glutamine on PCV2 replication and its underlying mechanisms in vitro. The results show that glutamine promoted PK-15 cell viability. Surprisingly, glutamine starvation significantly increased PCV2 replication. The promotion of PCV2 replication by glutamine starvation disappeared after fresh media with 4 mM glutamine was added. Likewise, promotion of PCV2 was observed after adding buthionine sulfoximine (BSO). Glutamine starvation or BSO treatment increased the level of p38 MAPK phosphorylation and PCV2 replication in PK-15 cells. Meanwhile, p38 MAPK phosphorylation and PCV2 replication significantly decreased in p38-knockdown PK-15 cells. Promotion of PCV2 replication caused by glutamine starvation could be blocked in p38-knockdown PK-15 cells. Therefore, glutamine starvation increased PCV2 replication by promoting p38 MAPK activation, which was associated with the down regulation of intracellular glutathione levels. Our findings may contribute toward interpreting the possible pathogenic mechanism of PCV2 and provide a theoretical reference for application of glutamine in controlling porcine circovirus-associated diseases.

  11. Interferon-β 1a and SARS Coronavirus Replication

    PubMed Central

    Hensley, Lisa E.; Fritz, Elizabeth A.; Karp, Christopher; Huggins, John W.; Geisbert, Thomas W.

    2004-01-01

    A global outbreak of severe acute respiratory syndrome (SARS) caused by a novel coronavirus began in March 2003. The rapid emergence of SARS and the substantial illness and death it caused have made it a critical public health issue. Because no effective treatments are available, an intensive effort is under way to identify and test promising antiviral drugs. Here, we report that recombinant human interferon (IFN)-β 1a potently inhibits SARS coronavirus replication in vitro. PMID:15030704

  12. Mutant DnaAs of Escherichia coli that are refractory to negative control

    PubMed Central

    Chodavarapu, Sundari; Felczak, Magdalena M.; Simmons, Lyle A.; Murillo, Alec; Kaguni, Jon M.

    2013-01-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli. PMID:23990329

  13. Mutant DnaAs of Escherichia coli that are refractory to negative control.

    PubMed

    Chodavarapu, Sundari; Felczak, Magdalena M; Simmons, Lyle A; Murillo, Alec; Kaguni, Jon M

    2013-12-01

    DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (β clamp), and both DnaAcos and H202Y resist inhibition by the Hda-β clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-β clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.

  14. Modelling iron mismanagement in neurodegenerative disease in vitro: paradigms, pitfalls, possibilities & practical considerations.

    PubMed

    Healy, Sinead; McMahon, Jill M; FitzGerald, Una

    2017-11-01

    Although aberrant metabolism and deposition of iron has been associated with aging and neurodegeneration, the contribution of iron to neuropathology is unclear. Well-designed model systems that are suited to studying the putative pathological effect of iron are likely to be essential if such unresolved details are to be clarified. In this review, we have evaluated the utility and effectiveness of the reductionist in vitro platform to study the molecular mechanisms putatively underlying iron perturbations of neurodegenerative disease. The expression and function of iron metabolism proteins in glia and neurons and the extent to which this iron regulatory system is replicated in in vitro models has been comprehensively described, followed by an appraisal of the inherent suitability of different in vitro and ex vivo models that have been, or might be, used for iron loading. Next, we have identified and critiqued the relevant experimental parameters that have been used in in vitro iron loading experiments, including the choice of iron reagent, relevant iron loading concentrations and supplementation with serum or ascorbate, and propose optimal iron loading conditions. Finally, we have provided a synthesis of the differential iron accumulation and toxicity in glia and neurons from reported iron loading paradigms. In summary, this review has amalgamated the findings and paradigms of the published reports modelling iron loading in monocultures, discussed the limitations and discrepancies of such work to critically propose a robust, relevant and reliable model of iron loading to be used for future investigations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Interleukin-34 inhibits hepatitis B virus replication in vitro and in vivo

    PubMed Central

    Cheng, Sheng-Tao; Tang, Hua; Ren, Ji-Hua; Chen, Xiang; Huang, Ai-Long

    2017-01-01

    Background The hepatitis B virus (HBV) infection could activate the immune system and induce extensive inflammatory response. As the most important inflammatory factor, interleukins are critical for anti-viral immunity. Here we investigated whether interleukin-34 (IL-34) play a role in HBV infection. Methodology/Principal findings In this study, we first found that both serum IL-34 and IL-34 mRNA in PBMCs in chronic HBV patients was significantly decreased compared to the healthy controls. Furthermore, both IL-34 protein and mRNA levels were declined hepatoma cells expressing HBV. In addition, the clinical parameters analysis found that serum IL-34 was significantly associated with HBV DNA (P = 0.0066), ALT (P = 0.0327), AST (P = 0.0435), TB (P = 0.0406), DB (P = 0.0368) and AFP (P = 0.0225). Correlation analysis also found that serum IL-34 negatively correlated with HBV DNA copies, ALT and AST. In vitro studies found that IL-34 treatment in HepAD38 and HepG2.2.15 cells markedly inhibited HBV DNA, total RNA, 3.5kb mRNA and HBc protein. In vivo studies further demonstrated IL-34 treatment in HBV transgenic mice exhibited greater inhibition on HBV DNA, total RNA, 3.5kb mRNA and HBc protein, suggesting the effect to IL-34 on HBV is likely due to host innate or adaptive immune response. Conclusions/Significance Our study identified a novel interleukin, IL-34, which has anti-viral activity in HBV replication in hepatocytes in vitro and in vivo. These data suggest a rationale for the use of IL-34 in the HBV treatment. PMID:28614380

  16. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo.

    PubMed

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-03-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues.

  17. A history of studies that examine the interactions of Toxoplasma with its host cell: Emphasis on in vitro models.

    PubMed

    Boyle, Jon P; Radke, Jay R

    2009-07-01

    This review is a historical look at work carried out over the past 50 years examining interactions of Toxoplasma with the host cell and attempts to focus on some of the seminal experiments in the field. This early work formed the foundation for more recent studies aimed at identifying the host and parasite factors mediating key Toxoplasma-host cell interactions. We focus especially on those studies that were performed in vitro and provide discussions of the following general areas: (i) establishment of the parasitophorous vacuole, (ii) the requirement of specific host cell molecules for parasite replication, (iii) the scenarios under which the host cell can resist parasite replication and/or persistence, (iv) host species-specific and host strain-specific responses to Toxoplasma infection, and (v) Toxoplasma-induced immune modulation.

  18. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials.

    PubMed

    Kawasaki, Haruhisa; Guan, Jianjun; Tamama, Kenichi

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion. Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Hydrogen gas treatment prolongs replicative lifespan of bone marrow multipotential stromal cells in vitro while preserving differentiation and paracrine potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Haruhisa; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210; Guan, Jianjun

    2010-07-02

    Cell therapy with bone marrow multipotential stromal cells/mesenchymal stem cells (MSCs) represents a promising approach in the field of regenerative medicine. Low frequency of MSCs in adult bone marrow necessitates ex vivo expansion of MSCs after harvest; however, such a manipulation causes cellular senescence with loss of differentiation, proliferative, and therapeutic potentials of MSCs. Hydrogen molecules have been shown to exert organ protective effects through selective reduction of hydroxyl radicals. As oxidative stress is one of the key insults promoting cell senescence in vivo as well as in vitro, we hypothesized that hydrogen molecules prevent senescent process during MSC expansion.more » Addition of 3% hydrogen gas enhanced preservation of colony forming early progenitor cells within MSC preparation and prolonged the in vitro replicative lifespan of MSCs without losing differentiation potentials and paracrine capabilities. Interestingly, 3% hydrogen gas treatment did not decrease hydroxyl radical, protein carbonyl, and 8-hydroxydeoxyguanosine, suggesting that scavenging hydroxyl radical might not be responsible for these effects of hydrogen gas in this study.« less

  20. Biophysical stimulation for in vitro engineering of functional cardiac tissues.

    PubMed

    Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica

    2017-07-01

    Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  1. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    PubMed

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Comparison of human and monkey cells for the ability to attenuate transcripts that begin at the adenovirus major late promoter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seiberg, M.; Aloni, Y.; Levine, A.J.

    1989-09-01

    Late transcription from the adenovirus major late promoter can terminate prematurely at a site 182 to 188 nucleotides downstream. Experiments have been designed, with run-on transcription in nuclei in vitro or riboprobe protection of RNA obtained both in vivo and in vitro, that demonstrate that the ratio of attenuator RNA to readthrough RNA is greater in monkey cells (CV-1) than in human cells (HeLa). This may explain, in part, why the human adenoviruses replicate more poorly in CV-1 cells than in HeLa cells. A mutant adenovirus that replicates better than wild-type virus in monkey cells produces less of the attenuatormore » RNA than wild-type adenovirus does in monkey cells. Monkey cell extracts have been shown to contain a factor that, when added to human cell extracts transcribing adenovirus DNA in vitro, increases the production of attenuator RNA in these reactions. These observations help to explain a portion of the block to the production of infectious adenoviruses in monkey cells.« less

  3. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies

    PubMed Central

    Baker, Steven F.; Perez, Daniel R.; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer’s spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection. PMID:26809059

  4. Replication-Competent Influenza A and B Viruses Expressing a Fluorescent Dynamic Timer Protein for In Vitro and In Vivo Studies.

    PubMed

    Breen, Michael; Nogales, Aitor; Baker, Steven F; Perez, Daniel R; Martínez-Sobrido, Luis

    2016-01-01

    Influenza A and B viruses (IAV and IBV, respectively) cause annual seasonal human respiratory disease epidemics. In addition, IAVs have been implicated in occasional pandemics with inordinate health and economic consequences. Studying influenza viruses in vitro or in vivo requires the use of laborious secondary methodologies to identify infected cells. To circumvent this requirement, replication-competent infectious influenza viruses expressing an easily traceable fluorescent reporter protein can be used. Timer is a fluorescent protein that undergoes a time-dependent color emission conversion from green to red. The rate of spectral change is independent of Timer protein concentration and can be used to chronologically measure the duration of its expression. Here, we describe the generation of replication-competent IAV and IBV where the viral non-structural protein 1 (NS1) was fused to the fluorescent dynamic Timer protein. Timer-expressing IAV and IBV displayed similar plaque phenotypes and growth kinetics to wild-type viruses in tissue culture. Within infected cells, Timer's spectral shift can be used to measure the rate and cell-to-cell spread of infection using fluorescent microscopy, plate readers, or flow cytometry. The progression of Timer-expressing IAV infection was also evaluated in a mouse model, demonstrating the feasibility to characterize IAV cell-to-cell infections in vivo. By providing the ability to chronologically track viral spread, Timer-expressing influenza viruses are an excellent option to evaluate the in vitro and in vivo dynamics of viral infection.

  5. Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo

    PubMed Central

    Röhme, Dan

    1981-01-01

    The replicative life spans of mammalian fibroblasts in vitro were studied in a number of cell cultures representing eight species. Emphasis was placed on determining the population doubling level at which phase III (a period of decrease in the rate of proliferation) and chromosomal alterations occur. All the cell cultures studied went through a growth crisis, a period of apparent growth cessation lasting for at least 2 weeks. In most cultures, the crisis represented the end of their replicative capacities, but in some cultures cell proliferation was resumed after the crisis. A predominantly diploid chromosome constitution (more than 75%) was demonstrated prior to the growth crisis. In cultures in which cell proliferation was resumed after the crisis, a nondiploid constitution prevailed in all cases except the rat (with 90% or more diploid cells all the time). The growth crisis occurred at population doubling levels that were characteristic for the species and was shown to be related to the species' maximal life span by a strict power law, being proportional to the square root of the maximal life span. Based on data in the literature, the same relationship was also valid for the lifespans of circulating mammalian erythrocytes in vivo. These results may indicate the prevalence of a common functional basis regulating the life span of fibroblasts and erythrocytes and thus operating in replicative as well as postmitotic cells in vitro and in vivo. PMID:6946449

  6. Viral evolution in response to the broad-based retroviral protease inhibitor TL-3.

    PubMed

    Bühler, B; Lin, Y C; Morris, G; Olson, A J; Wong, C H; Richman, D D; Elder, J H; Torbett, B E

    2001-10-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity.

  7. Viral Evolution in Response to the Broad-Based Retroviral Protease Inhibitor TL-3†

    PubMed Central

    Bühler, Bernd; Lin, Ying-Chuan; Morris, Garrett; Olson, Arthur J.; Wong, Chi-Huey; Richman, Douglas D.; Elder, John H.; Torbett, Bruce E.

    2001-01-01

    TL-3 is a protease inhibitor developed using the feline immunodeficiency virus protease as a model. It has been shown to efficiently inhibit replication of human, simian, and feline immunodeficiency viruses and therefore has broad-based activity. We now demonstrate that TL-3 efficiently inhibits the replication of 6 of 12 isolates with confirmed resistance mutations to known protease inhibitors. To dissect the spectrum of molecular changes in protease and viral properties associated with resistance to TL-3, a panel of chronological in vitro escape variants was generated. We have virologically and biochemically characterized mutants with one (V82A), three (M46I/F53L/V82A), or six (L24I/M46I/F53L/L63P/V77I/V82A) changes in the protease and structurally modeled the protease mutant containing six changes. Virus containing six changes was found to be 17-fold more resistant to TL-3 in cell culture than was wild-type virus but maintained similar in vitro replication kinetics compared to the wild-type virus. Analyses of enzyme activity of protease variants with one, three, and six changes indicated that these enzymes, compared to wild-type protease, retained 40, 47, and 61% activity, respectively. These results suggest that deficient protease enzymatic activity is sufficient for function, and the observed protease restoration might imply a selective advantage, at least in vitro, for increased protease activity. PMID:11533212

  8. Intracellular Trafficking of Baculovirus Particles: A Quantitative Study of the HearNPV/HzAM1 Cell and AcMNPV/Sf9 Cell Systems.

    PubMed

    Matindoost, Leila; Nielsen, Lars K; Reid, Steve

    2015-05-05

    To replace the in vivo production of baculovirus-based biopesticides with a more convenient in vitro produced product, the limitations imposed by in vitro production have to be solved. One of the main problems is the low titer of HearNPV budded virions (BV) in vitro as the use of low BV titer stocks can result in non-homogenous infections resulting in multiple virus replication cycles during scale up that leads to low Occlusion Body yields. Here we investigate the baculovirus traffic in subcellular fractions of host cells throughout infection with an emphasis on AcMNPV/Sf9 and HearNPV/HzAM1 systems distinguished as "good" and "bad" BV producers, respectively. qPCR quantification of viral DNA in the nucleus, cytoplasm and extracellular fractions demonstrated that although the HearNPV/HzAM1 system produces twice the amount of vDNA as the AcMNPV/Sf9 system, its percentage of BV to total progeny vDNA was lower. vDNA egress from the nucleus to the cytoplasm is sufficient in both systems, however, a higher percentage of vDNA in the HearNPV/HzAM1 system remain in the cytoplasm and do not bud out of the cells compared to the AcMNPV/Sf9 system. In both systems more than 75% of the vDNA produced in the nuclear fraction go unused, without budding or being encapsulated in OBs showing the capacity for improvements that could result from the engineering of the virus/cell line systems to achieve better productivities for both BV and OB yields.

  9. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barajas, Daniel; Xu, Kai; Sharma, Monika

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation andmore » enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis.« less

  10. Cellular respiration: replicating in vivo systems biology for in ...

    EPA Pesticide Factsheets

    This editorial develops a philosophy for expanding the scope of Journal of Breath Research (JBR) into the realm of cellular level study, and links certain topics back to more traditional systemic research for understanding human health based on exhaled breath constituents. The express purpose is to provide a publication outlet for novel breath related research that includes in vitro studies, especially those that explore the biological origin and expression of compounds that may ultimately influence the constituents of exhaled breath. The new topics include all manner of methods and instrumentations for making in vivo and in vitro measurements, the use of different biological media (blood, urine saliva, swabs) including human and microbial cell-lines, in vitro kinetic studies of metabolism, and advances in ex vivo methods for maintaining metabolic competency and viability of biological samples. Traditionally, JBR has published articles on human breath analysis for diagnosing disease, tracking health state, assessing the dose and effect of exogenous chemicals, and contributions of malodorous compounds from the oral/nasal cavity. These have also included research describing novel sampling and analytical technologies, most notably those implementing mass spectrometry, chemical sensors and optical measurement instrumentation (Amann and Smith 2013). The journal’s original scope has also embraced animal models as surrogates for human sampling, new mathematical and

  11. An immunologic model for rapid vaccine assessment -- a clinical trial in a test tube.

    PubMed

    Higbee, Russell G; Byers, Anthony M; Dhir, Vipra; Drake, Donald; Fahlenkamp, Heather G; Gangur, Jyoti; Kachurin, Anatoly; Kachurina, Olga; Leistritz, Del; Ma, Yifan; Mehta, Riyaz; Mishkin, Eric; Moser, Janice; Mosquera, Luis; Nguyen, Mike; Parkhill, Robert; Pawar, Santosh; Poisson, Louis; Sanchez-Schmitz, Guzman; Schanen, Brian; Singh, Inderpal; Song, Haifeng; Tapia, Tenekua; Warren, William; Wittman, Vaughan

    2009-09-01

    While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation. An acceleration and increase in sophistication of pre-clinical vaccine development will thus require the advent of more physiologically-accurate models of the human immune system, coupled with substantial advances in the mechanistic understanding of vaccine efficacy, achieved by using this model. We believe the best viable option available is to use human cells and/or tissues in a functional in vitro model of human physiology. Not only will this more accurately model human diseases, it will also eliminate any ethical, moral and scientific issues involved with use of live humans and animals. An in vitro model, termed "MIMIC" (Modular IMmune In vitro Construct), was designed and developed to reflect the human immune system in a well-based format. The MIMIC System is a laboratory-based methodology that replicates the human immune system response. It is highly automated, and can be used to simulate a clinical trial for a diverse population, without putting human subjects at risk. The MIMIC System uses the circulating immune cells of individual donors to recapitulate each individual human immune response by maintaining the autonomy of the donor. Thus, an in vitro test system has been created that is functionally equivalent to the donor's own immune system and is designed to respond in a similar manner to the in vivo response. 2009 FRAME.

  12. DNA fusion product of phage P2 with plasmid pBR322 - A new phasmid

    NASA Technical Reports Server (NTRS)

    Nicoletti, M.; Bertani, G.

    1983-01-01

    The chromosome of the temperate bacteriophage P2 and that of the plasmid pBR322 have been joined in vitro after treatment with restriction endonuclease EcoRI. The fusion product - a phasmid - can behave as a plasmid, as a phage and as a prophage. It can replicate its DNA under the control of either the specific replication mechanism of the parent phage in a polA mutant or that of the parent plasmid in a rep mutant. Several interesting interactions between the two replication modes are indicated. In particular, phage particles may be produced even when the phage mode of DNA replication is blocked, and this throws new light on the involvement of the early gene A in the regulation of late gene expression in phage P2.

  13. PriC-mediated DNA replication restart requires PriC complex formation with the single-stranded DNA-binding protein.

    PubMed

    Wessel, Sarah R; Marceau, Aimee H; Massoni, Shawn C; Zhou, Ruobo; Ha, Taekjip; Sandler, Steven J; Keck, James L

    2013-06-14

    Frequent collisions between cellular DNA replication complexes (replisomes) and obstacles such as damaged DNA or frozen protein complexes make DNA replication fork progression surprisingly sporadic. These collisions can lead to the ejection of replisomes prior to completion of replication, which, if left unrepaired, results in bacterial cell death. As such, bacteria have evolved DNA replication restart mechanisms that function to reload replisomes onto abandoned DNA replication forks. Here, we define a direct interaction between PriC, a key Escherichia coli DNA replication restart protein, and the single-stranded DNA-binding protein (SSB), a protein that is ubiquitously associated with DNA replication forks. PriC/SSB complex formation requires evolutionarily conserved residues from both proteins, including a pair of Arg residues from PriC and the C terminus of SSB. In vitro, disruption of the PriC/SSB interface by sequence changes in either protein blocks the first step of DNA replication restart, reloading of the replicative DnaB helicase onto an abandoned replication fork. Consistent with the critical role of PriC/SSB complex formation in DNA replication restart, PriC variants that cannot bind SSB are non-functional in vivo. Single-molecule experiments demonstrate that PriC binding to SSB alters SSB/DNA complexes, exposing single-stranded DNA and creating a platform for other proteins to bind. These data lead to a model in which PriC interaction with SSB remodels SSB/DNA structures at abandoned DNA replication forks to create a DNA structure that is competent for DnaB loading.

  14. Phosphorylated STAT5 directly facilitates parvovirus B19 DNA replication in human erythroid progenitors through interaction with the MCM complex

    PubMed Central

    Ganaie, Safder S.; Zou, Wei; Xu, Peng; Deng, Xuefeng; Kleiboeker, Steve

    2017-01-01

    Productive infection of human parvovirus B19 (B19V) exhibits high tropism for burst forming unit erythroid (BFU-E) and colony forming unit erythroid (CFU-E) progenitor cells in human bone marrow and fetal liver. This exclusive restriction of the virus replication to human erythroid progenitor cells is partly due to the intracellular factors that are essential for viral DNA replication, including erythropoietin signaling. Efficient B19V replication also requires hypoxic conditions, which upregulate the signal transducer and activator of transcription 5 (STAT5) pathway, and phosphorylated STAT5 is essential for virus replication. In this study, our results revealed direct involvement of STAT5 in B19V DNA replication. Consensus STAT5-binding elements were identified adjacent to the NS1-binding element within the minimal origins of viral DNA replication in the B19V genome. Phosphorylated STAT5 specifically interacted with viral DNA replication origins both in vivo and in vitro, and was actively recruited within the viral DNA replication centers. Notably, STAT5 interacted with minichromosome maintenance (MCM) complex, suggesting that STAT5 directly facilitates viral DNA replication by recruiting the helicase complex of the cellular DNA replication machinery to viral DNA replication centers. The FDA-approved drug pimozide dephosphorylates STAT5, and it inhibited B19V replication in ex vivo expanded human erythroid progenitors. Our results demonstrated that pimozide could be a promising antiviral drug for treatment of B19V-related diseases. PMID:28459842

  15. Porcine Endogenous Retrovirus (PERV) – Molecular Structure and Replication Strategy in the Context of Retroviral Infection Risk of Human Cells

    PubMed Central

    Łopata, Krzysztof; Wojdas, Emilia; Nowak, Roman; Łopata, Paweł; Mazurek, Urszula

    2018-01-01

    The xenotransplantation of porcine tissues may help overcome the shortage of human organs for transplantation. However, there are some concerns about recipient safety because the risk of porcine endogenous retrovirus (PERV) transmission to human cells remains unknown. Although, to date, no PERV infections have been noted in vivo, the possibility of such infections has been confirmed in vitro. Better understanding of the structure and replication cycle of PERVs is a prerequisite for determining the risk of infection and planning PERV-detection strategies. This review presents the current state of knowledge about the structure and replication cycle of PERVs in the context of retroviral infection risk. PMID:29755422

  16. Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells

    PubMed Central

    Radtke, Andrea L.; Lay, Margarita K.; Hjelm, Brooke E.; Bolick, Alice N.; Sarker, Shameema S.; Atmar, Robert L.; Kingsley, David H.; Arntzen, Charles J.; Estes, Mary K.; Nickerson, Cheryl A.

    2013-01-01

    Noroviruses (NoVs) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. A previous study, which used a 3-dimensional (3-D) intestinal model derived from INT-407 cells reported NoV replication and extensive cytopathic effects (CPE). Using the same 3-D model, but with highly purified Norwalk virus (NV), we attempted to replicate this study. Our results showed no evidence of NV replication by real-time PCR of viral RNA or by immunocytochemical detection of viral structural and nonstructural proteins. Immunocytochemical analysis of the 3-D cultures also showed no detectable presence of histo-blood group antigens that participate in NV binding and host tropism. To determine the potential cause of CPE observed in the previous study, we exposed 3-D cultures to lipopolysaccharide concentrations consistent with contaminated stool samples and observed morphologic features similar to CPE. We conclude that the 3-D INT-407 model does not support NV replication. PMID:23622517

  17. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli

    PubMed Central

    Kato, Jun-ichi; Katayama, Tsutomu

    2001-01-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the β-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA+, as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA+ proteins that comprise the apparatus regulating the activity of the initiator of replication. PMID:11483528

  18. Hda, a novel DnaA-related protein, regulates the replication cycle in Escherichia coli.

    PubMed

    Kato , J; Katayama, T

    2001-08-01

    The bacterial DnaA protein binds to the chromosomal origin of replication to trigger a series of initiation reactions, which leads to the loading of DNA polymerase III. In Escherichia coli, once this polymerase initiates DNA synthesis, ATP bound to DnaA is efficiently hydrolyzed to yield the ADP-bound inactivated form. This negative regulation of DnaA, which occurs through interaction with the beta-subunit sliding clamp configuration of the polymerase, functions in the temporal blocking of re-initiation. Here we show that the novel DnaA-related protein, Hda, from E.coli is essential for this regulatory inactivation of DnaA in vitro and in vivo. Our results indicate that the hda gene is required to prevent over-initiation of chromosomal replication and for cell viability. Hda belongs to the chaperone-like ATPase family, AAA(+), as do DnaA and certain eukaryotic proteins essential for the initiation of DNA replication. We propose that the once-per-cell-cycle rule of replication depends on the timely interaction of AAA(+) proteins that comprise the apparatus regulating the activity of the initiator of replication.

  19. BLM helicase facilitates telomere replication during leading strand synthesis of telomeres

    PubMed Central

    Kosiyatrakul, Settapong T.

    2015-01-01

    Based on its in vitro unwinding activity on G-quadruplex (G4) DNA, the Bloom syndrome–associated helicase BLM is proposed to participate in telomere replication by aiding fork progression through G-rich telomeric DNA. Single molecule analysis of replicated DNA (SMARD) was used to determine the contribution of BLM helicase to telomere replication. In BLM-deficient cells, replication forks initiating from origins within the telomere, which copy the G-rich strand by leading strand synthesis, moved slower through the telomere compared with the adjacent subtelomere. Fork progression through the telomere was further slowed in the presence of a G4 stabilizer. Using a G4-specific antibody, we found that deficiency of BLM, or another G4-unwinding helicase, the Werner syndrome-associated helicase WRN, resulted in increased G4 structures in cells. Importantly, deficiency of either helicase led to greater increases in G4 DNA detected in the telomere compared with G4 seen genome-wide. Collectively, our findings are consistent with BLM helicase facilitating telomere replication by resolving G4 structures formed during copying of the G-rich strand by leading strand synthesis. PMID:26195664

  20. One Minute Ultraviolet Exposure Inhibits Toxoplasma gondii Tachyzoite Replication and Cyst Conversion without Diminishing Host Humoral-Mediated Immune Response

    PubMed Central

    Kannan, Geetha; Prandovszky, Emese; Steinfeldt, Curtis B.; Gressitt, Kristin L.; Yang, ChunXia; Yolken, Robert H.; Severance, Emily G.; Jones-Brando, Lorraine; Pletnikov, Mikhail V.

    2015-01-01

    We developed a protocol to inactivate Toxoplasma gondii (T. gondii) tachyzoites employing 1 minute of ultraviolet (UV) exposure. We show that this treatment completely inhibited parasite replication and cyst formation in vitro and in vivo but did not affect the induction of a robust IgG response in mice. We propose that our protocol can be used to study the contribution of the humoral immune response to rodent behavioral alterations following T. gondii infection. PMID:25131777

  1. Replication and Transcription of Eukaryotic DNA in Esherichia coli

    PubMed Central

    Morrow, John F.; Cohen, Stanley N.; Chang, Annie C. Y.; Boyer, Herbert W.; Goodman, Howard M.; Helling, Robert B.

    1974-01-01

    Fragments of amplified Xenopus laevis DNA, coding for 18S and 28S ribosomal RNA and generated by EcoRI restriction endonuclease, have been linked in vitro to the bacterial plasmid pSC101; and the recombinant molecular species have been introduced into E. coli by transformation. These recombinant plasmids, containing both eukaryotic and prokaryotic DNA, replicate stably in E. coli. RNA isolated from E. coli minicells harboring the plasmids hybridizes to amplified X. laevis rDNA. Images PMID:4600264

  2. Organ/body-on-a-chip based on microfluidic technology for drug discovery.

    PubMed

    Kimura, Hiroshi; Sakai, Yasuyuki; Fujii, Teruo

    2018-02-01

    Although animal experiments are indispensable for preclinical screening in the drug discovery process, various issues such as ethical considerations and species differences remain. To solve these issues, cell-based assays using human-derived cells have been actively pursued. However, it remains difficult to accurately predict drug efficacy, toxicity, and organs interactions, because cultivated cells often do not retain their original organ functions and morphologies in conventional in vitro cell culture systems. In the μTAS research field, which is a part of biochemical engineering, the technologies of organ-on-a-chip, based on microfluidic devices built using microfabrication, have been widely studied recently as a novel in vitro organ model. Since it is possible to physically and chemically mimic the in vitro environment by using microfluidic device technology, maintenance of cellular function and morphology, and replication of organ interactions can be realized using organ-on-a-chip devices. So far, functions of various organs and tissues, such as the lung, liver, kidney, and gut have been reproduced as in vitro models. Furthermore, a body-on-a-chip, integrating multi organ functions on a microfluidic device, has also been proposed for prediction of organ interactions. We herein provide a background of microfluidic systems, organ-on-a-chip, Body-on-a-chip technologies, and their challenges in the future. Copyright © 2017 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  3. Engineering a collagen matrix that replicates the biological properties of native extracellular matrix.

    PubMed

    Nam, Kwangwoo; Sakai, Yuuki; Funamoto, Seiichi; Kimura, Tsuyoshi; Kishida, Akio

    2011-01-01

    In this study, we aimed to replicate the function of native tissues that can be used in tissue engineering and regenerative medicine. The key to such replication is the preparation of an artificial collagen matrix that possesses a structure resembling that of the extracellular matrix. We, therefore, prepared a collagen matrix by fibrillogenesis in a NaCl/Na(2)HPO(4) aqueous solution using a dialysis cassette and investigated its biological behavior in vitro and in vivo. The in vitro cell adhesion and proliferation did not show any significant differences. The degradation rate in the living body could be controlled according to the preparation condition, where the collagen matrix with high water content (F-collagen matrix, >98%) showed fast degradation and collagen matrix with lower water content (T-collagen matrix, >80%) showed no degradation for 8 weeks. The degradation did not affect the inflammatory response at all and relatively faster wound healing response was observed. Comparing this result with that of collagen gel and decellularized cornea, it can be concluded that the structural factor is very important and no cell abnormal behavior would be observed for quaternary structured collagen matrix.

  4. Sequential folding of UmuC by the Hsp70 and Hsp60 chaperone complexes of Escherichia coli.

    PubMed

    Petit, M A; Bedale, W; Osipiuk, J; Lu, C; Rajagopalan, M; McInerney, P; Goodman, M F; Echols, H

    1994-09-23

    Replication-blocking lesions generate a signal in Escherichia coli that leads to the induction of the multigene SOS response. Among the SOS-induced genes are umuD and umuC, whose products are necessary for the increased mutation rate in induced bacteria. The mutations are likely to result from replication across the DNA lesion, and such a bypass event has been reconstituted in vitro (Rajagopalan, M., L, C., Woodgate, R., O'Donnel, M., Goodman, M. F., Echols, H. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 10777-10781). In this work, we show that the chaperone proteins promote the proper folding of UmuC protein in vitro. We treated purified and inactive UmuC with Hsp70 and Hsp60. After Hsp70 treatment, the DNA binding activity of UmuC was recovered, but the ability to promote replication across DNA lesions was not. However, lesion bypass activity was recovered upon further treatment with Hsp60. The biological significance of such a folding pathway for UmuC protein is strengthened by in vivo evidence for a role of DnaK in UV-induced mutagenesis.

  5. Tumor-specific cytolysis caused by an E1B55K-attenuated adenovirus in nasopharyngeal carcinoma is augmented by cisplatin.

    PubMed

    Liu, Ran-Yi; Peng, Ji-Lin; Li, Yong-Qiang; Huang, Bi-Jun; Lin, Huan-Xin; Zhou, Ling; Luo, Hui-Ling; Huang, Wenlin

    2013-12-01

    An E1B55K-attenuated adenovirus, dl1520, has been shown to replicate selectively in and lyse tumor cells. In this study, the antitumor activities of dl1520, alone or in combination with the chemotherapeutic agent cisplatin, were investigated in nasopharyngeal carcinoma (NPC) cells. The results demonstrated that dl1520 replicated in and destroyed NPC cells, and induced apoptosis in vitro. In a nude mouse xenograft model, dl1520 significantly inhibited the growth of NPC cell xenografts, and the viral replication was associated with tumor regression. Importantly, the antitumor activity of dl1520 was augmented by the addition of cisplatin both in vitro and in vivo, showing that dl1520 and cisplatin have a synergistic anti-NPC effect. These data suggest that dl1520 exerts an efficient anti-NPC activity through oncolysis and the induction of apoptosis, which is enhanced synergistically by cisplatin. These findings indicate that oncolytic viral therapeutics using the E1B55K-attenuated adenovirus dl1520 could be promising in the comprehensive treatment of NPC, especially in combination with platinum-based chemotherapy. Copyright © 2013 Wiley Periodicals, Inc.

  6. Comparison of biological and genomic characteristics between a newly isolated mink enteritis parvovirus MEV-LHV and an attenuated strain MEV-L.

    PubMed

    Mao, Yaping; Wang, Jigui; Hou, Qiang; Xi, Ji; Zhang, Xiaomei; Bian, Dawei; Yu, Yongle; Wang, Xi; Liu, Weiquan

    2016-06-01

    A virus isolated from mink showing clinical signs of enteritis was identified as a high virulent mink enteritis parvovirus (MEV) based on its biological characteristics in vivo and in vitro. Mink, challenged with this strain named MEV-LHV, exhibited severe pathological lesions as compared to those challenged with attenuated strain MEV-L. MEV-LHV also showed higher infection and replication efficiencies in vitro than MEV-L. Sequence of the complete genome of MEV-LHV was determined and analyzed in comparison with those in GenBank, which revealed that MEV-LHV shared high homology with virulent strain MEV SD12/01, whereas MEV-L was closely related to Abashiri and vaccine strain MEVB, and belonged to a different branch of the phylogenetic tree. The genomes of the two strains differed by insertions and deletions in their palindromic termini and specific unique mutations (especially VP2 300) in coding sequences which may be involved in viral replication and pathogenicity. The results of this study provide a better understanding of the biological and genomic characteristics of MEV and identify certain regions and sites that may be involved in viral replication and pathogenicity.

  7. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus.

    PubMed

    Carvalho, Otávio V; Saraiva, Giuliana L; Ferreira, Caroline G T; Felix, Daniele M; Fietto, Juliana L R; Bressan, Gustavo C; Almeida, Márcia R; Silva Júnior, Abelardo

    2014-10-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection.

  8. In-vitro antiviral efficacy of ribavirin and interferon-alpha against canine distemper virus

    PubMed Central

    Carvalho, Otávio V.; Saraiva, Giuliana L.; Ferreira, Caroline G.T.; Felix, Daniele M.; Fietto, Juliana L.R.; Bressan, Gustavo C.; Almeida, Márcia R.; Silva Júnior, Abelardo

    2014-01-01

    Canine distemper is a highly contagious disease with high incidence and lethality in the canine population. The objective of this study was to evaluate the efficacy of antiviral action with ribavirin (RBV), interferon-alpha (IFNα), and combinations of RBV and IFNα against canine distemper virus (CDV). Vero cells inoculated with CDV were treated with RBV, IFNα, and combinations of these drugs. The efficacy to inhibit viral replication was evaluated by adding the compounds at different times to determine which step of the viral replicative process was affected. Both drugs were effective against CDV in vitro. The IFNα was the most active compound, with an average IC50 (50% inhibitory concentration) value lower than the IC50 of the RBV. Ribavirin (RBV) was more selective than IFNα, however, and neither drug showed extracellular antiviral activity. The combination of RBV and IFNα exhibited antiviral activity for the intra- and extracellular stages of the replicative cycle of CDV, although the intracellular viral inhibition was higher. Both RBV and IFNα showed high antiviral efficacy against CDV, and furthermore, RBV + IFNα combinations have shown greater interference range in viral infectivity. These compounds could potentially be used to treat clinical disease associated with CDV infection. PMID:25355997

  9. Virucidal activity of Colombian Lippia essential oils on dengue virus replication in vitro.

    PubMed

    Ocazionez, Raquel Elvira; Meneses, Rocio; Torres, Flor Angela; Stashenko, Elena

    2010-05-01

    The inhibitory effect of Lippia alba and Lippia citriodora essential oils on dengue virus serotypes replication in vitro was investigated. The cytotoxicity (CC50) was evaluated by the MTT assay and the mode of viral inhibitory effect was investigated with a plaque reduction assay. The virus was treated with the essential oil for 2 h at 37 masculineC before cell adsorption and experiments were conducted to evaluate inhibition of untreated-virus replication in the presence of oil. Antiviral activity was defined as the concentration of essential oil that caused 50% reduction of the virus plaque number (IC50). L. alba oil resulted in less cytotoxicity than L. citriodora oil (CC50: 139.5 vs. 57.6 microg/mL). Virus plaque reduction for all four dengue serotypes was observed by treatment of the virus before adsorption on cell. The IC50 values for L. alba oil were between 0.4-32.6 microg/mL and between 1.9-33.7 microg/mL for L. citriodora oil. No viral inhibitory effect was observed by addition of the essential oil after virus adsorption. The inhibitory effect of the essential oil seems to cause direct virus inactivation before adsorption on host cell.

  10. Structural basis for DNA binding by replication initiator Mcm10

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Warren, Eric M.; Vaithiyalingam, Sivaraja; Haworth, Justin

    2009-06-30

    Mcm10 is an essential eukaryotic DNA replication protein required for assembly and progression of the replication fork. The highly conserved internal domain (Mcm10-ID) has been shown to physically interact with single-stranded (ss) DNA, DNA polymerase alpha, and proliferating cell nuclear antigen (PCNA). The crystal structure of Xenopus laevis Mcm10-ID presented here reveals a DNA binding architecture composed of an oligonucleotide/oligosaccharide-fold followed in tandem by a variant and highly basic zinc finger. NMR chemical shift perturbation and mutational studies of DNA binding activity in vitro reveal how Mcm10 uses this unique surface to engage ssDNA. Corresponding mutations in Saccharomyces cerevisiae resultmore » in increased sensitivity to replication stress, demonstrating the functional importance of DNA binding by this region of Mcm10 to replication. In addition, mapping Mcm10 mutations known to disrupt PCNA, polymerase alpha, and DNA interactions onto the crystal structure provides insight into how Mcm10 might coordinate protein and DNA binding within the replisome.« less

  11. Ring finger protein 39 genetic variants associate with HIV-1 plasma viral loads and its replication in cell culture.

    PubMed

    Lin, Ying-Ju; Chen, Chia-Yen; Jeang, Kuan-Teh; Liu, Xiang; Wang, Jen-Hsien; Hung, Chien-Hui; Tsang, Hsinyi; Lin, Ting-Hsu; Liao, Chiu-Chu; Huang, Shao-Mei; Lin, Cheng-Wen; Ho, Mao-Wang; Chien, Wen-Kuei; Chen, Jin-Hua; Ho, Tsung-Jung; Tsai, Fuu-Jen

    2014-01-01

    The human immunodeficiency virus (HIV-1) exploits host proteins to complete its life cycle. Genome-wide siRNA approaches suggested that host proteins affect HIV-1 replication. However, the results barely overlapped. RING finger protein 39 (RNF39) has been identified from genome-wide association studies. However, its function during HIV-1 replication remains unclear. We investigated the relationship between common RNF39 genetic variants and HIV-1 viral loads. The effect of RNF39 protein knockdown or overexpression on HIV-1 replication was then investigated in different cell lines. Two genetic variants were associated with HIV-1 viral loads. Patients with the ht1-GG/GG haplotype presented lower RNF39 expression levels and lower HIV-1 viral load. RNF39 knockdown inhibited HIV-1 expression. RNF39 protein may be involved in HIV-1 replication as observed in genetic studies on patients with HIV-1 and in in vitro cell cultures.

  12. Plasmid P1 replication: negative control by repeated DNA sequences.

    PubMed Central

    Chattoraj, D; Cordes, K; Abeles, A

    1984-01-01

    The incompatibility locus, incA, of the unit-copy plasmid P1 is contained within a fragment that is essentially a set of nine 19-base-pair repeats. One or more copies of the fragment destabilizes the plasmid when present in trans. Here we show that extra copies of incA interfere with plasmid DNA replication and that a deletion of most of incA increases plasmid copy number. Thus, incA is not essential for replication but is required for its control. When cloned in a high-copy-number vector, pieces of the incA fragment that each contain only three repeats destabilize P1 plasmids efficiently. This result makes it unlikely that incA specifies a regulatory product. Our in vivo results suggest that the repeating DNA sequence itself negatively controls replication by titrating a P1-determined protein, RepA, that is essential for replication. Consistent with this hypothesis is the observation that the RepA protein binds to the incA fragment in vitro. Images PMID:6387706

  13. Efficient Parvovirus Replication Requires CRL4Cdt2-Targeted Depletion of p21 to Prevent Its Inhibitory Interaction with PCNA

    PubMed Central

    Pintel, David J.

    2014-01-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA. PMID:24699724

  14. Efficient parvovirus replication requires CRL4Cdt2-targeted depletion of p21 to prevent its inhibitory interaction with PCNA.

    PubMed

    Adeyemi, Richard O; Fuller, Matthew S; Pintel, David J

    2014-04-01

    Infection by the autonomous parvovirus minute virus of mice (MVM) induces a vigorous DNA damage response in host cells which it utilizes for its efficient replication. Although p53 remains activated, p21 protein levels remain low throughout the course of infection. We show here that efficient MVM replication required the targeting for degradation of p21 during this time by the CRL4Cdt2 E3-ubiquitin ligase which became re-localized to MVM replication centers. PCNA provides a molecular platform for substrate recognition by the CRL4Cdt2 E3-ubiquitin ligase and p21 targeting during MVM infection required its interaction both with Cdt2 and PCNA. PCNA is also an important co-factor for MVM replication which can be antagonized by p21 in vitro. Expression of a stable p21 mutant that retained interaction with PCNA inhibited MVM replication, while a stable p21 mutant which lacked this interaction did not. Thus, while interaction with PCNA was important for targeting p21 to the CRL4Cdt2 ligase re-localized to MVM replication centers, efficient viral replication required subsequent depletion of p21 to abrogate its inhibition of PCNA.

  15. Human cytomegalovirus renders cells non-permissive for replication of herpes simplex viruses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cockley, K.D.

    1988-01-01

    The herpes simplex virus (HSV) genome during production infection in vitro may be subject to negative regulation which results in modification of the cascade of expression of herpes virus macromolecular synthesis leading to establishment of HSV latency. In the present study, human embryonic lung (HEL) cells infected with human cytomegalovirus (HCMV) restricted the replication of HSV type-1 (HSV-1). A delay in HSV replication of 15 hr as well as a consistent, almost 1000-fold inhibition of HSV replication in HCMV-infected cell cultures harvested 24 to 72 hr after superinfection were observed compared with controls infected with HSV alone. HSV type-2 (HSV-2)more » replication was similarly inhibited in HCMV-infected HEL cells. Prior ultraviolet-irradiation (UV) of HCMV removed the block to HSV replication, demonstrating the requirement for an active HCMV genome. HCMV deoxyribonucleic acid (DNA) negative temperature-sensitive (ts) mutants inhibited HSV replications as efficiently as wild-type (wt) HCMV at the non-permissive temperature. Evidence for penetration and replication of superinfecting HSV into HCMV-infected cells was provided by blot hybridization of HSV DNA synthesized in HSV-superinfected cell cultures and by cesium chloride density gradient analysis of ({sup 3}H)-labeled HSV-1-superinfected cells.« less

  16. The role of template superhelicity in the initiation of bacteriophage lambda DNA replication.

    PubMed Central

    Alfano, C; McMacken, R

    1988-01-01

    The prepriming steps in the initiation of bacteriophage lambda DNA replication depend on the action of the lambda O and P proteins and on the DnaB helicase, single-stranded DNA binding protein (SSB), and DnaJ and DnaK heat shock proteins of the E. coli host. The binding of multiple copies of the lambda O protein to the phage replication origin (ori lambda) initiates the ordered assembly of a series of nucleoprotein structures that form at ori lambda prior to DNA unwinding, priming and DNA synthesis steps. Since the initiation of lambda DNA replication is known to occur only on supercoiled templates in vivo and in vitro, we examined how the early steps in lambda DNA replication are influenced by superhelical tension. All initiation complexes formed prior to helicase-mediated DNA-unwinding form with high efficiency on relaxed ori lambda DNA. Nonetheless, the DNA templates in these structures must be negatively supertwisted before they can be replicated. Once DNA helicase unwinding is initiated at ori lambda, however, later steps in lambda DNA replication proceed efficiently in the absence of superhelical tension. We conclude that supercoiling is required during the initiation of lambda DNA replication to facilitate entry of a DNA helicase, presumably the DnaB protein, between the DNA strands. Images PMID:2847118

  17. Gene-targeted mice lacking the Trex1 (DNase III) 3'-->5' DNA exonuclease develop inflammatory myocarditis.

    PubMed

    Morita, Masashi; Stamp, Gordon; Robins, Peter; Dulic, Anna; Rosewell, Ian; Hrivnak, Geza; Daly, Graham; Lindahl, Tomas; Barnes, Deborah E

    2004-08-01

    TREX1, originally designated DNase III, was isolated as a major nuclear DNA-specific 3'-->5' exonuclease that is widely distributed in both proliferating and nonproliferating mammalian tissues. The cognate cDNA shows homology to the editing subunit of the Escherichia coli replicative DNA polymerase III holoenzyme and encodes an exonuclease which was able to serve a DNA-editing function in vitro, promoting rejoining of a 3' mismatched residue in a reconstituted DNA base excision repair system. Here we report the generation of gene-targeted Trex1(-/-) mice. The null mice are viable and do not show the increase in spontaneous mutation frequency or cancer incidence that would be predicted if Trex1 served an obligatory role of editing mismatched 3' termini generated during DNA repair or DNA replication in vivo. Unexpectedly, Trex1(-/-) mice exhibit a dramatically reduced survival and develop inflammatory myocarditis leading to progressive, often dilated, cardiomyopathy and circulatory failure.

  18. Domain- and nucleotide-specific Rev response element regulation of feline immunodeficiency virus production

    PubMed Central

    Na, Hong; Huisman, Willem; Ellestad, Kristofor K.; Phillips, Tom R.; Power, Christopher

    2010-01-01

    Computational analysis of feline immunodeficiency virus (FIV) RNA sequences indicated that common FIV strains contain a rev response element (RRE) defined by a long unbranched hairpin with 6 stem-loop sub-domains, termed stem-loop A (SLA). To examine the role of the RNA secondary structure of the RRE, mutational analyses were performed in both an infectious FIV molecular clone and a FIV CAT-RRE reporter system. These studies disclosed that the stems within SLA (SA1, 2, 3, 4, and 5) of the RRE were critical but SA6 was not essential for FIV replication and CAT expression. These studies also revealed that the secondary structure rather than an antisense protein (ASP) mediates virus expression and replication in vitro. In addition, a single synonymous mutation within the FIV-RRE, SA3/45, reduced viral reverse transcriptase activity and p24 expression after transfection but in addition also showed a marked reduction in viral expression and production following infection. PMID:20570310

  19. In vitro biology of fibropapilloma-associated turtle herpesvirus and host cells in Hawaiian green turtles (Chelonia mydas)

    USGS Publications Warehouse

    Work, Thierry M.; Dagenais, Julie; Balazs, George H.; Schumacher, Joanne; Lewis, Teresa D.; Leong, Jo-Ann C.; Casey, Rufina N.; Casey, James W.

    2009-01-01

    Fibropapillomatosis (FP) of green turtles has a global distribution and causes debilitating tumours of the skin and internal organs in several species of marine turtles. FP is associated with a presently non-cultivable alphaherpesvirus Chelonid fibropapilloma-associated herpesvirus (CFPHV). Our aims were to employ quantitative PCR targeted to pol DNA of CFPHV to determine (i) if DNA sequesters by tumour size and/or cell type, (ii) whether subculturing of cells is a viable strategy for isolating CFPHV and (iii) whether CFPHV can be induced to a lytic growth cycle in vitro using chemical modulators of replication (CMRs), temperature variation or co-cultivation. Additional objectives included determining whether non-tumour and tumour cells behave differently in vitro and confirming the phenotype of cultured cells using cell-type-specific antigens. CFPHV pol DNA was preferentially concentrated in dermal fibroblasts of skin tumours and the amount of viral DNA per cell was independent of tumour size. Copy number of CFPHV pol DNA per cell rapidly decreased with cell doubling of tumour-derived fibroblasts in culture. Attempts to induce viral replication in known CFPHV-DNA-positive cells using temperature or CMR failed. No significant differences were seen in in vitro morphology or growth characteristics of fibroblasts from tumour cells and paired normal skin, nor from CFPHV pol-DNA-positive intestinal tumour cells. Tumour cells were confirmed as fibroblasts or keratinocytes by positive staining with anti-vimentin and anti-pancytokeratin antibodies, respectively. CFPHV continues to be refractory to in vitro cultivation.

  20. Selective replication of oncolytic virus M1 results in a bystander killing effect that is potentiated by Smac mimetics.

    PubMed

    Cai, Jing; Lin, Yuan; Zhang, Haipeng; Liang, Jiankai; Tan, Yaqian; Cavenee, Webster K; Yan, Guangmei

    2017-06-27

    Oncolytic virotherapy is a treatment modality that uses native or genetically modified viruses that selectively replicate in and kill tumor cells. Viruses represent a type of pathogen-associated molecular pattern and thereby induce the up-regulation of dozens of cytokines via activating the host innate immune system. Second mitochondria-derived activator of caspases (Smac) mimetic compounds (SMCs), which antagonize the function of inhibitor of apoptosis proteins (IAPs) and induce apoptosis, sensitize tumor cells to multiple cytokines. Therefore, we sought to determine whether SMCs sensitize tumor cells to cytokines induced by the oncolytic M1 virus, thus enhancing a bystander killing effect. Here, we report that SMCs potentiate the oncolytic effect of M1 in vitro, in vivo, and ex vivo. This strengthened oncolytic efficacy resulted from the enhanced bystander killing effect caused by the M1 virus via cytokine induction. Through a microarray analysis and subsequent validation using recombinant cytokines, we identified IL-8, IL-1A, and TRAIL as the key cytokines in the bystander killing effect. Furthermore, SMCs increased the replication of M1, and the accumulation of virus protein induced irreversible endoplasmic reticulum stress- and c-Jun N-terminal kinase-mediated apoptosis. Nevertheless, the combined treatment with M1 and SMCs had little effect on normal and human primary cells. Because SMCs selectively and significantly enhance the bystander killing effect and the replication of oncolytic virus M1 specifically in cancer cells, this combined treatment may represent a promising therapeutic strategy.

  1. Inhibition of protease-inhibitor resistant hepatitis C virus replicons and infectious virus by intracellular intrabodies

    PubMed Central

    Gal-Tanamy, Meital; Zemel, Romy; Bachmatov, Larissa; Jangra, Rohit K.; Shapira, Assaf; Villanueva, Rodrigo; Yi, MinKyung; Lemon, Stanley M.; Benhar, Itai; Tur-Kaspa, Ran

    2015-01-01

    Hepatitis C virus (HCV) infection is a common cause of chronic liver disease and a serious threat to human health. The HCV NS3/4A serine protease is necessary for viral replication and innate immune evasion, and represents a well-validated target for specific antiviral therapy. We previously reported the isolation of single-chain antibodies (scFvs) that inhibit NS3/4A protease activity in vitro. Expressed intracellularly (intrabodies), these scFvs blocked NS3-mediated proliferation of NS3-transfected cells. Here we show that anti-NS3 scFvs suppress HCV RNA replication when expressed intracellularly in Huh7 hepatoma cells bearing either subgenomic or genome-length HCV RNA replicons. The expression of intrabodies directed against NS3 inhibited the autonomous amplification of HCV replicons resistant to small molecule inhibitors of the NS3/4A protease, and replicons derived from different HCV genotypes. The combination of intrabodies and interferon-α had an additive inhibitory effect on RNA replication in the replicon model. Intrabody expression also inhibited production of infectious HCV in a cell culture system. The NS3 protease activity was inhibited by the intrabodies in NS3-expressing cells. In contrast, cell-free synthesis of HCV RNA by preformed replicase complexes was not inhibited by intrabodies, suggesting that the major mode of inhibition of viral replication is inhibition of NS3/4A protease activity and subsequent suppression of viral polyprotein processing. PMID:20705106

  2. Internal initiation of influenza virus replication of viral RNA and complementary RNA in vitro.

    PubMed

    Zhang, Shijian; Wang, Jinlan; Wang, Qiang; Toyoda, Tetsuya

    2010-12-24

    Influenza virus transcription is a prototype of primer-dependent initiation. Its replication mechanism is thought to be primer-independent. The internal initiation and realignment model for influenza virus genome replication has been recently proposed (Deng, T., Vreede, F. T., and Brownlee, G. G. (2006) J. Virol. 80, 2337-2348). We obtained new results, which led us to propose a novel model for the initiation of viral RNA (vRNA) replication. In our study, we analyzed the initiation mechanisms of influenza virus vRNA and complementary RNA (cRNA) synthesis in vitro, using purified RNA polymerase (RdRp) and 84-nt model RNA templates. We found that, for vRNA → cRNA →, RdRp initiated replication from the second nucleotide of the 3'-end. Therefore, host RNA-specific ribonucleotidyltransferases are required to add one nucleotide (purine residues are preferred) to the 3'-end of vRNA to make the complete copy of vRNA. This hypothesis was experimentally proven using poly(A) polymerase. For cRNA → vRNA, the dinucleotide primer AG was synthesized from UC (fourth and fifth from the 3'-end) by RdRp pausing at the sixth U of UUU and realigning at the 3'-end of cRNA template; then RdRp was able to read through the entire template RNA. The RdRp initiation complex was not stable until it had read through the UUU of cRNA and the UUUU of vRNA at their respective 3'-ends. This was because primers overlapping with the first U of the clusters did not initiate transcription efficiently, and the initiation product of v84+G (the v84 template with an extra G at its 3'-end), AGC, realigned to the 3'-end.

  3. Phosphatidic Acid Produced by Phospholipase D Promotes RNA Replication of a Plant RNA Virus

    PubMed Central

    Hyodo, Kiwamu; Taniguchi, Takako; Manabe, Yuki; Kaido, Masanori; Mise, Kazuyuki; Sugawara, Tatsuya; Taniguchi, Hisaaki; Okuno, Tetsuro

    2015-01-01

    Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms. PA is normally present in small amounts (less than 1% of total phospholipids), but rapidly and transiently accumulates in lipid bilayers in response to different environmental cues such as biotic and abiotic stresses in plants. However, the precise functions of PLD and PA remain unknown. Here, we report the roles of PLD and PA in genomic RNA replication of a plant (+)RNA virus, Red clover necrotic mosaic virus (RCNMV). We found that RCNMV RNA replication complexes formed in Nicotiana benthamiana contained PLDα and PLDβ. Gene-silencing and pharmacological inhibition approaches showed that PLDs and PLDs-derived PA are required for viral RNA replication. Consistent with this, exogenous application of PA enhanced viral RNA replication in plant cells and plant-derived cell-free extracts. We also found that a viral auxiliary replication protein bound to PA in vitro, and that the amount of PA increased in RCNMV-infected plant leaves. Together, our findings suggest that RCNMV hijacks host PA-producing enzymes to replicate. PMID:26020241

  4. Identification of novel host factors via conserved domain search: Cns1 cochaperone is a novel restriction factor of tombusvirus replication in yeast.

    PubMed

    Lin, Jing-Yi; Nagy, Peter D

    2013-12-01

    A large number of host-encoded proteins affect the replication of plus-stranded RNA viruses by acting as susceptibility factors. Many other cellular proteins are known to function as restriction factors of viral infections. Previous studies with tomato bushy stunt tombusvirus (TBSV) in a yeast model host have revealed the inhibitory function of TPR (tetratricopeptide repeat) domain-containing cyclophilins, which are members of the large family of host prolyl isomerases, in TBSV replication. In this paper, we tested additional TPR-containing yeast proteins in a cell-free TBSV replication assay and identified the Cns1p cochaperone for heat shock protein 70 (Hsp70) and Hsp90 chaperones as a strong inhibitor of TBSV replication. Cns1p interacted with the viral replication proteins and inhibited the assembly of the viral replicase complex and viral RNA synthesis in vitro. Overexpression of Cns1p inhibited TBSV replication in yeast. The use of a temperature-sensitive (TS) mutant of Cns1p in yeast revealed that at a semipermissive temperature, TS Cns1p could not inhibit TBSV replication. Interestingly, Cns1p and the TPR-containing Cpr7p cyclophilin have similar inhibitory functions during TBSV replication, although some of the details of their viral restriction mechanisms are different. Our observations indicate that TPR-containing cellular proteins could act as virus restriction factors.

  5. S-phase arrest after vincristine treatment may promote hepatitis B virus replication

    PubMed Central

    Xu, Lei; Tu, Zeng; Xu, Ge; Hu, Jie-Li; Cai, Xue-Fei; Zhan, Xing-Xing; Wang, Yu-Wei; Huang, Yuan; Chen, Juan; Huang, Ai-Long

    2015-01-01

    AIM: To observe the effect of vincristine on hepatitis B virus (HBV) replication in vitro and to study its possible mechanisms. METHODS: Vincristine was added to the cultures of two cell lines stably expressing HBV. Then, the levels of hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg), and hepatitis B core antigen (HBcAg) in the supernatants or cytoplasm were examined using by enzyme-linked immunosorbent assay and Western blot. The HBV pregenome RNA (pgRNA) was detected using reverse transcription-PCR and real-time fluorescent quantitative PCR (RT-qPCR), and viral DNA was detected using Southern blot and RT-qPCR. Cell proliferation after drug treatment was detected using the BrdU incorporation test and the trypan blue exclusion assay. Cell cycle and cell apoptosis were examined using flow cytometry and Western blot. RESULTS: Vincristine up-regulated HBV replication directly in vitro in a dose-dependent manner, and 24-h exposure to 0.1 μmol/L vincristine induced more than 4-fold and 3-fold increases in intracellular HBV DNA and the secretion of viral DNA, respectively. The expression of HBV pgRNA, intracellular HBsAg and HBcAg, and the secretion of HBeAg were also increased significantly after drug treatment. Most importantly, vincristine promoted the cell excretion of HBV nucleocapsids instead of HBV Dane particles, and the nucleocapsids are closely related to the HBV pathogenesis. Furthermore, vincristine inhibited the proliferation of cells stably expressing HBV. The higher the concentration of the drug, the more significant the inhibition of the cell proliferation and the stronger the HBV replication ability in cells. Flow cytometry indicated that cell cycle arrest at S-phase was responsible for the cell proliferation inhibition. CONCLUSION: Vincristine has a strong stimulatory effect on HBV replication and induces cell cycle arrest, and cell proliferation inhibition may be conducive to viral replication. PMID:25663769

  6. Transduction of hematopoietic stem cells to stimulate RNA interference against feline infectious peritonitis.

    PubMed

    Anis, Eman A; Dhar, Madhu; Legendre, Alfred M; Wilkes, Rebecca P

    2017-06-01

    Objectives The goals of the study were: (1) to develop and evaluate non-replicating lentivirus vectors coding for feline coronavirus (FCoV)-specific micro (mi)RNA as a potential antiviral therapy for feline infectious peritonitis (FIP); (2) to assess the feasibility of transducing hematopoietic stem cells (HSCs) with ex vivo introduction of the miRNA-expressing lentivirus vector; and (3) to assess the ability of the expressed miRNA to inhibit FCoV replication in HSCs in vitro. Methods HSCs were obtained from feline bone marrow and replicated in vitro. Three lentiviruses were constructed, each expressing a different anti-FCoV miRNA. HSCs were stably transduced with the miRNA-expressing lentivirus vector that produced the most effective viral inhibition in a feline cell line. The effectiveness of the transduction and the expression of anti-FCoV miRNA were tested by infecting the HSCs with two different strains of FCoV. The inhibition of coronavirus replication was determined by relative quantification of the inhibition of intracellular viral genomic RNA synthesis using real-time, reverse-transcription PCR. The assessment of virus replication inhibition was determined via titration of extracellular virus using the TCID 50 assay. Results Inhibition of FCoV was most significant in feline cells expressing miRNA-L2 that targeted the viral leader sequence, 48 h postinfection. miRNA-L2 expression in stably transduced HSCs resulted in 90% and 92% reductions in FIPV WSU 79-1146 genomic RNA synthesis and extracellular virus production, respectively, as well as 74% and 80% reduction in FECV WSU 79-1683 genomic RNA synthesis and extracellular virus production, respectively, as compared with an infected negative control sample producing non-targeting miRNA. Conclusions and relevance These preliminary results show that genetic modification of HSCs for constitutive production of anti-coronavirus miRNA will reduce FCoV replication.

  7. Identification of a divalent metal cation binding site in herpes simplex virus 1 (HSV-1) ICP8 required for HSV replication.

    PubMed

    Bryant, Kevin F; Yan, Zhipeng; Dreyfus, David H; Knipe, David M

    2012-06-01

    Herpes simplex virus 1 (HSV-1) ICP8 is a single-stranded DNA-binding protein that is necessary for viral DNA replication and exhibits recombinase activity in vitro. Alignment of the HSV-1 ICP8 amino acid sequence with ICP8 homologs from other herpesviruses revealed conserved aspartic acid (D) and glutamic acid (E) residues. Amino acid residue D1087 was conserved in every ICP8 homolog analyzed, indicating that it is likely critical for ICP8 function. We took a genetic approach to investigate the functions of the conserved ICP8 D and E residues in HSV-1 replication. The E1086A D1087A mutant form of ICP8 failed to support the replication of an ICP8 mutant virus in a complementation assay. E1086A D1087A mutant ICP8 bound DNA, albeit with reduced affinity, demonstrating that the protein is not globally misfolded. This mutant form of ICP8 was also recognized by a conformation-specific antibody, further indicating that its overall structure was intact. A recombinant virus expressing E1086A D1087A mutant ICP8 was defective in viral replication, viral DNA synthesis, and late gene expression in Vero cells. A class of enzymes called DDE recombinases utilize conserved D and E residues to coordinate divalent metal cations in their active sites. We investigated whether the conserved D and E residues in ICP8 were also required for binding metal cations and found that the E1086A D1087A mutant form of ICP8 exhibited altered divalent metal binding in an in vitro iron-induced cleavage assay. These results identify a novel divalent metal cation-binding site in ICP8 that is required for ICP8 functions during viral replication.

  8. RNA Synthesis by in Vitro Selected Ribozymes for Recreating an RNA World

    PubMed Central

    Martin, Lyssa L.; Unrau, Peter J.; Müller, Ulrich F.

    2015-01-01

    The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory. PMID:25610978

  9. Multiple Lytic Origins of Replication Are Required for Optimal Gammaherpesvirus Fitness In Vitro and In Vivo

    PubMed Central

    Sattler, Christine; Steer, Beatrix; Adler, Heiko

    2016-01-01

    An unresolved question in herpesvirus biology is why some herpesviruses contain more than one lytic origin of replication (oriLyt). Using murine gammaherpesvirus 68 (MHV-68) as model virus containing two oriLyts, we demonstrate that loss of either of the two oriLyts was well tolerated in some situations but not in others both in vitro and in vivo. This was related to the cell type, the organ or the route of inoculation. Depending on the cell type, different cellular proteins, for example Hexim1 and Rbbp4, were found to be associated with oriLyt DNA. Overexpression or downregulation of these proteins differentially affected the growth of mutants lacking either the left or the right oriLyt. Thus, multiple oriLyts are required to ensure optimal fitness in different cell types and tissues. PMID:27007137

  10. Chloroquine inhibited Ebola virus replication in vitro but failed to protect against infection and disease in the in vivo guinea pig model.

    PubMed

    Dowall, Stuart D; Bosworth, Andrew; Watson, Robert; Bewley, Kevin; Taylor, Irene; Rayner, Emma; Hunter, Laura; Pearson, Geoff; Easterbrook, Linda; Pitman, James; Hewson, Roger; Carroll, Miles W

    2015-12-01

    Ebola virus (EBOV) is highly pathogenic, with a predisposition to cause outbreaks in human populations accompanied by significant mortality. Owing to the lack of approved therapies, screening programmes of potentially efficacious drugs have been undertaken. One of these studies has demonstrated the possible utility of chloroquine against EBOV using pseudotyped assays. In mouse models of EBOV disease there are conflicting reports of the therapeutic effects of chloroquine. There are currently no reports of its efficacy using the larger and more stringent guinea pig model of infection. In this study we have shown that replication of live EBOV is impaired by chloroquine in vitro. However, no protective effects were observed in vivo when EBOV-infected guinea pigs were treated with chloroquine. These results advocate that chloroquine should not be considered as a treatment strategy for EBOV.

  11. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity

    PubMed Central

    Rom, Slava; Reichenbach, Nancy L.; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60–80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85–95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection. PMID:26379653

  12. The dual action of poly(ADP-ribose) polymerase -1 (PARP-1) inhibition in HIV-1 infection: HIV-1 LTR inhibition and diminution in Rho GTPase activity.

    PubMed

    Rom, Slava; Reichenbach, Nancy L; Dykstra, Holly; Persidsky, Yuri

    2015-01-01

    Multifactorial mechanisms comprising countless cellular factors and virus-encoded transactivators regulate the transcription of HIV-1 (HIV). Since poly(ADP-ribose) polymerase 1 (PARP-1) regulates numerous genes through its interaction with various transcription factors, inhibition of PARP-1 has surfaced recently as a powerful anti-inflammatory tool. We suggest a novel tactic to diminish HIV replication via PARP-1 inhibition in an in vitro model system, exploiting human primary monocyte-derived macrophages (MDM). PARP-1 inhibition was capable to lessen HIV replication in MDM by 60-80% after 7 days infection. Tat, tumor necrosis factor α (TNFα), and phorbol 12-myristate 13-acetate (PMA) are known triggers of the Long Terminal Repeat (LTR), which can switch virus replication. Tat overexpression in MDM transfected with an LTR reporter plasmid resulted in a 4.2-fold increase in LTR activation; PARP inhibition caused 70% reduction of LTR activity. LTR activity, which increased 3-fold after PMA or TNFα treatment, was reduced by PARP inhibition (by 85-95%). PARP inhibition in MDM exhibited 90% diminution in NFκB activity (known to mediate TNFα- and PMA-induced HIV LTR activation). Cytoskeleton rearrangements are important in effective HIV-1 infection. PARP inactivation reduced actin cytoskeleton rearrangements by affecting Rho GTPase machinery. These discoveries suggest that inactivation of PARP suppresses HIV replication in MDM by via attenuation of LTR activation, NFκB suppression and its effects on the cytoskeleton. PARP appears to be essential for HIV replication and its inhibition may provide an effective approach to management of HIV infection.

  13. Identification of Fic-1 as an enzyme that inhibits bacterial DNA replication by AMPylating GyrB, promoting filament formation.

    PubMed

    Lu, Canhua; Nakayasu, Ernesto S; Zhang, Li-Qun; Luo, Zhao-Qing

    2016-01-26

    The morphology of bacterial cells is important for virulence, evasion of the host immune system, and coping with environmental stresses. The widely distributed Fic proteins (filamentation induced by cAMP) are annotated as proteins involved in cell division because of the presence of the HPFx[D/E]GN[G/K]R motif. We showed that the presence of Fic-1 from Pseudomonas fluorescens significantly reduced the yield of plasmid DNA when expressed in Escherichia coli or P. fluorescens. Fic-1 interacted with GyrB, a subunit of DNA gyrase, which is essential for bacterial DNA replication. Fic-1 catalyzed the AMPylation of GyrB at Tyr(109), a residue critical for binding ATP, and exhibited auto-AMPylation activity. Mutation of the Fic-1 auto-AMPylated site greatly reduced AMPylation activity toward itself and toward GyrB. Fic-1-dependent AMPylation of GyrB triggered the SOS response, indicative of DNA replication stress or DNA damage. Fic-1 also promoted the formation of elongated cells when the SOS response was blocked. We identified an α-inhibitor protein that we named anti-Fic-1 (AntF), encoded by a gene immediately upstream of Fic-1. AntF interacted with Fic-1, inhibited the AMPylation activity of Fic-1 for GyrB in vitro, and blocked Fic-1-mediated inhibition of DNA replication in bacteria, suggesting that Fic-1 and AntF comprise a toxin-antitoxin module. Our work establishes Fic-1 as an AMPylating enzyme that targets GyrB to inhibit DNA replication and may target other proteins to regulate bacterial morphology. Copyright © 2016, American Association for the Advancement of Science.

  14. Natural compounds isolated from Brazilian plants are potent inhibitors of hepatitis C virus replication in vitro.

    PubMed

    Jardim, A C G; Igloi, Z; Shimizu, J F; Santos, V A F F M; Felippe, L G; Mazzeu, B F; Amako, Y; Furlan, M; Harris, M; Rahal, P

    2015-03-01

    Compounds extracted from plants can provide an alternative approach to new therapies. They present characteristics such as high chemical diversity, lower cost of production and milder or inexistent side effects compared with conventional treatment. The Brazilian flora represents a vast, largely untapped, resource of potential antiviral compounds. In this study, we investigate the antiviral effects of a panel of natural compounds isolated from Brazilian plants species on hepatitis C virus (HCV) genome replication. To do this we used firefly luciferase-based HCV sub-genomic replicons of genotypes 2a (JFH-1), 1b and 3a and the compounds were assessed for their effects on both HCV replication and cellular toxicity. Initial screening of compounds was performed using the maximum non-toxic concentration and 4 compounds that exhibited a useful therapeutic index (favourable ratio of cytotoxicity to antiviral potency) were selected for extra analysis. The compounds APS (EC50=2.3μM), a natural alkaloid isolated from Maytrenus ilicifolia, and the lignans 3(∗)43 (EC50=4.0μM), 3(∗)20 (EC50=8.2μM) and 5(∗)362 (EC50=38.9μM) from Peperomia blanda dramatically inhibited HCV replication as judged by reductions in luciferase activity and HCV protein expression in both the subgenomic and infectious systems. We further show that these compounds are active against a daclatasvir resistance mutant subgenomic replicon. Consistent with inhibition of genome replication, production of infectious JFH-1 virus was significantly reduced by all 4 compounds. These data are the first description of Brazilian natural compounds possessing anti-HCV activity and further analyses are being performed in order to investigate the mode of action of those compounds. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    PubMed

    Zhang, Xiumin; Wang, Min; Wang, Rong; Ma, Zhiyuan; Long, Donglei; Mao, Hongxiang; Wen, Jiangnan; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate:propionate ratio and lower methane production with a decline of methanogens, in comparison to control. Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  16. Identifying Metabolically Active Chemicals Using a Consensus ...

    EPA Pesticide Factsheets

    Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta

  17. Cancer-associated variant expression and interaction of CIZ1 with cyclin A1 in differentiating male germ cells.

    PubMed

    Greaves, Erin A; Copeland, Nikki A; Coverley, Dawn; Ainscough, Justin F X

    2012-05-15

    CIZ1 is a nuclear-matrix-associated DNA replication factor unique to higher eukaryotes, for which alternatively spliced isoforms have been associated with a range of disorders. In vitro, the CIZ1 N-terminus interacts with cyclin E and cyclin A at distinct sites, enabling functional cooperation with cyclin-A-Cdk2 to promote replication initiation. C-terminal sequences anchor CIZ1 to fixed sites on the nuclear matrix, imposing spatial constraint on cyclin-dependent kinase activity. Here we demonstrate that CIZ1 is predominantly expressed as a predicted full-length product throughout mouse development, consistent with a ubiquitous role in cell and tissue renewal. CIZ1 is expressed in proliferating stem cells of the testis, but is notably downregulated following commitment to differentiation. Significantly, CIZ1 is re-expressed at high levels in non-proliferative spermatocytes before meiotic division. Sequence analysis identifies at least seven alternatively spliced variants, including a dominant cancer-associated form and a set of novel isoforms. Furthermore, we show that in these post-replicative cells, CIZ1 interacts with germ-cell-specific cyclin A1, which has been implicated in the repair of DNA double-strand breaks. Consistent with this role, antibody depletion of CIZ1 reduces the capacity for testis extract to repair digested plasmid DNA in vitro. Together, the data imply post-replicative roles for CIZ1 in germ cell differentiation that might include meiotic recombination - a process intrinsic to genome stability and diversification.

  18. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways

    PubMed Central

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways. PMID:29385192

  19. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    PubMed

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng; Dai, Jian-Ping

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  20. Construction and characterization of poliovirus subgenomic replicons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaplan, G.; Racaniello, V.R.

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3,064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blotmore » (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of ({sup 35}S-labeled) viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2A{sup pro}, 2C, and 3D{sup pol} and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs.« less

  1. Off Label Antiviral Therapeutics for Henipaviruses: New Light Through Old Windows

    PubMed Central

    Aljofan, Mohamad; Lo, Michael K.; Rota, Paul A.; Michalski, Wojtek P.; Mungall, Bruce A.

    2010-01-01

    Hendra and Nipah viruses are recently emerged zoonotic paramyxoviruses for which there is no vaccine or protective therapy available. While a number of experimental therapeutics and vaccines have recently been reported, all of these will require lengthy approval processes, limiting their usefulness in the short term. To address the urgent need for henipavirus therapeutics, a number of currently licensed pharmaceuticals have been evaluated for off label efficacy against henipavirus replication in vitro. Initially it was observed that compounds which released intracellular calcium stores induced a potent inhibition of henipaviruses replication, prompting the evaluation of known drugs with a similar effect on calcium mobilisation. Of the eight compounds randomly selected based on existing literature, seven inhibited virus replication in the micromolar range while the remaining compound also inhibited virus replication but only at millimolar concentrations. Pretreatment experiments with various calcium chelators, channel antagonists or endoplasmic reticulum release inhibitors supported a calcium mediated mechanism of action for five of these compounds. The mechanism of antiviral action for the remaining three compounds is currently unknown. Additionally, a number of other modulators of calcium flux, including calcium channel and calmodulin antagonists also exhibited potent antiviral activity in vitro providing a broad range of potential therapeutic options for the treatment of henipavirus infections. Importantly, as many of these compounds are currently licensed drugs, regulatory approval should be a much more streamlined process, with the caveat that appropriate in vivo efficacy can be demonstrated in animal models. PMID:20668647

  2. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adoptedmore » a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.« less

  3. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis

    PubMed Central

    Nagata, Mariko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki

    2017-01-01

    Abstract The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. PMID:28977567

  4. From Hayflick to Walford: the role of T cell replicative senescence in human aging.

    PubMed

    Effros, Rita B

    2004-06-01

    The immunologic theory of aging, proposed more than 40 years ago by Roy Walford, suggests that the normal process of aging in man and in animals is pathogenetically related to faulty immunological processes. Since that time, research on immunological aging has undergone extraordinary expansion, leading to new information in areas spanning from molecular biology and cell signaling to large-scale clinical studies. Investigation in this area has also provided unexpected insights into HIV disease, many aspects of which represent accelerated immunological aging. This article describes the initial insights and vision of Roy Walford into one particular facet of human immunological aging, namely, the potential relevance of the well-studied human fibroblast replicative senescence model, initially developed by Leonard Hayflick, to cells of the immune system. Extensive research on T cell senescence in cell culture has now documented changes in vitro that closely mirror alterations occurring during in vivo aging in humans, underscoring the biological significance of T cell replicative senescence. Moreover, the inclusion of high proportions of putatively senescent T cells in the 'immune risk phenotype' that is associated with early mortality in octogenarians provides initial clinical confirmation of both the immunologic theory of aging and the role of the T cell Hayflick Limit in human aging, two areas of gerontological research pioneered by Roy Walford.

  5. The roles of family B and D DNA polymerases in Thermococcus species 9°N Okazaki fragment maturation.

    PubMed

    Greenough, Lucia; Kelman, Zvi; Gardner, Andrew F

    2015-05-15

    During replication, Okazaki fragment maturation is a fundamental process that joins discontinuously synthesized DNA fragments into a contiguous lagging strand. Efficient maturation prevents repeat sequence expansions, small duplications, and generation of double-stranded DNA breaks. To address the components required for the process in Thermococcus, Okazaki fragment maturation was reconstituted in vitro using purified proteins from Thermococcus species 9°N or cell extracts. A dual color fluorescence assay was developed to monitor reaction substrates, intermediates, and products. DNA polymerase D (polD) was proposed to function as the replicative polymerase in Thermococcus replicating both the leading and the lagging strands. It is shown here, however, that it stops before the previous Okazaki fragments, failing to rapidly process them. Instead, Family B DNA polymerase (polB) was observed to rapidly fill the gaps left by polD and displaces the downstream Okazaki fragment to create a flap structure. This flap structure was cleaved by flap endonuclease 1 (Fen1) and the resultant nick was ligated by DNA ligase to form a mature lagging strand. The similarities to both bacterial and eukaryotic systems and evolutionary implications of archaeal Okazaki fragment maturation are discussed. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control.

    PubMed

    Soper, Andrew; Kimura, Izumi; Nagaoka, Shumpei; Konno, Yoriyuki; Yamamoto, Keisuke; Koyanagi, Yoshio; Sato, Kei

    2017-01-01

    Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4 + T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.

  7. VZV Replication Assays

    PubMed Central

    Griffiths, Samantha J.; Haas, Jürgen

    2017-01-01

    Varicella zoster virus (VZV) is a human herpesvirus which causes Varicella (chickenpox) upon primary infection and Zoster (shingles) following reactivation from latency (von Bokay, 1909). Whilst VZV is extensively studied, inherent features of VZV replication, such as cell-association of virus particles during in vitro culture and a restricted host range (limited to humans and some other primates) mean the cellular and viral mechanisms underlying VZV reactivation and pathogenesis remain largely uncharacterised. Much remains to be learnt about VZV, interactions with its host, and the development of disease. This protocol describes a basic VZV replication assay using a recombinant VZV-GFP reporter virus. As VZV is highly cell-associated in tissue culture, the reporter virus inoculum described here is a preparation of infected cells. This reporter virus-infected cell line can be used in combination with siRNA gene depletion or cDNA overexpression transfection protocols to determine the effect of individual cellular genes on virus replication. PMID:29085851

  8. Evaluation of an edible blue-green alga, Aphanothece sacrum, for its inhibitory effect on replication of herpes simplex virus type 2 and influenza virus type A.

    PubMed

    Ogura, Fumie; Hayashi, Kyoko; Lee, Jung-Bum; Kanekiyo, Kenji; Hayashi, Toshimitsu

    2010-01-01

    A hot-water extract of Aphanothece sacrum, an edible aquacultured blue-green alga, was found to show a remarkable inhibitory effect on the replication of enveloped viruses including herpes simplex virus type 2 (HSV-2) and influenza virus type A (IFV-A, H1N1) in vitro. The main active components were suggested to be sulfated polysaccharides in non-dialyzable portion (ASWPH). ASWPH was found to inhibit the viral adsorption to the receptor of the host cells involved in the replication process of HSV-2 and IFV-A. In addition, while the penetration stage of HSV-2 was also significantly suppressed with ASWPH, no such effect was observed in the replication of IFV-A. These results suggest that ASWPH might be useful in the prevention of infectious diseases caused by HSV-2 as well as IFV-A.

  9. Prereplicative repair of oxidized bases in the human genome is mediated by NEIL1 DNA glycosylase together with replication proteins

    PubMed Central

    Hegde, Muralidhar L.; Hegde, Pavana M.; Bellot, Larry J.; Mandal, Santi M.; Hazra, Tapas K.; Li, Guo-Min; Boldogh, Istvan; Tomkinson, Alan E.; Mitra, Sankar

    2013-01-01

    Base oxidation by endogenous and environmentally induced reactive oxygen species preferentially occurs in replicating single-stranded templates in mammalian genomes, warranting prereplicative repair of the mutagenic base lesions. It is not clear how such lesions (which, unlike bulky adducts, do not block replication) are recognized for repair. Furthermore, strand breaks caused by base excision from ssDNA by DNA glycosylases, including Nei-like (NEIL) 1, would generate double-strand breaks during replication, which are not experimentally observed. NEIL1, whose deficiency causes a mutator phenotype and is activated during the S phase, is present in the DNA replication complex isolated from human cells, with enhanced association with DNA in S-phase cells and colocalization with replication foci containing DNA replication proteins. Furthermore, NEIL1 binds to 5-hydroxyuracil, the oxidative deamination product of C, in replication protein A-coated ssDNA template and inhibits DNA synthesis by DNA polymerase δ. We postulate that, upon encountering an oxidized base during replication, NEIL1 initiates prereplicative repair by acting as a “cowcatcher” and preventing nascent chain growth. Regression of the stalled replication fork, possibly mediated by annealing helicases, then allows lesion repair in the reannealed duplex. This model is supported by our observations that NEIL1, whose deficiency slows nascent chain growth in oxidatively stressed cells, is stimulated by replication proteins in vitro. Furthermore, deficiency of the closely related NEIL2 alone does not affect chain elongation, but combined NEIL1/2 deficiency further inhibits DNA replication. These results support a mechanism of NEIL1-mediated prereplicative repair of oxidized bases in the replicating strand, with NEIL2 providing a backup function. PMID:23898192

  10. Novel electric power-driven hydrodynamic injection system for gene delivery: safety and efficacy of human factor IX delivery in rats.

    PubMed

    Yokoo, T; Kamimura, K; Suda, T; Kanefuji, T; Oda, M; Zhang, G; Liu, D; Aoyagi, Y

    2013-08-01

    The development of a safe and reproducible gene delivery system is an essential step toward the clinical application of the hydrodynamic gene delivery (HGD) method. For this purpose, we have developed a novel electric power-driven injection system called the HydroJector-EM, which can replicate various time-pressure curves preloaded into the computer program before injection. The assessment of the reproducibility and safety of gene delivery system in vitro and in vivo demonstrated the precise replication of intravascular time-pressure curves and the reproducibility of gene delivery efficiency. The highest level of luciferase expression (272 pg luciferase per mg of proteins) was achieved safely using the time-pressure curve, which reaches 30 mm Hg in 10 s among various curves tested. Using this curve, the sustained expression of a therapeutic level of human factor IX protein (>500 ng ml(-1)) was maintained for 2 months after the HGD of the pBS-HCRHP-FIXIA plasmid. Other than a transient increase in liver enzymes that recovered in a few days, no adverse events were seen in rats. These results confirm the effectiveness of the HydroJector-EM for reproducible gene delivery and demonstrate that long-term therapeutic gene expression can be achieved by automatic computer-controlled hydrodynamic injection that can be performed by anyone.

  11. Absence of MutSbeta leads to the formation of slipped-DNA for CTG/CAG contractions at primate replication forks

    PubMed Central

    Slean, Meghan M.; Panigrahi, Gagan B.; Castel, Arturo López; Pearson, August B.; Tomkinson, Alan E.; Pearson, Christopher E.

    2016-01-01

    Typically disease-causing CAG/CTG repeats expand, but rare affected families can display high levels of contraction of the expanded repeat amongst offspring. Understanding instability is important since arresting expansions or enhancing contractions could be clinically beneficial. The MutSβ mismatch repair complex is required for CAG/CTG expansions in mice and patients. Oddly, by unknown mechanisms MutSβ-deficient mice incur contractions instead of expansions. Replication using CTG or CAG as the lagging strand template is known to cause contractions or expansions respectively; however, the interplay between replication and repair leading to this instability remains unclear. Towards understanding how repeat contractions may arise, we performed in vitro SV40-mediated replication of repeat-containing plasmids in the presence or absence of mismatch repair. Specifically, we separated repair from replication: Replication mediated by MutSβ- and MutSα-deficient human cells or cell extracts produced slipped-DNA heteroduplexes in the contraction- but not expansion-biased replication direction. Replication in the presence of MutSβ disfavoured the retention of replication products harbouring slipped-DNA heteroduplexes. Post-replication repair of slipped-DNAs by MutSβ-proficient extracts eliminated slipped-DNAs. Thus, a MutSβ-deficiency likely enhances repeat contractions because MutSβ protects against contractions by repairing template strand slip-outs. Replication deficient in LigaseI or PCNA-interaction mutant LigaseI revealed slipped-DNA formation at lagging strands. Our results reveal that distinct mechanisms lead to expansions or contractions and support inhibition of MutSβ as a therapeutic strategy to enhance the contraction of expanded repeats. PMID:27155933

  12. Matrix Metalloproteinase-9 Mediates RSV Infection in Vitro and in Vivo

    PubMed Central

    Kong, Michele Y.F.; Whitley, Richard J.; Peng, Ning; Oster, Robert; Schoeb, Trenton R.; Sullender, Wayne; Ambalavanan, Namasivayam; Clancy, John Paul; Gaggar, Amit; Blalock, J. Edwin

    2015-01-01

    Respiratory Syncytial Virus (RSV) is an important human pathogen associated with substantial morbidity and mortality. The present study tested the hypothesis that RSV infection would increase matrix metalloproteinase (MMP)-9 expression, and that MMP-9 inhibition would decrease RSV replication both in vitro and in vivo. RSV A2 infection of human bronchial epithelial cells increased MMP-9 mRNA and protein release. Cells transfected with siRNA against MMP-9 following RSV infection had lower viral titers. In RSV infected wild-type (WT) mice, MMP-9, airway resistance and viral load peaked at day 2 post infection, and remained elevated on days 4 and 7. RSV infected MMP-9 knockout (KO) mice had decreased lung inflammation. On days 2 and 4 post inoculation, the RSV burden was lower in the MMP-9 KO mice compared to WT controls. In conclusion, our studies demonstrate that RSV infection is a potent stimulus of MMP-9 expression both in vitro and in vivo. Reduction of MMP-9 (via siRNA knockdown, and in MMP-9 KO mice) resulted in decreased viral replication. Our findings suggest MMP-9 is a potential therapeutic target for RSV disease. PMID:26264019

  13. Vinblastine and diethylstilboestrol tested in the in vitro mammalian cell micronucleus test (MNvit) at Swansea University UK in support of OECD draft Test Guideline 487.

    PubMed

    Johnson, George E; Jenkins, Gareth J; Thomas, Adam D; Doak, Shareen H

    2010-10-29

    The known aneugens vinblastine and diethylstilboestrol (DES) were tested in the in vitro micronucleus assay, with and without cytokinesis block in Chinese hamster CHO cells, at the laboratories of Swansea University, Swansea, UK. These experiments were carried out to determine the suitability of the cell death and cytostasis measures used in the assay, as recommended in the draft OECD Test Guideline 487, 2007. Both compounds were positive in the assay without cytokinesis block at concentrations giving approximately 50% or less cell death and cytostasis, using relative population doublings and relative increase in cell counts. Moreover, both compounds were positive in the assay with cytokinesis block at concentrations giving approximately 50% cell death and cytostasis, using replicative index. Vinblastine was also positive for mitotic slippage, causing micronuclei in mononucleate cells with cytokinesis block. Relative population doublings and relative increase in cell counts were appropriate measures of cell death and cytostasis for the non-cytokinesis block in vitro micronucleus assay. In the cytokinesis blocked micronucleus assay, replicative index and cytokinesis block proliferation index were suitable cell death and cytostasis measures. Copyright © 2009 Elsevier B.V. All rights reserved.

  14. Antiviral Activity of Trappin-2 and Elafin In Vitro and In Vivo against Genital Herpes

    PubMed Central

    Drannik, Anna G.; Nag, Kakon; Sallenave, Jean-Michel

    2013-01-01

    Serine protease inhibitor elafin (E) and its precursor, trappin-2 (Tr), have been associated with mucosal resistance to HIV-1 infection. We recently showed that Tr/E are among principal anti-HIV-1 molecules in cervicovaginal lavage (CVL) fluid, that E is ∼130 times more potent than Tr against HIV-1, and that Tr/E inhibited HIV-1 attachment and transcytosis across human genital epithelial cells (ECs). Since herpes simplex virus 2 (HSV-2) is a major sexually transmitted infection and risk factor for HIV-1 infection and transmission, we assessed Tr/E contribution to defense against HSV-2. Our in vitro studies demonstrated that pretreatment of endometrial (HEC-1A) and endocervical (End1/E6E7) ECs with human Tr-expressing adenovirus (Ad/Tr) or recombinant Tr/E proteins before or after HSV-2 infection resulted in significantly reduced virus titers compared to those of controls. Interestingly, E was ∼7 times more potent against HSV-2 infection than Tr. Conversely, knockdown of endogenous Tr/E by small interfering RNA (siRNA) significantly increased HSV-2 replication in genital ECs. Recombinant Tr and E reduced viral attachment to genital ECs by acting indirectly on cells. Further, lower viral replication was associated with reduced secretion of proinflammatory interleukin 8 (IL-8) and tumor necrosis factor alpha (TNF-α) and decreased NF-κB nuclear translocation. Additionally, protected Ad/Tr-treated ECs demonstrated enhanced interferon regulatory factor 3 (IRF3) nuclear translocation and increased antiviral IFN-β in response to HSV-2. Lastly, in vivo studies of intravaginal HSV-2 infection in Tr-transgenic mice (Etg) showed that despite similar virus replication in the genital tract, Etg mice had reduced viral load and TNF-α in the central nervous system compared to controls. Collectively, this is the first experimental evidence highlighting anti-HSV-2 activity of Tr/E in female genital mucosa. PMID:23637403

  15. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway.

    PubMed

    Xue, Hongxia; Gan, Fang; Zhang, Zheqian; Hu, Junfa; Chen, Xingxiang; Huang, Kehe

    2015-11-01

    Porcine circovirus type 2 (PCV2) is the primary causative agent of porcine circovirus-associated disease (PCVAD). Astragalus polysaccharide (APS), as one kind of biological macromolecule extracted from Astragalus, has antiviral activities. This study was undertaken to explore the effect of APS on PCV2 replication in vitro and the underlying mechanisms. Our results showed that adding APS before PCV2 infection decreased significantly PCV2 DNA copies, the number of infected cells, MDA level, ROS level and NF-κB activation in PK15 cells and increased significantly GSH contents and SOD activity compared to control without APS. Oxidative stress induced by BSO could eliminate the effect of PCV2 replication inhibition by APS. LPS, as a NF-κB activator, could attenuate the effect of PCV2 replication inhibition by APS. BAY 11-7082, as a NF-κB inhibitor, could increase the effect of PCV2 replication inhibition by APS. In conclusion, APS inhibits PCV2 replication by decreasing oxidative stress and the activation of NF-κB signaling pathway, which suggests that APS might be employed for the prevention of PCV2 infection. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Human Adipose‐Derived Stem Cells Expanded Under Ambient Oxygen Concentration Accumulate Oxidative DNA Lesions and Experience Procarcinogenic DNA Replication Stress

    PubMed Central

    Renoud, Marie‐Laure; Hoede, Claire; Gonzalez, Ignacio; Jones, Natalie; Longy, Michel; Sensebé, Luc; Cazaux, Christophe

    2016-01-01

    Abstract Adipose‐derived stem cells (ADSCs) have led to growing interest in cell‐based therapy because they can be easily harvested from an abundant tissue. ADSCs must be expanded in vitro before transplantation. This essential step causes concerns about the safety of adult stem cells in terms of potential transformation. Tumorigenesis is driven in its earliest step by DNA replication stress, which is characterized by the accumulation of stalled DNA replication forks and activation of the DNA damage response. Thus, to evaluate the safety of ADSCs during ex vivo expansion, we monitored DNA replication under atmospheric (21%) or physiologic (1%) oxygen concentration. Here, by combining immunofluorescence and DNA combing, we show that ADSCs cultured under 21% oxygen accumulate endogenous oxidative DNA lesions, which interfere with DNA replication by increasing fork stalling events, thereby leading to incomplete DNA replication and fork collapse. Moreover, we found by RNA sequencing (RNA‐seq) that culture of ADSCs under atmospheric oxygen concentration leads to misexpression of cell cycle and DNA replication genes, which could contribute to DNA replication stress. Finally, analysis of acquired small nucleotide polymorphism shows that expansion of ADSCs under 21% oxygen induces a mutational bias toward deleterious transversions. Overall, our results suggest that expanding ADSCs at a low oxygen concentration could reduce the risk for DNA replication stress‐associated transformation, as occurs in neoplastic tissues. Stem Cells Translational Medicine 2017;6:68–76 PMID:28170194

  17. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    PubMed

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  18. Adenosine Deaminase Acting on RNA-1 (ADAR1) Inhibits HIV-1 Replication in Human Alveolar Macrophages

    PubMed Central

    Levy, David N.; Li, Yonghua; Kumar, Rajnish; Burke, Sean A.; Dawson, Rodney; Hioe, Catarina E.; Borkowsky, William; Rom, William N.; Hoshino, Yoshihiko

    2014-01-01

    While exploring the effects of aerosol IFN-γ treatment in HIV-1/tuberculosis co-infected patients, we observed A to G mutations in HIV-1 envelope sequences derived from bronchoalveolar lavage (BAL) of aerosol IFN-γ-treated patients and induction of adenosine deaminase acting on RNA 1 (ADAR1) in the BAL cells. IFN-γ induced ADAR1 expression in monocyte-derived macrophages (MDM) but not T cells. ADAR1 siRNA knockdown induced HIV-1 expression in BAL cells of four HIV-1 infected patients on antiretroviral therapy. Similar results were obtained in MDM that were HIV-1 infected in vitro. Over-expression of ADAR1 in transformed macrophages inhibited HIV-1 viral replication but not viral transcription measured by nuclear run-on, suggesting that ADAR1 acts post-transcriptionally. The A to G hyper-mutation pattern observed in ADAR1 over-expressing cells in vitro was similar to that found in the lungs of HIV-1 infected patients treated with aerosol IFN-γ suggesting the model accurately represented alveolar macrophages. Together, these results indicate that ADAR1 restricts HIV-1 replication post-transcriptionally in macrophages harboring HIV-1 provirus. ADAR1 may therefore contribute to viral latency in macrophages. PMID:25272020

  19. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions*

    PubMed Central

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-01-01

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrPSc. Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrPC production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrPC present in each part of the brain. Our results suggest that the variable regional distribution of PrPSc in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. PMID:27056328

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rudneva, Irina A.; Timofeeva, Tatiana A.; Ignatieva, Anna V.

    In the present study we assessed pleiotropic characteristics of the antibody-selected mutations. We examined pH optimum of fusion, temperatures of HA heat inactivation, and in vitro and in vivo replication kinetics of the previously obtained influenza H5 escape mutants. Our results showed that HA1 N142K mutation significantly lowered the pH of fusion optimum. Mutations of the escape mutants located in the HA lateral loop significantly affected H5 HA thermostability (P<0.05). HA changes at positions 131, 144, 145, and 156 and substitutions at positions 131, 142, 145, and 156 affected the replicative ability of H5 escape mutants in vitro and inmore » vivo, respectively. Overall, a co-variation between antigenic specificity and different HA phenotypic properties has been demonstrated. We believe that the monitoring of pleiotropic effects of the HA mutations found in H5 escape mutants is essential for accurate prediction of mutants with pandemic potential. - Highlights: • HA1 N142K mutation significantly lowered the pH of fusion optimum. • Mutations located in the HA lateral loop significantly affected H5 HA thermostability. • HA changes at positions 131, 142, 144, 145, and 156 affected the replicative ability of H5 mutants. • Acquisition of glycosylation site could lead to the emergence of multiple pleiotropic effects.« less

  1. Quercetin inhibits rhinovirus replication in vitro and in vivo

    PubMed Central

    Ganesan, Shyamala; Faris, Andrea N.; Comstock, Adam T.; Wang, Qiong; Nanua, Suparna; Hershenson, Marc B.; Sajjan, Uma S.

    2012-01-01

    Summary Rhinovirus (RV), which is responsible for the majority of common colds, also causes exacerbations in patients with asthma and chronic obstructive pulmonary disease. So far, there are no drugs available for treatment of rhinovirus infection. We examined the effect of quercetin, a plant flavanol on RV infection in vitro and in vivo. Pretreatment of airway epithelial cells with quercetin decreased Akt phosphosphorylation, viral endocytosis and IL-8 responses. Addition of quercetin 6 h after RV infection (after viral endocytosis) reduced viral load, IL-8 and IFN responses in airway epithelial cells. This was associated with decreased levels of negative and positive strand viral RNA, and RV capsid protein, abrogation of RV-induced eIF4GI cleavage and increased phosphorylation of eIF2α. In mice infected with RV, quercetin treatment decreased viral replication as well as expression of chemokines and cytokines. Quercetin treatment also attenuated RV-induced airway cholinergic hyperresponsiveness. Together, our results suggest that quercetin inhibits RV endocytosis and replication in airway epithelial cells at multiple stages of the RV life cycle. Quercetin also decreases expression of pro-inflammatory cytokines and improves lung function in RV-infected mice. Based on these observations, further studies examining the potential benefits of quercetin in the prevention and treatment of RV infection are warranted. PMID:22465313

  2. DNA double-strand breaks in human induced pluripotent stem cell reprogramming and long-term in vitro culturing.

    PubMed

    Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Matula, Pavel; Stejskal, Stanislav; Hampl, Ales; Koutna, Irena

    2017-03-21

    Human induced pluripotent stem cells (hiPSCs) play roles in both disease modelling and regenerative medicine. It is critical that the genomic integrity of the cells remains intact and that the DNA repair systems are fully functional. In this article, we focused on the detection of DNA double-strand breaks (DSBs) by phosphorylated histone H2AX (known as γH2AX) and p53-binding protein 1 (53BP1) in three distinct lines of hiPSCs, their source cells, and one line of human embryonic stem cells (hESCs). We measured spontaneously occurring DSBs throughout the process of fibroblast reprogramming and during long-term in vitro culturing. To assess the variations in the functionality of the DNA repair system among the samples, the number of DSBs induced by γ-irradiation and the decrease over time was analysed. The foci number was detected by fluorescence microscopy separately for the G1 and S/G2 cell cycle phases. We demonstrated that fibroblasts contained a low number of non-replication-related DSBs, while this number increased after reprogramming into hiPSCs and then decreased again after long-term in vitro passaging. The artificial induction of DSBs revealed that the repair mechanisms function well in the source cells and hiPSCs at low passages, but fail to recognize a substantial proportion of DSBs at high passages. Our observations suggest that cellular reprogramming increases the DSB number but that the repair mechanism functions well. However, after prolonged in vitro culturing of hiPSCs, the repair capacity decreases.

  3. [Immortalization of erythroid progenitors for in vitro large-scale red cell production].

    PubMed

    Caulier, A; Guyonneau Harmand, L; Garçon, L

    2017-09-01

    Population ageing and increase in cancer incidence may lead to a decreased availability of red blood cell units. Thus, finding an alternative source of red blood cells is a highly relevant challenge. The possibility to reproduce in vitro the human erythropoiesis opens a new era, particularly since the improvement in the culture systems allows to produce erythrocytes from induced-Pluripotent Stem Cells (iPSCs), or CD34 + Hematopoietic Stem Cells (HSCs). iPSCs have the advantage of in vitro self-renewal, but lead to poor amplification and maturation defects (high persistence of nucleated erythroid precursors). Erythroid differentiation from HSC allows a far better amplification and adult-like hemoglobin synthesis. But the inability of these progenitors to self-renew in vitro remains a limit in their use as a source of stem cells. A major improvement would consist in immortalizing these erythroid progenitors so that they could expand indefinitively. Inducible transgenesis is the first way to achieve this goal. To date, the best immortalized-cell models involve strong oncogenes induction, such as c-Myc, Bcl-xL, and mostly E6/E7 HPV16 viral oncoproteins. However, the quality of terminal differentiation of erythroid progenitors generated by these oncogenes is not optimal yet and the long-term stability of such systems is unknown. Moreover, viral transgenesis and inducible expression of oncogenes raise important problems in term of safety, since the enucleation rate is not 100% and no nucleated cells having replicative capacities should be present in the final product. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. The nucleolar phosphoprotein B23 targets Newcastle disease virus matrix protein to the nucleoli and facilitates viral replication.

    PubMed

    Duan, Zhiqiang; Chen, Jian; Xu, Haixu; Zhu, Jie; Li, Qunhui; He, Liang; Liu, Huimou; Hu, Shunlin; Liu, Xiufan

    2014-03-01

    The cellular nucleolar proteins are reported to facilitate the replication cycles of some human and animal viruses by interaction with viral proteins. In this study, a nucleolar phosphoprotein B23 was identified to interact with Newcastle disease virus (NDV) matrix (M) protein. We found that NDV M protein accumulated in the nucleolus by binding B23 early in infection, but resulted in the redistribution of B23 from the nucleoli to the nucleoplasm later in infection. In vitro binding studies utilizing deletion mutants indicated that amino acids 30-60 of M and amino acids 188-245 of B23 were required for binding. Furthermore, knockdown of B23 by siRNA or overexpression of B23 or M-binding B23-derived polypeptides remarkably reduced cytopathic effect and inhibited NDV replication. Collectively, we show that B23 facilitates NDV replication by targeting M to the nucleolus, demonstrating for the first time a direct role for nucleolar protein B23 in a paramyxovirus replication process. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Replication-mediated disassociation of replication protein A-XPA complex upon DNA damage: implications for RPA handing off.

    PubMed

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2012-08-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA-XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA-XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA-XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed.

  6. Discordance between bovine leukemia virus tax immortalization in vitro and oncogenicity in vivo.

    PubMed

    Twizere, J C; Kerkhofs, P; Burny, A; Portetelle, D; Kettmann, R; Willems, L

    2000-11-01

    Bovine leukemia virus (BLV) Tax protein, a transcriptional activator of viral expression, is essential for viral replication in vivo. Tax is believed to be involved in leukemogenesis because of its second function, immortalization of primary cells in vitro. These activities of Tax can be dissociated on the basis of point mutations within specific regions of the protein. For example, mutation of the phosphorylation sites at serines 106 and 293 abrogates immortalization potential in vitro but maintains transcriptional activity. This type of mutant is thus particularly useful for unraveling the role of Tax immortalization activity during leukemogenesis independently of viral replication. In this report, we describe the biological properties of BLV recombinant proviruses mutated in the Tax phosphorylation sites (BLVTax106+293). Titration of the proviral loads by semiquantitative PCR revealed that the BLV mutants propagated at wild-type levels in vivo. Furthermore, two animals (sheep 480 and 296) infected with BLVTax106+293 developed leukemia or lymphosarcoma after 16 and 36 months, respectively. These periods of time are within the normal range of latencies preceding the onset of pathogenesis induced by wild-type viruses. The phenotype of the mutant-infected cells was characteristic of a B lymphocyte (immunoglobulin M positive) expressing CD11b and CD5 (except at the final stage for the latter marker), a pattern that is typical of wild-type virus-infected target cells. Interestingly, the transformed B lymphocytes from sheep 480 also coexpressed the CD8 marker, a phenotype rarely observed in tumor biopsies from chronic lymphocytic leukemia patients. Finally, direct sequencing of the tax gene demonstrated that the leukemic cells did not harbor revertant proviruses. We conclude that viruses expressing a Tax mutant unable to transform primary cells in culture are still pathogenic in the sheep animal model. Our data thus provide a clear example of the discordant conclusions that can be drawn from in vitro immortalization assays and in vivo experiments. These observations could be of interest for other systems, such as the related human T-cell leukemia virus type 1, which currently lack animal models allowing the study of the leukemogenic process.

  7. In Vitro Tissue-Engineered Skeletal Muscle Models for Studying Muscle Physiology and Disease.

    PubMed

    Khodabukus, Alastair; Prabhu, Neel; Wang, Jason; Bursac, Nenad

    2018-04-25

    Healthy skeletal muscle possesses the extraordinary ability to regenerate in response to small-scale injuries; however, this self-repair capacity becomes overwhelmed with aging, genetic myopathies, and large muscle loss. The failure of small animal models to accurately replicate human muscle disease, injury and to predict clinically-relevant drug responses has driven the development of high fidelity in vitro skeletal muscle models. Herein, the progress made and challenges ahead in engineering biomimetic human skeletal muscle tissues that can recapitulate muscle development, genetic diseases, regeneration, and drug response is discussed. Bioengineering approaches used to improve engineered muscle structure and function as well as the functionality of satellite cells to allow modeling muscle regeneration in vitro are also highlighted. Next, a historical overview on the generation of skeletal muscle cells and tissues from human pluripotent stem cells, and a discussion on the potential of these approaches to model and treat genetic diseases such as Duchenne muscular dystrophy, is provided. Finally, the need to integrate multiorgan microphysiological systems to generate improved drug discovery technologies with the potential to complement or supersede current preclinical animal models of muscle disease is described. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Allergenic potential of novel proteins - What can we learn from animal production?

    PubMed

    Ekmay, Ricardo D; Coon, Craig N; Ladics, Gregory S; Herman, Rod A

    2017-10-01

    Currently, risk assessment of the allergenic potential of novel proteins relies heavily on evaluating protein digestibility under normal conditions based on the theory that allergens are more resistant to gastrointestinal digestion than non-allergens. There is also proposed guidance for expanded in vitro digestibility assay conditions to include vulnerable sub-populations. One of the underlying rationales for the expanded guidance is that current in vitro assays do not accurately replicate the range of physiological conditions. Animal scientists have long sought to predict protein and amino acid digestibility for precision nutrition. Monogastric production animals, especially swine, have gastrointestinal systems similar to humans, and evaluating potential allergen digestibility in this context may be beneficial. Currently, there is no compelling evidence that the mechanisms sometimes postulated to be associated with allergenic sensitization, e.g. antacid modification of stomach pH, are valid among production animals. Furthermore, examples are provided where non-biologically representative assays are better at predicting protein and amino acid digestibility compared with those designed to mimic in vivo conditions. Greater emphasis should be made to align in vitro assessments with in vivo data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Nitrates and NO-NSAIDs in Cancer Chemoprevention & Therapy: In Vitro Evidence Querying the NO Donor Functionality

    PubMed Central

    Dunlap, Tareisha; Abdul-Hay, Samer; Chandrasena, R. Esala P.; Hagos, Ghenet K; Sinha, Vaishali; Wang, Zhiqiang; Wang, Huali; Thatcher, Gregory R. J.

    2008-01-01

    Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than a hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural “linker” as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery. PMID:18485921

  10. Nitrates and NO-NSAIDs in cancer chemoprevention and therapy: in vitro evidence querying the NO donor functionality.

    PubMed

    Dunlap, Tareisha; Abdul-Hay, Samer O; Chandrasena, R Esala P; Hagos, Ghenet K; Sinha, Vaishali; Wang, Zhiqiang; Wang, Huali; Thatcher, Gregory R J

    2008-09-01

    Properties of the NO-ASA family of NO-donating NSAIDs (NO-NSAIDs), notably NCX 4016 (mNO-ASA) and NCX 4040 (pNO-ASA), reported in more than one hundred publications, have included positive preclinical data in cancer chemoprevention and therapy. Evidence is presented that the antiproliferative, the chemopreventive (antioxidant/electrophile response element (ARE) activation), and the anti-inflammatory activity of NO-ASA in cell cultures is replicated by X-ASA derivatives that are incapable of acting as NO donors. pBr-ASA and mBr-ASA are conisogenic with NO-ASA, but are not NO donors. The biological activity of pNO-ASA is replicated by pBr-ASA; and both pNO-ASA and pBr-ASA are bioactivated to the same quinone methide electrophile. The biological activity of mNO-ASA is replicated by mBr-ASA; mNO-ASA and mBr-ASA are bioactivated to different benzyl electrophiles. The observed activity is likely initiated by trapping of thiol biomolecules by the quinone and benzyl electrophiles, leading to depletion of GSH and modification of Cys-containing sensor proteins. Whereas all NO-NSAIDs containing the same structural "linker" as NCX 4040 and NCX 4016 are anticipated to possess activity resulting from bioactivation to electrophilic metabolites, this expectation does not extend to other linker structures. Nitrates require metabolic bioactivation to liberate NO bioactivity, which is often poorly replicated in vitro, and NO bioactivity provided by NO-NSAIDs in vivo provides proven therapeutic benefits in mitigation of NSAID gastrotoxicity. The in vivo properties of X-ASA drugs await discovery.

  11. Edwardsiella ictaluri Encodes an Acid-Activated Urease That Is Required for Intracellular Replication in Channel Catfish (Ictalurus punctatus) Macrophages▿

    PubMed Central

    Booth, Natha J.; Beekman, Judith B.; Thune, Ronald L.

    2009-01-01

    Genomic analysis indicated that Edwardsiella ictaluri encodes a putative urease pathogenicity island containing the products of nine open reading frames, including urea and ammonium transporters. In vitro studies with wild-type E. ictaluri and a ureG::kan urease mutant strain indicated that E. ictaluri is significantly tolerant of acid conditions (pH 3.0) but that urease activity is not required for acid tolerance. Growth studies demonstrated that E. ictaluri is unable to grow at pH 5 in the absence of urea but is able to elevate the environmental pH from pH 5 to pH 7 and grow when exogenous urea is available. Substantial production of ammonia was observed for wild-type E. ictaluri in vitro in the presence of urea at low pH, and optimal activity occurred at pH 2 to 3. No ammonia production was detected for the urease mutant. Proteomic analysis with two-dimensional gel electrophoresis indicated that urease proteins are expressed at both pH 5 and pH 7, although urease activity is detectable only at pH 5. Urease was not required for initial invasion of catfish but was required for subsequent proliferation and virulence. Urease was not required for initial uptake or survival in head kidney-derived macrophages but was required for intracellular replication. Intracellular replication of wild-type E. ictaluri was significantly enhanced when urea was present, indicating that urease plays an important role in intracellular survival and replication, possibly through neutralization of the acidic environment of the phagosome. PMID:19749068

  12. The Cdc45/RecJ-like protein forms a complex with GINS and MCM, and is important for DNA replication in Thermococcus kodakarensis.

    PubMed

    Nagata, Mariko; Ishino, Sonoko; Yamagami, Takeshi; Ogino, Hiromi; Simons, Jan-Robert; Kanai, Tamotsu; Atomi, Haruyuki; Ishino, Yoshizumi

    2017-10-13

    The archaeal minichromosome maintenance (MCM) has DNA helicase activity, which is stimulated by GINS in several archaea. In the eukaryotic replicative helicase complex, Cdc45 forms a complex with MCM and GINS, named as CMG (Cdc45-MCM-GINS). Cdc45 shares sequence similarity with bacterial RecJ. A Cdc45/RecJ-like protein from Thermococcus kodakarensis shows a bacterial RecJ-like exonuclease activity, which is stimulated by GINS in vitro. Therefore, this archaeal Cdc45/RecJ is designated as GAN, from GINS-associated nuclease. In this study, we identified the CMG-like complex in T. kodakarensis cells. The GAN·GINS complex stimulated the MCM helicase, but MCM did not affect the nuclease activity of GAN in vitro. The gene disruption analysis showed that GAN was non-essential for its viability but the Δgan mutant did not grow at 93°C. Furthermore, the Δgan mutant showed a clear retardation in growth as compared with the parent cells under optimal conditions at 85°C. These deficiencies were recovered by introducing the gan gene encoding the nuclease deficient GAN protein back to the genome. These results suggest that the replicative helicase complex without GAN may become unstable and ineffective in replication fork progression. The nuclease activity of GAN is not related to the growth defects of the Δgan mutant cells. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Conserved Sequences at the Origin of Adenovirus DNA Replication

    PubMed Central

    Stillman, Bruce W.; Topp, William C.; Engler, Jeffrey A.

    1982-01-01

    The origin of adenovirus DNA replication lies within an inverted sequence repetition at either end of the linear, double-stranded viral DNA. Initiation of DNA replication is primed by a deoxynucleoside that is covalently linked to a protein, which remains bound to the newly synthesized DNA. We demonstrate that virion-derived DNA-protein complexes from five human adenovirus serological subgroups (A to E) can act as a template for both the initiation and the elongation of DNA replication in vitro, using nuclear extracts from adenovirus type 2 (Ad2)-infected HeLa cells. The heterologous template DNA-protein complexes were not as active as the homologous Ad2 DNA, most probably due to inefficient initiation by Ad2 replication factors. In an attempt to identify common features which may permit this replication, we have also sequenced the inverted terminal repeated DNA from human adenovirus serotypes Ad4 (group E), Ad9 and Ad10 (group D), and Ad31 (group A), and we have compared these to previously determined sequences from Ad2 and Ad5 (group C), Ad7 (group B), and Ad12 and Ad18 (group A) DNA. In all cases, the sequence around the origin of DNA replication can be divided into two structural domains: a proximal A · T-rich region which is partially conserved among these serotypes, and a distal G · C-rich region which is less well conserved. The G · C-rich region contains sequences similar to sequences present in papovavirus replication origins. The two domains may reflect a dual mechanism for initiation of DNA replication: adenovirus-specific protein priming of replication, and subsequent utilization of this primer by host replication factors for completion of DNA synthesis. Images PMID:7143575

  14. Ferret airway epithelial cell cultures support efficient replication of influenza B virus but not mumps virus.

    PubMed

    Elderfield, Ruth A; Parker, Lauren; Stilwell, Peter; Roberts, Kim L; Schepelmann, Silke; Barclay, Wendy S

    2015-08-01

    Ferrets have become the model animal of choice for influenza pathology and transmission experiments as they are permissive and susceptible to human influenza A viruses. However, inoculation of ferrets with mumps virus (MuV) did not lead to successful infections. We evaluated the use of highly differentiated ferret tracheal epithelium cell cultures, FTE, for predicting the potential of ferrets to support respiratory viral infections. FTE cultures supported productive replication of human influenza A and B viruses but not of MuV, whereas analogous cells generated from human airways supported replication of all three viruses. We propose that in vitro strategies using these cultures might serve as a method of triaging viruses and potentially reducing the use of ferrets in viral studies.

  15. The Proteasomal Rpn11 Metalloprotease Suppresses Tombusvirus RNA Recombination and Promotes Viral Replication via Facilitating Assembly of the Viral Replicase Complex

    PubMed Central

    Prasanth, K. Reddisiva; Barajas, Daniel

    2014-01-01

    ABSTRACT RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a “matchmaker” that brings the viral p92pol replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. IMPORTANCE RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. PMID:25540361

  16. Engineered external guide sequences are highly effective in inhibiting gene expression and replication of hepatitis B virus in cultured cells.

    PubMed

    Zhang, Zhigang; Vu, Gia-Phong; Gong, Hao; Xia, Chuan; Chen, Yuan-Chuan; Liu, Fenyong; Wu, Jianguo; Lu, Sangwei

    2013-01-01

    External guide sequences (EGSs) are RNA molecules that consist of a sequence complementary to a target mRNA and recruit intracellular ribonuclease P (RNase P), a tRNA processing enzyme, for specific degradation of the target mRNA. We have previously used an in vitro selection procedure to generate EGS variants that efficiently induce human RNase P to cleave a target mRNA in vitro. In this study, we constructed EGSs from a variant to target the overlapping region of the S mRNA, pre-S/L mRNA, and pregenomic RNA (pgRNA) of hepatitis B virus (HBV), which are essential for viral replication and infection. The EGS variant was about 50-fold more efficient in inducing human RNase P to cleave the mRNA in vitro than the EGS derived from a natural tRNA. Following Salmonella-mediated gene delivery, the EGSs were expressed in cultured HBV-carrying cells. A reduction of about 97% and 75% in the level of HBV RNAs and proteins and an inhibition of about 6,000- and 130-fold in the levels of capsid-associated HBV DNA were observed in cells treated with Salmonella vectors carrying the expression cassette for the variant and the tRNA-derived EGS, respectively. Our study provides direct evidence that the EGS variant is more effective in blocking HBV gene expression and DNA replication than the tRNA-derived EGS. Furthermore, these results demonstrate the feasibility of developing Salmonella-mediated gene delivery of highly active EGS RNA variants as a novel approach for gene-targeting applications such as anti-HBV therapy.

  17. Brucella discriminates between mouse dendritic cell subsets upon in vitro infection.

    PubMed

    Papadopoulos, Alexia; Gagnaire, Aurélie; Degos, Clara; de Chastellier, Chantal; Gorvel, Jean-Pierre

    2016-01-01

    Brucella is a Gram-negative bacterium responsible for brucellosis, a worldwide re-emerging zoonosis. Brucella has been shown to infect and replicate within Granulocyte macrophage colony-stimulating factor (GMCSF) in vitro grown bone marrow-derived dendritic cells (BMDC). In this cell model, Brucella can efficiently control BMDC maturation. However, it has been shown that Brucella infection in vivo induces spleen dendritic cells (DC) migration and maturation. As DCs form a complex network composed by several subpopulations, differences observed may be due to different interactions between Brucella and DC subsets. Here, we compare Brucella interaction with several in vitro BMDC models. The present study shows that Brucella is capable of replicating in all the BMDC models tested with a high infection rate at early time points in GMCSF-IL15 DCs and Flt3l DCs. GMCSF-IL15 DCs and Flt3l DCs are more activated than the other studied DC models and consequently intracellular bacteria are not efficiently targeted to the ER replicative niche. Interestingly, GMCSF-DC and GMCSF-Flt3l DC response to infection is comparable. However, the key difference between these 2 models concerns IL10 secretion by GMCSF DCs observed at 48 h post-infection. IL10 secretion can explain the weak secretion of IL12p70 and TNFα in the GMCSF-DC model and the low level of maturation observed when compared to GMCSF-IL15 DCs and Flt3l DCs. These models provide good tools to understand how Brucella induce DC maturation in vivo and may lead to new therapeutic design using DCs as cellular vaccines capable of enhancing immune response against pathogens.

  18. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro

    PubMed Central

    JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU

    2015-01-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539

  19. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro.

    PubMed

    Jia, Hongyu; Liu, Changhong; Yang, Ying; Zhu, Haihong; Chen, Feng; Liu, Jihong; Zhou, Linfu

    2015-11-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro .

  20. In vitro characterization of Multi-Drug Resistant HIV-1 Isolates from a Recently Infected Patient Associated with Dual Tropism and Rapid Disease Progression

    PubMed Central

    Mohri, Hiroshi; Markowitz, Martin

    2013-01-01

    Objective: Multi-drug resistant (MDR)-HIV-1 variants are thought to be less fit than wild type virus. In 2005 we reported a case of transmitted MDR-HIV-1 infection associated with dual tropism and rapid clinical progression. Here, we report the in vitro characterization of the virus isolates. Methods: Replication characteristics of bulk and clonal isolates from this case (MDR-1) were examined and compared with these to a panel of transmitted MDR and wild type viruses (MDR-2~4, WT-1, 2). Results: Infectivity and frequency of infectious virion of propagated isolates were high in MDR-1 biological clones (mean titer, 3.5×105 TCID50/ml; mean frequency of infectious virion, 1/2,444) and its bulk isolate (3.2×106TCID50/ml; 1/301), as compared to the other biological clones (7.3×103TCID50/ml; 1/21,320). Up-slope (log10p24/ml/d) of viral replication in PBMC culture was much higher in MDR-1 clones (1.30±0.30: mean±SD) than those of MDR-2~4 (0.75±0.08) or WT-1, -2 clones (0.82±0.03). The bulk isolate and dual tropic biological clones from MDR-1 depleted CD4+ T cells very rapidly in vitro compared to the other viruses tested. Conclusion: These findings support the hypothesis that multi-drug resistant HIV-1 can effectively evolve and compensate to not only retain high level replication but exhibit virulence associated with rapid disease progression. PMID:18645523

  1. HIV-1-based defective lentiviral vectors efficiently transduce human monocytes-derived macrophages and suppress replication of wild-type HIV-1

    PubMed Central

    Zeng, Lingbing; Planelles, Vicente; Sui, Ziye; Gartner, Suzanne; Maggirwar, Sanjay B.; Dewhurst, Stephen; Ye, Linbai; Nerurkar, Vivek R.; Yanagihara, Richard; Lu, Yuanan

    2010-01-01

    Background Human monocytes play an important role in mediating human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system (CNS), and monocytes-derived macrophages (MDM) represent a major viral reservoir within the brain and other target organs. Current gene transduction of MDM is hindered by a limited efficiency. In this study we established a lentiviral vector-based technique for improved gene transfer into human MDM cultures in vitro and demonstrated significant protection of transduced MDM from super-infection with wild-type HIV-1. Methods HIV-1-based lentiviral vector stocks were prepared in 293T cells by the established calcium phosphate transfection method. Human monocytes were isolated from donors' blood by Ficoll-Paque separation and cultured in vitro. To establish an effective technique for vector-mediated gene transfer, primary cultures of human MDM were transduced at varying multiplicities of infection (MOI) and at a range of time points following initial isolation of cells (time-in-culture). Transduced cells were then examined for transgene (green fluorescent protein (GFP)) expression by fluorescent microscopy and reverse transcription polymerase chain reaction (RT-PCR). These cultures were then exposed to wild-type HIV-1, and viral replication was quantitated by p24 assay; production of neurotoxic effector molecules by the transduced MDM was also examined, using indicator neurons. Results We have demonstrated that primary human MDM could be efficiently transduced (>50%) with concentrated HIV-1-based defective lentiviral vectors (DLV). Furthermore, DLV-mediated gene transduction was stable, and the transduced cells exhibited no apparent difference from normal MDM in terms of their morphology, viability and neurotoxin secretion. Challenge of DLV-transduced MDM cultures with HIV-1Ba-L revealed a 4- to 5-fold reduction in viral replication, as measured by p24 antigen production. This effect was associated with the mobilization of the GFP-expressing DLV construct by the wild-type virus. Conclusions These data demonstrate the inhibition of HIV-1 replication in primary MDM, by a DLV vector that lacks any anti-HIV-1 transgene. These findings lay the initial groundwork for future studies on the ability of DLV-modified monocytes to introduce anti-HIV-1 genes into the CNS. Lentiviral vector-mediated gene delivery to the CNS by monocytes/macrophages is a promising, emerging strategy for treating neuro-AIDS. PMID:16142830

  2. In vitro and in vivo acaricidal activity and residual toxicity of spinosad to the poultry red mite, Dermanyssus gallinae.

    PubMed

    George, D R; Shiel, R S; Appleby, W G C; Knox, A; Guy, J H

    2010-10-29

    This paper describes two experiments conducted to examine the acaricidal potential of spinosad against the poultry red mite, Dermanyssus gallinae (De Geer), a serious ectoparasitic pest of laying hens. Spinosad is a natural product derived from the fermentation of the micro-organism Saccharopolyspora spinosa. In vitro testing confirmed that, when applied to a galvanised metal plate to the point of run-off, spinosad was toxic to adult female D. gallinae and suggested that at an application rate of 3.88 g/L a significant residual toxicity of spinosad could be achieved for up to 21 days. A subsequent in vivo experiment in a conventional cage housing system for laying hens demonstrated the acaricidal activity and residual toxicity to D. gallinae of a single application of spinosad when applied at either 1.94 or 3.88 g/L. Residual toxicity of spinosad at both of these application rates was maintained throughout the course of the 28 day post-spray study period, with a peak in product efficacy seen 14 days after spraying. The results suggest that the greater the D. gallinae population the greater will be the toxic effect of spinosad. Although the exact reasons for this are unclear, it can be speculated that conspecifics spread the product between each other more efficiently at higher mite population densities. However, further study is warranted to confirm this possibility. Application of spinosad in vivo had no effect on hen bodyweight or egg production parameters (number and weight), suggesting that this product could be used to effectively control D. gallinae infestations whilst birds are in lay. This paper also describes a novel method for effectively and efficiently achieving replication of treatments in a single poultry house, previously unpopulated with D. gallinae. Individual groups of conventional cages were stocked with hens, seeded with D. gallinae and used as replicates. Independence of replicates was achieved by isolating cage groups from one another using a non-drying glue barrier to minimise D. gallinae migration. Creating isolated populations (replicates) of D. gallinae within a single poultry house thus represents a novel and efficient means of screening other potential acaricides under field conditions. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Characterization of a nuclear localization signal in the C-terminus of the adeno-associated virus Rep68/78 proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassell, Geoffrey D.; Weitzman, Matthew D.

    2004-10-01

    Adeno-associated virus (AAV) replicates in the nucleus of infected cells, and therefore multiple nuclear import events are required for productive infection. We analyzed nuclear import of the viral Rep proteins and characterized a nuclear localization signal (NLS) in the C-terminus. We demonstrate that basic residues in this region constitute an NLS that is transferable and mediates interaction with the nuclear import receptor importin {alpha} in vitro. Mutant Rep proteins are predominantly cytoplasmic and are severely compromised for interactions with importin {alpha}, but retain their enzymatic functions in vitro. Interestingly, mutations of the NLS had significantly less effect on importin {alpha}more » interaction and replication in the context of Rep78 than when incorporated into the Rep68 protein. Together, our results demonstrate that a bipartite NLS exists in the shared part of Rep68 and Rep78, and suggest that an alternate entry mechanism may also contribute to nuclear localization of the Rep78 protein.« less

  4. Nucleolin promotes in vitro translation of feline calicivirus genomic RNA.

    PubMed

    Hernández, Beatriz Alvarado; Sandoval-Jaime, Carlos; Sosnovtsev, Stanislav V; Green, Kim Y; Gutiérrez-Escolano, Ana Lorena

    2016-02-01

    Feline calicivirus depends on host-cell proteins for its replication. We previously showed that knockdown of nucleolin (NCL), a phosphoprotein involved in ribosome biogenesis, resulted in the reduction of FCV protein synthesis and virus yield. Here, we found that NCL may not be involved in FCV binding and entry into cells, but it binds to both ends of the FCV genomic RNA, and stimulates its translation in vitro. AGRO100, an aptamer that specifically binds and inactivates NCL, caused a strong reduction in FCV protein synthesis. This effect could be reversed by the addition of full-length NCL but not by a ΔrNCL, lacking the N-terminal domain. Consistent with this, FCV infection of CrFK cells stably expressing ΔrNCL led to a reduction in virus protein translation. These results suggest that NCL is part of the FCV RNA translational complex, and that the N-terminal part of the protein is required for efficient FCV replication. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Frog virus 3 ORF 53R, a putative myristoylated membrane protein, is essential for virus replication in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitley, Dexter S.; Yu, Kwang; Sample, Robert C.

    2010-09-30

    Although previous work identified 12 complementation groups with possible roles in virus assembly, currently only one frog virus 3 protein, the major capsid protein (MCP), has been linked with virion formation. To identify other proteins required for assembly, we used an antisense morpholino oligonucleotide to target 53R, a putative myristoylated membrane protein, and showed that treatment resulted in marked reductions in 53R levels and a 60% drop in virus titers. Immunofluorescence assays confirmed knock down and showed that 53R was found primarily within viral assembly sites, whereas transmission electron microscopy detected fewer mature virions and, in some cells, dense granularmore » bodies that may represent unencapsidated DNA-protein complexes. Treatment with a myristoylation inhibitor (2-hydroxymyristic acid) resulted in an 80% reduction in viral titers. Collectively, these data indicate that 53R is an essential viral protein that is required for replication in vitro and suggest it plays a critical role in virion formation.« less

  6. Resveratrol enhances HBV replication through activating Sirt1-PGC-1α-PPARα pathway.

    PubMed

    Shi, Yixian; Li, Yongjun; Huang, Chenjie; Ying, Lixiong; Xue, Jihua; Wu, Haicong; Chen, Zhi; Yang, Zhenggang

    2016-04-21

    The population of hepatitis B combined with a number of metabolic disorders is increasing significantly. Resveratrol (RSV) has been used as a preclinical drug for the treatment of the metabolic disorders. However, the impact of RSV on HBV replication remains unknown. In this study, the HBV-expressing hepatocelluar carcinoma cell line and mouse model created by hydrodynamic injection of viral DNA were used. We found that RSV activates Sirt1, which in turn deacetylates PGC-1α and subsequently increases the transcriptional activity of PPARα, leading to the enhanced HBV transcription and replication in vitro and in vivo. In addition, we found that this pathway is also required for fasting-induced HBV transcription. Taken together, this study identifies that RSV enhances HBV transcription and replication especially acting on the core promoter, which depends on Sirt1-PGC-1α-PPARα pathway. We conclude that RSV may exacerbate the progression of hepatitis B and that patients with hepatitis B infection should be cautious taking RSV as a dietary supplement.

  7. Management and control of self-replicating systems: A systems model

    NASA Technical Reports Server (NTRS)

    Vontiesenhausen, G.

    1982-01-01

    In 1980, a conceptual engineering approach to self-replicating systems was achieved. The design was based on von Newmann's kinematic version of self-replicating automata. The systems management and control and the organization of the control elements are reported. After developing the functional requirements of such a system, a hierarchy of three management and control levels is described. These are an autonomous, an external, and an intelligent management and control system. Systems recycling, systems specialization, and information replication are discussed.

  8. Measuring strand discontinuity-directed mismatch repair in yeast Saccharomyces cerevisiae by cell-free nuclear extracts.

    PubMed

    Yuan, Fenghua; Lai, Fangfang; Gu, Liya; Zhou, Wen; El Hokayem, Jimmy; Zhang, Yanbin

    2009-05-01

    Mismatch repair corrects biosynthetic errors generated during DNA replication, whose deficiency causes a mutator phenotype and directly underlies hereditary non-polyposis colorectal cancer and sporadic cancers. Because of remarkably high conservation of the mismatch repair machinery between the budding yeast (Saccharomyces cerevisiae) and humans, the study of mismatch repair in yeast has provided tremendous insights into the mechanisms of this repair pathway in humans. In addition, yeast cells possess an unbeatable advantage over human cells in terms of the easy genetic manipulation, the availability of whole genome deletion strains, and the relatively low cost for setting up the system. Although many components of eukaryotic mismatch repair have been identified, it remains unclear if additional factors, such as DNA helicase(s) and redundant nuclease(s) besides EXO1, participate in eukaryotic mismatch repair. To facilitate the discovery of novel mismatch repair factors, we developed a straightforward in vitro cell-free repair system. Here, we describe the practical protocols for preparation of yeast cell-free nuclear extracts and DNA mismatch substrates, and the in vitro mismatch repair assay. The validity of the cell-free system was confirmed by the mismatch repair deficient yeast strain (Deltamsh2) and the complementation assay with purified yeast MSH2-MSH6.

  9. Partial Purification of a Megadalton DNA Replication Complex by Free Flow Electrophoresis.

    PubMed

    Li, Caroline M; Miao, Yunan; Lingeman, Robert G; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    We describe a gentle and rapid method to purify the intact multiprotein DNA replication complex using free flow electrophoresis (FFE). In particular, we applied FFE to purify the human cell DNA synthesome, which is a multiprotein complex that is fully competent to carry-out all phases of the DNA replication process in vitro using a plasmid containing the simian virus 40 (SV40) origin of DNA replication and the viral large tumor antigen (T-antigen) protein. The isolated native DNA synthesome can be of use in studying the mechanism by which mammalian DNA replication is carried-out and how anti-cancer drugs disrupt the DNA replication or repair process. Partially purified extracts from HeLa cells were fractionated in a native, liquid based separation by FFE. Dot blot analysis showed co-elution of many proteins identified as part of the DNA synthesome, including proliferating cell nuclear antigen (PCNA), DNA topoisomerase I (topo I), DNA polymerase δ (Pol δ), DNA polymerase ɛ (Pol ɛ), replication protein A (RPA) and replication factor C (RFC). Previously identified DNA synthesome proteins co-eluted with T-antigen dependent and SV40 origin-specific DNA polymerase activity at the same FFE fractions. Native gels show a multiprotein PCNA containing complex migrating with an apparent relative mobility in the megadalton range. When PCNA containing bands were excised from the native gel, mass spectrometric sequencing analysis identified 23 known DNA synthesome associated proteins or protein subunits.

  10. Host Translation Shutoff Mediated by Non-structural Protein 2 is a Critical Factor in the Antiviral State Resistance of Venezuelan Equine Encephalitis Virus

    PubMed Central

    Bhalla, Nishank; Sun, Chengqun; Lam, L. K. Metthew; Gardner, Christina L.; Ryman, Kate D.; Klimstra, William B.

    2016-01-01

    Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus. PMID:27318152

  11. Genetic variations in the DNA replication origins of human papillomavirus family correlate with their oncogenic potential.

    PubMed

    Yilmaz, Gulden; Biswas-Fiss, Esther E; Biswas, Subhasis B

    2018-04-01

    Human papillomaviruses (HPVs) encompass a large family of viruses that range from benign to highly carcinogenic. The crucial differences between benign and carcinogenic types of HPV remain unknown, except that the two HPV types differ in the frequency of DNA replication. We have systematically analyzed the mechanism of HPV DNA replication initiation in low-risk and high-risk HPVs. Our results demonstrate that HPV-encoded E2 initiator protein and its four binding sites in the replication origin play pivotal roles in determining the destiny of the HPV-infected cell. We have identified strain-specific single nucleotide variations in E2 binding sites found only in the high-risk HPVs. We have demonstrated that these variations result in attenuated formation of the E2-DNA complex. E2 binding to these sites is linked to the activation of the DNA replication origin as well as initiation of DNA replication. Both electrophoretic mobility shift assay and atomic force microscopy studies demonstrated that binding of E2 from either low- or high-risk HPVs with variant binding sequences lacked multimeric E2-DNA complex formation in vitro. These results provided a molecular basis of differential DNA replication in the two types of HPVs and pointed to a correlation with the development of cancer. Copyright © 2017. Published by Elsevier B.V.

  12. Dengue virus requires the CC-chemokine receptor CCR5 for replication and infection development.

    PubMed

    Marques, Rafael E; Guabiraba, Rodrigo; Del Sarto, Juliana L; Rocha, Rebeca F; Queiroz, Ana Luiza; Cisalpino, Daniel; Marques, Pedro E; Pacca, Carolina C; Fagundes, Caio T; Menezes, Gustavo B; Nogueira, Maurício L; Souza, Danielle G; Teixeira, Mauro M

    2015-08-01

    Dengue is a mosquito-borne disease that affects millions of people worldwide yearly. Currently, there is no vaccine or specific treatment available. Further investigation on dengue pathogenesis is required to better understand the disease and to identify potential therapeutic targets. The chemokine system has been implicated in dengue pathogenesis, although the specific role of chemokines and their receptors remains elusive. Here we describe the role of the CC-chemokine receptor CCR5 in Dengue virus (DENV-2) infection. In vitro experiments showed that CCR5 is a host factor required for DENV-2 replication in human and mouse macrophages. DENV-2 infection induces the expression of CCR5 ligands. Incubation with an antagonist prevents CCR5 activation and reduces DENV-2 positive-stranded (+) RNA inside macrophages. Using an immunocompetent mouse model of DENV-2 infection we found that CCR5(-/-) mice were resistant to lethal infection, presenting at least 100-fold reduction of viral load in target organs and significant reduction in disease severity. This phenotype was reproduced in wild-type mice treated with CCR5-blocking compounds. Therefore, CCR5 is a host factor required for DENV-2 replication and disease development. Targeting CCR5 might represent a therapeutic strategy for dengue fever. These data bring new insights on the association between viral infections and the chemokine receptor CCR5. © 2015 John Wiley & Sons Ltd.

  13. Soybean-derived Bowman-Birk Inhibitor (BBI) Inhibits HIV Replication in Macrophages.

    PubMed

    Ma, Tong-Cui; Zhou, Run-Hong; Wang, Xu; Li, Jie-Liang; Sang, Ming; Zhou, Li; Zhuang, Ke; Hou, Wei; Guo, De-Yin; Ho, Wen-Zhe

    2016-10-13

    The Bowman-Birk inhibitor (BBI), a soybean-derived protease inhibitor, is known to have anti-inflammatory effect in both in vitro and in vivo systems. Macrophages play a key role in inflammation and immune activation, which is implicated in HIV disease progression. Here, we investigated the effect of BBI on HIV infection of peripheral blood monocyte-derived macrophages. We demonstrated that BBI could potently inhibit HIV replication in macrophages without cytotoxicity. Investigation of the mechanism(s) of BBI action on HIV showed that BBI induced the expression of IFN-β and multiple IFN stimulated genes (ISGs), including Myxovirus resistance protein 2 (Mx2), 2',5'-oligoadenylate synthetase (OAS-1), Virus inhibitory protein (viperin), ISG15 and ISG56. BBI treatment of macrophages also increased the expression of several known HIV restriction factors, including APOBEC3F, APOBEC3G and tetherin. Furthermore, BBI enhanced the phosphorylation of IRF3, a key regulator of IFN-β. The inhibition of IFN-β pathway by the neutralization antibody to type I IFN receptor (Anti-IFNAR) abolished BBI-mediated induction of the anti-HIV factors and inhibition of HIV in macrophages. These findings that BBI could activate IFN-β-mediated signaling pathway, initialize the intracellular innate immunity in macrophages and potently inhibit HIV at multiple steps of viral replication cycle indicate the necessity to further investigate BBI as an alternative and cost-effective anti-HIV natural product.

  14. A furoviral replicase recruits host HSP70 to membranes for viral RNA replication

    PubMed Central

    Yang, Jian; Zhang, Fen; Cai, Nian-Jun; Wu, Ne; Chen, Xuan; Li, Jing; Meng, Xiang-Feng; Zhu, Tong-Quan; Chen, Jian-Ping; Zhang, Heng-Mu

    2017-01-01

    Many host factors have been identified to be involved in viral infection. However, although furoviruses cause important diseases of cereals worldwide, no host factors have yet been identified that interact with furoviral genes or participate in the viral infection cycle. In this study, both TaHSP70 and NbHSP70 were up-regulated in Chinese wheat mosaic furovirus (CWMV)-infected plants. Their overexpression and inhibition were correlated with the accumulation of viral genomic RNAs, suggesting that the HSP70 genes could be necessary for CWMV infection. The subcellular distributions of TaHSP70 and NbHSP70 were significantly affected by CWMV infection or by infiltration of RNA1 alone. Further assays showed that the viral replicase encoded by CWMV RNA1 interacts with both TaHSP70 and NbHSP70 in vivo and vitro and that its region aa167–333 was responsible for the interaction. Subcellular assays showed that the viral replicase could recruit both TaHSP70 and NbHSP70 from the cytoplasm or nucleus to the granular aggregations or inclusion-like structures on the intracellular membrane system, suggesting that both HSP70s may be recruited into the viral replication complex (VRC) to promote furoviral replication. This is the first host factor identified to be involved in furoviral infection, which extends the list and functional scope of HSP70 chaperones. PMID:28367995

  15. Human immunodeficiency virus integrase inhibitors efficiently suppress feline immunodeficiency virus replication in vitro and provide a rationale to redesign antiretroviral treatment for feline AIDS

    PubMed Central

    Savarino, Andrea; Pistello, Mauro; D'Ostilio, Daniela; Zabogli, Elisa; Taglia, Fabiana; Mancini, Fabiola; Ferro, Stefania; Matteucci, Donatella; De Luca, Laura; Barreca, Maria Letizia; Ciervo, Alessandra; Chimirri, Alba; Ciccozzi, Massimo; Bendinelli, Mauro

    2007-01-01

    Background Treatment of feline immunodeficiency virus (FIV) infection has been hampered by the absence of a specific combination antiretroviral treatment (ART). Integrase strand transfer inhibitors (INSTIs) are emerging as a promising new drug class for HIV-1 treatment, and we evaluated the possibility of inhibiting FIV replication using INSTIs. Methods Phylogenetic analysis of lentiviral integrase (IN) sequences was carried out using the PAUP* software. A theoretical three-dimensional structure of the FIV IN catalytic core domain (CCD) was obtained by homology modeling based on a crystal structure of HIV-1 IN CCD. The interaction of the transferred strand of viral DNA with the catalytic cavity of FIV IN was deduced from a crystal structure of a structurally similar transposase complexed with transposable DNA. Molecular docking simulations were conducted using a genetic algorithm (GOLD). Antiviral activity was tested in feline lymphoblastoid MBM cells acutely infected with the FIV Petaluma strain. Circular and total proviral DNA was quantified by real-time PCR. Results The calculated INSTI-binding sites were found to be nearly identical in FIV and HIV-1 IN CCDs. The close similarity of primate and feline lentivirus IN CCDs was also supported by phylogenetic analysis. In line with these bioinformatic analyses, FIV replication was efficiently inhibited in acutely infected cell cultures by three investigational INSTIs, designed for HIV-1 and belonging to different classes. Of note, the naphthyridine carboxamide INSTI, L-870,810 displayed an EC50 in the low nanomolar range. Inhibition of FIV integration in situ was shown by real-time PCR experiments that revealed accumulation of circular forms of FIV DNA within cells treated with L-870,810. Conclusion We report a drug class (other than nucleosidic reverse transcriptase inhibitors) that is capable of inhibiting FIV replication in vitro. The present study helped establish L-870,810, a compound successfully tested in human clinical trials, as one of the most potent anti-FIV agents ever tested in vitro. This finding may provide new avenues for treating FIV infection and contribute to the development of a small animal model mimicking the effects of ART in humans. PMID:17971219

  16. Sliding Clamp–DNA Interactions Are Required for Viability and Contribute to DNA Polymerase Management in Escherichia coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heltzel, J.; Scouten Ponticelli, S; Sanders, L

    2009-01-01

    Sliding clamp proteins topologically encircle DNA and play vital roles in coordinating the actions of various DNA replication, repair, and damage tolerance proteins. At least three distinct surfaces of the Escherichia coli {beta} clamp interact physically with the DNA that it topologically encircles. We utilized mutant {beta} clamp proteins bearing G66E and G174A substitutions ({beta}159), affecting the single-stranded DNA-binding region, or poly-Ala substitutions in place of residues 148-HQDVR-152 ({beta}148-152), affecting the double-stranded DNA binding region, to determine the biological relevance of clamp-DNA interactions. As part of this work, we solved the X-ray crystal structure of {beta}148-152, which verified that themore » poly-Ala substitutions failed to significantly alter the tertiary structure of the clamp. Based on functional assays, both {beta}159 and {beta}148-152 were impaired for loading and retention on a linear primed DNA in vitro. In the case of {beta}148-152, this defect was not due to altered interactions with the DnaX clamp loader, but rather was the result of impaired {beta}148-152-DNA interactions. Once loaded, {beta}148-152 was proficient for DNA polymerase III (Pol III) replication in vitro. In contrast, {beta}148-152 was severely impaired for Pol II and Pol IV replication and was similarly impaired for direct physical interactions with these Pols. Despite its ability to support Pol III replication in vitro, {beta}148-152 was unable to support viability of E. coli. Nevertheless, physiological levels of {beta}148-152 expressed from a plasmid efficiently complemented the temperature-sensitive growth phenotype of a strain expressing {beta}159 (dnaN159), provided that Pol II and Pol IV were inactivated. Although this strain was impaired for Pol V-dependent mutagenesis, inactivation of Pol II and Pol IV restored the Pol V mutator phenotype. Taken together, these results support a model in which a sophisticated combination of competitive clamp-DNA, clamp-partner, and partner-DNA interactions serve to manage the actions of the different E. coli Pols in vivo.« less

  17. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay.

    PubMed

    Shaneyfelt, Mark E; Burke, Anna D; Graff, Joel W; Jutila, Mark A; Hardy, Michele E

    2006-09-01

    There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory agents that enhance innate responses to viral infection. A natural product library consisting of 280 compounds was screened in the assay and 15 compounds that significantly reduced infectivity without cytotoxicity were identified. Time course analysis of four compounds with previously characterized effects on inflammatory gene expression inhibited replication with pre-treatment times as minimal as 2 hours. Two of these four compounds, alpha-mangostin and 18-beta-glycyrrhetinic acid, activated NFkappaB and induced IL-8 secretion. The assay is adaptable to other virus systems, and amenable to full automation and adaptation to a high-throughput format. Identification of several compounds with known effects on inflammatory and antiviral gene expression that confer resistance to rotavirus infection in vitro suggests the assay is an appropriate platform for discovery of compounds with potential to amplify innate antiviral responses.

  18. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  19. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai Heqiao; Liu Jianying; Malkas, Linda H.

    2009-04-15

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediatedmore » by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC{sub 50} of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases {alpha}, {delta} and {epsilon} is 15, 45 and 125 {mu}M, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC{sub 50} = 88 {mu}M), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2-13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr(III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells.« less

  20. Construction and characterization of poliovirus subgenomic replicons.

    PubMed

    Kaplan, G; Racaniello, V R

    1988-05-01

    Poliovirus RNAs containing in-frame deletions within the capsid-coding region were produced by in vitro transcription of altered poliovirus type 1 cDNA by using bacteriophage T7 RNA polymerase. Three RNAs were transcribed that contained deletions of 2,317 nucleotides (bases 747 to 3064), 1,781 nucleotides (bases 1,175 to 2,956), and 1,295 nucleotides (bases 1,175 to 2,470). All three subgenomic RNAs replicated after transfection into HeLa cells, demonstrating that sequences encoding the capsid polypeptides are not essential for viral RNA replication in vivo. Viral RNA containing the largest deletion (R1) replicated approximately three times better than full-length RNA produced in vitro. Northern blot (RNA blot) hybridization analysis of total cellular RNA from HeLa cells at different times after transfection with R1 demonstrated the presence of increasing amounts of the expected 5.1-kilobase subgenomic RNA. Analysis by immunoprecipitation of viral proteins induced after transfection of R1 RNA into HeLa cells revealed the presence of proteins 2Apro, 2C, and 3Dpol and its precursors, suggesting that the polyprotein cleavages are similar to those occurring in virus-infected cells. Replication of P2/Lansing virion RNA was inhibited by cotransfection with the R1 replicon, as demonstrated by hybridization analysis with a serotype-specific oligonucleotide probe. A higher level of inhibition of RNA replication was observed when P2/Lansing RNA was cotransfected into HeLa cells with truncated R1 transcripts (R1-PvuII) that were missing 395 3' nucleotides and a poly(A) tail. These internally and terminally deleted RNAs inhibited the replication of subgenomic replicons R1, R2, and R3 and caused a reduction in plaque size when cotransfected with P1/Mahoney or P2/Lansing viral RNA, suggesting that individual cells had received both RNAs. No inhibition of plaque size was observed when replicon RNAs were used that were missing 1,384 or 1,839 3' nucleotides or contained plasmid-derived sequences downstream of the 3' poly(A). The trans-acting inhibitory effect of R1-PvuII on the replication of poliovirus P2/Lansing RNA did not involve entry of RNA into cells and appeared to reduce viral translation and RNA synthesis late in the infection cycle.

  1. Chromium reduces the in vitro activity and fidelity of DNA replication mediated by the human cell DNA synthesome

    PubMed Central

    Dai, Heqiao; Liu, Jianying; Malkas, Linda H.; Catalano, Jennifer; Alagharu, Srilakshmi; Hickey, Robert J.

    2009-01-01

    Hexavalent chromium Cr(VI) is known to be a carcinogenic metal ion, with a complicated mechanism of action. It can be found within our environment in soil and water contaminated by manufacturing processes. Cr(VI) ion is readily taken up by cells, and is recognized to be both genotoxic and cytotoxic; following its reduction to the stable trivalent form of the ion, chromium(Cr(III)), within cells. This form of the ion is known to impede the activity of cellular DNA polymerase and polymerase-mediated DNA replication. Here, we report the effects of chromium on the activity and fidelity of the DNA replication process mediated by the human cell DNA synthesome. The DNA synthesome is a functional multiprotein complex that is fully competent to carry-out each phase of the DNA replication process. The IC50 of Cr(III) toward the activity of DNA synthesome-associated DNA polymerases α, δ and ε is 15, 45 and 125 μM, respectively. Cr(III) inhibits synthesome-mediated DNA synthesis (IC50 =88 μM), and significantly reduces the fidelity of synthesome-mediated DNA replication. The mutation frequency induced by the different concentrations of Cr(III) ion used in our assays ranges from 2–13 fold higher than that which occurs spontaneously, and the types of mutations include single nucleotide substitutions, insertions, and deletions. Single nucleotide substitutions are the predominant type of mutation, and they occur primarily at GC base-pairs. Cr(III) ion produces a lower number of transition and a higher number of transversion mutations than occur spontaneously. Unlike Cr (III), Cr(VI) ion has little effect on the in vitro DNA synthetic activity and fidelity of the DNA synthesome, but does significantly inhibit DNA synthesis in intact cells. Cell growth and proliferation is also arrested by increasing concentrations of Cr(VI) ion. Our studies provide evidence indicating that the chromium ion induced decrease in the fidelity and activity of synthesome mediated DNA replication correlates with the genotoxic and cytotoxic effects of this metal ion; and promotes cell killing via inhibition of the DNA polymerase activity mediating the DNA replication and repair processes utilized by human cells. PMID:19371627

  2. Brucella spp. of amphibians comprise genomically diverse motile strains competent for replication in macrophages and survival in mammalian hosts

    PubMed Central

    Al Dahouk, Sascha; Köhler, Stephan; Occhialini, Alessandra; Jiménez de Bagüés, María Pilar; Hammerl, Jens Andre; Eisenberg, Tobias; Vergnaud, Gilles; Cloeckaert, Axel; Zygmunt, Michel S.; Whatmore, Adrian M.; Melzer, Falk; Drees, Kevin P.; Foster, Jeffrey T.; Wattam, Alice R.; Scholz, Holger C.

    2017-01-01

    Twenty-one small Gram-negative motile coccobacilli were isolated from 15 systemically diseased African bullfrogs (Pyxicephalus edulis), and were initially identified as Ochrobactrum anthropi by standard microbiological identification systems. Phylogenetic reconstructions using combined molecular analyses and comparative whole genome analysis of the most diverse of the bullfrog strains verified affiliation with the genus Brucella and placed the isolates in a cluster containing B. inopinata and the other non-classical Brucella species but also revealed significant genetic differences within the group. Four representative but molecularly and phenotypically diverse strains were used for in vitro and in vivo infection experiments. All readily multiplied in macrophage-like murine J774-cells, and their overall intramacrophagic growth rate was comparable to that of B. inopinata BO1 and slightly higher than that of B. microti CCM 4915. In the BALB/c murine model of infection these strains replicated in both spleen and liver, but were less efficient than B. suis 1330. Some strains survived in the mammalian host for up to 12 weeks. The heterogeneity of these novel strains hampers a single species description but their phenotypic and genetic features suggest that they represent an evolutionary link between a soil-associated ancestor and the mammalian host-adapted pathogenic Brucella species. PMID:28300153

  3. Inhibition of HIV Replication by Cyclic and Hairpin PNAs Targeting the HIV-1 TAR RNA Loop

    PubMed Central

    Upert, Gregory; Di Giorgio, Audrey; Upadhyay, Alok; Manvar, Dinesh; Pandey, Nootan; Pandey, Virendra N.; Patino, Nadia

    2012-01-01

    Human immunodeficiency virus-1 (HIV-1) replication and gene expression entails specific interaction of the viral protein Tat with its transactivation responsive element (TAR), to form a highly stable stem-bulge-loop structure. Previously, we described triphenylphosphonium (TPP) cation-based vectors that efficiently deliver nucleotide analogs (PNAs) into the cytoplasm of cells. In particular, we showed that the TPP conjugate of a linear 16-mer PNA targeting the apical stem-loop region of TAR impedes Tat-mediated transactivation of the HIV-1 LTR in vitro and also in cell culture systems. In this communication, we conjugated TPP to cyclic and hairpin PNAs targeting the loop region of HIV-1 TAR and evaluated their antiviral efficacy in a cell culture system. We found that TPP-cyclic PNAs containing only 8 residues, showed higher antiviral potency compared to hairpin PNAs of 12 or 16 residues. We further noted that the TPP-conjugates of the 8-mer cyclic PNA as well as the 16-mer linear PNA displayed similar antiviral efficacy. However, cyclic PNAs were shown to be highly specific to their target sequences. This communication emphasizes on the importance of small constrained cyclic PNAs over both linear and hairpin structures for targeting biologically relevant RNA hairpins. PMID:23029603

  4. The Epstein-Barr Virus BART miRNA Cluster of the M81 Strain Modulates Multiple Functions in Primary B Cells

    PubMed Central

    Lin, Xiaochen; Tsai, Ming-Han; Shumilov, Anatoliy; Poirey, Remy; Bannert, Helmut; Middeldorp, Jaap M.; Feederle, Regina; Delecluse, Henri-Jacques

    2015-01-01

    The Epstein-Barr virus (EBV) is a B lymphotropic virus that infects the majority of the human population. All EBV strains transform B lymphocytes, but some strains, such as M81, also induce spontaneous virus replication. EBV encodes 22 microRNAs (miRNAs) that form a cluster within the BART region of the virus and have been previously been found to stimulate tumor cell growth. Here we describe their functions in B cells infected by M81. We found that the BART miRNAs are downregulated in replicating cells, and that exposure of B cells in vitro or in vivo in humanized mice to a BART miRNA knockout virus resulted in an increased proportion of spontaneously replicating cells, relative to wild type virus. The BART miRNAs subcluster 1, and to a lesser extent subcluster 2, prevented expression of BZLF1, the key protein for initiation of lytic replication. Thus, multiple BART miRNAs cooperate to repress lytic replication. The BART miRNAs also downregulated pro- and anti-apoptotic mediators such as caspase 3 and LMP1, and their deletion did not sensitize B-cells to apoptosis. To the contrary, the majority of humanized mice infected with the BART miRNA knockout mutant developed tumors more rapidly, probably due to enhanced LMP1 expression, although deletion of the BART miRNAs did not modify the virus transforming abilities in vitro. This ability to slow cell growth could be confirmed in non-humanized immunocompromized mice. Injection of resting B cells exposed to a virus that lacks the BART miRNAs resulted in accelerated tumor growth, relative to wild type controls. Therefore, we found that the M81 BART miRNAs do not enhance B-cell tumorigenesis but rather repress it. The repressive effects of the BART miRNAs on potentially pathogenic viral functions in infected B cells are likely to facilitate long-term persistence of the virus in the infected host. PMID:26694854

  5. In vitro inhibition of African swine fever virus-topoisomerase II disrupts viral replication.

    PubMed

    Freitas, Ferdinando B; Frouco, Gonçalo; Martins, Carlos; Leitão, Alexandre; Ferreira, Fernando

    2016-10-01

    African swine fever virus (ASFV) is the etiological agent of a highly-contagious and fatal disease of domestic pigs, leading to serious socio-economic impact in affected countries. To date, neither a vaccine nor a selective anti-viral drug are available for prevention or treatment of African swine fever (ASF), emphasizing the need for more detailed studies at the role of ASFV proteins involved in viral DNA replication and transcription. Notably, ASFV encodes for a functional type II topoisomerase (ASFV-Topo II) and we recently showed that several fluoroquinolones (bacterial DNA topoisomerase inhibitors) fully abrogate ASFV replication in vitro. Here, we report that ASFV-Topo II gene is actively transcribed throughout infection, with transcripts being detected as early as 2 hpi and reaching a maximum peak concentration around 16 hpi, when viral DNA synthesis, transcription and translation are more active. siRNA knockdown experiments showed that ASFV-Topo II plays a critical role in viral DNA replication and gene expression, with transfected cells presenting lower viral transcripts (up to 89% decrease) and reduced cytopathic effect (-66%) when compared to the control group. Further, a significant decrease in the number of both infected cells (75.5%) and viral factories per cell and in virus yields (up to 99.7%, 2.5 log) was found only in cells transfected with siRNA targeting ASFV-Topo II. We also demonstrate that a short exposure to enrofloxacin during the late phase of infection (from 15 to 1 hpi) induces fragmentation of viral genomes, whereas no viral genomes were detected when enrofloxacin was added from the early phase of infection (from 2 to 16 hpi), suggesting that fluoroquinolones are ASFV-Topo II poisons. Altogether, our results demonstrate that ASFV-Topo II enzyme has an essential role during viral genome replication and transcription, emphasizing the idea that this enzyme can be a potential target for drug and vaccine development against ASF. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Internal Initiation of Influenza Virus Replication of Viral RNA and Complementary RNA in Vitro*

    PubMed Central

    Zhang, Shijian; Wang, Jinlan; Wang, Qiang; Toyoda, Tetsuya

    2010-01-01

    Influenza virus transcription is a prototype of primer-dependent initiation. Its replication mechanism is thought to be primer-independent. The internal initiation and realignment model for influenza virus genome replication has been recently proposed (Deng, T., Vreede, F. T., and Brownlee, G. G. (2006) J. Virol. 80, 2337–2348). We obtained new results, which led us to propose a novel model for the initiation of viral RNA (vRNA) replication. In our study, we analyzed the initiation mechanisms of influenza virus vRNA and complementary RNA (cRNA) synthesis in vitro, using purified RNA polymerase (RdRp) and 84-nt model RNA templates. We found that, for vRNA → cRNA →, RdRp initiated replication from the second nucleotide of the 3′-end. Therefore, host RNA-specific ribonucleotidyltransferases are required to add one nucleotide (purine residues are preferred) to the 3′-end of vRNA to make the complete copy of vRNA. This hypothesis was experimentally proven using poly(A) polymerase. For cRNA → vRNA, the dinucleotide primer AG was synthesized from UC (fourth and fifth from the 3′-end) by RdRp pausing at the sixth U of UUU and realigning at the 3′-end of cRNA template; then RdRp was able to read through the entire template RNA. The RdRp initiation complex was not stable until it had read through the UUU of cRNA and the UUUU of vRNA at their respective 3′-ends. This was because primers overlapping with the first U of the clusters did not initiate transcription efficiently, and the initiation product of v84+G (the v84 template with an extra G at its 3′-end), AGC, realigned to the 3′-end. PMID:20858902

  7. Electron microscopic analysis of rotavirus assembly-replication intermediates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudreaux, Crystal E.; Kelly, Deborah F.; McDonald, Sarah M., E-mail: mcdonaldsa@vtc.vt.edu

    2015-03-15

    Rotaviruses (RVs) replicate their segmented, double-stranded RNA genomes in tandem with early virion assembly. In this study, we sought to gain insight into the ultrastructure of RV assembly-replication intermediates (RIs) using transmission electron microscopy (EM). Specifically, we examined a replicase-competent, subcellular fraction that contains all known RV RIs. Three never-before-seen complexes were visualized in this fraction. Using in vitro reconstitution, we showed that ~15-nm doughnut-shaped proteins in strings were nonstructural protein 2 (NSP2) bound to viral RNA transcripts. Moreover, using immunoaffinity-capture EM, we revealed that ~20-nm pebble-shaped complexes contain the viral RNA polymerase (VP1) and RNA capping enzyme (VP3). Finally,more » using a gel purification method, we demonstrated that ~30–70-nm electron-dense, particle-shaped complexes represent replicase-competent core RIs, containing VP1, VP3, and NSP2 as well as capsid proteins VP2 and VP6. The results of this study raise new questions about the interactions among viral proteins and RNA during the concerted assembly–replicase process. - Highlights: • Rotaviruses replicate their genomes in tandem with early virion assembly. • Little is known about rotavirus assembly-replication intermediates. • Assembly-replication intermediates were imaged using electron microscopy.« less

  8. Fork rotation and DNA precatenation are restricted during DNA replication to prevent chromosomal instability.

    PubMed

    Schalbetter, Stephanie A; Mansoubi, Sahar; Chambers, Anna L; Downs, Jessica A; Baxter, Jonathan

    2015-08-18

    Faithful genome duplication and inheritance require the complete resolution of all intertwines within the parental DNA duplex. This is achieved by topoisomerase action ahead of the replication fork or by fork rotation and subsequent resolution of the DNA precatenation formed. Although fork rotation predominates at replication termination, in vitro studies have suggested that it also occurs frequently during elongation. However, the factors that influence fork rotation and how rotation and precatenation may influence other replication-associated processes are unknown. Here we analyze the causes and consequences of fork rotation in budding yeast. We find that fork rotation and precatenation preferentially occur in contexts that inhibit topoisomerase action ahead of the fork, including stable protein-DNA fragile sites and termination. However, generally, fork rotation and precatenation are actively inhibited by Timeless/Tof1 and Tipin/Csm3. In the absence of Tof1/Timeless, excessive fork rotation and precatenation cause extensive DNA damage following DNA replication. With Tof1, damage related to precatenation is focused on the fragile protein-DNA sites where fork rotation is induced. We conclude that although fork rotation and precatenation facilitate unwinding in hard-to-replicate contexts, they intrinsically disrupt normal chromosome duplication and are therefore restricted by Timeless/Tipin.

  9. SCY-635, a Novel Nonimmunosuppressive Analog of Cyclosporine That Exhibits Potent Inhibition of Hepatitis C Virus RNA Replication In Vitro ▿ †

    PubMed Central

    Hopkins, Sam; Scorneaux, Bernard; Huang, Zhuhui; Murray, Michael G.; Wring, Stephen; Smitley, Craig; Harris, Richard; Erdmann, Frank; Fischer, Gunter; Ribeill, Yves

    2010-01-01

    SCY-635 is a novel nonimmunosuppressive cyclosporine-based analog that exhibits potent suppression of hepatitis C virus (HCV) replication in vitro. SCY-635 inhibited the peptidyl prolyl isomerase activity of cyclophilin A at nanomolar concentrations but showed no detectable inhibition of calcineurin phosphatase activity at concentrations up to 2 μM. Metabolic studies indicated that SCY-635 did not induce the major cytochrome P450 enzymes 1A2, 2B6, and 3A4. SCY-635 was a weak inhibitor and a poor substrate for P-glycoprotein. Functional assays with stimulated Jurkat cells and stimulated human peripheral blood mononuclear cells indicated that SCY-635 is a weaker inhibitor of interleukin-2 secretion than cyclosporine. A series of two-drug combination studies was performed in vitro. SCY-635 exhibited synergistic antiviral activity with alpha interferon 2b and additive antiviral activity with ribavirin. SCY-635 was shown to be orally bioavailable in multiple animal species and produced blood and liver concentrations of parent drug that exceeded the 50% effective dose determined in the bicistronic con1b-derived replicon assay. These results suggest that SCY-635 warrants further investigation as a novel therapeutic agent for the treatment of individuals who are chronically infected with HCV. PMID:19933795

  10. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.

    PubMed

    Barnes, Ryan P; Hile, Suzanne E; Lee, Marietta Y; Eckert, Kristin A

    2017-09-01

    Common fragile sites (CFSs) are inherently unstable genomic loci that are recurrently altered in human tumor cells. Despite their instability, CFS are ubiquitous throughout the human genome and associated with large tumor suppressor genes or oncogenes. CFSs are enriched with repetitive DNA sequences, one feature postulated to explain why these loci are inherently difficult to replicate, and sensitive to replication stress. We have shown that specialized DNA polymerases (Pols) η and κ replicate CFS-derived sequences more efficiently than the replicative Pol δ. However, we lacked an understanding of how these enzymes cooperate to ensure efficient CFS replication. Here, we designed a model of lagging strand replication with RFC loaded PCNA that allows for maximal activity of the four-subunit human Pol δ holoenzyme, Pol η, and Pol κ in polymerase mixing assays. We discovered that Pol η and κ are both able to exchange with Pol δ stalled at repetitive CFS sequences, enhancing Normalized Replication Efficiency. We used this model to test the impact of PCNA mono-ubiquitination on polymerase exchange, and found no change in polymerase cooperativity in CFS replication compared with unmodified PCNA. Finally, we modeled replication stress in vitro using aphidicolin and found that Pol δ holoenzyme synthesis was significantly inhibited in a dose-dependent manner, preventing any replication past the CFS. Importantly, Pol η and κ were still proficient in rescuing this stalled Pol δ synthesis, which may explain, in part, the CFS instability phenotype of aphidicolin-treated Pol η and Pol κ-deficient cells. In total, our data support a model wherein Pol δ stalling at CFSs allows for free exchange with a specialized polymerase that is not driven by PCNA. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Recombinant bovine respiratory syncytial virus with deletion of the SH gene induces increased apoptosis and pro-inflammatory cytokines in vitro, and is attenuated and induces protective immunity in calves

    PubMed Central

    Wyld, Sara; Valarcher, Jean-Francois; Guzman, Efrain; Thom, Michelle; Widdison, Stephanie; Buchholz, Ursula J.

    2014-01-01

    Bovine respiratory syncytial virus (BRSV) causes inflammation and obstruction of the small airways, leading to severe respiratory disease in young calves. The virus is closely related to human (H)RSV, a major cause of bronchiolitis and pneumonia in young children. The ability to manipulate the genome of RSV has provided opportunities for the development of stable, live attenuated RSV vaccines. The role of the SH protein in the pathogenesis of BRSV was evaluated in vitro and in vivo using a recombinant (r)BRSV in which the SH gene had been deleted. Infection of bovine epithelial cells and monocytes with rBRSVΔSH, in vitro, resulted in an increase in apoptosis, and higher levels of TNF-α and IL-1β compared with cells infected with parental, wild-type (WT) rBRSV. Although replication of rBRSVΔSH and WT rBRSV, in vitro, were similar, the replication of rBRSVΔSH was moderately reduced in the lower, but not the upper, respiratory tract of experimentally infected calves. Despite the greater ability of rBRSVΔSH to induce pro-inflammatory cytokines, in vitro, the pulmonary inflammatory response in rBRSVΔSH-infected calves was significantly reduced compared with that in calves inoculated with WT rBRSV, 6 days previously. Virus lacking SH appeared to be as immunogenic and effective in inducing resistance to virulent virus challenge, 6 months later, as the parental rBRSV. These findings suggest that rBRSVΔSH may be an ideal live attenuated virus vaccine candidate, combining safety with a high level of immunogenicity. PMID:24700100

  12. Symmetry of interactions rules in incompletely connected random replicator ecosystems.

    PubMed

    Kärenlampi, Petri P

    2014-06-01

    The evolution of an incompletely connected system of species with speciation and extinction is investigated in terms of random replicators. It is found that evolving random replicator systems with speciation do become large and complex, depending on speciation parameters. Antisymmetric interactions result in large systems, whereas systems with symmetric interactions remain small. A co-dominating feature is within-species interaction pressure: large within-species interaction increases species diversity. Average fitness evolves in all systems, however symmetry and connectivity evolve in small systems only. Newcomers get extinct almost immediately in symmetric systems. The distribution in species lifetimes is determined for antisymmetric systems. The replicator systems investigated do not show any sign of self-organized criticality. The generalized Lotka-Volterra system is shown to be a tedious way of implementing the replicator system.

  13. Analysis of norovirus contamination of seafood

    USDA-ARS?s Scientific Manuscript database

    The study of human norovirus (NoVs) replication in vitro would be a highly useful tool to virologists and immunologists. For this reason, we have searched for new approaches to determine viability of noroviruses in food samples (especially sea food). Our research team has multiple years of experie...

  14. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS).

    PubMed

    Tsume, Yasuhiro; Matsui, Kazuki; Searls, Amanda L; Takeuchi, Susumu; Amidon, Gregory E; Sun, Duxin; Amidon, Gordon L

    2017-05-01

    The development of formulations and the assessment of oral drug absorption for Biopharmaceutical Classification System (BCS) class IIb drugs is often a difficult issue due to the potential for supersaturation and precipitation in the gastrointestinal (GI) tract. The physiological environment in the GI tract largely influences in vivo drug dissolution rates of those drugs. Thus, those physiological factors should be incorporated into the in vitro system to better assess in vivo performance of BCS class IIb drugs. In order to predict oral bioperformance, an in vitro dissolution system with multiple compartments incorporating physiologically relevant factors would be expected to more accurately predict in vivo phenomena than a one-compartment dissolution system like USP Apparatus 2 because, for example, the pH change occurring in the human GI tract can be better replicated in a multi-compartmental platform. The Gastrointestinal Simulator (GIS) consists of three compartments, the gastric, duodenal and jejunal chambers, and is a practical in vitro dissolution apparatus to predict in vivo dissolution for oral dosage forms. This system can demonstrate supersaturation and precipitation and, therefore, has the potential to predict in vivo bioperformance of oral dosage forms where this phenomenon may occur. In this report, in vitro studies were performed with dipyridamole and ketoconazole to evaluate the precipitation rates and the relationship between the supersaturation levels and oral absorption of BCS class II weak base drugs. To evaluate the impact of observed supersaturation levels on oral absorption, a study utilizing the GIS in combination with mouse intestinal infusion was conducted. Supersaturation levels observed in the GIS enhanced dipyridamole and ketoconazole absorption in mouse, and a good correlation between their supersaturation levels and their concentration in plasma was observed. The GIS, therefore, appears to represent in vivo dissolution phenomena and demonstrate supersaturation and precipitation of dipyridamole and ketoconazole. We therefore conclude that the GIS has been shown to be a good biopredictive tool to predict in vivo bioperformance of BCS class IIb drugs that can be used to optimize oral formulations. Copyright © 2017. Published by Elsevier B.V.

  15. Replicating research in ecology and evolution: feasibility, incentives, and the cost-benefit conundrum.

    PubMed

    Nakagawa, Shinichi; Parker, Timothy H

    2015-10-28

    We believe that replicating studies in ecology and evolution is extremely valuable, but replication within species and systems is troublingly rare, and even 'quasi-replications' in different systems are often insufficient. We make a case for supporting multiple types of replications and point out that the current incentive structure needs to change if ecologists and evolutionary biologist are to value scientific replication sufficiently.

  16. Lactoferrin for prevention of common viral infections.

    PubMed

    Wakabayashi, Hiroyuki; Oda, Hirotsugu; Yamauchi, Koji; Abe, Fumiaki

    2014-11-01

    Although lactoferrin has many biological functions, the host-protective effects against pathogenic microorganisms including bacteria, fungi, and viruses are regarded as one of the most important. Here, we review research on the protective role of lactoferrin administration against common viral infections. Many studies have shown the in vitro antiviral activity of lactoferrin against viral pathogens that cause common infections such as the common cold, influenza, gastroenteritis, summer cold, and herpes, where lactoferrin inhibits mainly viral attachment to the target cells. Recently, studies indicating the in vivo protective effects of lactoferrin by oral administration against common viral infections have been increasing. For instance, norovirus is an extremely important emerging human pathogen that causes a majority of gastroenteritis outbreaks worldwide that may be a target candidate for lactoferrin. Lactoferrin consumption reduced the incidence of noroviral gastroenteritis in children and a similar effect was observed in a wide range of ages in a preliminary survey. A recent in vitro study reported that lactoferrin inhibits both cellular attachment of the murine norovirus, a virus closely-related to the human norovirus, and viral replication in the cells by inducing antiviral cytokines interferon (IFN)-α/β. Lactoferrin administration also enhances NK cell activity and Th1 cytokine responses, which lead to protection against viral infections. In conclusion, lactoferrin consumption may protect the host from viral infections through inhibiting the attachment of a virus to the cells, replication of the virus in the cells, and enhancement of systemic immune functions. Copyright © 2014 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Are clinical findings of systemic titanium dispersion following implantation explained by available in vitro evidence? An evidence-based analysis.

    PubMed

    Curtin, Justin Paul; Wang, Minji

    2017-08-01

    Although the presence of titanium wear particles released into tissues is known to induce local inflammation following the therapeutic implantation of titanium devices into humans, the role that titanium ions play in adverse tissue responses has received little attention. Support that ongoing titanium ion release occurs is evidenced by the presence of ionic titanium bound to transferrin in blood, and ongoing excretion in the urine of patients with titanium devices. However, as reports documenting the presence of titanium within tissues do not distinguish between particulate and ionic forms due to technical challenges, the degree to which ionic titanium is released into tissues is unknown. To determine the potential for titanium ion release into tissues, this study evaluates available in vitro evidence relating to the release of ionic titanium under physiological conditions. This is a systematic literature review of studies reporting titanium ion release into solutions from titanium devices under conditions replicating the interstitial pH and constituents. Inclusion and exclusion criteria were defined. Of 452 articles identified, titanium ions were reported in nine media relevant to human biology in seventeen studies. Only one study, using human serum replicated both physiological pH and the concentration of constituents while reporting the presence of titanium ions. While there is insufficient information to explain the factors that contribute to the presence of titanium ions in serum of humans implanted with titanium devices, currently available information suggests that areas of future inquiry include the role of transferrin and organic acids.

  18. Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model

    PubMed Central

    Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo

    2009-01-01

    We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245

  19. All tangled up: how cells direct, manage and exploit topoisomerase function

    PubMed Central

    Vos, Seychelle M.; Tretter, Elsa M.; Schmidt, Bryan H.; Berger, James M.

    2015-01-01

    Preface Topoisomerases are complex molecular machines that modulate DNA topology to maintain chromosome superstructure and integrity. Although capable of stand-alone activity in vitro, topoisomerases frequently are linked to larger pathways and systems that resolve specific DNA superstructures and intermediates arising from cellular processes such as DNA repair, transcription, replication, and chromosome compaction. Topoisomerase activity is indispensible to cells, but requires the transient breakage of DNA strands. This property has been exploited, often for significant clinical benefit, by various exogenous agents that interfere with cell proliferation. Despite decades of study, surprising findings involving topoisomerases continue to emerge with respect to their cellular function, regulation, and utility as therapeutic targets. PMID:22108601

  20. High viral load in lymph nodes and latent human immunodeficiency virus (HIV) in peripheral blood cells of HIV-1-infected chimpanzees.

    PubMed Central

    Saksela, K; Muchmore, E; Girard, M; Fultz, P; Baltimore, D

    1993-01-01

    We have examined human immunodeficiency virus type 1 (HIV-1) infection in chimpanzees by analyzing HIV-1 DNA and RNA in lymph nodes and peripheral mononuclear cells (PBMCs). Like certain asymptomatic HIV-infected persons, these chimpanzees had no detectable viral replication in their PBMCs. However, viral replication and a high viral load were observed in the lymphatic tissue. Despite the absence of viral replication in PBMCs, 1/1,000 to 1/10,000 of the PBMCs contained HIV-1 proviral DNA, and HIV transcription could be rapidly induced in these cells in vitro. These results provide direct evidence of cellular latency of HIV in vivo and suggest that HIV infection in chimpanzees may be a useful model for clinical latency of HIV infection in humans. Images PMID:8230463

  1. Inhibitors of signal peptide peptidase (SPP) affect HSV-1 infectivity in vitro and in vivo

    PubMed Central

    Allen, Sariah J.; Mott, Kevin R.; Ghiasi, Homayon

    2014-01-01

    Recently we have shown that the highly conserved herpes simplex virus glycoprotein K (gK) binds to signal peptide peptidase (SPP), also known as minor histocompatibility antigen H13. In this study we have demonstrated for the first time that inhibitors of SPP, such as L685,458, (Z-LL)2 ketone, aspirin, ibuprofen and DAPT, significantly reduced HSV-1 replication in tissue culture. Inhibition of SPP activity via (Z-LL)2 ketone significantly reduced viral transcripts in the nucleus of infected cells. Finally, when administered during primary infection, (Z-LL)2 ketone inhibitor reduced HSV-1 replication in the eyes of ocularly infected mice. Thus, blocking SPP activity may represent a clinically effective and expedient approach to the reduction of viral replication and the resulting pathology. PMID:24768597

  2. Understanding how replication processes can maintain systems away from equilibrium using Algorithmic Information Theory.

    PubMed

    Devine, Sean D

    2016-02-01

    Replication can be envisaged as a computational process that is able to generate and maintain order far-from-equilibrium. Replication processes, can self-regulate, as the drive to replicate can counter degradation processes that impact on a system. The capability of replicated structures to access high quality energy and eject disorder allows Landauer's principle, in conjunction with Algorithmic Information Theory, to quantify the entropy requirements to maintain a system far-from-equilibrium. Using Landauer's principle, where destabilising processes, operating under the second law of thermodynamics, change the information content or the algorithmic entropy of a system by ΔH bits, replication processes can access order, eject disorder, and counter the change without outside interventions. Both diversity in replicated structures, and the coupling of different replicated systems, increase the ability of the system (or systems) to self-regulate in a changing environment as adaptation processes select those structures that use resources more efficiently. At the level of the structure, as selection processes minimise the information loss, the irreversibility is minimised. While each structure that emerges can be said to be more entropically efficient, as such replicating structures proliferate, the dissipation of the system as a whole is higher than would be the case for inert or simpler structures. While a detailed application to most real systems would be difficult, the approach may well be useful in understanding incremental changes to real systems and provide broad descriptions of system behaviour. Copyright © 2016 The Author. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. A Molecular Toolbox to Engineer Site-Specific DNA Replication Perturbation.

    PubMed

    Larsen, Nicolai B; Hickson, Ian D; Mankouri, Hocine W

    2018-01-01

    Site-specific arrest of DNA replication is a useful tool for analyzing cellular responses to DNA replication perturbation. The E. coli Tus-Ter replication barrier can be reconstituted in eukaryotic cells as a system to engineer an unscheduled collision between a replication fork and an "alien" impediment to DNA replication. To further develop this system as a versatile tool, we describe a set of reagents and a detailed protocol that can be used to engineer Tus-Ter barriers into any locus in the budding yeast genome. Because the Tus-Ter complex is a bipartite system with intrinsic DNA replication-blocking activity, the reagents and protocols developed and validated in yeast could also be optimized to engineer site-specific replication fork barriers into other eukaryotic cell types.

  4. Selective activity of several cholic acid derivatives against human immunodeficiency virus replication in vitro.

    PubMed

    Baba, M; Schols, D; Nakashima, H; Pauwels, R; Parmentier, G; Meijer, D K; De Clercq, E

    1989-01-01

    Several cholic acid derivatives such as taurolithocholic acid, lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate were shown to inhibit selectively the replication of human immunodeficiency virus type 1 (HIV-1) in vitro. These compounds completely protected MT-4 cells against HIV-1-induced cytopathogenicity at a concentration of 100 micrograms/ml, whereas no toxicity for the host cells was observed at 200 micrograms/ml. They also inhibited HIV-1 antigen expression in HIV-1-infected CEM cells. The bile acids (cholic acid, deoxycholic acid, chenodeoxycholic acid, and lithocholic acid) did not show any inhibitory effect on HIV-1 replication at concentrations that were not toxic to the host (MT-4) cells. From a structure-function analysis of a number of cholic acid derivatives, the presence of either a sulfonate (as in the tauro conjugates) or a sulfate group as well as the "litho" configuration appeared to be necessary for the expression of anti-HIV-1 activity. The active cholic acid derivatives did not directly inactivate the virus particles at the concentrations that were not toxic to the host cells. Lithocholic acid 3-sulfate, taurolithocholic acid 3-sulfate, and glycolithocholic acid 3-sulfate, but not taurolithocholic acid, partially inhibited virus adsorption to MT-4 cells. These three compounds were also inhibitory to the reverse transcriptase activity associated with HIV-1.

  5. Role of Prion Replication in the Strain-dependent Brain Regional Distribution of Prions.

    PubMed

    Hu, Ping Ping; Morales, Rodrigo; Duran-Aniotz, Claudia; Moreno-Gonzalez, Ines; Khan, Uffaf; Soto, Claudio

    2016-06-10

    One intriguing feature of prion diseases is their strain variation. Prion strains are differentiated by the clinical consequences they generate in the host, their biochemical properties, and their potential to infect other animal species. The selective targeting of these agents to specific brain structures have been extensively used to characterize prion strains. However, the molecular basis dictating strain-specific neurotropism are still elusive. In this study, isolated brain structures from animals infected with four hamster prion strains (HY, DY, 139H, and SSLOW) were analyzed for their content of protease-resistant PrP(Sc) Our data show that these strains have different profiles of PrP deposition along the brain. These patterns of accumulation, which were independent of regional PrP(C) production, were not reproduced by in vitro replication when different brain regions were used as substrate for the misfolding-amplification reaction. On the contrary, our results show that in vitro replication efficiency depended exclusively on the amount of PrP(C) present in each part of the brain. Our results suggest that the variable regional distribution of PrP(Sc) in distinct strains is not determined by differences on prion formation, but on other factors or cellular pathways. Our findings may contribute to understand the molecular mechanisms of prion pathogenesis and strain diversity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. CNOT4-Mediated Ubiquitination of Influenza A Virus Nucleoprotein Promotes Viral RNA Replication

    PubMed Central

    Lin, Yu-Chen; Jeng, King-Song

    2017-01-01

    ABSTRACT Influenza A virus (IAV) RNA segments are individually packaged with viral nucleoprotein (NP) and RNA polymerases to form a viral ribonucleoprotein (vRNP) complex. We previously reported that NP is a monoubiquitinated protein which can be deubiquitinated by a cellular ubiquitin protease, USP11. In this study, we identified an E3 ubiquitin ligase, CNOT4 (Ccr4-Not transcription complex subunit 4), which can ubiquitinate NP. We found that the levels of viral RNA, protein, viral particles, and RNA polymerase activity in CNOT4 knockdown cells were lower than those in the control cells upon IAV infection. Conversely, overexpression of CNOT4 rescued viral RNP activity. In addition, CNOT4 interacted with the NP in the cell. An in vitro ubiquitination assay also showed that NP could be ubiquitinated by in vitro-translated CNOT4, but ubiquitination did not affect the protein stability of NP. Significantly, CNOT4 increased NP ubiquitination, whereas USP11 decreased it. Mass spectrometry analysis of ubiquitinated NP revealed multiple ubiquitination sites on the various lysine residues of NP. Three of these, K184, K227, and K273, are located on the RNA-binding groove of NP. Mutations of these sites to arginine reduced viral RNA replication. These results indicate that CNOT4 is a ubiquitin ligase of NP, and ubiquitination of NP plays a positive role in viral RNA replication. PMID:28536288

  7. SARS-like cluster of circulating bat coronavirus pose threat for human emergence

    PubMed Central

    Menachery, Vineet D.; Yount, Boyd L.; Debbink, Kari; Agnihothram, Sudhakar; Gralinski, Lisa E.; Plante, Jessica A.; Graham, Rachel L.; Scobey, Trevor; Ge, Xing-Yi; Donaldson, Eric F.; Randell, Scott H.; Lanzavecchia, Antonio; Marasco, Wayne A.; Shi, Zhengli-Li; Baric, Ralph S.

    2016-01-01

    The emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome (MERS)-CoV underscores the threat of cross-species transmission events leading to outbreaks in humans. In this study, we examine the disease potential for SARS-like CoVs currently circulating in Chinese horseshoe bat populations. Utilizing the SARS-CoV infectious clone, we generated and characterized a chimeric virus expressing the spike of bat coronavirus SHC014 in a mouse adapted SARS-CoV backbone. The results indicate that group 2b viruses encoding the SHC014 spike in a wild type backbone can efficiently utilize multiple ACE2 receptor orthologs, replicate efficiently in primary human airway cells, and achieve in vitro titers equivalent to epidemic strains of SARS-CoV. Additionally, in vivo experiments demonstrate replication of the chimeric virus in mouse lung with notable pathogenesis. Evaluation of available SARS-based immune-therapeutic and prophylactic modalities revealed poor efficacy; both monoclonal antibody and vaccine approaches failed to neutralize and protect from CoVs utilizing the novel spike protein. Importantly, based on these findings, we synthetically rederived an infectious full length SHC014 recombinant virus and demonstrate robust viral replication both in vitro and in vivo. Together, the work highlights a continued risk of SARS-CoV reemergence from viruses currently circulating in bat populations. PMID:26552008

  8. Validating the disruption of proliferating cell nuclear antigen interactions in the development of targeted cancer therapeutics.

    PubMed

    Smith, Shanna J; Hickey, Robert J; Malkas, Linda H

    2016-01-01

    Human DNA replication and repair is a highly coordinated process involving the specifically timed actions of numerous proteins and enzymes. Many of these proteins require interaction with proliferating cell nuclear antigen (PCNA) for activation within the process. The interdomain connector loop (IDCL) of PCNA provides a docking site for many of those proteins, suggesting that this region is critically important in the regulation of cellular function. Previous work in this laboratory has demonstrated that a peptide mimicking a specific region of the IDCL (caPeptide) has the ability to disrupt key protein-protein interactions between PCNA and its binding partners, thereby inhibiting DNA replication within the cells. In this study, we confirm the ability of the caPeptide to disrupt DNA replication function using both intact cell and in vitro DNA replication assays. Further, we were able to demonstrate that treatment with caPeptide results in a decrease of polymerase δ activity that correlates with the observed decrease in DNA replication. We have also successfully developed a surface plasmon resonance (SPR) assay to validate the disruption of the PCNA-pol δ interaction with caPeptide.

  9. Replication-mediated disassociation of replication protein A–XPA complex upon DNA damage: implications for RPA handing off

    PubMed Central

    Jiang, Gaofeng; Zou, Yue; Wu, Xiaoming

    2013-01-01

    RPA (replication protein A), the eukaryotic ssDNA (single-stranded DNA)-binding protein, participates in most cellular processes in response to genotoxic insults, such as NER (nucleotide excision repair), DNA, DSB (double-strand break) repair and activation of cell cycle checkpoint signalling. RPA interacts with XPA (xeroderma pigmentosum A) and functions in early stage of NER. We have shown that in cells the RPA–XPA complex disassociated upon exposure of cells to high dose of UV irradiation. The dissociation required replication stress and was partially attributed to tRPA hyperphosphorylation. Treatment of cells with CPT (camptothecin) and HU (hydroxyurea), which cause DSB DNA damage and replication fork collapse respectively and also leads to the disruption of RPA–XPA complex. Purified RPA and XPA were unable to form complex in vitro in the presence of ssDNA. We propose that the competition-based RPA switch among different DNA metabolic pathways regulates the dissociation of RPA with XPA in cells after DNA damage. The biological significances of RPA–XPA complex disruption in relation with checkpoint activation, DSB repair and RPA hyperphosphorylation are discussed. PMID:22578086

  10. Nrf2-dependent induction of innate host defense via heme oxygenase-1 inhibits Zika virus replication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hanxia; Falgout, Barry; Takeda, Kazuyo

    We identified primary human monocyte-derived macrophages (MDM) as vulnerable target cells for Zika virus (ZIKV) infection. We demonstrate dramatic effects of hemin, the natural inducer of the heme catabolic enzyme heme oxygenase-1 (HO-1), in the reduction of ZIKV replication in vitro. Both LLC-MK2 monkey kidney cells and primary MDM exhibited hemin-induced HO-1 expression with major reductions of >90% in ZIKV replication, with little toxicity to infected cells. Silencing expression of HO-1 or its upstream regulatory gene, nuclear factor erythroid-related factor 2 (Nrf2), attenuated hemin-induced suppression of ZIKV infection, suggesting an important role for induction of these intracellular mediators in retardingmore » ZIKV replication. The inverse correlation between hemin-induced HO-1 levels and ZIKV replication provides a potentially useful therapeutic modality based on stimulation of an innate cellular response against Zika virus infection. - Highlights: •Hemin treatment protected monocyte-derived macrophages against Zika virus (ZIKV) infection. •Innate cellular protection against ZIKV infection correlated with Nrf2-dependent HO-1 expression. •Stimulation of innate cellular responses may provide a therapeutic strategy against ZIKV infection.« less

  11. Progress in Assessing Air Pollutant Risks from In Vitro Exposures: Matching Ozone Dose and Effect in Human Airway Cells

    PubMed Central

    Hatch, Gary E.; Duncan, Kelly E.; Diaz-Sanchez, David; Schmitt, Michael T.; Ghio, Andrew J.; Carraway, Martha Sue; McKee, John; Dailey, Lisa A.; Berntsen, Jon; Devlin, Robert B.

    2014-01-01

    In vitro exposures to air pollutants could, in theory, facilitate a rapid and detailed assessment of molecular mechanisms of toxicity. However, it is difficult to ensure that the dose of a gaseous pollutant to cells in tissue culture is similar to that of the same cells during in vivo exposure of a living person. The goal of the present study was to compare the dose and effect of O3 in airway cells of humans exposed in vivo to that of human cells exposed in vitro. Ten subjects breathed labeled O3 (18O3, 0.3 ppm, 2 h) while exercising intermittently. Bronchial brush biopsies and lung lavage fluids were collected 1 h post exposure for in vivo data whereas in vitro data were obtained from primary cultures of human bronchial epithelial cells exposed to 0.25–1.0 ppm 18O3 for 2 h. The O3 dose to the cells was defined as the level of 18O incorporation and the O3 effect as the fold increase in expression of inflammatory marker genes (IL-8 and COX-2). Dose and effect in cells removed from in vivo exposed subjects were lower than in cells exposed to the same 18O3 concentration in vitro suggesting upper airway O3 scrubbing in vivo. Cells collected by lavage as well as previous studies in monkeys show that cells deeper in the lung receive a higher O3 dose than cells in the bronchus. We conclude that the methods used herein show promise for replicating and comparing the in vivo dose and effect of O3 in an in vitro system. PMID:24928893

  12. Interferon lambda inhibits dengue virus replication in epithelial cells.

    PubMed

    Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo

    2015-09-28

    In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.

  13. Platelets activate a pathogenic response to blood-stage Plasmodium infection but not a protective immune response.

    PubMed

    Gramaglia, Irene; Velez, Joyce; Combes, Valery; Grau, Georges E R; Wree, Melanie; van der Heyde, Henri C

    2017-03-23

    Clinical studies indicate that thrombocytopenia correlates with the development of severe falciparum malaria, suggesting that platelets either contribute to control of parasite replication, possibly as innate parasite killer cells or function in eliciting pathogenesis. Removal of platelets by anti-CD41 mAb treatment, platelet inhibition by aspirin, and adoptive transfer of wild-type (WT) platelets to CD40-KO mice, which do not control parasite replication, resulted in similar parasitemia compared with control mice. Human platelets at a physiologic ratio of 1 platelet to 9 red blood cells (RBCs) did not inhibit the in vitro development or replication of blood-stage Plasmodium falciparum The percentage of Plasmodium -infected (iRBCs) with bound platelets during the ascending parasitemia in Plasmodium chabaudi - and Plasmodium berghei -infected mice and the 48-hour in vitro cycle of P falciparum was <10%. P chabaudi and P berghei iRBCs with apoptotic parasites (TdT + ) exhibited minimal platelet binding (<5%), which was similar to nonapoptotic iRBCs. These findings collectively indicate platelets do not kill bloodstage Plasmodium at physiologically relevant effector-to-target ratios. P chabaudi primary and secondary parasitemia was similar in mice depleted of platelets by mAb-injection just before infection, indicating that activation of the protective immune response does not require platelets. In contrast to the lack of an effect on parasite replication, adoptive transfer of WT platelets to CD40-KO mice, which are resistant to experimental cerebral malaria, partially restored experimental cerebral malaria mortality and symptoms in CD40-KO recipients, indicating platelets elicit pathogenesis and platelet CD40 is a key molecule. © 2017 by The American Society of Hematology.

  14. Complete regression of human malignant mesothelioma xenografts following local injection of midkine promoter-driven oncolytic adenovirus

    PubMed Central

    Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki

    2010-01-01

    Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326

  15. In vitro resolution of the dimer bridge of the minute virus of mice (MVM) genome supports the modified rolling hairpin model for MVM replication.

    PubMed

    Liu, Q; Yong, C B; Astell, C R

    1994-06-01

    Previous characterization of the terminal sequences of the minute virus of mice (MVM) genome demonstrated that the right hand palindrome contains two sequences, each the inverted complement of the other. However, the left hand palindrome was shown to exist as a unique sequence [Astell et al., J. Virol. 54: 179-185 (1985)]. The modified rolling hairpin (MRH) model for MVM replication provided an explanation of how the right hand palindrome could undergo hairpin transfer to generate two sequences, while the left end palindrome within the dimer bridge could undergo asymmetric resolution and retain the unique left end sequence. This report describes in vitro resolution of the wild-type dimer bridge sequence of MVM using recombinant (baculovirus) expressed NS-1 and a replication extract from LA9 cells. The resolution products are consistent with those predicted by the MRH model, providing support for this replication mechanism. In addition, mutant dimer bridge clones were constructed and used in the resolution assay. The mutant structures included removal of the asymmetry in the hairpin stem, inversion of the sequence at the initiating nick site, and a 2-bp deletion within one stem of the dimer bridge. In all cases, the mutant dimer bridge structures are resolved; however, the resolution pattern observed with the mutant dimer bridge compared with the wild-type dimer bridge is shifted toward symmetrical resolution. These results suggest that sequences within the left hand hairpin (and hence dimer bridge sequence) are responsible for asymmetric resolution and conservation of the unique sequence within the left hand palindrome of the MVM genome.

  16. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug.

    PubMed

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M; Frick, David N; Bolognesi, Martino; Milani, Mario

    2012-08-01

    Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC₅₀ values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.

  17. A Link between ORC-Origin Binding Mechanisms and Origin Activation Time Revealed in Budding Yeast

    PubMed Central

    Hoggard, Timothy; Shor, Erika; Müller, Carolin A.; Nieduszynski, Conrad A.; Fox, Catherine A.

    2013-01-01

    Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. PMID:24068963

  18. Ivermectin is a potent inhibitor of flavivirus replication specifically targeting NS3 helicase activity: new prospects for an old drug

    PubMed Central

    Mastrangelo, Eloise; Pezzullo, Margherita; De Burghgraeve, Tine; Kaptein, Suzanne; Pastorino, Boris; Dallmeier, Kai; de Lamballerie, Xavier; Neyts, Johan; Hanson, Alicia M.; Frick, David N.; Bolognesi, Martino; Milani, Mario

    2012-01-01

    Objectives Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. Methods Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. Results Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. Conclusions The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV. PMID:22535622

  19. The compensatory G88R change is essential in restoring the normal functions of influenza A/WSN/33 virus matrix protein 1 with a disrupted nuclear localization signal.

    PubMed

    Xie, Hang; Lin, Zhengshi; Mosier, Philip D; Desai, Umesh R; Gao, Yamei

    2013-01-01

    G88R emerged as a compensatory mutation in matrix protein 1 (M1) of influenza virus A/WSN/33 when its nuclear localization signal (NLS) was disrupted by R101S and R105S substitutions. The resultant M1 triple mutant M(NLS-88R) regained replication efficiency in vitro while remaining attenuated in vivo with the potential of being a live vaccine candidate. To understand why G88R was favored by the virus as a compensatory change for the NLS loss and resultant replication deficiency, three more M1 triple mutants with an alternative G88K, G88V, or G88E change in addition to R101S and R105S substitutions in the NLS were generated. Unlike the other M1 triple mutants, M(NLS-88R) replicated more efficiently in vitro and in vivo. The G88R compensatory mutation not only restored normal functions of M1 in the presence of a disrupted NLS but also resulted in a strong association of M1 with viral ribonucleoprotein. Under a transmission electron microscope, only the M1 layer of the M(NLS-88R) virion exhibited discontinuous fingerprint-like patterns with average thicknesses close to that of wild-type A/WSN/33. Computational modeling suggested that the compensatory G88R change could reestablish the integrity of the M1 layer through new salt bridges between adjacent M1 subunits when the original interactions were interrupted by simultaneous R101S and R105S replacements in the NLS. Our results suggested that restoring the normal functions of M1 was crucial for efficient virus replication.

  20. Low Dose Vaccination with Attenuated Francisella tularensis Strain SchuS4 Mutants Protects against Tularemia Independent of the Route of Vaccination

    PubMed Central

    Rockx-Brouwer, Dedeke; Chong, Audrey; Wehrly, Tara D.; Child, Robert; Crane, Deborah D.

    2012-01-01

    Tularemia, caused by the Gram-negative bacterium Francisella tularensis, is a severe, sometimes fatal disease. Interest in tularemia has increased over the last decade due to its history as a biological weapon. In particular, development of novel vaccines directed at protecting against pneumonic tularemia has been an important goal. Previous work has demonstrated that, when delivered at very high inoculums, administration of live, highly attenuated strains of virulent F. tularensis can protect against tularemia. However, lower vaccinating inoculums did not offer similar immunity. One concern of using live vaccines is that the host may develop mild tularemia in response to infection and use of high inoculums may contribute to this issue. Thus, generation of a live vaccine that can efficiently protect against tularemia when delivered in low numbers, e.g. <100 organisms, may address this concern. Herein we describe the ability of three defined, attenuated mutants of F. tularensis SchuS4, deleted for FTT0369c, FTT1676, or FTT0369c and FTT1676, respectively, to engender protective immunity against tularemia when delivered at concentrations of approximately 50 or fewer bacteria. Attenuated strains for use as vaccines were selected by their inability to efficiently replicate in macrophages in vitro and impaired replication and dissemination in vivo. Although all strains were defective for replication in vitro within macrophages, protective efficacy of each attenuated mutant was correlated with their ability to modestly replicate and disseminate in the host. Finally, we demonstrate the parenteral vaccination with these strains offered superior protection against pneumonic tularemia than intranasal vaccination. Together our data provides proof of principle that low dose attenuated vaccines may be a viable goal in development of novel vaccines directed against tularemia. PMID:22662210

  1. Engineered disc-like angle-ply structures for intervertebral disc replacement.

    PubMed

    Nerurkar, Nandan L; Sen, Sounok; Huang, Alice H; Elliott, Dawn M; Mauck, Robert L

    2010-04-15

    To develop a construction algorithm in which electrospun nanofibrous scaffolds are coupled with a biocompatible hydrogel to engineer a mesenchymal stem cell (MSC)-based disc replacement. To engineer a disc-like angle-ply structure (DAPS) that replicates the multiscale architecture of the intervertebral disc. Successful engineering of a replacement for the intervertebral disc requires replication of its mechanical function and anatomic form. Despite many attempts to engineer a replacement for ailing and degenerated discs, no prior study has replicated the multiscale hierarchical architecture of the native disc, and very few have assessed the mechanical function of formed neo-tissues. A new algorithm for the construction of a disc analogue was developed, using agarose to form a central nucleus pulposus (NP) and oriented electrospun nanofibrous scaffolds to form the anulus fibrosus region (AF). Bovine MSCs were seeded into both regions and biochemical, histologic, and mechanical maturation were evaluated with in vitro culture. We show that mechanical testing in compression and torsion, loading methods commonly used to assess disc mechanics, reveal equilibrium and time-dependent behaviors that are qualitatively similar to native tissue, although lesser in magnitude. Further, we demonstrate that cells seeded into both AF and NP regions adopt distinct morphologies that mirror those seen in native tissue, and that, in the AF region, this ordered community of cells deposit matrix that is organized in an angle-ply configuration. Finally, constructs demonstrate functional development with long-term in vitro culture. These findings provide a new approach for disc tissue engineering that replicates multi-scale form and function of the intervertebral disc, providing a foundation from which to build a multi-scale, biologic, anatomically and hierarchically relevant composite disc analogue for eventual disc replacement.

  2. Insect Cell-Derived Cofactors Become Fully Functional after Proteinase K and Heat Treatment for High-Fidelity Amplification of Glycosylphosphatidylinositol-Anchored Recombinant Scrapie and BSE Prion Proteins

    PubMed Central

    Imamura, Morikazu; Kato, Nobuko; Okada, Hiroyuki; Yoshioka, Miyako; Iwamaru, Yoshifumi; Shimizu, Yoshihisa; Mohri, Shirou; Yokoyama, Takashi; Murayama, Yuichi

    2013-01-01

    The central event in prion infection is the conformational conversion of host-encoded cellular prion protein (PrPC) into the pathogenic isoform (PrPSc). Diverse mammalian species possess the cofactors required for in vitro replication of PrPSc by protein-misfolding cyclic amplification (PMCA), but lower organisms, such as bacteria, yeasts, and insects, reportedly lack the essential cofactors. Various cellular components, such as RNA, lipids, and other identified cofactor molecules, are commonly distributed in both eukaryotes and prokaryotes, but the reasons for the absence of cofactor activity in lower organisms remain to be elucidated. Previously, we reported that brain-derived factors were necessary for the in vitro replication of glycosylphosphatidylinositol-anchored baculovirus-derived recombinant PrP (Bac-PrP). Here, we demonstrate that following protease digestion and heat treatment, insect cell lysates had the functional cofactor activity required for Bac-PrP replication by PMCA. Mammalian PrPSc seeds and Bac-PrPSc generated by PMCA using Bac-PrP and insect cell-derived cofactors showed similar pathogenicity and produced very similar lesions in the brains of inoculated mice. These results suggested that the essential cofactors required for the high-fidelity replication of mammalian PrPSc were present in the insect cells but that the cofactor activity was masked or inhibited in the native state. We suggest that not only RNA, but also DNA, are the key components of PMCA, although other cellular factors were necessary for the expression of the cofactor activity of nucleic acids. PMCA using only insect cell-derived substances (iPMCA) was highly useful for the ultrasensitive detection of PrPSc of some prion strains. PMID:24367521

  3. Extension of helix II of an HIV-1-directed hammerhead ribozyme with long antisense flanks does not alter kinetic parameters in vitro but causes loss of the inhibitory potential in living cells.

    PubMed Central

    Homann, M; Tabler, M; Tzortzakaki, S; Sczakiel, G

    1994-01-01

    When designed to cleave a target RNA in trans, the hammerhead ribozyme contains two antisense flanks which form helix I and helix III by pairing with the complementary target RNA. The sequences forming helix II are contained on the ribozyme strand and represent a major structural component of the hammerhead structure. In the case of an inhibitory 429 nucleotides long trans-ribozyme (2as-Rz12) which was directed against the 5'-leader/gag region of the human immunodeficiency virus type 1 (HIV-1), helix II was not pre-formed in the single-stranded molecule. Thus, major structural changes are necessary before cleavage can occur. To study whether pre-formation of helix II in the non-paired 2as-Rz12 RNA could influence the observed cleavage rate in vitro and its inhibitory activity on HIV-1 replication, we extended the 4 base pair helix II of 2as-Rz12 to 6, 10, 21, and 22 base pairs respectively. Limited RNase cleavage reactions performed in vitro at 37 degrees C and at physiological ion strength indicated that a helix II of the hammerhead domain was pre-formed when its length was at least six base pairs. This modification neither affected the association rate with target RNA nor the cleavage rate in vitro. In contrast to this, extension of helix II led to a significantly decreased inhibition of HIV-1 replication in human cells. Together with the finding of others that shortening of helix II to less than two base pairs reduces the catalytic activity in vitro, this observation indicates that the length of helix II in the naturally occurring RNAs with a hammerhead domain is already close or identical to the optimal length for catalytic activity in vitro and in vivo. Images PMID:7524030

  4. DNA Unwinding Functions of Minute Virus of Mice NS1 Protein Are Modulated Specifically by the Lambda Isoform of Protein Kinase C

    PubMed Central

    Dettwiler, Sabine; Rommelaere, Jean; Nüesch, Jürg P. F.

    1999-01-01

    The parvovirus minute virus of mice NS1 protein is a multifunctional protein involved in a variety of processes during virus propagation, ranging from viral DNA replication to promoter regulation and cytotoxic action to the host cell. Since NS1 becomes phosphorylated during infection, it was proposed that the different tasks of this protein might be regulated in a coordinated manner by phosphorylation. Indeed, comparing biochemical functions of native NS1 with its dephosphorylated counterpart showed that site-specific nicking of the origin and the helicase and ATPase activities are remarkably reduced upon NS1 dephosphorylation while site-specific affinity of the protein to the origin became enhanced. As a consequence, the dephosphorylated polypeptide is deficient for initiation of DNA replication. By adding fractionated cell extracts to a kinase-free in vitro replication system, the combination of two protein components containing members of the protein kinase C (PKC) family was found to rescue the replication activity of the dephosphorylated NS1 protein upon addition of PKC cofactors. One of these components, termed HA-1, also stimulated NS1 helicase function in response to acidic lipids but not phorbol esters, indicating the involvement of atypical PKC isoforms in the modulation of this NS1 function (J. P. F. Nüesch, S. Dettwiler, R. Corbau, and J. Rommelaere, J. Virol. 72:9966–9977, 1998). The present study led to the identification of atypical PKCλ/ι as the active component of HA-1 responsible for the regulation of NS1 DNA unwinding and replicative functions. Moreover, a target PKCλ phosphorylation site was localized at S473 of NS1. By site-directed mutagenesis, we showed that this residue is essential for NS1 helicase activity but not promoter regulation, suggesting a possible modulation of NS1 functions by PKCλ phosphorylation at residue S473. PMID:10438831

  5. Biochemical analysis of DNA polymerase η fidelity in the presence of replication protein A.

    PubMed

    Suarez, Samuel C; Toffton, Shannon M; McCulloch, Scott D

    2014-01-01

    DNA polymerase η (pol η) synthesizes across from damaged DNA templates in order to prevent deleterious consequences like replication fork collapse and double-strand breaks. This process, termed translesion synthesis (TLS), is an overall positive for the cell, as cells deficient in pol η display higher mutation rates. This outcome occurs despite the fact that the in vitro fidelity of bypass by pol η alone is moderate to low, depending on the lesion being copied. One possible means of increasing the fidelity of pol η is interaction with replication accessory proteins present at the replication fork. We have previously utilized a bacteriophage based screening system to measure the fidelity of bypass using purified proteins. Here we report on the fidelity effects of a single stranded binding protein, replication protein A (RPA), when copying the oxidative lesion 7,8-dihydro-8-oxo-guanine(8-oxoG) and the UV-induced cis-syn thymine-thymine cyclobutane pyrimidine dimer (T-T CPD). We observed no change in fidelity dependent on RPA when copying these damaged templates. This result is consistent in multiple position contexts. We previously identified single amino acid substitution mutants of pol η that have specific effects on fidelity when copying both damaged and undamaged templates. In order to confirm our results, we examined the Q38A and Y52E mutants in the same full-length construct. We again observed no difference when RPA was added to the bypass reaction, with the mutant forms of pol η displaying similar fidelity regardless of RPA status. We do, however, observe some slight effects when copying undamaged DNA, similar to those we have described previously. Our results indicate that RPA by itself does not affect pol η dependent lesion bypass fidelity when copying either 8-oxoG or T-T CPD lesions.

  6. Exposure of bed bugs to metarhizium anisopliae, and the effect of defensive secretions on fungal growth in vitro

    USDA-ARS?s Scientific Manuscript database

    Bed bugs Cimex lectularius were treated with conidia of the entomopathogenic fungus Metarhizium anisopliae by topical, spray, and contact exposure. One week post-exposure, inconsistent mortalities were observed, averaging 30% across all treatment groups and replicates. Microscopic examination of top...

  7. Microsporidiosis

    DTIC Science & Technology

    2011-06-01

    Microsporidia and basis for benzimidazole sensitivity: an update. J Eukaryot Microbiol. 1996;43:109S. 76. Edlind TD, Li J, Visvesvara GS, Vodkin MH... benzimidazole resistance. Antimicrob Agents Chemother. 2008;52:790- 793. 168. Didier ES. Effects of albendazole, fumagillin, and TNP-470 on microsporidial replication in vitro. Antimicrob Agents Chemother. 1997;41:1541-1546.

  8. Novel Platform Technologies for Analysis of Norovirus Contamination of Sea Food

    USDA-ARS?s Scientific Manuscript database

    The study of human norovirus (NoVs) replication in vitro would be a highly useful tool to virologists and immunologists. For this reason, we have searched for new approaches to determine viability of noroviruses in food samples (especially seafood). Our research team has multiple years of experien...

  9. Baculovirus replication induces the expression of heat shock proteins in vivo and in vitro

    USDA-ARS?s Scientific Manuscript database

    A recent handful of studies have linked baculovirus infection with the induction of heat shock proteins, a highly conserved family of cytoprotective proteins. Here, we demonstrate baculovirus-stimulated upregulation of hsp70 transcription in the natural host, Helicoverpa zea. Larvae lethally infec...

  10. Stress sensitivity in Toxoplasma gondii is linked to its uniquely flexible life cycle

    USDA-ARS?s Scientific Manuscript database

    Hammondia hammondi is the nearest relative of Toxoplasma gondii, but unlike T. gondii is obligately heteroxenous. We have compared H. hammondi and T. gondii development in vitro and identified multiple H. hammondi-specific growth states. Despite replicating slower than T. gondii, H. hammondi was res...

  11. High-Dose Intravenous Ribavirin Therapy for Subacute Sclerosing Panencephalitis

    PubMed Central

    Hosoya, Mitsuaki; Shigeta, Shiro; Mori, Shuichi; Tomoda, Akemi; Shiraishi, Seiji; Miike, Teruhisa; Suzuki, Hitoshi

    2001-01-01

    Two patients with subacute sclerosing panencephalitis (SSPE) were treated safely and effectively with high doses of intravenous ribavirin combined with intraventricular alpha interferon. The ribavirin concentrations maintained in the serum and cerebrospinal fluid were higher than those which inhibit SSPE virus replication in vitro and in vivo. PMID:11181386

  12. STAT2-dependent immune responses ensure host survival despite the presence of a potent viral antagonist.

    PubMed

    Le-Trilling, Vu Thuy Khanh; Wohlgemuth, Kerstin; Rückborn, Meike U; Jagnjic, Andreja; Maaßen, Fabienne; Timmer, Lejla; Katschinski, Benjamin; Trilling, Mirko

    2018-05-09

    Pathogen encounter induces interferons which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, host and pathogens are situated in a continuous arms race which shapes host evolution towards optimized immune responses and the pathogens towards enhanced immune evasive properties.Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2 which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wt-MCMV, ΔM27-MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g. liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection.Taken together, our study reveals the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary stand-off situation with fatal consequences when the equilibrium is disturbed. IMPORTANCE The host limits viral replication by interferons which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g. cytomegaloviruses, Zika virus, Dengue virus, and several paramyxoviruses). We analyzed infections of mouse CMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate their importance for host and virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus. Copyright © 2018 Le-Trilling et al.

  13. In Vitro Lesion Bypass Studies of O(4)-Alkylthymidines with Human DNA Polymerase η.

    PubMed

    Williams, Nicole L; Wang, Pengcheng; Wu, Jiabin; Wang, Yinsheng

    2016-04-18

    Environmental exposure and endogenous metabolism can give rise to DNA alkylation. Among alkylated nucleosides, O(4)-alkylthymidine (O(4)-alkyldT) lesions are poorly repaired in mammalian systems and may compromise the efficiency and fidelity of cellular DNA replication. To cope with replication-stalling DNA lesions, cells are equipped with translesion synthesis DNA polymerases that are capable of bypassing various DNA lesions. In this study, we assessed human DNA polymerase η (Pol η)-mediated bypass of various O(4)-alkyldT lesions, with the alkyl group being Me, Et, nPr, iPr, nBu, iBu, (R)-sBu, or (S)-sBu, in template DNA by conducting primer extension and steady-state kinetic assays. Our primer extension assay results revealed that human Pol η, but not human polymerases κ and ι or yeast polymerase ζ, was capable of bypassing all O(4)-alkyldT lesions and extending the primer to generate full-length replication products. Data from steady-state kinetic measurements showed that Pol η preferentially misincorporated dGMP opposite O(4)-alkyldT lesions with a straight-chain alkyl group. The nucleotide misincorporation opposite most lesions with a branched-chain alkyl group was, however, not selective, where dCMP, dGMP, and dTMP were inserted at similar efficiencies opposite O(4)-iPrdT, O(4)-iBudT, and O(4)-(R)-sBudT. These results provide important knowledge about the effects of the length and structure of the alkyl group in O(4)-alkyldT lesions on the fidelity and efficiency of DNA replication mediated by human Pol η.

  14. Replication of CMV in the gut of HIV-infected individuals and epithelial barrier dysfunction

    PubMed Central

    Somsouk, Ma; Hunt, Peter W.

    2017-01-01

    Although invasive cytomegalovirus (CMV) disease is uncommon in the era of antiretroviral therapy (ART), asymptomatic CMV coinfection is nearly ubiquitous in HIV infected individuals. While microbial translocation and gut epithelial barrier dysfunction may promote persistent immune activation in treated HIV infection, potentially contributing to morbidity and mortality, it has been unclear whether CMV replication in individuals with no symptoms of CMV disease might play a role in this process. We hypothesized that persistent CMV replication in the intestinal epithelium of HIV/CMV-coinfected individuals impairs gut epithelial barrier function. Using a combination of state-of-the-art in situ hybridization technology (RNAscope) and immunohistochemistry, we detected CMV DNA and proteins and evidence of intestinal damage in rectosigmoid samples from CMV-positive individuals with both untreated and ART-suppressed HIV infection. Two different model systems, primary human intestinal cells differentiated in vitro to form polarized monolayers and a humanized mouse model of human gut, together demonstrated that intestinal epithelial cells are fully permissive to CMV replication. Independent of HIV, CMV disrupted tight junctions of polarized intestinal cells, significantly reducing transepithelial electrical resistance, a measure of monolayer integrity, and enhancing transepithelial permeability. The effect of CMV infection on the intestinal epithelium is mediated, at least in part, by the CMV-induced proinflammatory cytokine IL-6. Furthermore, letermovir, a novel anti-CMV drug, dampened the effects of CMV on the epithelium. Together, our data strongly suggest that CMV can disrupt epithelial junctions, leading to bacterial translocation and chronic inflammation in the gut and that CMV could serve as a target for therapeutic intervention to prevent or treat gut epithelial barrier dysfunction during HIV infection. PMID:28241080

  15. The infection of primary avian tracheal epithelial cells with infectious bronchitis virus

    PubMed Central

    Shen, Ching-I; Wang, Ching-Ho; Liao, Jiunn-Wang; Hsu, Tien-Wang; Kuo, Shu-Ming; Su, Hong-Lin

    2009-01-01

    Here we introduce a culture system for the isolation, passaging and amplification of avian tracheal epithelial (ATE) cells. The ATE medium, which contains chicken embryo extract and fetal bovine serum, supports the growth of ciliated cells, goblet cells and basal cells from chicken tracheas on fibronectin- or matrigel-coated dishes. Non-epithelial cells make up less than 10% of the total population. We further show that ATE cells support the replication and spread of infectious bronchitis virus (IBV). Interestingly, immunocytostaining revealed that basal cells are resistant to IBV infection. We also demonstrate that glycosaminoglycan had no effect on infection of the cells by IBV. Taken together, these findings suggest that primary ATE cells provide a novel cell culture system for the amplification of IBV and the in vitro characterization of viral cytopathogenesis. PMID:19793537

  16. Synthetic biology: exploring and exploiting genetic modularity through the design of novel biological networks.

    PubMed

    Agapakis, Christina M; Silver, Pamela A

    2009-07-01

    Synthetic biology has been used to describe many biological endeavors over the past thirty years--from designing enzymes and in vitro systems, to manipulating existing metabolisms and gene expression, to creating entirely synthetic replicating life forms. What separates the current incarnation of synthetic biology from the recombinant DNA technology or metabolic engineering of the past is an emphasis on principles from engineering such as modularity, standardization, and rigorously predictive models. As such, synthetic biology represents a new paradigm for learning about and using biological molecules and data, with applications in basic science, biotechnology, and medicine. This review covers the canonical examples as well as some recent advances in synthetic biology in terms of what we know and what we can learn about the networks underlying biology, and how this endeavor may shape our understanding of living systems.

  17. The evolution of replicators.

    PubMed Central

    Szathmáry, E

    2000-01-01

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators. PMID:11127914

  18. The evolution of replicators.

    PubMed

    Szathmáry, E

    2000-11-29

    Replicators of interest in chemistry, biology and culture are briefly surveyed from a conceptual point of view. Systems with limited heredity have only a limited evolutionary potential because the number of available types is too low. Chemical cycles, such as the formose reaction, are holistic replicators since replication is not based on the successive addition of modules. Replicator networks consisting of catalytic molecules (such as reflexively autocatalytic sets of proteins, or reproducing lipid vesicles) are hypothetical ensemble replicators, and their functioning rests on attractors of their dynamics. Ensemble replicators suffer from the paradox of specificity: while their abstract feasibility seems to require a high number of molecular types, the harmful effect of side reactions calls for a small system size. No satisfactory solution to this problem is known. Phenotypic replicators do not pass on their genotypes, only some aspects of the phenotype are transmitted. Phenotypic replicators with limited heredity include genetic membranes, prions and simple memetic systems. Memes in human culture are unlimited hereditary, phenotypic replicators, based on language. The typical path of evolution goes from limited to unlimited heredity, and from attractor-based to modular (digital) replicators.

  19. In vitro assessment of sperm from bulls of high and low field fertility.

    PubMed

    Al Naib, A; Hanrahan, J P; Lonergan, P; Fair, S

    2011-07-01

    The aim of this study was to investigate the reasons for differences in field fertility of bulls following insemination with frozen-thawed semen. The study was carried out in two separate parts over two years and comparisons were made between 5 high and 4 low fertility Holstein Friesian bulls as determined by their either 90 day non-return rate (Year 1) or calving rate (Year 2). Two high fertility Limousin bulls were included in Year 1 for comparative purposes. The ability of sperm from each bull to penetrate artificial mucus was assessed (Year 1 = 7 replicates; Year 2 = 5 replicates). Glass capillary tubes (2 per bull per replicate) were filled with artificial mucus and incubated with sperm stained in 1% Hoechst 33342 for 30 min at 37 °C. The number of sperm were subsequently counted at 10 mm intervals along the tube between 40 and 80 mm markers. Sperm mitochondrial activity of each bull was assessed by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide) assay (4 replicates in each year). Sperm were incubated with MTT for 1 h at 37 °C following which the absorbance of formazan was read using a spectrophotometer. Sperm viability after thawing was assessed for each bull using a live/dead sperm viability kit (Year 1 = 3 replicates; Year 2 = 4 replicates). A minimum of 250 cells were assessed per bull in each replicate and classified as either live or dead. Finally, the ability of sperm to fertilize oocytes in vitro and their ability to develop to blastocyst stage embryos were assessed (5 replicates in each year involving 220 to 306 oocytes per bull). Data transformation to normalize residuals was required for mucus sperm penetration (square root) and IVF (cleavage and blastocyst rate) results (arcsin). The mean number of sperm counted at each 10 mm mark between 40 and 80 mm was higher in the high fertility (56.0; 95% CI 39.5 to 75.3) compared to the low fertility (42.9; 95% CI 29.3 to 59.1) Holstein Friesian bulls but the difference did not reach formal significance (P = 0.09). Fertility status had no effect on the ability of sperm to reduce MTT to formazan (mean absorbance 0.34 ± 0.051 and 0.30 ± 0.044) or on the percentage of live sperm per straw (mean 47.3 ± 5.47 and 32.4 ± 4.66) for high and low fertility Holstein Friesian bulls respectively. Oocyte cleavage rate following insemination with sperm from high fertility Holstein Friesian bulls was significantly higher than with sperm from low fertility Holstein Friesian bulls [76.7% (95% CI 60.9 to 89.4) and 55.3 (95% CI 40.4 to 69.7) respectively, P = 0.04]. There was no significant effect of bull fertility on blastocyst rate [34.7% (95% CI 21.1 to 49.6) and 24.2 % (95% CI 14.1 to 36.0) for the high and low fertility Holstein Friesian bulls, respectively; P = 0.2]. In conclusion, sperm from high fertility bulls tended to be more effective in penetrating artificial mucus and to have an increased ability to fertilize oocytes in vitro; however, once fertilization occurred subsequent embryo development was not significantly affected by fertility status. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. The proteasomal Rpn11 metalloprotease suppresses tombusvirus RNA recombination and promotes viral replication via facilitating assembly of the viral replicase complex.

    PubMed

    Prasanth, K Reddisiva; Barajas, Daniel; Nagy, Peter D

    2015-03-01

    RNA viruses co-opt a large number of cellular proteins that affect virus replication and, in some cases, viral genetic recombination. RNA recombination helps viruses in an evolutionary arms race with the host's antiviral responses and adaptation of viruses to new hosts. Tombusviruses and a yeast model host are used to identify cellular factors affecting RNA virus replication and RNA recombination. In this study, we have examined the role of the conserved Rpn11p metalloprotease subunit of the proteasome, which couples deubiquitination and degradation of proteasome substrates, in tombusvirus replication and recombination in Saccharomyces cerevisiae and plants. Depletion or mutations of Rpn11p lead to the rapid formation of viral RNA recombinants in combination with reduced levels of viral RNA replication in yeast or in vitro based on cell extracts. Rpn11p interacts with the viral replication proteins and is recruited to the viral replicase complex (VRC). Analysis of the multifunctional Rpn11p has revealed that the primary role of Rpn11p is to act as a "matchmaker" that brings the viral p92(pol) replication protein and the DDX3-like Ded1p/RH20 DEAD box helicases into VRCs. Overexpression of Ded1p can complement the defect observed in rpn11 mutant yeast by reducing TBSV recombination. This suggests that Rpn11p can suppress tombusvirus recombination via facilitating the recruitment of the cellular Ded1p helicase, which is a strong suppressor of viral recombination, into VRCs. Overall, this work demonstrates that the co-opted Rpn11p, which is involved in the assembly of the functional proteasome, also functions in the proper assembly of the tombusvirus VRCs. RNA viruses evolve rapidly due to genetic changes based on mutations and RNA recombination. Viral genetic recombination helps viruses in an evolutionary arms race with the host's antiviral responses and facilitates adaptation of viruses to new hosts. Cellular factors affect viral RNA recombination, although the role of the host in virus evolution is still understudied. In this study, we used a plant RNA virus, tombusvirus, to examine the role of a cellular proteasomal protein, called Rpn11, in tombusvirus recombination in a yeast model host, in plants, and in vitro. We found that the cellular Rpn11 is subverted for tombusvirus replication and Rpn11 has a proteasome-independent function in facilitating viral replication. When the Rpn11 level is knocked down or a mutated Rpn11 is expressed, then tombusvirus RNA goes through rapid viral recombination and evolution. Taken together, the results show that the co-opted cellular Rpn11 is a critical host factor for tombusviruses by regulating viral replication and genetic recombination. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement bothmore » defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.« less

  2. Evaluation of hepatitis B viral replication and proteomic analysis of HepG2.2.15 cell line after knockdown of HBx.

    PubMed

    Xie, Hai-Yang; Cheng, Jun; Xing, Chun-Yang; Wang, Jin-Jin; Su, Rong; Wei, Xu-Yong; Zhou, Lin; Zheng, Shu-Sen

    2011-06-01

    Hepatitis B virus (HBV) is one of the major pathogens of human liver disease. Studies have shown that HBV X protein (HBx) plays an important role in promoting viral gene expression and replication. In this study we performed a global proteomic profiling to identify the downstream functional proteins of HBx, thereby detecting the mechanisms of action of HBx on virion replication. HBx in the HepG2.2.15 cell line was knocked down by the transfection of small interfering RNA (siRNA). The replication level of HBV was evaluated by microparticle enzyme immunoassay analysis of HBsAg and HBeAg in the culture supernatant, and real-time quantitative PCR analysis of HBV DNA. Two-dimensional electrophoresis combined with MALDI-TOF/TOF was performed to analyze the changes in protein expression profile after treatment with HBx siRNA. Knockdown of HBx disturbed HBV replication in vitro. HBx target siRNA significantly inhibited the expression of HBsAg, HBeAg and the replication of HBV DNA. Twelve significantly changed proteins (7 upregulated and 5 downregulated) were successfully identified by MALDI-TOF/TOF using proteomics differential expression analysis after the knockdown of HBx. Among these identified proteins, HSP70 was validated by Western blotting. The results of the study indicated the positive effect of HBx on HBV replication, and a group of downstream target proteins of HBx may be responsible for this effect.

  3. A Tumor-stroma Targeted Oncolytic Adenovirus Replicated in Human Ovary Cancer Samples and Inhibited Growth of Disseminated Solid Tumors in Mice

    PubMed Central

    Lopez, M Veronica; Rivera, Angel A; Viale, Diego L; Benedetti, Lorena; Cuneo, Nicasio; Kimball, Kristopher J; Wang, Minghui; Douglas, Joanne T; Zhu, Zeng B; Bravo, Alicia I; Gidekel, Manuel; Alvarez, Ronald D; Curiel, David T; Podhajcer, Osvaldo L

    2012-01-01

    Targeting the tumor stroma in addition to the malignant cell compartment is of paramount importance to achieve complete tumor regression. In this work, we modified a previously designed tumor stroma-targeted conditionally replicative adenovirus (CRAd) based on the SPARC promoter by introducing a mutated E1A unable to bind pRB and pseudotyped with a chimeric Ad5/3 fiber (Ad F512v1), and assessed its replication/lytic capacity in ovary cancer in vitro and in vivo. AdF512v1 was able to replicate in fresh samples obtained from patients: (i) with primary human ovary cancer; (ii) that underwent neoadjuvant treatment; (iii) with metastatic disease. In addition, we show that four intraperitoneal (i.p.) injections of 5 × 1010 v.p. eliminated 50% of xenografted human ovary tumors disseminated in nude mice. Moreover, AdF512v1 replication in tumor models was enhanced 15–40-fold when the tumor contained a mix of malignant and SPARC-expressing stromal cells (fibroblasts and endothelial cells). Contrary to the wild-type virus, AdF512v1 was unable to replicate in normal human ovary samples while the wild-type virus can replicate. This study provides evidence on the lytic capacity of this CRAd and highlights the importance of targeting the stromal tissue in addition to the malignant cell compartment to achieve tumor regression. PMID:22948673

  4. Mycobacterium tuberculosis Ser/Thr protein kinase B mediates an oxygen-dependent replication switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Corrie; Liao, Reiling; Anderson, Lindsey N.

    In the majority of cases, Mycobacterium tuberculosis (Mtb) infections are clinically latent, characterized by little or no bacterial replication and drug tolerance. Low oxygen tension is a major host factor inducing bacteriostasis, but the molecular mechanisms driving oxygen-dependent replication are poorly understood. Mtb encodes eleven serine/threonine protein kinases, a family of signaling molecules known to regulate similar replicative adaptations in other bacteria. Here, we tested the role of serine/threonine phosphorylation in the Mtb response to altered oxygen status, using an in vitro model of latency (hypoxia) and reactivation (reaeration). Broad kinase inhibition compromised survival of Mtb in hypoxia. Activity-based proteinmore » profiling and genetic mutation identified PknB as the kinase critical for surviving hypoxia. Mtb replication was highly sensitive to changes in PknB levels in aerated culture, and even more so in hypoxia. A mutant overexpressing PknB specifically in hypoxia showed a 10-fold loss in viability in low oxygen conditions. In contrast, chemically reducing PknB activity during hypoxia specifically compromised resumption of growth during reaeration. These data support a model in which PknB activity is reduced to achieve bacteriostasis, and elevated when replication resumes. Together, these data show that phosphosignaling controls replicative transitions associated with latency and reactivation, that PknB is a major regulator of these transitions, and that PknB could provide a highly vulnerable therapeutic target at every step of the Mtb life cycle - active disease, latency, and reactivation.« less

  5. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro . The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  6. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  7. Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin

    PubMed Central

    Zemp, Franz J.; Lun, Xueqing; McKenzie, Brienne A.; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J.P.; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J. Gregory; Hamilton, Mark G.; Rabinovich, Brian A.; Rahman, Masmudur M.; Mohamed, Mohamed R.; Smallwood, Sherin; Senger, Donna L.; Bell, John; McFadden, Grant; Forsyth, Peter A.

    2013-01-01

    Background Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor–initiating cells (BTICs). Methods We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. Results The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing “advanced” BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Conclusions Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients. PMID:23585629

  8. Infant digestion physiology and the relevance of in vitro biochemical models to test infant formula lipid digestion.

    PubMed

    Poquet, Laure; Wooster, Tim J

    2016-08-01

    Lipids play an important role in the diet of preterm and term infants providing a key energy source and essential lipid components for development. While a lot is known about adult lipid digestion, our understanding of infant digestion physiology is still incomplete, the greatest gap being on the biochemistry of the small intestine, particularly the activity and relative importance of the various lipases active in the intestine. The literature has been reviewed to identify the characteristics of lipid digestion of preterm and term infants, but also to better understand the physiology of the infant gastrointestinal tract compared to adults that impacts the absorption of lipids. The main differences are a higher gastric pH, submicellar bile salt concentration, a far more important role of gastric lipases as well as differences at the level of the intestinal barrier. Importantly, the consequences of improper in vitro replication of gastric digestions conditions (pH and lipase specificity) are demonstrated using examples from the most recent of studies. It is true that some animal models could be adapted to study infant lipid digestion physiology, however the ethical relevance of such models is questionable, hence the development of accurate in vitro models is a must. In vitro models that combine up to date knowledge of digestion biochemistry with intestinal cells in culture are the best choice to replicate digestion and absorption in infant population, this would allow the adaptation of infant formula for a better digestion and absorption of dietary lipids by preterm and term infants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficientmore » in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.« less

  10. IFITM3 restricts the morbidity and mortality associated with influenza.

    PubMed

    Everitt, Aaron R; Clare, Simon; Pertel, Thomas; John, Sinu P; Wash, Rachael S; Smith, Sarah E; Chin, Christopher R; Feeley, Eric M; Sims, Jennifer S; Adams, David J; Wise, Helen M; Kane, Leanne; Goulding, David; Digard, Paul; Anttila, Verneri; Baillie, J Kenneth; Walsh, Tim S; Hume, David A; Palotie, Aarno; Xue, Yali; Colonna, Vincenza; Tyler-Smith, Chris; Dunning, Jake; Gordon, Stephen B; Smyth, Rosalind L; Openshaw, Peter J; Dougan, Gordon; Brass, Abraham L; Kellam, Paul

    2012-03-25

    The 2009 H1N1 influenza pandemic showed the speed with which a novel respiratory virus can spread and the ability of a generally mild infection to induce severe morbidity and mortality in a subset of the population. Recent in vitro studies show that the interferon-inducible transmembrane (IFITM) protein family members potently restrict the replication of multiple pathogenic viruses. Both the magnitude and breadth of the IFITM proteins' in vitro effects suggest that they are critical for intrinsic resistance to such viruses, including influenza viruses. Using a knockout mouse model, we now test this hypothesis directly and find that IFITM3 is essential for defending the host against influenza A virus in vivo. Mice lacking Ifitm3 display fulminant viral pneumonia when challenged with a normally low-pathogenicity influenza virus, mirroring the destruction inflicted by the highly pathogenic 1918 'Spanish' influenza. Similar increased viral replication is seen in vitro, with protection rescued by the re-introduction of Ifitm3. To test the role of IFITM3 in human influenza virus infection, we assessed the IFITM3 alleles of individuals hospitalized with seasonal or pandemic influenza H1N1/09 viruses. We find that a statistically significant number of hospitalized subjects show enrichment for a minor IFITM3 allele (SNP rs12252-C) that alters a splice acceptor site, and functional assays show the minor CC genotype IFITM3 has reduced influenza virus restriction in vitro. Together these data reveal that the action of a single intrinsic immune effector, IFITM3, profoundly alters the course of influenza virus infection in mouse and humans.

  11. HSPA5 is an essential host factor for Ebola virus infection.

    PubMed

    Reid, St Patrick; Shurtleff, Amy C; Costantino, Julie A; Tritsch, Sarah R; Retterer, Cary; Spurgers, Kevin B; Bavari, Sina

    2014-09-01

    Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures. Published by Elsevier B.V.

  12. A pilot study on the use of geometrically accurate face models to replicate ex vivo N95 mask fit.

    PubMed

    Golshahi, Laleh; Telidetzki, Karla; King, Ben; Shaw, Diana; Finlay, Warren H

    2013-01-01

    To test the feasibility of replicating a face mask seal in vitro, we created 5 geometrically accurate reconstructions of the head and neck of an adult human subject using different materials. Three breathing patterns were simulated with each replica and an attached N95 mask. Quantitative fit testing on the subject and the replicas showed that none of the 5 isotropic materials used allowed duplication of the ex vivo mask seal for the specific mask-face combination studied. Copyright © 2013 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  13. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.

    PubMed

    Johnston, Theresa K; Perkins, Edward; Ferguson, Duncan C; Cropek, Donald M

    2016-10-01

    Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results. Brain (hypothalamus), pituitary, gonad, and liver tissue explants from adult fish were examined for function both individually and in coculture to determine combinations and conditions that could replicate in vivo behavior. Only cocultures had the ability to respond to an EDC, trenbolone, similarly to in vivo studies, based on estradiol, testosterone, and vitellogenin production trends, where lower exposure doses suppressed hormone production but higher doses increased production, resulting in distinctive U-shaped curves. These data suggest that a coculture system with all components of the HPG-L axis can be used as a link between in vitro and in vivo studies to predict endocrine system disruption in whole organisms. This tissue-based HPG-L system acts as a flexible deconstructed version of the in vivo system for better control and examination of the minute changes in system operation and response on EDC exposure with options to isolate, interrogate, and recombine desired components. Environ Toxicol Chem 2016;35:2530-2541. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  14. Origin of life in a digital microcosm

    NASA Astrophysics Data System (ADS)

    C G, Nitash; LaBar, Thomas; Hintze, Arend; Adami, Christoph

    2017-11-01

    While all organisms on Earth share a common descent, there is no consensus on whether the origin of the ancestral self-replicator was a one-off event or whether it only represented the final survivor of multiple origins. Here, we use the digital evolution system Avida to study the origin of self-replicating computer programs. By using a computational system, we avoid many of the uncertainties inherent in any biochemical system of self-replicators (while running the risk of ignoring a fundamental aspect of biochemistry). We generated the exhaustive set of minimal-genome self-replicators and analysed the network structure of this fitness landscape. We further examined the evolvability of these self-replicators and found that the evolvability of a self-replicator is dependent on its genomic architecture. We also studied the differential ability of replicators to take over the population when competed against each other, akin to a primordial-soup model of biogenesis, and found that the probability of a self-replicator outcompeting the others is not uniform. Instead, progenitor (most-recent common ancestor) genotypes are clustered in a small region of the replicator space. Our results demonstrate how computational systems can be used as test systems for hypotheses concerning the origin of life. This article is part of the themed issue 'Reconceptualizing the origins of life'.

  15. Essential Cell-Autonomous Role for Interferon (IFN) Regulatory Factor 1 in IFN-γ-Mediated Inhibition of Norovirus Replication in Macrophages

    PubMed Central

    Maloney, Nicole S.; Thackray, Larissa B.; Goel, Gautam; Hwang, Seungmin; Duan, Erning; Vachharajani, Punit; Xavier, Ramnik

    2012-01-01

    Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αβ signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages. PMID:22973039

  16. DNA Replication Checkpoint Signaling Depends on a Rad53–Dbf4 N-Terminal Interaction in Saccharomyces cerevisiae

    PubMed Central

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-01-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53–Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4–Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53–Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity. PMID:23564203

  17. DNA replication checkpoint signaling depends on a Rad53-Dbf4 N-terminal interaction in Saccharomyces cerevisiae.

    PubMed

    Chen, Ying-Chou; Kenworthy, Jessica; Gabrielse, Carrie; Hänni, Christine; Zegerman, Philip; Weinreich, Michael

    2013-06-01

    Dbf4-dependent kinase (DDK) and cyclin-dependent kinase (CDK) are essential to initiate DNA replication at individual origins. During replication stress, the S-phase checkpoint inhibits the DDK- and CDK-dependent activation of late replication origins. Rad53 kinase is a central effector of the replication checkpoint and both binds to and phosphorylates Dbf4 to prevent late-origin firing. The molecular basis for the Rad53-Dbf4 physical interaction is not clear but occurs through the Dbf4 N terminus. Here we found that both Rad53 FHA1 and FHA2 domains, which specifically recognize phospho-threonine (pT), interacted with Dbf4 through an N-terminal sequence and an adjacent BRCT domain. Purified Rad53 FHA1 domain (but not FHA2) bound to a pT Dbf4 peptide in vitro, suggesting a possible phospho-threonine-dependent interaction between FHA1 and Dbf4. The Dbf4-Rad53 interaction is governed by multiple contacts that are separable from the Cdc5- and Msa1-binding sites in the Dbf4 N terminus. Importantly, abrogation of the Rad53-Dbf4 physical interaction blocked Dbf4 phosphorylation and allowed late-origin firing during replication checkpoint activation. This indicated that Rad53 must stably bind to Dbf4 to regulate its activity.

  18. Interaction of the Retinoblastoma Protein with Orc1 and Its Recruitment to Human Origins of DNA Replication

    PubMed Central

    Mendoza-Maldonado, Ramiro; Paolinelli, Roberta; Galbiati, Laura; Giadrossi, Sara; Giacca, Mauro

    2010-01-01

    Background The retinoblastoma protein (Rb) is a crucial regulator of cell cycle progression by binding with E2F transcription factor and repressing the expression of a variety of genes required for the G1-S phase transition. Methodology/Principal Findings Here we show that Rb and E2F1 directly participate in the control of initiation of DNA replication in human HeLa, U2OS and T98G cells by specifically binding to origins of DNA replication in a cell cycle regulated manner. We show that, both in vitro and inside the cells, the largest subunit of the origin recognition complex (Orc1) specifically binds hypo-phosphorylated Rb and that this interaction is competitive with the binding of Rb to E2F1. The displacement of Rb-bound Orc1 by E2F1 at origins of DNA replication marks the progression of the G1 phase of the cell cycle toward the G1-S border. Conclusions/Significance The participation of Rb and E2F1 in the formation of the multiprotein complex that binds origins of DNA replication in mammalian cells appears to represent an effective mechanism to couple the expression of genes required for cell cycle progression to the activation of DNA replication. PMID:21085491

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Baoyu; Yi, Guanghui; Du, Fenglei

    The recent outbreak of Zika virus (ZIKV) has infected over 1 million people in over 30 countries. ZIKV replicates its RNA genome using virally encoded replication proteins. Nonstructural protein 5 (NS5) contains a methyltransferase for RNA capping and a polymerase for viral RNA synthesis. Here we report the crystal structures of full-length NS5 and its polymerase domain at 3.0 Å resolution. The NS5 structure has striking similarities to the NS5 protein of the related Japanese encephalitis virus. The methyltransferase contains in-line pockets for substrate binding and the active site. Key residues in the polymerase are located in similar positions tomore » those of the initiation complex for the hepatitis C virus polymerase. The polymerase conformation is affected by the methyltransferase, which enables a more efficiently elongation of RNA synthesis in vitro. Altogether, our results will contribute to future studies on ZIKV infection and the development of inhibitors of ZIKV replication.« less

  20. Comparison of the Transcription and Replication Strategies of Marburg Virus and Ebola Virus by Using Artificial Replication Systems

    PubMed Central

    Mühlberger, Elke; Weik, Michael; Volchkov, Viktor E.; Klenk, Hans-Dieter; Becker, Stephan

    1999-01-01

    The members of the family Filoviridae, Marburg virus (MBGV) and Ebola virus (EBOV), are very similar in terms of morphology, genome organization, and protein composition. To compare the replication and transcription strategies of both viruses, an artificial replication system based on the vaccinia virus T7 expression system was established for EBOV. Specific transcription and replication of an artificial monocistronic minireplicon was demonstrated by reporter gene expression and detection of the transcribed and replicated RNA species. As it was shown previously for MBGV, three of the four EBOV nucleocapsid proteins, NP, VP35, and L, were essential and sufficient for replication. In contrast to MBGV, EBOV-specific transcription was dependent on the presence of the fourth nucleocapsid protein, VP30. When EBOV VP30 was replaced by MBGV VP30, EBOV-specific transcription was observed but with lower efficiency. Exchange of NP, VP35, and L between the two replication systems did not lead to detectable reporter gene expression. It was further observed that neither MBGV nor EBOV were able to replicate the heterologous minigenomes. A chimeric minigenome, however, containing the EBOV leader and the MBGV trailer was encapsidated, replicated, transcribed, and packaged by both viruses. PMID:9971816

Top