Evaluation of polymerization shrinkage of resin cements through in vitro and in situ experiments
NASA Astrophysics Data System (ADS)
Franco, A. P. G. O.; Karam, L. Z.; Pulido, C. A.; Gomes, O. M. M.; Kalinowski, H. J.
2014-08-01
The aim of this study was to evaluate the behavior of two types of resin cements , conventional dual and dual self adhesive, through in vitro and in situ experiments. For the in vitro assay were selected two resin cements that were handled and dispensed over a mylar strip supported by a glass plate. The Bragg grating sensors were positioned and another portion of cement. was placed, covered by another mylar strip. For the in situ experiment 16 single-rooted teeth were selected who were divided into 2 groups: group 1 - conventional dual resin cement Relyx ARC and group 2 - dual self adhesive resin cement Relyx U200 ( 3M/ESPE ). The teeth were treated and prepared to receive the intracanal posts. Two Bragg grating sensors were recorded and introduced into the root canal at different apical and coronal positions. The results showed that the in vitro experiment presented similar values of polymerization shrinkage that the in situ experiment made in cervical position; whereas Relyx ARC resulted lower values compared to Relyx U200; and cervical position showed higher shrinkage than the apical.
In-Vitro Immunology - Skylab Student Experiment ED-31
NASA Technical Reports Server (NTRS)
1973-01-01
This chart describes the Skylab student experiment In-Vitro Immunology, proposed by Todd A. Meister of Jackson Heights, New York. He suggested an in-vitro observation of the effects of zero-gravity on a presipitin-type antigen-antibody reaction, as compared with the same reaction carried out in an Earth-based laboratory. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
MEDIA SERUM LEVELS AND IN VITRO HEPATIC ABSORPTION OF LINDANE
High plasma protein binding is known to reduce the tissue uptake of chemicals in vivo, but the extent of its importance in vitro is less clear. Experiments were conducted to determine the cellular uptake of lindane in vitro under different conditions. Lindane was selected because...
Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustin; Orjales, Aurelio
2005-01-01
This study aimed to establish the receptor selectivity and antihistaminic activity of bilastine, a new selective antihistamine receptor antagonist. In vitro experiments were conducted using a receptor binding screening panel and guinea-pig and rat tissues. Antihistaminic activity was determined using H1 receptor binding studies and in vitro H1 antagonism studies conducted in guinea-pig tissues and human cell lines. Receptor selectivity was established using a receptor binding screening panel and a receptor antagonism screening conducted in guinea-pig, rat and rabbit tissues. Inhibition of inflammatory mediators was determined through the Schultz-Dale reaction in sensitised guinea-pig ileum. Bilastine binds to histamine H1-receptors as indicated by its displacement of [3H]-pyrilamine from H1-receptors expressed in guinea-pig cerebellum and human embryonic kidney (HEK) cell lines. The studies conducted on guinea-pig smooth muscle demonstrated the capability of bilastine to antagonise H1-receptors. Bilastine is selective for histamine H1-receptors as shown in receptor-binding screening conducted to determine the binding capacity of bilastine to 30 different receptors. The specificity of its H1-receptor antagonistic activity was also demonstrated in a series of in vitro experiments conducted on guinea-pig and rat tissues. The results of these studies confirmed the lack of significant antagonism against serotonin, bradykinin, leukotriene D4, calcium, muscarinic M3-receptors, alpha1-adrenoceptors, beta2-adrenoceptors, and H2- and H3-receptors. The results of the in vitro Schultz-Dale reaction demonstrated that bilastine also has anti-inflammatory activity. These preclinical studies provide evidence that bilastine has H1- antihistamine activity, with high specificity for H1-receptors, and poor or no affinity for other receptors. Bilastine has also been shown to have anti-inflammatory properties.
In vitro selection of functional nucleic acids
NASA Technical Reports Server (NTRS)
Wilson, D. S.; Szostak, J. W.
1999-01-01
In vitro selection allows rare functional RNA or DNA molecules to be isolated from pools of over 10(15) different sequences. This approach has been used to identify RNA and DNA ligands for numerous small molecules, and recent three-dimensional structure solutions have revealed the basis for ligand recognition in several cases. By selecting high-affinity and -specificity nucleic acid ligands for proteins, promising new therapeutic and diagnostic reagents have been identified. Selection experiments have also been carried out to identify ribozymes that catalyze a variety of chemical transformations, including RNA cleavage, ligation, and synthesis, as well as alkylation and acyl-transfer reactions and N-glycosidic and peptide bond formation. The existence of such RNA enzymes supports the notion that ribozymes could have directed a primitive metabolism before the evolution of protein synthesis. New in vitro protein selection techniques should allow for a direct comparison of the frequency of ligand binding and catalytic structures in pools of random sequence polynucleotides versus polypeptides.
1973-01-01
This chart describes the Skylab student experiment In-Vitro Immunology, proposed by Todd A. Meister of Jackson Heights, New York. He suggested an in-vitro observation of the effects of zero-gravity on a presipitin-type antigen-antibody reaction, as compared with the same reaction carried out in an Earth-based laboratory. In March 1972, NASA and the National Science Teachers Association selected 25 experiment proposals for flight on Skylab. Science advisors from the Marshall Space Flight Center aided and assisted the students in developing the proposals for flight on Skylab.
Specialization of the DNA-Cleaving Activity of a Group I Ribozyme Through In Vitro Evolution
NASA Technical Reports Server (NTRS)
Tsang, Joyce; Joyce, Gerald F.
1996-01-01
In an earlier study, an in vitro evolution procedure was applied to a large population of variants of the Tetrahymena group 1 ribozyme to obtain individuals with a 10(exp 5)-fold improved ability to cleave a target single-stranded DNA substrate under simulated physiological conditions. The evolved ribozymes also showed a twofold improvement, compared to the wild-type, in their ability to cleave a single-stranded RNA substrate. Here, we report continuation of the in vitro evolution process using a new selection strategy to achieve both enhanced DNA and diminished RNA-cleavage activity. Our strategy combines a positive selection for DNA cleavage with a negative selection against RNA binding. After 36 "generations" of in vitro evolution, the evolved population showed an approx. 100-fold increase in the ratio of DNA to RNA-cleavage activity. Site-directed mutagenesis experiment confirmed the selective advantage of two covarying mutations within the catalytic core of ribozyme that are largely responsible for this modified behavior. The population of ribozymes has now undergone a total of 63 successive generations of evolution, resulting in an average 28 mutations relative to the wild-type that are responsible for the altered phenotype.
Macfarlane, Christopher P.; Hoysak, Drew J.; Liley, N. Robin; Gage, Matthew J.G.
2009-01-01
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results. PMID:19364734
Macfarlane, Christopher P; Hoysak, Drew J; Liley, N Robin; Gage, Matthew J G
2009-07-07
Although theory and widespread evidence show that the evolution of egg size is driven primarily by offspring and maternal fitness demands, an additional explanation invokes sperm limitation as a selective force that could also influence egg size optima. Levitan proposed that constraints from gamete encounter in external fertilization environments could select for enlargement of ova to increase the physical size of the fertilization target. We test this theory using in vitro fertilization experiments in an externally fertilizing fish. Sockeye salmon (Onchorhyncus nerka) females show considerable between-individual variation in ovum size, and we explored the consequences of this natural variation for the fertilization success of individual eggs under conditions of sperm limitation. By engineering consistent conditions where in vitro fertilization rate was always intermediate, we were able to compare the sizes of fertilized and unfertilized eggs across 20 fertilization replicates. After controlling for any changes in volume through incubation, results showed that successfully fertilized eggs were significantly larger than the eggs that failed to achieve fertilization. Under conditions without sperm limitation, fertility was unaffected by egg size. Our findings therefore support Levitan's theory, demonstrating empirically that some element of egg size variation could be selected by fertilization demands under sperm limitation. However, further research on sperm limitation in natural spawnings is required to assess the selective importance of these results.
López-Causapé, Carla; Rubio, Rosa; Cabot, Gabriel; Oliver, Antonio
2018-04-01
Inhaled administration of high doses of aminoglycosides is a key maintenance treatment of Pseudomonas aeruginosa chronic respiratory infections in cystic fibrosis (CF). We analyzed the dynamics and mechanisms of stepwise high-level tobramycin resistance development in vitro and compared the results with those of isogenic pairs of susceptible and resistant clinical isolates. Resistance development correlated with fusA1 mutations in vitro and in vivo. pmrB mutations, conferring polymyxin resistance, were also frequently selected in vitro In contrast, mutational overexpression of MexXY, a hallmark of aminoglycoside resistance in CF, was not observed in in vitro evolution experiments. Copyright © 2018 American Society for Microbiology.
High affinity ligands from in vitro selection: Complex targets
Morris, Kevin N.; Jensen, Kirk B.; Julin, Carol M.; Weil, Michael; Gold, Larry
1998-01-01
Human red blood cell membranes were used as a model system to determine if the systematic evolution of ligands by exponential enrichment (SELEX) methodology, an in vitro protocol for isolating high-affinity oligonucleotides that bind specifically to virtually any single protein, could be used with a complex mixture of potential targets. Ligands to multiple targets were generated simultaneously during the selection process, and the binding affinities of these ligands for their targets are comparable to those found in similar experiments against pure targets. A secondary selection scheme, deconvolution-SELEX, facilitates rapid isolation of the ligands to targets of special interest within the mixture. SELEX provides high-affinity compounds for multiple targets in a mixture and might allow a means for dissecting complex biological systems. PMID:9501188
Mechanisms of selective antitumor action of cold atmospheric plasma
NASA Astrophysics Data System (ADS)
Graves, David; Bauer, Georg
2016-09-01
Transformed (precancerous) cells are known to be subject to elimination through intercellular RONS-dependent apoptosis-inducing signaling. It is a remarkable fact that the chemical species utilized by apoptosis induction in transformed cells are essentially identical to chemical species created by cold atmospheric plasma (CAP) in aqueous solutions. The association between CAP-induced biochemistry and natural cell anti-tumor mechanisms offers the opportunity to establish a rationale for the observed successes of CAP in selectively eliminating tumor cells in vitro and in vivo. In particular, 1O2 appears to act to selectively induce apoptosis in tumor cells, and can also result in self-perpetuating, cell-to-cell apoptotic signaling. Various CAP-generated liquid phase species can react to form 1O2, thus providing a hypothetical mechanism to explain how CAP can trigger therapeutic apoptosis in tumors. The analysis of model experiments performed with defined RONS in vitro implies that CAP-derived 1O2 induces the mechanism through which CAP acts selectively against cancer cells in vitro and tumors in vivo. This hypothesis needs to be tested experimentally in order to establish its validity.
Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira
2013-01-01
Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.
Fidelity of DNA Replication in Normal and Malignant Human Brest Cells.
1995-08-31
cellular DNA replication machinery, we have initiated experiments that utilize a multiprotein DNA replication complex (MRC) isolated from breast cancer...gene in an in vitro DNA replication assay. By utilizing the target gene in a bacterial mutant selection assay we have begun to determine the...frequency with which mutational sequence errors occur as a result of the in vitro DNA replication mediated by the breast cancer cell MRC and the normal breast
Ornellas, Roberta Maria Santos; Santos, Tiza Teles; Arcucio, Leonardo Borges; Sandes, Sávio Henrique Cicco; Oliveira, Mayara Messias; Dias, Cristiano Villela; de Carvalho Silva, Samuel; Uetanabaro, Ana Paula Trovatti; Vinderola, Gabriel; Nicoli, Jacques Robert
2017-01-01
In the present study, nine lactic acid bacteria isolated from the fermentation process of "cupuaçu" (Theobroma grandiflorum) were selected for probiotic use. In vitro (resistance to gastrointestinal environment, in vitro antagonism and co-aggregation with pathogens) and in vivo (intestinal colonization and ex vivo antagonism in germ-free mice, cumulative mortality, translocation to liver and spleen, histopathological examination of liver and ileum and mRNA cytokine gene expression during an experimental infection with S. Typhimurium) assays were used. Among the nine Lactobacillus strains isolated from the "cupuaçu" fermentation, L. plantarum 81 and L. plantarum 90 were selected as potential probiotics based on better results obtained in in vitro evaluations (production of diffusible inhibitory compounds and co-aggregation) as well as in vivo experiments (resistance to gastrointestinal environment, ex vivo antagonism, higher survival after enteropathogen challenge, lower hepatic translocation of enteropathogen, lower histopathological lesions in ileum and liver and anti-inflammatory pattern of immunological response). Concluding, L. plantarum 81 and L. plantarum 90 showed in vitro and in vivo capacities for probiotic use through different mechanisms of protection and its origin would allow an easier adaptation in an alimentary matrix for its administration.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
Mercuri, A; Pagliari, M; Baxevanis, F; Fares, R; Fotaki, N
2017-02-25
In this study the selection of in vivo predictive in vitro dissolution experimental set-ups using a multivariate analysis approach, in line with the Quality by Design (QbD) principles, is explored. The dissolution variables selected using a design of experiments (DoE) were the dissolution apparatus [USP1 apparatus (basket) and USP2 apparatus (paddle)], the rotational speed of the basket/or paddle, the operator conditions (dissolution apparatus brand and operator), the volume, the pH, and the ethanol content of the dissolution medium. The dissolution profiles of two nifedipine capsules (poorly soluble compound), under conditions mimicking the intake of the capsules with i. water, ii. orange juice and iii. an alcoholic drink (orange juice and ethanol) were analysed using multiple linear regression (MLR). Optimised dissolution set-ups, generated based on the mathematical model obtained via MLR, were used to build predicted in vitro-in vivo correlations (IVIVC). IVIVC could be achieved using physiologically relevant in vitro conditions mimicking the intake of the capsules with an alcoholic drink (orange juice and ethanol). The multivariate analysis revealed that the concentration of ethanol used in the in vitro dissolution experiments (47% v/v) can be lowered to less than 20% v/v, reflecting recently found physiological conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz
2009-01-01
The purpose of this study was to demonstrate first magnetic resonance (MR)-guided stenting of iliac and supraaortic arteries using a polyetheretherketone-based (PEEK) MR-compatible guide wire. In vitro and animal experiments were performed in a short magnet wide-bore scanner (1.5 Tesla, Espree, Siemens Healthcare, Erlangen, Germany). For all experiments, a 0.035'' MR-compatible guide wire prototoype was used. This wire had a compound core of PEEK with reinforcing fibres, a soft and atraumatic tip and a hydrophilic coating. For its passive visualization, paramagnetic markings were attached. All experiments were performed through a vascular introducer sheath under MR-guidance. In vitro repetitive selective over the wire catheterizations of either the right carotid artery and the left subclavian artery were performed. In vivo, selective catheterization and over-the-wire stenting of the brachiocephalic trunk and the left subclavian artery were performed. The common iliac arteries were catheterized retrogradely (left) and cross-over (right). Angioplasty and stenting were performed over-the-wire. All procedures were successful. Visibility of the PEEK-based guide-wire was rated good in vitro and acceptable in vivo. Guide wire pushability and endovascular device support were good. The PEEK-based MR-compatible guide wire is well visible and usable under MR-guidance. It supports over-the-wire treatment of iliac arteries and supraaortic arteries.
Evolution in vitro: analysis of a lineage of ribozymes
NASA Technical Reports Server (NTRS)
Lehman, N.; Joyce, G. F.
1993-01-01
Background: Catalytic RNAs, or ribozymes, possessing both a genotype and a phenotype, are ideal molecules for evolution experiments in vitro. A large, heterogeneous pool of RNAs can be subjected to multiple rounds of selection, amplification and mutation, leading to the development of variants that have some desired phenotype. Such experiments allow the investigator to correlate specific genetic changes with quantifiable alterations of the catalytic properties of the RNA. In addition, patterns of evolutionary change can be discerned through a detailed examination of the genotypic composition of the evolving RNA population. Results: Beginning with a pool of 10(13) variants of the Tetrahymena ribozyme, we carried out in vitro evolution experiments that led to the generation of ribozymes with the ability to cleave an RNA substrate in the presence of Ca2+ ions, an activity that does not exist for the wild-type molecule. Over the course of 12 generations, a seven-error variant emerged that has substantial Ca(2+)-dependent RNA-cleavage activity. Advantageous mutations increased in frequency in the population according to three distinct dynamics--logarithmic, linear and transient. Through a comparative analysis of 31 individual variants, we infer how certain mutations influence the catalytic properties of the ribozyme. Conclusions: In vitro evolution experiments make it possible to elucidate important aspects of both evolutionary biology and structural biochemistry on a reasonable short time scale.
Replacement of RNA hairpins by in vitro selected tetranucleotides.
Dichtl, B; Pan, T; DiRenzo, A B; Uhlenbeck, O C
1993-01-01
An in vitro selection method based on the autolytic cleavage of yeast tRNA(Phe) by Pb2+ was applied to obtain tRNA derivatives with the anticodon hairpin replaced by four single-stranded nucleotides. Based on the rates of the site-specific cleavage by Pb2+ and the presence of a specific UV-induced crosslink, certain tetranucleotide sequences allow proper folding of the rest of the tRNA molecule, whereas others do not. One such successful tetramer sequence was also used to replace the acceptor stem of yeast tRNA(Phe) and the anticodon hairpin of E.coli tRNA(Phe) without disrupting folding. These experiments suggest that certain tetramers may be able to replace structurally nonessential hairpins in any RNA. Images PMID:7680121
An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.
Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun
2016-01-01
Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.
Methods and options in vitro dialyzability; benefits and limitations.
Sandberg, Ann-Sofie
2005-11-01
In vitro dialyzability methods involve a two-step digestion process simulating the gastric and intestinal phase, and dialysis through a semi-permeable membrane with a selected molecular weight cut-off. Dialyzable iron/zinc is used as an estimation of available mineral. Final pH adjustment and use of a strict time schedule were found to be critical factors for standardization. In addition the selected cut-off of the dialysis membrane and the method used for iron and zinc determination influence the results. For screening purposes, simple solubility or dialyzability methods seem preferable to the more sophisticated computer-controlled gastrointestinal model. This is likely more valuable in studies of different transit times and sites of dialyzability. In vitro solubility/dialyzability methods correlate in most cases with human absorption studies in ranking iron and zinc availability from different meals. Exceptions may be that effects of milk, certain proteins, tea, and organic acids cannot be predicted. The dialyzability methods exclude iron bound to large molecules, which in some cases is available and include iron bound to small molecules, which is not always available. In vitro experiments based on solubility/dialyzability are tools to understand factors that may affect subsequent mineral absorption.
Development of Pyrazolone and Isoxazol-5-one Cambinol Analogues as Sirtuin Inhibitors
2015-01-01
Sirtuins are a family of NAD+-dependent protein deacetylases that play critical roles in epigenetic regulation, stress responses, and cellular aging in eukaryotic cells. In an effort to identify small molecule inhibitors of sirtuins for potential use as chemotherapeutics as well as tools to modulate sirtuin activity, we previously identified a nonselective sirtuin inhibitor called cambinol (IC50 ≈ 50 μM for SIRT1 and SIRT2) with in vitro and in vivo antilymphoma activity. In the current study, we used saturation transfer difference (STD) NMR experiments with recombinant SIRT1 and 20 to map parts of the inhibitor that interacted with the protein. Our ongoing efforts to optimize cambinol analogues for potency and selectivity have resulted in the identification of isoform selective analogues: 17 with >7.8-fold selectivity for SIRT1, 24 with >15.4-fold selectivity for SIRT2, and 8 with 6.8- and 5.3-fold selectivity for SIRT3 versus SIRT1 and SIRT2, respectively. In vitro cytotoxicity studies with these compounds as well as EX527, a potent and selective SIRT1 inhibitor, suggest that antilymphoma activity of this compound class may be predominantly due to SIRT2 inhibition. PMID:24697269
Pathak, Shriram M; Ruff, Aaron; Kostewicz, Edmund S; Patel, Nikunjkumar; Turner, David B; Jamei, Masoud
2017-12-04
Mechanistic modeling of in vitro data generated from metabolic enzyme systems (viz., liver microsomes, hepatocytes, rCYP enzymes, etc.) facilitates in vitro-in vivo extrapolation (IVIV_E) of metabolic clearance which plays a key role in the successful prediction of clearance in vivo within physiologically-based pharmacokinetic (PBPK) modeling. A similar concept can be applied to solubility and dissolution experiments whereby mechanistic modeling can be used to estimate intrinsic parameters required for mechanistic oral absorption simulation in vivo. However, this approach has not widely been applied within an integrated workflow. We present a stepwise modeling approach where relevant biopharmaceutics parameters for ketoconazole (KTZ) are determined and/or confirmed from the modeling of in vitro experiments before being directly used within a PBPK model. Modeling was applied to various in vitro experiments, namely: (a) aqueous solubility profiles to determine intrinsic solubility, salt limiting solubility factors and to verify pK a ; (b) biorelevant solubility measurements to estimate bile-micelle partition coefficients; (c) fasted state simulated gastric fluid (FaSSGF) dissolution for formulation disintegration profiling; and (d) transfer experiments to estimate supersaturation and precipitation parameters. These parameters were then used within a PBPK model to predict the dissolved and total (i.e., including the precipitated fraction) concentrations of KTZ in the duodenum of a virtual population and compared against observed clinical data. The developed model well characterized the intraluminal dissolution, supersaturation, and precipitation behavior of KTZ. The mean simulated AUC 0-t of the total and dissolved concentrations of KTZ were comparable to (within 2-fold of) the corresponding observed profile. Moreover, the developed PBPK model of KTZ successfully described the impact of supersaturation and precipitation on the systemic plasma concentration profiles of KTZ for 200, 300, and 400 mg doses. These results demonstrate that IVIV_E applied to biopharmaceutical experiments can be used to understand and build confidence in the quality of the input parameters and mechanistic models used for mechanistic oral absorption simulations in vivo, thereby improving the prediction performance of PBPK models. Moreover, this approach can inform the selection and design of in vitro experiments, potentially eliminating redundant experiments and thus helping to reduce the cost and time of drug product development.
Iron bioavailability studies of the first generation of iron-biofortified beans released in Rwanda
USDA-ARS?s Scientific Manuscript database
This paper represents a series of in vitro Fe bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present stud...
Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw
2016-11-01
Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine samples from patients after antibiotic drugs have been administered.. Overall, the comparison of electrochemistry to in-vivo experiments shows the high potential of EC-MS as a fast analytical tool in the prediction of electrochemical conversion that could be applied to therapeutic drug monitoring and pharmacokinetic studies as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Novel inhibitors to Taenia solium Cu/Zn superoxide dismutase identified by virtual screening
NASA Astrophysics Data System (ADS)
García-Gutiérrez, P.; Landa-Piedra, A.; Rodríguez-Romero, A.; Parra-Unda, R.; Rojo-Domínguez, A.
2011-12-01
We describe in this work a successful virtual screening and experimental testing aimed to the identification of novel inhibitors of superoxide dismutase of the worm Taenia solium ( TsCu/Zn-SOD), a human parasite. Conformers from LeadQuest® database of drug-like compounds were selected and then docked on the surface of TsCu/Zn-SOD. Results were screened looking for ligand contacts with receptor side-chains not conserved in the human homologue, with a subsequent development of a score optimization by a set of energy minimization steps, aimed to identify lead compounds for in vitro experiments. Six out of fifty experimentally tested compounds showed μM inhibitory activity toward TsCu/Zn-SOD. Two of them showed species selectivity since did not inhibit the homologous human enzyme when assayed in vitro.
Falade, Titilayo D O; Syed Mohdhamdan, Sharifah H; Sultanbawa, Yasmina; Fletcher, Mary T; Harvey, Jagger J W; Chaliha, Mridusmita; Fox, Glen P
2016-07-01
In vitro experimental environments are used to study interactions between microorganisms, and to predict dynamics in natural ecosystems. This study highlights that experimental in vitro environments should be selected to match closely the natural environment of interest during in vitro studies to strengthen extrapolations about aflatoxin production by Aspergillus and competing organisms. Fungal competition and aflatoxin accumulation were studied in soil, cotton wool or tube (water-only) environments, for Aspergillus flavus competition with Penicillium purpurogenum, Fusarium oxysporum or Sarocladium zeae within maize grains. Inoculated grains were incubated in each environment at two temperature regimes (25 and 30°C). Competition experiments showed interaction between the main effects of aflatoxin accumulation and the environment at 25°C, but not so at 30°C. However, competition experiments showed fungal populations were always interacting with their environments. Fungal survival differed after the 72-h incubation in different experimental environments. Whereas all fungi incubated within the soil environment survived, in the cotton wool environment none of the competitors of A. flavus survived at 30°C. With aflatoxin accumulation, F. oxysporum was the only fungus able to interdict aflatoxin production at both temperatures. This occurred only in the soil environment and fumonisins accumulated instead. Smallholder farmers in developing countries face serious mycotoxin contamination of their grains, and soil is a natural reservoir for the associated fungal propagules, and a drying and storage surface for grains on these farms. Studying fungal dynamics in the soil environment and other environments in vitro can provide insights into aflatoxin accumulation post-harvest.
Predicting mutant selection in competition experiments with ciprofloxacin-exposed Escherichia coli.
Khan, David D; Lagerbäck, Pernilla; Malmberg, Christer; Kristoffersson, Anders N; Wistrand-Yuen, Erik; Sha, Cao; Cars, Otto; Andersson, Dan I; Hughes, Diarmaid; Nielsen, Elisabet I; Friberg, Lena E
2018-03-01
Predicting competition between antibiotic-susceptible wild-type (WT) and less susceptible mutant (MT) bacteria is valuable for understanding how drug concentrations influence the emergence of resistance. Pharmacokinetic/pharmacodynamic (PK/PD) models predicting the rate and extent of takeover of resistant bacteria during different antibiotic pressures can thus be a valuable tool in improving treatment regimens. The aim of this study was to evaluate a previously developed mechanism-based PK/PD model for its ability to predict in vitro mixed-population experiments with competition between Escherichia coli (E. coli) WT and three well-defined E. coli resistant MTs when exposed to ciprofloxacin. Model predictions for each bacterial strain and ciprofloxacin concentration were made for in vitro static and dynamic time-kill experiments measuring CFU (colony forming units)/mL up to 24 h with concentrations close to or below the minimum inhibitory concentration (MIC), as well as for serial passage experiments with concentrations well below the MIC measuring ratios between the two strains with flow cytometry. The model was found to reasonably well predict the initial bacterial growth and killing of most static and dynamic time-kill competition experiments without need for parameter re-estimation. With parameter re-estimation of growth rates, an adequate fit was also obtained for the 6-day serial passage competition experiments. No bacterial interaction in growth was observed. This study demonstrates the predictive capacity of a PK/PD model and further supports the application of PK/PD modelling for prediction of bacterial kill in different settings, including resistance selection. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Lin, Ya-ping; Zhao, Ying; Zhang, Yong-ping; Liang, Guang-yi
2007-02-01
To study the transdermal osmosis process of Aconitum brachypodum's liniment, gel and patcher to provide basis for selecting dosage form and controlling the quality. Taking the cumulate rate of transdermal as index, a imitated Fick's diffusion device was used for the investigating the transdermal osmosis course of the three preparations. The best transdermal mathematics models are obtained and the relations between the transdermal course and the release course are analysed. The three preparations have different characteristics of transdermal osmosis course. The liniment meets dynamics 0 order process, the gel and the patcher meet dynamic 0 order process of non-corroded drug system. And the relation is good cubic equation between their transdermal course and release course. The transdermal osmosis experiment in vitro for three preparations can provide basis for selecting dosage form and the quality control in future studies.
USDA-ARS?s Scientific Manuscript database
Producers of pond-raised channel catfish in the southeastern United States can experience huge economic losses due to the bacterial diseases enteric septicemia of catfish (ESC) and columnaris and to the presence of the certain odor-producing cyanobacteria in production ponds that result in “off-flav...
Paes, V M; Vieira, L A; Correia, H H V; Sa, N A R; Moura, A A A; Sales, A D; Rodrigues, A P R; Magalhães-Padilha, D M; Santos, F W; Apgar, G A; Campello, C C; Camargo, L S A; Figueiredo, J R
2016-09-01
The deleterious effect of heat stress (HS) on competence of oocytes from antral follicles is well recognized, but there is a lack of data regarding its impact on the viability and growth of preantral follicles. In this study, we used in vitro preantral follicle cultures to investigate the effects of HS on the following parameters: survival and development of primordial follicles after in vitro culture of ovarian fragments (experiment I); growth and antrum formation of isolated advanced secondary follicles (experiment II); and maturation rates after in vitro maturation (IVM) of cumulus-oocyte complexes (COCs) from antral follicles (>2-6 mm) grown in vivo (experiment III). Furthermore, the following end points were evaluated in all experiments: follicle/oocyte survival, reactive oxygen species (ROS), estradiol (E2) and progesterone (P4) production, as well as mRNA expression for select genes related to stress (HSP70) and apoptosis (MCL1 and BAX). In all experiments, HS consisted of exposing the structures (ovarian fragments, isolated preantral follicles and COCs) to 41 °C for 12 hours and then to 38.5 °C until the end of the culture (7 days for experiments I and II and 24 hours for experiment III). The temperature for the control group was held at 38.5 °C for the entire culture period. Heat stress increased (P < 0.05) the percentage of developing follicles (intermediate, primary, and secondary follicles) at 12 hours and increased levels of ROS at all evaluated time points (12, 24 hours, and D7), when compared to the control (experiment I). Heat stress did not affect (P > 0.05) any identified end points when preantral follicles were cultured in their isolated form (experiment II). However, in experiment III, HS decreased (P < 0.05) both the rates of metaphase II after 24 hours and E2 production at 12 hours of IVM. Moreover, HS increased (P < 0.0001) levels of P4 after IVM and ROS production at every evaluated time point, compared with the control (12 and 24 hours). In conclusion, HS caused: (1) early activation of primordial follicles; (2) an increase in ROS production by early preantral follicles enclosed in ovarian tissue and by COCs; (3) a short-term reduction of E2 production by COCs; and (4) an increase in P4 secretion from COCs. However, HS did not affect in vitro culture of advanced isolated secondary follicles. Experimental evidence indicates that preantral follicles are less sensitive to HS than COC. Copyright © 2016 Elsevier Inc. All rights reserved.
Integration of QSAR and in vitro toxicology.
Barratt, M D
1998-01-01
The principles of quantitative structure-activity relationships (QSAR) are based on the premise that the properties of a chemical are implicit in its molecular structure. Therefore, if a mechanistic hypothesis can be proposed linking a group of related chemicals with a particular toxic end point, the hypothesis can be used to define relevant parameters to establish a QSAR. Ways in which QSAR and in vitro toxicology can complement each other in development of alternatives to live animal experiments are described and illustrated by examples from acute toxicological end points. Integration of QSAR and in vitro methods is examined in the context of assessing mechanistic competence and improving the design of in vitro assays and the development of prediction models. The nature of biological variability is explored together with its implications for the selection of sets of chemicals for test development, optimization, and validation. Methods are described to support the use of data from in vivo tests that do not meet today's stringent requirements of acceptability. Integration of QSAR and in vitro methods into strategic approaches for the replacement, reduction, and refinement of the use of animals is described with examples. PMID:9599692
Dallanoce, Clelia; De Amici, Marco; Barocelli, Elisabetta; Bertoni, Simona; Roth, Bryan L; Ernsberger, Paul; De Micheli, Carlo
2007-12-15
A set of novel heterocyclic ligands (6-27) structurally related to Oxotremorine 2 was designed, synthesized and tested at muscarinic receptor subtypes (mAChRs). In the binding experiments at cloned human receptors (hm1-5), compounds 7 and 15 evidenced a remarkable affinity and selectivity for the hm2 subtype. The in vitro functional assays, performed on a selected group of derivatives at M(1), M(2), and M(3) tissue preparations, singled out the 3-butynyloxy-5-methylisoxazole trimethylammonium salt 7 as a potent unselective muscarinic agonist [pEC(50): 7.40 (M(1)), 8.18 (M(2)), and 8.14 (M(3))], whereas its 5-phenyl analogue 12 behaved as a muscarinic antagonist, slightly selective for the M(1) subtype [pK(B): 6.88 (M(1)), 5.95 (M(2)), 5.53 (M(3))]. Moreover, the functional data put in evidence that the presence of the piperidine ring may generate a functional selectivity, e.g., an M(1) antagonist/M(2) partial agonist/M(3) full agonist profile (compound 21), at variance with the corresponding quaternary ammonium salt (compound 22) which behaved as a muscarinic agonist at all M(1-3) receptors, with an appreciable selectivity for the cardiac M(2) receptors.
Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry
2016-01-01
This article addresses the in silico–in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy. PMID:27920524
Retif, Paul; Reinhard, Aurélie; Paquot, Héna; Jouan-Hureaux, Valérie; Chateau, Alicia; Sancey, Lucie; Barberi-Heyob, Muriel; Pinel, Sophie; Bastogne, Thierry
This article addresses the in silico-in vitro prediction issue of organometallic nanoparticles (NPs)-based radiosensitization enhancement. The goal was to carry out computational experiments to quickly identify efficient nanostructures and then to preferentially select the most promising ones for the subsequent in vivo studies. To this aim, this interdisciplinary article introduces a new theoretical Monte Carlo computational ranking method and tests it using 3 different organometallic NPs in terms of size and composition. While the ranking predicted in a classical theoretical scenario did not fit the reference results at all, in contrast, we showed for the first time how our accelerated in silico virtual screening method, based on basic in vitro experimental data (which takes into account the NPs cell biodistribution), was able to predict a relevant ranking in accordance with in vitro clonogenic efficiency. This corroborates the pertinence of such a prior ranking method that could speed up the preclinical development of NPs in radiation therapy.
Constructing high complexity synthetic libraries of long ORFs using in vitro selection
NASA Technical Reports Server (NTRS)
Cho, G.; Keefe, A. D.; Liu, R.; Wilson, D. S.; Szostak, J. W.
2000-01-01
We present a method that can significantly increase the complexity of protein libraries used for in vitro or in vivo protein selection experiments. Protein libraries are often encoded by chemically synthesized DNA, in which part of the open reading frame is randomized. There are, however, major obstacles associated with the chemical synthesis of long open reading frames, especially those containing random segments. Insertions and deletions that occur during chemical synthesis cause frameshifts, and stop codons in the random region will cause premature termination. These problems can together greatly reduce the number of full-length synthetic genes in the library. We describe a strategy in which smaller segments of the synthetic open reading frame are selected in vitro using mRNA display for the absence of frameshifts and stop codons. These smaller segments are then ligated together to form combinatorial libraries of long uninterrupted open reading frames. This process can increase the number of full-length open reading frames in libraries by up to two orders of magnitude, resulting in protein libraries with complexities of greater than 10(13). We have used this methodology to generate three types of displayed protein library: a completely random sequence library, a library of concatemerized oligopeptide cassettes with a propensity for forming amphipathic alpha-helical or beta-strand structures, and a library based on one of the most common enzymatic scaffolds, the alpha/beta (TIM) barrel. Copyright 2000 Academic Press.
Ledbetter, Michael P; Hwang, Tony W; Stovall, Gwendolyn M; Ellington, Andrew D
2013-01-01
Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. In vitro directed evolution (IVDE) frequently serves as a model system for the study of Darwinian evolution but produces noticeable phenotypic shifts in a matter of hours. An IVDE demonstration lab would serve to both directly demonstrate how Darwinian selection can act on a pool of variants and introduce students to an essential method of modern molecular biology. To produce an IVDE demonstration lab, continuous IVDE of a T500 ribozyme ligase population has been paired with a fluorescent strand displacement reporter system to visualize the selection of improved catalytic function. A ribozyme population is taken through rounds of isothermal amplification dependent on the self-ligation of a T7 promoter. As the population is selectively enriched with better ligase activity, the strand displacement system allows for the monitoring of the population's ligation rate. The strand displacement reporter system permits the detection of ligated ribozyme. Once ligated with the T7 promoter, the 5' end of the ribozyme displaces paired fluorophore-quencher oligonucleotides, in turn, generating visible signal upon UV light excitation. As the ligation rate of the population increases, due to the selection for faster ligating species, the fluorescent signal develops more rapidly. The pairing of the continuous isothermal system with the fluorescent reporting scheme allows any user, provided with minimal materials, to model the continuous directed evolution of a biomolecule. Copyright © 2013 Wiley-Liss, Inc.
Bigham-Sadegh, Amin; Oryan, Ahmad
2015-06-01
In vitro assays can be useful in determining biological mechanism and optimizing scaffold parameters, however translation of the in vitro results to clinics is generally hard. Animal experimentation is a better approximation than in vitro tests, and usage of animal models is often essential in extrapolating the experimental results and translating the information in a human clinical setting. In addition, usage of animal models to study fracture healing is useful to answer questions related to the most effective method to treat humans. There are several factors that should be considered when selecting an animal model. These include availability of the animal, cost, ease of handling and care, size of the animal, acceptability to society, resistance to surgery, infection and disease, biological properties analogous to humans, bone structure and composition, as well as bone modeling and remodeling characteristics. Animal experiments on bone healing have been conducted on small and large animals, including mice, rats, rabbits, dogs, pigs, goats and sheep. This review also describes the molecular events during various steps of fracture healing and explains different means of fracture healing evaluation including biomechanical, histopathological and radiological assessments.
RNA mediated assembly of nanostructures
NASA Astrophysics Data System (ADS)
Rouge, Jessica Lynn
The first chapter of this work presents a comprehensive look at RNA mediated nanoparticle formation. The overall goal of this research is to gain a deeper understanding of the RNA-particle formation mechanism and the basic properties of the materials selected by modified RNA molecules. Understanding such RNA-substrate interactions and how they translate into the physical and chemical characteristics of the nanoparticles they create are important fundamental concepts when considering these biotemplated materials as potential chemical catalysts. The RNA sequences discussed in the first chapter (referred to as Pdases) were discovered using RNA in vitro selection techniques. These Pdases were found to be capable of forming inorganic palladium (Pd) containing nanoparticles with impressive control over an individual particle's size and shape, despite incubation with the same organometallic precursor. This discovery held exciting implications for inorganic nanoparticle design while also generating numerous questions regarding the mechanism of RNA mediated particle growth. The central question that arose after this initial discovery was how could a biomolecule be used to tailor the physical size and shape of inorganic materials? Starting with a chemical proof designed to uncover the composition of the nanoparticles formed by RNA mediation, this chapter investigates the basic material properties of the nanoparticles while also introducing surprising results regarding the effect of multiple sequences on nanoparticle growth outcomes. In the second chapter, the experiments shift to developing methods to investigate nanoparticle growth mechanisms by fluorescence spectroscopy. A fluorescence polarization anisotropy (FPA) assay is presented in which the strengths of the technique are adapted for studying the formation of RNA mediated Pd nanoparticles in real time. This is a unique application of FPA, as it has been adapted to encompass both the biochemical and materials analysis of a single dynamic system. Although the initial studies described in chapter two focus on the growth kinetics of selected Pdases and their organometallic substrate (Pd2DBA3), it is envisioned that this technique can be used to study a variety of biotemplated systems in a similar fashion. For the experiments described, a key interest was to understand if the RNA governed the rates associated with nanoparticle formation and to gain deeper insight in to the potential growth mechanisms of RNA-nanoparticle constructs. Understanding such interactions could help identify the role RNA play in forming materials while also helping to shape the experimental design of future in vitro selections between RNA and materials. The strengths of these FPA experiments are described as well the associated kinetics observed for RNA mediated particle growth. In chapter three, the fundamental concepts surrounding RNA-nanoparticle interactions shifts to the first application-oriented study of RNA mediated nanoparticle formation for chemical catalysis. The product of a second materials selection is presented in which platinum (Pt) rich nanoparticles are formed using pyridyl modified RNA sequences. These RNA-Pt nanoparticle constructs are interfaced with cadmium sulfide (CdS) quantum dots in an effort to assess the ability of the RNA-Pt nanoparticles to serve as functional catalyst for the photocatalytic production of metal hydrides from aqueous solutions at neutral pH. Metal hydride formation is a crucial step in the challenging chemical reaction of water splitting. The results of this hybrid RNA-Pt/CdS water splitting catalyst are described and compared to more traditional catalyst designs. In the final chapter, the combination of concepts and insights gained as presented in chapters 1-3 are systematically combined into the first RNA in vitro selection for photochemically active materials. This novel selection utilizes an RNA library that is chemically modified such that it can both find and assess the ability of a material to perform photon-driven oxidation chemistry in a complex mixture. In order to conduct such a selection, a new DNA phosphoramidite was synthesized and attached to the RNA library prior to beginning the selection. The details of this synthesis are described. Later in this chapter, the results of this complex yet powerful in vitro selection are outlined. In closing, the prospect of using in vitro selection techniques for discovering other chemically active materials is discussed.
Fernandez y Mostajo, Mercedes; van der Reijden, Wil A; Buijs, Mark J; Beertsen, Wouter; Van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija
2014-01-01
Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research.
Hollow Fiber Methodology for Pharmacokinetic/Pharmacodynamic Studies of Antimalarial Compounds
Caton, Emily; Nenortas, Elizabeth; Bakshi, Rahul P.; Shapiro, Theresa A.
2016-01-01
Knowledge of pharmacokinetic/pharmacodynamic (PK/PD) relationships can enhance the speed and economy of drug development by enabling informed and rational decisions at every step, from lead selection to clinical dosing. For anti-infective agents in particular, dynamic in vitro hollow fiber cartridge experiments permit exquisite control of kinetic parameters and the study of their consequent impact on pharmacodynamic efficacy. Such information is of great interest for the cost-restricted but much-needed development of new antimalarial drugs, especially since major human pathogen Plasmodium falciparum can be cultivated in vitro but is not readily available in animal models. This protocol describes the materials and procedures for determining the PK/PD relationships of antimalarial compounds. PMID:26995353
Preformulation experiences and in vitro model studies with spironolactone-containing suppositories.
Regdon, G; Deák, D; Regdon, G; Muskó, Z; Erös, I
2001-01-01
The optimal suppository base for the formulation of rectal suppositories containing diuretic spironolactone was selected experimentally. Model studies were carried out about the effect of solubility-increasing additives on the release of the drug from the suppositories. During the in vitro examinations acceptor phases of different pH values were used, and both diffusion time and the number of samplings were changed. Among the lipophilic and hydrophilic suppository bases studied the hydrophilic Macrogolum 1540 was found to be optimal. The release and diffusion of spironolactone was the most favourable from these suppositories. During storage these suppositories remained stable and the values of release did not decrease significantly (p < 0.05).
Cheng, Xu-Dong; Jia, Xiao-Bin; Feng, Liang; Jiang, Jun
2013-12-01
The secondary development of major traditional Chinese medicine varieties is one of important links during the modernization, scientification and standardization of traditional Chinese medicines. How to accurately and effectively identify the pharmacodynamic material basis of original formulae becomes the primary problem in the secondary development, as well as the bottleneck in the modernization development of traditional Chinese medicines. On the basis of the existing experimental methods, and according to the study thought that the multi-component and complex effects of traditional Chinese medicine components need to combine multi-disciplinary methods and technologies, we propose the study thought of the material basis of secondary development of major traditional Chinese medicine varieties based on the combination of in vivo and in vitro experiments. It is believed that studies on material basis needs three links, namely identification, screening and verification, and in vivo and in vitro study method corresponding to each link is mutually complemented and verified. Finally, the accurate and reliable material basis is selected. This thought provides reference for the secondary development of major traditional Chinese medicine varieties and studies on compound material basis.
USDA-ARS?s Scientific Manuscript database
To evaluate the feasibility of using an in vitro cell assay to select attenuated bacterial mutants. Using catfish gill cells G1B, the feasibility of using an in vitro assay instead of in vivo virulence assay using live fish to select attenuated bacterial mutants was evaluated in this study. Pearson ...
Power laws and extreme values in antibody repertoires
NASA Astrophysics Data System (ADS)
Boyer, Sebastien; Biswas, Dipanwita; Scaramozzino, Natale; Kumar, Ananda Soshee; Nizak, Clément; Rivoire, Olivier
2015-03-01
Evolution by natural selection involves the succession of three steps: mutations, selection and proliferation. We are interested in describing and characterizing the result of selection over a population of many variants. After selection, this population will be dominated by the few best variants, with highest propensity to be selected, or highest ``selectivity.'' We ask the following question: how is the selectivity of the best variants distributed in the population? Extreme value theory, which characterizes the extreme tail of probability distributions in terms of a few universality class, has been proposed to describe it. To test this proposition and identify the relevant universality class, we performed quantitative in vitro experimental selections of libraries of >105 antibodies using the technique of phage display. Data obtained by high-throughput sequencing allows us to fit the selectivity distribution over more than two decades. In most experiments, the results show a striking power law for the selectivity distribution of the top antibodies, consistent with extreme value theory.
Song, Yonggui; Su, Dan; Shen, Yuan; Liu, Hongyu; Wang, Li
2017-01-01
A novel open circuit potential biosensor (OCPS) composed of a working electrode and a Ag/AgCl reference electrode was designed for in vivo continuous glucose monitoring in this work. The macroporous carbon derived from kenaf stem (KSC) was used to construct a KSC microelectrode (denoted as KSCME) which was subsequently used to load glucose oxidase (GOD) as the working electrode. The resulting GOD/KSCMEs could catalyze the oxidation of glucose directly to result in changes of the open circuit potential (V oc ) of the OCPS. The V oc of OCPS was dependent on the glucose concentration, showing a linear range of 0.03-10.0 mM (R = 0.999) with a detection limit of 10 μM. In addition, the OCPS exhibited good selectivity for glucose over other common endogenous interferences. The feasibility of the proposed OCPS for glucose detection in mice skin tumors and normal tissue homogenate samples (in vitro experiment) and rat subcutaneous glucose monitoring (in vivo experiment) was also demonstrated with satisfactory results. The biosensor represents a novel example of a superficial cancer diagnostic device, and the proposed OCPS also provides new ideas for the development of a simple and highly selective device for continuous glucose sensing.
DGAT2 Inhibition Alters Aspects of Triglyceride Metabolism in Rodents but Not in Non-human Primates.
McLaren, David G; Han, Seongah; Murphy, Beth Ann; Wilsie, Larissa; Stout, Steven J; Zhou, Haihong; Roddy, Thomas P; Gorski, Judith N; Metzger, Daniel E; Shin, Myung K; Reilly, Dermot F; Zhou, Heather H; Tadin-Strapps, Marija; Bartz, Steven R; Cumiskey, Anne-Marie; Graham, Thomas H; Shen, Dong-Ming; Akinsanya, Karen O; Previs, Stephen F; Imbriglio, Jason E; Pinto, Shirly
2018-06-05
Diacylglycerol acyltransferase 2 (DGAT2) catalyzes the final step in triglyceride (TG) synthesis and has been shown to play a role in regulating hepatic very-low-density lipoprotein (VLDL) production in rodents. To explore the potential of DGAT2 as a therapeutic target for the treatment of dyslipidemia, we tested the effects of small-molecule inhibitors and gene silencing both in vitro and in vivo. Consistent with prior reports, chronic inhibition of DGAT2 in a murine model of obesity led to correction of multiple lipid parameters. In contrast, experiments in primary human, rhesus, and cynomolgus hepatocytes demonstrated that selective inhibition of DGAT2 has only a modest effect. Acute and chronic inhibition of DGAT2 in rhesus primates recapitulated the in vitro data yielding no significant effects on production of plasma TG or VLDL apolipoprotein B. These results call into question whether selective inhibition of DGAT2 is sufficient for remediation of dyslipidemia. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhang, Lu; Xu, Jinhao; Ma, Jinbiao
2016-07-25
RNA-binding protein exerts important biological function by specifically recognizing RNA motif. SELEX (Systematic evolution of ligands by exponential enrichment), an in vitro selection method, can obtain consensus motif with high-affinity and specificity for many target molecules from DNA or RNA libraries. Here, we combined SELEX with next-generation sequencing to study the protein-RNA interaction in vitro. A pool of RNAs with 20 bp random sequences were transcribed by T7 promoter, and target protein was inserted into plasmid containing SBP-tag, which can be captured by streptavidin beads. Through only one cycle, the specific RNA motif can be obtained, which dramatically improved the selection efficiency. Using this method, we found that human hnRNP A1 RRMs domain (UP1 domain) bound RNA motifs containing AGG and AG sequences. The EMSA experiment indicated that hnRNP A1 RRMs could bind the obtained RNA motif. Taken together, this method provides a rapid and effective method to study the RNA binding specificity of proteins.
McQuade, Paul; Martin, Katherine E; Castle, Thomas C; Went, Michael J; Blower, Philip J; Welch, Michael J; Lewis, Jason S
2005-02-01
Cu-diacetyl-bis(N4-methylthiosemicarbazone) [Cu-ATSM], although excellent for oncology applications, may not be suitable for delineating cardiovascular or neurological hypoxia. For this reason, new Cu hypoxia positron emission tomography (PET) imaging agents are being examined to search for a higher selectivity for hypoxic or ischemic tissue at higher oxygen concentrations found in these tissues. Two approaches are to increase alkylation or to replace the sulfur atoms with selenium, resulting in the formation of selenosemicarbazones. Three 64Cu-labeled selenosemicarbazone complexes were synthesized and one was screened for hypoxia selectivity in vitro using EMT-6 mouse mammary carcinoma cells. Rodent biodistribution and small animal PET images were obtained from BALB/c mice implanted with EMT-6 tumors. One alkylated thiosemicarbazone was synthesized and examined. Of the three bis(selenosemicarbazone) ligands synthesized and examined, only 64Cu-diacetyl-bis(selenosemicarbazone) [64Cu-ASSM] was isolated in high-enough radiochemical purity to undertake cell uptake experiments where uptake was shown to be independent of oxygen concentration. The bis(thiosemicarbazone) complex synthesized, 64Cu-diacetyl-bis(N4-ethylthiosemicarbazone) [64Cu-ATSE], showed hypoxia selectivity similar to 64Cu-ATSM although at a higher oxygen concentration. Biodistribution studies for 64Cu-ASSM and 64Cu-ATSE showed high tumor uptake at 20 min (64Cu-ASSM, 10.33+/-0.78% ID/g; 64Cu-ATSE, 7.71+/-0.46% ID/g). PET images of EMT-6 tumor-bearing mice visualized the tumor with 64Cu-ATSE and revealed hypoxia selectivity consistent with the in vitro data. Of the compounds synthesized, only 64Cu-ASSM and 64Cu-ATSE could be examined in vitro and in vivo. Although the stability of bis(selenosemicarbazone) complexes increased upon addition of methyl groups to the diimine backbone, the fully alkylated species, 64Cu-ASSM, demonstrated no hypoxia selectivity. However, the additional alkylation present in Cu-ATSE modifies the hypoxia selectivity and in vivo properties when compared with Cu-ATSM.
Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.
2013-01-01
Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296
Currently, little justification is provided for nanomaterial testing concentrations in in vitro assays. The in vitro concentrations typically used may be higher than those experienced in exposed humans. Selection of concentration levels for hazard evaluation based on real-world ...
Palomo, M J; Quintanilla, R; Izquierdo, M D; Mogas, T; Paramio, M T
2016-12-01
This work analyses the changes that caprine spermatozoa undergo during in vitro fertilization (IVF) of in vitro matured prepubertal goat oocytes and their relationship with IVF outcome, in order to obtain an effective model that allows prediction of in vitro fertility on the basis of semen assessment. The evolution of several sperm parameters (motility, viability and acrosomal integrity) during IVF and their relationship with three IVF outcome criteria (total penetration, normal penetration and cleavage rates) were studied in a total of 56 IVF replicates. Moderate correlation coefficients between some sperm parameters and IVF outcome were observed. In addition, stepwise multiple regression analyses were conducted that considered three grouping of sperm parameters as potential explanatory variables of the three IVF outcome criteria. The proportion of IVF outcome variation that can be explained by the fitted models ranged from 0.62 to 0.86, depending upon the trait analysed and the variables considered. Seven out of 32 sperm parameters were selected as partial covariates in at least one of the nine multiple regression models. Among these, progressive sperm motility assessed immediately after swim-up, the percentage of dead sperm with intact acrosome and the incidence of acrosome reaction both determined just before the gamete co-culture, and finally the proportion of viable spermatozoa at 17 h post-insemination were the most frequently selected sperm parameters. Nevertheless, the predictive ability of these models must be confirmed in a larger sample size experiment.
Studies on penetration of antibiotic in bacterial cells in space conditions (7-IML-1)
NASA Technical Reports Server (NTRS)
Tixador, R.
1992-01-01
The Cytos 2 experiment was performed aboard Salyut 7 in order to test the antibiotic sensitivity of bacteria cultivated in vitro in space. An increase of the Minimal Inhibitory Concentration (MIC) in the inflight cultures (i.e., an increase of the antibiotic resistance) was observed. Complementary studies of the ultrastructure showed a thickening of the cell envelope. In order to confirm the results of the Cytos 2 experiment, we performed the ANTIBIO experiment during the D1 mission to try to differentiate, by means of the 1 g centrifuge in the Biorack, between the biological effects of cosmic rays and those caused by microgravity conditions. The originality of this experiment was in the fact that it was designed to test the antibiotic sensitivity of bacteria cultivated in vitro during the orbital phase of the flight. The results show an increase in resistance to Colistin in in-flight bacteria. The MIC is practically double in the in-flight cultures. A cell count of living bacteria in the cultures containing the different Colistin concentrations showed a significant difference between the cultures developed during space flight and the ground based cultures. The comparison between the 1 g and 0 g in-flight cultures show similar behavior for the two sets. Nevertheless, a small difference between the two sets of ground based control cultures was noted. The cultures developed on the ground centrifuge (1.4 g) present a slight decrease in comparison with the cultures developed in the static rack (1 g). In order to approach the mechanisms of the increase of antibiotic resistance on bacteria cultivated in vitro in space, we have proposed the study on penetration of antibiotics in bacterial cells in space conditions. This experiment was selected for the International Microgravity Laboratory 1 (IML-1) mission.
Methacrylate micro/nano particles prepared by spray drying: a preliminary in vitro/in vivo study.
Muñoz Ortega, Begoña; Sallam, Marwa Ahmed; Marín Boscá, M Teresa
2016-09-01
Delivery systems controlling drug release only in the colon holds great promises since they improve utilization of drug and decrease the dosing times comparison with conventional forms. The aim of the present study was to prepare polymeric microparticles on the basis of Ciprofloxacin via oral route for the treatment of inflammatory bowel disease. Ciprofloxacin was selected because of its extensive coverage for intestinal flora, relatively favorable side-effect profile and preliminary data suggesting its efficacy in the treatment of active Crohn's Disease. Microparticles were prepared using different acrylic compounds, namely Eudragit® RL (PO) and RS (PO) and a mixture of both. Spray-drying was used as a preparation method of Ciprofloxacin/Eudragit® microparticles using a Mini Spray Dryer B-290 (Büchi, Postfach, Switzerland). In vitro dissolution studies were performed to choose the best formulation and selected microparticles were characterized by size and morphology by environmental scanning electron microscopy. Yield and encapsulation efficiency were calculated and in vivo/ex vivo experiments were investigated both of which suggest that selected microparticles can be used for colon targeting of drugs increasing residence time of the drug in the affected area.
In vitro selection of catalytic RNAs
NASA Technical Reports Server (NTRS)
Chapman, K. B.; Szostak, J. W.
1994-01-01
In vitro selection techniques are poised to allow a rapid expansion of the study of catalysis by RNA enzymes (ribozymes). This truly molecular version of genetics has already been applied to the study of the structures of known ribozymes and to the tailoring of their catalytic activity to meet specific requirements of substrate specificity or reaction conditions. During the past year, in vitro selection has been successfully used to isolate novel RNA catalysts from random sequence pools.
Ramamoorthi, Murali; Bakkar, Mohammed; Jordan, Jack; Tran, Simon D.
2015-01-01
Background and Objective. Dental stem cell-based tissue engineered constructs are emerging as a promising alternative to autologous bone transfer for treating bone defects. The purpose of this review is to systematically assess the preclinical in vivo and in vitro studies which have evaluated the efficacy of dental stem cells on bone regeneration. Methods. A literature search was conducted in Ovid Medline, Embase, PubMed, and Web of Science up to October 2014. Implantation of dental stem cells in animal models for evaluating bone regeneration and/or in vitro studies demonstrating osteogenic potential of dental stem cells were included. The preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines were used to ensure the quality of the search. Modified ARRIVE (Animal research: reporting in invivo experiments) and CONSORT (Consolidated reporting of trials) were used to critically analyze the selected studies. Results. From 1914 citations, 207 full-text articles were screened and 137 studies were included in this review. Because of the heterogeneity observed in the studies selected, meta-analysis was not possible. Conclusion. Both in vivo and in vitro studies indicate the potential use of dental stem cells in bone regeneration. However well-designed randomized animal trials are needed before moving into clinical trials. PMID:26106427
Different Classes of Glutamate Receptors Mediate Distinct Behaviors in a Single Brainstem Nucleus
NASA Astrophysics Data System (ADS)
Dye, John; Heiligenberg, Walter; Keller, Clifford H.; Kawasaki, Masashi
1989-11-01
We have taken advantage of the increasing understanding of glutamate neuropharmacology to probe mechanisms of well-defined vertebrate behaviors. Here we report a set of experiments that suggests distinct roles for two major classes of glutamate receptors in a discrete premotor nucleus of the brainstem. The medullary pacemaker nucleus of weakly electric fish is an endogenous oscillator that controls the electric organ discharge (EOD). Its regular frequency of firing is modulated during several distinct behaviors. The pacemaker nucleus continues firing regularly when isolated in vitro, and modulatory behaviors can be reproduced by stimulating the descending input pathway. Glutamate agonists applied to the pacemaker in vitro produced increases in frequency, while glutamate antagonists selectively blocked stimulus-induced modulations. Experiments with glutamate antagonists in the intact animal resulted in specific effects on two well-characterized behaviors. Our data indicate that these behaviors are separately mediated in the pacemaker by receptors displaying characteristics of the kainate/quisqualate and N-methyl-D-aspartate subtypes of glutamate receptor, respectively.
First study of hormesis effect on mushroom cultivation.
Zied, Diego Cunha; Dourado, Fernanda Aparecida; Dias, Eustáquio Souza; Pardo-Giménez, Arturo
2017-10-05
The use of fungicides is common in mushroom cultivation, but no study was carried out applying reduced doses of fungicides in order to increase yield, taking account the hormesis effect. The aim of this manuscript was to verify the effects of different concentrations of fungicides to stimulate the productivity of different strains of Agaricus bisporus. Two stages were developed, an in vitro study to define the best concentration to be applied in the second experiment an agronomic study, which consisted of the application of the selected fungicides, in their respective concentrations, in an experiment carried out in the mushroom chamber. Clearly, the result of the hormesis effect on mushroom cultivation can be verified. The results obtained in the 1st stage of the study (in vitro) were not always reproduced in the 2nd stage of the study (in vivo). The kresoxim methyl active ingredient may be an important chemical agent, while strain ABI 15/01 may be an extremely important biological agent to increase yield in the study of hormesis effects.
Paszkiewicz-Gadek, A; Chlabicz, J; Gałasiński, W
1988-01-01
Five potential oncostatics of plant origin (reserpine, amphotericin B, rutoside, digoxin, dry aloe extract), and cyclic AMP were investigated for their effect on protein synthesis. The solutions of digoxin and dry aloe extract inhibited protein biosynthesis in vitro. The direct inhibiting effect of digoxin on the ribosomes suggests that this drug forms an inactive complex with this organelle. Therefore it can be concluded that ribosome is the target site of digoxin action. Aloin and aloeemodin are responsible for the inhibitory effect of the solution of dry aloe extract. They inhibit markedly [14C]-leucine incorporation into proteins. Aloin and aloeemodin do not influence directly the ribosomes, but they inhibit elongation factors and peptidyltransferase activities in the complete elongation system. Some preliminary experiments have shown that direct interaction between these substances and elongation factor EF-2 should be taken in account. This observation is the subject of further experiments, in which the characteristics of the inhibitory effect of the components isolated from dry aloe extract will be performed.
Peippo, Jaana; Viitala, Sirja; Virta, Jouni; Räty, Mervi; Tammiranta, Niina; Lamminen, Terttu; Aro, Johanna; Myllymäki, Hannu; Vilkki, Johanna
2007-11-01
We report a method for multiplex genotyping of bovine embryo microblade biopsies. We have tested the reliability of the method and the viability of the embryos in vitro and in vivo. Two polymorphic gene markers (GHR F279Y and PRLR S18N) associated with milk production traits and one marker for sex diagnosis (ZFX/ZFY) were genotyped simultaneously with a method that combines nested PCR and allelic discrimination. To test the accuracy of genotyping, in the first experiment the genotypes of 134 biopsies from in vitro produced embryos were compared to genotypes determined from the corresponding embryos after biopsy. The method proved to be highly accurate as only in three cases (two for PRLR S18N and one for GHR F279Y) out of 395 genotypes the genotype was in disagreement between the two samples. The viability of similarly biopsied embryos was tested in parallel: after 24-hr culture 94.6% of embryos recovered in vitro. In the second experiment, a total of 150 in vivo-produced embryos were biopsied on Day 7 and genotyped. After the genotyping results were obtained on Day 8, female embryos were selected for transfer. From a total of 57 selected embryos 43 were transferred individually and 14 as pairs. After single embryo transfers, 19 recipients became pregnant and after embryo transfers in pairs one became pregnant. The success of genotyping was tested with the genotypes of donors and bulls and also from the hair samples of born calves. All calves were females and of the same genotypes determined from the biopsy. (c) 2007 Wiley-Liss, Inc.
Martínez-Fernández, G; Abecia, L; Martín-García, A I; Ramos-Morales, E; Hervás, G; Molina-Alcaide, E; Yáñez-Ruiz, D R
2013-12-01
Two in vitro and one in vivo experiments were conducted to investigate the effects of a selection of plant compounds on rumen fermentation, microbial concentration and methane emissions in goats. Treatments were: control (no additive), carvacrol (CAR), cinnamaldehyde (CIN), eugenol (EUG), propyl propane thiosulfinate (PTS), propyl propane thiosulfonate (PTSO), diallyl disulfide (DDS), a mixture (40 : 60) of PTS and PTSO (PTS+PTSO), and bromochloromethane (BCM) as positive control with proven antimethanogenic effectiveness. Four doses (40, 80, 160 and 320 µl/l) of the different compounds were incubated in vitro for 24 h in diluted rumen fluid from goats using two diets differing in starch and protein source within the concentrate (Experiment 1).The total gas production was linearly decreased (P<0.012) by all compounds, with the exception of EUG and PTS+PTSO (P≥ 0.366). Total volatile fatty-acid (VFA) concentration decreased (P≤ 0.018) only with PTS, PTSO and CAR, whereas the acetate:propionate ratio decreased (P≤ 0.002) with PTS, PTSO and BCM, and a tendency (P=0.064) was observed for DDS. On the basis of results from Experiment 1, two doses of PTS, CAR, CIN, BCM (160 and 320 µl/l), PTSO (40 and 160 µl/l) and DDS (80 and 320 µl/l) were further tested in vitro for 72 h (Experiment 2). The gas production kinetics were affected (P≤ 0.045) by all compounds, and digested NDF (DNDF) after 72 h of incubation was only linearly decreased (P≤ 0.004) by CAR and PTS. The addition of all compounds linearly decreased (P≤ 0.009) methane production, although the greatest reductions were observed for PTS (up to 96%), DDS (62%) and BCM (95%). No diet-dose interaction was observed. To further test the results obtained in vitro, two groups of 16 adult non-pregnant goats were used to study in vivo the effect of adding PTS (50, 100 and 200 mg/l rumen content per day) and BCM (50, 100 and 160 mg/l rumen content per day) during the 9 days on methane emissions (Experiment 3). The addition of PTS and BCM resulted in linear reductions (33% and 64%, respectively, P≤ 0.002) of methane production per unit of dry matter intake, which were lower than the maximum inhibition observed in vitro (87% and 96%, respectively). We conclude that applying the same doses in vivo as in vitro resulted in a proportional lower extent of methane decrease, and that PTS at 200 mg/l rumen content per day has the potential to reduce methane emissions in goats. Whether the reduction in methane emission observed in vivo persists over longer periods of treatments and improves feed conversion efficiency requires further research.
Tetrazine-Based Cycloadditions: Application to Pretargeted Live Cell Imaging
Devaraj, Neal K.; Weissleder, Ralph; Hilderbrand, Scott A.
2009-01-01
Bioorthogonal tetrazine cycloadditions have been applied to live cell labeling. Tetrazines react irreversibly with the strained dienophile norbornene forming dihydropyrazine products and dinitrogen. The reaction is high yielding, selective, and fast in aqueous media. Her2/neu receptors on live human breast cancer cells were targeted with a monoclonal antibody modified with a norbornene. Tetrazines conjugated to a near-infrared fluorochrome selectively and rapidly label the pretargeted antibody in the presence of serum. These findings indicate that this chemistry is suitable for in vitro labeling experiments, and suggests that it may prove a useful strategy for in vivo pretargeted imaging under numerous modalities. PMID:19053305
By-product formation in repetitive PCR amplification of DNA libraries during SELEX.
Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter
2014-01-01
The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection.
Little justification is generally provided for selection of in vitro assay testing concentrations for engineered nanomaterials (ENMs). Selection of concentration levels for hazard evaluation based on real-world exposure scenarios is desirable. We reviewed published ENM concentr...
Mutation Analysis in Cultured Cells of Transgenic Rodents
Zheng, Albert; Bates, Steven E.; Tommasi, Stella
2018-01-01
To comply with guiding principles for the ethical use of animals for experimental research, the field of mutation research has witnessed a shift of interest from large-scale in vivo animal experiments to small-sized in vitro studies. Mutation assays in cultured cells of transgenic rodents constitute, in many ways, viable alternatives to in vivo mutagenicity experiments in the corresponding animals. A variety of transgenic rodent cell culture models and mutation detection systems have been developed for mutagenicity testing of carcinogens. Of these, transgenic Big Blue® (Stratagene Corp., La Jolla, CA, USA, acquired by Agilent Technologies Inc., Santa Clara, CA, USA, BioReliance/Sigma-Aldrich Corp., Darmstadt, Germany) mouse embryonic fibroblasts and the λ Select cII Mutation Detection System have been used by many research groups to investigate the mutagenic effects of a wide range of chemical and/or physical carcinogens. Here, we review techniques and principles involved in preparation and culturing of Big Blue® mouse embryonic fibroblasts, treatment in vitro with chemical/physical agent(s) of interest, determination of the cII mutant frequency by the λ Select cII assay and establishment of the mutation spectrum by DNA sequencing. We describe various approaches for data analysis and interpretation of the results. Furthermore, we highlight representative studies in which the Big Blue® mouse cell culture model and the λ Select cII assay have been used for mutagenicity testing of diverse carcinogens. We delineate the advantages of this approach and discuss its limitations, while underscoring auxiliary methods, where applicable. PMID:29337872
Zhao, Yang; Ren, Wei; Zhong, Ting; Zhang, Shuang; Huang, Dan; Guo, Yang; Yao, Xin; Wang, Chao; Zhang, Wei-Qiang; Zhang, Xuan; Zhang, Qiang
2016-01-28
The pH environment in gliomas is acidic. Therefore, in the present research, we selected our previously reported tumor-specific pH-responsive peptide H7K(R2)2 as a targeting ligand, which could respond to the acidic pH environment in gliomas, possessing CPP characteristics. The pH-sensitive liposomes were selected as carriers which could also respond to the acidic pH environment in gliomas triggering encapsulated drug release from these pH-sensitive liposomes. The H7K(R2)2-modified pH-sensitive liposomes containing doxorubicin (DOX-PSL-H7K(R2)2) were designed and prepared in order to evaluate their potential targeting of glioma tumor cells and their anti-tumor activity in mice with glioma tumor cells. DOX-PSL-H7K(R2)2 was prepared by the thin-film hydration method followed by remote loading using an ammonium sulfate gradient method. The in vitro release of DOX from pH-sensitive liposomes was tested and the in vitro targeting characteristics of H7K(R2)2-modified liposomes regarding C6 (rat C6 glioma cells) and U87-MG (human glioblastoma cells) were evaluated. The in vivo anti-tumor activity of DOX-PSL-H7K(R2)2 was also investigated in C6 tumor-bearing mice and in U87-MG orthotopic tumor-bearing nude mice. A specific targeting effect triggered by an acidic pH was observed in our in vitro experiments in C6 and U87-MG glioma cells. The pH-triggered DOX release from the pH-sensitive liposomes under acidic conditions was also confirmed in our in vitro experiment. Anti-tumor activity of DOX-PSL-H7K(R2)2 was found in C6 tumor-bearing mice and U87-MG orthotopic tumor-bearing nude mice in in vivo experiments. The antiangiogenic activity of DOX-PSL-H7K(R2)2 was confirmed in C6 tumor-bearing mice in the in vivo experiment. These H7K(R2)2-modified pH-sensitive liposomes containing anti-tumor drugs developed in this study are a promising delivery system involving the response stimuli at the acidic pH in the glioma tumor microenvironment and are suitable for anti-tumor therapy. Copyright © 2015 Elsevier B.V. All rights reserved.
Targeting MED1 LxxLL Motifs for Tissue-Selective Treatment of Human Breast Cancer
2013-09-01
colleagues have successfully conjugated malachite green aptamer to RNA nanoparticles characterized by a 3WJ pRNA motif. The in vitro experiment indi- cated...DNA/RNA sequence FIGURE 19.5 Diagram of RNA nanoparticle harboring malachite green aptamer, survivin siRNA and folate-DNA/RNA sequence for targeting...of RNA Aptamer to RNA Nanoparticles (Figure 19.5; Shu et al. 2011). The sequence for the malachite green aptamer nanoparticle was rationally designed
Targeting MED1 LxxLL Motifs for Tissue-Selective Treatment of Human Breast Cancer
2014-09-01
his colleagues have successfully conjugated malachite green aptamer to RNA nanoparticles characterized by a 3WJ pRNA motif. The in vitro experiment...Folate-DNA/RNA sequence FIGURE 19.5 Diagram of RNA nanoparticle harboring malachite green aptamer, survivin siRNA and folate-DNA/RNA sequence for...405Conjugation of RNA Aptamer to RNA Nanoparticles (Figure 19.5; Shu et al. 2011). The sequence for the malachite green aptamer nanoparticle was rationally
Sex in a test tube: testing the benefits of in vitro recombination.
Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M
2016-10-19
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Ma, Hengchang; Qin, Yanfang; Yang, Zenming; Yang, Manyi; Ma, Yucheng; Yin, Pei; Yang, Yuan; Wang, Tao; Lei, Ziqiang; Yao, Xiaoqiang
2018-04-25
Fluorescence-tunable materials are becoming increasingly attractive for their potential application in optics, electronics, and biomedical technology. Herein, a multi-color molecular pixel system is realized using simple copolymerization method. Bleeding both of complementary colors from blue and yellow fluorescence segments, reproduced a serious multicolor fluorescence materials. Interestingly, the emission colors of the polymers can be fine-tuned in solid state, solution phase, and in hydrogel state. More importantly, the positive fluorescent polymers exhibited cell-membrane permeable ability, and were found to accumulate on the cell nucleus, exhibiting remarkable selectivity to give bright fluorescence. The DNA/RNA selectivity experiments in vitro and in vivo verified that [tris(4-(pyridin-4-yl)phenyl)amine]-[1,8-dibromooctane] (TPPA-DBO) has prominent selectivity to DNA over RNA inside cells.
Tailoring in vitro evolution for protein affinity or stability
Jermutus, Lutz; Honegger, Annemarie; Schwesinger, Falk; Hanes, Jozef; Plückthun, Andreas
2001-01-01
We describe a rapid and general technology working entirely in vitro to evolve either the affinity or the stability of ligand-binding proteins, depending on the chosen selection pressure. Tailored in vitro selection strategies based on ribosome display were combined with in vitro diversification by DNA shuffling to evolve either the off-rate or thermodynamic stability of single-chain Fv antibody fragments (scFvs). To demonstrate the potential of this method, we chose to optimize two proteins already possessing favorable properties. A scFv with an initial affinity of 1.1 nM (koff at 4°C of 10−4 s−1) was improved 30-fold by the use of off-rate selections over a period of several days. As a second example, a generic selection strategy for improved stability exploited the property of ribosome display that the conditions can be altered under which the folding of the displayed protein occurs. We used decreasing redox potentials in the selection step to select for molecules stable in the absence of disulfide bonds. They could be functionally expressed in the reducing cytoplasm, and, when allowed to form disulfides again, their stability had increased to 54 kJ/mol from an initial value of 24 kJ/mol. Sequencing revealed that the evolved mutant proteins had used different strategies of residue changes to adapt to the selection pressure. Therefore, by a combination of randomization and appropriate selection strategies, an in vitro evolution of protein properties in a predictable direction is possible. PMID:11134506
Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng
2017-03-01
Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P < 0.001). Betaine (900 ppm in vivo; 2 mM in vitro) and DHA (1% in vivo; 100 μM in vitro) supplementation both resulted in lower steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.
Sperm midpiece length predicts sperm swimming velocity in house mice.
Firman, Renée C; Simmons, Leigh W
2010-08-23
Evolutionary biologists have argued that there should be a positive relationship between sperm size and sperm velocity, and that these traits influence a male's sperm competitiveness. However, comparative analyses investigating the evolutionary associations between sperm competition risk and sperm morphology have reported inconsistent patterns of association, and in vitro sperm competition experiments have further confused the issue; in some species, males with longer sperm achieve more competitive fertilization, while in other species males with shorter sperm have greater sperm competitiveness. Few investigations have attempted to address this problem. Here, we investigated the relationship between sperm morphology and sperm velocity in house mice (Mus domesticus). We conducted in vitro sperm velocity assays on males from established selection lines, and found that sperm midpiece size was the only phenotypic predictor of sperm swimming velocity.
Selective intracellular vaporisation of antibody-conjugated phase-change nano-droplets in vitro
NASA Astrophysics Data System (ADS)
Ishijima, A.; Minamihata, K.; Yamaguchi, S.; Yamahira, S.; Ichikawa, R.; Kobayashi, E.; Iijima, M.; Shibasaki, Y.; Azuma, T.; Nagamune, T.; Sakuma, I.
2017-03-01
While chemotherapy is a major mode of cancer therapeutics, its efficacy is limited by systemic toxicities and drug resistance. Recent advances in nanomedicine provide the opportunity to reduce systemic toxicities. However, drug resistance remains a major challenge in cancer treatment research. Here we developed a nanomedicine composed of a phase-change nano-droplet (PCND) and an anti-cancer antibody (9E5), proposing the concept of ultrasound cancer therapy with intracellular vaporisation. PCND is a liquid perfluorocarbon nanoparticle with a liquid-gas phase that is transformable upon exposure to ultrasound. 9E5 is a monoclonal antibody targeting epiregulin (EREG). We found that 9E5-conjugated PCNDs are selectively internalised into targeted cancer cells and kill the cells dynamically by ultrasound-induced intracellular vaporisation. In vitro experiments show that 9E5-conjugated PCND targets 97.8% of high-EREG-expressing cancer cells and kills 57% of those targeted upon exposure to ultrasound. Furthermore, direct observation of the intracellular vaporisation process revealed the significant morphological alterations of cells and the release of intracellular contents.
Fernandez y Mostajo, Mercedes; van der Reijden, Wil A.; Buijs, Mark J.; Beertsen, Wouter; van der Weijden, Fridus; Crielaard, Wim; Zaura, Egija
2014-01-01
Oral bacteria live in symbiosis with the host. Therefore, when mouthwashes are indicated, selective inhibition of taxa contributing to disease is preferred instead of broad-spectrum antimicrobials. The potential selectivity of an oxygenating mouthwash, Ardox-X® (AX), has not been assessed. The aim of this study was to determine the antimicrobial potential of AX and the effects of a twice-daily oral rinse on dental plaque composition. Material and methods: In vitro, 16 oral bacterial strains were tested using agar diffusion susceptibility, minimum inhibitory and minimum bactericidal concentration tests. A pilot clinical study was performed with 25 healthy volunteers. Clinical assessments and microbiological sampling of supragingival plaque were performed at 1 month before the experiment (Pre-exp), at the start of the experiment (Baseline) and after the one-week experimental period (Post-exp). During the experiment individuals used AX mouthwash twice daily in absence of other oral hygiene measures. The microbiological composition of plaque was assessed by 16S rRNA gene amplicon sequencing. Results: AX showed high inter-species variation in microbial growth inhibition. The tested Prevotella strains and Fusobacterium nucleatum showed the highest sensitivity, while streptococci and Lactobacillus acidophilus were most resistant to AX. Plaque scores at Pre-exp and Baseline visits did not differ significantly (p = 0.193), nor did the microbial composition of plaque. During a period of 7-days non-brushing but twice daily rinsing plaque scores increased from 2.21 (0.31) at Baseline to 2.43 (0.39) Post-exp. A significant microbial shift in composition was observed: genus Streptococcus and Veillonella increased while Corynebacterium, Haemophilus, Leptotrichia, Cardiobacterium and Capnocytophaga decreased (p ≤ 0.001). Conclusion: AX has the potential for selective inhibition of oral bacteria. The shift in oral microbiome after 1 week of rinsing deserves further research. PMID:25101249
By-Product Formation in Repetitive PCR Amplification of DNA Libraries during SELEX
Tolle, Fabian; Wilke, Julian; Wengel, Jesper; Mayer, Günter
2014-01-01
The selection of nucleic acid aptamers is an increasingly important approach to generate specific ligands binding to virtually any molecule of choice. However, selection-inherent amplification procedures are prone to artificial by-product formation that prohibits the enrichment of target-recognizing aptamers. Little is known about the formation of such by-products when employing nucleic acid libraries as templates. We report on the formation of two different forms of by-products, named ladder- and non-ladder-type observed during repetitive amplification in the course of in vitro selection experiments. Based on sequence information and the amplification behaviour of defined enriched nucleic acid molecules we suppose a molecular mechanism through which these amplification by-products are built. Better understanding of these mechanisms might help to find solutions minimizing by-product formation and improving the success rate of aptamer selection. PMID:25490402
Deoxyribozymes: Selection Design and Serendipity in the Development of DNA Catalysts†
Silverman, Scott K.
2009-01-01
CONSPECTUS One of the chemist’s key motivations is to explore the forefront of catalysis. In this Account, we describe our laboratory’s efforts at one such forefront: the use of DNA as a catalyst. Natural biological catalysts include both protein enzymes and RNA enzymes (ribozymes), whereas nature apparently uses DNA solely for genetic information storage. Nevertheless, the chemical similarities between RNA and DNA naturally lead to laboratory examination of DNA as a catalyst, especially because DNA is more stable than RNA and is less costly and easier to synthesize. Many catalytically active DNA sequences (deoxyribozymes, also called DNAzymes) have been identified in the laboratory by in vitro selection, in which many random DNA sequences are evaluated in parallel to find those rare sequences that have a desired functional ability. Since 2001, our research group has pursued new deoxyribozymes for various chemical reactions. We consider DNA simply as a large biopolymer that can adopt intricate three-dimensional structure and, in the presence of appropriate metal ions, generate the chemical complexity required to achieve catalysis. Our initial efforts focused on deoxyribozymes that ligate two RNA substrates. In these studies, we used only substrates that are readily obtained biochemically. Highly active deoxyribozymes have been identified, with emergent questions regarding chemical selectivity during RNA phosphodiester bond formation. Deoxyribozymes allow synthesis of interesting RNA products, such as branches and lariats, that are otherwise challenging to prepare. Our experiments have demonstrated that deoxyribozymes can have very high rate enhancements and chemical selectivities. We have also shown how the in vitro selection process itself can be directed towards desired goals, such as selective formation of native 3′–5′ RNA linkages. A final lesson is that unanticipated selection outcomes can be very interesting, highlighting the importance of allowing such opportunities in future experiments. More recently, we have begun using non-oligonucleotide substrates in our efforts with deoxyribozymes. We have especially focused on developing DNA catalysts for reactions of small molecules or amino acid side chains. For example, new deoxyribozymes have the catalytic power to create a nucleopeptide linkage between a tyrosine or serine side chain and the 5′-terminus of an RNA strand. Although considerable further work remains to establish DNA as a practical catalyst for small molecules and full-length proteins, the progress to date is very promising. The many lessons learned during the experiments described in this Account will help us and others to realize the full catalytic power of DNA. PMID:19572701
High-yield in vitro recordings from neurons functionally characterized in vivo.
Weiler, Simon; Bauer, Joel; Hübener, Mark; Bonhoeffer, Tobias; Rose, Tobias; Scheuss, Volker
2018-06-01
In vivo two-photon calcium imaging provides detailed information about the activity and response properties of individual neurons. However, in vitro methods are often required to study the underlying neuronal connectivity and physiology at the cellular and synaptic levels at high resolution. This protocol provides a fast and reliable workflow for combining the two approaches by characterizing the response properties of individual neurons in mice in vivo using genetically encoded calcium indicators (GECIs), followed by retrieval of the same neurons in brain slices for further analysis in vitro (e.g., circuit mapping). In this approach, a reference frame is provided by fluorescent-bead tracks and sparsely transduced neurons expressing a structural marker in order to re-identify the same neurons. The use of GECIs provides a substantial advancement over previous approaches by allowing for repeated in vivo imaging. This opens the possibility of directly correlating experience-dependent changes in neuronal activity and feature selectivity with changes in neuronal connectivity and physiology. This protocol requires expertise both in in vivo two-photon calcium imaging and in vitro electrophysiology. It takes 3 weeks or more to complete, depending on the time allotted for repeated in vivo imaging of neuronal activity.
Microorganisms and biomolecules in space hard environment
NASA Technical Reports Server (NTRS)
Horneck, G.
1981-01-01
Microorganisms and biomolecules exposed to space vacuum and to different intensities of selected wavelengths of solar ultraviolet radiation is studied. The influence of these factors, applied singly or simultaneously, on the integrity of microbial systems and biomolecules is measured. Specifically, this experiment will study in Bacillus subtilis spores (1) disturbances in subsequent germination, outgrowth, and colony formation; (2) photochemical reactions of the DNA and protein in vivo and in vitro and their role in biological injury; and (3) the efficiency of repair processes in these events.
Selection of antitumor displayed peptides for the specific delivery of the anticancer drug lactaptin
Nemudraya, Anna Andreevna; Kuligina, Elena Vladimirovna; Ilyichev, Alexandr Alexeevich; Fomin, Alexandr Sergeevich; Stepanov, Grigory Alexandrovich; Savelyeva, Anna Valentinovna; Koval, Olga Alexandrovna; Richter, Vladimir Alexandrovich
2016-01-01
It has been previously demonstrated that lactaptin, the proteolytic fragment of human milk protein κ-casein, induces the death of various cultured cancer cells. The recombinant analog of lactaptin, RL2, effectively induces the apoptosis of mouse hepatocarcinoma-1 (HA-1) tumor cells in vitro and suppress the growth of HA-1 tumors and metastases in vivo. The antitumor drug Lactaptin developed on the basis of RL2 has been successful in preclinical trials. Lactaptin shows its efficiency in relation to mouse and human cancer cells and tumors. However, Lactaptin, as with the majority of protein-based therapeutic drugs, is distributed evenly throughout the organism, which reduces its antitumor efficacy. To develop the targeted delivery of lactaptin, the present study selected tumor-specific peptides by screening a phage display peptide library in vivo on A/Sn strain mice with subcutaneously transplanted HA-1 cells. Two genetic constructs were made for the production of recombinant fusion proteins composed of RL2 and the selected tumor-targeting peptide. In vitro experiments involving HA-1, MDA-MB-231 and MCF-7 cells cultures demonstrated that the fusion proteins induce apoptotic death in mouse and human tumor cells, as with RL2. The in vivo experiments involving the mouse HA-1 tumor model demonstrated that the tumor fluorescence intensity of the Cy5-fusion protein conjugates is higher than that of RL2-Cy5. As conjugation of the tumor-specific peptides to RL2 provided retention of RL2 in the tumor tissues, fusion proteins composed of lactaptin and peptides specific for human tumors are deemed promising to improve the antitumor efficiency of lactaptin. PMID:28105163
Defensive properties of pyrrolizidine alkaloids against microorganisms.
Joosten, Lotte; van Veen, Johannes A
2011-03-01
The understanding of the selection factors that drive chemical diversification of secondary metabolites of constitutive defence systems in plants, such as pyrrolizidine alkaloids (PAs), is still incomplete. Historically, plants always have been confronted with microorganisms. Long before herbivores existed on this planet, plants had to cope with microbial pathogens. Therefore, plant pathogenic microorganisms may have played an important role in the early evolution of the secondary metabolite diversity. In this review, we discuss the impact that plant-produced PAs have on plant-associated microorganisms. The objective of the review is to present the current knowledge on PAs with respect to anti-microbial activities, adaptation and detoxification by microorganisms, pathogenic fungi, root protection and PA induction. Many in vitro experiments showed effects of PAs on microorganisms. These results point to the potential of microorganisms to be important for the evolution of PAs. However, only a few in vivo studies have been published and support the results of the in vitro studies. In conclusion, the topics pointed out in this review need further exploration by carrying out ecological experiments and field studies.
Currently, little justification is provided for nanomaterial testing concentrations in in vitro assays. The in vitro concentrations typically used may be higher than those experienced by exposed humans. Selection of concentration levels for hazard evaluation based on real-world e...
Unexpected substrate specificity of T4 DNA ligase revealed by in vitro selection
NASA Technical Reports Server (NTRS)
Harada, Kazuo; Orgel, Leslie E.
1993-01-01
We have used in vitro selection techniques to characterize DNA sequences that are ligated efficiently by T4 DNA ligase. We find that the ensemble of selected sequences ligates about 50 times as efficiently as the random mixture of sequences used as the input for selection. Surprisingly many of the selected sequences failed to produce a match at or close to the ligation junction. None of the 20 selected oligomers that we sequenced produced a match two bases upstream from the ligation junction.
Gong, Jiao; Li, Yuan-Heng; Zhang, Chan-Juan; Huang, Jian; Sun, Qi
2018-08-01
2-HPTP, a novel thiazolo [4, 5-b] pyridine-based Zn 2+ selective fluorescent probe has been synthesized and investigated. This probe exhibited a high selectivity towards Zn 2+ over other biologically essential cations such as Na + , K + , Ca 2+ , or Mg 2+ . 2-HPTP formed a 1:1 complex with Zn 2+ and showed a fluorescent enhancement with a long emission wavelength red-shift (85 nm) upon complex formation with Zn 2+ . The detection limit and association constant were calculated as 3.48 × 10 -7 M and 2.40 × 10 6 M -1 by a fluorescence titration experiment. Furthermore, the live cell imaging experiment showed that 2-HPTP was membrane permeable and photostable, and hence, could be used to monitor the concentration changes of intracellular Zn 2+ . The co-staining experiments in the cells demonstrated that 2-HPTP possessed high lysosomal selectivity in living cells. Finally, using the nematode C. elegans as an experimental model, we established that 2-HPTP could be successful in imaging Zn 2+ concentration changes in living tissues. Therefore, this molecule should be useful for studies on the biological functions of Zn 2+ . Copyright © 2018 Elsevier B.V. All rights reserved.
Assessment of the predictive capacity of the optimized in vitro comet assay using HepG2 cells.
Hong, Yoon-Hee; Jeon, Hye Lyun; Ko, Kyung Yuk; Kim, Joohwan; Yi, Jung-Sun; Ahn, Ilyoung; Kim, Tae Sung; Lee, Jong Kwon
2018-03-01
Evaluation of DNA damage is critical during the development of new drugs because it is closely associated with genotoxicity and carcinogenicity. The in vivo comet assay to assess DNA damage is globally harmonized as OECD TG 489. However, a comet test guideline that evaluates DNA damage without sacrificing animals does not yet exist. The goal of this study was to select an appropriate cell line for optimization of the in vitro comet assay to assess DNA damage. We then evaluated the predictivity of the in vitro comet assay using the selected cell line. In addition, the effect of adding S9 was evaluated using 12 test chemicals. For cell line selection, HepG2, Chinese hamster lung (CHL/IU), and TK6 cell lines were evaluated. We employed a method for the in vitro comet assay based on that for the in vivo comet assay. The most appropriate cell line was determined by% tail DNA increase after performing in vitro comet assays with 6 test chemicals. The predictivity of the in vitro comet assay using the selected cell line was measured with 10 test chemicals (8 genotoxins and 2 non-genotoxic chemicals). The HepG2 cell line was found to be the most appropriate, and in vitro comet assays using HepG2 cells exhibited a high accuracy of 90% (9/10). This study suggests that HepG2 is an optimal cell line for the in vitro comet assay to assess DNA damage. Copyright © 2018 Elsevier B.V. All rights reserved.
Plinke, Claudia; Walter, Kerstin; Aly, Sahar; Ehlers, Stefan; Niemann, Stefan
2011-06-01
Ethambutol (EMB) is a major component of the first-line therapy of tuberculosis. Mutations in codon 306 of embB (embB306) were suggested as a major resistance mechanism in clinical isolates. To directly analyze the impact of individual embB306 mutations on EMB resistance, we used allelic exchange experiments to generate embB306 mutants of M. tuberculosis H37Rv. The level of EMB resistance conferred by particular mutations was measured in vitro and in vivo after EMB therapy by daily gavage in a mouse model of aerogenic tuberculosis. The wild-type embB306 ATG codon was replaced by embB306 ATC, ATA, or GTG, respectively. All of the obtained embB306 mutants exhibited a 2- to 4-fold increase in EMB MIC compared to the wild-type H37Rv. In vivo, the one selected embB306 GTG mutant required a higher dose of ethambutol to restrict its growth in the lung compared to wild-type H37Rv. These experiments demonstrate that embB306 point mutations enhance the EMB MIC in vitro to a moderate, but significant extent, and reduce the efficacy of EMB treatment in the animal model. We propose that conventional EMB susceptibility testing, in combination with embB306 genotyping, may guide dose adjustment to avoid clinical treatment failure in these low-level resistant strains.
Selectivity Mechanism of ATP-Competitive Inhibitors for PKB and PKA.
Wu, Ke; Pang, Jingzhi; Song, Dong; Zhu, Ying; Wu, Congwen; Shao, Tianqu; Chen, Haifeng
2015-07-01
Protein kinase B (PKB) acts as a central node on the PI3K kinase pathway. Constitutive activation and overexpression of PKB have been identified to involve in various cancers. However, protein kinase A (PKA) sharing high homology with PKB is essential for metabolic regulation. Therefore, specific targeting on PKB is crucial strategy in drug design and development for antitumor. Here, we had revealed the selectivity mechanism for PKB inhibitors with molecular dynamics simulation and 3D-QSAR methods. Selective inhibitors of PKB could form more hydrogen bonds and hydrophobic contacts with PKB than those with PKA. This could explain that selective inhibitor M128 is more potent to PKB than to PKA. Then, 3D-QSAR models were constructed for these selective inhibitors and evaluated by test set compounds. 3D-QSAR model comparison of PKB inhibitors and PKA inhibitors reveals possible methods to improve the selectivity of inhibitors. These models can be used to design new chemical entities and make quantitative prediction of the specific selective inhibitors before resorting to in vitro and in vivo experiment. © 2014 John Wiley & Sons A/S.
Morales, Dinora Araceli; Bengoetxea, Endika; Larrañaga, Pedro; García, Miguel; Franco, Yosu; Fresnada, Mónica; Merino, Marisa
2008-05-01
In vitro fertilization (IVF) is a medically assisted reproduction technique that enables infertile couples to achieve successful pregnancy. Given the uncertainty of the treatment, we propose an intelligent decision support system based on supervised classification by Bayesian classifiers to aid to the selection of the most promising embryos that will form the batch to be transferred to the woman's uterus. The aim of the supervised classification system is to improve overall success rate of each IVF treatment in which a batch of embryos is transferred each time, where the success is achieved when implantation (i.e. pregnancy) is obtained. Due to ethical reasons, different legislative restrictions apply in every country on this technique. In Spain, legislation allows a maximum of three embryos to form each transfer batch. As a result, clinicians prefer to select the embryos by non-invasive embryo examination based on simple methods and observation focused on morphology and dynamics of embryo development after fertilization. This paper proposes the application of Bayesian classifiers to this embryo selection problem in order to provide a decision support system that allows a more accurate selection than with the actual procedures which fully rely on the expertise and experience of embryologists. For this, we propose to take into consideration a reduced subset of feature variables related to embryo morphology and clinical data of patients, and from this data to induce Bayesian classification models. Results obtained applying a filter technique to choose the subset of variables, and the performance of Bayesian classifiers using them, are presented.
Extrusion conditions affect chemical composition and in vitro digestion of select food ingredients.
Dust, Jolene M; Gajda, Angela M; Flickinger, Elizabeth A; Burkhalter, Toni M; Merchen, Neal R; Fahey, George C
2004-05-19
An experiment was conducted to determine the effects of extrusion conditions on chemical composition and in vitro hydrolytic and fermentative digestion of barley grits, cornmeal, oat bran, soybean flour, soybean hulls, and wheat bran. Extrusion conditions altered crude protein, fiber, and starch concentrations of ingredients. Organic matter disappearance (OMD) increased for extruded versus unprocessed samples of barley grits, cornmeal, and soybean flour that had been hydrolytically digested. After 8 h of fermentative digestion, OMD decreased as extrusion conditions intensified for barley grits and cornmeal but increased for oat bran, soybean hulls, and wheat bran. Total short-chain fatty acid production decreased as extrusion conditions intensified for barley grits, soybean hulls, and soybean flour. These data suggest that the effects of extrusion conditions on ingredient composition and digestion are influenced by the unique chemical characteristics of individual substrates.
Skrivanova, Eva; Van Immerseel, Filip; Hovorkova, Petra; Kokoska, Ladislav
2016-01-01
Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.
New potential markers of in vitro tomato morphogenesis identified by mRNA differential display.
Torelli, A; Soragni, E; Bolchi, A; Petrucco, S; Ottonello, S; Branca, C
1996-12-01
The identification of plant genes involved in early phases of in vitro morphogenesis can not only contribute to our understanding of the processes underlying growth regulator-controlled determination, but also provide novel markers for evaluating the outcome of in vitro regeneration experiments. To search for such genes and to monitor changes in gene expression accompanying in vitro regeneration, we have adapted the mRNA differential display technique to the comparative analysis of a model system of tomato cotyledons that can be driven selectively toward either shoot or callus formation by means of previously determined growth regulator supplementations. Hormone-independent transcriptional modulation (mainly down-regulation) has been found to be the most common event, indicating that a non-specific reprogramming of gene expression quantitatively predominates during the early phases of in vitro culture. However, cDNA fragments representative of genes that are either down-regulated or induced in a programme-specific manner could also be identified, and two of them (G35, G36) were further characterized. One of these cDNA fragments, G35, corresponds to an mRNA that is down-regulated much earlier in callus- (day 2) than in shoot-determined explants (day 6). The other, G36, identifies an mRNA that is transiently expressed in shoot-determined explants only, well before any macroscopic signs of differentiation become apparent, and thus exhibits typical features of a morphogenetic marker.
An in vitro study of the effects of low-level laser radiation on human blood
NASA Astrophysics Data System (ADS)
Siposan, Dan G.; Lukacs, Adalbert
2003-12-01
In the last time the study of the effects of LLLR on the blood is considered to be a subject of great importance in elucidating the mechanisms of action between LLLR and biologic tissues. Different methods of therapy by blood irradiation have been developed and used in clinical purposes with benefic effects. This study investigates some in vitro effects of LLLR on some selected rheologic indices of human blood. After establishing whether or not damaging effects could appear due to laser irradiation of the blood, we tried to find a new method for rejuvenating the blood preserved in MacoPharma-type bags. Blood samples were obtained from adult regular donors (volunteers). HeNe laser and laser diodes were used as radiation source, in a wide range of wavelengths, power densities, doses and other parameters of irradiation protocol. In the first series of experiments we established that LLLR does not alter the fresh blood from healthy donors, for doses between 0 and 10 J/cm3 and power densities between 30 and 180 mW/cm3. In the second series of experiments we established that LLLR does have, in some specific conditions, a revitalizing effect on the erythrocytes in preserved blood. We concluded that laser irradiation of the preserved blood, following a selected protocol of irradiation, could be used as a new method to improve the performances of preservation: prolonging the period of storage and blood rejuvenation before transfusion.
Koley Seth, Banabithi; Saha, Arpita; Haldar, Srijan; Chakraborty, Partha Pratim; Saha, Partha; Basu, Samita
2016-09-01
This work highlights a systematic and comparative study of the structure-dependent influence of a series of biologically active Cu(II) Schiff base complexes (CSCs) on their in vitro cytotoxicity, apoptosis and binding with polymeric DNA-bases in ground and photo-excited states. The structure-activity relationship of the closely resembled CSCs towards in vitro cytotoxicity and apoptosis against cervical cancerous HeLa and normal human diploid WI-38 cell lines has been investigated by MTT assay and FACS techniques respectively. The steady-state and time-resolved spectroscopic studies have also been carried out to explore the selective binding affinities of the potential complexes towards different polymeric nucleic acid bases (poly d(A), poly d(T), poly d(G), poly d(C), Poly d(G)-Poly d(C)), which enlighten the knowledge regarding their ability in controlling the structure and medium dependent interactions in 'ground' and 'excited' states. The pyridine containing water soluble complexes (CuL(1) and CuL(3)) are much more cytotoxic than the corresponding pyrrole counterparts (CuL(2) and CuL(4)). Moreover the acidic hydrogens in CuL(1) increase its cytotoxicity much more than methyl substitution as in CuL(3). The results of MTT assay and double staining FACS experiments indicate selective inhibition of cell growth (cell viability 39% (HeLa) versus 85% (WI-38)) and occurrence of apoptosis rather than necrosis. The ground state binding of CuL(1) with polymeric DNA bases, especially with guanine rich DNA (Kb=6.41±0.122×10(5)), that enhances its cytotoxic activity, is further confirmed from its binding isotherms. On the other hand the pyrrole substituted CuL(4) complex exhibits the structure and medium dependent selective electron-transfer in triplet state as observed in laser flash photolysis studies followed by magnetic field (MF) effect. Copyright © 2016 Elsevier B.V. All rights reserved.
Thomas, Russell S.
2013-01-01
Based on existing data and previous work, a series of studies is proposed as a basis toward a pragmatic early step in transforming toxicity testing. These studies were assembled into a data-driven framework that invokes successive tiers of testing with margin of exposure (MOE) as the primary metric. The first tier of the framework integrates data from high-throughput in vitro assays, in vitro-to-in vivo extrapolation (IVIVE) pharmacokinetic modeling, and exposure modeling. The in vitro assays are used to separate chemicals based on their relative selectivity in interacting with biological targets and identify the concentration at which these interactions occur. The IVIVE modeling converts in vitro concentrations into external dose for calculation of the point of departure (POD) and comparisons to human exposure estimates to yield a MOE. The second tier involves short-term in vivo studies, expanded pharmacokinetic evaluations, and refined human exposure estimates. The results from the second tier studies provide more accurate estimates of the POD and the MOE. The third tier contains the traditional animal studies currently used to assess chemical safety. In each tier, the POD for selective chemicals is based primarily on endpoints associated with a proposed mode of action, whereas the POD for nonselective chemicals is based on potential biological perturbation. Based on the MOE, a significant percentage of chemicals evaluated in the first 2 tiers could be eliminated from further testing. The framework provides a risk-based and animal-sparing approach to evaluate chemical safety, drawing broadly from previous experience but incorporating technological advances to increase efficiency. PMID:23958734
Ghalayini, Mohamed; Magnan, Mélanie; Glodt, Jérémy; Pintard, Coralie; Dion, Sara; Denamur, Erick; Tenaillon, Olivier
2017-01-01
Though microbial ecology of the gut is now a major focus of interest, little is known about the molecular determinants of microbial adaptation in the gut. Experimental evolution coupled with whole genome sequencing can provide insights of the adaptive process. In vitro experiments have revealed some conserved patterns: intermediate convergence, epistatic interactions between beneficial mutations and mutations in global regulators. To test the relevance of these patterns and to identify the selective pressures acting in vivo, we have performed a long-term adaptation of an E. coli natural isolate, the streptomycin resistant strain 536, in the digestive tract of streptomycin treated mice. After a year of evolution, a clone from 15 replicates was sequenced. Consistently with in vitro observations, the identified mutations revealed a strong pattern of convergence at the mutation, gene, operon and functional levels. Yet, the rate of molecular evolution was lower than in in vitro and no mutations in global regulators were recovered. More specific targets were observed: the dgo operon, involved in the galactonate pathway that improved growth on D-galactonate, and rluD and gidB, implicated in the maturation of the ribosomes, which mutations improved growth only in the presence of streptomycin. As in vitro, the non-random associations of mutations within the same pathways suggested a role of epistasis in shaping the adaptive landscape. Overall, we show that “evolve and sequence” approach coupled to an analysis of convergence, when applied to a natural isolate, can be used to study adaptation in vivo and uncover the specific selective pressures of that environment. PMID:27661780
Ruiz, Christian; Kustermann, Stefan; Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I; Zippelius, Alfred; Roth, Adrian B; Bubendorf, Lukas
2016-01-01
The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.
Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.
Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco
2010-06-13
Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.
Moreda-Piñeiro, Jorge; Moreda-Piñeiro, Antonio; Bermejo-Barrera, Pilar
2017-03-04
The assessment of selenium and selenium species bioavailability in foodstuff is of special concern on the context of human nutrition. In vivo (human and animal), and in vitro tests are important approaches for estimating the bioavailability of toxic and essential compounds to humans. An overview on in vivo and in vitro bioavailability assays for releasing selenium and selenium species in foodstuffs is summarized. Se and Se species content in a foodstuff critically influence Se bioavailability and bioactivity to humans and animals. Se bioavailability is affected by foodstuff-matrix major composition and minor components. Foodstuffs processing and/or treatments could enhancement or decrease Se bioavailability. Experimental conditions such as the selection of healthy status of examined people (in in vivo humans approaches), the selection of animal model (in vivo animals approaches), or the selection of GI conditions (in in vitro tests) could determines the results. Thus, international standardized protocol for in vivo and in vitro approaches assessment is mandatory.
K C, Tara Bahadur; Tada, Seiichi; Zhu, Liping; Uzawa, Takanori; Minagawa, Noriko; Luo, Shyh-Chyang; Zhao, Haichao; Yu, Hsiao-Hua; Aigaki, Toshiro; Ito, Yoshihiro
2018-05-17
An electrosensitive peptide probe has been developed from an in vitro selection technique using biorthogonal tRNA prepared with an electroreactive non-natural amino acid, 3,4-ethylenedioxythiophene-conjugated aminophenylalanine. The selected probe quantitatively detected the influenza virus based on a signal "turn-on" mechanism. The developed strategy could be used to develop electrochemical biosensors toward a variety of targets.
Emergence of a replicating species from an in vitro RNA evolution reaction
NASA Technical Reports Server (NTRS)
Breaker, R. R.; Joyce, G. F.
1994-01-01
The technique of self-sustained sequence replication allows isothermal amplification of DNA and RNA molecules in vitro. This method relies on the activities of a reverse transcriptase and a DNA-dependent RNA polymerase to amplify specific nucleic acid sequences. We have modified this protocol to allow selective amplification of RNAs that catalyze a particular chemical reaction. During an in vitro RNA evolution experiment employing this modified system, a unique class of "selfish" RNAs emerged and replicated to the exclusion of the intended RNAs. Members of this class of selfish molecules, termed RNA Z, amplify efficiently despite their inability to catalyze the target chemical reaction. Their amplification requires the action of both reverse transcriptase and RNA polymerase and involves the synthesis of both DNA and RNA replication intermediates. The proposed amplification mechanism for RNA Z involves the formation of a DNA hairpin that functions as a template for transcription by RNA polymerase. This arrangement links the two strands of the DNA, resulting in the production of RNA transcripts that contain an embedded RNA polymerase promoter sequence.
Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo.
Guimarães-Camboa, Nuno; Cattaneo, Paola; Sun, Yunfu; Moore-Morris, Thomas; Gu, Yusu; Dalton, Nancy D; Rockenstein, Edward; Masliah, Eliezer; Peterson, Kirk L; Stallcup, William B; Chen, Ju; Evans, Sylvia M
2017-03-02
Pericytes are widely believed to function as mesenchymal stem cells (MSCs), multipotent tissue-resident progenitors with great potential for regenerative medicine. Cultured pericytes isolated from distinct tissues can differentiate into multiple cell types in vitro or following transplantation in vivo. However, the cell fate plasticity of endogenous pericytes in vivo remains unclear. Here, we show that the transcription factor Tbx18 selectively marks pericytes and vascular smooth muscle cells in multiple organs of adult mouse. Fluorescence-activated cell sorting (FACS)-purified Tbx18-expressing cells behaved as MSCs in vitro. However, lineage-tracing experiments using an inducible Tbx18-CreERT2 line revealed that pericytes and vascular smooth muscle cells maintained their identity in aging and diverse pathological settings and did not significantly contribute to other cell lineages. These results challenge the current view of endogenous pericytes as multipotent tissue-resident progenitors and suggest that the plasticity observed in vitro or following transplantation in vivo arises from artificial cell manipulations ex vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of methylmercury on the rat mast cell degranulation
NASA Astrophysics Data System (ADS)
Graevskaya, E. E.; Yasutake, A.; Aramai, R.; Rubin, A. B.
2003-05-01
Methylmercury is the well-known neurotoxicant as weil as a modulator of the immune system. We investigated the effects of MeHg on the rat mast cell degranulation induced by nonimmunological stimuli (the selective liberator of histamine, compound 48/80, and calcium ionophore A23187) both in vivo and in vitro. In 8, 12 and 15 days afterthe final administration of MeHg we observed the suppression of calcium ionophore A23187-and 48/80-induced histamine release, which enhanced with time. In experiments in vitro incubation of peritoneal mast cells with MeHg alone in the dose range 10^{-8} to 10^{-6} did not induce mast cell degranulation, however modified the activation of mast cells by compound 48/80, and calcium ionophore A23187. We observed activation of stimulated secretion by preliminary incubation with low dose of MeHg 10^{-8} M and inhibition by dose of MeHg 10^{-6} M. These results show that MeHg treatment can modify mast cell function in vivo and in vitro and provide insight into the understanding what role this cell has in the pathogenesis of Minamata disease-comlected disorders.
Guanine-based amphiphiles: synthesis, ion transport properties and biological activity.
Musumeci, Domenica; Irace, Carlo; Santamaria, Rita; Milano, Domenico; Tecilla, Paolo; Montesarchio, Daniela
2015-03-01
Novel amphiphilic guanine derivatives, here named Gua1 and Gua2, have been prepared through few, simple and efficient synthetic steps. In ion transport experiments through phospholipid bilayers, carried out to evaluate their ability to mediate H(+) transport, Gua2 showed high activity. When this compound was investigated for ion-selective transport activities, no major differences were observed in the behaviour with cations while, in the case of anions, selective activity was observed in the series I(-)>Br(-)>Cl(-)>F(-). The bioactivity of these guanine analogues has been evaluated on a panel of human tumour and non-tumour cell lines in preliminary in vitro cytotoxicity assays, showing a relevant antiproliferative profile for Gua2. Copyright © 2014 Elsevier Ltd. All rights reserved.
Paci, M; Hyttinen, J; Rodriguez, B
2015-01-01
Background and Purpose Two new technologies are likely to revolutionize cardiac safety and drug development: in vitro experiments on human‐induced pluripotent stem cell‐derived cardiomyocytes (hiPSC‐CMs) and in silico human adult ventricular cardiomyocyte (hAdultV‐CM) models. Their combination was recently proposed as a potential replacement for the present hERG‐based QT study for pharmacological safety assessments. Here, we systematically compared in silico the effects of selective ionic current block on hiPSC‐CM and hAdultV‐CM action potentials (APs), to identify similarities/differences and to illustrate the potential of computational models as supportive tools for evaluating new in vitro technologies. Experimental Approach In silico AP models of ventricular‐like and atrial‐like hiPSC‐CMs and hAdultV‐CM were used to simulate the main effects of four degrees of block of the main cardiac transmembrane currents. Key Results Qualitatively, hiPSC‐CM and hAdultV‐CM APs showed similar responses to current block, consistent with results from experiments. However, quantitatively, hiPSC‐CMs were more sensitive to block of (i) L‐type Ca2+ currents due to the overexpression of the Na+/Ca2+ exchanger (leading to shorter APs) and (ii) the inward rectifier K+ current due to reduced repolarization reserve (inducing diastolic potential depolarization and repolarization failure). Conclusions and Implications In silico hiPSC‐CMs and hAdultV‐CMs exhibit a similar response to selective current blocks. However, overall hiPSC‐CMs show greater sensitivity to block, which may facilitate in vitro identification of drug‐induced effects. Extrapolation of drug effects from hiPSC‐CM to hAdultV‐CM and pro‐arrhythmic risk assessment can be facilitated by in silico predictions using biophysically‐based computational models. PMID:26276951
Key Aspects of Nucleic Acid Library Design for in Vitro Selection
Vorobyeva, Maria A.; Davydova, Anna S.; Vorobjev, Pavel E.; Pyshnyi, Dmitrii V.; Venyaminova, Alya G.
2018-01-01
Nucleic acid aptamers capable of selectively recognizing their target molecules have nowadays been established as powerful and tunable tools for biospecific applications, be it therapeutics, drug delivery systems or biosensors. It is now generally acknowledged that in vitro selection enables one to generate aptamers to almost any target of interest. However, the success of selection and the affinity of the resulting aptamers depend to a large extent on the nature and design of an initial random nucleic acid library. In this review, we summarize and discuss the most important features of the design of nucleic acid libraries for in vitro selection such as the nature of the library (DNA, RNA or modified nucleotides), the length of a randomized region and the presence of fixed sequences. We also compare and contrast different randomization strategies and consider computer methods of library design and some other aspects. PMID:29401748
Santos, Daniel; Gonzalez-Perez, Francisco; Navarro, Xavier
2016-01-01
Although peripheral axons can regenerate after nerve transection and repair, functional recovery is usually poor due to inaccurate reinnervation. Neurotrophic factors promote directional guidance to regenerating axons and their selective application may help to improve functional recovery. Hence, we have characterized in organotypic cultures of spinal cord and dorsal root ganglia the effect of GDNF, FGF-2, NGF, NT-3, and BDNF at different concentrations on motor and sensory neurite outgrowth. In vitro results show that GDNF and FGF-2 enhanced both motor and sensory neurite outgrowth, NGF and NT-3 were the most selective to enhance sensory neurite outgrowth, and high doses of BDNF selectively enhanced motor neurite outgrowth. Then, NGF, NT-3, and BDNF (as the most selective factors) were delivered in a collagen matrix within a silicone tube to repair the severed sciatic nerve of rats. Quantification of Fluorogold retrolabeled neurons showed that NGF and NT-3 did not show preferential effect on sensory regeneration whereas BDNF preferentially promoted motor axons regeneration. Therefore, the selective effects of NGF and NT-3 shown in vitro are lost when they are applied in vivo, but a high dose of BDNF is able to selectively enhance motor neuron regeneration both in vitro and in vivo. PMID:27867665
Parecoxib: an enhancer of radiation therapy for colorectal cancer.
Xiong, Wei; Li, Wen-Hui; Jiang, Yong-Xin; Liu, Shan; Ai, Yi-Qin; Liu, Rong; Chang, Li; Zhang, Ming; Wang, Xiao-Li; Bai, Han; Wang, Hong; Zheng, Rui; Tan, Jing
2015-01-01
To study the effect of parecoxib, a novel cyclooxygenase-2 selective inhibitor, on the radiation response of colorectal cancer (CRC) cells and its underlying mechanisms. Both in vitro colony formation and apoptosis assays as well as in vivo mouse xenograft experiments were used to explore the radiosensitizing effects of parecoxib in human HCT116 and HT29 CRC cells. Parecoxib sensitized CRC cells to radiation in vitro with a sensitivity enhancement ratio of 1.32 for HCT116 cells and 1.15 for HT29 cells at a surviving fraction of 0.37. This effect was partially attributable to enhanced apoptosis induction by parecoxib combined with radiation, as illustrated using an in vitro apoptosis assays. Parecoxib augmented the tumor response of HCT116 xenografts to radiation, achieving growth delay more than 20 days and an enhancement factor of 1.53. In accordance with the in vitro results, parecoxib combined with radiation resulted in less proliferation and more apoptosis in tumors than radiation alone. Radiation monotherapy decreased microvessel density (MVD) and microvessel intensity (MVI), but increased the hypoxia level in xenografts. Parecoxib did not affect MVD, but it increased MVI and attenuated hypoxia. Parecoxib can effectively enhance radiation sensitivity in CRC cells through direct effects on tumor cells and indirect effects on tumor vasculature.
Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro.
Tommasi, Stella; Bates, Steven E; Behar, Rachel Z; Talbot, Prue; Besaratinia, Ahmad
2017-10-01
Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaput, Benoit; Orio, Julie; Garrido, Ignacio; De Bonnecaze, Guillaume; Espagnolle, Nicolas; Gadelorge, Melanie; Chavoin, Jean-Pierre; Grolleau-Raoux, Jean-Louis; Casteilla, Louis; Planat, Valérie; Bourin, Philippe
2014-04-01
Adipose tissue is widely used in plastic surgery. The main obstacle is that it can be used only immediately after liposuction, while reconstruction often requires several procedures to achieve optimal results. This study aimed to develop a cryopreservation protocol directly applicable to clinical situations, allowing repetitive procedures without multiple tissue harvests. The authors first tested scalable bags suitable for therapeutic uses. All subsequent experiments were performed in those bags. The authors evaluated in vitro, on the basis of cell viability, cell number, phenotype, and stromal cell proliferation, the efficacy of six cryopreservation media composed of an external cryoprotectant (human albumin or hydroxylethyl starch) with or without an internal cryoprotectant (dimethyl sulfoxide). Two storage temperatures (-196°C and -80°C) were tested in vitro and in vivo (subcutaneous graft in 30 nude mice) with the selected medium. The combination of 5% dimethyl sulfoxide and 95% hydroxylethyl yielded in vitro results that were good and the most consistent. With this cryoprotective solution, the authors observed no significant difference in vitro for a storage period of 7 days. When the storage was extended to 1 month, the cell viability was decreased by 10 percent for both storage temperatures. The in vivo experiments assessed the superiority of cryopreservation at -80°C with less graft resorption (60 percent and 70 percent, respectively, for -80°C and -196°C) and less fibrosis. The study's protocol with a chemically defined cryoprotective solution, specific scalable bags constrained in an aluminum holder, and a storage temperature of -80°C is promising for long-term adipose tissue cryopreservation.
Mazzarino, Monica; Khevenhüller-Metsch, Franziska L; Fiacco, Ilaria; Parr, Maria Kristina; de la Torre, Xavier; Botrè, Francesco
2018-05-15
The potential consequences of drug-drug interactions on the excretion profile of the anabolic androgenic steroid methandienone (17β-hydroxy-17α-methylandrosta-1,4-dien-3-one) are discussed here. More specifically, we have evaluated by in vitro and in vivo experiments the effects of seven non-prohibited drugs (fluconazole, ketoconazole, itraconazole, miconazole, fluoxetine, paroxetine and nefazodone) on the main metabolic pathways of methandienone. These are selected among those most commonly used by the athletes. The in vitro assays were based on the use of human liver microsomes, specific recombinant enzyme isoforms of cytochrome P450 and uridine 5'-diphospho-glucuronosyl-transferase. The in vivo study was performed by analyzing urines collected after the oral administration of methandienone with and without the co-administration of ketoconazole. Methandienone and its metabolites were determined by liquid chromatography-mass spectrometry-based techniques after sample pre-treatment including an enzymatic hydrolysis step (performed only for the investigation on phase II metabolism) and liquid/liquid extraction with t-butyl methyl-ether. The results from the in vitro experiments showed that the formation of the hydroxylated and dehydrogenated metabolites was significantly reduced in the presence of itraconazole, ketoconazole, miconazole and nefazodone, whereas the production of the 18-nor-hydroxylated metabolites and glucuronidation reactions was reduced significantly only in the presence of ketoconazole and miconazole. The analysis of the post-administration samples confirmed the in vitro observations, validating the hypothesis that drug-drug interaction may cause significant alterations in the metabolic profile of banned drugs, making their detection during doping control tests more challenging. This article is protected by copyright. All rights reserved.
Cai, Song; Ling, Chuwen; Lu, Jun; Duan, Songwei; Wang, Yingzhao; Zhu, Huining; Lin, Ruibang; Chen, Liang; Pan, Xingchang; Cai, Muyi; Gu, Huaiyu
2017-01-01
A primary pathogeny of epilepsy is excessive activation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptors (AMPARs). To find potential molecules to inhibit AMPARs, high-throughput screening was performed in a library of tetrapeptides in silico. Computational results suggest that some tetrapeptides bind stably to the AMPAR. We aligned these sequences of tetrapeptide candidates with those from in vitro digestion of the trout skin protein. Among salmon-derived products, Glu-Gly-Ala-Arg (EGAR) showed a high biological affinity toward AMPAR when tested in silico. Accordingly, natural EGAR was hypothesized to have anticonvulsant activity, and in vitro experiments showed that EGAR selectively inhibited AMPAR-mediated synaptic transmission without affecting the electrophysiological properties of hippocampal pyramidal neurons. In addition, EGAR reduced neuronal spiking in an in vitro seizure model. Moreover, the ability of EGAR to reduce seizures was evaluated in a rodent epilepsy model. Briefer and less severe seizures versus controls were shown after mice were treated with EGAR. In conclusion, the promising experimental results suggest that EGAR inhibitor against AMPARs may be a target for antiepilepsy pharmaceuticals. Epilepsy is a common brain disorder characterized by the occurrence of recurring, unprovoked seizures. Twenty to 30 % of persons with epilepsy do not achieve adequate seizure control with any drug. Here we provide a possibility in which a natural and edible tetrapeptide, EGAR, can act as an antiepileptic agent. We have combined computation with in vitro experiments to show how EGAR modulates epilepsy. We also used an animal model of epilepsy to prove that EGAR can inhibit seizures in vivo. This study suggests EGAR as a potential pharmaceutical for the treatment of epilepsy.
Lactobacillus plantarum CCFM8661 alleviates lead toxicity in mice.
Tian, Fengwei; Zhai, Qixiao; Zhao, Jianxin; Liu, Xiaoming; Wang, Gang; Zhang, Hao; Zhang, Heping; Chen, Wei
2012-12-01
Lead causes a broad range of adverse effects in humans and animals. The objective was to evaluate the potency of lactobacilli to bind lead in vitro and the protective effects of a selected Lactobacillus plantarum CCFM8661 against lead-induced toxicity in mice. Nine strains of bacteria were used to investigate their binding abilities of lead in vitro, and L. plantarum CCFM8661 was selected for animal experiments because of its excellent lead binding capacity. Both living and dead L. plantarum CCFM8661 were used to treat 90 male Kunming mice during or after the exposure to 1 g/L lead acetate in drinking water. The results showed oral administration of both living and dead L. plantarum CCFM8661 offered a significant protective effect against lead toxicity by recovering blood δ-aminolevulinic acid dehydratase activity, decreasing the lead levels in blood and tissues, and preventing alterations in the levels of glutathione, glutathione peroxidase, malondialdehyde, superoxide dismutase, and reactive oxygen species caused by lead exposure. Moreover, L. plantarum CCFM8661 was more effective when administered consistently during the entire lead exposure, not after the exposure. Our results suggest that L. plantarum CCFM8661 has the potency to provide a dietary strategy against lead toxicity.
Red blood cell (RBC) suspensions in confined microflows: Pressure-flow relationship.
Stauber, Hagit; Waisman, Dan; Korin, Netanel; Sznitman, Josué
2017-10-01
Microfluidic-based assays have become increasingly popular to explore microcirculation in vitro. In these experiments, blood is resuspended to a desired haematocrit level in a buffer solution, where frequent choices for preparing RBC suspensions comprise notably Dextran and physiological buffer. Yet, the rational for selecting one buffer versus another is often ill-defined and lacks detailed quantification, including ensuing changes in RBC flow characteristics. Here, we revisit RBC suspensions in microflows and attempt to quantify systematically some of the differences emanating between buffers. We measure bulk flow rate (Q) of RBC suspensions, using PBS- and Dextran-40, as a function of the applied pressure drop (ΔP) for two hematocrits (∼0% and 23%). Two distinct microfluidic designs of varying dimensions are employed: a straight channel larger than and a network array similar to the size of individual RBCs. Using the resulting pressure-flow curves, we extract the equivalent hydrodynamic resistances and estimate the relative viscosities. These efforts are a first step in rigorously quantifying the influence of the 'background' buffer on RBC flows within microfluidic devices and thereby underline the importance of purposefully selecting buffer suspensions for microfluidic in vitro assays. Copyright © 2017. Published by Elsevier Ltd.
Degradation and epimerization of ergot alkaloids after baking and in vitro digestion.
Merkel, Stefan; Dib, Baha; Maul, Ronald; Köppen, Robert; Koch, Matthias; Nehls, Irene
2012-11-01
The degradation and epimerization of ergot alkaloids (EAs) in rye flour were investigated after baking cookies and subsequently subjecting them to an in vitro digestion model. Different steps of digestion were analyzed using salivary, gastric, and duodenal juices. The degradation and bidirectional conversion of the toxicologically relevant (R)-epimers and the biologically inactive (S)-epimers for seven pairs of EAs were determined by a HPLC method coupled with fluorescence detection. Baking cookies resulted in degradation of EAs (2-30 %) and a shift in the epimeric ratio toward the (S)-epimer for all EAs. The applied digestion model led to a selective toxification of ergotamine and ergosine, two ergotamine-type EAs. The initial percentage of the toxic (R)-epimer in relation to the total toxin content was considerably increased after digestion of cookies. Ergotamine and ergosine increased from 32 to 51 % and 35 to 55 %, respectively. In contrast, EAs of the ergotoxine type (ergocornine, α- and β-ergocryptine, and ergocristine) showed an epimeric shift toward their biologically inactive (S)-epimers. Further experiments indicated that the selective epimerization of ergotamine EAs occurs in the duodenal juice only. These results demonstrate that toxification of EAs in the intestinal tract should be taken into consideration.
Isoguanine and 5-Methyl-Isocytosine Bases, In Vitro and In Vivo
Bande, Omprakash; Abu El Asrar, Rania; Braddick, Darren; Dumbre, Shrinivas; Pezo, Valérie; Schepers, Guy; Pinheiro, Vitor B; Lescrinier, Eveline; Holliger, Philipp; Marlière, Philippe; Herdewijn, Piet
2015-01-01
The synthesis, base-pairing properties and in vitro and in vivo characteristics of 5-methyl-isocytosine (isoCMe) and isoguanine (isoG) nucleosides, incorporated in an HNA(h) (hexitol nucleic acid)–DNA(d) mosaic backbone, are described. The required h-isoG phosphoramidite was prepared by a selective deamination as a key step. As demonstrated by Tm measurements the hexitol sugar showed slightly better mismatch discrimination against dT. The d-isoG base mispairing follows the order T>G>C while the h-isoG base mispairing follows the order G>C>T. The h- and d-isoCMe bases mainly mispair with G. Enzymatic incorporation experiments show that the hexitol backbone has a variable effect on selectivity. In the enzymatic assays, isoG misincorporates mainly with T, and isoCMe misincorporates mainly with A. Further analysis in vivo confirmed the patterns of base-pair interpretation for the deoxyribose and hexitol isoCMe/isoG bases in a cellular context, through incorporation of the bases into plasmidic DNA. Results in vivo demonstrated that mispairing and misincorporation was dependent on the backbone scaffold of the base, which indicates rational advances towards orthogonality. PMID:25684598
DNA-Catalyzed Amide Hydrolysis.
Zhou, Cong; Avins, Joshua L; Klauser, Paul C; Brandsen, Benjamin M; Lee, Yujeong; Silverman, Scott K
2016-02-24
DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases.
Hult, A K; Dykes, J H; Storry, J R; Olsson, M L
2017-06-01
ABO-incompatible haematopoietic stem cell transplantation (HSCT) presents a challenge to blood component transfusion. The aim of this study was to investigate the weak blood group A or B antigen expression by donor-derived group O red blood cells (RBC) observed following transfusion or minor ABO-incompatible HSCT. In addition, in vitro experiments were performed to elucidate possible mechanisms underlying this phenomenon. A sensitive flow cytometry assay for the semi-quantification of RBC A/B antigen levels was used to assess patient samples and evaluate in vitro experiments. Analysis of blood samples from patients, originally typed as A, B and AB but recently transplanted or transfused with cells from group O donors, revealed the A antigen expression on donor-derived RBC, ranging from very low levels in non-secretor individuals to almost subgroup A x -like profiles in group A secretors. The B antigen expression was less readily detectable. In vitro experiments, in which group O donor RBC were incubated with (i) group A/B secretor/non-secretor donor plasma or (ii) group A/B donor RBC in the absence of plasma, supported the proposed adsorption of A/B antigen-bearing glycolipids from secretor plasma but also indicated a secretor-independent mechanism for A/B antigen acquisition as well as direct cell-to-cell transfer of ABO antigens. The in vivo conversion of donor-derived blood group O RBC to ABO subgroup-like RBC after transfusion or minor ABO-incompatible HSCT raises the question of appropriate component selection. Based on these data, AB plasma should be transfused following ABO-incompatible HSCT. © 2017 British Blood Transfusion Society.
Reconstructing Ancient Forms of Life
NASA Technical Reports Server (NTRS)
Benner, Steven A.
1998-01-01
Progress in the past three months has occurred in two areas, reconstruction of ancestral proteins and improved understanding of chemical features that are likely to be universal in generic matter regardless of its genesis. Ancestral ribonucleases have been reconstructed, and an example has been developed that shows how physiological function can be assigned to in vitro behaviors observed in biological systems. Sequence data have been collected to permit the reconstruction of src homology 2 domains that underwent radiative divergence at the time of the radiative divergence of chordates. New studies have been completed that show how genetic matter (or its remnants) might be detected on Mars (or other non-terrean locations.) Last, the first in vitro selection experiments have been completed using a nucleoside library carrying positively charged functionality, illustrating the importance of non-standard nucleotides to those attempting to obtain evidence for an "RNA world" as an early episode of life on earth.
NASA Astrophysics Data System (ADS)
Yanina, I. Yu.; Doubrovski, V. A.; Tuchin, V. V.
2015-03-01
The effect of IR-laser irradiation on adipose tissue sensitized by indocyanine green is studied in vitro. Experiments and statistical analysis are used to show that wavelength-selective irradiation leads to an increase in the homogeneity of optical images of adipose cells with time. The transmission coefficient that is averaged over the image area weakly depends on the observation time. An increase in the homogeneity of images is interpreted as a result of immersion of optical inhomogeneities of tissue owing to the intracellular liquid that is released through the photochemically induced pores in cellular membranes. An increase in the optical homogeneity of the medium is compensated for by a decrease in the transmission coefficient of the sensitizer, which is manifested as a weak time dependence of the image-averaged transmittance of tissue.
Yahata, Masahiro; Chiba, Koji; Watanabe, Takao; Sugiyama, Yuichi
2017-09-01
Accurate prediction of target occupancy facilitates central nervous system drug development. In this review, we discuss the predictability of serotonin transporter (SERT) occupancy in human brain estimated from in vitro K i values for human SERT and plasma concentrations of unbound drug (C u,plasma ), as well as the impact of drug transporters in the blood-brain barrier. First, the geometric means of in vitro K i values were compared with the means of in vivo K i values (K i,u,plasma ) which were calculated as C u,plasma values at 50% occupancy of SERT obtained from previous clinical positron emission tomography/single photon emission computed tomography imaging studies for 6 selective serotonin transporter reuptake inhibitors and 3 serotonin norepinephrine reuptake inhibitors. The in vitro K i values for 7 drugs were comparable to their in vivo K i,u,plasma values within 3-fold difference. SERT occupancy was overestimated for 5 drugs (P-glycoprotein substrates) and underestimated for 2 drugs (presumably uptake transporter substrates, although no evidence exists as yet). In conclusion, prediction of human SERT occupancy from in vitro K i values and C u,plasma was successful for drugs that are not transporter substrates and will become possible in future even for transporter substrates, once the transporter activities will be accurately estimated from in vitro experiments. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lakritz, Jeffrey; Tyler, Jeff W; Marsh, Antoinette E; Romesburg-Cockrell, Mary; Smith, Kathy; Holle, Julie M
2002-01-01
Tilmicosin is a potent antimicrobial with broad-spectrum activity against the bacterial agents involved in the bovine respiratory disease complex. Recent studies indicate that in addition to being bactericidal, tilmicosin is capable of modulating inflammation in the lung. A series of experiments were designed to determine whether tilmicosin alters alveolar macrophage-prostaglandin E(2) (PGE(2)) production induced by Escherichia coli (O55:B5) lipopolysaccharide (LPS). Twenty-two healthy Holstein bull calves were used to study the effects of LPS-induced PGE(2) production of alveolar macrophages after in vivo or in vitro treatment with tilmicosin. In Experiment 1, tilmicosin was given by subcutaneous injection (15 mg/kg) twice, 48 hours apart, to four calves; four control calves received no treatment. Twenty-four hours after the second treatment, alveolar macrophages were stimulated with LPS in vitro. In Experiment 2, alveolar macrophages from five untreated calves were harvested and treated in vitro with tilmicosin, followed by LPS stimulation. In Experiment 3, the ability of in vitro tilmicosin treatment to alter the expression of LPS-induced cyclooxygenase-2 (COX-2) mRNA was evaluated. In Experiments 4 and 5, secretory phospholipase A(2) activity was examined in untreated calves. Treatment of calves with tilmicosin resulted in reduced LPS-induced alveolar macrophage PGE(2) production. Similar reductions in PGE(2) by LPS-stimulated alveolar macrophages after in vitro tilmicosin treatment were noted. This in vitro tilmicosin treatment was not associated with reduction of the expression of LPS-induced COX-2. Alveolar macrophage phospholipase A(2) activity induced by LPS was significantly reduced by prior tilmicosin treatment in vitro. Tilmicosin (in vivo and in vitro) appears to reduce the PGE(2) eicosanoid response of LPS-stimulated alveolar macrophages by reducing the in vitro substrate availability without altering in vitro COX-2 mRNA expression.
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5’-end including the 5’-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer. PMID:26221730
In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.
Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate
2015-01-01
A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.
Aptamers and methods for their in vitro selection and uses thereof
Doyle, Sharon A [Walnut Creek, CA; Murphy, Michael B [Severna Park, MD
2008-02-12
The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.
Aptamers and methods for their in vitro selection and uses thereof
Doyle, Sharon A [Walnut Creek, CA; Murphy, Michael B [Severna Park, MD
2012-01-31
The present method is an improved in vitro selection protocol that relies on magnetic separations for DNA aptamer production that is relatively easy and scalable without the need for expensive robotics. The ability of aptamers selected by this method to recognize and bind their target protein with high affinity and specificity, and detail their uses in a number of assays is also described. Specific TTF1 and His6 aptamers were selected using the method described, and shown to be useful for enzyme-linked assays, Western blots, and affinity purification.
Lin, John Y
2013-01-01
Recent discovery of the light-activated ion channel, channelrhodopsin (ChR), has provided researchers a powerful and convenient tool to manipulate the membrane potential of specific cells with light. With genetic targeting of these channels and illumination of light to a specific location, the experimenter can selectively activate the voltage-gated ion channels (VGICs) of ChR-expressing cells, initiating electrical signaling in temporally and spatially precise manners. In neuroscience research, this can be used to study electrical signal processing within one neuron at the cellular level, or the synaptic connectivity between neurons at the circuitry level. To conduct experiments with ChRs, these exogenous channels need to be introduced into the cells of interest, commonly through a viral approach. This chapter provides an overview of the design, production, and validation of recombinant adeno-associated virus (rAAV) for ChR expression that can be used in vitro or in vivo to infect neurons. The virus produced can be used to conduct "optogenetic" experiments in behaving animals, in vitro preparations and cultured cells, and can be used to study signal transduction and processing at a cellular or circuitry level.
NASA Astrophysics Data System (ADS)
Kumar, Nitin; Gardel, Margaret
Motor proteins in conjunction with filamentous proteins convert biochemical energy into mechanical energy which serves a number of cellular processes including cell motility, force generation and intracellular cargo transport. In-vitro experiments suggest that the forces generated by kinesin motors on microtubule bundles are extensile in nature whereas myosin motors on actin filaments are contractile. It is not clear how qualitatively similar systems can show completely different behaviors in terms of the nature of force generation. In order to answer this question, we carry out in vitro experiments where we form quasi 2D filamentous actomyosin networks and vary the length of actin filaments by adding capping protein. We show that when filaments are much shorter than their typical persistence length (approximately 10 microns), the forces generated are extensile and we see active nematic defect propagation, as seen in the microtubule-kinesin system. Based on this observation, we claim that the rigidity of rods plays an important role in dictating the nature of force generation in such systems. In order to understand this transition, we selectively label individual filaments and find that longer filaments show considerable bending and buckling, making them difficult to slide and extend along their length.
Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda.
Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Lung'aho, Mercy; Beebe, Steve
2017-07-21
This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans ( Phaseolus vulgaris ) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan.
Iron Bioavailability Studies of the First Generation of Iron-Biofortified Beans Released in Rwanda
Glahn, Raymond; Tako, Elad; Hart, Jonathan; Haas, Jere; Beebe, Steve
2017-01-01
This paper represents a series of in vitro iron (Fe) bioavailability experiments, Fe content analysis and polyphenolic profile of the first generation of Fe biofortified beans (Phaseolus vulgaris) selected for human trials in Rwanda and released to farmers of that region. The objective of the present study was to demonstrate how the Caco-2 cell bioassay for Fe bioavailability can be utilized to assess the nutritional quality of Fe in such varieties and how they may interact with diets and meal plans of experimental studies. Furthermore, experiments were also conducted to directly compare this in vitro approach with specific human absorption studies of these Fe biofortified beans. The results show that other foods consumed with beans, such as rice, can negatively affect Fe bioavailability whereas potato may enhance the Fe absorption when consumed with beans. The results also suggest that the extrinsic labelling approach to measuring human Fe absorption can be flawed and thus provide misleading information. Overall, the results provide evidence that the Caco-2 cell bioassay represents an effective approach to evaluate the nutritional quality of Fe-biofortified beans, both separate from and within a targeted diet or meal plan. PMID:28754026
Verhagen, H; Aruoma, O I; van Delft, J H M; Dragsted, L O; Ferguson, L R; Knasmüller, S; Pool-Zobel, B L; Poulsen, H E; Williamson, G; Yannai, S
2003-05-01
There is increasing evidence that chemicals/test substances cannot only have adverse effects, but that there are many substances that can (also) have a beneficial effect on health. As this journal regularly publishes papers in this area and has every intention in continuing to do so in the near future, it has become essential that studies reported in this journal reflect an adequate level of scientific scrutiny. Therefore a set of essential characteristics of studies has been defined. These basic requirements are default properties rather than non-negotiables: deviations are possible and useful, provided they can be justified on scientific grounds. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo concern the following areas: (1) Hypothesis-driven study design; (2) The nature of the test substance; (3) Valid and invalid test systems; (4) The selection of dose levels and gender; (5) Reversal of the effects induced by oxidants, carcinogens and mutagens; (6) Route of administration; (7) Number and validity of test variables; (8) Repeatability and reproducibility; (9) Statistics; and (10) Quality Assurance.
Briggiler-Marcó, M; Capra, M L; Quiberoni, A; Vinderola, G; Reinheimer, J A; Hynes, E
2007-10-01
Nonstarter lactic acid bacteria are the main uncontrolled factor in today's industrial cheese making and may be the cause of quality inconsistencies and defects in cheeses. In this context, adjunct cultures of selected lactobacilli from nonstarter lactic acid bacteria origin appear as the best alternative to indirectly control cheese biota. The objective of the present work was to study the technological properties of Lactobacillus strains isolated from cheese by in vitro and in situ assays. Milk acidification kinetics and proteolytic and acidifying activities were assessed, and peptide mapping of trichloroacetic acid 8% soluble fraction of milk cultures was performed by liquid chromatography. In addition, the tolerance to salts (NaCl and KCl) and the phage-resistance were investigated. Four strains were selected for testing as adjunct cultures in cheese making experiments at pilot plant scale. In in vitro assays, most strains acidified milk slowly and showed weak to moderate proteolytic activity. Fast strains decreased milk pH to 4.5 in 8 h, and continued acidification to 3.5 in 12 h or more. This group consisted mostly of Lactobacillus plantarum and Lactobacillus rhamnosus strains. Approximately one-third of the slow strains, which comprised mainly Lactobacillus casei, Lactobacillus fermentum, and Lactobacillus curvatus, were capable to grow when milk was supplemented with glucose and casein hydrolysate. Peptide maps were similar to those of lactic acid bacteria considered to have a moderate proteolytic activity. Most strains showed salt tolerance and resistance to specific phages. The Lactobacillus strains selected as adjunct cultures for cheese making experiments reached 10(8) cfu/g in soft cheeses at 7 d of ripening, whereas they reached 10(9) cfu/g in semihard cheeses after 15 d of ripening. In both cheese varieties, the adjunct culture population remained at high counts during all ripening, in some cases overcoming or equaling primary starter. Overall, proximate composition of cheeses with and without added lactobacilli did not differ; however, some of the tested strains continued acidifying during ripening, which was mainly noticed in soft cheeses and affected overall quality of the products. The lactobacilli strains with low acidifying activity showed appropriate technological characteristics for their use as adjunct cultures in soft and semihard cheeses.
Apoptin towards safe and efficient anticancer therapies.
Backendorf, Claude; Noteborn, Mathieu H M
2014-01-01
The chicken anemia virus derived protein apoptin harbors cancer-selective cell killing characteristics, essentially based on phosphorylation-mediated nuclear transfer in cancer cells and efficient cytoplasmic degradation in normal cells. Here, we describe a growing set of preclinical experiments underlying the promises of the anti-cancer potential of apoptin. Various non-replicative oncolytic viral vector systems have revealed the safety and efficacy of apoptin. In addition, apoptin enhanced the oncolytic potential of adenovirus, parvovirus and Newcastle disease virus vectors. Intratumoral injection of attenuated Salmonella typhimurium bacterial strains and plasmid-based systems expressing apoptin resulted in significant tumor regression. In-vitro and in-vivo experiments showed that recombinant membrane-transferring PTD4- or TAT-apoptin proteins have potential as a future anticancer therapeutics. In xenografted hepatoma and melanoma mouse models PTD4-apoptin protein entered both cancer and normal cells, but only killed cancer cells. Combinatorial treatment of PTD4-apoptin with various (chemo)therapeutic compounds revealed an additive or even synergistic effect, reducing the side effects of the single (chemo)therapeutic treatment. Degradable polymeric nanocapsules harboring MBP-apoptin fusion-protein induced tumor-selective cell killing in-vitro and in-vivo and revealed the potential of polymer-apoptin protein vehicles as an anticancer agent.Besides its direct use as an anticancer therapeutic, apoptin research has also generated novel possibilities for drug design. The nuclear location domains of apoptin are attractive tools for targeting therapeutic compounds into the nucleus of cancer cells. Identification of cancer-related processes targeted by apoptin can potentially generate novel drug targets. Recent breakthroughs important for clinical applications are reported inferring apoptin-based clinical trials as a feasible reality.
Sulphur tracer experiments in laboratory animals using 34S-labelled yeast.
Martínez-Sierra, J Giner; Moreno Sanz, F; Herrero Espílez, P; Marchante Gayón, J M; Rodríguez Fernández, J; García Alonso, J I
2013-03-01
We have evaluated the use of (34)S-labelled yeast to perform sulphur metabolic tracer experiments in laboratory animals. The proof of principle work included the selection of the culture conditions for the preparation of sulphur labelled yeast, the study of the suitability of this labelled yeast as sulphur source for tracer studies using in vitro gastrointestinal digestion and the administration of the (34)S-labelled yeast to laboratory animals to follow the fate and distribution of (34)S in the organism. For in vitro gastrointestinal digestion, the combination of sodium dodecyl sulphate-polyacrylamide gel electrophoresis and high-performance liquid chromatography and inductively coupled plasma mass spectrometry (HPLC-ICP-MS) showed that labelled methionine, cysteine and other low molecular weight sulphur-containing biomolecules were the major components in the digested extracts of the labelled yeast. Next, in vivo kinetic experiments were performed in healthy Wistar rats after the oral administration of (34)S-labelled yeast. The isotopic composition of total sulphur in tissues, urine and faeces was measured by double-focusing inductively coupled plasma mass spectrometry after microwave digestion. It was observed that measurable isotopic enrichments were detected in all samples. Finally, initial investigations on sulphur isotopic composition of serum and urine samples by HPLC-ICP-MS have been carried out. For serum samples, no conclusive data were obtained. Interestingly, chromatographic analysis of urine samples showed differential isotope enrichment for several sulphur-containing biomolecules.
7 CFR 331.3 - PPQ select agents and toxins.
Code of Federal Regulations, 2011 CFR
2011-01-01
... listed in paragraph (b) of this section if the nucleic acids: (i) Can be expressed in vivo or in vitro; or (ii) Are in a vector or recombinant host genome and can be expressed in vivo or in vitro. (3... select agents and toxins. (a) Except as provided in paragraphs (d) and (e) of this section, the...
Dulude, H; Salvador, R; Gallant, G
1995-01-01
The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.
USDA-ARS?s Scientific Manuscript database
This experiment was conducted to evaluate the effect of alkali treatment on in vitro and in situ digestibility of fiber sources. An in vitro and in situ experiment were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) and corn stalks (CS) with calcium hydroxide on in ...
Pursuing conception: a physician's experience with in-vitro fertilization.
McCall, M
1996-01-01
Infertility is a common problem. Approximately one in seven North American couples will experience it, either by being unable to conceive after a year of trying or by experiencing recurrent miscarriages. A family physician outlines her experiences when being treated for infertility by in-vitro fertilization and embryo transfer. PMID:8625028
Rossi, Miriam; Caruso, Francesco; Crespi, Erica J; Pedersen, Jens Z; Nakano, Gail; Duong, Michelle; McKee, Celia; Lee, Sharon; Jiwrajka, Manasi; Caldwell, Charles; Baffour, Francis; Karlin, Dylan Alex; Lidoff, Genevieve; Leone, Stefano; Balducci, Valentina; Miler, Jaroslav; Incerpi, Sandra
2013-10-01
In order to better understand the antioxidant behavior of a series of polyphenolic 2'-hydroxychalcones, we describe the results of several chemical and biological studies, in vitro and in vivo. Single crystal X-ray methods elucidated their molecular structures and important intermolecular interactions such as H-bonding and molecular stacking in the crystal structures that contribute to our knowledge in explaining antioxidant activity. The results of experiments using the 1,1-diphenyl-2-dipicrylhydrazyl (DPPH) UV-vis spectroscopic method indicate that a hydroxyl group in position 5' induces the highest antioxidant activity. Consequently, 2,2',5'-trihydroxychalcone was selected for further study in vitro towards ROS scavenging in L-6 myoblasts and THP-1 human monocytes, where it shows an excellent antioxidant activity in a concentration range lower than that reported by most studies of related molecules. In addition, this chalcone shows a very selective activity: it inhibits the proliferation of leukemic cells, but it does not affect the normal L-6 myoblasts and human fibroblasts. In studying 2,2',5'-trihydroxychalcone's effect on weight gain and serum glucose and insulin levels in Zucker fatty (fa(-)/fa(-)) rats we found that supplementing the diet with a 10 mg/kg dose of this chalcone (3 times weekly) blunted the increase in glucose that co-occurs with weight gain over the 6-week treatment period. It is concluded that 2,2',5'-trihydroxychalcone has the potential to serve as a protective agent for some debilitating diseases. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Vokřál, Ivan; Jirásko, Robert; Stuchlíková, Lucie; Bártíková, Hana; Szotáková, Barbora; Lamka, Jiří; Várady, Marián; Skálová, Lenka
2013-09-23
The increased activity of drug-metabolizing enzymes can protect helminths against the toxic effect of anthelmintics. The aim of this study was to compare the metabolism of the anthelmintic drug albendazole (ABZ) and the activities of selected biotransformation and antioxidant enzymes in three different strains of Haemonchus contortus: the ISE strain (susceptible to common anthelmintics), the BR strain (resistant to benzimidazole anthelmintics) and the WR strain (multi-resistant). H. contortus adults were collected from the abomasum of experimentally infected lambs. In vitro (subcellular fractions of H. contortus homogenate) as well as ex vivo (living nematodes cultivated in flasks with medium) experiments were performed. HPLC with spectrofluorimetric and mass-spectrometric detection was used in the analysis of ABZ metabolites. The in vitro activities of oxidation/antioxidation and conjugation enzymes toward model substrates were also assayed. The in vitro data showed significant differences between the susceptible (ISE) and resistant (BR, WR) strains regarding the activities of peroxidases, catalase and UDP-glucosyltransferases. S-oxidation of ABZ was significantly lower in BR than in the ISE strain. Ex vivo, four ABZ metabolites were identified: ABZ sulphoxide and three ABZ glucosides. In the resistant strains BR and WR, the ex vivo formation of all ABZ glucosides was significantly higher than in the susceptible ISE strain. The altered activities of certain detoxifying enzymes might partly protect the parasites against the toxic effect of the drugs as well as contribute to drug-resistance in these parasites. Copyright © 2013 Elsevier B.V. All rights reserved.
In Vitro Selection for Small-Molecule-Triggered Strand Displacement and Riboswitch Activity.
Martini, Laura; Meyer, Adam J; Ellefson, Jared W; Milligan, John N; Forlin, Michele; Ellington, Andrew D; Mansy, Sheref S
2015-10-16
An in vitro selection method for ligand-responsive RNA sensors was developed that exploited strand displacement reactions. The RNA library was based on the thiamine pyrophosphate (TPP) riboswitch, and RNA sequences capable of hybridizing to a target duplex DNA in a TPP regulated manner were identified. After three rounds of selection, RNA molecules that mediated a strand exchange reaction upon TPP binding were enriched. The enriched sequences also showed riboswitch activity. Our results demonstrated that small-molecule-responsive nucleic acid sensors can be selected to control the activity of target nucleic acid circuitry.
Covalent antibody display—an in vitro antibody-DNA library selection system
Reiersen, Herald; Løbersli, Inger; Løset, Geir Å.; Hvattum, Else; Simonsen, Bjørg; Stacy, John E.; McGregor, Duncan; FitzGerald, Kevin; Welschof, Martin; Brekke, Ole H.; Marvik, Ole J.
2005-01-01
The endonuclease P2A initiates the DNA replication of the bacteriophage P2 by making a covalent bond with its own phosphate backbone. This enzyme has now been exploited as a new in vitro display tool for antibody fragments. We have constructed genetic fusions of P2A with single-chain antibodies (scFvs). Linear DNA of these fusion proteins were processed in an in vitro coupled transcription–translation mixture of Escherichia coli S30 lysate. Complexes of scFv–P2A fusion proteins covalently bound to their own DNA were isolated after panning on immobilized antigen, and the enriched DNAs were recovered by PCR and prepared for the subsequent cycles of panning. We have demonstrated the enrichment of scFvs from spiked libraries and the specific selection of different anti-tetanus toxoid scFvs from a V-gene library with 50 million different members prepared from human lymphocytes. This covalent antibody display technology offers a complete in vitro selection system based exclusively on DNA–protein complexes. PMID:15653626
[Cell biology researches aboard the robotic space vehicles: preparation and performance].
Tairbekov, M G
2006-01-01
The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.
De Mil, Thomas; Devreese, Mathias; De Baere, Siegrid; Van Ranst, Eric; Eeckhout, Mia; De Backer, Patrick; Croubels, Siska
2015-01-01
The aim of this study was to characterize 27 feed additives marketed as mycotoxin binders and to screen them for their in vitro zearalenone (ZEN) adsorption. Firstly, 27 mycotoxin binders, commercially available in Belgium and The Netherlands, were selected and characterized. Characterization was comprised of X-ray diffraction (XRD) profiling of the mineral content and d-spacing, determination of the cation exchange capacity (CEC) and the exchangeable base cations, acidity, mineral fraction, relative humidity (RH) and swelling volume. Secondly, an in vitro screening experiment was performed to evaluate the adsorption of a single concentration of ZEN in a ZEN:binder ratio of 1:20,000. The free concentration of ZEN was measured after 4 h of incubation with each of the 27 mycotoxin binders at a pH of 2.5, 6.5 and 8.0. A significant correlation between the free concentration of ZEN and both the d-spacing and mineral fraction of the mycotoxin binders was seen at the three pH levels. A low free concentration of ZEN was demonstrated using binders containing mixed-layered smectites and binders containing humic acids. PMID:25568976
Souza, Carla; Maia Campos, Patrícia M B G
2017-12-01
This study describes the development, validation and application of a high-performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel-cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis-benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0-50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products. Copyright © 2017 John Wiley & Sons, Ltd.
BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert
2016-01-01
Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966
Testing the embryo, testing the fetus.
Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund
2007-12-01
This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of 'affected' embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo's and fetus's moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero).
Rençber, Seda; Karavana, Sinem Yaprak; Yılmaz, Fethiye Ferda; Eraç, Bayri; Nenni, Merve; Özbal, Seda; Pekçetin, Çetin; Gurer-Orhan, Hande; Hoşgör-Limoncu, Mine; Güneri, Pelin; Ertan, Gökhan
2016-01-01
This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT(®) RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis.
Lee, Patricia; Ng, Hwee L.; Yang, Otto O.
2012-01-01
Human immunodeficiency virus type 1 (HIV-1) Nef downregulates major histocompatibility complex class I (MHC-I), impairing the clearance of infected cells by CD8+ cytotoxic T lymphocytes (CTLs). While sequence motifs mediating this function have been determined by in vitro mutagenesis studies of laboratory-adapted HIV-1 molecular clones, it is unclear whether the highly variable Nef sequences of primary isolates in vivo rely on the same sequence motifs. To address this issue, nef quasispecies from nine chronically HIV-1-infected persons were examined for sequence evolution and altered MHC-I downregulatory function under Gag-specific CTL immune pressure in vitro. This selection resulted in decreased nef diversity and strong purifying selection. Site-by-site analysis identified 13 codons undergoing purifying selection and 1 undergoing positive selection. Of the former, only 6 have been reported to have roles in Nef function, including 4 associated with MHC-I downregulation. Functional testing of naturally occurring in vivo polymorphisms at the 7 sites with no previously known functional role revealed 3 mutations (A84D, Y135F, and G140R) that ablated MHC-I downregulation and 3 (N52A, S169I, and V180E) that partially impaired MHC-I downregulation. Globally, the CTL pressure in vitro selected functional Nef from the in vivo quasispecies mixtures that predominately lacked MHC-I downregulatory function at the baseline. Overall, these data demonstrate that CTL pressure exerts a strong purifying selective pressure for MHC-I downregulation and identifies novel functional motifs present in Nef sequences in vivo. PMID:22553319
Loder, Andrew J; Zeldes, Benjamin M; Garrison, G Dale; Lipscomb, Gina L; Adams, Michael W W; Kelly, Robert M
2015-10-01
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Loder, Andrew J.; Zeldes, Benjamin M.; Garrison, G. Dale; Lipscomb, Gina L.; Adams, Michael W. W.
2015-01-01
n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (β-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures. PMID:26253677
Caughlan, Ruth E; Jones, Adriana K; Delucia, Angela M; Woods, Angela L; Xie, Lili; Ma, Bing; Barnes, S Whitney; Walker, John R; Sprague, Elizabeth R; Yang, Xia; Dean, Charles R
2012-01-01
Testing P. aeruginosa efflux pump mutants showed that the LpxC inhibitor CHIR-090 is a substrate for MexAB-OprM, MexCD-OprJ, and MexEF-OprN. Utilizing P. aeruginosa PAO1 with a chromosomal mexC::luxCDABE fusion, luminescent mutants arose on medium containing 4 μg/ml CHIR-090, indicating upregulation of MexCD-OprJ. These mutants were less susceptible to CHIR-090 (MIC, 4 μg/ml) and had mutations in the mexCD-oprJ repressor gene nfxB. Nonluminescent mutants (MIC, 4 μg/ml) that had mutations in the mexAB-oprM regulator gene mexR were also observed. Plating the clinical isolate K2153 on 4 μg/ml CHIR-090 selected mutants with alterations in mexS (immediately upstream of mexT), which upregulates MexEF-OprN. A mutant altered in the putative1ribosomal binding site (RBS) upstream of lpxC and overexpressing LpxC was selected on a related LpxC inhibitor and exhibited reduced susceptibility to CHIR-090. Overexpression of LpxC from a plasmid reduced susceptibility to CHIR-090, and introduction of the altered RBS in this construct further increased expression of LpxC and decreased susceptibility to CHIR-090. Using a mutS (hypermutator) strain, a mutant with an altered lpxC target gene (LpxC L18V) was also selected. Purified LpxC L18V had activity similar to that of wild-type LpxC in an in vitro assay but had reduced inhibition by CHIR-090. Finally, an additional class of mutant, typified by an extreme growth defect, was identified. These mutants had mutations in fabG, indicating that alteration in fatty acid synthesis conferred resistance to LpxC inhibitors. Passaging experiments showed progressive decreases in susceptibility to CHIR-090. Therefore, P. aeruginosa can employ several strategies to reduce susceptibility to CHIR-090 in vitro.
Extending Human Hematopoietic Stem Cell Survival In Vitro with Adipocytes
Glettig, Dean Liang
2013-01-01
Abstract Human hematopoietic stem cells (hHSCs) cannot be maintained in vitro for extended time periods because they rapidly differentiate or die. To extend in vitro culture time, researchers have made attempts to use human mesenchymal stem cells (hMSCs) to create feeder layers that mimic the stem cell niche. We have conducted an array of experiments including adipocytes in these feeder layers that inhibit hHSC differentiation and by that prolong stem cell survival in vitro. The amount of CD34+ cells was quantified using flow cytometry. In a first experiment, feeder layers of undifferentiated hMSCs were compared with feeder layers differentiated toward osteoblasts or adipocytes using minimal medium, showing the highest survival rate where adipocytes were included. The same conclusion was drawn in a second experiment in comparing hMSCs with adipogenic feeder cells, using a culture medium supplemented with a cocktail of hHSC growth factors. In a third experiment, it was shown that direct cell–cell contact is necessary for the supportive effect of the feeder layers. In a fourth and fifth experiment the amount of adipocytes in the feeder layers were varied, and in all experiments a higher amount of adipocytes in the feeder layers showed a less rapid decay of CD34+ cells at later time points. We therefore concluded that adipocytes assist in suppressing hHSC differentiation and aid in prolonging their survival in vitro. PMID:23741628
Dąbrowska, G; Hrynkiewicz, K; Trejgell, A; Baum, C
2017-07-03
The test strains Bacteroidetes bacterium (Ba), Pseudomonas fluorescens (Pf) and Variovorax sp. (Va) were selected in advance for their in vitro capability for growth promotion of rapeseed in the presence of increased concentrations of Cd, Cu, Pb and Zn in the medium. In the pot experiment, the strains were used for single Ba, Pf, Va or combined Ba + Pf, Ba + Va, Pf + Va, and Ba + Pf + Va inoculation of B. napus growing in contaminated soil from alluvial deposits. The positive effect of bacterial strains on plant growth was observed in vitro, but was not confirmed in situ in the contaminated soil, where the tested strains inhibited biomass production, rather than stimulating it. However, single inoculation with Ba significantly increased the chlorophyll content and K + concentration in the leaves. The inoculation of rapeseed with Ba and Va strains was indicated to be the most promising combination for phytoextraction of Cd and Zn from contaminated soil. Combined inoculation with Pf+Va and Pf + Ba+Va significantly decreased the concentration of heavy metals in the roots of rapeseed. We conclude that suitable combinations of PGPR can control the metal uptake of B. napus, selectively increasing either metal extraction or metal stabilization in the rhizosphere and offering promising applications in soil remediation.
Isolation and Characterization of Actinomycete Antagonists of a Fungal Root Pathogen †
Crawford, Don L.; Lynch, James M.; Whipps, John M.; Ousley, Margaret A.
1993-01-01
By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against damping-off caused by P. ultimum. PMID:16349093
Isolation and characterization of actinomycete antagonists of a fungal root pathogen.
Crawford, D L; Lynch, J M; Whipps, J M; Ousley, M A
1993-11-01
By use of selective media, 267 actinomycete strains were isolated from four rhizosphere-associated and four non-rhizosphere-associated British soils. Organic media with low nutrient concentrations were found to be best for isolating diverse actinomycetes while avoiding contamination and overgrowth of isolation media by eubacteria and fungi. While all isolates grew well at pHs 6.5 to 8.0, a few were unable to grow at pH 6.0 and a significant number failed to grow at pH 5.5. Eighty-two selected isolates were screened for in vitro antagonism towards Pythium ultimum by use of a Difco cornmeal agar assay procedure. Five isolates were very strong antagonists of the fungus, four were strong antagonists, and ten others were weakly antagonistic. The remaining isolates showed no antagonism by this assay. Additional studies showed that several of the P. ultimum antagonists also strongly inhibited growth of other root-pathogenic fungi. Twelve isolates showing antifungal activity in the in vitro assay were also tested for their effects on the germination and short-term growth of lettuce plants in glasshouse pot studies in the absence of pathogens. None of the actinomycetes prevented seed germination, although half of the isolates retarded seed germination and outgrowth of the plants by 1 to 3 days. During 18-day growth experiments, biomass yields of some actinomycete-inoculated plants were reduced in comparison with untreated control plants, although all plants appeared healthy and well rooted. None of the actinomycetes significantly enhanced plant growth over these short-term experiments. For some, but not all, actinomycetes, some correlations between delayed seed germination and reduced 18-day plant biomass yields were seen. For others, plant biomass yields were not reduced despite an actinomycete-associated delay in seed germination and plant outgrowth. Preliminary glasshouse experiments indicated that some of the actinomycetes protect germinating lettuce seeds against damping-off caused by P. ultimum.
Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C
2015-12-01
In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.
George, F; Vrancken, M; Verhaeghe, B; Verhoeye, F; Schneider, Y-J; Massip, A; Donnay, I
2006-09-15
Successful cryopreservation is essential for a large-scale dispersal of bovine in vitro produced (IVP) embryos that have been shown to be more sensitive to cryopreservation than their in vivo counterparts. On the other hand, the use of animal proteins in freezing media increases sanitary risks. We first replaced animal proteins, such as bovine serum albumin (BSA) in the freezing medium by plant-derived peptides (vegetal peptones). A batch of wheat peptones was selected after a preliminary experiment showing the absence of toxicity of concentrations<18 mg/mL on in vitro bovine blastocysts. Increasing concentrations of peptones were then added in the freezing medium. The surviving and hatching rates were not affected by comparison with those observed with BSA. No significant difference was observed between groups either for the total number of cells or for the ratio ICM/Total cell, nor for the rate of apoptosis in surviving embryos. When embryos were cryopreserved in 1.8 mg/mL peptone, the hatching rate and embryo quality as assessed at 48 h post-thawing were not significantly different from those of unfrozen embryos. In a second experiment two additives were added in this animal protein-free freezing medium containing 1.8 mg/mL peptones. No beneficial effect of adding 1 mg/mL sodium hyaluronate or 100 microM beta-mercaptoethanol was observed on embryo survival or quality. In conclusion, we have demonstrated that vegetal peptones can replace BSA in freezing media without affecting blastocyst survival and quality.
Review of animal/in vitro data on biological effects of man-made fibers.
Ellouk, S A; Jaurand, M C
1994-06-01
This paper reviews the investigations with man-made fibers (MMF). Insulation woods: glasswool (GW), rockwool (RW), slagwool (SW), glass microfibers (GMF), glass filaments (GFiI), and refractory ceramic fibers (RCF) have been used in experimental animals and in in vitro cell systems. A large heterogeneous number of fibers, methods of fiber preparation, size selection, aerosolization, fiber size, and fiber burden measurement were noted, rendering difficult a comparison between results. By inhalation, RCF and asbestos used as positive controls produced a significant tumor increase. In some studies, a low tumor yield was found after inhalation of insulation wools; when all inhalation data were gathered, a significant tumor increase was found with GW. However, it is difficult to draw definitive conclusions on the potential of other fiber types because, in addition to the different compositions of the fibers, differences in fiber number and sizes existed, especially in comparison with asbestos. Moreover, experiments using inoculation, especially by the intraperitoneal route revealed a carcinogenic potential of all fibers types but GFiI and SW. In these two groups a small number of animals has been investigated and the fiber characteristics were sometimes irrelevant. So far, a relationship between the carcinogenic potency and fiber dimensions has been established. Other fiber parameters may be of importance (surface chemistry, biopersistence, fiber structure, for example) but further investigations are necessary to determine the correlations between these parameters and tumor incidence. In vitro experiments have emphasized the fiber characteristics identified in vivo as playing a role in the carcinogenic potency and should be developed as a better approach of the mechanistic effects of MMF.
Ionene polymers for selectively inhibiting the vitro growth of malignant cells
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor)
1977-01-01
Ionene polymers of the structure ##STR1## WHERE X AND Y ARE INTEGERS FROM 3 TO 16, Z.sup.- is an anion such as a halogen and n is an integer from 50 to 150 are found to bind negatively charged mammalian cells such as malignant cells and can be utilized to selectively inhibit the growth of malignant cells in vitro.
Siqueira, J F; De Uzeda, M; Fonseca, M E
1996-06-01
In vitro root canal dentinal tubule invasion by selected anaerobic bacteria commonly isolated from endodontic infections was evaluated. Dentinal cylinders obtained from bovine incisors were inoculated with bacteria, and microbial penetration into tubules was demonstrated by scanning electron microscopy. The results indicated that all bacterial strains tested were able to penetrate into dentinal tubules, but to different extents.
Ekerfelt, C; Dahle, C; Weissert, R; Kvarnström, M; Olsson, T; Ernerudh, J
2001-01-01
A causal role of IL-4 (Th2) production for recovery in experimental allergic neuritis (EAN) was indicated by experiments where Th1-like autoreactive cell populations, taken from the induction phase of the disease, were deviated to extensive secretion of IL-4 in a selective fashion, by ex vivo stimulation with autoantigen in the presence of IL-4. The deviated cells were adoptively transferred to EAN rats at a time just prior to the onset of clinical signs. This treatment ameliorated EAN compared with sham treatment. This therapeutic approach, with generation of autoreactive IL-4-secreting cells ex vivo followed by subsequent adoptive transfer, may become a new selective treatment of organ-specific autoimmune diseases since, in contrast to previous attempts, it is done in a physiological and technically easy way. PMID:11168007
NASA Astrophysics Data System (ADS)
Hwang, Jeong-Hye
Part 1. Biochemistry research involves elucidating the mechanism of membrane targeting of human sphingosine kinase 1 (hSK1). Sphingosine kinase (SK) is an enzyme that catalyzes phosphorylation of sphingosine to sphingosine-1-phosphate (S-1-P). hSK1 can be activated by its agonists resulting in rapid and transient increased production of S-1-P, resulting in enhancement of apoptosis. Upon activation by PMA, SK translocates to the plasma membrane. In vitro measurement demonstrated hSK1 selectively bound phosphatidylserine over anionic lipids and showed strong preference for the plasma membrane-mimetics. Mutational analysis of conserved Thr54 and Asn89 on putative membrane-binding surface from the model structure showed both in vivo and in vitro that these two residues are important for the membrane selectivity of hSK1. Part 2. Chemical education research focuses on three different ways of scientific learning and teaching. First, inquiry teaching that involves a writing method called the Science Writing Heuristic (SWH) is analyzed using grounded theory. This is done in a general education course for pre-service teachers. As a result, (1) students experience understanding of concept through mastery of their own methods and experience different aspects of inquiry processes; (2) SWH method allows instructors to detect misconceptions generated by students' incorrect, but logical interpretations of their data, and helps instructors to make changes to guide students; (3) as students experience meta-cognition, students gain understanding of concepts by relating mathematical progression to different parts of the experiments and also by applying what they learn into other situations. Second, statistical analysis on the long term effects of a combined math/chemistry program is analyzed through multiple linear regression and discriminant function analysis. The results demonstrate the program was beneficial to the underrepresented students when the college success was measured using their final GPA and graduation rates. The third chapter analyzes use of a narrative in a classroom as part of the Chicago Public School High School Transformation Project. The analysis using the case study demonstrates how students can connect to scientific concept when it is introduced with something they can relate with.
The Lambda Select cII Mutation Detection System.
Besaratinia, Ahmad; Tommasi, Stella
2018-04-26
A number of transgenic animal models and mutation detection systems have been developed for mutagenicity testing of carcinogens in mammalian cells. Of these, transgenic mice and the Lambda (λ) Select cII Mutation Detection System have been employed for mutagenicity experiments by many research groups worldwide. Here, we describe a detailed protocol for the Lambda Select cII mutation assay, which can be applied to cultured cells of transgenic mice/rats or the corresponding animals treated with a chemical/physical agent of interest. The protocol consists of the following steps: (1) isolation of genomic DNA from the cells or organs/tissues of transgenic animals treated in vitro or in vivo, respectively, with a test compound; (2) recovery of the lambda shuttle vector carrying a mutational reporter gene (i.e., cII transgene) from the genomic DNA; (3) packaging of the rescued vectors into infectious bacteriophages; (4) infecting a host bacteria and culturing under selective conditions to allow propagation of the induced cII mutations; and (5) scoring the cII-mutants and DNA sequence analysis to determine the cII mutant frequency and mutation spectrum, respectively.
Veloukas, T; Kalogeropoulou, P; Markoglou, A N; Karaoglanidis, G S
2014-04-01
Respiration inhibitors such as the succinate dehydrogenase inhibitors (SDHIs) and the quinone outside inhibitors (QoIs) are fungicide classes with increasing relevance in gray mold control. However, recent studies have shown that dual resistance to both fungicide classes is a common trait in Botrytis cinerea populations from several hosts throughout the world. Resistance of B. cinerea to SDHIs is associated with several mutations in the sdhB, sdhC, and sdhD genes, while resistance to QoIs, in most cases, is associated with the G143A mutation in the cytb gene. The objective of the current study was to investigate the fitness and the competitive ability of B. cinerea field strains possessing one of the H272Y/R/L, N230I, or P225F sdhB substitutions and the G143A mutation of cytb. Fitness parameters measured were (i) mycelial growth and conidia germination in vitro, (ii) aggressiveness and sporulation capacity in vivo, (iii) sclerotia production in vitro and sclerotia viability under different storage conditions, and (iv) sensitivity to oxidative stress imposed by diquat treatments. The competitive ability of the resistant isolates was measured in the absence and presence of the SDHI fungicides boscalid and fluopyram selection pressure. The measurements of individual fitness components showed that the H272R/G143A isolates had the lower differences compared with the sensitive isolates. In contrast, the groups of H272Y/L/G143A, N230I/G143A, and P225F/G143A isolates showed reduced fitness values compared with the sensitive isolates. Isolates possessing only the cytb G143A substitution did not show any fitness cost. The competition experiments showed that, in the absence of fungicide selection pressure, after four disease cycles on apple fruit, the sensitive isolates dominated in the population in all the mixtures tested. In contrast, when the competition experiment was conducted under the selection pressure of boscalid, a gradual decrease in the frequency of sensitive isolates was observed, whereas the frequency of H272L and P225F isolates was increased. When the competition experiment was conducted in the presence of fluopyram, the sensitive isolates were eliminated even after the first disease cycle and the P225F mutants dominated in the population. Such results suggest that the sdhB mutations may have adverse effects on the mutants. The observed dominance of sensitive isolates in the competition experiments conducted in the absence of fungicides suggest that the application of SDHIs in alternation schemes may delay the selection or reduce the frequency of SDHI-resistant mutants.
Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.
2012-01-01
Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634
Jones, P A; King, A V
2003-01-01
Testing for phototoxic hazard is usually carried out for product ingredients intended for use on skin, which may be exposed to sunlight. Unilever currently uses the validated in vitro 3T3 Neutral Red Uptake phototoxicity test (NRU PT). This protocol involves 2-3 experiments, each taking 3 days to perform. One person can test up to seven test materials plus positive control at any one time, requiring approximately 0.5 g test material. Higher throughput is required where libraries of potential actives are being generated and screening for potential phototoxicants is required. A proposed HTS protocol would use the NRU PT, but only one concentration (10 microg/ml) in a single experiment. The validity of the HTS protocol was investigated by a retrospective examination of data from 86 materials previously tested. Phototoxic hazard predictions made using the conventional NRU PT were compared with those obtained if only data at 10 microg/ml were considered. A majority of 73 materials (84.9%) gave agreement in predictions between the two protocols; for 13 materials (15.1%) the assessments did not agree. There were no false positives; however, there were some false negatives, i.e., predicted as phototoxic from the conventional assay, but non-phototoxic at 10 microg/ml. As this protocol is intended for screening purposes only it is considered that this would be acceptable at this stage in material selection. One person could screen 128 test materials in 3 days, requiring <1 mg test material, giving a substantial increase in productivity. Any material selected for further development and inclusion in a formulation may require further confirmatory testing, e.g. using a human skin model assay for phototoxicity.
In vitro testing of biological control agents on A1 and A2 isolates of Phytophthora ramorum
Marianne Elliott; Simon Shamoun
2008-01-01
Biological control products were tested in vitro with six isolates of Phytophthora ramorum. These isolates were geographically diverse and were selected based on their pathogenicity to detached Rhododendron leaves. In addition to five commercially available biocontrol products, nine species of Trichoderma were tested. The in vitro...
Iwata, H; Shiono, H; Kon, Y; Matsubara, K; Kimura, K; Kuwayama, T; Monji, Y
2008-05-01
The duration of sperm-oocyte co-incubation has been observed to affect the sex ratio of in vitro produced bovine embryos. The purpose of this study was to investigate some factors that may be responsible for the skewed sex ratio. The factors studied were selected combinations of the duration of co-incubation, the presence or absence of cumulus cells, and the level of hyaluronic acid (HA) in the culture medium. Experiment 1 examined the effect of selected combinations of different factors during the fertilization phase of in vitro oocyte culture. The factors were the nature of the sperm or its treatment, the duration of the sperm-oocyte co-incubation, and the level of hyaluronic acid in the culture medium. In experiment 2, the capacitation of frozen-thawed-Percoll-washed sperm (control), pre-incubated, and non-binding sperm was evaluated by the zona pellucida (ZP) binding assay and the hypo-osmotic swelling test (HOST). The purpose of experiment 3 was to determine the oocyte cleavage rate and sex ratio of the embryos (>5 cells) produced as a consequence of the 10 treatments used in experiment 1. In treatments 1-3 (experiments 1 and 3) COC were co-cultured with sperm for 1, 5 or 18 h. Polyspermic fertilization rose as the co-incubation period increased (1 h 6.5%, 5 h 15.9%, 18 h 41.8%; P<0.05), and the highest rate of normal fertilization was observed for 5h culture (73.4%; P<0.05). The sex ratio was significantly (P<0.05) skewed from the expected 50:50 towards males following 1 h (64.4%) and 5 h (67.3%) co-incubation, but was not affected by 18 h incubation (52.3%). In treatment 4, sperm was pre-incubated for 1h and cultured with COC for 5 h. Relative to control sperm, pre-incubation of sperm increased ZP binding (116 versus 180 per ZP; P<0.05) and decreased the proportion of HOST positive sperm (65.8-48.6%; P<0.05; experiment 2). Pre-incubation did not affect the rates of polyspermy, normal fertilization or the sex ratio of the embryos (experiments 1 and 3). The oocytes used in treatments 5-10 of experiments 1 and 3 were denuded prior to fertilization. Co-incubation of denuded oocytes for 1h (treatment 5) or 5h (treatment 6) resulted in levels of polyspermic fertilization similar to that for treatment 2 with significantly lower levels of normal fertilization (41.7% and 52.6%, respectively; P<0.05), and the 1h co-incubation significantly skewed (P<0.05) the proportion of male embryos to 70.0%. Denuded oocytes were fertilized for 5h with sperm unable to bind to cumulus cells (NB sperm) in treatment 7 or those that bound to cumulus cells (B) in treatment 8. These two treatments had similar rates of polyspermic, normal and non-fertilization. However, the B sperm caused the sex ratio of the embryos to be significantly skewed to males (63.9%; P<0.05). Fertilization of denuded oocytes in medium containing hyaluronic acid (0.1 mg/ml, treatment 9; 1.0 mg/ml treatment 10) significantly (P<0.05) reduced the incidence of polyspermic fertilization relative to treatments 2 and 6, and normal fertilization relative to treatment 2, but did not affect the sex ratio of the embryos. It was concluded that exposure of sperm to cumulus cells, either before fertilization of denuded oocytes or during the process of fertilization of complete COC, increased the proportion of male embryos produced by in vitro culture. It was hypothesized that this may be due to the capacitation state of the sperm, the cumulus-sperm interaction, and/or the ability of the sperm to bind to cumulus cells or oocytes.
Ishida, Masahiro; Takeuchi, Hiroyuki; Endo, Hiromi; Yamaguchi, Jun-Ichi
2015-12-01
In vitro skin permeation studies have been commonly conducted to predict in vivo permeability for the development of transdermal therapeutic systems (TTSs). We clarified the impact of humidity on in vitro human skin permeation of two TTSs having different breathability and then elucidated the predictability of in vivo permeability based on in vitro experimental data. Nicotinell(®) TTS(®) 20 and Frandol(®) tape 40mg were used as model TTSs in this study. The in vitro human skin permeation experiments were conducted under humidity levels similar to those used in clinical trials (approximately 50%) as well as under higher humidity levels (approximately 95%). The skin permeability values of drugs at 95% humidity were higher than those at 50% humidity. The time profiles of the human plasma concentrations after TTS application fitted well with the clinical data when predicted based on the in vitro permeation parameters at 50% humidity. On the other hand, those profiles predicted based on the parameters at 95% humidity were overestimated. The impact of humidity was higher for the more breathable TTS; Frandol(®) tape 40mg. These results show that in vitro human skin permeation experiments should be investigated under realistic clinical humidity levels especially for breathable TTSs. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Wang, Zhanwei; Katsaros, Dionyssios; Shen, Yi; Fu, Yuanyuan; Canuto, Emilie Marion; Benedetto, Chiara; Lu, Lingeng; Chu, Wen-Ming; Risch, Harvey A.; Yu, Herbert
2015-01-01
To investigate the biologic relevance and clinical implication of genes involved in multiple gene expression signatures for breast cancer prognosis, we identified 16 published gene expression signatures, and selected two genes, MAD2L1 and BUB1. These genes appeared in 5 signatures and were involved in cell-cycle regulation. We analyzed the expression of these genes in relation to tumor features and disease outcomes. In vitro experiments were also performed in two breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to assess cell proliferation, migration and invasion after knocking down the expression of these genes. High expression of these genes was found to be associated with aggressive tumors and poor disease-free survival of 203 breast cancer patients in our study, and the association with survival was confirmed in an online database consisting of 914 patients. In vitro experiments demonstrated that lowering the expression of these genes by siRNAs reduced tumor cell growth and inhibited cell migration and invasion. Our investigation suggests that MAD2L1 and BUB1 may play important roles in breast cancer progression, and measuring the expression of these genes may assist the prediction of breast cancer prognosis. PMID:26287798
Dréau, Didier; Moore, Laura Jeffords; Alvarez-Berrios, Merlis P; Tarannum, Mubin; Mukherjee, Pinku; Vivero-Escoto, Juan L
2016-12-01
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model.
Tenzer, S; Peters, B; Bulik, S; Schoor, O; Lemmel, C; Schatz, M M; Kloetzel, P-M; Rammensee, H-G; Schild, H; Holzhütter, H-G
2005-05-01
Epitopes presented by major histocompatibility complex (MHC) class I molecules are selected by a multi-step process. Here we present the first computational prediction of this process based on in vitro experiments characterizing proteasomal cleavage, transport by the transporter associated with antigen processing (TAP) and MHC class I binding. Our novel prediction method for proteasomal cleavages outperforms existing methods when tested on in vitro cleavage data. The analysis of our predictions for a new dataset consisting of 390 endogenously processed MHC class I ligands from cells with known proteasome composition shows that the immunological advantage of switching from constitutive to immunoproteasomes is mainly to suppress the creation of peptides in the cytosol that TAP cannot transport. Furthermore, we show that proteasomes are unlikely to generate MHC class I ligands with a C-terminal lysine residue, suggesting processing of these ligands by a different protease that may be tripeptidyl-peptidase II (TPPII).
NASA Astrophysics Data System (ADS)
Dysart, Jonathan S.; Patterson, Michael S.
2005-06-01
A singlet oxygen dose model is developed for PDT with Photofrin. The model is based on photosensitizer photobleaching kinetics, and incorporates both singlet oxygen and non-singlet oxygen mediated bleaching mechanisms. To test our model, in vitro experiments were performed in which MatLyLu (MLL) cells were incubated in Photofrin and then irradiated with 532 nm light. Photofrin fluorescence was monitored during treatment and, at selected fluence levels, cell viability was determined using a colony formation assay. Cell survival correlated well to calculated singlet oxygen dose, independent of initial Photofrin concentration or oxygenation. About 2 × 108 molecules of singlet oxygen per cell were required to reduce the surviving fraction by 1/e. Analysis of the photobleaching kinetics suggests that the lifetime of singlet oxygen in cells is 0.048 ± 0.005 µs. The generation of fluorescent photoproducts was not a result of singlet oxygen reactions exclusively, and therefore did not yield additional information to aid in quantifying singlet oxygen dose.
Tagliazucchi, Davide; Martini, Serena; Bellesia, Andrea; Conte, Angela
2015-01-01
The objective of this study was to identify the angiotensin I-converting enzyme (ACE)-inhibitory peptides released from thermally treated Phaseolus vulgaris (pinto) whole beans after in vitro gastrointestinal digestion. The degree of hydrolysis increased during digestion reaching a value of 50% at the end of the pancreatic digestion. The <3 kDa fraction of the postpancreatic sample showed high ACE-inhibitory activity (IC50 = 105.6 ± 2.1 μg of peptides/mL). Peptides responsible for the ACE-inhibitory activity were isolated by reverse-phase high-performance liquid chromatography (HPLC). Three fractions, showing the highest inhibitory activity, were selected for tandem mass spectrometry (MS/MS) experiments. Eleven of the identified sequences have previously been described as ACE-inhibitors. Most of the identified bioactive peptides have a hydrophobic amino acid, (iso)leucine or phenylalanine, or proline at the C-terminal position, which is crucial for their ACE-inhibitory activity. The sequence of some peptides allowed us to anticipate the presence of ACE-inhibitory activity.
Deducing the Kinetics of Protein Synthesis In Vivo from the Transition Rates Measured In Vitro
Rudorf, Sophia; Thommen, Michael; Rodnina, Marina V.; Lipowsky, Reinhard
2014-01-01
The molecular machinery of life relies on complex multistep processes that involve numerous individual transitions, such as molecular association and dissociation steps, chemical reactions, and mechanical movements. The corresponding transition rates can be typically measured in vitro but not in vivo. Here, we develop a general method to deduce the in-vivo rates from their in-vitro values. The method has two basic components. First, we introduce the kinetic distance, a new concept by which we can quantitatively compare the kinetics of a multistep process in different environments. The kinetic distance depends logarithmically on the transition rates and can be interpreted in terms of the underlying free energy barriers. Second, we minimize the kinetic distance between the in-vitro and the in-vivo process, imposing the constraint that the deduced rates reproduce a known global property such as the overall in-vivo speed. In order to demonstrate the predictive power of our method, we apply it to protein synthesis by ribosomes, a key process of gene expression. We describe the latter process by a codon-specific Markov model with three reaction pathways, corresponding to the initial binding of cognate, near-cognate, and non-cognate tRNA, for which we determine all individual transition rates in vitro. We then predict the in-vivo rates by the constrained minimization procedure and validate these rates by three independent sets of in-vivo data, obtained for codon-dependent translation speeds, codon-specific translation dynamics, and missense error frequencies. In all cases, we find good agreement between theory and experiment without adjusting any fit parameter. The deduced in-vivo rates lead to smaller error frequencies than the known in-vitro rates, primarily by an improved initial selection of tRNA. The method introduced here is relatively simple from a computational point of view and can be applied to any biomolecular process, for which we have detailed information about the in-vitro kinetics. PMID:25358034
Informing Selection of Nanomaterial Concentrations for ...
Little justification is generally provided for selection of in vitro assay testing concentrations for engineered nanomaterials (ENMs). Selection of concentration levels for hazard evaluation based on real-world exposure scenarios is desirable. We reviewed published ENM concentrations measured in air in manufacturing and R&D labs to identify input levels for estimating ENM mass retained in the human lung using the Multiple-Path Particle Dosimetry (MPPD) model. Model input parameters were individually varied to estimate alveolar mass retained for different particle sizes (5-1000 nm), aerosol concentrations (0.1, 1 mg/m3), aspect ratios (2, 4, 10, 167), and exposure durations (24 hours and a working lifetime). The calculated lung surface concentrations were then converted to in vitro solution concentrations. Modeled alveolar mass retained after 24 hours is most affected by activity level and aerosol concentration. Alveolar retention for Ag and TiO2 nanoparticles and CNTs for a working lifetime (45 years) exposure duration is similar to high-end concentrations (~ 30-400 μg/mL) typical of in vitro testing reported in the literature. Analyses performed are generally applicable to provide ENM testing concentrations for in vitro hazard screening studies though further research is needed to improve the approach. Understanding the relationship between potential real-world exposures and in vitro test concentrations will facilitate interpretation of toxicological results
Irreversible 4-Aminopiperidine Transglutaminase 2 Inhibitors for Huntington's Disease.
Prime, Michael E; Brookfield, Frederick A; Courtney, Stephen M; Gaines, Simon; Marston, Richard W; Ichihara, Osamu; Li, Marie; Vaidya, Darshan; Williams, Helen; Pedret-Dunn, Anna; Reed, Laura; Schaertl, Sabine; Toledo-Sherman, Leticia; Beconi, Maria; Macdonald, Douglas; Muñoz-Sanjuan, Ignacio; Dominguez, Celia; Wityak, John
2012-09-13
A new series of potent TG2 inhibitors are reported that employ a 4-aminopiperidine core bearing an acrylamide warhead. We establish the structure-activity relationship of this new series and report on the transglutaminase selectivity and in vitro ADME properties of selected compounds. We demonstrate that the compounds do not conjugate glutathione in an in vitro setting and have superior plasma stability over our previous series.
In Vitro Bioluminescence Assay to Characterize Circadian Rhythm in Mammary Epithelial Cells.
Fang, Mingzhu; Kang, Hwan-Goo; Park, Youngil; Estrella, Brian; Zarbl, Helmut
2017-09-28
The circadian rhythm is a fundamental physiological process present in all organisms that regulates biological processes ranging from gene expression to sleep behavior. In vertebrates, circadian rhythm is controlled by a molecular oscillator that functions in both the suprachiasmatic nucleus (SCN; central pacemaker) and individual cells comprising most peripheral tissues. More importantly, disruption of circadian rhythm by exposure to light-at-night, environmental stressors and/or toxicants is associated with increased risk of chronic diseases and aging. The ability to identify agents that can disrupt central and/or peripheral biological clocks, and agents that can prevent or mitigate the effects of circadian disruption, has significant implications for prevention of chronic diseases. Although rodent models can be used to identify exposures and agents that induce or prevent/mitigate circadian disruption, these experiments require large numbers of animals. In vivo studies also require significant resources and infrastructure, and require researchers to work all night. Thus, there is an urgent need for a cell-type appropriate in vitro system to screen for environmental circadian disruptors and enhancers in cell types from different organs and disease states. We constructed a vector that drives transcription of the destabilized luciferase in eukaryotic cells under the control of the human PERIOD 2 gene promoter. This circadian reporter construct was stably transfected into human mammary epithelial cells, and circadian responsive reporter cells were selected to develop the in vitro bioluminescence assay. Here, we present a detailed protocol to establish and validate the assay. We further provide details for proof of concept experiments demonstrating the ability of our in vitro assay to recapitulate the in vivo effects of various chemicals on the cellular biological clock. The results indicate that the assay can be adapted to a variety of cell types to screen for both environmental disruptors and chemopreventive enhancers of circadian clocks.
Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C; Xu, Junzhong
2017-06-01
To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods. Computer simulations were performed to incorporate a broad range of intracellular water life times τ in (50-∞ ms), cell diameters d (5-15 μm), and intrinsic diffusion coefficient D in (0.6-2 μm 2 /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values. Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction f in is intrinsically underestimated due to transcytolemmal water exchange. D in can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro. For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and D in with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but f in is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Fathi, Mohamed; Ashry, Mohamed; Salama, Ali; Badr, Magdy R
2017-08-01
The objectives of the present studies were to investigate the developmental capacity of dromedary camel oocytes selected by brilliant cresyl blue (BCB) staining and to investigate the expression of select transcripts in germinal vesicle (GV) stage oocytes. These transcripts included BMP15 and GDF9 as important transcripts for folliculogenesis and oocyte development, Zar1 and Mater as maternal transcripts required for embryonic development, Cyclin B1 and CDK1 as cell cycle regulators and Oct4 and STAT3 as transcription factors. Dromedary camel oocytes were retrieved from ovaries collected at a local slaughterhouse. After exposure to BCB staining, cumulus-oocyte complexes (COCs) from BCB+, BCB- and control (selected based on morphological criteria) groups were subjected to in vitro maturation, in vitro fertilization and in vitro culture. For gene expression studies, after BCB staining cumulus cells were stripped off and the completely denuded GV stage oocytes were used for RT-PCR analysis of selected transcripts. BCB+ oocytes showed higher maturation, and fertilization rates compared with BCB- and control groups. Indices of early embryonic development, namely, cleavage at 48 hours post insemination (hpi), and development to morula at day 5 and day 7 blastocyst rates were also significantly higher in the BCB+ group. RT-PCR revealed a higher expression of BMP15, GDF9, Zar1, Mater, Cyclin B1, CDK1, OCT4 and STAT3 in good quality oocytes that stained positively for BCB (BCB+). Collectively, results provide novel information about the use of BCB screening for selecting good quality oocytes to improve in vitro embryo production in the dromedary camel.
Frikha-Gargouri, Olfa; Ben Abdallah, Dorra; Bhar, Ilhem; Tounsi, Slim
2017-01-01
This study aimed to improve the screening method for the selection of Bacillus biocontrol agents against crown gall disease. The relationship between the strain biocontrol ability and their in vitro studied traits was investigated to identify the most important factors to be considered for the selection of effective biocontrol agents. In fact, previous selection procedure relying only on in vitro antibacterial activity was shown to be not suitable in some cases. A direct plant-protection strategy was performed to screen the 32 Bacillus biocontrol agent candidates. Moreover, potential in vitro biocontrol traits were investigated including biofilm formation, motility, hemolytic activity, detection of lipopeptide biosynthetic genes ( sfp, ituC and bmyB ) and production of antibacterial compounds. The obtained results indicated high correlations of the efficiency of the biocontrol with the reduction of gall weight ( p = 0.000) and the antibacterial activity in vitro ( p = 0.000). Moreover, there was strong correlations of the efficiency of the biocontrol ( p = 0.004) and the reduction in gall weight ( p = 0.000) with the presence of the bmyB gene. This gene directs the synthesis of the lipopeptide bacillomycin belonging to the iturinic family of lipopeptides. These results were also confirmed by the two-way hierarchical cluster analysis and the correspondence analysis showing the relatedness of these four variables. According to the obtained results a new screening procedure of Bacillus biocontrol agents against crown gall disease could be advanced consisting on two step selection procedure. The first consists on selecting strains with high antibacterial activity in vitro or those harbouring the bmyB gene. Further selection has to be performed on tomato plants in vivo . Moreover, based on the results of the biocontrol assay, five potent strains exhibiting high biocontrol abilities were selected. They were identified as Bacillus subtilis or Bacillus amyloliquefaciens . These strains were found to produce either surfactin or surfactin and iturin lipopeptides. In conclusion, our study presented a new and effective method to evaluate the biocontrol ability of antagonistic Bacillus strains against crown gall disease that could increase the efficiency of screening method of biocontrol agents. Besides, the selected strains could be used as novel biocontrol agents against pathogenic Agrobacterium tumefaciens strains.
Frikha-Gargouri, Olfa; Ben Abdallah, Dorra; Bhar, Ilhem; Tounsi, Slim
2017-01-01
This study aimed to improve the screening method for the selection of Bacillus biocontrol agents against crown gall disease. The relationship between the strain biocontrol ability and their in vitro studied traits was investigated to identify the most important factors to be considered for the selection of effective biocontrol agents. In fact, previous selection procedure relying only on in vitro antibacterial activity was shown to be not suitable in some cases. A direct plant-protection strategy was performed to screen the 32 Bacillus biocontrol agent candidates. Moreover, potential in vitro biocontrol traits were investigated including biofilm formation, motility, hemolytic activity, detection of lipopeptide biosynthetic genes (sfp, ituC and bmyB) and production of antibacterial compounds. The obtained results indicated high correlations of the efficiency of the biocontrol with the reduction of gall weight (p = 0.000) and the antibacterial activity in vitro (p = 0.000). Moreover, there was strong correlations of the efficiency of the biocontrol (p = 0.004) and the reduction in gall weight (p = 0.000) with the presence of the bmyB gene. This gene directs the synthesis of the lipopeptide bacillomycin belonging to the iturinic family of lipopeptides. These results were also confirmed by the two-way hierarchical cluster analysis and the correspondence analysis showing the relatedness of these four variables. According to the obtained results a new screening procedure of Bacillus biocontrol agents against crown gall disease could be advanced consisting on two step selection procedure. The first consists on selecting strains with high antibacterial activity in vitro or those harbouring the bmyB gene. Further selection has to be performed on tomato plants in vivo. Moreover, based on the results of the biocontrol assay, five potent strains exhibiting high biocontrol abilities were selected. They were identified as Bacillus subtilis or Bacillus amyloliquefaciens. These strains were found to produce either surfactin or surfactin and iturin lipopeptides. In conclusion, our study presented a new and effective method to evaluate the biocontrol ability of antagonistic Bacillus strains against crown gall disease that could increase the efficiency of screening method of biocontrol agents. Besides, the selected strains could be used as novel biocontrol agents against pathogenic Agrobacterium tumefaciens strains. PMID:28855909
Testing the embryo, testing the fetus
Ehrich, K; Farsides, B; Williams, C; Scott, Rosamund
2008-01-01
This paper stems from an ethnographic, multidisciplinary study that explored the views and experiences of practitioners and scientists on social, ethical and clinical dilemmas encountered when working in the area of PGD for serious genetic disorders. We focus here on staff perceptions and experiences of working with embryos and helping women/couples to make choices that will result in selecting embryos for transfer and disposal of ‘affected’ embryos, compared to the termination of affected pregnancies following PND. Analysis and discussion of our data led us to consider the possible advantages of PGD and whether a gradualist account of the embryo’s and fetus’s moral status can account for all of these, particularly since a gradualist account concentrates on the significance of time (developmental stage) and makes no comment as to the significance of place (in-vitro, in-utero). PMID:18516224
Schmidt, Stephan; Sabarinath, Sreedharan Nair; Barbour, April; Abbanat, Darren; Manitpisitkul, Prasarn; Sha, Sue; Derendorf, Hartmut
2009-01-01
Linezolid is the first FDA-approved oxazolidinone with activity against clinically important gram-positive pathogens, including methicillin (meticillin)-resistant Staphylococcus aureus (MRSA). RWJ-416457 is a new oxazolidinone with an antimicrobial spectrum similar to that of linezolid. The goal of the present study was to develop a general pharmacokinetic (PK)-pharmacodynamic (PD) model that allows the characterization and comparison of the in vitro activities of oxazolidinones, determined in time-kill curve experiments, against MRSA. The in vitro activities of RWJ-416457 and the first-in-class representative, linezolid, against MRSA OC2878 were determined in static and dynamic time-kill curve experiments over a wide range of concentrations: 0.125 to 8 μg/ml (MIC, 0.5 μg/ml) and 0.25 to 16 μg/ml (MIC, 1 μg/ml), respectively. After correction for drug degradation during the time-kill curve experiments, a two-subpopulation model was simultaneously fitted to all data in the NONMEM VI program. The robustness of the model and the precision of the parameter estimates were evaluated by internal model validation by nonparametric bootstrap analysis. A two-subpopulation model, consisting of a self-replicating, oxazolidinone-susceptible and a persistent, oxazolidinone-insusceptible pool of bacteria was appropriate for the characterization of the time-kill curve data. The PK-PD model identified was capable of accounting for saturation in growth, delays in the onsets of growth and drug-induced killing, as well as naturally occurring bacterial death. The simultaneous fit of the proposed indirect-response, maximum-effect model to the data resulted in concentrations that produced a half-maximum killing effect that were significantly (P < 0.05) lower for RWJ-416457 (0.41 μg/ml) than for linezolid (1.39 μg/ml). In combination with the appropriate PK data, the susceptibility-based two-subpopulation model identified may provide valuable guidance for the selection of oxazolidinone doses or dose regimens for use in clinical studies. PMID:19786607
Johnson, M T; Vanscoy-Cornett, A; Vesper, D N; Swez, J A; Chamberlain, J K; Seaward, M B; Nindl, G
2001-01-01
An important aspect of medical device development is the need to understand how a device produces a specific biological effect. The focus can then be on optimizing that effect by device modification and repeated testing. Several reports from this lab have targeted programmed cell death, or apoptosis, as a cellular pathway that is induced by exposure of transformed leukemic T-cells in culture to specific frequency and intensity electromagnetic fields (EMFs). An EMF delivery device capable of selectively inducing T-cell apoptosis in human tissues could be used to enhance healing by limiting the production of molecules that promote inflammatory disorders such as psoriasis and tendonitis. In the present study, we examined the normal T-cell response to EMF exposure in vitro. In the peripheral blood, 70-80% of the lymphocytes are T-cells, and thus is a rich source of normal cells that match the transformed T-cells used in other experiments (Jurkat cells). We isolated lymphocytes from the peripheral blood of humans and rats, cultured them in nutritive medium and exposed them to either a complex 1.8 mT pulsed EMF (Electrobiology, Inc.), a 0.1 mT, 60 Hz power frequency EMF or a 0.2 mT, 100 Hz sinusoidal EMF. Control lymphocytes were cultured similarly, without field exposure. Lymphocytes were then treated with T-cell mitogens and evaluated for proliferative capacity after an additional 72 hours culture. Results indicate that T-cell proliferation is modulated by in vitro exposure to defined EMFs. The potential use of an EMF delivery device capable of selectively inducing such T-cell effects is discussed.
NASA Astrophysics Data System (ADS)
Yan, Lu; Gao, Yunxiang; Pierce, Ryan; Dai, Liming; Kim, Julian; Zhang, Mei
2014-04-01
Tumor-associated macrophage (TAM) is increasingly being viewed as a target of great interest in tumor microenvironment due to its important role in the progression and metastasis of cancers. It has been shown that TAM indeed overexpresses unique surface marker legumain. In this study, we designed and synthesized a Y-shaped legumain-targeting peptide (Y-Leg) with functional groups allowing for further conjugation with imaging and therapeutic moieties (vide infra). The in vitro cell experiments using FITC-conjugated Y-Leg revealed its specific and selective interaction with M2-polarized macrophages (i.e., TAMs) with preference to M1 macrophages, and that the interaction was not interfered with by conjugating FITC to its functional group. Further, we constructed a nanotube system by grafting Y-Leg onto oxidized carbon nanotubes (OCNTs) loaded with paramagnetic Fe3O4 nanoparticles. The intravenous injection of the resultant Y-Leg-OCNT/Fe3O4 nanotubes to 4T1 mammary tumor-bearing mouse led to the magnetic resonance imaging (MRI) of TAM-infiltrated tumor microenvironment, revealing the targeting specificity of Y-Leg-conjugated nanotubes in vivo. The Y shape of peptide and its functional groups containing amines and imidazole can protonate at different pHs, contributing to the in vitro and in vivo targeting specificity. This study represents the first development of novel peptide and peptide-grafted nanotube system targeting M2-polarized TAMs in vivo. The methodology developed in this study is applicable to the construction of various multifunctional nanoparticle systems for selectively targeting, imaging and manipulating of TAMs for the diagnosis and treatment of cancers and inflammatory diseases identified with macrophage-infiltrated disease tissue.
Rivelli, Graziella Gomes; Ricoy, Letícia Brandão Magalhães; César, Isabela Costa; Fernandes, Christian; Pianetti, Gérson Antônio
2018-06-05
Malaria is the most incident parasite infection worldwide. Artemisinin based combination therapy (ACT) has been proposed as a promising treatment for malaria, and artemether + lumefantrine (20 + 120 mg) is the recommended association in endemic areas. Despite its widespread use, there is still scarce information about dissolution of artemether and lumefantrine, reflecting in the absence of a specific method in pharmacopoeias and international compendia. Because the of their low solubility, both artemether and lumefantrine are candidates for in vitro-in vivo correlation (IVIVC) studies. Previous equilibrium solubility studies have been carried out for both drugs using the shake-flask method and dissolution profiles. Experiments were conducted with a range of parameters such as medium composition, pH and surfactants. In vivo data obtained in a previous pharmacokinetic study was used to select the optimum conditions for dissolution test, based on IVIVC. For drug quantitation, a selective method by high performance liquid chromatography was optimized and validated. For this dosage form, the best dissolution conditions found for artemether were: paddles, 900 mL of dissolution medium containing phosphate buffer pH 6.8 with 1.0% sodium lauryl sulfate and rotation speed of 100 rpm. The same was obtained for lumefantrine, except the dissolution medium, which was pH 1.2 with 1.0% polysorbate 80. After obtaining the curve of in vitro dissolved fraction versus in vivo absorbed fraction, the calculated coefficient of determination (R squared) was close to 1.00 for both drugs, indicating a level A correlation. Therefore, a novel method for assessing dissolution of arthemeter and lumefantrine tablets was established and validated. Copyright © 2018 Elsevier B.V. All rights reserved.
Design of experiments (DOE) - history, concepts, and relevance to in vitro culture
USDA-ARS?s Scientific Manuscript database
Design of experiments (DOE) is a large and well-developed field for understanding and improving the performance of complex systems. Because in vitro culture systems are complex, but easily manipulated in controlled conditions, they are particularly well-suited for the application of DOE principle...
He, M; Taussig, M J
1997-01-01
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries. PMID:9396828
He, M; Taussig, M J
1997-12-15
We describe a rapid, eukaryotic, in vitro method for selection and evolution of antibody combining sites using antibody-ribosome-mRNA (ARM) complexes as selection particles. ARMs carrying single-chain (VH/K) binding fragments specific for progesterone were selected using antigen-coupled magnetic beads; selection simultaneously captured the genetic information as mRNA, making it possible to generate and amplify cDNA by single-step RT-PCR on the ribosome-bound mRNA for further manipulation. Using mutant libraries, antigen-binding ARMs were enriched by a factor of 10(4)-10(5)-fold in a single cycle, with further enrichment in repeated cycles. While demonstrated here for antibodies, the method has the potential to be applied equally for selection of receptors or peptides from libraries.
Stem Cell Therapy for Healing Wounded Skin and Soft Tissues
2012-07-01
changes of ASC surface markers due to repetitive in vitro sub-culturing. ASCs were harvested, washed in PBS to remove cell culture medium, and resuspended...Our in vitro and in vivo studies suggest that ASC and BM-MSC are not identical, though they have similar surface markers . We found that topically...ofpolybrene. Transduced cells were selected by treating 10 J.!g/rnl ofblasticidin. GFP expressing cells were further selected by flow cytometry using
Biological control of Rhizoctonia solani on potato by using indigenous Trichoderma spp.
NASA Astrophysics Data System (ADS)
Durak, Emre Demirer
2016-04-01
At this study, it was aimed to determine the effect of Trichoderma isolates that was isolated from the soil samples taken from the different regions on black scurf and stem canker disease caused by Rhizoctonia solani Kühn that has been one of the biggest problems of the potato cultivation. At the end of the soil isolations, totally 81 Trichoderma isolates were obtained and their species were identified. Of these isolates, T. harzianum (42%), T. virens (31%), T. asperellum (15%) and T. viride (12%). All of the isolates were tested in vitro for their antagonistic activity against the R. solani isolate. The isolates that show high inhibition rate was selected and tested against R. solani in vitro. Potato plants were grown in a greenhouse for about 10 weeks. Then the plants were evaluated according to the scale, plant height, shoot fresh and dry weights, root fresh and dry weights were noted. The experiment was conducted two times in three replications. At the in vitro tests, generally, it was determined that Trichoderma isolates have inhibited to R. solani and in vivo, they were reduced the effects of the disease and they were raised the development of the plant. In particular, it was determined that some isolates of the T. harzianum and T. virens have reduced the severity of the disease. It was determined that both in vitro and in vivo isolates have shown different efficiency against R. solani.
Wu, Chun-jie; Huang, Qin-wan; Qi, Hong-yi; Guo, Ping; Hou, Shi-xiang
2006-09-01
Studies on the influence of borneol on the penetration of puerarin eye drops and timolol maleate eye drops through the cornea, and evaluation of the ocular irritability were conducted to provide a theoretical basis for the application of borneol in enhancing corneal permeability. The cornea penetrative experiment in vitro was conducted to observe the quantitative change of puerarin and timolol maleate penetrated through the cornea after administering different dosages of borneol. The corneal hydration level and blinking frequency were recorded as irritability indexes in vitro and in vivo. The steady-flow J of high, middle and low dosage groups of puerarin eye drops with borneol were increased by 49%, 32%, 5% respectively, and permeability parameter Kp increased by 49%, 32%, 5% respectively, as compared to that of the control group. The steady-flow J of high dosage group of timolol maleate eye drops with borneol was increased by 5%; middle and low dosage groups with borneol were decreased by 6%, 3% respectively. The permeability parameter Kp of high dosage group increased by 5%, while middle and low dosage groups with borneol were decreased by 6%, 3% respectively, as compared to that of the control group. Evaluation showed no ocular irritability caused by borneol. The results of this study suggest that the promoting effect of borneol on the permeability of drugs through the cornea in vitro is selective, which indicates that borneol has the potential to be used as an ophthalmic penetration enhancer.
Wang, Zheng; Mu, Hong-Jie; Zhang, Xue-Mei; Ma, Peng-Kai; Lian, Sheng-Nan; Zhang, Feng-Pu; Chu, Sheng-Ying; Zhang, Wen-Wen; Wang, Ai-Ping; Wang, Wen-Yan; Sun, Kao-Xiang
2015-01-01
Rotigotine is a potent and selective D1, D2, and D3 dopaminergic receptor agonist. Due to an extensive first-pass effect, it has a very low oral bioavailability (approximately 0.5% in rats). The present investigation aimed to develop a microemulsion-based hydrogel for transdermal rotigotine delivery with lower application site reactions. Pseudoternary phase diagrams were constructed to determine the region of oil in water (o/w)-type microemulsion. Central composite design was used to support the pseudoternary phase diagrams and to select homogeneous and stable microemulsions with an optimal amount of rotigotine permeation within 24 hours. In vitro skin permeation experiments were performed, using Franz diffusion cells, to compare rotigotine-loaded microemulsions with rotigotine solutions in oil. The optimized formulation was used to prepare a microemulsion-based hydrogel, which was subjected to bioavailability and skin irritancy studies. The selected formulations of rotigotine-loaded microemulsions had enhanced flux and permeation coefficients compared with rotigotine in oil. The optimum microemulsion contained 68% water, 6.8% Labrafil(®), 13.44% Cremophor(®) RH40, 6.72% Labrasol(®), and 5.04% Transcutol(®) HP; the drug-loading rate was 2%. To form a microemulsion gel, 1% Carbomer 1342 was added to the microemulsion. The bioavailability of the rotigotine-loaded microemulsion gel was 105.76%±20.52% with respect to the marketed rotigotine patch (Neupro(®)). The microemulsion gel irritated the skin less than Neupro. A rotigotine microemulsion-based hydrogel was successfully developed, and an optimal formulation for drug delivery was identified. This product could improve patient compliance and have broad marketability.
Adenovirus-specific T-lymphocyte efficacy in the presence of methylprednisolone: An in vitro study.
Campidelli, Arnaud; Qian, Chongsheng; Laroye, Caroline; Decot, Véronique; Reppel, Loïc; D'aveni, Maud; Bensoussan, Danièle
2018-04-01
Virus-specific T-cell (VST) infusion becomes a promising alternative treatment for refractory viral infections after hematopoietic stem cell transplantation (HSCT). However, VSTs are often infused during an immunosuppressive treatment course, especially corticosteroids, which are a first-line curative treatment of graft-versus-host disease (GVHD). We were interested in whether corticosteroids could affect adenovirus (ADV)-VST functions. After interferon (IFN)-γ based immunomagnetic selection, ADV-VSTs were in vitro expanded according to three different culture conditions: without methylprednisolone (MP; n = 7), with a final concentration of MP 1 µg/mL (n = 7) or MP 2 µg/mL (n = 7) during 28 ± 11 days. Efficacy and alloreactivity of expanded ADV-VSTs was controlled in vitro. MP transitorily inhibited ADV-VST early expansion. No impairment of specific IFN-γ secretion capacity and cytotoxicity of ADV-VSTs was observed in the presence of MP. However, specific proliferation and alloreactivity of ADV-VSTs were decreased in the presence of MP. Altogether, these results and the preliminary encouraging clinical experiences of co-administration of MP 1 mg/kg and ADV-VSTs will contribute to safe and efficient use of anti-viral immunotherapy. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Thiel, A; Etheve, S; Fabian, E; Leeman, W R; Plautz, J R
2015-10-01
Consumer health risk assessment for feed additives is based on the estimated human exposure to the additive that may occur in livestock edible tissues compared to its hazard. We present an approach using alternative methods for consumer health risk assessment. The aim was to use the fewest possible number of animals to estimate its hazard and human exposure without jeopardizing the safety upon use. As an example we selected the feed flavoring substance piperine and applied in silico modeling for residue estimation, results from literature surveys, and Read-Across to assess metabolism in different species. Results were compared to experimental in vitro metabolism data in rat and chicken, and to quantitative analysis of residues' levels from the in vivo situation in livestock. In silico residue modeling showed to be a worst case: the modeled residual levels were considerably higher than the measured residual levels. The in vitro evaluation of livestock versus rodent metabolism revealed no major differences in metabolism between the species. We successfully performed a consumer health risk assessment without performing additional animal experiments. As shown, the use and combination of different alternative methods supports animal welfare consideration and provides future perspective to reducing the number of animals. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Kroll, Tina; Elmenhorst, David; Matusch, Andreas; Wedekind, Franziska; Weisshaupt, Angela; Beer, Simone; Bauer, Andreas
2013-08-01
While the selective 5-hydroxytryptamine type 2a receptor (5-HT2AR) radiotracer [18F]altanserin is well established in humans, the present study evaluated its suitability for quantifying cerebral 5-HT2ARs with positron emission tomography (PET) in albino rats. Ten Sprague Dawley rats underwent 180 min PET scans with arterial blood sampling. Reference tissue methods were evaluated on the basis of invasive kinetic models with metabolite-corrected arterial input functions. In vivo 5-HT2AR quantification with PET was validated by in vitro autoradiographic saturation experiments in the same animals. Overall brain uptake of [18F]altanserin was reliably quantified by invasive and non-invasive models with the cerebellum as reference region shown by linear correlation of outcome parameters. Unlike in humans, no lipophilic metabolites occurred so that brain activity derived solely from parent compound. PET data correlated very well with in vitro autoradiographic data of the same animals. [18F]Altanserin PET is a reliable tool for in vivo quantification of 5-HT2AR availability in albino rats. Models based on both blood input and reference tissue describe radiotracer kinetics adequately. Low cerebral tracer uptake might, however, cause restrictions in experimental usage.
Silva, Luciano C; Pucca, Manuela B; Pessenda, Gabriela; Campos, Lucas B; Martinez, Edson Z; Cerni, Felipe A; Barbosa, José E
2018-01-01
Accidents involving venomous snakes are a public health problem worldwide, causing a large number of deaths per year. In Brazil, the majority of accidents are caused by the Bothrops and Crotalus genera, which are responsible for approximately 80% of severe envenoming cases. The cross-neutralization of snake venoms by antibodies is an important issue for development of more effective treatments. Our group has previously reported the construction of human monoclonal antibody fragments towards Bothrops jararacussu and Crotalus durissus terrificus' venoms. This study aimed to select human single-chain variable fragments (scFvs) that recognize both bothropic and crotalic crude venoms following venoms neutralizing capacity in vitro and in vivo. The cross-reactivity of Cro-Bothrumabs were demonstrated by ELISA and in vitro and in vivo experiments showed that a combination of scFvs neutralizes in vitro toxic activities (e.g. indirect hemolysis and plasma-clotting) of crotalic and bothropic venoms as well as prolonged survival time of envenomed animals. Our results may contribute to the development of the first human polyvalent antivenom against Bothrops jararacussu and Crotalus durissus terrificus venoms, overcoming some undesirable effects caused by conventional serotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.
Périgaud, C; Gosselin, G; Girardet, J L; Korba, B E; Imbach, J L
1999-01-01
The synthesis and in vitro anti-hepatitis B virus (HBV) activity of two mononucleoside phosphotriester derivatives of acyclovir incorporating S-acyl-2-thioethyl (SATE) groups are reported. In contrast to the parent nucleoside, the described phosphotriesters emerged as potent and selective inhibitors of HBV replication in HepG2.2.15 cells. This result can be attributed to the unique cellular metabolism of the SATE pronucleotides giving rise to the delivery to acyclovir 5'-monophosphate inside the infected cells. Moreover, the in vitro anti-HBV activities of one of these bis(SATE)phosphotriesters and of (-)-beta-L-2',3'-dideoxy-3'-thiacytidine (lamivudine, 3TC) were compared alone and in combination. Analysis of the combination data indicates that 3TC and the studied SATE pronucleotide of acyclovir exhibited strong synergistic interactions. The present study provides an example where the use of a pronucleotide approach extends the antiviral spectrum of a nucleoside analogue. Given the potency of SATE pronucleotides of acyclovir against HBV in HepG2.2.15 cells, further studies including animal experiments seem warranted to evaluate the potential of these compounds as anti-HBV agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scaife, R.M.; Wilson, L.; Purich, D.L.
1992-01-14
Bovine brain microtubule protein, containing both tubulin and microtubule-associated proteins, undergoes ADP-ribosylation in the presence of ({sup 14}C)NAD{sup +} and a turkey erythrocyte mono-ADP-ribosyltransferase in vitro. The modification reaction could be demonstrated in crude brain tissue extracts where selective ADP-ribosylation of both the {alpha} and {beta} chains of tubulin and of the high molecular weight microtubule-associated protein MAP-2 occurred. In experiments with purified microtubule protein, tubulin dimer, the high molecular weight microtubule-associated protein MAP-2, and another high molecular weight microtubule-associated protein which may be a MAP-1 species were heavily labeled. Tubulin and MAP-2 incorporated ({sup 14}C)ADP-ribose to an average extentmore » of approximately 2.4 and 30 mol of ADP-ribose/mol of protein, respectively. Assembly of microtubule protein into microtubules in vitro was inhibited by ADP-ribosylation, and incubation of assembled steady-state microtubules with ADP-ribosyltransferase and NAD{sup +} resulted in rapid depolymerization of the microtubules. Thus, the eukaryotic enzyme can ADP-ribosylate tubulin and microtubule-associated proteins to much greater extents than previously observed with cholera and pertussis toxins, and the modification can significantly modulate microtubule assembly and disassembly.« less
Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.
Berki, T; Németh, P
1998-02-01
An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.
Continuous glucose monitoring microsensor with a nanoscale conducting matrix and redox mediator
NASA Astrophysics Data System (ADS)
Pesantez, Daniel
The major limiting factor in kidney clinical transplantation is the shortage of transplantable organs. The current inability to distinguish viability from non-viability on a prospective basis represents a major obstacle in any attempt to expand organ donor criteria. Consequently, a way to measure and monitor a relevant analyte to assess kidney viability is needed. For the first time, the initial development and characterization of a metabolic microsensor to assess kidney viability is presented. The rate of glucose consumption appears to serve as an indicator of kidney metabolism that may distinguish reversible from irreversible kidney damage. The proposed MetaSense (Metabolic Sensor) microdevice would replace periodic laboratory diagnosis tests with a continuous monitor that provides real-time data on organ viability. Amperometry, a technique that correlates an electrical signal with analyte concentration, is used as a method to detect glucose concentrations. A novel two-electrode electrochemical sensing cell design is presented. It uses a modified metallic working electrode (WE) and a bare metallic reference electrode (RE) that acts as a pseudo-reference/counter electrode as well. The proposed microsensor has the potential to be used as a minimally invasive sensor for its reduced number of probes and very small dimensions achieved by micromachining and lithography. In order to improve selectivity of the microdevice, two electron transfer mechanisms or generations were explored. A first generation microsensor uses molecular oxygen as the electron acceptor in the enzymatic reaction and oxidizes hydrogen peroxide (H2O2) to get the electrical signal. The microsensor's modified WE with conductive polymer polypyrrole (PPy) and corresponding enzyme glucose oxidase (GOx) immobilized into its matrix, constitutes the electrochemical detection mechanism. Photoluminescence spectroscopic analysis confirmed and quantified enzyme immobilized concentrations within the matrix. In vitro testing for glucose shows increasing current with increasing analyte concentration. Testing the glucose microsensor with known concentrations of glucose over a period of 48 hours demonstrated both the potential durability and sensitivity of the device. Unknown/blind in vitro glucose experiments showed the reproducibility and accuracy of the microsensor to detect various glucose levels. Thinner polymer matrix films lead to better sensing performance during in vitro tests (0.6nA/mM lower limit sensitivity and 0.2nA/mM upper limit sensitivity). In vitro experiments using electroactive ascorbic acid (AA) and uric acid (UA) showed the selectivity of the sensor for glucose. In an effort to reduce the sensor's oxidation potential (0.7V) and noise, a second generation electron transfer approach was developed by incorporating into a modified Platinum WE with a nanoscale PPy and GOx matrix, a redox mediator. Ferrocene (Fc) was selected as the artificial electron carrier, substituting molecular oxygen in the enzymatic reaction. The incorporation of Fc into the polymer matrix is done by a simple electrochemical synthesis. Modifications in the microsensor design, materials and fabrication process are presented. Experiments with the new sensor generation resulted in higher sensitivity values (22.8nA/mM lower limit sensitivity and 12.5nA/mM upper limit sensitivity) for glucose and noise was further eliminated by operating the sensor at a lower oxidation potential (0.3V). The final experimental work consisted of preliminary ex vivo tests with the MetaSense microdevice on bovine kidney samples, which showed a qualitatively correlation between glucose consumption trend profile during preservation and viability histology outcome.
Kristin, Forner; René, Holm; Boontida, Morakul; Buraphacheep, Junyaprasert Varaporn; Maximilian, Ackermann; Johanna, Mazur; Peter, Langguth
2017-04-01
In order to save time and resources in early drug development, in vitro methods that correctly predict the formulation effect on oral drug absorption are necessary. The aim of this study was to 1) evaluate various BCS class II drug formulations with in vitro methods and in vivo in order to 2) determine which in vitro method best correlates with the in vivo results. Clarithromycin served as model compound in formulations with different particle sizes and content of excipients. The performed in vitro experiments were dissolution and dissolution/permeation experiments across two types of membrane, Caco-2 cells and excised rat intestinal sheets. The in vivo study was performed in rats. The oral absorption was enhanced by downsizing drug particles and by increasing the excipient concentration. This correlated strongly with the flux across Caco-2 cells but not with the other in vitro experiments. The insufficient correlation with the dissolution experiments can be partly explained by excipient caused problems during the filtration step. The very poor correlation of the in vivo data with the flux across excised rat intestinal sheets might be due to an artificially enlarged mucus layer ex vivo. In conclusion, downsizing BCS class II drug particles and the addition of surfactants enhanced the in vivo absorption, which was best depicted by dissolution/permeation experiments across Caco-2 cells. This setup is proposed as best model to predict the in vivo formulation effect. Also, this is the first study to evaluate the impact of the nature of the permeation membrane in dissolution/permeation experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Slee, A M; O'Connor, J R
1983-01-01
The antibacterial activity of octenidine dihydrochloride (WIN 41464-2) against intact preformed in vitro plaques of four indigenous oral plaque-forming microorganisms, Streptococcus mutans, Streptococcus sanguis, Actinomyces viscosus, and Actinomyces naeslundii, was studied. Both absolute (plaque bactericidal index) and relative (chlorhexidine coefficient) indices of antiplaque efficacy were established. Octenidine dihydrochloride compared favorably with chlorhexidine digluconate with respect to overall antiplaque potency in this in vitro plaque bactericidal model. These data indicate that prudent selection of treatment concentration and duration and frequency of exposure should provide an effective means to aid in controlling dental caries and Actinomyces-associated disease in vivo. PMID:6847170
In vitro selection of RNA aptamer specific to Salmonella typhimurium.
Han, Seung Ryul; Lee, Seong-Wook
2013-06-28
Salmonella is a major foodborne pathogen that causes a variety of human diseases. Development of ligands directly and specifically binding to the Salmonella will be crucial for the rapid detection of, and thus for efficient protection from, the virulent bacteria. In this study, we identified a RNA aptamer-based ligand that can specifically recognize Salmonella Typhimurium through SELEX technology. To this end, we isolated and characterized an RNase-resistant RNA aptamer that bound to the OmpC protein of Salmonella Typhimurium with high specificity and affinity (Kd ~ 20 nM). Of note, the selected aptamer was found to specifically bind to Salmonella Typhimurium, but neither to Gram-positive bacteria (Staphylococcus aureus) nor to other Gram-negative bacteria (Escherichia coli O157:H7). This was evinced by aptamer-immobilized ELISA and aptamer-linked precipitation experiments. This Salmonella species-specific aptamer could be useful as a diagnostic ligand against pathogen-caused foodborne sickness.
Exploring Wound-Healing Genomic Machinery with a Network-Based Approach
Vitali, Francesca; Marini, Simone; Balli, Martina; Grosemans, Hanne; Sampaolesi, Maurilio; Lussier, Yves A.; Cusella De Angelis, Maria Gabriella; Bellazzi, Riccardo
2017-01-01
The molecular mechanisms underlying tissue regeneration and wound healing are still poorly understood despite their importance. In this paper we develop a bioinformatics approach, combining biology and network theory to drive experiments for better understanding the genetic underpinnings of wound healing mechanisms and for selecting potential drug targets. We start by selecting literature-relevant genes in murine wound healing, and inferring from them a Protein-Protein Interaction (PPI) network. Then, we analyze the network to rank wound healing-related genes according to their topological properties. Lastly, we perform a procedure for in-silico simulation of a treatment action in a biological pathway. The findings obtained by applying the developed pipeline, including gene expression analysis, confirms how a network-based bioinformatics method is able to prioritize candidate genes for in vitro analysis, thus speeding up the understanding of molecular mechanisms and supporting the discovery of potential drug targets. PMID:28635674
ADME-Space: a new tool for medicinal chemists to explore ADME properties.
Bocci, Giovanni; Carosati, Emanuele; Vayer, Philippe; Arrault, Alban; Lozano, Sylvain; Cruciani, Gabriele
2017-07-25
We introduce a new chemical space for drugs and drug-like molecules, exclusively based on their in silico ADME behaviour. This ADME-Space is based on self-organizing map (SOM) applied to 26,000 molecules. Twenty accurate QSPR models, describing important ADME properties, were developed and, successively, used as new molecular descriptors not related to molecular structure. Applications include permeability, active transport, metabolism and bioavailability studies, but the method can be even used to discuss drug-drug interactions (DDIs) or it can be extended to additional ADME properties. Thus, the ADME-Space opens a new framework for the multi-parametric data analysis in drug discovery where all ADME behaviours of molecules are condensed in one map: it allows medicinal chemists to simultaneously monitor several ADME properties, to rapidly select optimal ADME profiles, retrieve warning on potential ADME problems and DDIs or select proper in vitro experiments.
USDA-ARS?s Scientific Manuscript database
A review of in vitro bioaccessibility and bioavailability methods for polyphenols and selected nutrients is presented. The review focuses on in vitro solubility, dialyzability, the dynamic gastrointestinal model (TIM), and Caco-2 cell models, the latter primarily for uptake and transport, and a disc...
Comparing sugar type supplementation for cryopreservation of boar semen in egg yolk based extender.
Malo, C; Gil, L; Gonzalez, N; Cano, R; de Blas, I; Espinosa, E
2010-08-01
Cryopreservation of boar semen is still considered suboptimal due to lower fertility when compared to fresh semen. The aim of this study was to evaluate the effects of the addition of different sugars (lactose, trehalose and glucose) on boar spermatozoa cryopreserved in an egg yolk based extender. Ejaculates were collected from a boar previously selected and semen samples were processed using the straw freezing procedure. In experiment 1, subsamples of semen were frozen in three different extenders: recommended lactose egg yolk extender (LEY); trehalose egg yolk extender (TEY) and glucose egg yolk extender (GEY). Sperm quality was assessed for motility, viability, acrosome integrity and hypoosmotic swelling test response upon collection, after freezing and thawing and then every hour for 3h. Results showed that total motility at 1 and 3h, progressive motility at 3h, positive hypoosmotic response at 2 and 3h and acrosome integrity at all times were significantly improved when trehalose was added to the extender. In experiment 2, sugar influence was also demonstrated in vitro fertilization. A total of 1691 oocytes were in vitro matured and inseminated with frozen-thawed sperm at 2000:1 sperm:oocyte ratio and coincubated for 6h. Presumptive zygotes were cultured in NCSU-23 medium to assess fertilization parameters and embryo development. Both penetration and monospermy rates were significantly higher for trehalose frozen semen. A significant increase was observed in efficiency and blastocyst formation rates from TEY to the other groups. Our results demonstrated that trehalose extender enhances spermatozoa viability and its in vitro fertilization parameters in boar ejaculates with good sperm freezability. Further studies are necessary to assess the impact of sugars on the entire population. (c) 2010 Elsevier Inc. All rights reserved.
Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y
2014-05-22
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR-Ras-Raf-MEK-ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [(3)H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras-MAPK activity could be important in its anticancer activity.
Rawat, Preeti; Singh, Amarjeet Kumar; Ray, Krishna; Chaudhary, Bhupendra; Kumar, Sanjeev; Gautam, Taru; Kanoria, Shaveta; Kaur, Gurpreet; Kumar, Paritosh; Pental, Deepak; Burma, Pradeep Kumar
2011-06-01
High levels of expression of the cry1Ac gene from Bacillus thuringiensis cannot be routinely achieved in transgenic plants despite modifications made in the gene to improve its expression. This has been attributed to the instability of the transcript in a few reports. In the present study, based on the genetic transformation of cotton and tobacco, we show that the expression of the Cry1Ac endotoxin has detrimental effects on both the in vitro and in vivo growth and development of transgenic plants. A number of experiments on developing transgenics in cotton with different versions of cry1Ac gene showed that the majority of the plants did not express any Cry1Ac protein. Based on Southern blot analysis, it was also observed that a substantial number of lines did not contain the cry1Ac gene cassette although they contained the marker gene nptII. More significantly, all the lines that showed appreciable levels of expression were found to be phenotypically abnormal. Experiments on transformation of tobacco with different constructs expressing the cry1Ac gene showed that in vitro regeneration was inhibited by the encoded protein. Further, out of a total of 145 independent events generated with the different cry1Ac gene constructs in tobacco, only 21 showed expression of the Cry1Ac protein, confirming observations made in cotton that regenerants that express high levels of the Cry1Ac protein are selected against during regeneration of transformed events. This problem was circumvented by targeting the Cry1Ac protein to the chloroplast, which also significantly improved the expression of the protein.
Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David
2012-01-01
The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.
Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David
2012-01-01
Background The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Methods and results Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Conclusion Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery. PMID:22802689
Żmudzki, Paweł; Satała, Grzegorz; Chłoń-Rzepa, Grażyna; Bojarski, Andrzej J; Kazek, Grzegorz; Siwek, Agata; Gryboś, Anna; Głuch-Lutwin, Monika; Wesołowska, Anna; Pawłowski, Maciej
2016-10-01
In our previous papers, we have reported that some 8-amino-1,3-dimethyl-1H-purine-2,6(3H,7H)-dione derivatives possessed high affinity and displayed agonistic, partial agonistic, or antagonistic activity for serotonin 5-HT 1A and dopamine D 2 receptors. In order to examine further the influence of the substituent in the position 8 of the purine moiety and the influence of the xanthine core on the affinity for serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors, two series of 1-arylpiperazynylalkyl derivatives of 8-amino-3,7-dimethyl-1H-purine-2,6(3H,7H)-dione were synthesized. All the final compounds were investigated in in vitro competition binding experiments for the serotonin 5-HT 1A , 5-HT 2A , 5-HT 6 , 5-HT 7 , and dopamine D 2 receptors. The structure-affinity relationships for this group of compounds were discussed. For selected compounds, the functional assays for the 5-HT 1A and D 2 receptors were carried out. The results of the assays indicated that these groups of derivatives possessed antagonistic activity for 5-HT 1A receptors and agonistic, partial agonistic, or antagonistic activity for D 2 receptors. In total, 26 new compounds were synthesized, 20 of which were tested in in vitro binding experiments and 5 were tested in in vitro functional assays. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Review of animal/in vitro data on biological effects of man-made fibers.
Ellouk, S A; Jaurand, M C
1994-01-01
This paper reviews the investigations with man-made fibers (MMF). Insulation woods: glasswool (GW), rockwool (RW), slagwool (SW), glass microfibers (GMF), glass filaments (GFiI), and refractory ceramic fibers (RCF) have been used in experimental animals and in in vitro cell systems. A large heterogeneous number of fibers, methods of fiber preparation, size selection, aerosolization, fiber size, and fiber burden measurement were noted, rendering difficult a comparison between results. By inhalation, RCF and asbestos used as positive controls produced a significant tumor increase. In some studies, a low tumor yield was found after inhalation of insulation wools; when all inhalation data were gathered, a significant tumor increase was found with GW. However, it is difficult to draw definitive conclusions on the potential of other fiber types because, in addition to the different compositions of the fibers, differences in fiber number and sizes existed, especially in comparison with asbestos. Moreover, experiments using inoculation, especially by the intraperitoneal route revealed a carcinogenic potential of all fibers types but GFiI and SW. In these two groups a small number of animals has been investigated and the fiber characteristics were sometimes irrelevant. So far, a relationship between the carcinogenic potency and fiber dimensions has been established. Other fiber parameters may be of importance (surface chemistry, biopersistence, fiber structure, for example) but further investigations are necessary to determine the correlations between these parameters and tumor incidence. In vitro experiments have emphasized the fiber characteristics identified in vivo as playing a role in the carcinogenic potency and should be developed as a better approach of the mechanistic effects of MMF. PMID:7925187
MICRONUCLEI IN BINUCLEATED LYMPHOCYTES OF MICE FOLLOWING EXPOSURE TO GAMMA RADIATION
Experiments were designed to investigate the induction of micronuclei (MN) in mouse peripheral blood lymphocytes (PBLs) after in vitro or in vivo exposure to 60Co gamma radiation. or the in vitro experiments, 4 ml of blood from male C57BL/6J mice were either irradiated in 6 ml Fa...
ERIC Educational Resources Information Center
Higgins, Pamela J.
2005-01-01
This undergraduate laboratory experiment integrates multiple techniques ("in vitro" synthesis, enzyme assays, Western blotting) to determine the production and detection sensitivity of two common reporter proteins (beta-galactosidase and luciferase) within an "Escherichia coli" S30 transcription/translation extract. Comparison of the data suggests…
In vitro antioxidation activity and genoprotective effect of selected Chinese medicinal herbs.
Szeto, Yim Tong; Wong, Shirley Ching Yee; Wong, Julia Wai Ming; Kalle, Wouter; Pak, Sok Cheon
2011-01-01
Some traditional Chinese medicinal seeds and fruits are well known for their antioxidant properties. This research aims to investigate whether Fructus Lycii, Fructus Schisandrae Chinensis, Fructus Ligustri Lucidi and Semen Cuscutae protect DNA from oxidant challenge by hydrogen peroxide (H(2)O(2)). The standard comet assay was used to assess the genoprotective effect of these medicinal herbs. Blood was taken from three healthy adults, aged from 36 to 42. Lymphocytes were isolated and treated with different concentrations of aqueous herbal extracts, while controls were treated with phosphate buffered saline. The lymphocytes were stressed with 50 μM H(2)O(2). Treated cells were embedded in agarose and layered on slides. These sandwiched lymphocytes were lysed and afterwards subjected to an electric field in an alkaline environment. Damaged DNA was pulled out from the nucleus towards the positive electrode as a comet tail; its density was related to the degree of DNA damage. Finally, the slides were stained with fluorescence dye and tails were visually scored for 100 cells. The experiment was repeated three times and DNA damage in treated cells was compared to the controls. There was no statistical difference in DNA damage among the herb treated cells and untreated cells in the comet assay. Our data demonstrated that the selected medicinal herbs did not show in vitro DNA protection in the comet assay against oxidant challenge.
In vivo quantification of brain metabolites by 1H-MRS using water as an internal standard.
Christiansen, P; Henriksen, O; Stubgaard, M; Gideon, P; Larsson, H B
1993-01-01
The reliability of absolute quantification of average metabolite concentrations in the human brain in vivo by 1H-MRS using the fully relaxed water signal as an internal standard was tested in a number of in vitro as well as in vivo measurements. The experiments were carried out on a SIEMENS HELICON SP 63/84 wholebody MR-scanner operating at 1.5 T using a STEAM sequence. In vitro studies indicate a very high correlation between metabolite signals (area under peaks) and concentration, R = 0.99 as well as between metabolite signals and the volume of the selected voxel, R = 1.00. The error in quantification of N-acetyl aspartate (NAA) concentration was about 1-2 mM (6-12%). Also in vivo a good linearity between water signal and selected voxel size was seen. The same was true for the studied metabolites, N-acetyl aspartate (NAA), creatine/phosphocreatine (Cr/PCr), and choline (Cho). Calculated average concentrations of NAA, Cr/PCr, and Cho in the occipital lobe of the brain in five healthy volunteers were (mean +/- 1 SD) 11.6 +/- 1.3 mM, 7.6 +/- 1.4 mM, and 1.7 +/- 0.5 mM. The results indicate that the method presented offers reasonable estimation of metabolite concentrations in the brain in vivo and therefore is useful in clinical research.
A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
Kim, Namhee; Gan, Hin Hark; Schlick, Tamar
2007-04-01
Although in vitro selection technology is a versatile experimental tool for discovering novel synthetic RNA molecules, finding complex RNA molecules is difficult because most RNAs identified from random sequence pools are simple motifs, consistent with recent computational analysis of such sequence pools. Thus, enriching in vitro selection pools with complex structures could increase the probability of discovering novel RNAs. Here we develop an approach for engineering sequence pools that links RNA sequence space regions with corresponding structural distributions via a "mixing matrix" approach combined with a graph theory analysis. We define five classes of mixing matrices motivated by covariance mutations in RNA; these constructs define nucleotide transition rates and are applied to chosen starting sequences to yield specific nonrandom pools. We examine the coverage of sequence space as a function of the mixing matrix and starting sequence via clustering analysis. We show that, in contrast to random sequences, which are associated only with a local region of sequence space, our designed pools, including a structured pool for GTP aptamers, can target specific motifs. It follows that experimental synthesis of designed pools can benefit from using optimized starting sequences, mixing matrices, and pool fractions associated with each of our constructed pools as a guide. Automation of our approach could provide practical tools for pool design applications for in vitro selection of RNAs and related problems.
Triana-Baltzer, Gallen B.; Sanders, Rebecca L.; Hedlund, Maria; Jensen, Kellie A.; Aschenbrenner, Laura M.; Larson, Jeffrey L.; Fang, Fang
2011-01-01
Background Influenza viruses (IFVs) frequently achieve resistance to antiviral drugs, necessitating the development of compounds with novel mechanisms of action. DAS181 (Fludase®), a sialidase fusion protein, may have a reduced potential for generating drug resistance due to its novel host-targeting mechanism of action. Methods IFV strains B/Maryland/1/59 and A/Victoria/3/75 (H3N2) were subjected to >30 passages under increasing selective pressure with DAS181. The DAS181-selected IFV isolates were characterized in vitro and in mice. Results Despite extensive passaging, DAS181-selected viruses exhibited a very low level of resistance to DAS181, which ranged between 3- and 18-fold increase in EC50. DAS181-selected viruses displayed an attenuated phenotype in vitro, as exhibited by slower growth, smaller plaque size and increased particle to pfu ratios relative to wild-type virus. Further, the DAS181 resistance phenotype was unstable and was substantially reversed over time upon DAS181 withdrawal. In mice, the DAS181-selected viruses exhibited no greater virulence than their wild-type counterparts. Genotypic and phenotypic analysis of DAS181-selected viruses revealed mutations in the haemagglutinin (HA) and neuraminidase (NA) molecules and also changes in HA and NA function. Conclusions Results indicate that resistance to DAS181 is minimal and unstable. The DAS181-selected IFV isolates exhibit reduced fitness in vitro, likely due to altered HA and NA functions. PMID:21097900
Free energy calculations on the stability of the 14-3-3ζ protein.
Jandova, Zuzana; Trosanova, Zuzana; Weisova, Veronika; Oostenbrink, Chris; Hritz, Jozef
2018-03-01
Mutations of cysteine are often introduced to e.g. avoid formation of non-physiological inter-molecular disulfide bridges in in-vitro experiments, or to maintain specificity in labeling experiments. Alanine or serine is typically preferred, which usually do not alter the overall protein stability, when the original cysteine was surface exposed. However, selecting the optimal mutation for cysteines in the hydrophobic core of the protein is more challenging. In this work, the stability of selected Cys mutants of 14-3-3ζ was predicted by free-energy calculations and the obtained data were compared with experimentally determined stabilities. Both the computational predictions as well as the experimental validation point at a significant destabilization of mutants C94A and C94S. This destabilization could be attributed to the formation of hydrophobic cavities and a polar solvation of a hydrophilic side chain. A L12E, M78K double mutant was further studied in terms of its reduced dimerization propensity. In contrast to naïve expectations, this double mutant did not lead to the formation of strong salt bridges, which was rationalized in terms of a preferred solvation of the ionic species. Again, experiments agreed with the calculations by confirming the monomerization of the double mutants. Overall, the simulation data is in good agreement with experiments and offers additional insight into the stability and dimerization of this important family of regulatory proteins. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang
2015-03-12
c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.
P2Y12 expression and function in alternatively activated human microglia
Ase, Ariel R.; Kinsara, Angham; Rao, Vijayaraghava T.S.; Michell-Robinson, Mackenzie; Leong, Soo Yuen; Butovsky, Oleg; Ludwin, Samuel K.; Séguéla, Philippe; Bar-Or, Amit; Antel, Jack P.
2015-01-01
Objective: To investigate and measure the functional significance of altered P2Y12 expression in the context of human microglia activation. Methods: We performed in vitro and in situ experiments to measure how P2Y12 expression can influence disease-relevant functional properties of classically activated (M1) and alternatively activated (M2) human microglia in the inflamed brain. Results: We demonstrated that compared to resting and classically activated (M1) human microglia, P2Y12 expression is increased under alternatively activated (M2) conditions. In response to ADP, the endogenous ligand of P2Y12, M2 microglia have increased ligand-mediated calcium responses, which are blocked by selective P2Y12 antagonism. P2Y12 antagonism was also shown to decrease migratory and inflammatory responses in human microglia upon exposure to nucleotides that are released during CNS injury; no effects were observed in human monocytes or macrophages. In situ experiments confirm that P2Y12 is selectively expressed on human microglia and elevated under neuropathologic conditions that promote Th2 responses, such as parasitic CNS infection. Conclusion: These findings provide insight into the roles of M2 microglia in the context of neuroinflammation and suggest a mechanism to selectively target a functionally unique population of myeloid cells in the CNS. PMID:25821842
Sakkas, Denny; Ramalingam, Mythili; Garrido, Nicolas; Barratt, Christopher L.R.
2015-01-01
BACKGROUND In natural conception only a few sperm cells reach the ampulla or the site of fertilization. This population is a selected group of cells since only motile cells can pass through cervical mucus and gain initial entry into the female reproductive tract. In animals, some studies indicate that the sperm selected by the reproductive tract and recovered from the uterus and the oviducts have higher fertilization rates but this is not a universal finding. Some species show less discrimination in sperm selection and abnormal sperm do arrive at the oviduct. In contrast, assisted reproductive technologies (ART) utilize a more random sperm population. In this review we contrast the journey of the spermatozoon in vivo and in vitro and discuss this in the context of developing new sperm preparation and selection techniques for ART. METHODS A review of the literature examining characteristics of the spermatozoa selected in vivo is compared with recent developments in in vitro selection and preparation methods. Contrasts and similarities are presented. RESULTS AND CONCLUSIONS New technologies are being developed to aid in the diagnosis, preparation and selection of spermatozoa in ART. To date progress has been frustrating and these methods have provided variable benefits in improving outcomes after ART. It is more likely that examining the mechanisms enforced by nature will provide valuable information in regard to sperm selection and preparation techniques in vitro. Identifying the properties of those spermatozoa which do reach the oviduct will also be important for the development of more effective tests of semen quality. In this review we examine the value of sperm selection to see how much guidance for ART can be gleaned from the natural selection processes in vivo. PMID:26386468
Ribosome display: next-generation display technologies for production of antibodies in vitro.
He, Mingyue; Khan, Farid
2005-06-01
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.
Bushee, Jennifer L; Dunne, Christine E; Argikar, Upendra A
2015-05-01
1. Topical glaucoma treatments have often been limited by poor absorption and bioavailability. Betaxolol, a selective β1-blocker, has been well studied for its pharmacokinetics and disposition. Limited ocular, betaxolol metabolism data is available despite a growing number of novel ocular treatments. 2. In vitro ocular fractions indicated the formation of an active metabolite, across rat, rabbit and human, which was only observed historically in the liver. 3. Ocular metabolic profiles of preclinical toxicology species, rat and rabbit, were not predictive of human in vitro ocular data. M1 was specific to human and only captured by the liver data. 4. Liver S9 over predicted the extent of ocular metabolism compared to ocular fractions. Rabbit liver S9 fractions demonstrated extensive glucuronidation and higher parent turn-over in 1 h as compared to other matrices. 5. This research assesses in vitro species and organ differences across preclinical species and human. The complex data set highlights the need for an in vitro ocular system to explore poorly documented ocular metabolism.
In vitro fertilisation treatment and factors affecting success.
Huang, Jack Yu Jen; Rosenwaks, Zev
2012-12-01
The efficacy of assisted reproductive technologies has improved significantly over the past decades. The main indications for in vitro fertilisation include tubal obstruction, severe male-factor infertility, severe endometriosis, ovulatory dysfunction, diminished ovarian reserve, and infertility of unexplained cause. In vitro fertilisation has also become an effective treatment option for couples wishing to undergo pre-implantation genetic diagnosis or screening, and for those wishing to cryopreserve their oocytes or embryos for preservation of fertility. The management of women in late reproductive age poses a major challenge; the optimum in vitro fertilisation treatment for poor responders remains elusive. The success of in vitro fertilisation treatment can be optimised by taking an individualised, patient-centered approach to controlled ovarian hyperstimulation. Key components involve selection of an appropriate controlled ovarian protocol, close-cycle monitoring, adjustment of gonadotropin dosage to avoid hyper-response, and individualised timing of human chorionic gonadotropin injection. Future directions of assisted reproductive technologies include development of non-invasive embryo selection methods, use of transcriptomics, proteomics, metabolomics, and time-lapse imaging technologies. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tissue-mimicking gel phantoms for thermal therapy studies.
Dabbagh, Ali; Abdullah, Basri Johan Jeet; Ramasindarum, Chanthiriga; Abu Kasim, Noor Hayaty
2014-10-01
Tissue-mimicking phantoms that are currently available for routine biomedical applications may not be suitable for high-temperature experiments or calibration of thermal modalities. Therefore, design and fabrication of customized thermal phantoms with tailored properties are necessary for thermal therapy studies. A multitude of thermal phantoms have been developed in liquid, solid, and gel forms to simulate biological tissues in thermal therapy experiments. This article is an attempt to outline the various materials and techniques used to prepare thermal phantoms in the gel state. The relevant thermal, electrical, acoustic, and optical properties of these phantoms are presented in detail and the benefits and shortcomings of each type are discussed. This review could assist the researchers in the selection of appropriate phantom recipes for their in vitro study of thermal modalities and highlight the limitations of current phantom recipes that remain to be addressed in further studies. © The Author(s) 2014.
Barabadi, Zahra; Azami, Mahmoud; Sharifi, Esmaeel; Karimi, Roya; Lotfibakhshaiesh, Nasrin; Roozafzoon, Reza; Joghataei, Mohammad Taghi; Ai, Jafar
2016-12-01
Selecting suitable cell sources and angiogenesis induction are two important issues in myocardial tissue engineering. Human endometrial stromal cells (EnSCs) have been introduced as an abundant and easily available resource in regenerative medicine. Bioactive glass is an agent that induces angiogenesis and has been studied in some experiments. The aim of this study was to investigate in vitro differentiation capacity of endometrial stem cells into cardiomyocyte lineage and to evaluate capability of bioactive glass nanoparticles toward EnSCs differentiation into endothelial lineage and angiogenesis on hydrogel scaffold. Our findings suggests that endometrial stem cells could be programmed into cardiomyocyte linage and considered a suitable cell source for myocardial regeneration. This experiment also revealed that inclusion of bioactive glass nanoparticles in hydrogel scaffold could improve angiogenesis through differentiating EnSCs toward endothelial lineage and increasing level of vascular endothelial growth factor secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
Nitric Oxide-Mediated Tumoricidal Activity of Murine Microglial Cells12
Brantley, Emily C; Guo, Lixia; Zhang, Chenyu; Lin, Qingtang; Yokoi, Kenji; Langley, Robert R; Kruzel, Ewa; Maya, Marva; Kim, Seung Wook; Kim, Sun-Jin; Fan, Dominic; Fidler, Isaiah J
2010-01-01
Experimental metastases in the brain of mice are infiltrated by microglia, and parabiosis experiments of green fluorescent protein (GFP+) and GFP- mice revealed that these microglia are derived from circulating monocytes (GFP+, F4/80+, and CD68+). These findings raised the question as to whether microglia (specialized macrophages) possess tumoricidal activity. C8-B4 murine microglia cells were incubated in vitro in medium (control) or in medium containing both lipopolysaccharide and interferon-γ. Control microglia were not tumoricidal against a number of murine and human tumor cells, whereas lipopolysaccharide/interferon-γ-activated microglia lysed murine and human tumor cells by release of nitric oxide. Parallel experiments with murine peritoneal macrophages produced identical results. Neither activated microglia nor activated macrophages lysed nontumorigenic murine or human cells. Collectively, these data demonstrate that brain metastasis-associated microglia are derived from circulating mononuclear cells and exhibit selective and specific tumoricidal activity. PMID:21151477
Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models.
Dabrowska, Krystyna; Opolski, Adam; Wietrzyk, Joanna; Switala-Jelen, Kinga; Godlewska, Joanna; Boratynski, Janusz; Syper, Danuta; Weber-Dabrowska, Beata; Gorski, Andrzej
2004-01-01
Previously, we have shown the ability of the bacteriophage T4 and its substrain HAP1 (selected for a higher affinity to melanoma cells) to reveal antimetastatic activity in a mouse melanoma model. Here, we investigated the potential phage anticancer activity in primary tumour models. Mice were inoculated subcutaneously with B16 or LLC cells (collected from in vitro culture). Bacteriophages T4 and HAP1 were injected intraperitoneally daily (8 x 10(8)pfu/mouse, except the experiment concerning the dose-dependence). Treatment with purified preparations of bacteriophage T4 resulted in significant reduction of tumour size, the effect being dose-dependent. HAP1 was more effective than T4 and its activity was also dose-dependent. Parallel experiments with non-purified bacteriophage lysates resulted in significant stimulation of tumour growth. These data suggest that purified bacteriophages may inhibit tumour growth, a phenomenon with potentially important clinical implications in oncology.
Yu, Meng; Ma, Huixian; Lei, Mingzhu; Li, Nan; Tan, Fengping
2014-09-01
Topical skin treatment was limited due to the lack of suitable delivery system with significant cutaneous localization and systemic safety. The aim of this study was to develop and optimize a nanoemulsion (NE) to enhance targeting localization of metronidazole (MTZ) in skin layers. In vitro studies were used to optimize NE formulations, and a series of experiments were carried in vitro and in vivo to validate the therapeutic efficacy of MTZ-loaded optimal NE. NE type selection and D-optimal design study were applied to optimize NE formulation with maximum skin retention and minimum skin penetration. Three formulation variables: Oil X1 (Labrafil), Smix X2 (a mixture of Cremophor EL/Tetraethylene glycol, 2:1 w/w) and water X3 were included in D-design. The system was assessed for skin retention Y1, cumulative MTZ amount after 24 h Y2 and droplet size Y3. Following optimization, the values of formulation components (X1, X2 and X3) were 4.13%, 16.42% and 79.45%, respectively. The optimized NE was assessed for viscosity, droplet size, morphological study and in vitro permeation in pig skin. Distributions of MTZ were validated by confocal laser scanning microscopy (CLSM). Active agent of NE transferred into deeper skin and localized in epidermal/dermal layers after 24 h, which showed significant advantages of the optimal NE over Gel. The skin targeting localization and minimal systemic escape of optimal NE was further proved by in vivo study on rat skin. Current in vitro-in vivo correlation (IVIVC) enabled the prediction of pharmacokinetic profile of MTZ from in vitro permeation results. Further, the in vivo anti-rosacea efficacy of optimal formulation was investigated by pharmacodynamics study on mice ear. Copyright © 2014 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Ledbetter, Michael P.; Hwang, Tony W.; Stovall, Gwendolyn M.; Ellington, Andrew D.
2013-01-01
Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. "In vitro" directed evolution (IVDE) frequently serves as a model system for the study of Darwinian…
Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy.
Yoon, Dennis J; Chen, Kevin Y; Lopes, André M; Pan, April A; Shiloach, Joseph; Mason, Anne B; Kamei, Daniel T
2017-03-07
The transferrin (Tf) trafficking pathway is a promising mechanism for use in targeted cancer therapy due to the overexpression of transferrin receptors (TfRs) on cancerous cells. We have previously developed a mathematical model of the Tf/TfR trafficking pathway to improve the efficiency of Tf as a drug carrier. By using diphtheria toxin (DT) as a model toxin, we found that mutating the Tf protein to change its iron release rate improves cellular association and efficacy of the drug. Though this is an improvement upon using wild-type Tf as the targeting ligand, conjugated toxins like DT are unfortunately still highly cytotoxic at off-target sites. In this work, we address this hurdle in cancer research by developing a mathematical model to predict the efficacy and selectivity of Tf conjugates that use an alternative toxin. For this purpose, we have chosen to study a mutant of DT, cross-reacting material 107 (CRM107). First, we developed a mathematical model of the Tf-DT trafficking pathway by extending our Tf/TfR model to include intracellular trafficking via DT and DT receptors. Using this mathematical model, we subsequently investigated the efficacy of several conjugates in cancer cells: DT and CRM107 conjugated to wild-type Tf, as well as to our engineered mutant Tf proteins (K206E/R632A Tf and K206E/R534A Tf). We also investigated the selectivity of mutant Tf-CRM107 against non-neoplastic cells. Through the use of our mathematical model, we predicted that (i) mutant Tf-CRM107 exhibits a greater cytotoxicity than wild-type Tf-CRM107 against cancerous cells, (ii) this improvement was more drastic with CRM107 conjugates than with DT conjugates, and (iii) mutant Tf-CRM107 conjugates were selective against non-neoplastic cells. These predictions were validated with in vitro cytotoxicity experiments, demonstrating that mutant Tf-CRM107 conjugates is indeed a more suitable therapeutic agent. Validation from in vitro experiments also confirmed that such whole-cell kinetic models can be useful in cancer therapeutic design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Alcolea, Pedro J; Alonso, Ana; Degayón, María A; Moreno-Paz, Mercedes; Jiménez, Maribel; Molina, Ricardo; Larraga, Vicente
2016-05-20
Leishmania infantum is the protozoan parasite responsible for zoonotic visceral leishmaniasis in the Mediterranean basin. A recent outbreak in humans has been reported in this area. The life cycle of the parasite is digenetic. The promastigote stage develops within the gut of phlebotomine sand flies, whereas amastigotes survive and multiply within phagolysosomes of mammalian host phagocytes. The major vector of L. infantum in Spain is Phlebotomus perniciosus. The axenic culture model of promastigotes is generally used because it is able to mimic the conditions of the natural environment (i.e. the sand fly vector gut). However, infectivity decreases with culture passages and infection of laboratory animals is frequently required. Enrichment of the stationary phase population in highly infective metacyclic promastigotes is achieved by negative selection with peanut agglutinin (PNA), which is possible only in certain Leishmania species such as L. major and L. infantum. In this study, in vitro infectivity and differential gene expression of cultured PNA-negative promastigotes (Pro-PNA(-)) and metacyclic promastigotes isolated from the sand fly anterior thoracic midgut (Pro-Pper) have been compared. In vitro infectivity is about 30 % higher in terms of rate of infected cells and number of amastigotes per infected cell in Pro-Pper than in Pro-PNA(-). This finding is in agreement with up-regulation of a leishmanolysin gene (gp63) and genes involved in biosynthesis of glycosylinositolphospholipids (GIPL), lipophosphoglycan (LPG) and proteophosphoglycan (PPG) in Pro-Pper. In addition, differences between Pro-Pper and Pro-PNA(-) in genes involved in important cellular processes (e.g. signaling and regulation of gene expression) have been found. Pro-Pper are significantly more infective than peanut lectin non-agglutinating ones. Therefore, negative selection with PNA is an appropriate method for isolating metacyclic promastigotes in stationary phase of axenic culture but it does not allow reaching the in vitro infectivity levels of Pro-Pper. Indeed, GIPL, LPG and PPG biosynthetic genes together with a gp63 gene are up-regulated in Pro-Pper and interestingly, the correlation coefficient between both transcriptomes in terms of transcript abundance is R (2) = 0.68. This means that the correlation is sufficiently high to consider that both samples are physiologically comparable (i.e. the experiment was correctly designed and performed) and sufficiently low to conclude that important differences in transcript abundance have been found. Therefore, the implications of axenic culture should be evaluated case-by-case in each experimental design even when the stationary phase population in culture is enriched in metacyclic promastigotes by negative selection with PNA.
Proulx, Alexandre; Hume, Daniel Z; Drobatz, Kenneth J; Reineke, Erica L
2014-01-01
To determine the proportion of airway bacterial isolates resistant to both empirically selected and recently administered antimicrobials, and to assess the impact of inappropriate initial empiric antimicrobials selection on length of hospital stay and survival to discharge in dogs with bacterial pneumonia. Retrospective study. University veterinary teaching hospital. One hundred and eleven dogs with a clinical diagnosis of bacterial pneumonia that had aerobic bacterial culture and susceptibility testing performed from a tracheal wash sample. None. Overall, 26% (29/111) of the dogs had at least 1 bacterial isolate that was resistant to empirically selected antimicrobials. In dogs with a history of antimicrobial administration within the preceding 4 weeks, a high incidence (57.4%, 31/54) of in vitro bacterial resistance to those antimicrobials was found: 64.7% (11/17) in the community-acquired pneumonia group, 55.2% (16/29) in the aspiration pneumonia group, and 50.0% (4/8) in the other causes of bacterial pneumonia group. No statistically significant association was found between bacterial isolate resistance to empirically selected antimicrobials and length of hospital stay or mortality. The high proportion of in vitro airway bacterial resistance to empiric antimicrobials would suggest that airway sampling for bacterial culture and susceptibility testing may be helpful in guiding antimicrobial therapy and recently administered antimicrobials should be avoided when empirically selecting antimicrobials. Although no relationship was found between inappropriate initial empiric antimicrobial selection and length of hospital stay or mortality, future prospective studies using standardized airway-sampling techniques, treatment modalities, and stratification of disease severity based on objective values, such as arterial blood gas analysis in all dogs with pneumonia, would be needed to determine if a clinical effect of in vitro bacterial resistance to empirically administered antimicrobials truly exists or not. © Veterinary Emergency and Critical Care Society 2013.
Salviano, M B; Collares, F J F; Becker, B S; Rodrigues, B A; Rodrigues, J L
2016-04-01
Competent oocyte selection remains a bottleneck in the in vitro production (IVP) of mammalian embryos. Among the vital assays described for selecting competent oocytes for IVP, the brilliant cresyl blue (BCB) test has shown consistent results. The aim of the first experiment was to observe if oocytes directly submitted to IVM show similar cleavage and blastocyst rates as those obtained with oocytes maintained under the same in vitro conditions as the oocytes that undergo the BCB test. Bovine cumulus-oocyte complexes (COCs) were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised grouped into three groups: (1) directly submitted to IVM; (2) oocytes submitted to the BCB test without the addition of BCB stain (BCB control group); and (3) submitted to the BCB test. The results showed that oocytes directly submitted to IVM reached similar cleavage (48/80 - 60%) and embryonic development rates to the blastocyst stage (10/48 - 21%) as the results obtained with the BCB control group oocytes (45/77 - 58% and 08/45 - 18%, respectively). The aim of the second experiment was to determine the cleavage and blastocyst rates obtained from BCB+ oocytes undergoing IVM in the presence of BCB- oocytes at a ratio of 10:1. COCs were recovered from slaughterhouse-derived ovaries and, after morphological evaluation, were randomised into two groups that were submitted to IVM either directly (1: control group) or submitted to the BCB test prior to IVM. After the BCB test, the COCs were classified as either BCB+ (blue cytoplasm) or BCB- (colourless cytoplasm) and then divided into four experimental groups: (2) BCB+; (3) BCB-; and (4) BCB+ matured in same IVM medium drop as (5) BCB- at a ratio of 10:1. After IVM (24 h), oocytes from the different experimental groups were submitted to in vitro fertilisation (IVF) and in vitro culture (IVC) under the same culture conditions until they reached the blastocyst stage (D7). With regards to the cleavage rate (48 h after IVF), only group 3 (102/229 - 44%) differed (P < 0.05) from the other groups [1 (145/241 - 60%); 2 (150/225 - 67%); 4 (201/318 - 63%) and 5 (21/33 - 63%)]. On day 7, the embryos from group 2 (BCB+) achieved the highest blastocyst rate (46/150 - 31%) (P < 0.05) when compared with the embryo development capacity of the other experimental groups (1: 31/145 - 21%; group 3: 17/102 - 17%; group 4: 46/201 - 23%; and group 5: 2/21 - 10%). In conclusion, submitting BCB+ oocytes that were separated from BCB- oocytes to IVM increases the rate of embryonic development to the blastocyst stage when compared to the control group, BCB- oocyte group, BCB+ paracrine group and BCB- paracrine group. The presence of non-competent oocytes during IVM, even in low proportion (1:10), reduces the capacity of competent oocytes to undergo embryo development and achieve blastocyst stage during IVC.
Yoshida, Kenta; Zhao, Ping; Zhang, Lei; Abernethy, Darrell R; Rekić, Dinko; Reynolds, Kellie S; Galetin, Aleksandra; Huang, Shiew-Mei
2017-09-01
Evaluation of drug-drug interaction (DDI) risk is vital to establish benefit-risk profiles of investigational new drugs during drug development. In vitro experiments are routinely conducted as an important first step to assess metabolism- and transporter-mediated DDI potential of investigational new drugs. Results from these experiments are interpreted, often with the aid of in vitro-in vivo extrapolation methods, to determine whether and how DDI should be evaluated clinically to provide the basis for proper DDI management strategies, including dosing recommendations, alternative therapies, or contraindications under various DDI scenarios and in different patient population. This article provides an overview of currently available in vitro experimental systems and basic in vitro-in vivo extrapolation methodologies for metabolism- and transporter-mediated DDIs. Published by Elsevier Inc.
Armstrong, Lucas C; Chong, Alexander; Livermore, Ryan W; Prohaska, Daniel J; Doyon, Amanda N; Wooley, Paul H
2015-04-01
We conducted a study to evaluate biomechanical performance during destructive testing of several different suture materials in various arthroscopic knot configurations under both in vitro and in situ conditions. Surgeons of different levels of experience tied the knots. Three different arthroscopic knots (static surgeon's, Weston, Tennessee slider) with 3 reverse half-hitches on alternating posts were tested using Fiberwire, ForceFiber, Orthocord, and Ultrabraid suture materials under both in vitro and in situ (blood plasma at 37°C) conditions. Three surgeons of different experience levels tied the knots on a post 30 mm in circumference. A single load-to-failure test was performed. There were no significant in vitro-in situ differences for Ultrabraid in the different knot configurations or with the different experience levels. Surgeon B (intermediate experience) showed no significant differences between test conditions for any knot configuration or suture material. With Tennessee slider knots, surgeon C (least experience) showed significantly lower clinical failure load under both test conditions and had a higher percentage of complete knot slippage. Surgeon B had no knot slippage with use of Fiberwire. Both the aqueous environment and the surgeon's familiarity with certain knots have an effect on knot security.
In vivo and in vitro study of the function of the left and right bovine ovaries.
Karamishabankareh, Hamed; Hajarian, Hadi; Shahsavari, Mohammadhamed; Moradinejad, Ruhollah
2015-09-15
Inequality in function of the left and right bovine ovaries and uterine horns was evaluated in two separate experiments. In the first experiment (in vivo), the relationship between the left and right ovarian activities and reproductive indices was evaluated. Therefore, the total number of 1284 randomly chosen lactating dairy cows were examined from Day 50 to 60 postpartum, and according to the presence of an active CL on the ovaries, they were divided into 502 LCL3-cows and 782 RCL3-cows (cows with an active CL on the left [L] or right [R] ovary, respectively). To induce estrus synchronization and investigate the effects of PGF2α administration on the incidence of estrus in both LCL3-cows and RCL3-cows, the cows were treated with one luteolytic dose of PGF2α and were inseminated after observed estrus (via visual observation lasting at least 30 minutes three times a day). To investigate the effects of side of ovulation at the time of PGF2α administration on reproductive parameters, pregnancy diagnosis was performed 28 days after insemination (using ultrasound) and 42 days after insemination (using transrectal palpation). The results showed that the percentage of the RCL3-cows was greater than the LCL3-cows (60.9% vs. 39.1%, respectively). Furthermore, ovulations switching from the left to right ovary in two successive ovulations were greater than those that switched from the right to left ovary. On the other hand, the sex ratio (male percentage) in the right uterine horn was greater than that of the left one. In the second experiment (in vitro), the developmental potential of bovine oocytes derived from the left (L-oocytes) and right (R-oocytes) ovaries after in vitro embryo production and heterogeneity in the developmental competence of L-oocytes and R-oocytes using the brilliant cresyl blue staining test as a selection criterion were evaluated. Results of the in vitro experiment showed that the percentage of cleavage and blastocyst rate of R-oocytes were greater (P < 0.001) than those of L-oocytes. Moreover, it appears that the side of ovaries had greater effects on the developmental competence of oocytes than other factors associated with heterogeneity in the developmental competence of oocytes, which can be detected by the brilliant cresyl blue test. In conclusion, the results of the in vivo study confirmed the observations in previous studies in which the right ovarian response (distribution of ovulation) was superior to that of the left ones. Interestingly, the in vitro experiments for the first time clearly showed that more ovulation on the right side is not the only reason for this unequal activity. In fact, in cattle, the greater developmental potential of oocytes originating from right ovaries may cause superior activity of the right side, and the effect is even higher than the differences in ovulation response between the left and right ovaries. Copyright © 2015 Elsevier Inc. All rights reserved.
Engineering Tocopherol Selectivity in α-TTP: A Combined In Vitro/In Silico Study
Helbling, Rachel E.; Aeschimann, Walter; Simona, Fabio; Stocker, Achim; Cascella, Michele
2012-01-01
We present a combined in vitro/in silico study to determine the molecular origin of the selectivity of -tocopherol transfer protein (-TTP) towards -tocopherol. Molecular dynamics simulations combined to free energy perturbation calculations predict a binding free energy for -tocopherol to -TTP 8.262.13 kcal mol lower than that of -tocopherol. Our calculations show that -tocopherol binds to -TTP in a significantly distorted geometry as compared to that of the natural ligand. Variations in the hydration of the binding pocket and in the protein structure are found as well. We propose a mutation, A156L, which significantly modifies the selectivity properties of -TTP towards the two tocopherols. In particular, our simulations predict that A156L binds preferentially to -tocopherol, with striking structural similarities to the wild-type--tocopherol complex. The affinity properties are confirmed by differential scanning fluorimetry as well as in vitro competitive binding assays. Our data indicate that residue A156 is at a critical position for determination of the selectivity of -TTP. The engineering of TTP mutants with modulating binding properties can have potential impact at industrial level for easier purification of single tocopherols from vitamin E mixtures coming from natural oils or synthetic processes. Moreover, the identification of a -tocopherol selective TTP offers the possibility to challenge the hypotheses for the evolutionary development of a mechanism for -tocopherol selection in omnivorous animals. PMID:23152872
Ni, W; Song, X; Cui, J
2014-03-01
The purpose of this study was to test the mutant selection window (MSW) hypothesis with Escherichia coli exposed to levofloxacin in a rabbit model and to compare in vivo and in vitro exposure thresholds that restrict the selection of fluoroquinolone-resistant mutants. Local infection with E. coli was established in rabbits, and the infected animals were treated orally with various doses of levofloxacin once a day for five consecutive days. Changes in levofloxacin concentration and levofloxacin susceptibility were monitored at the site of infection. The MICs of E. coli increased when levofloxacin concentrations at the site of infection fluctuated between the lower and upper boundaries of the MSW, defined in vitro as the minimum inhibitory concentration (MIC99) and the mutant prevention concentration (MPC), respectively. The pharmacodynamic thresholds at which resistant mutants are not selected in vivo was estimated as AUC24/MPC > 20 h or AUC24/MIC > 60 h, where AUC24 is the area under the drug concentration time curve in a 24-h interval. Our finding demonstrated that the MSW existed in vivo. The AUC24/MPC ratio that prevented resistant mutants from being selected estimated in vivo is consistent with that observed in vitro, indicating it might be a reliable index for guiding the optimization of antimicrobial treatment regimens for suppression of the selection of antimicrobial resistance.
Lindström, Erik; Rizoska, Biljana; Henderson, Ian; Terelius, Ylva; Jerling, Markus; Edenius, Charlotte; Grabowska, Urszula
2018-05-09
Cathepsin K is an attractive therapeutic target for diseases in which bone resorption is excessive such as osteoporosis and osteoarthritis (OA). The current paper characterized the pharmacological profile of the potent and selective cathepsin K inhibitor, MIV-711, in vitro and in cynomolgus monkeys, and assessed translation to human based on a single dose clinical study in man. The potency and selectivity of MIV-711 were assessed in vitro using recombinant enzyme assays and differentiated human osteoclasts. MIV-711 was administered to healthy cynomolgus monkeys (3-30 µmol/kg, p.o.). Plasma levels of MIV-711 and the bone resorption biomarker CTX-I were measured after single dose experiments, and urine levels of CTX-I, NTX-I and CTX-II biomarkers were measured after repeat dose experiments. The safety, pharmacokinetics and pharmacodynamics (serum CTX-I) of MIV-711 were assessed in human healthy subjects after single ascending doses from 20 to 600 mg. MIV-711 was a potent inhibitor of human cathepsin K (K i : 0.98 nmol/L) with > 1300-fold selectivity towards other human cathepsins. MIV-711 inhibited human osteoclast-mediated bone resorption with an IC 50 value of 43 nmol/L. Single oral doses of MIV-711 to monkeys reduced plasma levels of CTX-I in a dose-dependent fashion by up to 57% at trough. The effect on CTX-I was linearly correlated to the plasma exposure of MIV-711, while the efficacy duration outlasted plasma exposure. Repeat oral dosing with MIV-711 also reduced urinary levels of the bone resorption biomarkers CTX-I (by 93%) and NTX-I (by 71%) and the cartilage degradation biomarker CTX-II (by 71%). MIV-711 was safe and well-tolerated when given as single ascending doses to healthy subjects. MIV-711 reduced serum CTX-I levels in a dose-dependent manner by up to 79% at trough. The relationship between MIV-711 exposure and effects on these biomarkers in humans was virtually identical when compared to the corresponding monkey data. MIV-711 is a potent and selective cathepsin K inhibitor with dose-dependent effects on biomarkers of bone and cartilage degradation in monkey and human. Taken together, MIV-711 shows promise for the treatment of bone and cartilage related disorders in humans, such as OA. Trial Registration EudraCT number 2011-003024-12, registered on June 22nd 2011.
Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.
Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle
2018-04-26
Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.
Tissue engineering for human urethral reconstruction: systematic review of recent literature.
de Kemp, Vincent; de Graaf, Petra; Fledderus, Joost O; Ruud Bosch, J L H; de Kort, Laetitia M O
2015-01-01
Techniques to treat urethral stricture and hypospadias are restricted, as substitution of the unhealthy urethra with tissue from other origins (skin, bladder or buccal mucosa) has some limitations. Therefore, alternative sources of tissue for use in urethral reconstructions are considered, such as ex vivo engineered constructs. To review recent literature on tissue engineering for human urethral reconstruction. A search was made in the PubMed and Embase databases restricted to the last 25 years and the English language. A total of 45 articles were selected describing the use of tissue engineering in urethral reconstruction. The results are discussed in four groups: autologous cell cultures, matrices/scaffolds, cell-seeded scaffolds, and clinical results of urethral reconstructions using these materials. Different progenitor cells were used, isolated from either urine or adipose tissue, but slightly better results were obtained with in vitro expansion of urothelial cells from bladder washings, tissue biopsies from the bladder (urothelium) or the oral cavity (buccal mucosa). Compared with a synthetic scaffold, a biological scaffold has the advantage of bioactive extracellular matrix proteins on its surface. When applied clinically, a non-seeded matrix only seems suited for use as an onlay graft. When a tubularized substitution is the aim, a cell-seeded construct seems more beneficial. Considerable experience is available with tissue engineering of urethral tissue in vitro, produced with cells of different origin. Clinical and in vivo experiments show promising results.
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo’s integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development. PMID:23227157
Krivokharchenko, Alexander; Karmenyan, Artashes; Sarkisov, Oleg; Bader, Michael; Chiou, Arthur; Shakhbazyan, Avetik
2012-01-01
Manipulation with early mammalian embryos is the one of the most important approach to study preimplantation development. Artificial cell fusion is a research tool for various biotechnological experiments. However, the existing methods have various disadvantages, first of them impossibility to fuse selected cells within multicellular structures like mammalian preimplantation embryos. In our experiments we have successfully used high repetition rate picosecond near infrared laser beam for fusion of pairs of oocytes and oocytes with blastomeres. Fused cells looked morphologically normal and keep their ability for further divisions in vitro. We also fused two or three blastomeres inside four-cell mouse embryos. The presence of one, two or three nuclei in different blastomeres of the same early preimplantation mouse embryo was confirmed under UV-light after staining of DNA with the vital dye Hoechst-33342. The most of established embryos demonstrated high viability and developed in vitro to the blastocyst stage. We demonstrated for the first time the use of laser beam for the fusion of various embryonic cells of different size and of two or three blastomeres inside of four-cell mouse embryos without affecting the embryo's integrity and viability. These embryos with blastomeres of various ploidy maybe unique model for numerous purposes. Thus, we propose laser optical manipulation as a new tool for investigation of fundamental mechanisms of mammalian development.
Durrant, Michael N; McElroy, Tucker; Durrant, Lara
2012-01-01
The metatarsal head and proximal phalanx exhibit considerable asymmetry in their shape and geometry, but there is little documentation in the literature regarding the prevalence of structural characteristics that occur in a given population. Although there is a considerable volume of in vivo and in vitro experiments demonstrating first metatarsal inversion around its longitudinal axis with dorsiflexion, little is known regarding the applicability of specific morphometrics to these motions. Nine distinctive osseous characteristics in the metatarsal head and phalanx were selected based on their location, geometry, and perceived functional relationship to previous studies describing metatarsal motion as inversion with dorsiflexion. The prevalences of the chosen characteristics were determined in a cohort of 21 randomly selected skeletal specimens, 19 of which were provided by the anatomical preparation office at the University of California, San Diego, and two of which were in the possession of one of us (M.D.). The frequency of occurrence of each selected morphological characteristic in this sample and the relevant summary statistics confirm a strong association between the selected features and a conceptual two-axis kinematic model of the metatarsophalangeal joint. The selected morphometrics are consistent with inversion of the metatarsal around its longitudinal axis as it dorsiflexes.
Janssen, Jolien; Weyens, Nele; Croes, Sarah; Beckers, Bram; Meiresonne, Linda; Van Peteghem, Pierre; Carleer, Robert; Vangronsveld, Jaco
2015-01-01
Short rotation coppice (SRC) of willow and poplar is proposed for economic valorization and concurrently as remediation strategy for metal contaminated land in northeast-Belgium. However, metal phytoextraction appears insufficient to effectuate rapid reduction of soil metal contents. To increase both biomass production and metal accumulation of SRC, two strategies are proposed: (i) in situ selection of the best performing clones and (ii) bioaugmentation of these clones with beneficial plant-associated bacteria. Based on field data, two experimental willow clones, a Salix viminalis and a Salix alba x alba clone, were selected. Compared to the best performing commercial clones, considerable increases in stem metal extraction were achieved (up to 74% for Cd and 91% for Zn). From the selected clones, plant-associated bacteria were isolated and identified. All strains were subsequently screened for their plant growth-promoting and metal uptake enhancing traits. Five strains were selected for a greenhouse inoculation experiment with the selected clones planted in Cd-Zn-Pb contaminated soil. Extraction potential tended to increase after inoculation of S. viminalis plants with a Rahnella sp. strain due to a significantly increased twig biomass. However, although bacterial strains showing beneficial traits in vitro were used for inoculation, increments in extraction potential were not always observed.
Primer Extension Mutagenesis Powered by Selective Rolling Circle Amplification
Huovinen, Tuomas; Brockmann, Eeva-Christine; Akter, Sultana; Perez-Gamarra, Susan; Ylä-Pelto, Jani; Liu, Yuan; Lamminmäki, Urpo
2012-01-01
Primer extension mutagenesis is a popular tool to create libraries for in vitro evolution experiments. Here we describe a further improvement of the method described by T.A. Kunkel using uracil-containing single-stranded DNA as the template for the primer extension by additional uracil-DNA glycosylase treatment and rolling circle amplification (RCA) steps. It is shown that removal of uracil bases from the template leads to selective amplification of the nascently synthesized circular DNA strand carrying the desired mutations by phi29 DNA polymerase. Selective RCA (sRCA) of the DNA heteroduplex formed in Kunkel's mutagenesis increases the mutagenesis efficiency from 50% close to 100% and the number of transformants 300-fold without notable diversity bias. We also observed that both the mutated and the wild-type DNA were present in at least one third of the cells transformed directly with Kunkel's heteroduplex. In contrast, the cells transformed with sRCA product contained only mutated DNA. In sRCA, the complex cell-based selection for the mutant strand is replaced with the more controllable enzyme-based selection and less DNA is needed for library creation. Construction of a gene library of ten billion members is demonstrated with the described method with 240 nanograms of DNA as starting material. PMID:22355397
Molecular Features Underlying Selectivity in Chicken Bitter Taste Receptors.
Di Pizio, Antonella; Shy, Nitzan; Behrens, Maik; Meyerhof, Wolfgang; Niv, Masha Y
2018-01-01
Chickens sense the bitter taste of structurally different molecules with merely three bitter taste receptors ( Gallus gallus taste 2 receptors, ggTas2rs), representing a minimal case of bitter perception. Some bitter compounds like quinine, diphenidol and chlorpheniramine, activate all three ggTas2rs, while others selectively activate one or two of the receptors. We focus on bitter compounds with different selectivity profiles toward the three receptors, to shed light on the molecular recognition complexity in bitter taste. Using homology modeling and induced-fit docking simulations, we investigated the binding modes of ggTas2r agonists. Interestingly, promiscuous compounds are predicted to establish polar interactions with position 6.51 and hydrophobic interactions with positions 3.32 and 5.42 in all ggTas2rs; whereas certain residues are responsible for receptor selectivity. Lys 3.29 and Asn 3.36 are suggested as ggTas2r1-specificity-conferring residues; Gln 6.55 as ggTas2r2-specificity-conferring residue; Ser 5.38 and Gln 7.42 as ggTas2r7-specificity conferring residues. The selectivity profile of quinine analogs, quinidine, epiquinidine and ethylhydrocupreine, was then characterized by combining calcium-imaging experiments and in silico approaches. ggTas2r models were used to virtually screen BitterDB compounds. ~50% of compounds known to be bitter to human are likely to be bitter to chicken, with 25, 20, 37% predicted to be ggTas2r1, ggTas2r2, ggTas2r7 agonists, respectively. Predicted ggTas2rs agonists can be tested with in vitro and in vivo experiments, contributing to our understanding of bitter taste in chicken and, consequently, to the improvement of chicken feed.
KGFR as a possible therapeutic target in middle ear cholesteatoma.
Yamamoto-Fukuda, Tomomi; Akiyama, Naotaro; Shibata, Yasuaki; Takahashi, Haruo; Ikeda, Tohru; Kohno, Michiaki; Koji, Takehiko
2014-11-01
We demonstrated that repression of keratinocyte growth factor (KGF) receptor (KGFR) could be a potentially useful strategy in the conservative treatment of middle ear cholesteatoma. Recently, the use of a selective inhibitor of the KGFR, SU5402, in an in vitro experiment resulted in the inhibition of the differentiation and proliferation of epithelial cells through KGF secretion by fibroblasts isolated from the cholesteatoma. In this study, we investigated the effects of the KGFR inhibitor during middle ear cholesteatoma formation in vivo. Based on the role of KGF in the development of cholesteatoma, Flag-hKGF cDNA driven by CMV14 promoter was transfected through electroporation into the external auditory canal of rats five times on every fourth day. Ears transfected with empty vector were used as controls. KGFR selective inhibitor (SU5402) or MEK inhibitor (PD0325901) was administered in the right ear of five rats after vector transfection. In the control, 2% DMSO in PBS was administered in the other ears after vector transfection. The use of a selective KGFR inhibitor, SU5402, completely prevented middle ear cholesteatoma formation in the rats.
NASA Astrophysics Data System (ADS)
Hauschild, Swantje; Tauber, Svantje; Lauber, Beatrice; Thiel, Cora S.; Layer, Liliana E.; Ullrich, Oliver
2014-11-01
Dating back to the Apollo and Skylab missions, it has been reported that astronauts suffered from bacterial and viral infections during space flight or after returning to Earth. Blood analyses revealed strongly reduced capability of human lymphocytes to become active upon mitogenic stimulation. Since then, a large number of in vitro studies on human immune cells have been conducted in space, in parabolic flights, and in ground-based facilities. It became obvious that microgravity affects cell morphology and important cellular functions. Observed changes include cell proliferation, the cytoskeleton, signal transduction and gene expression. This review gives an overview of the current knowledge of T cell regulation under altered gravity conditions obtained by in vitro studies with special emphasis on the cell culture conditions used. We propose that future in vitro experiments should follow rigorous standardized cell culture conditions, which allows better comparison of the results obtained in different flight- and ground-based experiment platforms.
Synthetic thrombus model for in vitro studies of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, R.E.; Trajkovska, K.
1998-07-01
Laser thrombolysis is the controlled ablation of a thrombus (blood clot) blockage in a living arterial system. Theoretical modeling of the interaction of laser light with thrombi relies on the ability to perform in vitro experiments with well characterized surrogate materials. A synthetic thrombus formulation may offer more accurate results when compared to in vivo clinical experiments. The authors describe the development of new surrogate materials based on formulations incorporating chick egg, guar gum, modified food starch, and a laser light absorbing dye. The sound speed and physical consistency of the materials were very close to porcine (arterial) and humanmore » (venous) thrombi. Photographic and videotape recordings of pulsed dye laser ablation experiments under various experimental conditions were used to evaluate the new material as compared to in vitro tests with human (venous) thrombus. The characteristics of ablation and mass removal were similar to that of real thrombi, and therefore provide a more realistic model for in vitro laser thrombolysis when compared to gelatin.« less
Dezaki, Ebrahim Saedi; Yaghoubi, Mohammad Mehdi; Spiliotis, Markus; Boubaker, Ghalia; Taheri, Elham; Almani, Pooya Ghaseminejad; Tohidi, Farideh; Harandi, Majid Fasihi; Gottstein, Bruno
2016-11-01
Parts of the natural life cycle of Echinococcus granulosus can be retraced in vitro such as the development of protoscoleces into semiadult worms with three or more proglottids, or the redifferentiation of in vitro cultured protoscoleces into metacestode-like cystic structures. Most in vitro generated samples share-at the microscopical level-high similarities with those naturally grown, but developmental differences have also been documented, such as missing egg production in in vitro grown adults or unusual bladder/vesicle formation in protoscoleces cultured into the metacestode direction. The aim of the present study was to explore how far different in vitro generated stage-specific materials/structures match the natural situation on the transcriptome level, based on testing five exemplarily chosen different genes: the frizzled receptor eg-fz4 (posterior marker), the FGF receptor-like factor eg-fgfrl (anterior association), the cell differentiation protein eg-rcd1 (part of the CCR4-NOT complex, a key regulator of eukaryotic gene expression), the rapidly accelerated fibrosarcoma serin/threonin kinase eg-braf (part of the MAPK pathway involved, e.g., in EGF signaling) and the co-smad eg-smadD (downstream factor of TGFβ/BMP2/activin signaling). These genes-tested via qPCR-were selected such as to allow a discussion on their potential role in the development of E. granulosus into the adult stage. Thus, testing took place with three ex vivo isolated samples, namely (i) egg-containing adult worms, (ii) invaginated protoscoleces, and (iii) protoscolex-free germinal layer tissue. Respective data were compared (a) with in vitro generated metacestode-like microcysts developed from protoscolices, and (b) different development stages of protoscoleces in vitro cultured toward adult maturation. As a finding, only eg-smadD and partially eg-fz4 showed high expression similarities between ex vivo harvested and in vitro cultured E. granulosus, thus suggesting a putative role in adult maturation. Conclusively, the fact of using "only" five genes did not allow answering the question if ex vivo and in vitro materials are similar on the transcriptome level. Another experimental restriction arises from different growth conditions of the in vitro cultured materials, and comparing these to the ex vivo harvested ones. Future experiments may solve the problems by using fully standardized E. granulosus sample collection and fully standardized culture conditions.
Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong
2015-01-01
Objective This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). Methods CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. Results CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×108 microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD)-mediated gene therapy, the transcription and expression of endostatin were the highest in the CMB105 group (P<0.001); the antiangiogenesis effect and inhibition of tumor cells invasion was better with CMB105 than CMB or NMB in vitro (P<0.01). After gene therapy, the tumor volumes of CMB105 group were significantly smaller than that of CMB and NMB, and many tumor cells had begun apoptosis in the CMB105 group, which had the highest apoptosis index (P<0.001). Conclusions As a contrast agent and plasmid carrier, CMB105 can be used not only for targeted ultrasound imaging but also for targeted gene therapy both in vitro and in vivo. The plasmid DNA binding ability of the CMB was not affected by conjugation of the CMB with the CD105 antibody, and because of its targeting ability, the gene transfection efficiency and therapeutic effect were better compared with the untargeted CMB and NMB. The advantages of targeted gene therapy with CMB105 in vivo were more prominent than with CMB or NMB because neither can target the endothelia in vivo. PMID:25699099
Zhou, Yu; Gu, Haitao; Xu, Yan; Li, Fan; Kuang, Shaojing; Wang, Zhigang; Zhou, Xiyuan; Ma, Huafeng; Li, Pan; Zheng, Yuanyi; Ran, Haitao; Jian, Jia; Zhao, Yajing; Song, Weixiang; Wang, Qiushi; Wang, Dong
2015-01-01
This study aimed to develop targeted cationic microbubbles conjugated with a CD105 antibody (CMB105) for use in targeted vascular endothelial cell gene therapy and ultrasound imaging. We compared the results with untargeted cationic microbubbles (CMB) and neutral microbubbles (NMB). CMB105 were prepared and compared with untargeted CMB and NMB. First, the microbubbles were characterized in terms of size, zeta-potential, antibody binding ability and plasmid DNA loading capacity. A tumor model of subcutaneous breast cancer in nude mice was used for our experiments. The ability of different types of microbubbles to target HUVECs in vitro and tumor neovascularization in vivo was measured. The endostatin gene was selected for its outstanding antiangiogenesis effect. For in vitro experiments, the transfection efficiency and cell cycle were analyzed using flow cytometry, and the transcription and expression of endostatin were measured by qPCR and Western blotting, respectively. Vascular tube cavity formation and tumor cell invasion were used to evaluate the antiangiogenesis gene therapy efficiency in vitro. Tumors were exposed to ultrasound irradiation with different types of microbubbles, and the gene therapy effects were investigated by detecting apoptosis induction and changes in tumor volume. CMB105 and CMB differed significantly from NMB in terms of zeta-potential, and the DNA loading capacities were 16.76±1.75 μg, 18.21±1.22 μg, and 0.48±0.04 μg per 5×10(8) microbubbles, respectively. The charge coupling of plasmid DNA to CMB105 was not affected by the presence of the CD105 antibody. Both CMB105 and CMB could target to HUVECs in vitro, whereas only CMB105 could target to tumor neovascularization in vivo. In in vitro experiments, the transfection efficiency of CMB105 was 24.7-fold higher than the transfection efficiency of NMB and 1.47-fold higher than the transfection efficiency of CMB (P<0.05). With ultrasound-targeted microbubble destruction (UTMD)-mediated gene therapy, the transcription and expression of endostatin were the highest in the CMB105 group (P<0.001); the antiangiogenesis effect and inhibition of tumor cells invasion was better with CMB105 than CMB or NMB in vitro (P<0.01). After gene therapy, the tumor volumes of CMB105 group were significantly smaller than that of CMB and NMB, and many tumor cells had begun apoptosis in the CMB105 group, which had the highest apoptosis index (P<0.001). As a contrast agent and plasmid carrier, CMB105 can be used not only for targeted ultrasound imaging but also for targeted gene therapy both in vitro and in vivo. The plasmid DNA binding ability of the CMB was not affected by conjugation of the CMB with the CD105 antibody, and because of its targeting ability, the gene transfection efficiency and therapeutic effect were better compared with the untargeted CMB and NMB. The advantages of targeted gene therapy with CMB105 in vivo were more prominent than with CMB or NMB because neither can target the endothelia in vivo.
Gettings, S D; Lordo, R A; Hintze, K L; Bagley, D M; Casterton, P L; Chudkowski, M; Curren, R D; Demetrulias, J L; Dipasquale, L C; Earl, L K; Feder, P I; Galli, C L; Glaza, S M; Gordon, V C; Janus, J; Kurtz, P J; Marenus, K D; Moral, J; Pape, W J; Renskers, K J; Rheins, L A; Roddy, M T; Rozen, M G; Tedeschi, J P; Zyracki, J
1996-01-01
The CTFA Evaluation of Alternatives Program is an evaluation of the relationship between data from the Draize primary eye irritation test and comparable data from a selection of promising in vitro eye irritation tests. In Phase III, data from the Draize test and 41 in vitro endpoints on 25 representative surfactant-based personal care formulations were compared. As in Phase I and Phase II, regression modelling of the relationship between maximum average Draize score (MAS) and in vitro endpoint was the primary approach adopted for evaluating in vitro assay performance. The degree of confidence in prediction of MAS for a given in vitro endpoint is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curve. Prediction intervals reflect not only the error attributed to the model but also the material-specific components of variation in both the Draize and the in vitro assays. Among the in vitro assays selected for regression modeling in Phase III, the relationship between MAS and in vitro score was relatively well defined. The prediction bounds on MAS were most narrow for materials at the lower or upper end of the effective irritation range (MAS = 0-45), where variability in MAS was smallest. This, the confidence with which the MAS of surfactant-based formulations is predicted is greatest when MAS approaches zero or when MAS approaches 45 (no comment is made on prediction of MAS > 45 since extrapolation beyond the range of observed data is not possible). No single in vitro endpoint was found to exhibit relative superiority with regard to prediction of MAS. Variability associated with Draize test outcome (e.g. in MAS values) must be considered in any future comparisons of in vivo and in vitro test results if the purpose is to predict in vivo response using in vitro data.
Al-Musayeib, Nawal M; Mothana, Ramzi A; Al-Massarani, Shaza; Matheeussen, An; Cos, Paul; Maes, Louis
2012-09-25
The present study investigated the in vitro antiprotozoal activity of sixteen selected medicinal plants. Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC₅₀ < 10 μg/mL (<5 μg/mL for T. brucei) and a selectivity index of ≥4. Antiplasmodial activity was found in the extracts of Prosopis juliflora and Punica granatum. Antileishmanial activity against L. infantum was demonstrated in Caralluma sinaica and Periploca aphylla. Amastigotes of T. cruzi were affected by the methanol extract of Albizia lebbeck pericarp, Caralluma sinaica, Periploca aphylla and Prosopius juliflora. Activity against T. brucei was obtained in Prosopis juliflora. Cytotoxicity (MRC-5 IC₅₀ < 10 μg/mL) and hence non-specific activities were observed for Conocarpus lancifolius.
Čepa, Adam; Ráliš, Jan; Král, Vlastimil; Paurová, Monika; Kučka, Jan; Humajová, Jana; Lázníček, Milan; Lebeda, Ondřej
2018-03-01
Specific oncology diagnostics requires new types of the selective radiopharmaceuticals, particularly those suitable for the molecular PET imaging. The aim of this work is to present a new, specific PET-immunodiagnostic radiopharmaceutical based on the monoclonal antibody IgG M75 targeting human carbonic anhydrase IX labelled with 64 Cu (T ½ = 12.70h) and its in vitro and in vivo evaluation. The antibody IgG M75 was conjugated with a non-commercial copper-specific chelator "phosphinate" and then labelled with the positron emitter 64 Cu. Stability of the labelled conjugated was tested in human serum. The immunoreactivity of the labelled conjugate was evaluated in vitro on a suitable cell cultures of the colorectal carcinoma (HT-29) and its imaging properties were estimated in vivo on a mouse model with inoculated colorectal carcinoma HT-29 imaged on a µPET/CT. The tested radioimmunoconjugate was obtained in a specific activity of 0.25-0.5 MBq/µg. In vitro uptake experiments revealed specific binding to the HT-29 cells (45 ± 2.8% of the total added activity) and the measured K D value was found to be 9.2nM. Imaging clearly demonstrated significant uptake of the labelled monoclonal antibody in the tumour at 18h post administration. The radioimmunoconjugate 64 Cu-PS-IgG M75 seems to be a suitable candidate for PET diagnostics of hypoxic tumours expressing human carbonic anhydrase IX. Copyright © 2017 Elsevier Ltd. All rights reserved.
Morató, Roser; Soares, Juleide M De Souza; Orero, Guifré; Mogas, Teresa; Miró, Jordi
2013-06-01
The effect of combining double layer density gradient centrifugation (DL-DGC) with different capacitation treatments on the fertilising capacity of frozen-thawed stallion sperm was examined via a heterologous assay involving in vitro-matured, zona pellucida-free bovine oocytes. In a first experiment, aliquots of frozen-thawed stallion sperm were subjected to one of five capacitation treatments without DL-DGC - ionomycin at 1.0μM, 0.1μM, 0.05μM or 0.01μM, or caffeine at 200μg/mL. The fertilising capacity of the semen was then assessed at 18h by staining the above oocytes with 4,6-diamidino-2-phenylindole (DAPI) and examining for sperm penetration, the number of penetrated spermatozoa per oocyte, and male pronucleus formation. In a second experiment, aliquots of frozen-thawed stallion sperm were subjected to DL-DGC selection - or not - and then further subjected to the two best capacitation treatments (0.1μM and 0.05μM ionomycin). The fertilising capacity of the semen was then determined as above. The DL-DGC/capacitated sperm samples showed the highest mean penetration rates: 24.16% following capacitation with 0.1μM ionomycin, and 12.21% following capacitation with 0.05μM ionomycin. The capacitated but non-DL-DGC-selected sperm returned significantly lower values: 6.26% and 7.02% for the same ionomycin treatments respectively. These findings suggest that combining DL-DGC selection with ionomycin capacitation improves the fertilising capacity of frozen-thawed stallion sperm. Copyright © 2013 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Two experiments were conducted to evaluate the effects of feeding condensed distillers solubles (DS) and crude glycerin alone or in combination on performance of finishing beef cattle and in vitro fermentation. In both experiments, dietary treatments consisted of a steam flaked corn (SFC) based diet...
Ultra Low-Dose Radiation: Stress Responses and Impacts Using Rice as a Grass Model
Rakwal, Randeep; Agrawal, Ganesh Kumar; Shibato, Junko; Imanaka, Tetsuji; Fukutani, Satoshi; Tamogami, Shigeru; Endo, Satoru; Sahoo, Sarata Kumar; Masuo, Yoshinori; Kimura, Shinzo
2009-01-01
We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s. PMID:19399245
Fold or hold: experimental evolution in vitro
Collins, S; Rambaut, A; Bridgett, S J
2013-01-01
We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997
Mansourian, Robert; Mutch, David M; Antille, Nicolas; Aubert, Jerome; Fogel, Paul; Le Goff, Jean-Marc; Moulin, Julie; Petrov, Anton; Rytz, Andreas; Voegel, Johannes J; Roberts, Matthew-Alan
2004-11-01
Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. The GEA code for R software is freely available upon request to authors.
Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2013-01-01
The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.
Novel kinin B1 receptor agonists with improved pharmacological profiles.
Côté, Jérôme; Savard, Martin; Bovenzi, Veronica; Bélanger, Simon; Morin, Josée; Neugebauer, Witold; Larouche, Annie; Dubuc, Céléna; Gobeil, Fernand
2009-04-01
There is some evidence to suggest that inducible kinin B1 receptors (B1R) may play beneficial and protecting roles in cardiovascular-related pathologies such as hypertension, diabetes, and ischemic organ diseases. Peptide B1R agonists bearing optimized pharmacological features (high potency, selectivity and stability toward proteolysis) hold promise as valuable therapeutic agents in the treatment of these diseases. In the present study, we used solid-phase methodology to synthesize a series of novel peptide analogues based on the sequence of Sar[dPhe(8)]desArg(9)-bradykinin, a relatively stable peptide agonist with moderate affinity for the human B1R. We evaluated the pharmacological properties of these peptides using (1) in vitro competitive binding experiments on recombinant human B1R and B2R (for index of selectivity determination) in transiently transfected human embryonic kidney 293 cells (HEK-293T cells), (2) ex vivo vasomotor assays on isolated human umbilical veins expressing endogenous human B1R, and (3) in vivo blood pressure tests using anesthetized lipopolysaccharide-immunostimulated rabbits. Key chemical modifications at the N-terminus, the positions 3 and 5 on Sar[dPhe(8)]desArg(9)-bradykinin led to potent analogues. For example, peptides 18 (SarLys[Hyp(3),Cha(5), dPhe(8)]desArg(9)-bradykinin) and 20 (SarLys[Hyp(3),Igl(5), dPhe(8)]desArg(9)-bradykinin) outperformed the parental molecule in terms of affinity, functional potency and duration of action in vitro and in vivo. These selective agonists should be valuable in future animal and human studies to investigate the potential benefits of B1R activation.
Nielsen, D.; Eriksen, J.; Maare, C.; Jakobsen, A. H.; Skovsgaard, T.
1998-01-01
Fluctuation analysis experiments were performed to assess whether selection or induction determines expression of P-glycoprotein and resistance in the murine Ehrlich ascites tumour cell line (EHR2) after exposure to daunorubicin. Thirteen expanded populations of EHR2 cells were exposed to daunorubicin 7.5 x 10(-9) M or 10(-8) M for 2 weeks. Surviving clones were scored and propagated. Only clones exposed to daunorubicin 7.5 x 10(-9) M could be expanded for investigation. Drug resistance was assessed by the tetrazolium dye (MTT) cytotoxicity assay. Western blot was used for determination of P-glycoprotein. Compared with EHR2, the variant cells were 2.5- to 5.2-fold resistant to daunorubicin (mean 3.6-fold). P-glycoprotein was significantly increased in 11 of 25 clones (44%). Analysis of variance supported the hypothesis that spontaneous mutations conferred drug resistance in EHR2 cells exposed to daunorubicin 7.5 x 10(-9) M. At this level (5 log cell killing) of drug exposure, the mutation rate was estimated at 4.1 x 10(-6) per cell generation. In contrast, induction seemed to determine resistance in EHR2 cells in vitro exposed to daunorubicin 10(-8) M. The revertant EHR2/0.8/R was treated in vivo with daunorubicin for 24 h. After treatment, P-glycoprotein increased in EHR2/0.8/R (sevenfold) and the cell line developed resistance to daunorubicin (12-fold), suggesting that in EHR2/0.8/R the mdr1 gene was activated by induction. In conclusion, our study demonstrates that P-glycoprotein expression and daunorubicin resistance are primarily acquired by selection of spontaneously arising mutants. However, under certain conditions the mdr1 gene may be activated by induction. PMID:9820176
Systematic Evaluation of the Dependence of Deoxyribozyme Catalysis on Random Region Length
Velez, Tania E.; Singh, Jaydeep; Xiao, Ying; Allen, Emily C.; Wong, On Yi; Chandra, Madhavaiah; Kwon, Sarah C.; Silverman, Scott K.
2012-01-01
Functional nucleic acids are DNA and RNA aptamers that bind targets, or they are deoxyribozymes and ribozymes that have catalytic activity. These functional DNA and RNA sequences can be identified from random-sequence pools by in vitro selection, which requires choosing the length of the random region. Shorter random regions allow more complete coverage of sequence space but may not permit the structural complexity necessary for binding or catalysis. In contrast, longer random regions are sampled incompletely but may allow adoption of more complicated structures that enable function. In this study, we systematically examined random region length (N20 through N60) for two particular deoxyribozyme catalytic activities, DNA cleavage and tyrosine-RNA nucleopeptide linkage formation. For both activities, we previously identified deoxyribozymes using only N40 regions. In the case of DNA cleavage, here we found that shorter N20 and N30 regions allowed robust catalytic function, either by DNA hydrolysis or by DNA deglycosylation and strand scission via β-elimination, whereas longer N50 and N60 regions did not lead to catalytically active DNA sequences. Follow-up selections with N20, N30, and N40 regions revealed an interesting interplay of metal ion cofactors and random region length. Separately, for Tyr-RNA linkage formation, N30 and N60 regions provided catalytically active sequences, whereas N20 was unsuccessful, and the N40 deoxyribozymes were functionally superior (in terms of rate and yield) to N30 and N60. Collectively, the results indicate that with future in vitro selection experiments for DNA and RNA catalysts, and by extension for aptamers, random region length should be an important experimental variable. PMID:23088677
Yeo, Helen; Pell, Judith K; Alderson, Peter G; Clark, Suzanne J; Pye, Barry J
2003-02-01
As part of an approach to select potential mycoinsecticides for aphid biocontrol, we investigated the effects of temperature on the growth, germination and pathogenicity of some hyphomycete fungi. Commercially available mycoinsecticides (based on Beauveria bassiana (Balsamo) Vuillemin and Verticillium lecanii (Zimmermann) Viegas) and other isolates of B bassiana, V lecanii, Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown & Smith were evaluated. The rate of in vitro conidial germination of all isolates was slower at 10 and 15 degrees C than at 20 and 25 degrees C. Similarly, in vitro growth of most isolates was adversely affected at 10 and 15 degrees C. The greatest reduction at 10 degrees C in rates of conidial germination and colony growth, compared with other temperatures, was for M anisopliae isolates. Germination of V lecanii (isolate HRI 1.72) was fastest at 10 degrees C compared with the other fungi. It was also the most pathogenic of three isolates tested against Aphis fabae Scopoli and Myzus persicae Sulzer at 10, 18 and 23 degrees C. Generally, A fabae was more susceptible than M persicae to infection by the fungal isolates tested. A significant interaction between aphid species and temperature indicated that the pathogenic nature of an isolate was dependent not only on the target aphid species but also the temperature conditions of the bioassay. The series of studies, detailed above, allowed a temperature profile to be formed for the different isolates. Verticillium lecanii isolate HRI 1.72 (commercialised as Vertalec) was the most promising isolate selected from results of the series of experiments. Temperature profiles in conjunction with infectivity assays can be useful in selecting appropriate isolates for a particular thermal environment.
Wang, Zheng; Mu, Hong-Jie; Zhang, Xue-Mei; Ma, Peng-Kai; Lian, Sheng-Nan; Zhang, Feng-Pu; Chu, Sheng-Ying; Zhang, Wen-Wen; Wang, Ai-Ping; Wang, Wen-Yan; Sun, Kao-Xiang
2015-01-01
Background Rotigotine is a potent and selective D1, D2, and D3 dopaminergic receptor agonist. Due to an extensive first-pass effect, it has a very low oral bioavailability (approximately 0.5% in rats). Purpose The present investigation aimed to develop a microemulsion-based hydrogel for transdermal rotigotine delivery with lower application site reactions. Methods Pseudoternary phase diagrams were constructed to determine the region of oil in water (o/w)-type microemulsion. Central composite design was used to support the pseudoternary phase diagrams and to select homogeneous and stable microemulsions with an optimal amount of rotigotine permeation within 24 hours. In vitro skin permeation experiments were performed, using Franz diffusion cells, to compare rotigotine-loaded microemulsions with rotigotine solutions in oil. The optimized formulation was used to prepare a microemulsion-based hydrogel, which was subjected to bioavailability and skin irritancy studies. Results The selected formulations of rotigotine-loaded microemulsions had enhanced flux and permeation coefficients compared with rotigotine in oil. The optimum microemulsion contained 68% water, 6.8% Labrafil®, 13.44% Cremophor® RH40, 6.72% Labrasol®, and 5.04% Transcutol® HP; the drug-loading rate was 2%. To form a microemulsion gel, 1% Carbomer 1342 was added to the microemulsion. The bioavailability of the rotigotine-loaded microemulsion gel was 105.76%±20.52% with respect to the marketed rotigotine patch (Neupro®). The microemulsion gel irritated the skin less than Neupro. Conclusion A rotigotine microemulsion-based hydrogel was successfully developed, and an optimal formulation for drug delivery was identified. This product could improve patient compliance and have broad marketability. PMID:25609965
Wang, Yu; Yi, Xiao-Dong; Li, Chun-De
2017-02-01
To investigate the role of mTOR signaling pathway in bone marrow mesenchymal stem cells (BMSCs) differentiation into osteoblast in degenerative scoliosis (DS). The rat model of DS was established. Thirty-two Sprague-Dawley (SD) rats were selected and divided into the normal control group, the positive control group (normal rats injected with rapamycin), the negative control group (DS rats injected with PBS) and the experiment group (DS rats injected with rapamycin). H&E staining was performed to observe the osteogenesis of scoliosis. The BMSCs were obtained and assigned into seven groups: the normal control group, the positive control group, the negative control group and 1.0/10.0/100.0/1000.0 nmol/L experiment groups. Flow cytometry was conducted to testify cell cycle. The mRNA and protein expressions of mTOR and osteoblastic differentiation markers were measured by qRT-PCR and western blotting. In vivo, compared with the negative control group, bone trabecular area and the number of differentiated bone cells were significantly increased in the experiment groups. In vitro, at 24 and 48 h after rapamycin treatment, compared with the negative control group, BMSCs at G0/G1 stage increased, but BMSCs at S stage decreased in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups; the expressions of mTOR and p70-S6K1 proteins were reduced in the 1.0/10.0/100.0/1000.0 nmol/L experiment groups, while ALP activity, OC levels, calcium deposition, Co1-I protein expression and the mRNA expressions of OC and Co1-I were significantly increased. Suppression of mTOR signaling pathway by rapamycin could promote BMSCs differentiation into osteoblast in DS.
Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions.
Yu, Hailong; Huang, Qingrong
2012-05-30
Curcumin is a natural bioactive compound with many health-promoting benefits. Its low oral bioavailability limits its application in functional foods. In the present study, novel organogel-based nanoemulsions have been developed for oral delivery of curcumin and improvement of its bioavailability. Recently developed curcumin organogel was used as the oil phase in the curcumin nanoemulsion formulation. Tween 20 was selected as the emulsifier on the basis of maximum in vitro bioaccessibility of curcumin in the nanoemulsion. In vitro lipolysis profile revealed that the digestion of nanoemulsion was significantly faster and more complete than the organogel. Permeation experiments on Caco-2 cell monolayers suggested that digestion-diffusion was the major absorption mechanism for curcumin in the nanoemulsion. Furthermore, in vivo pharmacokinetics analysis on mice confirmed that the oral bioavailability of curcumin in the nanoemulsion was increased by 9-fold compared with unformulated curcumin. This novel formulation approach may also be used for oral delivery of other poorly soluble nutraceuticals with high loading capacity, which has significant impact in functional foods, dietary supplements and pharmaceutical industries.
Dréau, Didier; Moore, Laura Jeffords; Alvarez-Berrios, Merlis P.; Tarannum, Mubin; Mukherjee, Pinku; Vivero-Escoto, Juan L.
2017-01-01
Mucin-1 (MUC1), a transmembrane glycoprotein is aberrantly expressed on ~90% of breast cancer and is an excellent target for nanoparticulate targeted imaging. In this study, the development of a dye-doped NIR emitting mesoporous silica nanoparticles platform conjugated to tumor-specific MUC1 antibody (ab-tMUC1-NIR-MSN) for in vivo optical detection of breast adenocarcinoma tissue is reported. The structural properties, the in vitro and in vivo performance of this nanoparticle-based probe were evaluated. In vitro studies showed that the MSN-based optical imaging nanoprobe is non-cytotoxic and targets efficiently mammary cancer cells overexpressing human tMUC1 protein. In vivo experiments with female C57BL/6 mice indicated that this platform accumulates mainly in the liver and did not induce short-term toxicity. In addition, we demonstrated that the ab-tMUC1-NIR-MSN nanoprobe specifically detects mammary gland tumors overexpressing human tMUC1 in a human MUC1 transgenic mouse model. PMID:28522938
Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay.
Xu, Ruodan; Feyeux, Maxime; Julien, Stéphanie; Nemes, Csilla; Albrechtsen, Morten; Dinnyés, Andras; Krause, Karl-Heinz
2014-05-01
Differentiation of pluripotent stem cells, PSCs, towards neural lineages has attracted significant attention, given the potential use of such cells for in vitro studies and for regenerative medicine. The present experiments were designed to identify bioactive peptides which direct PSC differentiation towards neural cells. Fifteen peptides were designed based on NCAM, FGFR, and growth factors sequences. The effect of peptides was screened using a mouse embryonic stem cell line expressing luciferase dual reporter construct driven by promoters for neural tubulin and for elongation factor 1. Cell number was estimated by measuring total cellular DNA. We identified five peptides which enhanced activities of both promoters without relevant changes in cell number. We selected the two most potent peptides for further analysis: the NCAM-derived mimetic FGLL and the synthetic NCAM ligand, Plannexin. Both compounds induced phenotypic neuronal differentiation, as evidenced by increased neurite outgrowth. In summary, we used a simple, but sensitive screening approach to identify the neurogenic peptides. These peptides will not only provide new clues concerning pathways of neurogenesis, but they may also be interesting biotechnology tools for in vitro generation of neurons.
Rogers, Hunter B.; Anani, Tareq; Choi, Young Suk; Beyers, Ronald J.; David, Allan E.
2015-01-01
Realizing the full potential of magnetic nanoparticles (MNPs) in nanomedicine requires the optimization of their physical and chemical properties. Elucidation of the effects of these properties on clinical diagnostic or therapeutic properties, however, requires the synthesis or purification of homogenous samples, which has proved to be difficult. While initial simulations indicated that size-selective separation could be achieved by flowing magnetic nanoparticles through a magnetic field, subsequent in vitro experiments were unable to reproduce the predicted results. Magnetic field-flow fractionation, however, was found to be an effective method for the separation of polydisperse suspensions of iron oxide nanoparticles with diameters greater than 20 nm. While similar methods have been used to separate magnetic nanoparticles before, no previous work has been done with magnetic nanoparticles between 20 and 200 nm. Both transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis were used to confirm the size of the MNPs. Further development of this work could lead to MNPs with the narrow size distributions necessary for their in vitro and in vivo optimization. PMID:26307980
An integrated biochemistry and genetics outreach program designed for elementary school students.
Ross, Eric D; Lee, Sarah K; Radebaugh, Catherine A; Stargell, Laurie A
2012-02-01
Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.
In vitro gametogenesis: just another way to have a baby?
Suter, Sonia M.
2015-01-01
Advances in science have made possible the derivation of reproductively viable gametes in vitro from mice. The research on human cells suggests that in vitro gametogenesis (“IVG”) with reproductive potential may one day be possible with humans. This technology would allow same-sex couples to have children who are biologically related to both of them; allow single individuals to procreate without the genetic contribution of another individual; and facilitate “multiplex” parenting, where groups of more than two individuals procreate together, producing children who are the genetic progeny of them all. IVG could also make prenatal selection a much more refined and comprehensive process than it is today, allowing for the selection of embryos on the basis of multiple factors. Evaluating IVG under a relational autonomy framework, this article argues that the potential benefits or harms of IVG depend on the social, scientific, and legal context in which it is situated and how it is used. It concludes that IVG is preferable to some forms of assisted reproductive technologies in certain instances and substantially more problematic in others. Finally, it suggests that its capacity to “perfect” prenatal selection in many ways exacerbates the problematic aspects of increasingly expansive prenatal selection. PMID:27774234
Foot and mouth disease vaccine strain selection: Current approaches and future perspectives.
Mahapatra, Mana; Parida, Satya
2018-06-27
Lack of cross protection between foot and mouth disease (FMD) virus (FMDV) serotypes as well as incomplete protection between some subtypes of FMDV affect the application of vaccine in the field. Further, the emergence of new variant FMD viruses periodically makes the existing vaccine inefficient. Consequently, periodical vaccine strain selection either by in vivo methods or in vitro methods become an essential requirement to enable utilisation of appropriate and efficient vaccines. Areas covered: Here we describe the cross reactivity of the existing vaccines with the global pool of circulating viruses and the putative selected vaccine strains for targeting protection against the two major circulating serotype O and A FMD viruses for East Africa, the Middle East, South Asia and South East Asia. Expert Commentary: Although in vivo cross protection studies are more appropriate methods for vaccine matching and selection than in vitro neutralisation test or ELISA, in the face of an outbreak both in vivo and in vitro methods of vaccine matching are not easy, and time consuming. The FMDV capsid contains all the immunogenic epitopes, and therefore vaccine strain prediction models using both capsid sequence and serology data will likely replace existing tools in the future.
In Vitro Methods To Measure Toxicity Of Chemicals
2004-12-01
industrial compounds for toxicity will require high-throughput in vitro assays with which to select candidate compounds for more intensive animal...for estimating the starting dose for the rat oral acute toxicity test, thus reducing and refining the use of animals in the toxicological
2013-01-01
β-Adrenoceptor antagonists boast a 50-year use for symptomatic control in numerous cardiovascular diseases. One might expect highly selective antagonists are available for the human β-adrenoceptor subtype involved in these diseases, yet few truly β1-selective molecules exist. To address this clinical need, we re-evaluated LK 204-545 (1),1 a selective β1-adrenoceptor antagonist, and discovered it possessed significant partial agonism. Removal of 1’s aromatic nitrile afforded 19, a ligand with similar β1-adrenoceptor selectivity and partial agonism (log KD of −7.75 and −5.15 as an antagonist of functional β1- and β2-mediated responses, respectively, and 34% of the maximal response of isoprenaline (β1)). In vitro β-adrenoceptor selectivity and partial agonism of 19 were mirrored in vivo. We designed analogues of 19 to improve affinity, selectivity, and partial agonism. Although partial agonism could not be fully attenuated, SAR suggests that an extended alkoxyalkoxy side chain, alongside substituents at the meta- or para-positions of the phenylurea, increases ligand affinity and β1-selectivity. PMID:23614528
Antileishmanial pharmacomodulation in 8-nitroquinolin-2(1H)-one series.
Kieffer, Charline; Cohen, Anita; Verhaeghe, Pierre; Paloque, Lucie; Hutter, Sébastien; Castera-Ducros, Caroline; Laget, Michèle; Rault, Sylvain; Valentin, Alexis; Rathelot, Pascal; Azas, Nadine; Vanelle, Patrice
2015-05-15
An antileishmanial pharmacomodulation at position 4 of 8-nitroquinolin-2(1H)-one was conducted by using the Sonogashira and Suzuki-Miyaura coupling reactions. A series of 25 derivatives was tested in vitro on the promastigote stage of Leishmania donovani along with an in vitro cytotoxicity evaluation on the human HepG2 cell line. Only the derivatives bearing a phenyl moiety at position 4 of the quinoline ring displayed interesting biologic profile, when the phenyl moiety was substituted at the para position by a Br or Cl atom, or by a CF3 group. Among them, molecules 17 and 19 were the most selective and were then tested in vitro on the intracellular amastigote stage of both L. donovani and Leishmania infantum, in parallel with complementary in vitro cytotoxicity assays on the macrophage cell lines THP-1 and J774A.1. Molecule 19 showed no activity on the amastigote stages of the parasites and some cytotoxicity on the J774A.1 cell line while molecule 17, less cytotoxic than 19, showed anti-amastigote activity in L. infantum, being 3 times less active than miltefosine but more active and selective than pentamidine. Nevertheless, hit-molecule 17 did not appear as selective as the parent compound. Copyright © 2015 Elsevier Ltd. All rights reserved.
Jones, Emma S; Del Borgo, Mark P; Kirsch, Julian F; Clayton, Daniel; Bosnyak, Sanja; Welungoda, Iresha; Hausler, Nicholas; Unabia, Sharon; Perlmutter, Patrick; Thomas, Walter G; Aguilar, Marie-Isabel; Widdop, Robert E
2011-03-01
Novel AT(2)R ligands were designed by substituting individual β-amino acid in the sequence of the native ligand angiotensin II (Ang II). Relative ATR selectivity and functional vascular assays (in vitro AT(2)R-mediated vasorelaxation and in vivo vasodepressor action) were determined. In competition binding experiments using either AT(1)R- or AT(2)R- transfected HEK-293 cells, only β-Asp(1)-Ang II and Ang II fully displaced [(125)I]-Ang II from AT(1)R. In contrast, β-substitutions at each position of Ang II exhibited AT(2)R affinity, with β-Tyr(4)-Ang II and β-Ile(5)-Ang II exhibiting ≈ 1000-fold AT(2)R selectivity. In mouse aortic rings, β-Tyr(4)-Ang II and β-Ile(5)-Ang II evoked vasorelaxation that was sensitive to blockade by the AT(2)R antagonist PD123319 and the nitric oxide synthase inhibitor L-NAME. When tested with a low level of AT(1)R blockade, β-Ile(5)-Ang II (15 pmol/kg per minute IV for 4 hours) reduced blood pressure (BP) in conscious spontaneously hypertensive rats (β-Ile(5)-Ang II plus candesartan, -24 ± 4 mm Hg) to a greater extent than candesartan alone (-11 ± 3 mm Hg, n=7, P<0.05), an effect that was abolished by concomitant PD123319 infusion. However, in an identical experimental protocol, β-Tyr(4)-Ang II had no influence on BP (n=10), and it was less stable than β-Ile(5)-Ang II in plasma stability assays. Thus, this study demonstrated that a single β-amino acid substitution resulted in a compound that demonstrated both in vitro vasorelaxation and in vivo depressor activity via AT(2)R. This approach to the design and synthesis of novel AT(2)R-selective peptidomimetics shows great potential to provide insight into AT(2)R function.
Rafehi, Muhammad; Burbiel, Joachim C; Attah, Isaac Y; Abdelrahman, Aliaa; Müller, Christa E
2017-03-01
The G q protein-coupled, ATP- and UTP-activated P2Y 2 receptor is a potential drug target for a range of different disorders, including tumor metastasis, inflammation, atherosclerosis, kidney disorders, and osteoporosis, but pharmacological studies are impeded by the limited availability of suitable antagonists. One of the most potent and selective antagonists is the thiouracil derivative AR-C118925. However, this compound was until recently not commercially available and little is known about its properties. We therefore developed an improved procedure for the synthesis of AR-C118925 and two derivatives to allow up-scaling and assessed their potency in calcium mobilization assays on the human and rat P2Y 2 receptors recombinantly expressed in 1321N1 astrocytoma cells. The compound was further evaluated for inhibition of P2Y 2 receptor-induced β-arrestin translocation. AR-C118925 behaved as a competitive antagonist with pA 2 values of 37.2 nM (calcium assay) and 51.3 nM (β-arrestin assay). Selectivity was assessed vs. related receptors including P2X, P2Y, and adenosine receptor subtypes, as well as ectonucleotidases. AR-C118925 showed at least 50-fold selectivity against the other investigated targets, except for the P2X1 and P2X3 receptors which were blocked by AR-C118925 at concentrations of about 1 μM. AR-C118925 is soluble in buffer at pH 7.4 (124 μM) and was found to be metabolically highly stable in human and mouse liver microsomes. In Caco2 cell experiments, the compound displayed moderate permeability indicating that it may show limited peroral bioavailability. AR-C118925 appears to be a useful pharmacological tool for in vitro and in vivo studies.
Lagojda, Andreas; Kuehne, Dirk; Krug, Oliver; Thomas, Andreas; Wigger, Tina; Karst, Uwe; Schänzer, Wilhelm; Thevis, Mario
2016-01-01
Research into developing anabolic agents for various therapeutic purposes has been pursued for decades. As the clinical utility of anabolic-androgenic steroids has been found to be limited because of their lack of tissue selectivity and associated off-target effects, alternative drug entities have been designed and are commonly referred to as selective androgen receptor modulators (SARMs). While most of these SARMs are of nonsteroidal structure, the drug candidate MK-0773 comprises a 4-aza-steroidal nucleus. Besides the intended therapeutic use, SARMs have been found to be illicitly distributed and misused as doping agents in sport, necessitating frequently updated doping control analytical assays. As steroidal compounds reportedly undergo considerable metabolic transformations, the phase-I metabolism of MK-0773 was simulated using human liver microsomal (HLM) preparations and electrochemical conversion. Subsequently, major metabolic products were identified and characterized employing liquid chromatography-high-resolution/high- accuracy tandem mass spectrometry with electrospray (ESI) and atmospheric pressure chemical ionization (APCI) as well as nuclear magnetic resonance (NMR) spectroscopy. MK-0773 produced numerous phase-I metabolites under the chosen in vitro incubation reactions, mostly resulting from mono- and bisoxygenation of the steroid. HLM yielded at least 10 monooxygenated species, while electrochemistry-based experiments resulted predominantly in three monohydroxylated metabolites. Elemental composition data and product ion mass spectra were generated for these analytes, ESI/APCI measurements corroborated the formation of at least two N-oxygenated metabolites, and NMR data obtained from electrochemistry-derived products supported structures suggested for three monohydroxylated compounds. Hereby, the hydroxylation of the A-ring located N- bound methyl group was found to be of particular intensity. In the absence of controlled elimination studies, the produced information enables the implementation of new target analytes into routine doping controls and expands the focus of anti-doping efforts concerning this new anabolic agent.
Marrazzo, Pasquale; Paduano, Francesco; Palmieri, Francesca; Marrelli, Massimo; Tatullo, Marco
2016-01-01
Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H 2 O 2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use.
Palmieri, Francesca; Marrelli, Massimo
2016-01-01
Dental pulp is an accessible source of multipotent mesenchymal stromal cells (MSCs). The perspective role of dental pulp stem cells (DPSCs) in regenerative medicine demands an in vitro expansion and in vivo delivery which must deal with the safety issues about animal serum, usually required in cell culture practice. Human platelet lysate (PL) contains autologous growth factors and has been considered as valuable alternative to fetal bovine serum (FBS) in cell cultures. The optimum concentration to be added of such supplement is highly dependent on its preparation whose variability limits comparability of results. By in vitro experiments, we aimed to evaluate a standardised formulation of pooled PL. A low selected concentration of PL (1%) was able to support the growth and maintain the viability of the DPSCs. The use of PL in cell cultures did not impair cell surface signature typically expressed by MSCs and even upregulated the transcription of Sox2. Interestingly, DPSCs cultured in presence of PL exhibited a higher healing rate after injury and are less susceptible to toxicity mediated by exogenous H2O2 than those cultured with FBS. Moreover, PL addition was shown as a suitable option for protocols promoting osteogenic and chondrogenic differentiation of DPSCs. Taken together, our results indicated that PL is a valid substitute of FBS to culture and differentiate DPSCs for clinical-grade use. PMID:27774106
Newberry, Kim; Wang, Shuya; Hoque, Nina; Kiss, Laszlo; Ahlijanian, Michael K.; Herrington, James
2016-01-01
In vitro phenotypic assays of sensory neuron activity are important tools for identifying potential analgesic compounds. These assays are typically characterized by hyperexcitable and/or abnormally, spontaneously active cells. Whereas manual electrophysiology experiments provide high-resolution biophysical data to characterize both in vitro models and potential therapeutic modalities (e.g., action potential characteristics, the role of specific ion channels, and receptors), these techniques are hampered by their low throughput. We have established a spontaneously active dorsal root ganglia (DRG) platform using multiwell multielectrode arrays (MEAs) that greatly increase the ability to evaluate the effects of multiple compounds and conditions on DRG excitability within the context of a cellular network. We show that spontaneous DRG firing can be attenuated with selective Na+ and Ca2+ channel blockers, as well as enhanced with K+ channel blockers. In addition, spontaneous activity can be augmented with both the transient receptor potential cation channel subfamily V member 1 agonist capsaicin and the peptide bradykinin and completely blocked with neurokinin receptor antagonists. Finally, we validated the use of this assay by demonstrating that commonly used neuropathic pain therapeutics suppress DRG spontaneous activity. Overall, we have optimized primary rat DRG cells on a multiwell MEA platform to generate and characterize spontaneously active cultures that have the potential to be used as an in vitro phenotypic assay to evaluate potential therapeutics in rodent models of pain. PMID:27052585
Qi, Xiaole; Gao, Xiang; Lu, Zhen; Zhang, Lizhou; Wang, Yongqiang; Gao, Li; Gao, Yulong; Li, Kai; Gao, Honglei; Liu, Changjun; Cui, Hongyu; Zhang, Yanping; Wang, Xiaomei
2016-07-01
To test whether amino acid mutations in the PBC and PHI loops of VP2 are involved in the replication and virulence of infectious bursal disease virus (IBDV), a pair of viruses, namely the moderately virulent IBDV (rGx-F9VP2) and the attenuated strain (rGt), were used. Residue mutations A222P (PBC) and S330R (PHI), selected by sequence comparison, were introduced individually into rGx-F9VP2 by using a reverse genetics system. In addition, the reverse mutation of either P222A or R330S was introduced into rGt. The four modified viruses were then rescued and evaluated in vitro (CEF cells) and in vivo (SPF chickens). Results showed that A222P elevated the replication efficiency of rGx-F9VP2 while P222A reduced that of rGt in CEF cells. A mutation at residue 330 did not alter IBDV replication. In addition, animal experiments showed that a single mutation at either residue 222 or 330 did not significantly influence the virulence of IBDV. In conclusion, residue 222 in PBC of VP2 is involved in the replication efficiency of IBDV in vitro but does not affect its virulence in vivo, further facilitating our understanding of the gene-function of IBDV.
Transbuccal peptide delivery: stability and in vitro permeation studies on endomorphin-1.
Bird, A P; Faltinek, J R; Shojaei, A H
2001-05-18
The purpose of this study was to investigate the feasibility of buccal delivery of a model peptide, endomorphin-1 (ENI), using stability and in vitro permeation studies. ENI is a recently isolated mu-opiate receptor agonist with high selectivity and specificity for this receptor subtype. Stability studies were conducted in various buffers and the drug was shown to be stable in both acidic and basic buffer systems. In the presence of full thickness porcine buccal epithelium, ENI was unstable with only 23.4+/-15.7% intact drug present after 6 h. The region responsible for this degradation was found to coincide with the major barrier region of the buccal epithelium as delineated through stability experiments in the presence of partial thickness buccal epithelium. Various peptidase inhibitors were used to isolate the enzyme(s) responsible for this degradation. Diprotin-A, a potent inhibitor of dipeptidyl peptidase IV, provided significant inhibition of the degradation of ENI in the presence of buccal epithelium. In vitro permeation studies revealed that the permeability coefficient of ENI across porcine buccal epithelium was 5.67+/-4.74x10(-7) cm/s. The enzymatic degradation of ENI was found not to be rate limiting to the drug's permeation across buccal epithelium, as diprotin-A did not increase the permeation of ENI. Sodium glycocholate as well as sodium taurocholate were also ineffective in enhancing the permeation of ENI across porcine buccal epithelium.
At the Crossroads of Nanotoxicology: Past Achievements and Current Challenges
2015-01-01
rates of ionic dissolution, improving in vitro to in vivo predictive efficiencies, and establishing safety exposure limits. This Review will discuss...Oberdörster et al., 2005a), which drove the focus of in vitro and in vivo model selection to accommodate these areas of higher NM exposure. Most...Accordingly, a current challenge is the design of simple, in vitro models that reliably predict in vivo effects following a NM challenge. In order
Lepoittevin, Camille; Frigerio, Jean-Marc; Garnier-Géré, Pauline; Salin, Franck; Cervera, María-Teresa; Vornam, Barbara; Harvengt, Luc; Plomion, Christophe
2010-01-01
Background There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C). Methodology/Principal Findings A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates). Conclusions/Significance This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome. PMID:20543950
Chakraborty, Antara; Miyahara, Satoshi; Villanueva, Sharon Y. A. M.; Gloriani, Nina G.; Yoshida, Shin-ichi
2010-01-01
The in vitro susceptibilities of 46 Leptospira isolates from rats to 14 antimicrobial agents were tested. All of the strains were found to be sensitive to ampicillin, cefotaxime, ciprofloxacin, norfloxacin, doxycycline, erythromycin, and streptomycin. In contrast, the tested isolates showed resistance to amphotericin B, 5-fluorouracil, fosfomycin, trimethoprim, sulfamethoxazole, neomycin, and vancomycin. These findings will help in selecting effective and ineffective antimicrobials for treatment of leptospirosis and for the development of new selective media, respectively. PMID:20855741
From Cell to Beak: In-Vitro and In-Vivo Characterization of Chicken Bitter Taste Thresholds.
Cheled-Shoval, Shira; Behrens, Maik; Korb, Ayelet; Di Pizio, Antonella; Meyerhof, Wolfgang; Uni, Zehava; Niv, Masha Y
2017-05-17
Bitter taste elicits an aversive reaction, and is believed to protect against consuming poisons. Bitter molecules are detected by the Tas2r family of G-protein-coupled receptors, with a species-dependent number of subtypes. Chickens demonstrate bitter taste sensitivity despite having only three bitter taste receptors-ggTas2r1, ggTas2r2 and ggTas2r7. This minimalistic bitter taste system in chickens was used to determine relationships between in-vitro (measured in heterologous systems) and in-vivo (behavioral) detection thresholds. ggTas2r-selective ligands, nicotine (ggTas2r1), caffeine (ggTas2r2), erythromycin and (+)-catechin (ggTas2r7), and the Tas2r-promiscuous ligand quinine (all three ggTas2rs) were studied. Ligands of the same receptor had different in-vivo:in-vitro ratios, and the ggTas2r-promiscuous ligand did not exhibit lower in-vivo:in-vitro ratios than ggTas2r-selective ligands. In-vivo thresholds were similar or up to two orders of magnitude higher than the in-vitro ones.
Kerr, Karen P; Thai, Binh; Coupar, Ian M
2000-01-01
The tachykinin receptor present in the guinea-pig oesophageal mucosa that mediates contractile responses of the muscularis mucosae has been characterized, using functional in vitro experiments. The NK1 receptor-selective agonist, [Sar9(O2)Met11]SP and the NK3 receptor-selective agonists, [MePhe7]-NKB and senktide, produced no response at submicromolar concentrations. The NK2 receptor-selective agonists, [Nle10]-NKA(4–10), and GR 64,349 produced concentration-dependent contractile effects with pD2 values of 8.20±0.16 and 8.30±0.15, respectively. The concentration-response curve to the non-selective agonist, NKA (pD2=8.13±0.04) was shifted significantly rightwards only by the NK2 receptor-selective antagonist, GR 159,897 and was unaffected by the NK1 receptor-selective antagonist, SR 140,333 and the NK3 receptor-selective antagonist, SB 222,200. The NK2 receptor-selective antagonist, GR 159,897, exhibited an apparent competitive antagonism against the NK2 receptor-selective agonist, GR 64,349 (apparent pKB value=9.29±0.16) and against the non-selective agonist, NKA (apparent pKB value=8.71±0.19). The NK2 receptor-selective antagonist, SR 48,968 exhibited a non-competitive antagonism against the NK2 receptor-selective agonist, [Nle10]-NKA(4–10). The pKB value was 10.84±0.19. It is concluded that the guinea-pig isolated oesophageal mucosa is a useful preparation for studying the effects of NK2 receptor-selective agonists and antagonists as the contractile responses to various tachykinins are mediated solely by NK2 receptors. PMID:11090121
Rodríguez Villamil, P; Wei, H; Moreira, G; Caccia, M; Fernandez Taranco, M; Bó, G A
2012-07-01
The aim of this study was to evaluate sperm fertilization rates and in vitro embryo development rates for sexed and non-sexed semen selected using a silane-coated silica colloid method (Isolate) or Percoll. Frozen/thawed, sexed and unsexed semen samples from four Holstein bulls were randomly allocated to one of two different density gradient selection methods. Sperm quality (motility, concentration, morphology and membrane integrity) were evaluated and compared before and after sperm selection. Sperm motility and morphology improved (P < 0.005) after the sperm selection process with no differences between the two methods. For non-sexed semen, Percoll gradient increased the mean (± SEM) percentage of sperm recovered (57.3 ± 2.8) compared to Isolate (46.0 ± 1.8; P < 0.01). However, membrane integrity was higher after Isolate than Percoll (sexed semen: 41.0 ± 0.6 vs. 38.8 ± 0.8 and non-sexed semen 60.8 ± 1.6 vs. 58.8 ± 0.5; P < 0.05). The percentage of blastocysts produced was higher when either sexed or non-sexed semen was selected by Isolate (14.0 ± 1.0; 22.0 ± 1.1) than by Percoll (10.5 ± 1.5; 17.0 ± 2.1, respectively; P < 0.05). In summary, Isolate was a more effective method for the recovery of high quality sperm for in vitro fertilization embryo production. Copyright © 2012 Elsevier Inc. All rights reserved.
Silva, Sandra; Garcia-Aloy, Mar; Figueira, Maria Eduardo; Combet, Emilie; Mullen, William; Bronze, Maria Rosário
2018-01-01
Phenolic compounds are minor components of extra virgin olive oil (EVOO). Secoiridoids are the major components contributing to the phenolic content of EVOO. Information is lacking regarding their potential as biomarkers for EVOO intake. Healthy volunteers (n = 9) ingested 50 mL of EVOO in a single dose containing 322 mg kg -1 total phenolic content (caffeic acid equivalents) and 6 mg 20 g -1 hydroxytyrosol and its derivatives. Plasma is collected before (0 h) and at 0.5, 1, 2, 4, and 6 h after ingestion. Urine samples are collected prior to ingestion (0 h) and at 0-4, 4-8, 8-15, and 15-24 h. Samples are analyzed by UPLC coupled with an Exactive Orbitrap MS. Partial least squares discriminant analysis with orthogonal signal correction is applied to screen for metabolites that allow sample discrimination. Plasma biomarkers and urine biomarkers are selected although individual variability is observed among volunteers. Results are in accordance with in vitro experiments performed (in vitro digestion and hepatic microsomal activity assays). Plasma (elenolic acid + H 2 ; p-HPEA-EA + H 2 + glucuronide) and urinary (3,4-DHPEA-EA, 3,4-DHPEA-EA + H 2 +glucuronide, methyl 3,4-DHPEA-EA + H 2 +glucuronide) secoiridoid compounds are selected as biomarkers to monitor EVOO intake showing good predictive ability according to multivariate analysis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fukuda, Shinichi; Okuda, Kensuke; Kishino, Genichiro; Hoshi, Sujin; Kawano, Itsuki; Fukuda, Masahiro; Yamashita, Toshiharu; Beheregaray, Simone; Nagano, Masumi; Ohneda, Osamu; Nagasawa, Hideko; Oshika, Tetsuro
2016-12-01
Retinal hypoxia plays a crucial role in ocular neovascular diseases, such as diabetic retinopathy, retinopathy of prematurity, and retinal vascular occlusion. Fluorescein angiography is useful for identifying the hypoxia extent by detecting non-perfusion areas or neovascularization, but its ability to detect early stages of hypoxia is limited. Recently, in vivo fluorescent probes for detecting hypoxia have been developed; however, these have not been extensively applied in ophthalmology. We evaluated whether a novel donor-excited photo-induced electron transfer (d-PeT) system based on an activatable hypoxia-selective near-infrared fluorescent (NIRF) probe (GPU-327) responds to both mild and severe hypoxia in various ocular ischemic diseases animal models. The ocular fundus examination offers unique opportunities for direct observation of the retina through the transparent cornea and lens. After injection of GPU-327 in various ocular hypoxic diseases of mouse and rabbit models, NIRF imaging in the ocular fundus can be performed noninvasively and easily by using commercially available fundus cameras. To investigate the safety of GPU-327, electroretinograms were also recorded after GPU-327 and PBS injection. Fluorescence of GPU-327 increased under mild hypoxic conditions in vitro. GPU-327 also yielded excellent signal-to-noise ratio without washing out in vivo experiments. By using near-infrared region, GPU-327 enables imaging of deeper ischemia, such as choroidal circulation. Additionally, from an electroretinogram, GPU-327 did not cause neurotoxicity. GPU-327 identified hypoxic area both in vivo and in vitro.
Mei, Hui; Liao, Jen-Yu; Jimenez, Randi M; Wang, Yajun; Bala, Saikat; McCloskey, Cailen; Switzer, Christopher; Chaput, John C
2018-05-02
In vitro selection experiments carried out on artificial genetic polymers require robust and faithful methods for copying genetic information back and forth between DNA and xeno-nucleic acids (XNA). Previously, we have shown that Kod-RI, an engineered polymerase developed to transcribe DNA templates into threose nucleic acid (TNA), can function with high fidelity in the absence of manganese ions. However, the transcriptional efficiency of this enzyme diminishes greatly when individual templates are replaced with libraries of DNA sequences, indicating that manganese ions are still required for in vitro selection. Unfortunately, the presence of manganese ions in the transcription mixture leads to the misincorporation of tGTP nucleotides opposite dG residues in the templating strand, which are detected as G-to-C transversions when the TNA is reverse transcribed back into DNA. Here we report the synthesis and fidelity of TNA replication using 7-deaza-7-modified guanosine base analogues in the DNA template and incoming TNA nucleoside triphosphate. Our findings reveal that tGTP misincorporation occurs via a Hoogsteen base pair in which the incoming tGTP residue adopts a syn conformation with respect to the sugar. Substitution of tGTP for 7-deaza-7-phenyl tGTP enabled the synthesis of TNA polymers with >99% overall fidelity. A TNA library containing the 7-deaza-7-phenyl guanine analogue was used to evolve a biologically stable TNA aptamer that binds to HIV reverse transcriptase with low nanomolar affinity.
Karakucuk, Alptug; Celebi, Nevin; Teksin, Zeynep Safak
2016-12-01
The objective of this study was to prepare ritonavir (RTV) nanosuspensions, an anti-HIV protease inhibitor, to solve its poor water solubility issues. The microfluidization method with a pre-treatment step was used to obtain the nanosuspensions. Design of Experiment (DoE) approach was performed in order to understand the effect of the critical formulation parameters which were selected as polymer type (HPMC or PVP), RTV to polymer ratio, and number of passes. Interactions between the formulation variables were evaluated according to Univariate ANOVA. Particle size, particle size distribution and zeta potential were selected as dependent variables. Scanning electron microscopy, X-ray powder diffraction, and differential scanning calorimetry were performed for the in vitro characterization after lyophilization of the optimum nanosuspension formulation. The saturation solubility was examined in comparison with coarse powder, physical mixture and nanosuspension. In vitro dissolution studies were conducted using polyoxyethylene 10 lauryl ether (POE10LE) and biorelevant media (FaSSIF and FeSSIF). The results showed nanosuspensions were partially amorphous and spherically shaped with particle sizes ranging from 400 to 600nm. Moreover, 0.1-0.4 particle size distribution and about -20mV zeta potential values were obtained. The nanosuspension showed a significantly increased solubility when compared to coarse powder (3.5 fold). Coarse powder, physical mixture, nanosuspension and commercial product dissolved completely in POE10LE; however, cumulative dissolved values reached ~20% in FaSSIF for the commercial product and nanosuspension. The nanosuspension showed more than 90% drug dissolved in FeSSIF compared to the commercial product which showed ~50% in the same medium. It was determined that RTV dissolution was increased by nanosuspension formulation. We concluded that DoE approach is useful to develop nanosuspension formulation to improve solubility and dissolution rate of RTV. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Casey, Meghan E.
Stem cells are widely used in the area of tissue engineering. The ability of cells to interact with materials on the nano- and micro- level is important in the success of the biomaterial. It is well-known that cells respond to their micro- and nano-environments through a process termed chemo-mechanotransduction. It is important to establish standard protocols for cellular experiments, as chemical modifications to maintenance environments can alter long-term research results. In this work, the effects of different media compositions on human mesenchymal stem cells (hMSCs) throughout normal in vitro maintenance are investigated. Changes in RNA regulation, protein expression and proliferation are studied via quantitative polymerase chain reaction (qPCR), immunocytochemistry (ICC) and cell counts, respectively. Morphological differences are also observed throughout the experiment. Results of this study illustrate the dynamic response of hMSC maintenance to differences in growth medium and passage number. These experiments highlight the effect growth medium has on in vitro experiments and the need of consistent protocols in hMSC research. A substantial opportunity exists in neuronal research to develop a material platform that allows for both the proliferation and differentiation of stem cells into neurons and the ability to quantify the secretome of neuronal cells. Anodic aluminum oxide (AAO) membranes are fabricated in a two-step anodization procedure where voltage is varied to control the pore size and morphology of the membranes. C17.2 neural stem cells are differentiated on the membranes via serum-withdrawal. Cellular growth is characterized by scanning electron microscopy (SEM), ICC and qPCR. ImageJ software is used to obtain phenotypic cell counts and neurite outgrowth lengths. Results indicate a highly tunable correlation between AAO nanopore sizes and differentiated cell populations. By selecting AAO membranes with specific pore size ranges, control of neuronal network density and neurite outgrowth length is achievable. To understand differentiation marker expressions in C17.2 NSCs and how material stiffness affects differentiation, cells are cultured on substrates of varying stiffness. qPCR is used to analyze neural stem cell, neural progenitor cell, neuron-restricted progenitor and differentiated post-mitotic neuronal cell RNA expression. Results suggest a relationship between material stiffness and neuronal development in C17.2 neural stem cells.
Women's experience of pre-implantation genetic diagnosis: a qualitative study.
Karatas, J C; Barlow-Stewart, K; Strong, K A; Meiser, B; McMahon, C; Roberts, C
2010-08-01
To provide an in-depth account of the experience of pre-implantation genetic diagnosis (PGD). Exploratory qualitative interview study. Participants were recruited from one major in vitro fertilization (IVF) clinic in Sydney, Australia. Data were collected through 14 in-depth interviews with women at different stages of PGD, utilized a thematic approach and facilitated by NVivo software. Women reported using PGD as empowering and led them to feel in control of their reproductive futures. Health professionals who did not tell women about PGD were seen as a barrier to accessing treatment. The ability to select embryos free from the genetic condition (for which it was at risk) alleviated stress. Despite this, stress experienced with PGD was significant for women, and often related to past experiences of reproductive trauma and grief. The outcome of embryos was also the cause of stress for women. Women undergoing PGD have a diverse range of reproductive and genetic histories, psychosocial circumstances and world views that all interact and impact their experience of PGD. Successful support and care of these women should address all of these factors and tailor the support provided for women using this physically and emotionally complex form of reproductive technology. (c) 2010 John Wiley & Sons, Ltd.
NASA Technical Reports Server (NTRS)
Kimzey, S. L.; Burns, L. C.; Fischer, C. L.
1974-01-01
The significance of the transformations in red cell shape observed during the Skylab study must be considered relative to the limitation of man's participation in extended space flight missions. The results of this one study are not conclusive with respect to this question. Based on these examinations of red cells in normal, healthy men and based on other Skylab experiment data relative to the functional capacity of the red cells in vitro and the performance capacity of man as an integrated system, the changes observed would not appear to be the limiting factor in determining man's stay in space. However, the results of this experiment and the documented red cell mass loss during space flight raise serious questions at this time relative to the selection criteria utilized for passengers and crews of future space flights. Until the specific cause and impact of the red cell shape change on cell survival in vivo can be resolved, individuals with diagnosed hematologic abnormalities should not be considered as prime candidates for missions, especially those of longer duration.
Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.
Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min
2012-09-01
Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.
Nanotoxicology: in Vitro-in Vivo Dosimetry:Gangwal et al. Respond
We appreciate the letter from Oberdörster commenting on the importance of careful selection of in vitro doses for nanomaterial (NM) toxicity testing and his assessment of our article (Gangwal et al. 2011). Because the objective of our study was to use limited data on potential hu...
Screening larch in vitro for resistance to Mycosphaerella laricina
M.E. Ostry; Paula M. Pijut; D.D. Skilling
1991-01-01
Needle blight of larch caused by Mycosphaerella laricina seriously limits the productivity of susceptible trees in the north central and northeastern United States. Adventitious shoots, derived from cotyledon tissue culture, of selected European larch (Larix decidua) and a hybrid larch were inoculated in vitro with three isolates...
Ntovas, Panagiotis; Loubrinis, Nikolaos; Maniatakos, Panagiotis; Rahiotis, Christos
2018-01-01
Objectives: The objective of this study was to assess the effect of the operator's degree of clinical experience on the residual caries diagnosis through visual inspection and tactile sensation. Materials and Methods: The participants were asked about the years of their clinical practice, any further training concerning cariology, their familiarity with the minimal invasive philosophy, and the techniques that they use to remove dental caries and detect when to stop the removal of carious tissues. In addition, an in vitro diagnostic test was conducted. Carious teeth were excavated to a level selected in random. Teeth were examined by each participant individually. Initial examination was performed by visual inspection. Subsequently, a dental explorer was used concerning the potential need for further removal of dental tissues. A sample of 380 dentists and dental school students were selected for the purposes of this study. Results: Dental students presented statistically significant better sensitivity, than dentists from both age groups, during both visual inspection and tactile sensation of residual caries. Participants' ability to diagnose residual caries during cavity preparation was independent of their years of experience. Conclusions: During the removal of carious lesions, with the goal of limiting the sacrifice of healthy structures and the leftover of residual caries, clinicians should combine a selective removal technique and the attentive visual inspection, with at least one further diagnostic method, aside from the dental explorer. Tactile examination of residual caries solely with the dental explorer must be used with attention. PMID:29899636
Potential countersample materials for in vitro simulation wear testing.
Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M
2002-05-01
Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.
Mazzarino, Monica; Biava, Mariangela; de la Torre, Xavier; Fiacco, Ilaria; Botrè, Francesco
2013-06-01
The use of selective oestrogen receptor modulators has been prohibited since 2005 by the World Anti-Doping Agency regulations. As they are extensively cleared by hepatic and intestinal metabolism via oxidative and conjugating enzymes, a complete investigation of their biotransformation pathways and kinetics of excretion is essential for the anti-doping laboratories to select the right marker(s) of misuse. This work was designed to characterize the chemical reactions and the metabolizing enzymes involved in the metabolic routes of clomiphene, tamoxifen and toremifene. To determine the biotransformation pathways of the substrates under investigation, urine samples were collected from six subjects (three females and three males) after oral administration of 50 mg of clomiphene citrate or 40 mg of tamoxifen or 60 mg of toremifene, whereas the metabolizing enzymes were characterized in vitro, using expressed cytochrome P450s and uridine diphosphoglucuronosyltransferases. The separation, identification and determination of the compounds formed in the in vivo and in vitro experiments were carried out by liquid chromatography coupled with mass spectrometry techniques using different acquisition modes. Clomiphene, tamoxifen and toremifene were biotransformed to 22, 23 and 18 metabolites respectively, these phase I reactions being catalyzed mainly by CYP3A4 and CYP2D6 isoforms and, to a lesser degree, by CYP3A5, CYP2B6, CYP2C9, CYP2C19 isoforms. The phase I metabolic reactions include hydroxylation in different positions, N-oxidation, dehalogenation, carboxylation, hydrogenation, methoxylation, N-dealkylation and combinations of them. In turn, most of the phase I metabolites underwent conjugation reaction to form the corresponding glucuro-conjugated mainly by UGT1A1, UGT1A3, UGT1A4, UGT2B7, UGT2B15 and UGT2B17 isoenzymes.
The effect of pulsed IR-light on the rheological parameters of blood in vitro.
Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna
2014-01-01
In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.
Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S
2006-05-01
The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas
2017-01-01
ABSTRACT Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo. Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. PMID:28696229
NASA Technical Reports Server (NTRS)
Mozdziak, P. E.; Schultz, E.; Cassens, R. G.
1996-01-01
The effect of in vivo and in vitro irradiation on subsequent satellite cell growth, in vitro, was investigated to ascertain the ability of a 25 Gy dose to inhibit satellite cell proliferation. Satellite cells were isolated from the left (irradiated) and right (non-irradiated) Pectoralis thoracicus of two-week-old tom turkeys 16 h (n=3) and seven weeks (n=2) after the left Pectoralis thoracicus had been irradiated (25 Gy). Satellite cells isolated from the irradiated and non-irradiated muscles exhibited similar (P>0.10) in vitro proliferation indicating that a population of satellite cells survived an in vivo dose of 25 Gy. In additional experiments, satellite cell cultures derived from tom turkey Pectoralis thoracicus were irradiated (25 Gy) in vitro. The number of satellite cells did not (P>0.05) increase in irradiated cultures for 134 h following irradiation, while satellite cells in non-irradiated cultures proliferated (P<0.05) over this time. At later time periods, satellite cell number increased (P<0.05) in irradiated cultures indicating that a population of satellite cells survived irradiation. The results of these in vitro experiments suggest that a 25 Gy dose of irradiation does not abolish satellite cell divisions in the turkey Pectoralis thoracicus.
In vitro biotransformation rates in fish liver S9: effect of dosing techniques.
Lee, Yung-Shan; Lee, Danny H Y; Delafoulhouze, Maximilien; Otton, S Victoria; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2014-08-01
In vitro biotransformation assays are currently being explored to improve estimates of bioconcentration factors of potentially bioaccumulative organic chemicals in fish. The present study compares thin-film and solvent-delivery dosing techniques as well as single versus multiple chemical dosing for measuring biotransformation rates of selected polycyclic aromatic hydrocarbons in rainbow trout (Oncorhynchus mykiss) liver S9. The findings show that biotransformation rates of very hydrophobic substances can be accurately measured in thin-film sorbent-dosing assays from concentration-time profiles in the incubation medium but not from those in the sorbent phase because of low chemical film-to-incubation-medium mass-transfer rates at the incubation temperature of 13.5 °C required for trout liver assays. Biotransformation rates determined by thin-film dosing were greater than those determined by solvent-delivery dosing for chrysene (octanol-water partition coefficient [KOW ] =10(5.60) ) and benzo[a]pyrene (KOW =10(6.04) ), whereas there were no statistical differences in pyrene (KOW =10(5.18) ) biotransformation rates between the 2 methods. In sorbent delivery-based assays, simultaneous multiple-chemical dosing produced biotransformation rates that were not statistically different from those measured in single-chemical dosing experiments for pyrene and benzo[a]pyrene but not for chrysene. In solvent-delivery experiments, multiple-chemical dosing produced biotransformation rates that were much smaller than those in single-chemical dosing experiments for all test chemicals. While thin-film sorbent-phase and solvent delivery-based dosing methods are both suitable methods for measuring biotransformation rates of substances of intermediate hydrophobicity, thin-film sorbent-phase dosing may be more suitable for superhydrophobic chemicals. © 2014 SETAC.
Malo, C; Gil, L; Gonzalez, N; Martínez, F; Cano, R; de Blas, I; Espinosa, E
2010-08-01
Anti-oxidants partially ameliorated the detrimental effects of reactive oxidative substances produced during cryopreservation. The objective of the study was to determine the effect of anti-oxidant addition to the freezing extender on boar semen qualities and fertility capacity. Ejaculates were collected from a previously selected boar and semen samples were processed using the straw freezing procedure. In experiment 1, semen samples were cryopreserved in lactose-egg yolk solution supplemented with various concentrations of cysteine (0, 5 and 10mM) to determinate a cysteine concentration capable of producing a protective effect during cryopreservation. Semen quality (total motility, progressive motility, viability, acrosome integrity and hypoosmotic swelling test) was evaluated after freezing and thawing and then every hour for 3h. In experiment 2, ejaculates were cryopreserved with lactose-egg yolk extender with or without the following anti-oxidants: cysteine, rosemary (Rosmarinus officinalis) and cysteine plus rosemary. Semen quality was evaluated. In the experiment 3, fertility capacity of semen frozen in anti-oxidant supplementation extenders was examined in vitro. A total of 2232 oocytes were in vitro matured and inseminated with frozen-thawed sperm. In summary: (i) the effective concentration of cysteine in freezing extender was 10mM; (ii) the addition of exogenous rosemary or cysteine to the freezing extender positively affected post-thawed viability and acrosome integrity. Only rosemary supplementation improved total motility at 3h and progressive motility at any time; (iii) the inclusion of rosemary into the extender was effective in penetration and cleavage rate and also in the efficiency of the fertilization system. (c) 2010 Elsevier Inc. All rights reserved.
Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.
Tang, J; Breaker, R R
1997-01-01
We have designed a self-cleaving ribozyme construct that is rendered inactive during preparative in vitro transcription by allosteric interactions with ATP. This allosteric ribozyme was constructed by joining a hammerhead domain to an ATP-binding RNA aptamer, thereby creating a ribozyme whose catalytic rate can be controlled by ATP. Upon purification by PAGE, the engineered ribozyme undergoes rapid self-cleavage when incubated in the absence of ATP. This strategy of "allosteric delay" was used to prepare intact hammerhead ribozymes that would otherwise self-destruct during transcription. Using a similar strategy, we have prepared a combinatorial pool of RNA in order to assess the catalytic fitness of ribozymes that carry the natural consensus sequence for the hammerhead. Using in vitro selection, this comprehensive RNA pool was screened for sequence variants of the hammerhead ribozyme that also display catalytic activity. We find that sequences that comprise the core of naturally occurring hammerhead dominate the population of selected RNAs, indicating that the natural consensus sequence of this ribozyme is optimal for catalytic function. PMID:9257650
Su, Tsann-Juu; Tzeng, Ya-Ling; Kuo, Pi-Chao
2011-08-01
To compare the anxiety levels of Taiwanese women who continued with in vitro fertilisation treatment and those who discontinued treatment post-in vitro fertilisation failure. In vitro fertilisation is perceived as the last resort of infertility treatment. The impact of unsuccessful in vitro fertilisation treatment on psychological function has been documented; however, research comparing the levels of anxiety of women who cease and those who continue in vitro fertilisation post-failure is scant. A cross-sectional comparative study design was used. Fifty-eight women in whom in vitro fertilisation had failed within the previous year were recruited to this study from a medical centre in northern Taiwan; 34 women continued treatment and 24 discontinued treatment. The State-Trait Anxiety Inventory was used to assess their levels of anxiety. Women in the group who continued treatment exhibited higher state and trait anxiety (TA) than women in the group who discontinued treatment (p < 0·005). The number and frequency of in vitro fertilisation cycles were significantly higher in the group who continued treatment than in those who did not. A strong positive correlation between state and TA (r = 0·8, p < 0·01) existed in both groups. Both groups exhibited considerable levels of anxiety; however, the women who continued in vitro fertilisation treatment had higher levels of anxiety than those who discontinued treatment. The level of anxiety of women who decide to continue in vitro fertilisation treatment should be assessed as early as possible and counselling services provided to women who experience in vitro fertilisation failure should concentrate more on relieving psychological distress. One year after discontinuing treatment, some women still experience considerable anxiety; therefore, the care and assistance provided to these women need to be continually evaluated. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wikswo, John; Kolli, Aditya; Shankaran, Harish; Wagoner, Matthew; Mettetal, Jerome; Reiserer, Ronald; Gerken, Gregory; Britt, Clayton; Schaffer, David
Genetic, proteomic, and metabolic networks describing biological signaling can have 102 to 103 nodes. Transcriptomics and mass spectrometry can quantify 104 different dynamical experimental variables recorded from in vitro experiments with a time resolution approaching 1 s. It is difficult to infer metabolic and signaling models from such massive data sets, and it is unlikely that causality can be determined simply from observed temporal correlations. There is a need to design and apply specific system perturbations, which will be difficult to perform manually with 10 to 102 externally controlled variables. Machine learning and optimal experimental design can select an experiment that best discriminates between multiple conflicting models, but a remaining problem is to control in real time multiple variables in the form of concentrations of growth factors, toxins, nutrients and other signaling molecules. With time-division multiplexing, a microfluidic MicroFormulator (μF) can create in real time complex mixtures of reagents in volumes suitable for biological experiments. Initial 96-channel μF implementations control the exposure profile of cells in a 96-well plate to different temporal profiles of drugs; future experiments will include challenge compounds. Funded in part by AstraZeneca, NIH/NCATS HHSN271201600009C and UH3TR000491, and VIIBRE.
Influence of near null magnetic field on in vitro growth of potato and wild Solanum species.
Rakosy-Tican, Lenuta; Aurori, C M; Morariu, V V
2005-10-01
The influence of near null magnetic field on in vitro growth of different cultures of potato and related Solanum species was investigated for various exposure times and dates. Potato (Solanum tuberosum L. cv. Désirée) in vitro cultures of shoot tips or nodal segments were used. Three different exposure periods revealed either stimulation or inhibition of root, stem, or leaf in vitro growth after 14 or 28 days of exposure. In one experiment the significant stimulation of leaf growth was also demonstrated at biochemical level, the quantity of chlorophyll a and b and carotenoids increasing more than two-fold. For the wild species Solanum chacoense, S. microdontum, and S. verrucosum, standardized in vitro cultures of nodal stem segments were used. Root and stem growth was either stimulated or slightly inhibited after 9 days exposure to near null magnetic field. Callus cultures obtained from potato dihaploid line 120/19 were maintained in near null magnetic field in 2 different months. For these experiments as well as for Solanum verrucosum, callus cultures recorded either slight inhibition or no effect on fresh weight. For all experiments significant growth variation was brought about only when geomagnetic activity (AP index) showed variations at the beginning of in vitro growth and when the explant had at least one meristematic tissue. Moreover longer maintenance in near null magnetic field, 28 days as compared to 14 days or the controls, can also make a difference in plant growth in response to geomagnetic field variations when static component was reduced to zero value. These results of in vitro plant growth stimulation by variable component of geomagnetic field also sustain the so-called seasonal "window" effect. (c) 2005 Wiley-Liss, Inc.
Hernández-Pichardo, J E; Ducolomb, Y; Romo, S; Kjelland, M E; Fierro, R; Casillas, F; Betancourt, M
2016-01-01
In order to improve ICSI, appropiate sperm selection and oocyte activation is necessary. The objective of the present study was to determine the efficiency of fertilization using ICSI with chemically activated ovine oocytes and sperm selected by swim up (SU) or swim up + zona pellucida (SU + ZP) binding. Experiment 1, 4-20 replicates with total 821 in vitro matured oocytes were chemically activated with ethanol, calcium ionophore or ionomycin, to determine oocyte activation (precense of one PN). Treatments showed similar results (54, 47, 42 %, respectively) but statistically differents ( P < 0.05) than mechanical activated oocytes in sham, ICSI and sham injection (13, 25, 32 %, respectively) (10-17 replicates; n = 429). Experiment 2: Twelve ejaculates and 28 straws of semen were used (11-19 replicates). Sperm were selected by SU in BSA-TCM 199-H medium. A total of 2,294 fresh sperm and 2,760 from frozen-thawed semen were analyzed after SU or SU + ZP binding. Fresh sperm selected by SU showed acrosome reaction (AR) of 59 %, the sperm selected by SU + ZP binding increased AR to 91 %. In comparison, the AR of frozen-thawed sperm using SU or SU + ZP binding was 77 and 86 %, respectively ( P < 0.05). Experiment 3: fertilization in 200 mechanical activativated oocytes (17 replicates) was 4 %, but fertilization increased in ethanol activated oocytes after ICSI (12-28 %) (5-6 replicates). When fresh sperm only selected by SU were injected to 123 oocytes, a fertilization rate (28 %) was achieved; in sperm selected by SU + ZP was 25 % (73 oocytes). In comparison, in frozen-thawed sperm selected by SU, fertilization was 13 % (70 oocytes), whereas sperm from SU + ZP binding displayed 12 % (51 oocytes) ( P > 0.05). Chemical activation induces higher ovine oocyte activation than mechanical activation. Ethanol slightly displays higher oocyte activation than calcium ionophore and ionomicine. Sperm selection with SU + ZP increased AR/A and AR/D rates in comparison with SU in fresh and frozen-thawed sperm. According to this, in terms of fertilization rates, chemical activation after ICSI increased oocyte PN formation compared to mechanical activation. Also, fresh sperm treated with SU and SU + ZP were significantly different than frozen-thawed sperm, but between sperm treatments no significant differences were obtained.
Cooperation, competition and antibiotic resistance in bacterial colonies.
Frost, Isabel; Smith, William P J; Mitri, Sara; Millan, Alvaro San; Davit, Yohan; Osborne, James M; Pitt-Francis, Joe M; MacLean, R Craig; Foster, Kevin R
2018-06-01
Bacteria commonly live in dense and genetically diverse communities associated with surfaces. In these communities, competition for resources and space is intense, and yet we understand little of how this affects the spread of antibiotic-resistant strains. Here, we study interactions between antibiotic-resistant and susceptible strains using in vitro competition experiments in the opportunistic pathogen Pseudomonas aeruginosa and in silico simulations. Selection for intracellular resistance to streptomycin is very strong in colonies, such that resistance is favoured at very low antibiotic doses. In contrast, selection for extracellular resistance to carbenicillin is weak in colonies, and high doses of antibiotic are required to select for resistance. Manipulating the density and spatial structure of colonies reveals that this difference is partly explained by the fact that the local degradation of carbenicillin by β-lactamase-secreting cells protects neighbouring sensitive cells from carbenicillin. In addition, we discover a second unexpected effect: the inducible elongation of cells in response to carbenicillin allows sensitive cells to better compete for the rapidly growing colony edge. These combined effects mean that antibiotic treatment can select against antibiotic-resistant strains, raising the possibility of treatment regimes that suppress sensitive strains while limiting the rise of antibiotic resistance. We argue that the detailed study of bacterial interactions will be fundamental to understanding and overcoming antibiotic resistance.
Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics
Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.
2007-01-01
Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157
Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.
Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C
2007-10-08
Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.
Wang, F; Marchini, A; Kieff, E
1991-01-01
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes. Images PMID:1848303
Wang, F; Marchini, A; Kieff, E
1991-04-01
The objective of these experiments was to develop strategies for creation and identification of recombinant mutant Epstein-Barr viruses (EBV). EBV recombinant molecular genetics has been limited to mutations within a short DNA segment deleted from a nontransforming EBV and an underlying strategy which relies on growth transformation of primary B lymphocytes for identification of recombinants. Thus, mutations outside the deletion or mutations which affect transformation cannot be easily recovered. In these experiments we investigated whether a toxic drug resistance gene, guanine phosphoribosyltransferase or hygromycin phosphotransferase, driven by the simian virus 40 promoter can be recombined into the EBV genome and can function to identify B-lymphoma cells infected with recombinant virus. Two different strategies were used to recombine the drug resistance marker into the EBV genome. Both utilized transfection of partially permissive, EBV-infected B95-8 cells and positive selection for cells which had incorporated a functional drug resistance gene. In the first series of experiments, B95-8 clones were screened for transfected DNA that had recombined into the EBV genome. In the second series of experiments, the transfected drug resistance marker was linked to the plasmid and lytic EBV origins so that it was maintained as an episome and could recombine with the B95-8 EBV genome during virus replication. The recombinant EBV from either experiment could be recovered by infection and toxic drug selection of EBV-negative B-lymphoma cells. The EBV genome in these B-lymphoma cells is frequently an episome. Virus genes associated with latent infection of primary B lymphocytes are expressed. Expression of Epstein-Barr virus nuclear antigen 2 (EBNA-2) and the EBNA-3 genes is variable relative to that of EBNA-1, as is characteristic of some naturally infected Burkitt tumor cells. Moreover, the EBV-infected B-lymphoma cells are often partially permissive for early replicative cycle gene expression and virus replication can be induced, in contrast to previously reported in vitro infected B-lymphoma cells. These studies demonstrate that dominant selectable markers can be inserted into the EBV genome, are active in the context of the EBV genome, and can be used to recover recombinant EBV in B-lymphoma cells. This system should be particularly useful for recovering EBV genomes with mutations in essential transforming genes.
da Silva, Maria Cristina Mattar; Del Sarto, Rafael Perseghini; Lucena, Wagner Alexandre; Rigden, Daniel John; Teixeira, Fabíola Rodrigues; Bezerra, Caroline de Andrade; Albuquerque, Erika Valéria Saliba; Grossi-de-Sa, Maria Fatima
2013-09-20
Numerous species of insect pests attack cotton plants, out of which the cotton boll weevil (Anthonomus grandis) is the main insect in Brazil and must be controlled to avert large economic losses. Like other insect pests, A. grandis secretes a high level of α-amylases in the midgut lumen, which are required for digestion of carbohydrates. Thus, α-amylase inhibitors (α-AIs) represent a powerful tool to apply in the control of insect pests. Here, we applied DNA shuffling and phage display techniques and obtained a combinatorial library containing 10⁸ α-AI variant forms. From this library, variants were selected exhibiting in vitro affinity for cotton boll weevil α-amylases. Twenty-six variant sequences were cloned into plant expression vectors and expressed in Arabidopsis thaliana. Transformed plant extracts were assayed in vitro to select specific and potent α-amylase inhibitors against boll weevil amylases. While the wild type inhibitors, used to create the shuffled library, did not inhibit the A. grandis α-amylases, three α-AI mutants, named α-AIC3, α-AIA11 and α-AIG4 revealed high inhibitory activities against A. grandis α-amylases in an in vitro assay. In summary, data reported here shown the potential biotechnology of new α-AI variant genes for cotton boll weevil control. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Protein and Antibody Engineering by Phage Display
Frei, J.C.; Lai, J.R.
2017-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. PMID:27586328
Flachner, Beáta; Hajdú, István; Dobi, Krisztina; Lorincz, Zsolt; Cseh, Sándor; Dormán, György
2013-01-01
Target focused libraries can be rapidly selected by 2D virtual screening methods from multimillion compounds' repositories if structures of active compounds are available. In the present study a multi-step virtual and in vitro screening cascade is reported to select Melanin Concentrating Hormone Receptor-1 (MCHR1) antagonists. The 2D similarity search combined with physicochemical parameter filtering is suitable for selecting candidates from multimillion compounds' repository. The seeds of the first round virtual screening were collected from the literature and commercial databases, while the seeds of the second round were the hits of the first round. In vitro screening underlined the efficiency of our approach, as in the second screening round the hit rate (8.6 %) significantly improved compared to the first round (1.9%), reaching the antagonist activity even below 10 nM.
Gauthier, Karine; Billon, Cyrielle; Bissler, Marie; Beylot, Michel; Lobaccaro, Jean-Marc; Vanacker, Jean-Marc; Samarut, Jacques
2010-01-01
Thyroid hormone (TR) and liver X (LXR) receptors are transcription factors involved in lipogenesis. Both receptors recognize the same consensus DNA-response element in vitro. It was previously shown that their signaling pathways interact in the control of cholesterol elimination in the liver. In the present study, carbohydrate-response element-binding protein (ChREBP), a major transcription factor controlling the activation of glucose-induced lipogenesis in liver, is characterized as a direct target of thyroid hormones (TH) in liver and white adipose tissue (WAT), the two main lipogenic tissues in mice. Using genetic and molecular approaches, ChREBP is shown to be specifically regulated by TRβ but not by TRα in vivo, even in WAT where both TR isoforms are expressed. However, this isotype specificity is not found in vitro. This TRβ specific regulation correlates with the loss of TH-induced lipogenesis in TRβ−/− mice. Fasting/refeeding experiments show that TRβ is not required for the activation of ChREBP expression particularly marked in WAT following refeeding. However, TH can stimulate ChREBP expression in WAT even under fasting conditions, suggesting completely independent pathways. Because ChREBP has been described as an LXR target, the interaction of LXR and TRβ in ChREBP regulation was assayed both in vitro and in vivo. Each receptor recognizes a different response element on the ChREBP promoter, located only 8 bp apart. There is a cross-talk between LXR and TRβ signaling on the ChREBP promoter in liver but not in WAT where LXR does not regulate ChREBP expression. The molecular basis for this cross-talk has been determined in in vitro systems. PMID:20615868
Hostanska, Katarina; Rostock, Matthias; Melzer, Joerg; Baumgartner, Stephan; Saller, Reinhard
2012-07-18
Drugs of plant origin such as Arnica montana, Calendula officinalis or Hypericum perforatum have been frequently used to promote wound healing. While their effect on wound healing using preparations at pharmacological concentrations was supported by several in vitro and clinical studies, investigations of herbal homeopathic remedies on wound healing process are rare. The objective of this study was to investigate the effect of a commercial low potency homeopathic remedy Similasan® Arnica plus Spray on wound closure in a controlled, blind trial in vitro. We investigated the effect of an ethanolic preparation composed of equal parts of Arnica montana 4x, Calendula officinalis 4x, Hypericum perforatum 4x and Symphytum officinale 6x (0712-2), its succussed hydroalcoholic solvent (0712-1) and unsuccussed solvent (0712-3) on NIH 3T3 fibroblasts. Cell viability was determined by WST-1 assay, cell growth using BrdU uptake, cell migration by chemotaxis assay and wound closure by CytoSelect ™Wound Healing Assay Kit which generated a defined "wound field". All assays were performed in three independent controlled experiments. None of the three substances affected cell viability and none showed a stimulating effect on cell proliferation. Preparation (0712-2) exerted a stimulating effect on fibroblast migration (31.9%) vs 14.7% with succussed solvent (0712-1) at 1:100 dilutions (p < 0.001). Unsuccussed solvent (0712-3) had no influence on cell migration (6.3%; p > 0.05). Preparation (0712-2) at a dilution of 1:100 promoted in vitro wound closure by 59.5% and differed significantly (p < 0.001) from succussed solvent (0712-1), which caused 22.1% wound closure. Results of this study showed that the low potency homeopathic remedy (0712-2) exerted in vitro wound closure potential in NIH 3T3 fibroblasts. This effect resulted from stimulation of fibroblasts motility rather than of their mitosis.
Arora, Priyanka; Mukherjee, Biswajit
2002-09-01
In this study, matrix-type transdermal patches containing diclofenac diethylamine were prepared using different ratios of polyvinylpyrrolidone (PVP) and ethylcellulose (EC) by solvent evaporation technique. The drug matrix film of PVP and EC was casted on a polyvinylalcohol backing membrane. All the prepared formulations were subjected to physical studies (moisture content, moisture uptake, and flatness), in vitro release studies and in vitro skin permeation studies. In vitro permeation studies were performed across cadaver skin using a modified diffusion cell. Variations in drug release profiles among the formulations studied were observed. Based on a physicochemical and in vitro skin permeation study, formulation PA4 (PVP/EC, 1:2) and PA5 (PVP/EC, 1:5) were chosen for further in vivo experiments. The antiinflammatory effect and a sustaining action of diclofenac diethylamine from the two transdermal patches selected were studied by inducing paw edema in rats with 1% w/v carrageenan solution. When the patches were applied half an hour before the subplantar injection of carrageenan in the hind paw of male Wistar rats, it was observed that formulation PA4 produced 100% inhibition of paw edema in rats 12 h after carrageenan insult, whereas in the case of formulation PA5, 4% mean paw edema was obtained half an hour after the carrageenan injection and the value became 19.23% 12 h after the carrageenan insult. The efficacy of transdermal patches was also compared with the marketed Voveran gel and it was found that PA4 transdermal patches produced a better result as compared with the Voveran gel. Hence, it can be reasonably concluded that diclofenac diethylamine can be formulated into the transdermal matrix type patches to sustain its release characteristics and the polymeric composition (PVP/EC, 1:2) was found to be the best choice for manufacturing transdermal patches of diclofenac diethylamine among the formulations studied. Copyright 2002 Wiley-Liss, Inc.
Rublack, Nico
2014-01-01
Summary Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated. PMID:25246949
In vitro Fab display: a cell-free system for IgG discovery
Stafford, Ryan L.; Matsumoto, Marissa L.; Yin, Gang; Cai, Qi; Fung, Juan Jose; Stephenson, Heather; Gill, Avinash; You, Monica; Lin, Shwu-Hwa; Wang, Willie D.; Masikat, Mary Rose; Li, Xiaofan; Penta, Kalyani; Steiner, Alex R.; Baliga, Ramesh; Murray, Christopher J.; Thanos, Christopher D.; Hallam, Trevor J.; Sato, Aaron K.
2014-01-01
Selection technologies such as ribosome display enable the rapid discovery of novel antibody fragments entirely in vitro. It has been assumed that the open nature of the cell-free reactions used in these technologies limits selections to single-chain protein fragments. We present a simple approach for the selection of multi-chain proteins, such as antibody Fab fragments, using ribosome display. Specifically, we show that a two-chain trastuzumab (Herceptin) Fab domain can be displayed in a format which tethers either the heavy or light chain to the ribosome while retaining functional antigen binding. Then, we constructed synthetic Fab HC and LC libraries and performed test selections against carcinoembryonic antigen (CEA) and vascular endothelial growth factor (VEGF). The Fab selection output was reformatted into full-length immunoglobulin Gs (IgGs) and directly expressed at high levels in an optimized cell-free system for immediate screening, purification and characterization. Several novel IgGs were identified using this cell-free platform that bind to purified CEA, CEA positive cells and VEGF. PMID:24586053
Fujita, Yuki; Ishikawa, Junya; Furuta, Hiroyuki; Ikawa, Yoshiya
2010-08-26
In vitro selection with long random RNA libraries has been used as a powerful method to generate novel functional RNAs, although it often requires laborious structural analysis of isolated RNA molecules. Rational RNA design is an attractive alternative to avoid this laborious step, but rational design of catalytic modules is still a challenging task. A hybrid strategy of in vitro selection and rational design has been proposed. With this strategy termed "design and selection," new ribozymes can be generated through installation of catalytic modules onto RNA scaffolds with defined 3D structures. This approach, the concept of which was inspired by the modular architecture of naturally occurring ribozymes, allows prediction of the overall architectures of the resulting ribozymes, and the structural modularity of the resulting ribozymes allows modification of their structures and functions. In this review, we summarize the design, generation, properties, and engineering of four classes of ligase ribozyme generated by design and selection.
In Vitro Selection of pH-Activated DNA Nanostructures.
Fong, Faye Yi; Oh, Seung Soo; Hawker, Craig J; Soh, H Tom
2016-12-05
We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH-active nanostructures were designed using known pH-active motifs, such as the i-motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH-selectivity, releasing up to 714-fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH-sensitive motifs, suggesting that they may operate via novel structure-switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH-active surfaces. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil
2012-09-01
Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.
Arya, Rekha; Ravikumar, R; Santhosh, R S; Princy, S Adline
2015-01-01
Staphylococcus aureus is a common pathogen seen in prosthetic vascular graft, leading to high morbidity and mortality. The virulence genes for severity of infections are under the control of global regulators. Staphylococcal accessory regulator A (SarA) a known master controller of biofilm formation is an attractive target for the drug development. A structure based screening of lead compounds was employed for the identification of novel small molecule inhibitors targeted to interact to the DNA binding domain of the transcriptional activator, SarA and hinder its response over the control of genes that up-regulate the phenotype, biofilm. The top-hit SarA selective inhibitor, 4-[(2,4-diflurobenzyl)amino] cyclohexanol (SarABI) was further validated in-vitro for its efficacy. The SarABI was found to have MBIC50value of 200 μg/ml and also down-regulated the expression of the RNA effector, (RNAIII), Hemolysin (hld), and fibronectin-binding protein (fnbA). The anti-adherence property of SarABI on S. aureus invasion to the host epithelial cell lines (Hep-2) was examined where no significant attachment of S. aureus was observed. The SarABI inhibits the colonization of MDR S. aureus in animal model experiment significantly cohere to the molecular docking studies and in vitro experiments. So, we propose that the SarABI could be a novel substitute to overcome a higher degree of MDR S. aureus colonization on vascular graft.
Villalobos, María del Carmen; Serradilla, Manuel Joaquín; Martín, Alberto; Ordiales, Elena; Ruiz-Moyano, Santiago; Córdoba, María de Guía
2016-04-01
Fresh fruit is highly perishable during storage and transport, so there has been growing interest in finding safe and natural antimicrobial compounds as a control tool. Phenolic compounds are secondary metabolites naturally present in vegetable material and have been associated with antimicrobial and antioxidant properties. Therefore, the aim of this study was to investigate the antioxidant capacity and potential antimicrobial effect of phenolic extract obtained from defatted soybean flour against selected pathogenic bacteria and microorganisms responsible of fruit decay. Analysis of phenolic composition by HPLC-MS showed the presence of a wide range of compounds, with isoflavones and phenolic acids the main polyphenols identified. Furthermore, the phenolic extract had important antioxidant activity by two different assays. Related to antimicrobial activity, in vitro experiments demonstrated that phenolic extract displayed a high activity against the main foodborne pathogens, while a moderate inhibition was found against five spoilage yeasts and Monilia laxa and a scarce effect for Penicillium glabrum, Cladosporium uredinicola and Botrytis cinerea. Interestingly these compounds considerably inhibited the mycelial growth of Monilia laxa, in both in vitro and in vivo experiments. The results of the present study revealed that defatted soybean flour is an important source of phenolic compounds with remarkable antimicrobial and antioxidant activity, suggesting the possibility of using them as natural additives in postharvest treatments to extend the shelf life of fruit. © 2015 Society of Chemical Industry.
Molecularly Imprinted Microrods via Mesophase Polymerization.
Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco
2017-12-28
The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.
The twin children of Auschwitz-Birkenau: conference on Nazi medicine.
Segal, Nancy L
2013-06-01
The twin children who survived the Holocaust and the horrific medical experiments conducted by Nazi doctors are sometimes overlooked in the relevant literature. This topic and more were discussed as part of an annual conference hosted by students from Yeshiva University's Medical Ethics Society in October 2012. A selective summary of this meeting is followed by summaries of recent twin studies concerning genetic influences on twinning, in vitro fertilization versus spontaneous twin pregnancies, gender identity disorder, and royal support for twin registries. Several human interest stories are also worth noting. They include identical twin school principals, twin loss at Sandy Hook Elementary School, timely twin documentaries, new twin and twin-like reunions, and the passing of two prominent twins.
Study on application of optical clearing technique in skin diseases
NASA Astrophysics Data System (ADS)
Shan, Hao; Liang, Yanmei; Wang, Jingyi; Li, Yan
2012-11-01
So far, the study of the optical clearing is almost always about healthy tissue. However, the ultimate goal is to detect diseases for clinical application. Optical clearing on diseased skins is explored. The effect is evaluated by applying a combined liquid paraffin and glycerol mixed solution on several kinds of diseased skins in vitro. Scanning experiments from optical coherence tomography show that it has different effects among fibroma, pigmented nevus, and seborrheic keratosis. Based on the results, we conclude that different skin diseases have different compositions and structures, and their optical parameters and biological characteristics should be different, which implies that the optical clearing technique may have selectivity and may not be suitable for all kinds of skin diseases.
Grech-Baran, Marta; Sykłowska-Baranek, Katarzyna; Pietrosiuk, Agnieszka
Rhodiola (Crassulaceae) an arctic-alpine plant, is extensively used in traditional folk medicine in Asian and European countries. A number of investigations have demonstrated that Rhodiola preparations exhibit adaptogenic, neuroprotective, anti-tumour, cardioprotective, and anti-depressant effects. The main compounds responsible for these activities are believed to be salidroside, rosin and its derivatives which became the target of biotechnological investigations. This review summarizes the results of the diverse biotechnological approaches undertaken to enhance the production of salidroside, rosin and its derivatives in callus, cell suspension and organ in vitro cultures of selected Rhodiola species.
Escherichia coli promoter sequences predict in vitro RNA polymerase selectivity.
Mulligan, M E; Hawley, D K; Entriken, R; McClure, W R
1984-01-11
We describe a simple algorithm for computing a homology score for Escherichia coli promoters based on DNA sequence alone. The homology score was related to 31 values, measured in vitro, of RNA polymerase selectivity, which we define as the product KBk2, the apparent second order rate constant for open complex formation. We found that promoter strength could be predicted to within a factor of +/-4.1 in KBk2 over a range of 10(4) in the same parameter. The quantitative evaluation was linked to an automated (Apple II) procedure for searching and evaluating possible promoters in DNA sequence files.
[Evaluation on a fast weight reduction model in vitro].
Li, Songtao; Li, Ying; Wen, Ying; Sun, Changhao
2010-03-01
To establish a fast and effective model in vitro for screening weight-reducing drugs and taking preliminary evaluation of the model. Mature adipocytes of SD rat induced by oleic acid were used to establish a obesity model in vitro. Isoprel, genistein, caffeine were selected as positive agents and curcumine as negative agent to evaluate the obesity model. Lipolysis of adipocytes was stimulated significantly by isoprel, genistein and caffeine rather than curcumine. This model could be used efficiently for screening weight-losing drugs.
In Vitro Pharmacodynamics of AZD5206 against Staphylococcus aureus
Chang, Kai-Tai; Yang, Zhen; Newman, Joseph; Hu, Ming
2013-01-01
AZD5206 is a novel antimicrobial agent with potent in vitro activity against Staphylococcus aureus. We evaluated the in vitro pharmacodynamics of AZD5206 against a standard wild-type methicillin-susceptible strain (ATCC 29213) and a clinical strain of methicillin-resistant S. aureus (SA62). Overall, bacterial killing against a low baseline inoculum was more remarkable. Low dosing exposures and/or high baseline inoculum resulted in early reduction in bacterial burden, followed by regrowth and selective amplification of the resistant population. PMID:23229481
Structure-activity relationships of selected phenazines against Mycobacterium leprae in vitro.
Franzblau, S G; O'Sullivan, J F
1988-01-01
Structure-activity relationships of phenazines against Mycobacterium leprae were investigated by using an in vitro radiorespirometric assay. In general, activity in ascending order was observed in compounds containing no chlorine atoms, a monochlorinated phenazine nucleus, and chlorines in the para positions of both the anilino and phenyl rings. The most active compounds contained a 2,2,6,6-tetramethylpiperidine substitution at the imino nitrogen. Most of these chlorinated phenazines were considerably more active in vitro than clofazimine (B663). PMID:3056241
On Selecting a Minimal Set of In Vitro Assays to Reliably Determine Estrogen Agonist Activity
The US EPA is charged with screening chemicals for their ability to be endocrine disruptors through interaction with the estrogen, androgen and thyroid axes. The agency is starting to explore the use of high-throughput in vitro assays to use in the Endocrine Disruptor Screening P...
miRNA studies in in vitro and in vivo activated hepatic stellate cells
Maubach, Gunter; Lim, Michelle Chin Chia; Chen, Jinmiao; Yang, Henry; Zhuo, Lang
2011-01-01
AIM: To understand which and how different miRNAs are implicated in the process of hepatic stellate cell (HSC) activation. METHODS: We used microarrays to examine the differential expression of miRNAs during in vitro activation of primary HSCs (pHSCs). The transcriptome changes upon stable transfection of rno-miR-146a into an HSC cell line were studied using cDNA microarrays. Selected differentially regulated miRNAs were investigated by quantitative real-time polymerase chain reaction during in vivo HSC activation. The effect of miRNA mimics and inhibitor on the in vitro activation of pHSCs was also evaluated. RESULTS: We found that 16 miRNAs were upregulated and 26 were downregulated significantly in 10-d in vitro activated pHSCs in comparison to quiescent pHSCs. Overexpression of rno-miR-146a was characterized by marked upregulation of tissue inhibitor of metalloproteinase-3, which is implicated in the regulation of tumor necrosis factor-α activity. Differences in the regulation of selected miRNAs were observed comparing in vitro and in vivo HSC activation. Treatment with miR-26a and 29a mimics, and miR-214 inhibitor during in vitro activation of pHSCs induced significant downregulation of collagen type I transcription. CONCLUSION: Our results emphasize the different regulation of miRNAs in in vitro and in vivo activated pHSCs. We also showed that miR-26a, 29a and 214 are involved in the regulation of collagen type I mRNA. PMID:21734783
Development of biomimetic in vitro fatigue assessment for UHMWPE implant materials.
Scholz, Ronja; Knyazeva, Marina; Porchetta, Dario; Wegner, Nils; Senatov, Fedor; Salimon, Alexey; Kaloshkin, Sergey; Walther, Frank
2018-05-26
An important research goal in the field of biomaterials lies in the progressive amendment of in vivo tests with suitable in vitro experiments. Such approaches are gaining more significance nowadays because of an increasing demand on life sciences and the ethical issues bound to the sacrifice of animals for the sake of scientific research. Another advantage of transferring the experiments to the in vitro field is the possibility of accurately control the boundary conditions and experimental parameters in order to reduce the need of validation tests involving animals. With the aim to reduce the amount of needed in vivo studies for this cause, a short-time in vitro test procedure using instrumented load increase tests with superimposed environmental loading has been developed at TUD to assess the mechanical long-term durability of ultra-high molecular weight polyethylene (UHMWPE) under fatigue loading in a biological environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
Besseling-van der Vaart, I; Heath, M D; Guagnini, F; Kramer, M F
2016-02-01
The beneficial effects of probiotics are currently the subject of extensive studies in health and medical research. The aim of this research was to specifically design a new probiotic formulation for supplementation in people suffering from food intolerance. The selection of strains was focussed on the capacity to influence mechanisms of action that are important in development of food intolerance with the following parameters measure: in vitro capacity to produce β-galactosidase, in vitro strengthening of the epithelial barrier, in vitro stimulation of cytokines produced by regulatory T cells, in addition to assessing fundamental quality criteria (stability, gastrointestinal (GI)-survival, multispecies concept, allergen-free). Ecologic®Tolerance/Syngut™ was subsequently developed consisting of a multispecies concept using 4 different probiotic strains (Bifidobacterium lactis W51, Lactobacillus acidophilus W22, Lactobacillus plantarum W21 and Lactococcus lactis W19). Each of these strains demonstrated ability to survive the GI-tract and strain specific effects in producing β-galactosidase, strengthening the gut barrier function after immunological-induced stress and inhibiting Th2 cytokines (IL-4, IL-5 and IL-13 (≥50%), in addition to stimulating interleukin-10 levels; thus, providing in vitro evidence for the efficacy of the selected strains to provide beneficial effects in patients suffering from food intolerance.
Park, Mi Ri; Kim, Younghoon; Lee, Myung-Ki
2015-01-01
The present study was conducted to screen candidate probiotic strains for anti-inflammatory activity. Initially, a nitric oxide (NO) assay was used to test selected candidate probiotic strains for anti-inflammatory activity in cultures of the murine macrophage cell line, RAW 264.7. Then, the in vitro probiotic properties of the strains, including bile tolerance, acid resistance, and growth in skim milk media, were investigated. We also performed an in vitro hydrophobicity test and an intestinal adhesion assay using Caenorhabditis elegans as a surrogate in vivo model. From our screening, we obtained 4 probiotic candidate lactic acid bacteria (LAB) strains based on their anti-inflammatory activity in lipopolysaccharide (LPS)-stimulated RAW 264.7 cell cultures and the results of the in vitro and in vivo probiotic property assessments. Molecular characterization using 16S rDNA sequencing analysis identified the 4 LAB strains as Lactobacillus plantarum. The selected L. plantarum strains (CAU1054, CAU1055, CAU1064, and CAU1106) were found to possess desirable in vitro and in vivo probiotic properties, and these strains are good candidates for further investigations in animal models and human clinical studies to elucidate the mechanisms underlying their anti-inflammatory activities. PMID:26761805
The Consequences of Sex Selection
ERIC Educational Resources Information Center
Rothman, Barbara Katz
2006-01-01
A group of researchers at Baylor College of Medicine in Houston are set to do a long-term study of families that would permit to select the sex of their babies through genetic testing before implanting the embryo in the mother. Technologies such as in vitro fertilization involved in selecting a baby's sex has societal and psychological…
Gómez-Elías, Matías D; Munuce, María J; Bahamondes, Luis; Cuasnicú, Patricia S; Cohen, Débora J
2016-01-01
Does ulipristal acetate (UPA), a selective progesterone receptor modulator used for emergency contraception (EC), interfere with fertilization or early embryo development in vitro and in vivo? At doses similar to those used for EC, UPA does not affect mouse gamete transport, fertilization or embryo development. UPA acts as an emergency contraceptive mainly by inhibiting or delaying ovulation. However, there is little information regarding its effects on post-ovulatory events preceding implantation. This was an in vitro and in vivo experimental study involving the use of mouse gametes and embryos from at least three animals in each set of experiments. For in vitro fertilization experiments, mouse epididymal spermatozoa capacitated in the presence of different concentrations of UPA (0-1000 ng/ml) were used to inseminate cumulus-intact or cumulus-free eggs in the presence or absence of UPA during gamete co-incubation, and the percentage of fertilized eggs was determined. For in vivo fertilization experiments, superovulated females caged with proven fertile males were injected with UPA (40 mg/kg) or vehicle just before or just after mating and the percentage of fertilized eggs recovered from the ampulla was determined. To investigate the effect of UPA on embryo development, zygotes were recovered from mated females, cultured in the presence of UPA (1000 ng/ml) for 4 days and the progression of embryo development was monitored daily. In vitro studies revealed that the presence of UPA during capacitation and/or gamete co-incubation does not affect fertilization. Whereas the in vivo administration of UPA at the same time as hCG injection produced a decrease in the number of eggs ovulated compared with controls (vehicle injected animals, P < 0.05), no effects on fertilization were observed when UPA was administered shortly before or after mating. No differences were observed in either the percentage of cleaved embryos or the cleavage speed when UPA was present during in vitro embryo culture. Considering the ethical and technical limitations inherent to the use of human gametes for fertilization studies, the mouse model was used as an approach for exploring the potential effects of UPA on in vivo sperm transport and fertilization. Nevertheless, the extrapolation of these results to humans requires further investigation. This study presents new evidence on the lack of effect of UPA on gamete interaction and embryo development, providing new insights into the mechanism of action of UPA as an emergency contraceptive method with potential clinical implications. These new findings could contribute to increase the acceptability and proper use of UPA as an emergency contraceptive method. This study was partially supported by a National Agency of Scientific and Technological Promotion (ANPCyT), Argentina grants PICT 2011-061 to D.J.C. and PICT 2011-2023 to P.S.C. None of the authors has any competing interests to declare. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Specific GFP-binding artificial proteins (αRep): a new tool for in vitro to live cell applications
Chevrel, Anne; Urvoas, Agathe; de la Sierra-Gallay, Ines Li; Aumont-Nicaise, Magali; Moutel, Sandrine; Desmadril, Michel; Perez, Franck; Gautreau, Alexis; van Tilbeurgh, Herman; Minard, Philippe; Valerio-Lepiniec, Marie
2015-01-01
A family of artificial proteins, named αRep, based on a natural family of helical repeat was previously designed. αRep members are efficiently expressed, folded and extremely stable proteins. A large αRep library was constructed creating proteins with a randomized interaction surface. In the present study, we show that the αRep library is an efficient source of tailor-made specific proteins with direct applications in biochemistry and cell biology. From this library, we selected by phage display αRep binders with nanomolar dissociation constants against the GFP. The structures of two independent αRep binders in complex with the GFP target were solved by X-ray crystallography revealing two totally different binding modes. The affinity of the selected αReps for GFP proved sufficient for practically useful applications such as pull-down experiments. αReps are disulfide free proteins and are efficiently and functionally expressed in eukaryotic cells: GFP-specific αReps are clearly sequestrated by their cognate target protein addressed to various cell compartments. These results suggest that αRep proteins with tailor-made specificity can be selected and used in living cells to track, modulate or interfere with intracellular processes. PMID:26182430
What do consistently high-performing in vitro fertilization programs in the U.S. do?
Van Voorhis, Bradley J; Thomas, Mika; Surrey, Eric S; Sparks, Amy
2010-09-01
To identify common clinical and laboratory practices among consistently high-performing IVF programs. Questionnaire study of selected IVF programs. Academic and private practice IVF programs. Ten of 12 programs identified as having consistently high singleton delivery rates per cycle. None. Common clinical practices. Common clinical practices identified among these programs included testing all patients for ovarian reserve, endometrial defects, and hydrosalpinges; use of a mixed LH and FSH stimulation protocol with step-down dosing; and use of ultrasound guidance for ET. Common laboratory practices included selective use of intracytoplasmic sperm injection, group culture of embryos in microdrops, and use of blastocyst ET in selected cases. Common laboratory features included good air quality using filtration and heated stages for oocyte and embryo work. Although a number of factors were identified in this best-practices questionnaire, programs often differed in many aspects of care. However, high-performing programs cited experience of physicians, embryologists, and staff members as well as consistency of approach, attention to detail, and good communication as being vital to excellent outcomes. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Xiao, Z; Li, L; Li, Y; Zhou, W; Cheng, J; Liu, F; Zheng, P; Zhang, Y; Che, Y
2014-01-01
Rasfonin is a novel 2-pyrone derivative reported to induce apoptosis in ras-dependent cells. In this study, its effects on ras-mutated pancreatic cancer cells were investigated in vitro and in vivo. Two human pancreatic cancer cell lines Panc-1 (mutated K-ras) and BxPC-3 (wild-type K-ras) were selected to test the effects of rasfonin on cell proliferation, clone formation, migration and invasion in vitro. Immunoblotting was used to detect the expressions of EGFR–Ras–Raf–MEK–ERK signaling pathway proteins. Ras activity was measured using a pull-down ELISA kit and guanine exchange factor (GEF)/GTPase-activating proteins (GAP) activity was measured by [3H]-GDP radiometric ligand binding. For an in vivo study, CD1 nude mice bearing Panc-1 cells were treated with rasfonin or Salirasib (FTS). We found that rasfonin suppressed proliferation more strongly in Panc-1 cells (IC50=5.5 μM) than BxPC-3 cells (IC50=10 μM) in vitro. Clone formation, migration and invasion by Panc-1 cells were also reduced by rasfonin. Rasfonin had little effect on the farnesylation of Ras, but it strongly downregulated Ras activity and consequently phosphorylation of c-Raf/MEK/ERK. Further experiments indicated that rasfonin reduced Son of sevenless (Sos1) expression but did not alter GEF and GAP activities. The in vivo experiments also revealed that rasfonin (30 mg/kg) delayed the growth of xenograft tumors originating from Panc-1 cells. Tumor weight was ultimately decreased after 20 days of treatment of rasfonin. Rasfonin is a robust inhibitor of pancreatic cancers with the K-ras mutation. The reduction of Sos1 expression and the consequently depressed Ras–MAPK activity could be important in its anticancer activity. PMID:24853419
Native pears of Sardinia affect Penicillium expansum pathogenesis.
Cubaiu, L; Azara, E; Ladu, G; Venditti, T; D'Hallewin, G
2013-01-01
Penicillium expansum causes blue mould rot, a serious post-harvest disease of pome fruits and is the main producer of the mycotoxin patulin. The occurrence of natural resistance against different hostpathogens, has been evidenced in some pear accessions of the Sardinian germoplasm. The aim of this research was to correlate P. expansum growth and patulin production on these indigenous pear accessions. In vitro and in vivo experiments were carried out with seven accessions ('Sarmentina', 'Vacchesa', 'De Puleu', 'De su Duca', 'Natalina', 'Oliena', 'Laconi 5') belonging to the CNR-ISPA ex situ collection and one national control cultivar ('Abate'). A wild type P. expansum from our collection was isolated from blue mould-decayed Sardinian pear fruit and selected for its aggressiveness and patulin production. The in vivo assay was carried out using 5 x 2 cm (Ø x thickness) sterilized fruit discs wounded and inoculated by a 10(5)UFC/mL concentration of P. expansum. Fruit discs were incubated at 23 degrees C for 7 days before analysis. The in vitro experiments, aimed at monitoring over time P. expansum mycelial growth and patulin accumulation, were performed with a standard medium (PDA) and a pear puree Agar Medium (PAM). Petri dishes with PDA and PAM were inoculated centrally with P. expansum conidia (10(5)UFC/ml) and then incubated at 23 degrees C for 7 days. Mycelial growth on Sardinian PAMs was inhibited in comparison to 'Abate' PAM and PDA. In particular, the accessions 'Sarmentina' and 'Vacchesa' showed the maximum inhibitory activity both in vitro and in vivo. Patulin production was detected by high-pressure liquid chromatography-mass spectrometry. The mycotoxin concentration in Sardinian PAMs was lower than that detected in PDA medium, pointing out a positive correlation between fungal growth inhibition and patulin production. The lowest concentration of patulin was found in 'Sarmentina' PAM. Based on these findings, some of Sardinian pear accessions seems to affect P. expansum pathogenesis and inhibit patulin production. Further researches are necessary to assess the mechanism of this biocontrol activity.
Hayden, Eric J
2016-08-15
RNA molecules provide a realistic but tractable model of a genotype to phenotype relationship. This relationship has been extensively investigated computationally using secondary structure prediction algorithms. Enzymatic RNA molecules, or ribozymes, offer access to genotypic and phenotypic information in the laboratory. Advancements in high-throughput sequencing technologies have enabled the analysis of sequences in the lab that now rivals what can be accomplished computationally. This has motivated a resurgence of in vitro selection experiments and opened new doors for the analysis of the distribution of RNA functions in genotype space. A body of computational experiments has investigated the persistence of specific RNA structures despite changes in the primary sequence, and how this mutational robustness can promote adaptations. This article summarizes recent approaches that were designed to investigate the role of mutational robustness during the evolution of RNA molecules in the laboratory, and presents theoretical motivations, experimental methods and approaches to data analysis. Copyright © 2016 Elsevier Inc. All rights reserved.
Using electrical and optical tweezers to facilitate studies of molecular motors.
Arsenault, Mark E; Sun, Yujie; Bau, Haim H; Goldman, Yale E
2009-06-28
Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells.
Using electrical and optical tweezers to facilitate studies of molecular motors†
Arsenault, Mark E.; Sun, Yujie; Bau, Haim H.; Goldman, Yale E.
2013-01-01
Dielectrophoresis was used to stretch and suspend actin filaments across a trench etched between two electrodes patterned on a glass slide. Optical tweezers were used to bring a motor protein-coated bead into close proximity to a pre-selected, suspended actin filament, facilitating the attachment of the myosin-coated bead to the filament. The clearance beneath the filament allowed the bead to move freely along and around its filamentous track, unhindered by solid surfaces. Using defocused images, the three-dimensional position of the bead was tracked as a function of time to obtain its trajectory. Experiments were carried out with myosin V and myosin X. Both motor proteins followed left-handed helical paths with the myosin X motor exhibiting a shorter pitch than the myosin V. The combined use of electrostatic and optical tweezers facilitates the preparation of motility assays with suspended tracks. Variants of this technique will enable higher complexity experiments in vitro to better understand the behavior of motors in cells. PMID:19506758
Castro-Montoya, J; Westreicher-Kristen, E; Henke, A; Diaby, M; Susenbeth, A; Dickhoefer, U
2018-02-01
This study evaluated the effects of Quebracho tannin extract (QTE) on in vitro ruminal fermentation, chemical composition of rumen microbes, ruminal degradation and intestinal digestibility of crude protein (iCPd). Three treatments were tested, the control (basal diet without QTE), the basal diet with 15 g QTE/kg dry matter (DM) and the basal diet with 30 g QTE/kg DM. The basal diet contained (g/kg DM): 339 grass silage, 317 maize silage and 344 concentrate. In vitro gas production kinetic was determined using the Hohenheim gas test (Experiment 1). The Ankom RF technique, a batch system with automatic gas pressure recordings, was used to determine in vitro production of short-chain fatty acids (SCFA) and ammonia-nitrogen concentration (NH 3 -N), as well as nitrogen and purine bases content in liquid-associated microbes (LAM) and in a residue of undegraded feed and solid-associated microbes (Feed+SAM) (Experiment 2). Ruminal degradation and iCPd were determined using the nylon bag technique and the mobile nylon bag technique, respectively (Experiment 3). Gas production (Experiment 1), total SCFA and NH 3 -N (Experiment 2) decreased with increasing QTE levels. Microbial mass and composition of LAM were not affected by QTE, but total mass of Feed+SAM linearly increased, likely due to decreased substrate degradation with increasing QTE levels. The total amount of N in microbial mass and undegraded feed after the in vitro incubation increased with increasing QTE levels, suggesting a potential greater N flow from the rumen to the duodenum. In contrast to in vivo studies with the same QTE, no effects were detected on ruminal effective degradability and iCPd, when using the nylon bag techniques. Based on the in vitro procedures, QTE increased the supply of N post-rumen; however, some evidence of a decreased fibre degradation were also observed. Therefore, the benefit of adding QTE to diets of cattle is still questionable. © 2017 Blackwell Verlag GmbH.
Yanagië, H.; Tomita, T.; Kobayashi, H.; Fujii, Y.; Takahashi, T.; Hasumi, K.; Nariuchi, H.; Sekiguchi, M.
1991-01-01
An immunoliposome containing a 10B-compound has been examined as a selective drug delivery system in boron neutron-capture therapy. Liposomes, conjugated with monoclonal antibodies specific for carcinoembryonic antigen (CEA) were shown to bind selectively to cells bearing CEA on their surface. The immunoliposomes attached to tumour cells suppressed growth in vitro upon thermal neutron irradiation and suppression was dependent upon the concentration of the 10B-compound in the liposomes and on the density of antibody conjugated to the liposomes. The results suggest that immunoliposomes containing the 10B-compound could act as a selective and efficient carrier of 10B atoms to target tumour cells in boron neutron-capture therapy. Images Figure 1 PMID:2021537
Lipi, Farhana; Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N
2016-12-01
Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries.
Chen, Suxiang; Chakravarthy, Madhuri; Rakesh, Shilpa; Veedu, Rakesh N.
2016-01-01
ABSTRACT Nucleic acid aptamers are single-stranded DNA or RNA oligonucleotide sequences that bind to a specific target molecule with high affinity and specificity through their ability to adopt 3-dimensional structure in solution. Aptamers have huge potential as targeted therapeutics, diagnostics, delivery agents and as biosensors. However, aptamers composed of natural nucleotide monomers are quickly degraded in vivo and show poor pharmacodynamic properties. To overcome this, chemically-modified nucleic acid aptamers are developed by incorporating modified nucleotides after or during the selection process by Systematic Evolution of Ligands by EXponential enrichment (SELEX). This review will discuss the development of chemically-modified aptamers and provide the pros and cons, and new insights on in vitro aptamer selection strategies by using chemically-modified nucleic acid libraries. PMID:27715478
Single layer centrifugation-selected boar spermatozoa are capable of fertilization in vitro
2013-01-01
Background Good quality spermatozoa are important to achieve fertilization, viable embryos and offspring. Single Layer Centrifugation (SLC) through a colloid (Androcoll-P) selects good quality spermatozoa. However, it has not been established previously whether porcine spermatozoa selected by this method maintain their fertility. Methods The semen was prepared either by SLC or by standard centrifugation (control) and used for in vitro fertilization (IVF) at oocyte:spermatozoa ratios of 1:50; 1:100 and 1:300 (or 4 x 103, 8 x 103 and 24 x 103 spermatozoa/ml) to evaluate their subsequent ability to generate blastocysts. In addition, sperm motility was assessed by computer assisted sperm motility analysis. Results Total and progressive motility were significantly higher in sperm samples prepared by SLC compared to uncentrifuged samples. Sperm binding ability, polyspermy, cleavage and blastocyst rates were affected by the oocyte:sperm ratio, but not by sperm treatment. Conclusion The use of SLC does not adversely affect the in vitro fertilizing and embryo-generating ability of the selected spermatozoa compared to their unselected counterparts, but further modifications in the IVF conditions would be needed to improve the monospermy in IVF systems. Since SLC did not appear to have a negative effect on sperm fertilizing ability, and may in fact select for spermatozoa with a greater potential for fertilization, an in vivo trial to determine the usefulness of this sperm preparation technique prior to artificial insemination is warranted. PMID:23497680
Pathan, Multazim Muradkhan; Bhat, Kishore Gajanan; Joshi, Vinayak Mahableshwar
2017-01-01
Background: Several herbal mouthwash and herbal extracts have been tested in vitro and in vivo in search of a suitable adjunct to mechanical therapy for long-term use. In this study, we aimed to look at the antimicrobial effect of the herbal mouthwash and chlorhexidine (CHX) mouthwash on select organisms in in vitro test and an ex vivo model. Materials and Methods: The antimicrobial effects were determined against standard strains of bacteria that are involved in different stages of periodontal diseases. The in vitro tests included determination of minimum inhibitory concentration (MIC) using broth dilution and agar diffusion. In the ex vivo part of the study supragingival dental plaque were obtained from 20 periodontally healthy adult volunteers. Descriptive analysis was done for the entire quantitative and qualitative variable recorded. Results: The MIC by broth dilution method found no statistically significant difference between the mouthwashes. The agar dilution method showed CHX was more effective as compared to the herbal mouthwash against standard strains of Streptococcus mutans, Streptococcus sanguinis, and Aggregatibacter actinomycetemcomitans. However, no difference was observed between the mouthwashes for Porphyromonas, Pseudomonas aeruginosa, and Fusobacterium nucleatum. The ex vivo results conclude that none of the selected mouthwashes were statistically significantly different from each other. Conclusion: In the present study, CHX showed higher levels of antimicrobial action than the herbal mouthwash against bacterial species. The results reinforce the earlier findings that the in vitro testing is sensitive to methods and due diligence is needed when extrapolating the data for further use. However, long-term use and in vivo effectiveness against the periopathogens need to be tested in well-planned clinical trials. PMID:29456300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...
2016-11-28
Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less
Bacterial cell-free expression technology to in vitro systems engineering and optimization.
Caschera, Filippo
2017-06-01
Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.
CpG Distribution and Methylation Pattern in Porcine Parvovirus
Tóth, Renáta; Mészáros, István; Stefancsik, Rajmund; Bartha, Dániel; Bálint, Ádám; Zádori, Zoltán
2013-01-01
Based on GC content and the observed/expected CpG ratio (oCpGr), we found three major groups among the members of subfamily Parvovirinae: Group I parvoviruses with low GC content and low oCpGr values, Group II with low GC content and high oCpGr values and Group III with high GC content and high oCpGr values. Porcine parvovirus belongs to Group I and it features an ascendant CpG distribution by position in its coding regions similarly to the majority of the parvoviruses. The entire PPV genome remains hypomethylated during the viral lifecycle independently from the tissue of origin. In vitro CpG methylation of the genome has a modest inhibitory effect on PPV replication. The in vitro hypermethylation disappears from the replicating PPV genome suggesting that beside the maintenance DNMT1 the de novo DNMT3a and DNMT3b DNA methyltransferases can’t methylate replicating PPV DNA effectively either, despite that the PPV infection does not seem to influence the expression, translation or localization of the DNA methylases. SNP analysis revealed high mutability of the CpG sites in the PPV genome, while introduction of 29 extra CpG sites into the genome has no significant biological effects on PPV replication in vitro. These experiments raise the possibility that beyond natural selection mutational pressure may also significantly contribute to the low level of the CpG sites in the PPV genome. PMID:24392033
Seyer-Hansen, Mikkel; Egekvist, Anne; Forman, Axel; Riiskjaer, Mads
2018-01-01
Women with endometriosis often experience pain and infertility. Medical treatment interferes with the possibility of attaining pregnancy. For infertile women with endometriosis, surgery is a possible treatment, but with advanced disease there is an increased risk of serious complications. With only limited pain, women will often be referred for in vitro fertilization treatment instead. The disease is estrogen-dependent and during in vitro fertilization treatment the women could theoretically experience worsening of their symptoms. The study is a retrospective cohort study of 76 women with bowel endometriosis who were treated conservatively and underwent in vitro fertilization treatment. Nine (11.8%) of the women experienced severe worsening of their bowel-related symptoms, including two patients presenting with colon ileus. One additional woman had no previous diagnosis of endometriosis before she presented with subocclusion of the bowel during in vitro fertilization. In all cases the in vitro fertilization treatment was stopped. Our study revealed that bowel endometriosis increases the risk of complications during in vitro fertilization treatment. This is in contrast to several publications. However, our study population is different due to the fact that none of these women had previous operations for bowel endometriosis. In all, 88% of the women completed fertility treatment without need for surgery. © 2017 Nordic Federation of Societies of Obstetrics and Gynecology.
Alvarenga, Tavane A; de Oliveira, Pollyanna F; de Souza, Julia M; Tavares, Denise C; Andrade E Silva, Márcio L; Cunha, Wilson R; Groppo, Milton; Januário, Ana H; Magalhães, Lizandra G; Pauletti, Patrícia M
2016-11-23
Bioassay-guided study of the ethanol extract from the cashew Anacardium occidentale furnished cardol triene (1), cardol diene (2), anacardic acid triene (3), cardol monoene (4), anacardic acid diene (5), 2-methylcardol triene (6), and 2-methylcardol diene (7). 1D- and 2D-NMR experiments and HRMS analysis confirmed the structures of compounds 1-7. Compounds 2 and 7 were active against Schistosoma mansoni adult worms in vitro, with LC 50 values of 32.2 and 14.5 μM and selectivity indices of 6.1 and 21.2, respectively. Scanning electron microscopy of the tegument of male worms in the presence of compound 7 at 25 μM after 24 h of incubation showed severe damage as well as peeling and reduction in the number of spine tubercles. Transmission electron microscopy analyses revealed swollen mitochondrial membrane, vacuoles, and altered tegument in worms incubated with compound 2 (25 μM after 24 h). Worms incubated with compound 7 (25 μM after 24 h) had lysed interstitial tissue, degenerated mitochondria, and drastically altered tegument. Together, the results indicated that compound 7 presents promising in vitro schistosomicidal activity.
Photothermal monitoring of interaction of carcinoma cells with cytostatic drugs in vitro
NASA Astrophysics Data System (ADS)
Lapotko, Dmitri; Hanna, Ehab; Cannon, Martin
2003-06-01
Background/problem. Monitoring of tumor response to cancer chemotherapy and dose optimization for specific patients are the key factors for successful application of anti-tumor drugs. Using patient's tumor cells for preliminary in vitro drug screening may allow optimal selection of drug type and dose. Method. Single cell state was studied with photothermal microscope. Carcinoma cells were irradiated at 427 nm with 8 ns laser pulse with energy 30 - 40 μJ. Cell photothermal (PT) response amplitude and shape from each cell were analyzed and amount of cells that produced specific PT response was used as PT parameter. Parallel experiment included cell viability control. Results were obtained for two cytotoxic chemotherapy agents -- Platinol-aq and Adrucil. Incubation of cell suspensions for 90 min at 20 and 37°C caused changes in cell PT parameters. Reaction of carcinoma cells to the drug was very similar to reaction of hepatocytes to respiratory chain inhibition and reaction of RBC to osmotic pressure decrease. PT effect was found to be dose-dependent. PT method allows detecting drug-induced changes before cell death or morphological changes and therefore can be fast and sensitive modality for control of chemotherapy.
Biphasic Dose Response in Low Level Light Therapy – An Update
Huang, Ying-Ying; Sharma, Sulbha K; Carroll, James; Hamblin, Michael R
2011-01-01
Low-level laser (light) therapy (LLLT) has been known since 1967 but still remains controversial due to incomplete understanding of the basic mechanisms and the selection of inappropriate dosimetric parameters that led to negative studies. The biphasic dose-response or Arndt-Schulz curve in LLLT has been shown both in vitro studies and in animal experiments. This review will provide an update to our previous (Huang et al. 2009) coverage of this topic. In vitro mediators of LLLT such as adenosine triphosphate (ATP) and mitochondrial membrane potential show biphasic patterns, while others such as mitochondrial reactive oxygen species show a triphasic dose-response with two distinct peaks. The Janus nature of reactive oxygen species (ROS) that may act as a beneficial signaling molecule at low concentrations and a harmful cytotoxic agent at high concentrations, may partly explain the observed responses in vivo. Transcranial LLLT for traumatic brain injury (TBI) in mice shows a distinct biphasic pattern with peaks in beneficial neurological effects observed when the number of treatments is varied, and when the energy density of an individual treatment is varied. Further understanding of the extent to which biphasic dose responses apply in LLLT will be necessary to optimize clinical treatments. PMID:22461763
Novel tumor-targeted RGD peptide-camptothecin conjugates: synthesis and biological evaluation.
Dal Pozzo, Alma; Ni, Ming-Hong; Esposito, Emiliano; Dallavalle, Sabrina; Musso, Loana; Bargiotti, Alberto; Pisano, Claudio; Vesci, Loredana; Bucci, Federica; Castorina, Massimo; Foderà, Rosanna; Giannini, Giuseppe; Aulicino, Concetta; Penco, Sergio
2010-01-01
Five RGD peptide-camptothecin (CPT) conjugates were designed and synthesized with the purpose to improve the therapeutic index of this antitumoral drug family. New RGD cyclopeptides were selected on the basis of their high affinity to alpha(v) integrin receptors overexpressed by tumor cells and their metabolic stability. The conjugates can be divided in two groups: in the first the peptide was attached to the drug through an amide bond, in the second through a hydrazone bond. The main difference between the two spacers lies in their acid stability. Affinity to the receptors was maintained for all conjugates and their internalization into tumor cells was demonstrated. The first group conjugates showed lower in vitro and in vivo activity than the parent drug, probably due to the excessive stability of the amide bond, even inside the tumor cells. Conversely, the hydrazone conjugates exhibited in vitro tumor cell inhibition similar to the parent drug, indicating high conversion in the culture medium and/or inside the cells, but their poor solubility hampered in vivo experiments. On the basis of these results, information was acquired for additional development of derivatives with different linkers and better solubility for in vivo evaluation. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Walsh, David J; Jones, Christopher A; Wood, Samuel H
2015-01-01
Essure (Bayer) received approval from the U.S. Food and Drugs Administration as a permanent non-hormonal contraceptive implant in November 2002. While the use of Essure in the management of hydrosalpinx prior to in vitro fertilization (IVF) remains off-label, it has been used specifically for this purpose since at least 2007. Although most published reports on Essure placement before IVF have been reassuring, clinical experience remains limited, and no randomized studies have demonstrated the safety or efficacy of Essure in this context. In fact, no published guidelines deal with patient selection or counseling regarding the Essure procedure specifically in the context of IVF. Although Essure is an irreversible birth control option, some patients request the surgical removal of the implants for various reasons. While these patients could eventually undergo hysterectomy, at present no standardized technique exists for simple Essure removal with conservation of the uterus. This article emphasizes new aspects of the Essure procedure, as we describe the first known association between the placement of Essure implants and the subsequent development of fluid within the uterine cavity, which resolved after the surgical removal of both devices. PMID:26473113
Gulcan, Hayrettin O; Orhan, Ilkay E; Sener, Bilge
2015-01-01
Dual action of galanthamine as potent cholinesterase inhibitor and nicotinic modulator has attracted a great attention to be used in the treatment of AD. Consequently, galanthamine, a natural alkaloid isolated from a Galanthus species (snowdrop, Amaryllidaceae), has become an attractive model compound for synthesis of its novel derivatives to discover new drug candidates. Numerous studies have been done to elucidate interactions between galanthamine and its different derivatives and the enzymes; acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) using in vitro and in silico experimental models. The in vitro studies revealed that galanthamine inhibits AChE in strong, competitive, long-acting, and reversible manner as well as BChE, although its selectivity towards AChE is much higher than BChE. The in silico studies carried out by employing molecular docking experiments as well as molecular dynamics simulations pointed out to existence of strong interactions of galanthamine with the active gorge of AChE, mostly of Torpedo californica (the Pasific electric ray) origin. In this review, we evaluate the mainstays of cholinesterase inhibitory action of galanthamine and its various derivatives from the point of view of chemical and molecular aspects.
Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures.
Lin, Xuezhi; Xiao, Xingling; Wang, Yimeng; Gu, Cheng; Wang, Canbin; Chen, Jiahui; Liu, Han; Luo, Juan; Li, Tao; Wang, Di; Fan, Shicai
2018-01-01
Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures.
Biocompatibility of Bespoke 3D-Printed Titanium Alloy Plates for Treating Acetabular Fractures
Xiao, Xingling; Wang, Yimeng; Gu, Cheng; Wang, Canbin; Chen, Jiahui; Liu, Han; Luo, Juan; Li, Tao
2018-01-01
Treatment of acetabular fractures is challenging, not only because of its complicated anatomy but also because of the lack of fitting plates. Personalized titanium alloy plates can be fabricated by selective laser melting (SLM) but the biocompatibility of these three-dimensional printing (3D-printed) plates remains unknown. Plates were manufactured by SLM and their cytocompatibility was assessed by observing the metabolism of L929 fibroblasts incubated with culture medium extracts using a CCK-8 assay and their morphology by light microscopy. Allergenicity was tested using a guinea pig maximization test. In addition, acute systemic toxicity of the 3D-printed plates was determined by injecting extracts from the implants into the tail veins of mice. Finally, the histocompatibility of the plates was investigated by implanting them into the dorsal muscles of rabbits. The in vitro results suggested that cytocompatibility of the 3D-printed plates was similar to that of conventional plates. The in vivo data also demonstrated histocompatibility that was comparable between the two manufacturing techniques. In conclusion, both in vivo and in vitro experiments suggested favorable biocompatibility of 3D-printed titanium alloy plates, indicating that it is a promising option for treatment of acetabular fractures. PMID:29682523
Our study assesses the value of both in vitro assay and quantitative structure activity relationship (QSAR) data in predicting in vivo toxicity using numerous statistical models and approaches to process the data. Our models are built on datasets of (i) 586 chemicals for which bo...
del Olmo, D; Parrilla, I; Gil, M A; Maside, C; Tarantini, T; Angel, M A; Roca, J; Martinez, E A; Vazquez, J M
2013-09-01
The objective of this study was to develop an adequate sperm handling protocol in order to obtain a sex-sorted sperm population with an optimal fertilizing ability. For this purpose, different aspects of the sorting procedure were examined. The effects of the high dilution rates (experiment 1), type of collection medium used (experiment 2), and sheath fluid composition (experiment 3) on sorted boar sperm quality and function were evaluated. Sperm quality was assessed by motility and viability tests, whereas sperm function was evaluated by an in vitro fertilization assay which determined the penetration and polyspermy rates as well as the mean number of sperm penetrating each oocyte. In experiment 1, the results obtained indicated that the high dilution rates did not cause a decrease either in the sperm quality parameters evaluated or the in vitro fertilization ability of spermatozoa. In experiment 2, although sperm quality was not affected, fertilizing ability was compromised after sorting, regardless of the collection medium that was used. In the experiment 3, all groups displayed adequate sperm quality values, but higher in vitro fertility parameters were obtained for spermatozoa sorted in presence of EDTA in the sheath fluid and egg yolk (EY) in the collection media when compared with those sorted in absence of these protective agents. No differences in penetration rates between unsorted highly diluted (control) and sorted sperm in the presence of EDTA and EY were observed. In conclusion, fertilizing ability was compromised in sex-sorted sperm. The addition of EDTA to sheath fluid and EY to collection medium improved boar sperm fertilizing ability, and both agents should be included as essential media components in future studies. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Volova, Larissa
One of the major health problems of the astronauts are disorders of the musculoskeletal system, which determines the relevance of studies of the effect of space flight factors on osteoblastic and hondroblastic cells in vitro. An experiment to study the viability and proliferative activity of cells of mesenchymal origin on culture: chondroblasts and dermal fibroblasts was performed on SC "BION -M" No. 1 with scientific equipment " BIOKONT -B ." To study the effect of space flight conditions in vitro at the cellular level has developed a new model with 3D- graft as allogeneic demineralized spongiosa obtained on technology Lioplast ®. For space and simultaneous experiments in the laboratory of the Institute of Experimental Medicine and Biotechnology Samara State Medical University were obtained from the cell culture of hyaline cartilage and human skin, which have previously been grown, and then identified by morphological and immunohistochemical methods. In the experiment, they were seeded on the porous 3D- graft (controlled by means of scanning electron and confocal microscopy) and cultured in full growth medium. After completion of the flight of spacecraft "BION -M" No. 1 conducted studies of biological objects using a scanning electron microscope (JEOL JSM-6390A Analysis Station, Japan), confocal microscopy and LDH - test. According to the results of the experiment revealed that after a 30- day flight of the cells not only retained vitality, but also during the flight actively proliferate, and their number has increased by almost 8 times. In synchronous experiment, all the cells died by this date. The experimentally confirmed the adequacy of the proposed model 3D- graft in studying the effect of space flight on the morphological and functional characteristics of cells in vitro.
Kempton, Colton E.; Heninger, Justin R.; Johnson, Steven M.
2014-01-01
Nucleosomes and their positions in the eukaryotic genome play an important role in regulating gene expression by influencing accessibility to DNA. Many factors influence a nucleosome's final position in the chromatin landscape including the underlying genomic sequence. One of the primary reasons for performing in vitro nucleosome reconstitution experiments is to identify how the underlying DNA sequence will influence a nucleosome's position in the absence of other compounding cellular factors. However, concerns have been raised about the reproducibility of data generated from these kinds of experiments. Here we present data for in vitro nucleosome reconstitution experiments performed on linear plasmid DNA that demonstrate that, when coverage is deep enough, these reconstitution experiments are exquisitely reproducible and highly consistent. Our data also suggests that a coverage depth of 35X be maintained for maximal confidence when assaying nucleosome positions, but lower coverage levels may be generally sufficient. These coverage depth recommendations are sufficient in the experimental system and conditions used in this study, but may vary depending on the exact parameters used in other systems. PMID:25093869
Bayly, Simon R; King, Robert C; Honess, Davina J; Barnard, Peter J; Betts, Helen M; Holland, Jason P; Hueting, Rebekka; Bonnitcha, Paul D; Dilworth, Jonathan R; Aigbirhio, Franklin I; Christlieb, Martin
2008-11-01
A water-soluble glucose conjugate of the hypoxia tracer 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) was synthesized and radiolabeled (64Cu-ATSE/A-G). Here we report our initial biological experiments with 64Cu-ATSE/A-G and compare the results with those obtained for 64Cu-ATSM and 18F-FDG. The uptake of 64Cu-ATSE/A-G and 64Cu-ATSM into HeLa cells in vitro was investigated at a range of dissolved oxygen concentrations representing normoxia, hypoxia, and anoxia. Small-animal PET with 64Cu-ATSE/A-G was performed in male BDIX rats implanted with P22 syngeneic carcinosarcomas. Images of 64Cu-ATSM and 18F-FDG were obtained in the same model for comparison. 64CuATSE/A-G showed oxygen concentration-dependent uptake in vitro and, under anoxic conditions, showed slightly lower levels of cellular uptake than 64Cu-ATSM; uptake levels under hypoxic conditions were also lower. Whereas the normoxic uptake of 64Cu-ATSM increased linearly over time, 64Cu-ATSE/A-G uptake remained at low levels over the entire time course. In the PET study, 64CuATSE/A-G showed good tumor uptake and a biodistribution pattern substantially different from that of each of the controls. In marked contrast to the findings for 64Cu-ATSM, renal clearance and accumulation in the bladder were observed. 64Cu-ATSE/A-G did not display the characteristic brain and heart uptake of 18F-FDG. The in vitro cell uptake studies demonstrated that 64Cu-ATSE/A-G retained hypoxia selectivity and had improved characteristics when compared with 64Cu-ATSM. The in vivo PET results indicated a difference in the excretion pathways, with a shift from primarily hepatointestinal for 64Cu-ATSM to partially renal with 64Cu-ATSE/A-G. This finding is consistent with the hydrophilic nature of the glucose conjugate. A comparison with 18F-FDG PET results revealed that 64Cu-ATSE/A-G was not a surrogate for glucose metabolism. We have demonstrated that our method for the modification of Cu-bis(thiosemicarbazonato) complexes allows their biodistribution to be modified without negating their hypoxia selectivity or tumor uptake properties.
[Effect of rat intestinal flora on in vitro metabolic transformation of pumiloside].
Fang, Hui; Li, Meng-Xuan; Li, Hai-Bo; Liu, Wen-Jun; Meng, Zhao-Qing; Huang, Wen-Zhe; Wang, Zhen-Zhong; Xiao, Wei
2016-05-01
To study the metabolic transformation of pumiloside by rat intestinal flora in vitro and identify its metabolites. Pumiloside was incubated in the rat intestinal flora in vitro. HPLC was used to monitor the metabolic process, and HPLC-Q-TOF-MS was used to identify the structures of biotransformation products. In vitro, pumiloside was easily metabolized by rat intestinal flora, and with the prolongation of metabolic time, pumiloside was transformed into several metabolites. Three metabolites were initially identified in this experiment. The study indicated that pumiloside could be extensively metabolized in the rat intestinal flora in vitro. Copyright© by the Chinese Pharmaceutical Association.
2013-01-01
Background Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Methods Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Results Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Conclusions Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery. PMID:23773766
Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I
2013-06-18
Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS endothelial cell types can be obtained, and these can be passaged onto large numbers of cell culture inserts for in vitro permeability studies. The passaged brain and spinal cord endothelial cells are pure and express endothelial markers, tight junction proteins and intracellular transport machinery. Further, both models exhibit tight, functional barrier characteristics that are discriminating against large and small molecules in permeability assays and show functional expression of the pharmaceutically important P-gp efflux transporter. Our techniques allow the provision of high yields of robust sister cultures of endothelial cells that accurately model the blood-CNS barriers in vitro. These models are ideally suited for use in studying the biology of the blood-brain barrier and blood-spinal cord barrier in vitro and for pre-clinical drug discovery.
Evaluation of cholesterol- treated dromedary camel sperm function by heterologous IVF and AI.
Crichton, Elizabeth G; Malo, Clara; Pukazhenthi, Budhan S; Nagy, Peter; Skidmore, Julian A
2016-11-01
Cholesterol (cholesterol-loaded cyclodextrins: CLC) treatment of dromedary camel sperm prior to freezing enhances cryosurvival. The present study first validated the efficacy of a heterologous zona-free goat oocyte assay (n=115 oocytes) to evaluate camel sperm function in vitro (Experiment 1: n=6 bulls), then examined the effects of CLC treatment (1.5mg/mL CLC; CLC+) versus no treatment (0 CLC) of fresh (Experiment 2: n=4 bulls) and frozen-thawed (Experiment 3: n=5 bulls) camel sperm to penetrate, de-condense and form pro-nuclei in in vitro-matured goat oocytes. Finally, the ability of fresh 0 CLC and CLC+ sperm to fertilize in vivo was studied by artificially inseminating super-ovulated females (n=7-9 per treatment) and examining embryo production (Experiment 4: n=4-5 bulls/treatment). Camel spermatozoa penetrated (60%) and formed pro-nuclei (33%) in goat oocytes demonstrating the utility of this heterologous system for assessing sperm function in vitro. For fresh spermatozoa, 0 CLC-treated sperm performed better than their CLC+ counterparts for all parameters measured (P<0.05). In contrast, cryopreservation resulted in a sharp decline in sperm-oocyte interaction in 0 CLC aliquots but remained unaltered in CLC+ aliquots demonstrating a protective effect of cholesterol treatment. There was no difference between treatments in the in vitro fertilizing ability of frozen-thawed sperm or in the numbers of embryos retrieved following AI with fresh 0 CLC or CLC+ sperm. We conclude that although CLC treatment of dromedary camel sperm improves sperm motility it fails to confer an advantage to them in terms of improved in vitro sperm-oocyte interaction or in vivo fertilization under the conditions tested. Copyright © 2016 Elsevier B.V. All rights reserved.
Muszyńska, Ewa; Hanus-Fajerska, Ewa; Piwowarczyk, Barbara; Augustynowicz, Joanna; Ciarkowska, Krystyna; Czech, Tomasz
2017-08-01
The aim of the work was to evaluate the usefulness of the in vitro multiplication of Biscutella laevigata calamine ecotype for in situ reclamation of post-flotation wastes polluted with Pb and Cd. The experiment was conducted on three steps: (i) plant shoots' production under in vitro condition, (ii) establishment of the material in greenhouse experiment, and finally (iii) field cultivation directly on the mining-waste heap of Olkusz Ore-Bearing Region, Poland. This region is known to be one of the most chemically-degraded area in central Europe. The laboratory-set in vitro analysis enabled to obtain the high-quality plant shoots, which multiply the most effectively (with growth tolerance index 130-150%) on medium containing 5.0μM CdCl 2 and 0.5mM Pb(NO 3 ) 2 . These plants were used for the next two ex vitro experiments. Several biometric and physiological analysis (i.e. of photosystem II activity F v /F m and PI, photosynthetic pigment contents) were done to indicate plant physiological status during these experiments. The main novelty of the work was to prove that in vitro-multiplied shoots of B. laevigata - the representative of native flora from Olkusz Ore-Bearing Region - can be successfully implemented in situ for the restoration of these degraded area. Moreover, the addition of sewage sludge as a source of organic compounds significantly improved plants' growth and development what is especially important due to the lack of other legal solutions for the management of the sewage sludge in some countries. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Hee Man; Yang, Sungwook; Kim, Jinseok; Park, Semi; Cho, Jae Hee; Park, Jeong Youp; Kim, Tae Song; Yoon, Eui-Sung; Song, Si Young; Bang, Seungmin
2010-08-01
Capsule endoscopy that could actively move and approach a specific site might be more valuable for the diagnosis or treatment of GI diseases. We tested the performance of active locomotion of a novel wired capsule endoscope with a paddling-based locomotion mechanism, using 3 models: a silicone tube, an extracted porcine colon, and a living pig. In vitro, ex vivo, and in vivo experiments in a pig model. Study in an animal laboratory. For the in vitro test, the locomotive capsule was controlled to actively move from one side of a silicone tube to the other by a controller-operated automatic traveling program. The velocity was calculated by following a video recording. We performed ex vivo tests by using an extracted porcine colon in the same manner we performed the in vitro test. In in vivo experiments, the capsule was inserted into the rectum of a living pig under anesthesia, and was controlled to move automatically forward. After 8 consecutive trials, the velocity was calculated. Elapsed time, velocity, and mucosal damage. The locomotive capsule showed stable and active movement inside the lumen both in vitro and ex vivo. The velocity was 60 cm/min in the silicone tube, and 36.8 and 37.5 cm/min in the extracted porcine colon. In the in vivo experiments, the capsule stably moved forward inside the colon of a living pig without any serious complications. The mean velocity was 17 cm/min over 40 cm length. We noted pinpoint erythematous mucosal injuries in the colon. Porcine model experiments, wired capsule endoscope. The novel paddling-based locomotive capsule endoscope performed fast and stable movement in a living pig colon with consistent velocity. Further investigation is necessary for practical use in humans. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Advances on the Transfer of Lipids by Lipid Transfer Proteins.
Wong, Louise H; Čopič, Alenka; Levine, Tim P
2017-07-01
Transfer of lipid across the cytoplasm is an essential process for intracellular lipid traffic. Lipid transfer proteins (LTPs) are defined by highly controlled in vitro experiments. The functional relevance of these is supported by evidence for the same reactions inside cells. Major advances in the LTP field have come from structural bioinformatics identifying new LTPs, and from the development of countercurrent models for LTPs. However, the ultimate aim is to unite in vitro and in vivo data, and this is where much progress remains to be made. Even where in vitro and in vivo experiments align, rates of transfer tend not to match. Here we set out some of the advances that might test how LTPs work. Copyright © 2017. Published by Elsevier Ltd.
Liu, Yue; Gibson, Glenn R.; Walton, Gemma E.
2016-01-01
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters. PMID:27612304
Liu, Yue; Gibson, Glenn R; Walton, Gemma E
2016-01-01
The aging process leads to alterations of gut microbiota and modifications to the immune response, such changes may be associated with increased disease risk. Prebiotics and probiotics can modulate microbiome changes induced by aging; however, their effects have not been directly compared. The aim of this study was to use anaerobic batch culture fermenters to assess the impact of various fermentable carbohydrates and microorganisms on the gut microbiota and selected immune markers. Elderly volunteers were used as donors for these experiments to enable relevance to an aging population. The impact of fermentation supernatants on immune markers relevant to the elderly were assessed in vitro. Levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in peripheral blood mononuclear cell culture supernatants were measured using flow cytometry. Trans-galactooligosaccharides (B-GOS) and inulin both stimulated bifidobacteria compared to other treatments (p<0.05). Fermentation supernatants taken from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus and Ba. coagulans inhibited LPS induced TNF-α (p<0.05). IL-10 production, induced by LPS, was enhanced by fermentation supernatants from faecal batch cultures supplemented with B-GOS, inulin, B. bifidum, L. acidophilus, Ba. coagulans and Bac. thetaiotaomicron (p<0.05). To conclude, prebiotics and probiotics could lead to potentially beneficial effects to host health by targeting specific bacterial groups, increasing saccharolytic fermentation and decreasing inflammation associated with aging. Compared to probiotics, prebiotics led to greater microbiota modulation at the genus level within the fermenters.
Maji, Swarup Kumar; Mandal, Amal Kumar; Nguyen, Kim Truc; Borah, Parijat; Zhao, Yanli
2015-05-13
Development of efficient artificial enzymes is an emerging field in nanobiotechnology, since these artificial enzymes could overcome serious disadvantages of natural enzymes. In this work, a new nanostructured hybrid was developed as a mimetic enzyme for in vitro detection and therapeutic treatment of cancer cells. The hybrid (GSF@AuNPs) was prepared by the immobilization of gold nanoparticles (AuNPs) on mesoporous silica-coated nanosized reduced graphene oxide conjugated with folic acid, a cancer cell-targeting ligand. The GSF@AuNPs hybrid showed unprecedented peroxidase-like activity, monitored by catalytic oxidation of a typical peroxidase substrate, 3,3',5,5'-tetramethylbenzidine (TMB), in the presence of H2O2. On basis of this peroxidase activity, the hybrid was utilized as a selective, quantitative, and fast colorimetric detection probe for cancer cells. Finally, the hybrid as a mimetic enzyme was employed for H2O2- and ascorbic acid (AA)-mediated therapeutics of cancer cells. In vitro experiments using human cervical cancer cells (HeLa cells) exhibited the formation of reactive oxygen species (OH(•) radical) in the presence of peroxidase-mimic GSF@AuNPs with either exogenous H2O2 or endogenous H2O2 generated from AA, leading to an enhanced cytotoxicity to HeLa cells. In the case of normal cells (human embryonic kidney HEK 293 cells), the treatment with the hybrid and H2O2 or AA showed no obvious damage, proving selective killing effect of the hybrid to cancer cells.
Fujihashi, T; Hara, H; Sakata, T; Mori, K; Higuchi, H; Tanaka, A; Kaji, H; Kaji, A
1995-09-01
Halogenated gomisin J (a derivative of lignan compound), represented by the bromine derivative 1506 [(6R, 7S, S-biar)-4,9-dibromo-3,10-dihydroxy-1,2,11,12-tetramethoxy-6, 7-dimethyl-5,6,7,8- tetrahydrodibenzo[a,c]cyclo-octene], was found to be a potent inhibitor of the cytopathic effects of human immunodeficiency virus type 1 (HIV-1) on MT-4 human T cells (50% effective dose, 0.1 to 0.5 microM). Gomisin J derivatives were active in preventing p24 production from acutely HIV-1-infected H9 cells. The selective indices (toxic dose/effective dose) of these compounds were as high as > 300 in some systems. 1506 was active against 3'-azido-3'-deoxythymidine-resistant HIV-1 and acted synergistically with AZT and 2',3'-ddC. 1506 inhibited HIV-1 reverse transcriptase (RT) in vitro but not HIV-1 protease. From the time-of-addition experiment, 1506 was found to inhibit the early phase of the HIV life cycle. A 1506-resistant HIV mutant was selected and shown to possess a mutation within the RT-coding region (at position 188 [Tyr to Leu]). The mutant RT expressed in Escherichia coli was resistant to 1506 in the in vitro RT assay. Some of the HIV strains resistant to other nonnucleoside HIV-1 RT inhibitors were also resistant to 1506. Comparison of various gomisin J derivatives with gomisin J showed that iodine, bromine, and chlorine in the fourth and ninth positions increased RT inhibitory activity as well as cytoprotective activity.
Gonzalez-Gil, Francisco; Diaz-Sanchez, Sandra; Pendleton, Sean; Andino, Ana; Zhang, Nan; Yard, Carrie; Crilly, Nate; Harte, Federico; Hanning, Irene
2014-02-01
Yerba mate (Ilex paraguariensis) is a tea known to have beneficial effects on human health and antimicrobial activity against some foodborne pathogens. Thus, the application of yerba mate as a feed additive for broiler chickens to reduce Salmonella colonization was evaluated. The first in vitro evaluation was conducted by suspending Salmonella Enteritidis and lactic acid bacteria (LAB) in yerba mate extract. The in vivo evaluations were conducted using preventative and horizontal transmission experiments. In all experiments, day-of-hatch chicks were treated with one of the following 1) no treatment (control); 2) ground yerba mate in feed; 3) probiotic treatment (Lactobacillus acidophilus and Pediococcus; 9:1 administered once on day of hatch by gavage); or 4) both yerba mate and probiotic treatments. At d 3, all chicks were challenged with Salmonella Enteritidis (preventative experiment) or 5 of 20 chicks (horizontal transmission experiment). At d 10, all birds were euthanized, weighed, and cecal contents enumerated for Salmonella. For the in vitro evaluation, antimicrobial activity was observed against Salmonella and the same treatment enhanced growth of LAB. For in vivo evaluations, none of the yerba mate treatments significantly reduced Salmonella Enteritidis colonization, whereas the probiotic treatment significantly reduced Salmonella colonization in the horizontal transmission experiment. Yerba mate decreased chicken BW and decreased the performance of the probiotic treatment when used in combination. In conclusion, yerba mate had antimicrobial activity against foodborne pathogens and enhanced the growth of LAB in vitro, but in vivo yerba mate did not decrease Salmonella Enteritidis colonization.
Cell-mediated immunity in an ageing population.
Girard, J P; Paychère, M; Cuevas, M; Fernandes, B
1977-01-01
Eight hundred and eighty patients hospitalized in a geriatric hospital were routinely tested with 2, 10, 30 and 100 i.u. tuberculin. Among these, fifty-four patients were selected on the basis of negative skin tests and absence of evident diseases interfering with the function of the immune apparatus. A battery of tests analysing cell-mediated immunity was applied to those fifty-four patients. It appears that elderly patients having a negative test to 100 i.u. tuberculin show very infrequent sensitization to three other thymus-dependent antigens. The capacity of this selected population to become sensitized to DNCB is poor (20%). Furthermore they exhibit a low per cent of peripheral blood T cells (36%) and a poor capacity to respond in vitro to mitogens such as PHA. Testing the in vitro response to a battery of antigens demonstrates a good correlation with the results of the skin tests. Finally the leucocytes of 25% of this selected population failed to produce LIF in vitro in the presence of PHA. These results suggest not only an absolute decrease in the population of circulating T lymphocytes in those elderly humans; but very likely, at least in some cases, a functional impairment of T cells. PMID:321161
[Study on sustained release preparations of Epimedium component].
Yan, Hong-mei; Ding, Dong-mei; Zhang, Zhen-hai; Sun, E; Song, Jie; Jia, Xiao-bin
2015-04-01
The formulation for sustained release tablet of Epinedium component was selected and the evaluation equation of in vitro release was established. The liquidity of component was improved with the help of colloidal silica aided by spray drying, which would be the main drug in the sustained release tablets. Dissolution was selected as an evaluation index to investigate skeletal material type, fillers, impact porogen, lubricants and other materials on the quality of sustained release tablet. The sustained release tablets were prepared by dry compression. Formulation of sustained release preparations was main drug 35%, HPMC K(4M) 20% and HPMC K(15M) 10% as skeleton material, MCC 31% as filler, PEG6000 2% as porogen and magnesium stearate 2% as lubricant. The sustained release tablets released up to 80% in 8 h. The zero order equation, primary equation and Higuchi equation could simulate the release characteristics of sustained release tablets in vitro, the correlation coefficients r were larger than 0.96. The primary equation was most similar in vitro release characteristics and its correlation coefficient r was 0.9950. The preparation method is simple and the results of formulation selection are reliable. It can be used to guide the production of Epimedium component sustained release preparations.
Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M
2015-12-01
Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Martín-Coello, J; González, R; Crespo, C; Gomendio, M; Roldan, E R S
2008-10-01
Mouse oocytes can be obtained via superovulation or using in vitro maturation although several factors, including genetic background, may affect response. Our previous studies have identified various mouse species as models to understand the role of sexual selection on the evolution of sperm traits and function. In order to do comparative studies of sperm-oocyte interaction, we sought reliable methods for oocyte superovulation and in vitro maturation in mature females of three mouse species (genus Mus). When 5 IU pregnant mare's serum gonadotrophin (PMSG) and 5 IU human chorionic gonadotrophin (hCG) were injected 48 h apart, and oocytes collected 14 h post-hCG, good responses were obtained in Mus musculus (18+/-1.3 oocytes/female; mean+/-S.E.M.) and Mus spretus (12+/-0.8), but no ovulation was seen in Mus spicilegus. Changes in PMSG or hCG doses, or longer post-hCG intervals, did not improve results. Use of PMSG/luteinizing hormone (LH) resulted in good responses in M. musculus (19+/-1.2) and M. spretus (12+/-1.1) but not in M. spicilegus (5+/-0.9) with ovulation not increasing with higher LH doses. Follicular puncture 48 h after PMSG followed by in vitro maturation led to a high oocyte yield in the three species (M. musculus, 23+/-0.9; M. spretus, 17+/-1.1; M. spicilegus, 10+/-0.9) with a consistently high maturation rates. In vitro fertilization of both superovulated and in vitro matured oocytes resulted in a high proportion of fertilization (range: 83-87%) in the three species. Thus, in vitro maturation led to high yields in all three species. These results will allow future studies on gamete interaction in these closely related species and the role of sexual selection in gamete compatibility.
Hudson, Lauren E.; Fasken, Milo B.; McDermott, Courtney D.; McBride, Shonna M.; Kuiper, Emily G.; Guiliano, David B.; Corbett, Anita H.; Lamb, Tracey J.
2014-01-01
Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders. PMID:25391025
Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J
2014-01-01
Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.
Xu, Wenjing; Zhao, Zhe; Zhao, Bin; Wang, Yu; Peng, Jiang; Zhang, Li; Chen, Jifeng; Lu, Shibi
2011-10-01
Bone marrow mesenchymal stem cells (BMSCs), as replacement cells of Schwann cells, can increase the effect of peripheral nerve repair. However, it has not yet reached any agreement to add the appropriate number of seeded cells in nerve scaffold. To investigate the effect of different number of BMSCs on the growth of rat dorsal root ganglia (DRG). Three 4-week-old Sprague Dawley (SD) rats (weighing 80-100 g) were selected to isolate BMSCs, which were cultured in vitro. Three 1- to 2-day-old SD rats (weighing 4-6 g) were selected to prepare DRG. BMSCs at passage 3 were used to prepare BMSCs-fibrin glue complex. According to different number of BMSCs at passage 3 in fibrin glue, experiment was divided into group A (1 x 10(3)), group B (1 x 10(4)), group C (1 x 10(5)), and group D (0, blank control), and BMSCs were co-cultured with rat DRG. The axon length of DRG, Schwann cell migration distance, and axon area index were quantitatively evaluated by morphology, neurofilament 200, and Schwann cells S-100 immunofluorescence staining after cultured for 48 hours. Some long cell processes formed in BMSCs at 48 hours; migration of Schwann cells and axons growth from the DRG were observed, growing in every direction. BMSCs in fibrin glue had the biological activity and could effect DRG growth. The axon length of DRG and Schwann cell migration distance in groups A, B, and C were significantly greater than those in group D (P < 0.05). The axon length of DRG and Schwann cell migration distance in group C were significantly less than those in group B (P < 0.05), but there was no significant difference between group A and group C, and between group A and group B (P > 0.05). The axon area index in groups A and B was significantly greater than that in group D (P < 0.05), but there was no significant difference between group C and group D (P > 0.05); there was no significant difference in groups A, B, and C (P > 0.05). In vitro study on DRG culture experiments is an ideal objective neural model of nerve regeneration. The effect of different number of BMSCs in fibrin glue on the growth of DRG has dose-effect relationship. It can provide a theoretical basis for the appropriate choice of the BMSCs number for tissue engineered nerve.
PRK by Er:YAG laser: in-vitro studies and first in-vivo experiences
NASA Astrophysics Data System (ADS)
Steiner, Rudolf W.; Leiacker, Richard; Russ, Detlef; Seiler, Theo
1996-01-01
Photorefractive keratectomy (PRK) is usually performed by an excimer laser at 193 nm wavelength. Ablatio of corneal tissue is, however, not only possible in the UV region of the optical spectrum but also in the IR where water is an excellent absorber. Therefore, an Er:YAG laser was used at 2.94 micrometer wavelength as an alternative laser light source to perform in vitro studies of corneal ablation and also first clinical experiments to correct myopia of patients with blind eyes.
In Vitro Differentiation and Propagation of Urothelium from Pluripotent Stem Cell Lines.
Osborn, Stephanie L; Kurzrock, Eric A
2018-01-01
Bioengineering of bladder tissue, particularly for those patients who have advanced bladder disease, requires a source of urothelium that is healthy, capable of significant proliferation in vitro and immunologically tolerated upon transplant. As pluripotent stem cells have the potential to fulfill such criteria, they provide a critical cell source from which urothelium might be derived in vitro and used clinically. Herein, we describe the in vitro differentiation of urothelium from the H9 human embryonic stem cell (hESC) line through the definitive endoderm (DE) phase via selective culture techniques. The protocol can be used to derive urothelium from other hESCs or human-induced pluripotent stem cells.
IN VITRO KILLING OF PERKINSUS MARINUS BY HEMOCYTES OF OYSTERS CRASSOSTREA VIRGINICA
A colorimetric microbicidal assay was adapted, optimized and applied in experiments to characterize the in vitro capacity of eastern oyster (Crassostrea virginica) hemocytes to kill cultured isolates of Perkinsus marinus, a protozoan parasite causing a highly destructive disease...
Ndolo, Rosemary A; Luan, Yepeng; Duan, Shaofeng; Forrest, M Laird; Krise, Jeffrey P
2012-01-01
Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC(50) values of the inhibitors in normal fibroblasts to the IC(50) values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity.
Lysosomotropic Properties of Weakly Basic Anticancer Agents Promote Cancer Cell Selectivity In Vitro
Ndolo, Rosemary A.; Luan, Yepeng; Duan, Shaofeng; Forrest, M. Laird; Krise, Jeffrey P.
2012-01-01
Drug distribution in cells is a fundamentally important, yet often overlooked, variable in drug efficacy. Many weakly basic anticancer agents accumulate extensively in the acidic lysosomes of normal cells through ion trapping. Lysosomal trapping reduces the activity of anticancer drugs, since anticancer drug targets are often localized in the cell cytosol or nucleus. Some cancer cells have defective acidification of lysosomes, which causes a redistribution of trapped drugs from the lysosomes to the cytosol. We have previously established that such differences in drug localization between normal and cancer cells can contribute to the apparent selectivity of weakly basic drugs to cancer cells in vitro. In this work, we tested whether this intracellular distribution-based drug selectivity could be optimized based on the acid dissociation constant (pKa) of the drug, which is one of the determinants of lysosomal sequestration capacity. We synthesized seven weakly basic structural analogs of the Hsp90 inhibitor geldanamycin (GDA) with pKa values ranging from 5 to 12. The selectivity of each analog was expressed by taking ratios of anti-proliferative IC50 values of the inhibitors in normal fibroblasts to the IC50 values in human leukemic HL-60 cells. Similar selectivity assessments were performed in a pair of cancer cell lines that differed in lysosomal pH as a result of siRNA-mediated alteration of vacuolar proton ATPase subunit expression. Optimal selectivity was observed for analogs with pKa values near 8. Similar trends were observed with commercial anticancer agents with varying weakly basic pKa values. These evaluations advance our understanding of how weakly basic properties can be optimized to achieve maximum anticancer drug selectivity towards cancer cells with defective lysosomal acidification in vitro. Additional in vivo studies are needed to examine the utility of this approach for enhancing selectivity. PMID:23145164
Qian, Chongsheng; Wang, Yingying; Cai, Huili; Laroye, Caroline; De Carvalho Bittencourt, Marcelo; Clement, Laurence; Stoltz, Jean-François; Decot, Véronique; Reppel, Loïc; Bensoussan, Danièle
2016-01-01
Adoptive antiviral cellular immunotherapy by infusion of virus-specific T cells (VSTs) is becoming an alternative treatment for viral infection after hematopoietic stem cell transplantation. The T memory stem cell (TSCM) subset was recently described as exhibiting self-renewal and multipotency properties which are required for sustained efficacy in vivo. We wondered if such a crucial subset for immunotherapy was present in VSTs. We identified, by flow cytometry, TSCM in adenovirus (ADV)-specific interferon (IFN)-γ+ T cells before and after IFN-γ-based immunomagnetic selection, and analyzed the distribution of the main T-cell subsets in VSTs: naive T cells (TN), TSCM, T central memory cells (TCM), T effector memory cell (TEM), and effector T cells (TEFF). In this study all of the different T-cell subsets were observed in the blood sample from healthy donor ADV-VSTs, both before and after IFN-γ-based immunomagnetic selection. As the IFN-γ-based immunomagnetic selection system sorts mainly the most differentiated T-cell subsets, we observed that TEM was always the major T-cell subset of ADV-specific T cells after immunomagnetic isolation and especially after expansion in vitro. Comparing T-cell subpopulation profiles before and after in vitro expansion, we observed that in vitro cell culture with interleukin-2 resulted in a significant expansion of TN-like, TCM, TEM, and TEFF subsets in CD4IFN-γ T cells and of TCM and TEM subsets only in CD8IFN-γ T cells. We demonstrated the presence of all T-cell subsets in IFN-γ VSTs including the TSCM subpopulation, although this was weakly selected by the IFN-γ-based immunomagnetic selection system.
Martins, Ligia F; Mesquita, Juliana T; Pinto, Erika G; Costa-Silva, Thais A; Borborema, Samanta E T; Galisteo Junior, Andres J; Neves, Bruno J; Andrade, Carolina H; Shuhaib, Zainab Al; Bennett, Elliot L; Black, Gregory P; Harper, Philip M; Evans, Daniel M; Fituri, Hisham S; Leyland, John P; Martin, Claire; Roberts, Terence D; Thornhill, Andrew J; Vale, Stephen A; Howard-Jones, Andrew; Thomas, Dafydd A; Williams, Harri L; Overman, Larry E; Berlinck, Roberto G S; Murphy, Patrick J; Tempone, Andre G
2016-09-23
Synthetic analogues of marine sponge guanidine alkaloids showed in vitro antiparasitic activity against Leishmania (L.) infantum and Trypanosoma cruzi. Guanidines 10 and 11 presented the highest selectivity index when tested against Leishmania. The antiparasitic activity of 10 and 11 was investigated in host cells and in parasites. Both compounds induced depolarization of mitochondrial membrane potential, upregulation of reactive oxygen species levels, and increased plasma membrane permeability in Leishmania parasites. Immunomodulatory assays suggested an NO-independent effect of guanidines 10 and 11 on macrophages. The same compounds also promoted anti-inflammatory activity in L. (L.) infantum-infected macrophages cocultived with splenocytes, reducing the production of cytokines MCP-1 and IFN-γ. Guanidines 10 and 11 affect the bioenergetic metabolism of Leishmania, with selective elimination of parasites via a host-independent mechanism.
NASA Astrophysics Data System (ADS)
Quazi, S.; Sarkar, D.; Sylvia, V.; Datta, R.
2006-05-01
Health risk assessment of Arsenic (As) enriched soil requires the estimation of bioavailable fraction of total metal. Research has been conducted to gain a better understanding of the relationship between metal availability and risk assessment. Some baseline risk assessments developed for contaminated sites have used the conservative assumption that all (i.e. 100%) of the As present in soils and wastes is bioavailable, due to tremendous cost associated with in-vivo bioavailability studies. This potentially overestimates the actual health risk, elevating the expenses associated with site cleanup. Health risk from direct exposure to soil-As via the hand-to-mouth exposure route is restricted only to those fractions of As in the soil that are available to the human gastrointestinal system. A reasonable approach is to develop in-vitro methods that simulate the complex and dynamic human gastrointestinal system and correlate well with the results of in-vivo method. Thus this study aims in addressing the potential of one such in-vitro method developed by our research group in assessing the bioavailability of soil-As. Two soils with drastically different chemical characteristics in regards to As reactivity (Immokalee-low As retention capacity; Millhopper-high As retention capacity) spiked with a pesticide (sodium arsenate) were used. Soils were amended at two rates representing concentrations typically found at Superfund sites: 675 and 1500 mg/kg of As. In-vitro bioavailability experiments were performed in order to obtain an estimate of the amount of As likely to be available in the human gastrointestinal system as well as the fraction potentially absorbed onto the intestinal linings. Following the in-vitro study selective in-vivo bioavailability studies using As-contaminated soils were conducted on male and female mice to validate the in-vitro results via comparison with the in-vivo data. Soils were administered orally to the BALB/c mice immediately after spiking. Treatments comprised of a soil group (As in soil), a positive control group (only As) and a negative control group (no soil, no As). Blood samples were collected at different time periods to determine As concentrations. Correlation between the in-vitro and in-vivo data was determined. Information obtained from this study will serve as the first step towards the future development of a semi-quantitative model for predicting bioavailable As. This in turn will result in designing appropriate, cost-effective remedial strategies for As contaminated sites. Keywords: Bioavailability, In-vitro, In-vivo, Arsenic, Soil, Risk Assessment
Formulation and evaluation of once-a-day transdermal gels of diclofenac diethylamine.
Baboota, S; Shakeel, F; Kohli, K
2006-03-01
The present study was undertaken to prepare and evaluate transdermal gels of diclofenac diethylamine (DDEA) containing penetration enhancers such as olesan oil and dimethyl sulfoxide (DMSO). Transdermal gels were prepared using different polymers such as carbopol-940, polyvinyl alcohol (PVA), hydroxy propyl methyl cellulose-K(4) M, hydroxy propyl cellulose-M, and sodium carboxy methyl cellulose. The formulated gels were subjected to physicochemical studies, in vitro release studies and in vitro skin permeations studies and were evaluated for drug content, viscosity, extrudability, spreadability, and pH. The in vitro release studies of prepared gels were performed using specially designed Fites cell and in vitro skin permeation studies were performed using keshary-chien diffusion cell through rat skin. Selected formulations were evaluated for their antiinflammatory activity using the carrageenan-induced paw edema in rats. The carbopol-940 and PVA gels containing 10% DMSO showed best in vitro skin permeation of DDEA. In vivo study for the selected formulation showed a sustained reduction in inflammation in the carrageenan induced paw edema in rats. The efficacies of carbopol-940 and PVA gels were also compared with that of the marketed Voveran gel,(R) and it was found that carbopol and PVA gels produced better results than the Voveran gel. (c) 2006 Prous Science. All rights reserved. (c) 2006 Prous Science. All rights reserved.
[Multiresistant Pseudomonas spp. in vitro susceptibility to a combination of two antibiotics].
Pliego-Castañeda, Q F B Amanda; Yánez-Viguri, Jorge Antonio; López-Valle, Tiburcio
2005-01-01
In vitro antibiotic combination testing would guide therapy selection in patients severely affected by multi-drug resistant Pseudomonas. In vitro, a two-antibiotic combination susceptible against multi-drug resistant Pseudomonas isolated at the Laboratorio Clínico of the Hospital de Oncología, Centro Médico Nacional Siglo XXI in Mexico City were analyzed to determine which antibiotic combination showed the best bactericidal activity. During 10 months, 30 multi-drug resistant Pseudomonas strains were tested. An automated method was used, including a diluting solution with a well-known concentration of a second antibiotic. Quality controls recommended by the NCCLS were used. Pseudomonas aeruginosa ATCC 27853; Escherichia coli ATCC 25922; and Escherichia coli ATCC 35218. Combinations were betalactamics-aminoglycosides; carbapenemis-amikacin; fluoroquinolones-cefepime; and ciprofloxacin-ampicillin. Ampicillin-ciprofloxacin combination was bactericidal against 100% of the isolates. Cefazolin, cefixime and ticarcillin with amikacin: <50%; aztreonam, cefoxilin, cefuroxime, cefotaxime, ceftazidime and piperacillin with amikacin: 50-60%; cefepime with gentamicin: 76%; cefepime with amikacin: 86%; imipenem and meropenem with amikacin: 70% and 76%; cefepime with ciprofloxacin: 83%; cefepime with levofloxacin: 73%. In vitro antibiotic combination susceptibilities against multi-drug resistant bacteria would be the only way to guide clinicians to select the best therapy in severe infections. We found that the ampicillin-ciprofloxacin combination showed the best in vitro effect against multi-drug resistant Pseudomonas.
Saraswathi, M S; Kannan, G; Uma, S; Thangavelu, R; Backiyarani, S
2016-05-01
Shoot tips and in vitro grown proliferating buds of banana cv. Rasthali (Silk, AAB) were treated with various concentrations and durations of chemical mutagens viz., EMS, NaN3 and DES. LD50 for shoot tips based on 50% reduction in fresh weight was determined as 2% for 3 h, 0.02% for 5 h and 0.15% for 5 h, while for proliferating buds, they were 0.6% for 30 min, 0.01% for 2 h and 0.06% for 2 h for the mutagens EMS, NaN3 and DES, respectively. Subsequently, the mutated explants were screened in vitro against fusarium wilt using selection agents like fusaric acid and culture filtrate. LD50 for in vitro selection agents calculated based on 50% survival of explants was 0.050 mM and 7% for fusaric acid and culture filtrate, respectively and beyond which a rapid decline in growth was observed. This was followed by pot screening which led to the identification of three putative resistant mutants with an internal disease score of 1 (corm completely clean, no vascular discolouration). The putative mutants identified in the present study have also been mass multiplied in vitro.
In vitro assessment of biodurability: acellular systems.
de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H
1994-01-01
The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955
Design Optimization and In Vitro-In Vivo Evaluation of Orally Dissolving Strips of Clobazam
Bala, Rajni; Khanna, Sushil; Pawar, Pravin
2014-01-01
Clobazam orally dissolving strips were prepared by solvent casting method. A full 32 factorial design was applied for optimization using different concentration of film forming polymer and disintegrating agent as independent variable and disintegration time, % cumulative drug release, and tensile strength as dependent variable. In addition the prepared films were also evaluated for surface pH, folding endurance, and content uniformity. The optimized film formulation showing the maximum in vitro drug release, satisfactory in vitro disintegration time, and tensile strength was selected for bioavailability study and compared with a reference marketed product (frisium5 tablets) in rabbits. Formulation (F6) was selected by the Design-expert software which exhibited DT (24 sec), TS (2.85 N/cm2), and in vitro drug release (96.6%). Statistical evaluation revealed no significant difference between the bioavailability parameters of the test film (F6) and the reference product. The mean ratio values (test/reference) of C max (95.87%), t max (71.42%), AUC0−t (98.125%), and AUC0−∞ (99.213%) indicated that the two formulae exhibited comparable plasma level-time profiles. PMID:25328709
Protein and Antibody Engineering by Phage Display.
Frei, J C; Lai, J R
2016-01-01
Phage display is an in vitro selection technique that allows for the rapid isolation of proteins with desired properties including increased affinity, specificity, stability, and new enzymatic activity. The power of phage display relies on the phenotype-to-genotype linkage of the protein of interest displayed on the phage surface with the encoding DNA packaged within the phage particle, which allows for selective enrichment of library pools and high-throughput screening of resulting clones. As an in vitro method, the conditions of the binding selection can be tightly controlled. Due to the high-throughput nature, rapidity, and ease of use, phage display is an excellent technological platform for engineering antibody or proteins with enhanced properties. Here, we describe methods for synthesis, selection, and screening of phage libraries with particular emphasis on designing humanizing antibody libraries and combinatorial scanning mutagenesis libraries. We conclude with a brief section on troubleshooting for all stages of the phage display process. © 2016 Elsevier Inc. All rights reserved.
Hmani, Houda; Daoud, Lobna; Jlidi, Mouna; Jalleli, Karim; Ben Ali, Manel; Hadj Brahim, Adel; Bargui, Mansour; Dammak, Alaeddine; Ben Ali, Mamdouh
2017-08-01
We have proposed and validate an in vitro probiotic selection, based on enzymatic potentialities associated to well-established probiotic functional properties. A new Bacillus subtilis HB2 isolate, selected based on its high extracellular enzyme production, was chosen as a probiotic candidate for application as animal feed supplement. The HB2 strain showed an excellent acid and bile salts tolerance, a strong adhesion to chick enterocytes and produced antimicrobials against pathogens. An in vivo trial in poultry farming was conducted to evaluate the HB2 probiotic performance. After 35 days, HB2 achieved the higher growth performance than the control groups. The mortality and the feed conversion ratio were significantly decreased. Finally, the HB2 treated group showed wet litter and less severe ammonia odor in the atmosphere. Our study provides new insights into the importance of enzymatic potentialities, associated with the common functional properties, as a novel approach for probiotic selection.
An In Vitro Translation, Selection, and Amplification System for Peptide Nucleic Acids
Brudno, Yevgeny; Birnbaum, Michael E.; Kleiner, Ralph E.; Liu, David R.
2009-01-01
Methods to evolve synthetic, rather than biological, polymers could significantly expand the functional potential of polymers that emerge from in vitro evolution. Requirements for synthetic polymer evolution include: (i) sequence-specific polymerization of synthetic building blocks on an amplifiable template; (ii) display of the newly translated polymer strand in a manner that allows it to adopt folded structures; (iii) selection of synthetic polymer libraries for desired binding or catalytic properties; and (iv) amplification of template sequences surviving selection in a manner that allows subsequent translation. Here we report the development of such a system for peptide nucleic acids (PNAs) using a set of twelve PNA pentamer building blocks. We validated the system by performing six iterated cycles of translation, selection, and amplification on a library of 4.3 × 108 PNA-encoding DNA templates and observed >1,000,000-fold overall enrichment of a template encoding a biotinylated (streptavidin-binding) PNA. These results collectively provide an experimental foundation for PNA evolution in the laboratory. PMID:20081830
Dowarah, Runjun; Verma, Ashok Kumar; Agarwal, Neeta; Singh, Putan; Singh, Bhoj Raj
2018-01-01
The present study was aimed to develop an effective probiotic lactic acid bacteria (LAB) from piglet feces and in vitro characterization of probiotic properties. To confirm host-species specificity of probiotics, the efficacy of isolated LAB on growth, nutrient utilization, health and antioxidant status was observed in early weaned piglets. A total of 30 LAB were isolated from feces of five healthy piglets (28d old). All isolates were Gram positive, cocco-bacilli and catalase negative. Out of thirty LAB isolates, twenty were shortlisted on the basis of their tolerance to pH (3.0, 4.0, 7.0 and 8.0) and bile salts (0.075, 0.15, 0.3 and 1.0%). Whereas, fourteen isolates were selected for further in vitro probiotic characterization due higher (P<0.05) cell surface hydrophobicity to toluene (>45 percent). These isolates fermented twenty-seven different carbohydrates but were negative for ONPG, citrate and malonate. Also enabled to synthesize amylase, protease, lipase and phytase. They were sensitive to penicillin, azithromycin, lincomycin, clindamycin, erythromycin, cephalothin and chloramphenicol and resistant to ciprofloxacin, ofloxacin, gatifloxacin, vancomycin and co-trimoxazole. Except three isolates, all showed antagonistic activity (>60% co-culture activity) against Escherichia coli, Salmonella Enteritidis, Salmonella serotype (ser.) Typhimurium, Staphylococcus intermedius, Staph. chromogenes, Proteus mirabillis, Areomonas veonii, Bordetella bronchioseptica and Klebsialla oxytoca. The isolate Lacp28 exhibited highest tolerance to acidic pH and bile salts (up to 0.3%), phytase activity, cell surface hydrophobicity, antagonistic activity and co-culture assay (>80% growth inhibition). Host specificity of Lacp28 was further confirmed by heavy in vitro adhesion to pig intestinal epithelium cells compared to chicken. Hence, Lacp28 was selected and identified by phylogenetic analysis of 16S rRNA as Pediococcus acidilactici strain FT28 with 100% similarity (GenBank accession nos. KU837245, KU837246 and KU837247). The Pediococcus acidilactici FT28 was selected as potential probiotic candidature for in vivo efficacy in weaned pigs. Thirty-six crossbred piglets (28d) were randomly distributed into three groups (four replicates of three each) namely, basal diet without probiotics (T0) or with Lactobacillus acidophilus NCDC15 (conventional dairy-specific probiotic; T1) or Pediococcus acidilactici FT28 (swine-specific probiotic; T2). At end of the experiment, six piglets of similar body weight were selected to conduct digestion trial for estimation of nutrient digestibility. Results of the study indicated that supplementation of both probiotics improved (P<0.001) FCR compared to control without significant effect in average daily gain and DM intake. However, the apparent digestibility of crude protein and ether extract was better (P<0.01) in pigs fed P. acidilactici FT28 compared control and L. acidophilus fed groups. The total WBC and RBC count, serum glucose, total protein, albumin and globulin concentration was higher (P<0.05) in P. acidilactici FT28 fed group with better (P<0.05) catalase and superoxide dismutase activity measured in erythrocyte. It is concluded that species-specific Pediococcus acidilactici FT28 isolated with potential in vitro probiotic properties and also hold probiotic candidature by showing the potential capabilities with higher nutrient digestibility, heamato-biochemical and antioxidant status compared to control and Lactobacillus acidophilus NCDC15.
The effect of amino acids on the intestinal absorption of immunoglobulins in the neonatal rat
Bamford, D. R.; Donnelly, H.
1974-01-01
An in vitro preparation of 10-day-old rat intestine was used to examine the absorption of a number of amino acids and immunoglobulins. Evidence was obtained for the active absorption of alanine, leucine, methionine, histidine and lysine, but not for aspartic acid. A selective absorption of the homologous molecule was found in experiments where 131I-labelled rat and bovine IgG were presented to the ileum in 10-minute incubations. The greater uptake of rat IgG was unrelated to the relative rates of catabolism of the two molecules. Although the uptake of rat IgG was unaffected by 100 mM concentrations of neutral and acidic amino acids, the basic amino acids arginine and lysine significantly stimulated uptake. PMID:4854740
Stuart, Christopher H; Singh, Ravi; Smith, Thomas L; D'Agostino, Ralph; Caudell, David; Balaji, K C; Gmeiner, William H
2016-05-01
To evaluate the potential use of zinc chelation for prostate cancer therapy using a new liposomal formulation of the zinc chelator, N,N,N',N'-tetrakis(2-pyridylmethyl)-ethylenediamine (TPEN). TPEN was encapsulated in nontargeted liposomes or liposomes displaying an aptamer to target prostate cancer cells overexpression prostate-specific membrane antigen. The prostate cancer selectivity and therapeutic efficacy of liposomal (targeted and nontargeted) and free TPEN were evaluated in vitro and in tumor-bearing mice. TPEN chelates zinc and results in reactive oxygen species imbalance leading to cell death. Delivery of TPEN using aptamer-targeted liposomes results in specific delivery to targeted cells. In vivo experiments show that TPEN-loaded, aptamer-targeted liposomes reduce tumor growth in a human prostate cancer xenograft model.
Chaturvedi, Ashok K; Kumar, Rohitashw; Kumar, Awanit; Shukla, Praveen K
2009-11-01
Aspergillus fumigatus, a ubiquitous fungus, has been reported to cause human diseases like allergic pulmonary aspergillosis, aspergilloma and invasive infection. Limited spectrum and emergence of resistance has become a serious problem with available antifungals. Therefore, an alternative approach is required for successful treatment of mycoses. In the present study, immunogenic protein profile of A. fumigatus cell wall was generated using two-dimensional-gel electrophoresis and three hybridomas producing monoclonal antibodies (MAbs; IgM) were selected after fusion experiments. Of these three MAbs, MAb-7 exhibited potent in vitro inhibitory activity, which was confirmed by MTT assay, fluorescence-activated cell sorter analysis and immuno-fluorescence studies, and the protein was identified as catalase B using MALDI-TOF-MS.
LOW PRESSURE ULTRAVEIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS
Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...
LOW PRESSURE ULTRAVIOLET STUDIES FOR INACTIVATION OF GIARDIA MURIS CYSTS
Cysts of Giardia muris were inactivated using a low pressure ultravolet (UV) light source. Cyst viability was detemined by both in vitro excystation and animal infectivity. Cyst doeses were counted using a flow cytometer for the animal infectivity experiments. Using in vitro excy...
Arsenic Metabolism by Human Gut Microbiota upon in Vitro Digestion of Contaminated Soils
Speciation analysis is essential when evaluating risks from, arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with animal microbiota. Howeve...
In Vitro and In Vivo Toxicity Profiling of Ammonium-Based Deep Eutectic Solvents
Hayyan, Maan; Looi, Chung Yeng; Hayyan, Adeeb; Wong, Won Fen; Hashim, Mohd Ali
2015-01-01
The cytotoxic potential of ammonium-based deep eutectic solvents (DESs) with four hydrogen bond donors, namely glycerine (Gl), ethylene glycol (EG), triethylene glycol (TEG) and urea (U) were investigated. The toxicity of DESs was examined using In Vitro cell lines and In Vivo animal model. IC50 and selectivity index were determined for the DESs, their individual components and their combinations as aqueous solutions for comparison purposes. The cytotoxicity effect of DESs varied depending on cell lines. The IC50 for the GlDES, EGDES, UDES and TEGDES followed the sequence of TEGDES< GlDES< EGDES< UDES for OKF6, MCF-7, A375, HT29 and H413, respectively. GlDES was selective against MCF-7 and A375, EGDES was selective against MCF-7, PC3, HepG2 and HT29, UDES was selective against MCF-7, PC3, HepG2 and HT29, and TEGDES was selective against MCF-7 and A375. However, acute toxicity studies using ICR mice showed that these DESs were relatively toxic in comparison to their individual components. DES did not cause DNA damage, but it could enhance ROS production and induce apoptosis in treated cancer cells as evidenced by marked LDH release. Furthermore, the examined DESs showed less cytotoxicity compared with ionic liquids. To the best of our knowledge, this is the first time that combined In Vitro and In Vivo toxicity profiles of DESs were being demonstrated, raising the toxicity issue of these neoteric mixtures and their potential applicability to be used for therapeutic purposes. PMID:25679975
[High non-specific binding of the beta(1) -selective radioligand 2-(125)I-ICI-H].
Riemann, B; Law, M P; Kopka, K; Wagner, St; Luthra, S; Pike, V W; Neumann, J; Kirchhefer, U; Schmitz, W; Schober, O; Schäfers, M
2003-08-01
As results of cardiac biopsies suggest, myocardial beta(1) -adrenoceptor density is reduced in patients with chronic heart failure. However, changes in cardiac beta(2)-adrenoceptors vary. With suitable radiopharmaceuticals single photon emission computed tomography (SPECT) and positron emission tomography (PET) offer the opportunity to assess beta-adrenoceptors non-invasively. Among the novel racemic analogues of the established beta(1)-selective adrenoceptor antagonist ICI 89.406 the iodinated 2-I-ICI-H showed high affinity and selectivity to beta(1)-adrenoceptors in murine ventricular membranes. The aim of this study was its evaluation as a putative sub-type selective beta(1)-adrenergic radioligand in cardiac imaging. Competition studies in vitro and in vivo were used to investigate the kinetics of 2-I-ICI-H binding to cardiac beta-adrenoceptors in mice and rats. In addition, the radiosynthesis of 2-(125)I-ICI-H from the silylated precursor 2-SiMe(3)-ICI-H was established. The specific activity was 80 GBq/ micro mol, the radiochemical yield ranged from 70 to 80%. The unlabelled compound 2-I-ICI-H showed high beta(1)-selectivity and -affinity in the in vitro competition studies. In vivo biodistribution studies apparently showed low affinity to cardiac beta-adrenoceptors. The radiolabelled counterpart 2-(125)I-ICI-H showed a high degree of non-specific binding in vitro and no specific binding to cardiac beta(1)-adrenoceptors in vivo. Because of its high non-specific binding 2-(125)I-ICI-H is no suitable radiotracer for imaging in vivo.
Antimalarial evaluation of selected medicinal plant extracts used in Iranian traditional medicine
Haddad, Mohammad Hossein Feiz; Mahbodfar, Hamidreza; Zamani, Zahra; Ramazani, Ali
2017-01-01
Objective(s): In an attempt to discover new natural active extracts against malaria parasites, the present study evaluated the antiplasmodial properties of selected plants based on Iranian traditional medicine. Materials and Methods: Ten plant species found in Iran were selected and collected based on the available literature about the Iranian traditional medicine. The methanolic extracts of these plants were investigated for in vitro antimalarial properties against chloroquine-sensitive (3D7) and multi-drug resistant (K1) strains of Plasmodium falciparum. Their in vivo activity against Plasmodium berghei infection in mice was also determined. Cytotoxicity tests were carried out using the Raji cells line using the MTT assay. The extracts were phytochemically screened for their active constituents. Results: According to the IC50 and selectivity index (SI) values, of the 10 selected plant species, Citrullus colocynthis, Physalis alkekengi, and Solanum nigrum displayed potent in vitro antimalarial activity against both 3D7 and K1 strains with no toxicity (IC50= 2.01-18.67 µg/ml and SI=3.55 to 19.25). Comparisons between treated and untreated control mice showed that the mentioned plant species reduced parasitemia by 65.08%, 57.97%, and 60.68%, respectively. The existence of antiplasmodial compounds was detected in these plant extracts. Conclusion: This was the first study to highlight the in vitro and in vivo antiplasmodial effects of C. colocynthis, P. alkekengi, and S. nigrum in Iran. Future studies can use these findings to design further biological tests to identify the active constituents of the mentioned plant species and clarify their mechanism of action. PMID:28804611
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-06-06
In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam-β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro.
Olazarán-Santibáñez, Fabián; Bandyopadhyay, Debasish; Carranza-Rosales, Pilar; Rivera, Gildardo; Balderas-Rentería, Isaías
2017-01-01
Purpose In the battle against cancer discovery of new and novel chemotherapeutic agent demands extreme obligation. Development of anticancer compounds with higher potency and reduced side-effects is timely and challenging. Experimental Design A small series of fourteen diastereomeric β-lactams (seven pairs) were synthesized through multi-step process exploring [2+2] ketene-imine cycloaddition as the key step. Comparative stereochemical preferences were studied through computational docking and validated by in vitro evaluation. β-tubulin was considered as possible molecular target and in vitro anticancer evaluation was conducted against SiHa, B16F10, K562 and Chang cell lines. Caspase-3 activation assay and hematoxylin/eosin staining of the cells were also accomplished. Results Better docking scores of the cis- over the trans-β-lactams indicated favorable β-lactam—β-tubulin interactions in cis-geometry. In vitro (IC50) evaluation confirmed better anticancer activity of the cis-diastereoisomers. Apoptosis-induced cell death was supported by caspase-3 activation study. A cis-β-lactam [(±)-Cis-3-amino-1-phenyl-4-(p-tolyl) azetidin-2-one, 6C] was found to be more active (in vitro) than the marketed natural drug colchicine against SiHa and B16F10 (six times higher potency) cell lines. Reduced toxicity (compared to colchicine) in Chang cells confirmed better site-selectivity (accordingly less side-effects) of 6C than colchicine. Aside from 6C, most of the reported molecules demonstrated good to strong in vitro anticancer activity against SiHa and B16F10 cancer cell lines. Conclusions Stereochemical preferences of the cis-β-lactams over their trans-counterparts, toward the molecular target β-tubulin, was confirmed by docking studies and in vitro anticancer evaluation. Apoptosis was identified as the cause of cell death. The lead 6C exhibited higher potency and selectivity than the marketed drug colchicine both in silico as well as in vitro. PMID:28562328
Reznicek, Josef; Ceckova, Martina; Ptackova, Zuzana; Martinec, Ondrej; Tupova, Lenka; Cerveny, Lukas; Staud, Frantisek
2017-09-01
Rilpivirine (TMC278) is a highly potent nonnucleoside reverse transcriptase inhibitor (NNRTI) representing an effective component of combination antiretroviral therapy (cART) in the treatment of HIV-positive patients. Many antiretroviral drugs commonly used in cART are substrates of ATP-binding cassette (ABC) and/or solute carrier (SLC) drug transporters and, therefore, are prone to pharmacokinetic drug-drug interactions (DDIs). The aim of our study was to evaluate rilpivirine interactions with abacavir and lamivudine on selected ABC and SLC transporters in vitro and assess its importance for pharmacokinetics in vivo Using accumulation assays in MDCK cells overexpressing selected ABC or SLC drug transporters, we revealed rilpivirine as a potent inhibitor of MDR1 and BCRP, but not MRP2, OCT1, OCT2, or MATE1. Subsequent transport experiments across monolayers of MDCKII-MDR1, MDCKII-BCRP, and Caco-2 cells demonstrated that rilpivirine inhibits MDR1- and BCRP-mediated efflux of abacavir and increases its transmembrane transport. In vivo experiments in male Wistar rats confirmed inhibition of MDR1/BCRP in the small intestine, leading to a significant increase in oral bioavailability of abacavir. In conclusion, rilpivirine inhibits MDR1 and BCRP transporters and may affect pharmacokinetic behavior of concomitantly administered substrates of these transporters, such as abacavir. Copyright © 2017 American Society for Microbiology.
Prakash, Chandra; Johnson, Kim A; Gardner, Mark J
2008-07-01
Disposition of lasofoxifene, a next-generation selective estrogen receptor modulator, was investigated in male volunteers after p.o. administration of a single 20-mg dose of [(14)C]lasofoxifene. Approximately 72% of the administered dose was recovered from the urine and feces, with majority of dose excreted in the feces, probably via bile. The absorption of lasofoxifene in humans was slow with T(max) values typically exceeding 6 h. The C(max) and area under plasma concentration-time profile from time 0 to the last quantifiable time point values of lasofoxifene were lower than those determined for total radioactivity, indicating presence of circulating metabolites. The primary clearance mechanisms for lasofoxifene in humans were direct conjugation (glucuronide and sulfate conjugates) and phase I oxidation, each accounting for about half of the metabolism. Several oxidative metabolites were identified by liquid chromatography/tandem mass spectrometry. The primary phase I metabolites were the result of hydroxylations on the tetraline moiety and the phenyl rings attached to the tetraline, and oxidation on the pyrrolidine moiety. Considering the numerous metabolites seen in vivo, additional in vitro studies using human liver and intestinal microsomes, recombinant cytochromes P450 (P450s), and UDP glucuronosyltransferases (UGTs) were performed. The turnover of lasofoxifene was very slow in liver microsomes, and only two metabolites were identified as two regioisomers of the catechol metabolite. The results from in vitro experiments with recombinant isoforms and P450 isoform-selective inhibitors suggested that the oxidative metabolism of lasofoxifene is catalyzed primarily by CYP3A and CYP2D6. In addition, its glucuronidation is catalyzed by UGTs that are expressed in both the liver (UGT1A1, UGT1A3, UGT1A6, and UGT1A9) and the intestine (UGT1A8 and UGT1A10).
In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC.
Ruiz Picazo, Alejandro; Martinez-Martinez, Ma Teresa; Colón-Useche, Sarin; Iriarte, Ramon; Sánchez-Dengra, Bárbara; González-Álvarez, Marta; García-Arieta, Alfredo; González-Álvarez, Isabel; Bermejo, Marival
2018-05-17
The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for C max being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( f a ). Fractions dissolved ( f diss ) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f 2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.
Selective Inhibition of HER2-Positive Breast Cancer Cells by the HIV Protease Inhibitor Nelfinavir
2012-01-01
Background Human epidermal growth factor receptor 2 (HER2)–positive breast cancer is highly aggressive and has higher risk of recurrence than HER2-negative cancer. With few treatment options available, new drug targets specific for HER2-positive breast cancer are needed. Methods We conducted a pharmacological profiling of seven genotypically distinct breast cancer cell lines using a subset of inhibitors of breast cancer cells from a screen of the Johns Hopkins Drug Library. To identify molecular targets of nelfinavir, identified in the screen as a selective inhibitor of HER2-positive cells, we conducted a genome-wide screen of a haploinsufficiency yeast mutant collection. We evaluated antitumor activity of nelfinavir with xenografts in athymic nude mouse models (n = 4–6 per group) of human breast cancer and repeated mixed-effects regression analysis. All statistical tests were two-sided. Results Pharmacological profiling showed that nelfinavir, an anti-HIV drug, selectively inhibited the growth of HER2-positive breast cancer cells in vitro. A genome-wide screening of haploinsufficiency yeast mutants revealed that nelfinavir inhibited heat shock protein 90 (HSP90) function. Further characterization using proteolytic footprinting experiments indicated that nelfinavir inhibited HSP90 in breast cancer cells through a novel mechanism. In vivo, nelfinavir selectively inhibited the growth of HER2-positive breast cancer cells (tumor volume index of HCC1954 cells on day 29, vehicle vs nelfinavir, mean = 14.42 vs 5.16, difference = 9.25, 95% confidence interval [CI] = 5.93 to 12.56, P < .001; tumor volume index of BT474 cells on day 26, vehicle vs nelfinavir, mean = 2.21 vs 0.90, difference = 1.31, 95% CI = 0.83 to 1.78, P < .001). Moreover, nelfinavir inhibited the growth of trastuzumab- and/or lapatinib-resistant, HER2-positive breast cancer cells in vitro at clinically achievable concentrations. Conclusion Nelfinavir was found to be a new class of HSP90 inhibitor and can be brought to HER2-breast cancer treatment trials with the same dosage regimen as that used among HIV patients. PMID:23042933
Jee, Byung Chul; Youm, Hye Won; Lee, Jae Ho; Kim, Jee Hyun; Suh, Chang Suk; Kim, Seok Hyun
2013-05-01
We performed this study to investigate the effect of ketorolac (a non-steroidal anti-inflammatory drug) administration around ovarian stimulation on in vivo and in vitro fertilization process. Sixty-four female mice (ICR) were injected with ketorolac (0, 7.5, 15 and 30 µg/d) for 3 d starting from the day of eCG treatment. In experiment 1, 41 mice were triggered by hCG and then mated; two-cell embryos were obtained and in vitro development up to blastocyst was observed. In experiment 2, 23 mice were triggered by hCG and mature oocytes were collected; in vitro fertilization rate and subsequent embryo development up to blastocyst was recorded. In experiment 1, the blastocyst-forming rates per in vivo fertilized two-cell embryo showed an inverse relationship with a dosage of ketorolac (97.6%, 64.2%, 35.4% and 25.9%). In experiment 2, degenerated oocytes were frequently observed in a dose-dependent manner (4.3%, 22.9%, 22.4% and 75.0%). Lower fertilization rates were noted in all the three ketorolac-treating groups; blastocyst-forming rate was significantly lower in 30-µg-treating group when compared with the control group. Administration of ketorolac around ovarian stimulation significantly affects the development of in vivo fertilized embryo in a dose-dependent manner. High-dose ketorolac could result in a poor oocyte quality and decreased embryo developmental competence.
Keim, Juan P; Alvarado-Gilis, Christian; Arias, Rodrigo A; Gandarillas, Mónica; Cabanilla, Jaime
2017-10-01
The aim of this study was to evaluate the effect of different sources of variation in gas production technique on the in vitro gas production kinetics of feedstuffs. Triplicates of commercial concentrate, grass silage, grass hay and grass pasture were incubated in three experiments: experiment 1 assessed two agitation methods; experiment 2 evaluated different rumen inocula (pooled or different donor cows for each incubation run); and experiment 3 used Goering-Van Soest or Mould buffers for media preparation. Gas production data were fitted into the Michaelis-Menten model and then subjected to analysis of variance. Gas production (GP) at 48 h and asymptote gas production (A) were lower when bottles were continuously under horizontal movement. Time to produce half and 75% of A, and A were affected by rumen inocula, while buffer type affected time to produce half and 25% of A and GP. No interactions between substrates and sources of variation were observed, suggesting that the effects of substrates on GP parameters were not modified. It is concluded that comparison of numerical data from in vitro experiments that follow different protocols must be done carefully. However, the ranking of different substrates is more robust and less affected by the sources of variation. © 2017 Japanese Society of Animal Science.
Lichtwark, Glen A; Cresswell, Andrew G; Newsham-West, Richard J
2013-12-01
The elastic properties of the human Achilles tendon are important for locomotion; however, in vitro tests suggest that repeated cyclic contractions lead to tendon fatigue - an increase in length in response to stress applied. In vivo experiments have not, however, demonstrated mechanical fatigue in the Achilles tendon, possibly due to the limitations of using two-dimensional ultrasound imaging to assess tendon strain. This study used freehand three-dimensional ultrasound (3DUS) to determine whether the free Achilles tendon (calcaneus to soleus) or the gastrocnemius tendon (calcaneus to gastrocnemius) demonstrated tendon fatigue after running exercise. Participants (N=9) underwent 3DUS scans of the Achilles tendon during isometric contractions at four ankle torque levels (passive, and 14, 42 and 70 N m) before and after a 5 km run at a self-selected pace (10-14 km h(-1)). Running had a significant main effect on the length of the free Achilles tendon (P<0.01) with a small increase in length across the torque range. However, the mean lengthening effect was small (<1%) and was not accompanied by a change in free tendon stiffness. There was no significant change in the length of the gastrocnemius tendon or the free tendon cross-sectional area. While the free tendon was shown to lengthen, the lack of change in stiffness suggests the tendon exhibited mechanical creep rather than fatigue. These effects were much smaller than those predicted from in vitro experiments, possibly due to the different loading profile encountered and the ability of the tendon to repair in vivo.
Guo, Fang; Yu, Meng; Wang, Jinping; Tan, Fengping; Li, Nan
2015-09-23
The therapeutic effectiveness of chemotherapy was hampered by dose-limiting toxicity and was optimal only when tumor cells were subjected to a maximum drug exposure. The purpose of this work was to design a dual-functional thermosensitive bubble-generating liposome (BTSL) combined with conjugated targeted ligand (folate, FA) and photothermal agent (IR780), to realize enhanced therapeutic and diagnostic functions. This drug carrier was proposed to target tumor cells owing to FA-specific binding, followed by triggering drug release due to the decomposition of encapsulated ammonium bicarbonate (NH4HCO3) (generated CO2 bubbles) by being subjected to near-infrared (near-IR) laser irradiation, creating permeable defects in the lipid bilayer that rapidly release drug. In vitro temperature-triggered release study indicated the BTSL system was sensitive to heat triggering, resulting in rapid drug release under hyperthermia. For in vitro cellular uptake experiments, different results were observed on human epidermoid carcinoma cells (KB cells) and human lung cancer cells (A549 cells) due to their different (positive or negative) response to FA receptor. Furthermore, in vivo biodistribution analysis and antitumor study indicated IR780-BTSL-FA could specifically target KB tumor cells, exhibiting longer circulation time than free drug. In the pharmacodynamics experiments, IR780-BTSL-FA efficiently inhibited tumor growth in nude mice with no evident side effect to normal tissues and organs. Results of this study demonstrated that the constructed smart theranostic nanocarrier IR780-BTSL-FA might contribute to establishment of tumor-selective and effective chemotherapy.
Cervantes-Pahm, Sarah; Knapp, Brenda K; Kim, Beob G; Liu, Yanhong; Parsons, Carl M; Fahey, George C; Stein, Hans H
2013-12-18
The objective of this study was to compare two in vivo methods using pigs and roosters and an in vitro method for determining the caloric value of four fiber sources [i.e., two resistant starches (RS 60 and RS 75), soluble corn fiber (SCF 70), and pullulan]. Metabolizable energy (ME) in pigs and true metabolizable energy (TMEn) in roosters were determined by using 72 barrows and 24 roosters, respectively. A two-step in vitro procedure was used to quantify monosaccharides released. Results of the two in vivo experiments corresponded well with RS 75 having the least caloric value (7.55 MJ/kg in pigs; 6.19 MJ/kg in roosters) and pullulan having the greatest caloric value (12.21 MJ/kg in pigs; 13.94 MJ/kg in roosters). The caloric values for all the fiber ingredients were less (P < 0.05) than in MD both in pigs and in roosters. Despite some limitations, results of the in vitro procedure corresponded well with the in vivo experiments where the concentration of glucose hydrolyzed from RS 60, RS 75, and SCF 70, but not pullulan, was less (P < 0.05) than the concentration of glucose hydrolyzed from MD. However, the greatest accuracy was obtained in the in vivo experiments.
Li, Rong; Liu, Ying; Pedersen, Hanne Skovsgaard; Callesen, Henrik
2015-06-01
Light exposure is a common stress factor during in vitro handling of oocytes and embryos that originates from both microscope and ambient light. In the current study, the effect of two types of ambient light (daylight and laboratory light) on porcine parthenogenetically activated (PA) embryos was tested in two experiments: (1) ambient light on medium subsequently used for embryo in vitro development; and (2) ambient light exposure on activated oocytes before in vitro development. The results from Experiment 1 showed that exposure of culture medium to both types of ambient light decreased the percentage of blastocysts that showed good morphology, only after 24 h exposure. The results from Experiment 2 revealed a reduction in both blastocyst formation and quality when activated oocytes were exposed to both types of ambient light. This effect was seen after only 1 h exposure and increased with time. In conclusion, exposure to ambient light can be harmful to embryo development, both when medium is exposed for a long period of time and, to a greater extent, when the embryo itself is exposed for >1 h. In practice, it is therefore recommended to protect both culture medium and porcine embryos against ambient light during in vitro handling in the laboratory.
NASA Astrophysics Data System (ADS)
Splinter, Robert; Littmann, Laszlo; Tuntelder, Jan R.; Svenson, Robert H.; Chuang, Chi Hui; Tatsis, George P.; Semenov, Serguei Y.; Nanney, Glenn A.
1995-01-01
Tissue samples ranging from 2 to 16 mm in thickness were irradiated at 1064 nm with energies ranging from 40 to 2400 J. Coagulation lesions of in vitro and in vivo experiments were subjected to temperature profiling and submitted for histology. Irreversible damage was calculated with the damage integral formalism, following the bioheat equation solved with Monte Carlo computer light-distribution simula-tions. Numerical temperature rise and coagulation depth compared well with the in vitro results. The in vivo data required a change in the optical properties based on integrating sphere measurements for high irradiance to make the experimental and numerical data converge. The computer model has successfully solved several light-tissue interaction situations in which scattering dominates over absorption.
Arsenic Metabolism by Human Gut Microbiota upon In Vitro Digestion of Contaminated Soils
Background: Speciation analysis is essential when evaluating risks from arsenic (As) exposure. In an oral exposure scenario, the importance of presystemic metabolism by gut microorganisms has been evidenced with in vivo animal models and in vitro experiments with ...
Pisani, Leonardo; Muncipinto, Giovanni; Miscioscia, Teresa Fabiola; Nicolotti, Orazio; Leonetti, Francesco; Catto, Marco; Caccia, Carla; Salvati, Patricia; Soto-Otero, Ramon; Mendez-Alvarez, Estefania; Passeleu, Celine; Carotti, Angelo
2009-11-12
In an effort to discover novel selective monoamine oxidase (MAO) B inhibitors with favorable physicochemical and pharmacokinetic profiles, 7-[(m-halogeno)benzyloxy]coumarins bearing properly selected polar substituents at position 4 were designed, synthesized, and evaluated as MAO inhibitors. Several compounds with MAO-B inhibitory activity in the nanomolar range and excellent MAO-B selectivity (selectivity index SI > 400) were identified. Structure-affinity relationships and docking simulations provided valuable insights into the enzyme-inhibitor binding interactions at position 4, which has been poorly explored. Furthermore, computational and experimental studies led to the identification and biopharmacological characterization of 7-[(3-chlorobenzyl)oxy]-4-[(methylamino)methyl]-2H-chromen-2-one methanesulfonate 22b (NW-1772) as an in vitro and in vivo potent and selective MAO-B inhibitor, with rapid blood-brain barrier penetration, short-acting and reversible inhibitory activity, slight inhibition of selected cytochrome P450s, and low in vitro toxicity. On the basis of this preliminary preclinical profile, inhibitor 22b might be viewed as a promising clinical candidate for the treatment of neurodegenerative diseases.
Li, Yuan-Xiao; Zhao, Guang-Yong
2007-04-01
The objective of the present experiment was to study the relationship between in vitro utilizable true protein (uTP) and in vivo-uTP of sheep rations by regression analysis. A further aim was to analyse if in vivo-uTP of mixed rations could be predicted by regression analysis between in vitro-uTP and in vivo-uTP, using N-retention of sheep as important evaluation criteria of protein value. Three adult male sheep (body weight [BW] 46 + 1.3 kg) fitted with rumen cannulas and simple T-type duodenal cannulas were fed with twelve typical rations with graded levels of crude protein and true protein in four experiments according a 3 x 3 Latin square design. Each experimental period included an adaptation (7 days), a N balance trial (4 days) and a collection of duodenal digesta (3 days). During collection of duodenal digesta, polyethylene glycol and chromium oxide were used as dual markers for the measurement of duodenal digesta flow and calculation of the in vivo-uTP of duodenal digesta. The in vitro-uTP of the rations was determined using the in vitro incubation technique of Zhao and Lebzien (2000). It was found that both in vitro-uTP intake and in vivo-uTP intake were significantly correlated with N-retention (p < 0.001) and that there was a significant linear relationship between the content of in vitro-uTP and in vivo-uTP in rations (p < 0.001). Therefore, it was concluded that the used in vitro incubation technique is suitable for the determination of in vitro-uTP of mixed rations for sheep, and that the amount of in vivo-uTP can be predicted by regression between in vitro-uTP and in vivo-uTP.
NASA Astrophysics Data System (ADS)
Kwiecień, Iwona; Radecka, Iza; Kowalczuk, Marek; Jelonek, Katarzyna; Orchel, Arkadiusz; Adamus, Grażyna
2017-10-01
The novel copolymers composed of poly-γ-glutamic acid (γ-PGA) and oligoesters have been developed. The structures of the obtained copolymers including variety of end groups were determined at the molecular level with the aid of electrospray ionization multistage mass spectrometry (ESI-MSn). The fragmentation experiment performed for the selected sodium adducts of the copolymers confirmed that the developed methods lead to the formation of graft copolymers composed of poly-γ-glutamic acid (γ-PGA) backbone and oligoesters pendant chains. Moreover, it was established that fragmentation of selected sodium adducts of graft copolymers proceeded via random breakage of amide bonds along the backbone and ester bonds of the oligoesters pendant chains. Considering potential applications of the synthesized copolymers in the area of biomaterials, the hydrolytic degradation under laboratory conditions and in vitro cytotoxicity tests were performed. The ESI-MSn technique applied in this study has been proven to be a useful tool in structural studies of novel graft copolymers as well as their degradation products. [Figure not available: see fulltext.
CELL SEPARATION ON ANTIGEN-COATED COLUMNS
Wigzell, Hans; Andersson, Birger
1969-01-01
Glass and plastic bead columns coated with antigenic protein molecules were used as an immunological filter for cell populations containing immune cells of relevant specificity. A selective elimination of these immune cells from the passing cell suspension was regularly noted and it approached, in some experiments, complete abolition of the specific immune reactivity of the filtered cell population. This specific retention of immune cells by antigenic columns could be selectively blocked by the presence of free antigen molecules in the medium during filtration. The results obtained support the concept of a cell-associated antigen-specific receptor being present on the outer surface of immune cells, displaying the same antigen-binding specificity as the potential product of the cell, the humoral antibody. Using the present bead column system, results were obtained indicating that this receptor was an active product of the immune cells and not any passively adsorbed, cytophilic antibody. Antigenic bead columns may very well constitute a tool for the production in vitro of cell populations being specifically deprived of immune reactivity and allow detailed analysis of the characteristics of the cell-associated antibody of immune cells. PMID:5782770
Nagórna-Stasiak, B; Wawrzeńska, M
1987-01-01
The studies were carried out on 33 chickens of the broiler breed in chronic experiments and in vitro. In the chronic experiments the motility of the jejunum under the influence of vitamins of group B and vitamine C was recorded in 8 chickens. The vitamins were used at concentrations from 10 mg/l to 2.5 x 10(3) mg/l. In the experiments in vitro, the motility of the isolated segment of the jejunum was recorded by the method of Magnus. In this part of experiments the chickens were divided into 3 groups, of which group I (15 chickens) were fed with DKA finischer mixture, group II (5 hens) received, besides the mixture, per os 200 mg of vitamin C for 2 weeks, group III (5 hens) received the mixture and for 2 weeks intraperitoneally 200 mg of vitamin C. The effect of vitamins of group B in vitro was determined in chickens of group I, whereas that of vitamin C in chickens of group I, II and III. At the same time the level of vitamin C in the wall of the jejunum was determined by the method of Roe-Kuenther. It was shown that vitamin B2 and folic acid caused stimulation of intestine motility in the chickens, while vitamin B1, B6 and C decreased the motoric activity. Increased level of vitamin C in the intestinal wall resulted in increased intestine sensitivity. Chicken intestines sensitivity to vitamins was 10 times stronger to vitamins than that of the intestines of rabbits.
Tängdén, Thomas; Karvanen, Matti; Friberg, Lena E; Odenholt, Inga; Cars, Otto
2017-07-01
In view of the paucity of clinical evidence, in vitro studies are needed to find antibiotic combinations effective against multidrug-resistant Gram-negative bacteria. Interpretation of in vitro effects is usually based on bacterial growth after 24 h in time-kill and checkerboard experiments. However, the clinical relevance of the effects observed in vitro is not established. In this study we explored alternative output parameters to assess the activities of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Four strains each of P. aeruginosa and A. baumannii were exposed to colistin and meropenem, alone and in combination, in 8 h dynamic time-kill experiments. Initial (1 h), maximum and 8 h bacterial reductions and the area under the bacterial time-kill curve were evaluated. Checkerboards, interpreted based on fractional inhibitory concentration indices after 24 h, were performed for comparison. In the time-kill experiments, the combination resulted in enhanced 1 h, maximum and 8 h bacterial reductions against 2, 3 and 5 of 8 strains, respectively, as compared to the single drugs. A statistically significant reduction in the area under the time-kill curve was observed for three strains. In contrast, the checkerboards did not identify synergy for any of the strains. Combination effects were frequently found with colistin and meropenem against P. aeruginosa and A. baumannii in time-kill experiments but were not detected with the checkerboard method. We propose that the early dynamics of bacterial killing and growth, which may be of great clinical importance, should be considered in future in vitro combination studies.
Montreal electronic artificial urinary sphincters: Our futuristic alternatives to the AMS800™.
Biardeau, Xavier; Hached, Sami; Loutochin, Oleg; Campeau, Lysanne; Sawan, Mohamad; Corcos, Jacques
2017-10-01
We aimed to present three novel remotely controlled hydromechanical artificial urinary sphincters (AUSs) and report their in-vitro and ex-vivo results. We successively developed three distinct hydromechanical AUSs on the basis of the existing AMS800 ™ device by incorporating an electronic pump. No changes were made to the cuff and balloon. The AUS#1 was designed as an electromagnetically controlled device. The AUS#2 and AUS#3 were conceived as Bluetooth 2.1 remotely controlled and Bluetooth 4.0 remotely-controlled, adaptive devices, respectively. In-vitro experiments profiled occlusive cuff pressure (OCP) during a complete device cycle, with different predetermined OCP. Ex-vivo experiments were performed on a fresh pig bladder with 4 cm cuff placed around the urethra. Leak point pressure with different predetermined OCP values was successively measured during cystometry via a catheter at the bladder dome. Our in-vitro and ex-vivo experiments demonstrated that these three novel AUSs provided stable and predetermined OCP - within the physiological range - and completely deflated the cuff, when required, in a limited time compatible with physiological voiding cycles. Our three novel, remotely controlled AUSs showed promising results that should be confirmed by in-vivo experiments focusing on efficacy and safety.
NASA Astrophysics Data System (ADS)
Pezzotti, Giuseppe; Adachi, Tetsuya; Gasparutti, Isabella; Vincini, Giulio; Zhu, Wenliang; Boffelli, Marco; Rondinella, Alfredo; Marin, Elia; Ichioka, Hiroaki; Yamamoto, Toshiro; Marunaka, Yoshinori; Kanamura, Narisato
2017-02-01
The Raman spectroscopic method has been applied to quantitatively assess the in vitro degree of demineralization in healthy human teeth. Based on previous evaluations of Raman selection rules (empowered by an orientation distribution function (ODF) statistical algorithm) and on a newly proposed analysis of phonon density of states (PDOS) for selected vibrational modes of the hexagonal structure of hydroxyapatite, a molecular-scale evaluation of the demineralization process upon in vitro exposure to a highly acidic beverage (i.e., CocaCola™ Classic, pH = 2.5) could be obtained. The Raman method proved quite sensitive and spectroscopic features could be directly related to an increase in off-stoichiometry of the enamel surface structure since the very early stage of the demineralization process (i.e., when yet invisible to other conventional analytical techniques). The proposed Raman spectroscopic algorithm might possess some generality for caries risk assessment, allowing a prompt non-contact diagnostic practice in dentistry.
Streck, André Felipe; Homeier, Timo; Foerster, Tessa; Truyen, Uwe
2013-09-01
To estimate the impact of porcine parvovirus (PPV) vaccines on the emergence of new phenotypes, the population dynamic history of the virus was calculated using the Bayesian Markov chain Monte Carlo method with a Bayesian skyline coalescent model. Additionally, an in vitro model was performed with consecutive passages of the 'Challenge' strain (a virulent field strain) and NADL2 strain (a vaccine strain) in a PK-15 cell line supplemented with polyclonal antibodies raised against the vaccine strain. A decrease in genetic diversity was observed in the presence of antibodies in vitro or after vaccination (as estimated by the in silico model). We hypothesized that the antibodies induced a selective pressure that may reduce the incidence of neutral selection, which should play a major role in the emergence of new mutations. In this scenario, vaccine failures and non-vaccinated populations (e.g. wild boars) may have an important impact in the emergence of new phenotypes.
Lactoferricin-related peptides with inhibitory effects on ACE-dependent vasoconstriction.
Centeno, José M; Burguete, María C; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B; Torregrosa, Germán; Marcos, José F; Alborch, Enrique; Manzanares, Paloma
2006-07-26
A selection of lactoferricin B (LfcinB)-related peptides with an angiotensin I-converting enzyme (ACE) inhibitory effect have been examined using in vitro and ex vivo functional assays. Peptides that were analyzed included a set of sequence-related antimicrobial hexapeptides previously reported and two representative LfcinB-derived peptides. In vitro assays using hippuryl-L-histidyl-L-leucine (HHL) and angiotensin I as substrates allowed us to select two hexapeptides, PACEI32 (Ac-RKWHFW-NH2) and PACEI34 (Ac-RKWLFW-NH2), and also a LfcinB-derived peptide, LfcinB17-31 (Ac-FKCRRWQWRMKKLGA-NH2). Ex vivo functional assays using rabbit carotid arterial segments showed PACEI32 (both D- and L-enantiomers) and LfcinB17-31 have inhibitory effects on ACE-dependent angiotensin I-induced contraction. None of the peptides exhibited in vitro ACE inhibitory activity using bradykinin as the substrate. In conclusion, three bioactive lactoferricin-related peptides exhibit inhibitory effects on both ACE activity and ACE-dependent vasoconstriction with potential to modulate hypertension that deserves further investigation.
Etcheverry, Paz; Grusak, Michael A.; Fleige, Lisa E.
2012-01-01
A review of in vitro bioaccessibility and bioavailability methods for polyphenols and selected nutrients is presented. The review focuses on in vitro solubility, dialyzability, the dynamic gastrointestinal model (TIM)™, and Caco-2 cell models, the latter primarily for uptake and transport, and a discussion of how these methods have been applied to generate data for a range of nutrients, carotenoids, and polyphenols. Recommendations are given regarding which methods are most justified for answering bioaccessibility or bioavailability related questions for specific nutrients. The need for more validation studies in which in vivo results are compared to in vitro results is also discussed. PMID:22934067
Chrestani, Francielli; Sierakowski, Maria Rita; de Andrade Uchoa, Daniel Esdras; Nozawa, Carlos; Sassaki, Guilherme Lanzi; Gorin, Philip Albert James; Ono, Lucy
2009-12-01
A chemically sulfated galactomannan (BRS) from seeds of Mimosa scabrella had in vitro antiviral activity against Herpes simplex virus 1 (HSV-1), but not against Simian rotavirus A/SA11 (SiRV-A/SA11). It was examined by (13)C NMR spectroscopy, which showed the sulfate groups to be mainly at C-6 of galactose residues. BRS had a selective inhibition against HSV-1 during its attachment step, having an IC(50) lower than 2.5microg/ml, determined by plaque reduction, and a selectivity index of greater than 181, suggesting that the antiviral effect is likely due to interactions between the virus and BRS, being influenced its overall surface charge.
Ravanfar, Seyed Ali; Orbovic, Vladimir; Moradpour, Mahdi; Abdul Aziz, Maheran; Karan, Ratna; Wallace, Simon; Parajuli, Saroj
2017-04-01
Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
The Effects of Ammonium Perchlorate on Reproduction and Development of Amphibians
2008-01-01
Abstract: Ammonium perchlorate is a pervasive pollutant primarily from rocket fuel and fertilizers . It is know , among other things , to affect...females, their ovulated eggs collected, and in vitro fertilization conducted. Healthy ovulated eggs were selected and placed in Petri dishes...used and fertilization accomplished in vitro in the presence of perchlorate concentrations. *These tasks were not completed. Studies with Sodium
Ibragimova, M I; Petukhov, V Iu; Zheglov, E P; Koniukhov, G V; Nizamov, R N
2004-01-01
The effect of radiotoxin (RT) obtained from y-irradiated potato tubes on blood of sheep and mice has been investigated by using in vitro and ex vivo EPR. In experiments in vitro, the action of different preparations (RT, extract from unirradiated potato tubers, 1%-HCl or 30%-hydrogen peroxide) on sheep blood has been compared. It has been established that RT is an effective oxidant (like 1%-HCl) of haem iron that leads to an increase of the methemoglobin concentration. The specific peculiarity of RT effect on blood in vitro is an appearance of two well-resolved lines from methemoglobin belonging, probably, to different paramagnetic centers. The signal from nonspecific complexes of Fe3+ has been also observed. Ex vivo EPR spectra markedly differ from these obtained in experiments in vitro. An additional line with g approximately 2.005 and width 6 G in 30 minutes after intraperitoneal RT injection in the lethal dose (0.2 ml of preparation containing of 2 mg RT) has been revealed. Subsequent intoxication of mice is accompanied by the appearance of the signal from nitrosyl complexes in EPR spectra. These differences in experimental results of in vitro and ex vivo EPR can be explained by launch of compensatory adaptive response of organism on the action of highly toxic preparation.
Ashrafzadeh, Seyedardalan; Leung, David W M
2017-01-01
It is of interest to apply plant tissue culture to generate plants resistant to toxic effects of cadmium (Cd) on plant growth. Callus cultures were initiated from leaf explants of micropropagated potato plantlets (Solanum tuberosum L., cv. Iwa) for in vitro selection comprising 18 different Cd treatments varying in Cd exposure timing and duration. Plantlets regenerated from two different lines of Cd-selected calli, L9 and L11, were found to exhibit enhanced resistance to 218 μM Cd compared to control (source plantlets for leaf explants used to initiate callus cultures for Cd resistance). In response to 218 μM Cd, L11 plantlets had lower levels of lipid peroxidation and hydrogen peroxide than control and L9 plantlets. In addition, antioxidative enzyme activities in L11 were generally higher than control. L11 also had a higher level of proline than control.
Emergent biological properties of arrestin pathway-selective biased agonism.
Appleton, Kathryn M; Luttrell, Louis M
2013-06-01
Our growing appreciation of the pluridimensionality of G protein-coupled receptor (GPCR) signaling, combined with the phenomenon of orthosteric ligand "bias", has created the possibility of drugs that selectively modulate different aspects of GPCR function for therapeutic benefit. When viewed from the short-term perspective, e.g. changes in receptor conformation, effector coupling or second messenger generation, biased ligands appear to activate a subset of the response profile produced by a conventional agonist. Yet when examined in vivo, the limited data available suggest that biased ligand effects can diverge from their conventional counterparts in ways that cannot be predicted from their in vitro efficacy profile. What is currently missing, at least with respect to G protein and arrestin pathway-selective ligands, is a rational framework for relating the in vitro efficacy of a "biased" agonist to its in vivo actions that will enable drug screening programs to identify ligands with the desired biological effects.
Selective propensity of bovine jugular vein material to bacterial adhesions: An in-vitro study.
Jalal, Zakaria; Galmiche, Louise; Lebeaux, David; Villemain, Olivier; Brugada, Georgia; Patel, Mehul; Ghigo, Jean-Marc; Beloin, Christophe; Boudjemline, Younes
2015-11-01
Percutaneous pulmonary valve implantation (PPVI) using Melody valve made of bovine jugular vein is safe and effective. However, infective endocarditis has been reported for unclear reasons. We sought to assess the impact of valvular substrates on selective bacterial adhesion. Three valved stents (Melody valve, homemade stents with bovine and porcine pericardium) were tested in-vitro for bacterial adhesion using Staphylococcus aureus and Streptococcus sanguinis strains. Bacterial adhesion was higher on bovine jugular venous wall for S. aureus and on Melody valvular leaflets for S. sanguinis in control groups and significantly increased in traumatized Melody valvular leaflets with both bacteria (traumatized vs non traumatized: p=0.05). Bacterial adhesion was lower on bovine pericardial leaflets. Selective adhesion of S. aureus and S. sanguinis pathogenic strains to Melody valve tissue was noted on healthy tissue and increased after implantation procedural steps. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Rozov, F N; Grinenko, T S; Levit, G L; Krasnov, V P; Belyavsky, A V
2010-09-15
Efficient gene transfer into hematopoietic stem cells is vital for the success of gene therapy of hematopoietic and immune system disorders. An in vivo selection system based on a mutant form of the O(6)-methylguanine-DNA-methyltransferase gene (MGMTm) is considered one of the more promising strategies for expansion of hematopoietic cells transduced with viral vectors. Here we demonstrate that MGMTm-expressing cells can be efficiently selected using lysomustine, a nitrosourea derivative of lysine. K562 and murine bone marrow cells expressing MGMTm are protected from the cytotoxic action of lysomustine in vitro. We also show in a murine model that MGMTm-transduced hematopoietic cells can be expanded in vivo on transplantation into sublethally irradiated recipients followed by lysomustine treatment. These results indicate that lysomustine can be used as a potent novel chemoselection drug applicable for gene therapy of hematopoietic and immune system disorders. 2010 Elsevier Inc. All rights reserved.
In vitro maturation of human oocytes for assisted reproduction.
Jurema, Marcus W; Nogueira, Daniela
2006-11-01
To describe and evaluate the current practice of in vitro maturation of oocytes for assisted reproduction. Review of the available and relevant literature regarding in vitro maturation of oocytes. In vitro maturation of human oocytes retrieved from antral ovarian follicles is an emerging procedure quickly being incorporated into the realm of assisted reproductive technologies. This new technology has several potential advantages over traditional controlled ovarian hyperstimulation for IVF, such as reduction of costs by minimizing gonadotropin and GnRH analogue use, elimination of ovarian hyperstimulation syndrome, and simplicity of protocol. In vitro maturation of oocytes for assisted reproduction in human beings still is undergoing refinement but currently is providing efficacy and safety outcome comparable to that of traditional IVF in recent selected studies. Implementing in vitro maturation into an established IVF practice is feasible and requires only a few simple adjustments. Crucial to the advancement and optimization of the technology is a better understanding of how to maximize immature oocyte developmental competence and endometrial receptivity.
Romero, J J; Ma, Z X; Gonzalez, C F; Adesogan, A T
2015-07-01
Our objectives were to examine if adding metal ion cofactors (COF) to exogenous fibrolytic enzymes (EFE) would increase the beneficial effects of the EFE on the preingestive hydrolysis and in vitro digestibility and fermentation of bermudagrass haylage. In experiment 1, 5 COF (Mn(2+), Co(2+), Fe(2+), Ca(2+), and Mg(2+)) were screened to select the best candidates for synergistically enhancing release of water-soluble carbohydrates (WSC) from bermudagrass haylage by 5 EFE. The 5 EFE (1A, 2A, 11C, 13D, and 15D) were sourced from Trichoderma reesei and Aspergillus oryzae and they were the most effective of 12 EFE at increasing the neutral detergent fiber digestibility of bermudagrass haylage in a previous trial. Adding 1mM of each of the COF to EFE 2A or 11C synergistically increased release of WSC from bermudagrass haylage, as did adding (1mM) Fe(2+) to 1A, Mn(2+), Co(2+), or Fe(2+) to 13D, or Co(2+)or Fe(2+) to 15D. The greatest release of WSC responses were obtained by adding Mn(2+) to 11C (38%) or by adding Fe(2+) to 2A or 13D (10 and 21.9%, respectively). In experiment 2, the effect of increasing the COF dose on in vitro digestibility and fermentation of bermudagrass haylage was examined using the best EFE-COF combinations from experiment 1. Effects of adding increasing doses of these COF on EFE-mediated changes in vitro digestibility depended on the COF-EFE combination. Adding 10mM Mn(2+) alone to bermudagrass haylage increased DMD and NDFD by 2.7 and 6.3% and adding 11C alone increased these measures by 6.6 and 15.5%, respectively. However, adding 10mM Mn(2+) with 11C resulted in 3.5 and 8.1% increases in DMD and NDFD, respectively, beyond the increases caused by adding 11C alone. Adding Fe(2+) to 2A had no effects on EFE-mediated digestibility responses, but 2A prevented adverse effects of adding Fe(2+) alone on DMD and NDFD. In contrast, adding Fe(2+) to 13D reduced the increases in DMD and NDFD caused by adding the EFE alone. This study shows that adding COF to EFE can synergistically increase, decrease, or not affect the hydrolytic effects of EFE on bermudagrass haylage cell walls. The outcome depends on the specific EFE-COF combination and the COF dose. More research is required to understand the mechanisms resulting in these outcomes to exploit beneficial effects of COF on EFE. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Antituberculous effect of silver nanoparticles
NASA Astrophysics Data System (ADS)
Kreytsberg, G. N.; Gracheva, I. E.; Kibrik, B. S.; Golikov, I. V.
2011-04-01
The in vitro experiment, involving 1164 strains of the tuberculosis mycobacteria, exhibited a potentiating effect of silver nanoparticles on known antituberculous preparations in respect of overcoming drug-resistance of the causative agent. The in vitro experiment, based on the model of resistant tuberculosis, was performed on 65 white mice. An evident antituberculous effect of the nanocomposite on the basis of silver nanoparticles and isoniazid was proved. Toxicological assessment of the of nanopreparations was carried out. The performed research scientifically establishes efficacy and safety of the nanocomposite application in combination therapy of patients suffering from drug-resistant tuberculosis.
USDA-ARS?s Scientific Manuscript database
The plasticity of lignin biosynthesis should permit the inclusion of new compatible phenolic monomers such as rosmarinic acid (RA) and analogous catechol derivatives to create cell wall lignins that are less recalcitrant to biomass processing. In vitro lignin polymerization experiments revealed that...
International standardization of cage designs and feeding regimes for honey bee in vitro experiments
USDA-ARS?s Scientific Manuscript database
The aim of this study was to improve and standardize cage systems for maintaining adult honey bee workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Preve...
Characterizing parameters of Jatropha curcas cell cultures for microgravity studies
NASA Astrophysics Data System (ADS)
Vendrame, Wagner A.; Pinares, Ania
2013-06-01
Jatropha (Jatropha curcas) is a tropical perennial species identified as a potential biofuel crop. The oil is of excellent quality and it has been successfully tested as biodiesel and in jet fuel mixes. However, studies on breeding and genetic improvement of jatropha are limited. Space offers a unique environment for experiments aiming at the assessment of mutations and differential gene expression of crops and in vitro cultures of plants are convenient for studies of genetic variation as affected by microgravity. However, before microgravity studies can be successfully performed, pre-flight experiments are necessary to characterize plant material and validate flight hardware environmental conditions. Such preliminary studies set the ground for subsequent spaceflight experiments. The objectives of this study were to compare the in vitro growth of cultures from three explant sources (cotyledon, leaf, and stem sections) of three jatropha accessions (Brazil, India, and Tanzania) outside and inside the petriGAP, a modified group activation pack (GAP) flight hardware to fit petri dishes. In vitro jatropha cell cultures were established in petri dishes containing a modified MS medium and maintained in a plant growth chamber at 25 ± 2 °C in the dark. Parameters evaluated were surface area of the explant tissue (A), fresh weight (FW), and dry weight (DW) for a period of 12 weeks. Growth was observed for cultures from all accessions at week 12, including subsequent plantlet regeneration. For all accessions differences in A, FW and DW were observed for inside vs. outside the PetriGAPs. Growth parameters were affected by accession (genotype), explant type, and environment. The type of explant influenced the type of cell growth and subsequent plantlet regeneration capacity. However, overall cell growth showed no abnormalities. The present study demonstrated that jatropha in vitro cell cultures are suitable for growth inside PetriGAPs for a period of 12 weeks. The parameters evaluated in this study provide the basic ground work and pre-flight assessment needed to justify a model for microgravity studies with jatropha in vitro cell cultures. Future studies should focus on results of experiments performed with jatropha in vitro cultures in microgravity.
Discovery of novel aminobenzisoxazole derivatives as orally available factor IXa inhibitors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakurada, Isao; Endo, Toshiya; Hikita, Katsuyoshi
2017-06-01
Using structure based drug design, novel aminobenzisoxazoles as coagulation factor IXa inhibitors were designed and synthesized. Highly selective inhibition of FIXa over FXa was demonstrated. Anticoagulation profile of selected compounds was evaluated by aPTT and PT tests. In vitro ADMET and pharmacokinetic (PK) profiles were also evaluated.
Contrast agent enhanced pQCT of articular cartilage
NASA Astrophysics Data System (ADS)
Kallioniemi, A. S.; Jurvelin, J. S.; Nieminen, M. T.; Lammi, M. J.; Töyräs, J.
2007-02-01
The delayed gadolinium enhanced MRI of cartilage (dGEMRIC) technique is the only non-invasive means to estimate proteoglycan (PG) content in articular cartilage. In dGEMRIC, the anionic paramagnetic contrast agent gadopentetate distributes in inverse relation to negatively charged PGs, leading to a linear relation between T1,Gd and spatial PG content in tissue. In the present study, for the first time, contrast agent enhanced peripheral quantitative computed tomography (pQCT) was applied, analogously to dGEMRIC, for the quantitative detection of spatial PG content in cartilage. The suitability of two anionic radiographic contrast agents, gadopentetate and ioxaglate, to detect enzymatically induced PG depletion in articular cartilage was investigated. First, the interrelationships of x-ray absorption, as measured with pQCT, and the contrast agent solution concentration were investigated. Optimal contrast agent concentrations for the following experiments were selected. Second, diffusion rates for both contrast agents were investigated in intact (n = 3) and trypsin-degraded (n = 3) bovine patellar cartilage. The contrast agent concentration of the cartilaginous layer was measured prior to and 2-27 h after immersion. Optimal immersion time for the further experiments was selected. Third, the suitability of gadopentetate and ioxaglate enhanced pQCT to detect the enzymatically induced specific PG depletion was investigated by determining the contrast agent concentrations and uronic acid and water contents in digested and intact osteochondral samples (n = 16). After trypsin-induced PG loss (-70%, p < 0.05) the penetration of gadopentetate and ioxaglate increased (p < 0.05) by 34% and 48%, respectively. Gadopentetate and ioxaglate concentrations both showed strong correlation (r = -0.95, r = -0.94, p < 0.01, respectively) with the uronic acid content. To conclude, contrast agent enhanced pQCT provides a technique to quantify PG content in normal and experimentally degraded articular cartilage in vitro. As high resolution imaging of e.g. the knee joint is possible with pQCT, the present technique may be further developed for in vivo quantification of PG depletion in osteoarthritic cartilage. However, careful in vitro and in vivo characterization of diffusion mechanics and optimal contrast agent concentrations are needed before diagnostic applications are feasible.
Qian, J; Jiayuan, W; Wenkai, J; Peina, W; Ansheng, Z; Shukai, S; Shafei, Z; Jun, L; Longxing, N
2015-07-01
To determine how basic fibroblastic growth factor (bFGF) affected the osteogenic differentiation of human dental pulp stem cells (DPSCs) in vitro and in vivo. Basic fibroblastic growth factor stimulation of DPSCs was divided into a pre-treatment period and an osteogenic differentiation period. Alizarin red quantification experiments and alkaline phosphatase activity quantification assay were performed to examine the osteogenic differentiation of DPSCs after different bFGF stimulation. Quantification reverse transcription polymerase chain reaction was used to analyze the osteogenic gene expression of DPSCs after different bFGF stimulation. In addition, DPSCs that received the 1 and 2 weeks bFGF pre-treatments as in the in vitro experiments were mineralized for 1 week and seeded into hydroxyapatite/tricalcium phosphate (HA/TCP) pills and subcutaneously transplanted into naked mice for 2 or 3 months. The transplants were removed, sliced and stained using Modified Ponceau Trichrome Stain to observe the formation of mineralized tissue. Basic fibroblastic growth factor stimulation in the osteogenic differentiation period decreased the in vitro osteogenic differentiation ability of DPSCs. One week pre-treatment with bFGF increased the in vitro osteogenic differentiation ability of DPSCs, whereas 2 weeks pre-treatment with bFGF decreased the in vitro osteogenic differentiation ability of DPSCs. The pre-treatment period was vital for the osteogenic differentiation of DPSCs in vitro. The in vivo results were similar to the in vitro results. Basic fibroblastic growth factor affected the osteogenic differentiation of DPSCs in a treatment-dependent manner both in vitro and in vivo. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Self-assembled pentablock copolymers for selective and sustained gene delivery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bingqi
2011-05-15
The poly(diethylaminoethyl methacrylate) (PDEAEM) - Pluronic F127 - PDEAEM pentablock copolymer (PB) gene delivery vector system has been found to possess an inherent selectivity in transfecting cancer cells over non-cancer cells in vitro, without attaching any targeting ligands. In order to understand the mechanism of this selective transfection, three possible intracellular barriers to transfection were investigated in both cancer and non-cancer cells. We concluded that escape from the endocytic pathway served as the primary intracellular barrier for PB-mediated transfection. Most likely, PB vectors were entrapped and rendered non-functional in acidic lysosomes of non-cancer cells, but survived in less acidic lysosomesmore » of cancer cells. The work highlights the importance of identifying intracellular barriers for different gene delivery systems and provides a new paradigm for designing targeting vectors based on intracellular differences between cell types, rather than through the use of targeting ligands. The PB vector was further developed to simultaneously deliver anticancer drugs and genes, which showed a synergistic effect demonstrated by significantly enhanced gene expression in vitro. Due to the thermosensitive gelation behavior, the PB vector packaging both drug and gene was also investigated for its in vitro sustained release properties by using polyethylene glycol diacrylate as a barrier gel to mimic the tumor matrix in vivo. Overall, this work resulted in the development of a gene delivery vector for sustained and selective gene delivery to tumor cells for cancer therapy.« less
Detection of hydroxyapatite in calcified cardiovascular tissues.
Lee, Jae Sam; Morrisett, Joel D; Tung, Ching-Hsuan
2012-10-01
The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Detection of Hydroxyapatite in Calcified Cardiovascular Tissues
Lee, Jae Sam; Morrisett, Joel D.; Tung, Ching-Hsuan
2012-01-01
Objective The objective of this study is to develop a method for selective detection of the calcific (hydroxyapatite) component in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues ex vivo. This method uses a novel optical molecular imaging contrast dye, Cy-HABP-19, to target calcified cells and tissues. Methods A peptide that mimics the binding affinity of osteocalcin was used to label hydroxyapatite in vitro and ex vivo. Morphological changes in vascular smooth muscle cells were evaluated at an early stage of the mineralization process induced by extrinsic stimuli, osteogenic factors and a magnetic suspension cell culture. Hydroxyapatite components were detected in monolayers of these cells in the presence of osteogenic factors and a magnetic suspension environment. Results Atherosclerotic plaque contains multiple components including lipidic, fibrotic, thrombotic, and calcific materials. Using optical imaging and the Cy-HABP-19 molecular imaging probe, we demonstrated that hydroxyapatite components could be selectively distinguished from various calcium salts in human aortic smooth muscle cells in vitro and in calcified cardiovascular tissues, carotid endarterectomy samples and aortic valves, ex vivo. Conclusion Hydroxyapatite deposits in cardiovascular tissues were selectively detected in the early stage of the calcification process using our Cy-HABP-19 probe. This new probe makes it possible to study the earliest events associated with vascular hydroxyapatite deposition at the cellular and molecular levels. This target-selective molecular imaging probe approach holds high potential for revealing early pathophysiological changes, leading to progression, regression, or stabilization of cardiovascular diseases. PMID:22877867
Chen, Zuo-liang; Wei, Wei; Feng, Zhu-de; Liu, Xue-qing; Chen, Xiao-ling; Huang, Wen-xia
2007-10-01
The purpose of this study is to develop a novel root canal filling sealers based on calcium phosphate cement (CPC), and to evaluate its physical-chemical properties and in vitro antibacterial activity on the predominant bacteria infecting root canal. The fluidity and the setting time of the sealer were tested according to ISO 6876:2001(E) standards. The crystal size of the final product was determined. Its opacification with different composition were measured. The in vitro antibacterial property of the sealer was tested according to the Antimicrobial Susceptibility Testing of Anaerobes recommended by National Committee for Clinical Laboratory Standards (NCCLs). The involved bacteria included Actinomyces naeslundii(A. naeslundii), Peptostreptococcus anaerobius (P. anaerobius), Porphyromonas gingivalis (P. gingivalis), Porphyromonas endodpntalis (P. endodpntalis) and Fusobacterium nucleatum (F. nucleatum). Twenty single-rooted human extracted teeth were selected to evaluate the sealing ability using dye microleakage technology. Dye penetration was measured and the results were statistically analyzed using SPSS12.0 software package. The new root canal filling sealer was primarily composed of hydroxyapatite in 279 nm after setting. Its liquidity was suitable, the operating time was over 30 minutes, and the controlled setting time was (1.0+/-0.5) hours. The opacification was acceptable. MIC
Preferential Binding of Hot Spot Mutant p53 Proteins to Supercoiled DNA In Vitro and in Cells
Brázdová, Marie; Navrátilová, Lucie; Tichý, Vlastimil; Němcová, Kateřina; Lexa, Matej; Hrstka, Roman; Pečinka, Petr; Adámik, Matej; Vojtesek, Borivoj; Paleček, Emil; Deppert, Wolfgang; Fojta, Miroslav
2013-01-01
Hot spot mutant p53 (mutp53) proteins exert oncogenic gain-of-function activities. Binding of mutp53 to DNA is assumed to be involved in mutp53-mediated repression or activation of several mutp53 target genes. To investigate the importance of DNA topology on mutp53-DNA recognition in vitro and in cells, we analyzed the interaction of seven hot spot mutp53 proteins with topologically different DNA substrates (supercoiled, linear and relaxed) containing and/or lacking mutp53 binding sites (mutp53BS) using a variety of electrophoresis and immunoprecipitation based techniques. All seven hot spot mutp53 proteins (R175H, G245S, R248W, R249S, R273C, R273H and R282W) were found to have retained the ability of wild-type p53 to preferentially bind circular DNA at native negative superhelix density, while linear or relaxed circular DNA was a poor substrate. The preference of mutp53 proteins for supercoiled DNA (supercoil-selective binding) was further substantiated by competition experiments with linear DNA or relaxed DNA in vitro and ex vivo. Using chromatin immunoprecipitation, the preferential binding of mutp53 to a sc mutp53BS was detected also in cells. Furthermore, we have shown by luciferase reporter assay that the DNA topology influences p53 regulation of BAX and MSP/MST1 promoters. Possible modes of mutp53 binding to topologically constrained DNA substrates and their biological consequences are discussed. PMID:23555710
Bruse, Shannon; Moreau, Michael; Bromberg, Yana; Jang, Jun-Ho; Wang, Nan; Ha, Hongseok; Picchi, Maria; Lin, Yong; Langley, Raymond J; Qualls, Clifford; Klensney-Tait, Julia; Zabner, Joseph; Leng, Shuguang; Mao, Jenny; Belinsky, Steven A; Xing, Jinchuan; Nyunoya, Toru
2016-01-07
Chronic obstructive pulmonary disease (COPD) is characterized by an irreversible airflow limitation in response to inhalation of noxious stimuli, such as cigarette smoke. However, only 15-20 % smokers manifest COPD, suggesting a role for genetic predisposition. Although genome-wide association studies have identified common genetic variants that are associated with susceptibility to COPD, effect sizes of the identified variants are modest, as is the total heritability accounted for by these variants. In this study, an extreme phenotype exome sequencing study was combined with in vitro modeling to identify COPD candidate genes. We performed whole exome sequencing of 62 highly susceptible smokers and 30 exceptionally resistant smokers to identify rare variants that may contribute to disease risk or resistance to COPD. This was a cross-sectional case-control study without therapeutic intervention or longitudinal follow-up information. We identified candidate genes based on rare variant analyses and evaluated exonic variants to pinpoint individual genes whose function was computationally established to be significantly different between susceptible and resistant smokers. Top scoring candidate genes from these analyses were further filtered by requiring that each gene be expressed in human bronchial epithelial cells (HBECs). A total of 81 candidate genes were thus selected for in vitro functional testing in cigarette smoke extract (CSE)-exposed HBECs. Using small interfering RNA (siRNA)-mediated gene silencing experiments, we showed that silencing of several candidate genes augmented CSE-induced cytotoxicity in vitro. Our integrative analysis through both genetic and functional approaches identified two candidate genes (TACC2 and MYO1E) that augment cigarette smoke (CS)-induced cytotoxicity and, potentially, COPD susceptibility.
McWhorter, Andrea R.; Davos, Dianne
2014-01-01
In Australia, the egg industry is periodically implicated during outbreaks of Salmonella food poisoning. Salmonella enterica serovar Typhimurium and other nontyphoidal Salmonella spp., in particular, are a major concern for Australian public health. Several definitive types of Salmonella Typhimurium strains, but primarily Salmonella Typhimurium definitive type 9 (DT9), have been frequently reported during egg-related food poisoning outbreaks in Australia. The aim of the present study was to generate a pathogenicity profile of nontyphoidal Salmonella isolates obtained from Australian egg farms. To achieve this, we assessed the capacity of Salmonella isolates to cause gastrointestinal disease using both in vitro and in vivo model systems. Data from in vitro experiments demonstrated that the invasion capacity of Salmonella serovars cultured to stationary phase (liquid phase) in LB medium was between 90- and 300-fold higher than bacterial suspensions in normal saline (cultured in solid phase). During the in vivo infection trial, clinical signs of infection and mortality were observed only for mice infected with either 103 or 105 CFU of S. Typhimurium DT9. No mortality was observed for mice infected with Salmonella serovars with medium or low invasive capacity in Caco-2 cells. Pathogenicity gene profiles were also generated for all serovars included in this study. The majority of serovars tested were positive for selected virulence genes. No relationship between the presence or absence of virulence genes by PCR and either in vitro invasive capacity or in vivo pathogenicity was detected. Our data expand the knowledge of strain-to-strain variation in the pathogenicity of Australian egg industry-related Salmonella spp. PMID:25362057
Padsalgikar, Ajay; Cosgriff-Hernandez, Elizabeth; Gallagher, Genevieve; Touchet, Tyler; Iacob, Ciprian; Mellin, Lisa; Norlin-Weissenrieder, Anna; Runt, James
2015-01-01
Polyurethane biostability has been the subject of intense research since the failure of polyether polyurethane pacemaker leads in the 1980s. Accelerated in vitro testing has been used to isolate degradation mechanisms and predict clinical performance of biomaterials. However, validation that in vitro methods reproduce in vivo degradation is critical to the selection of appropriate tests. High temperature has been proposed as a method to accelerate degradation. However, correlation of such data to in vivo performance is poor for polyurethanes due to the impact of temperature on microstructure. In this study, we characterize the lack of correlation between hydrolytic degradation predicted using a high temperature aging model of a polydimethylsiloxane-based polyurethane and its in vivo performance. Most notably, the predicted molecular weight and tensile property changes from the accelerated aging study did not correlate with clinical explants subjected to human biological stresses in real time through 5 years. Further, DMTA, ATR-FTIR, and SAXS experiments on samples aged for 2 weeks in PBS indicated greater phase separation in samples aged at 85°C compared to those aged at 37°C and unaged controls. These results confirm that microstructural changes occur at high temperatures that do not occur at in vivo temperatures. In addition, water absorption studies demonstrated that water saturation levels increased significantly with temperature. This study highlights that the multiphase morphology of polyurethane precludes the use of temperature accelerated biodegradation for the prediction of clinical performance and provides critical information in designing appropriate in vitro tests for this class of materials. © 2014 Wiley Periodicals, Inc.
Zhao, Xinghua; He, Xin; Zhong, Xiuhui
2016-12-05
Qingdaisan (Formulated Indigo powder, QDS) are widely used for treatment of aphtha, sore throat and bleeding gums in China. The aim of the study is to evaluate the anti-inflammatory, antibacterial and dental ulcer therapeutic effects of QDS. Dimethylbenzene-induced ear edema test and cotton pellet-induced granuloma test were used to evaluate anti-inflammatory activities of QDS on acute and chronic inflammatory. The healing time and local pathologic changes were used to assess the therapeutic effects of QDS on dental ulcer. The antibacterial activities of each component and the whole formulation of QDS were determined by agar well diffusion assay. High-dose and low-dose QDS were tested in this experiment and Gui Lin Watermelon Frost Powder (GLWFP) was used as positive control. Oral treatment with QDS significantly accelerated the healing of ulcerative lesions induced by phenol injury. The dental ulcers of high-dose QDS group were all healed within 6 days. It was shorter than those of low-dose QDS group and GLWFP group. Less quantity of inflammatory cells and plenty fibroblasts were observed in pathological section of QDS groups. QDS also exhibited significant anti-inflammatory activity both in acute and chronic animal models. Although some of the components exhibited antibacterial activities, the whole formulation of QDS didn't show any significant antibacterial activity in vitro. The study showed that QDS has obviously anti-inflammatory activity for both acute and chronic inflammatory, also has a remarkable effect for healing dental ulcer caused by phenol. QDS didn't have antibacterial activity to selected strains in vitro.
Implementing oxygen control in chip-based cell and tissue culture systems.
Oomen, Pieter E; Skolimowski, Maciej D; Verpoorte, Elisabeth
2016-09-21
Oxygen is essential in the energy metabolism of cells, as well as being an important regulatory parameter influencing cell differentiation and function. Interest in precise oxygen control for in vitro cultures of tissues and cells continues to grow, especially with the emergence of the organ-on-a-chip and the desire to emulate in vivo conditions. This was recently discussed in this journal in a Critical Review by Brennan et al. (Lab Chip (2014). DOI: ). Microfluidics can be used to introduce flow to facilitate nutrient supply to and waste removal from in vitro culture systems. Well-defined oxygen gradients can also be established. However, cells can quickly alter the oxygen balance in their vicinity. In this Tutorial Review, we expand on the Brennan paper to focus on the implementation of oxygen analysis in these systems to achieve continuous monitoring. Both electrochemical and optical approaches for the integration of oxygen monitoring in microfluidic tissue and cell culture systems will be discussed. Differences in oxygen requirements from one organ to the next are a challenging problem, as oxygen delivery is limited by its uptake into medium. Hence, we discuss the factors determining oxygen concentrations in solutions and consider the possible use of artificial oxygen carriers to increase dissolved oxygen concentrations. The selection of device material for applications requiring precise oxygen control is discussed in detail, focusing on oxygen permeability. Lastly, a variety of devices is presented, showing the diversity of approaches that can be employed to control and monitor oxygen concentrations in in vitro experiments.
Foltz, Martin; van Buren, Leo; Klaffke, Werner; Duchateau, Guus S M J E
2009-09-01
Selected di- and tripeptides exhibit angiotensin-I converting enzyme (ACE) inhibitory activity in vitro. However, the efficacy in vivo is most likely limited for most peptides due to low bioavailability. The purpose of this study was to identify descriptors of intestinal stability, permeability, and ACE inhibitory activity of dipeptides. A total of 228 dipeptides were synthesized; intestinal stability was obtained by in vitro digestion, intestinal permeability using Caco-2 cells and ACE inhibitory activity by an in vitro assay. Databases were constructed to study the relationship between structure and activity, permeability, and stability. Quantitative structure-activity relationship (QSAR) modeling was performed based on computed models using partial least squares regression based on 400 molecular descriptors. QSAR modeling of dipeptide stability revealed high correlation coefficients (R > 0.65) for models based on Z and X scales. However, amino acid (AA) clustering showed the best results in describing stability of dipeptides. The N-terminal AA residues Asp, Gly, and Pro as well as the C-terminal residues Pro, Ser, Thr, and Asp stabilize dipeptides toward luminal enzymatic peptide hydrolysis. QSAR modeling did not reveal significant correlation models for intestinal permeability. 2D-fingerprint models were identified describing ACE inhibitory activity of dipeptides. The intestinal stability of 12 peptides was predicted. Peptides were synthesized and stability was confirmed in simulated digestion experiments. Based on the results, specific dipeptides can be designed to meet both stability and activity criteria. However, postabsorptive ACE inhibitory activities of dipeptides in vivo are most likely limited due to the very low intestinal permeability of dipeptides.
Lara-Ramirez, Edgar E; López-Cedillo, Julio Cesar; Nogueda-Torres, Benjamin; Kashif, Muhammad; Garcia-Perez, Carlos; Bocanegra-Garcia, Virgilio; Agusti, Rosalía; Uhrig, María Laura; Rivera, Gildardo
2017-05-26
Chagas disease is one of the most important neglected parasitic diseases afflicting developed and undeveloped countries. There are currently limited options for inexpensive and secure pharmacological treatment. In this study, we employed a structure-based virtual screening protocol for 3180 FDA-approved drugs for repositioning of them as potential trans-sialidase inhibitors. In vitro and in vivo evaluations were performed for the selected drugs against trypomastigotes from the INC-5 and NINOA strains of T. cruzi. Also, inhibition of sialylation by the trans-sialidase enzyme reaction was evaluated using high-performance anion-exchange chromatography with pulse amperometric detection to confirm the mechanism of action. Results from the computational study showed 38 top drugs with the best binding-energies. Four compounds with antihistaminic, anti-hypertensive, and antibiotic properties showed better trypanocidal effects (LC 50 range = 4.5-25.8 μg/mL) than the reference drugs, nifurtimox and benznidazole (LC 50 range = 36.1-46.8 μg/mL) in both strains in the in vitro model. The anti-inflammatory, sulfasalazine showed moderate inhibition (37.6%) of sialylation in a trans-sialidase enzyme inhibition reaction. Sulfasalazine also showed the best trypanocidal effects in short-term in vivo experiments on infected mice. This study suggests for the first time that the anti-inflammatory sulfasalazine could be used as a lead compound to develop new trans-sialidase inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Lapalombella, Rosa; Sun, Qingxiang; Williams, Katie; Tangeman, Larissa; Jha, Shruti; Zhong, Yiming; Goettl, Virginia; Mahoney, Emilia; Berglund, Caroline; Gupta, Sneha; Farmer, Alicia; Mani, Rajeswaran; Johnson, Amy J.; Lucas, David; Mo, Xiaokui; Daelemans, Dirk; Sandanayaka, Vincent; Shechter, Sharon; McCauley, Dilara; Shacham, Sharon; Kauffman, Michael
2012-01-01
The nuclear export protein XPO1 is overexpressed in cancer, leading to the cytoplasmic mislocalization of multiple tumor suppressor proteins. Existing XPO1-targeting agents lack selectivity and have been associated with significant toxicity. Small molecule selective inhibitors of nuclear export (SINEs) were designed that specifically inhibit XPO1. Genetic experiments and X-ray structures demonstrate that SINE covalently bind to a cysteine residue in the cargo-binding groove of XPO1, thereby inhibiting nuclear export of cargo proteins. The clinical relevance of SINEs was explored in chronic lymphocytic leukemia (CLL), a disease associated with recurrent XPO1 mutations. Evidence is presented that SINEs can restore normal regulation to the majority of the dysregulated pathways in CLL both in vitro and in vivo and induce apoptosis of CLL cells with a favorable therapeutic index, with enhanced killing of genomically high-risk CLL cells that are typically unresponsive to traditional therapies. More importantly, SINE slows disease progression, and improves overall survival in the Eμ-TCL1-SCID mouse model of CLL with minimal weight loss or other toxicities. Together, these findings demonstrate that XPO1 is a valid target in CLL with minimal effects on normal cells and provide a basis for the development of SINEs in CLL and related hematologic malignancies. PMID:23034282
Selection of Functional Quorum Sensing Systems by Lysogenic Bacteriophages in Pseudomonas aeruginosa
Saucedo-Mora, Miguel A.; Castañeda-Tamez, Paulina; Cazares, Adrián; Pérez-Velázquez, Judith; Hense, Burkhard A.; Cazares, Daniel; Figueroa, Wendy; Carballo, Marco; Guarneros, Gabriel; Pérez-Eretza, Berenice; Cruz, Nelby; Nishiyama, Yoshito; Maeda, Toshinari; Belmont-Díaz, Javier A.; Wood, Thomas K.; García-Contreras, Rodolfo
2017-01-01
Quorum sensing (QS) in Pseudomonas aeruginosa coordinates the expression of virulence factors, some of which are used as public goods. Since their production is a cooperative behavior, it is susceptible to social cheating in which non-cooperative QS deficient mutants use the resources without investing in their production. Nevertheless, functional QS systems are abundant; hence, mechanisms regulating the amount of cheating should exist. Evidence that demonstrates a tight relationship between QS and the susceptibility of bacteria against the attack of lytic phages is increasing; nevertheless, the relationship between temperate phages and QS has been much less explored. Therefore, in this work, we studied the effects of having a functional QS system on the susceptibility to temperate bacteriophages and how this affects the bacterial and phage dynamics. We find that both experimentally and using mathematical models, that the lysogenic bacteriophages D3112 and JBD30 select QS-proficient P. aeruginosa phenotypes as compared to the QS-deficient mutants during competition experiments with mixed strain populations in vitro and in vivo in Galleria mellonella, in spite of the fact that both phages replicate better in the wild-type background. We show that this phenomenon restricts social cheating, and we propose that temperate phages may constitute an important selective pressure toward the conservation of bacterial QS. PMID:28912771
Rapid high-throughput cloning and stable expression of antibodies in HEK293 cells.
Spidel, Jared L; Vaessen, Benjamin; Chan, Yin Yin; Grasso, Luigi; Kline, J Bradford
2016-12-01
Single-cell based amplification of immunoglobulin variable regions is a rapid and powerful technique for cloning antigen-specific monoclonal antibodies (mAbs) for purposes ranging from general laboratory reagents to therapeutic drugs. From the initial screening process involving small quantities of hundreds or thousands of mAbs through in vitro characterization and subsequent in vivo experiments requiring large quantities of only a few, having a robust system for generating mAbs from cloning through stable cell line generation is essential. A protocol was developed to decrease the time, cost, and effort required by traditional cloning and expression methods by eliminating bottlenecks in these processes. Removing the clonal selection steps from the cloning process using a highly efficient ligation-independent protocol and from the stable cell line process by utilizing bicistronic plasmids to generate stable semi-clonal cell pools facilitated an increased throughput of the entire process from plasmid assembly through transient transfections and selection of stable semi-clonal cell pools. Furthermore, the time required by a single individual to clone, express, and select stable cell pools in a high-throughput format was reduced from 4 to 6months to only 4 to 6weeks. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Hall, J. M.; Flowers, J. M.; Morton, I. K.
1992-01-01
1. We have estimated potencies of tachykinin receptor agonist and antagonist analogues in order to determine the recognition characteristics of tachykinin receptors mediating phasic contractile responses of the rat isolated urinary bladder in vitro. 2. The NK1-selective synthetic agonists, substance P methyl ester and GR73632, the synthetic NK2-selective agonists [beta-Ala8]-NKA(4-10) and GR64349, and the mammalian tachykinins, neurokinin A and neurokinin B, were assayed relative to substance P and were found to be approximately equipotent. The NK3-selective agonist, senktide, was inactive (10 microM). 3. Potencies of all these agonists were not significantly different (P > 0.05) when experiments were carried out in the presence of the neutral endopeptidase inhibitor, phosphoramidon, and the kininase II inhibitor, enalaprilat (both 1 microM). 4. The NK1-selective antagonist, GR82334, inhibited responses to substance P methyl ester in a competitive manner in the rat urinary bladder and the rat ileum, and also in the guinea-pig ileum. Markedly different pKB estimates were obtained in the rat bladder (6.38) and rat ileum (6.56) compared to the guinea-pig ileum (7.42). GR82334 (3 microM) was inactive against responses of the rat bladder to [beta-Ala8]-NKA(4-10). 5. The NK1-selective antagonist (+/-)-CP-96,345 also inhibited responses of the rat bladder and guinea-pig ileum to substance P methyl ester; however, in the rat bladder at 1 microM, this antagonist reversibly inhibited responses both to the NK2-selective agonist [beta-Ala8]-NKA(4-10) and to the muscarinic agonist carbachol (P < or = 0.01), thus showing evidence of some non-selective depressant actions.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1282072
NASA Astrophysics Data System (ADS)
Imamura, Tomomi; Fujita, Kyota; Tagawa, Kazuhiko; Ikura, Teikichi; Chen, Xigui; Homma, Hidenori; Tamura, Takuya; Mao, Ying; Taniguchi, Juliana Bosso; Motoki, Kazumi; Nakabayashi, Makoto; Ito, Nobutoshi; Yamada, Kazunori; Tomii, Kentaro; Okano, Hideyuki; Kaye, Julia; Finkbeiner, Steven; Okazawa, Hitoshi
2016-09-01
We identified drug seeds for treating Huntington’s disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD.
Screening of species-specific lactic acid bacteria for veal calves multi-strain probiotic adjuncts.
Ripamonti, Barbara; Agazzi, Alessandro; Bersani, Carla; De Dea, Paola; Pecorini, Chiara; Pirani, Silvia; Rebucci, Raffaella; Savoini, Giovanni; Stella, Simone; Stenico, Alberta; Tirloni, Erica; Domeneghini, Cinzia
2011-06-01
The selection of promising specific species of lactic acid bacteria with potential probiotic characteristics is of particular interest in producing multi species-specific probiotic adjuncts in veal calves rearing. The aim of the present work was to select and evaluate in vitro the functional activity of lactic acid bacteria, Bifidobacterium longum and Bacillus coagulans strains isolated from veal calves in order to assess their potential use as multi species-specific probiotics for veal calves. For this purpose, bacterial strains isolated from faeces collected from 40 healthy 50-day-calves, were identified by RiboPrinter and 16s rRNA gene sequence. The most frequent strains belonged to the species B. longum, Streptococcus bovis, Lactobacillus animalis and Streptococcus macedonicus. Among these, 7 strains were chosen for testing their probiotic characteristics in vitro. Three strains, namely L. animalis SB310, Lactobacillus paracasei subsp. paracasei SB137 and B. coagulans SB117 showed varying individual but promising capabilities to survive in the gastrointestinal tract, to adhere, to produce antimicrobial compounds. These three selected species-specific bacteria demonstrated in vitro, both singularly and mixed, the functional properties needed for their use as potential probiotics in veal calves. Copyright © 2011 Elsevier Ltd. All rights reserved.
Yu, Chao-Wu; Chang, Pei-Teh; Hsin, Ling-Wei; Chern, Ji-Wang
2013-09-12
Novel quinazolin-4-one derivatives containing a hydroxamic acid moiety were designed and synthesized. All compounds were subjected to histone deacetylase (HDAC) enzymatic assays to identify selective HDAC6 inhibitors with nanomolar IC50 values. (E)-3-(2-Ethyl-7-fluoro-4-oxo-3-phenethyl-3,4-dihydroquinazolin-6-yl)-N-hydroxyacrylamide, 4b, is the most potent HDAC6 inhibitor (IC50, 8 nM). In vitro, these compounds induced neurite outgrowth accompanied by growth-associated protein 43 expression, and they enhanced the synaptic activities of PC12 and SH-SY5Y neuronal cells without producing toxic or mitogenic effects. Several of the compounds dramatically increased nonhistone protein acetylation, specifically of α-tubulin. Some of the more potent HDAC6 inhibitors decreased zinc-mediated β-amyloid aggregation in vitro. N-Hydroxy-3-(2-methyl-4-oxo-3-phenethyl-3,4-dihydro-quinazolin-7-yl)-acrylamide, 3f, the most promising drug candidate, selectively inhibits HDAC6 (IC50, 29 nM), practically does not affect human ether-a-go-go-related membrane channel activity (IC50 >10 μM) or cytochrome P450 activity (IC50 >6.5 μM) in vitro, and significantly improves learning-based performances of mice with β-amyloid-induced hippocampal lesions.
Imamura, Tomomi; Fujita, Kyota; Tagawa, Kazuhiko; Ikura, Teikichi; Chen, Xigui; Homma, Hidenori; Tamura, Takuya; Mao, Ying; Taniguchi, Juliana Bosso; Motoki, Kazumi; Nakabayashi, Makoto; Ito, Nobutoshi; Yamada, Kazunori; Tomii, Kentaro; Okano, Hideyuki; Kaye, Julia; Finkbeiner, Steven; Okazawa, Hitoshi
2016-01-01
We identified drug seeds for treating Huntington’s disease (HD) by combining in vitro single molecule fluorescence spectroscopy, in silico molecular docking simulations, and in vivo fly and mouse HD models to screen for inhibitors of abnormal interactions between mutant Htt and physiological Ku70, an essential DNA damage repair protein in neurons whose function is known to be impaired by mutant Htt. From 19,468 and 3,010,321 chemicals in actual and virtual libraries, fifty-six chemicals were selected from combined in vitro-in silico screens; six of these were further confirmed to have an in vivo effect on lifespan in a fly HD model, and two chemicals exerted an in vivo effect on the lifespan, body weight and motor function in a mouse HD model. Two oligopeptides, hepta-histidine (7H) and Angiotensin III, rescued the morphological abnormalities of primary neurons differentiated from iPS cells of human HD patients. For these selected drug seeds, we proposed a possible common structure. Unexpectedly, the selected chemicals enhanced rather than inhibited Htt aggregation, as indicated by dynamic light scattering analysis. Taken together, these integrated screens revealed a new pathway for the molecular targeted therapy of HD. PMID:27653664
Matsuda, Ikki; Clauss, Marcus; Tuuga, Augustine; Sugau, John; Hanya, Goro; Yumoto, Takakazu; Bernard, Henry; Hummel, Jürgen
2017-01-01
Free-living animals must make dietary choices in terms of chemical and physical properties, depending on their digestive physiology and availability of food resources. Here we comprehensively evaluated the dietary choices of proboscis monkeys (Nasalis larvatus) consuming young leaves. We analysed the data for leaf toughness and digestibility measured by an in vitro gas production method, in addition to previously reported data on nutrient composition. Leaf toughness, in general, negatively correlated with the crude protein content, one of the most important nutritional factors affecting food selection by leaf-eating primates. This result suggests that leaf toughness assessed by oral sensation might be a proximate cue for its protein content. We confirmed the importance of the leaf chemical properties in terms of preference shown by N. larvatus; leaves with high protein content and low neutral detergent fibre levels were preferred to those of the common plant species. We also found that these preferred leaves were less tough and more digestible than the alternatives. Our in vitro results also suggested that N. larvatus were little affected by secondary plant compounds. However, the spatial distribution pattern of plant species was the strongest factor explaining the selection of the preferred leaf species. PMID:28211530
Herrera, Melina; Di Gregorio, Sabrina; Fernandez, Silvina; Posse, Graciela; Mollerach, Marta; Di Conza, José
2016-03-08
Tigecycline (TIG) is an antibiotic belonging to the glycylcyclines class and appears to be a good choice to fight infections caused by Staphylococcus aureus. To date, TIG exhibits good activity against this microorganism. The aim of this work was to obtain in vitro mutants of S. aureus resistant to TIG and evaluate possible changes in their susceptibility patterns to other antibiotics. Two mutants of S. aureus resistant to TIG (MIC = 16 µg/mL) were selected in vitro from clinical isolates of methicillin-resistant S. aureus. In both mutants, corresponding to different lineage (ST5 and ST239), an increase of efflux activity against TIG was detected. One mutant also showed a reduced susceptibility to vancomycin, corresponding to the VISA phenotype (MIC = 4 µg/mL), with a loss of functionality of the agr locus. The emergence of the VISA phenotype was accompanied by an increase in oxacillin and cefoxitin MICs. This study demonstrates that, under selective pressure, the increase of efflux activity in S. aureus is one of the mechanisms that may be involved in the emergence of tigecycline resistance. The emergence of this phenotype may eventually be associated to changes in susceptibility to other antibiotics such oxacillin and vancomycin.
Translating in vitro ligand bias into in vivo efficacy.
Luttrell, Louis M; Maudsley, Stuart; Gesty-Palmer, Diane
2018-01-01
It is increasingly apparent that ligand structure influences both the efficiency with which G protein-coupled receptors (GPCRs) engage their downstream effectors and the manner in which they are activated. Thus, 'biased' agonists, synthetic ligands whose intrinsic efficacy differs from the native ligand, afford a strategy for manipulating GPCR signaling in ways that promote beneficial signals while blocking potentially deleterious ones. Still, there are significant challenges in relating in vitro ligand efficacy, which is typically measured in heterologous expression systems, to the biological response in vivo, where the ligand is acting on natively expressed receptors and in the presence of the endogenous ligand. This is particularly true of arrestin pathway-selective 'biased' agonists. The type 1 parathyroid hormone receptor (PTH 1 R) is a case in point. Parathyroid hormone (PTH) is the principal physiological regulator of calcium homeostasis, and PTH 1 R expressed on cells of the osteoblast lineage are an established therapeutic target in osteoporosis. In vitro, PTH 1 R signaling is highly sensitive to ligand structure, and PTH analogs that affect the selectivity/kinetics of G protein coupling or that engage arrestin-dependent signaling mechanisms without activating heterotrimeric G proteins have been identified. In vivo, intermittent administration of conventional PTH analogs accelerates the rate of osteoblastic bone formation, largely through known cAMP-dependent mechanisms. Paradoxically, both intermittent and continuous administration of an arrestin pathway-selective PTH analog, which in vivo would be expected to antagonize endogenous PTH 1 R-cAMP signaling, also increases bone mass. Transcriptomic analysis of tissue from treated animals suggests that conventional and arrestin pathway-selective PTH1R ligands act in largely different ways, with the latter principally affecting pathways involved in the regulation of cell cycle, survival, and migration/cytoskeletal dynamics. Such multi-dimensional in vitro and in vivo analyses of ligand bias may provide insights into the physiological roles of non-canonical arrestin-mediated signaling pathways in vivo, and provide a conceptual framework for translating arrestin pathway-selective ligands into viable therapeutics. Copyright © 2017 Elsevier Inc. All rights reserved.
Preclinical and Clinical Resistance Profile of EDP-239, a Novel Hepatitis C Virus NS5A Inhibitor.
Owens, Christopher M; Brasher, Bradley B; Polemeropoulos, Alex; Rhodin, Michael H J; McAllister, Nicole; Wong, Kelly A; Jones, Christopher T; Jiang, Lijuan; Lin, Kai; Or, Yat Sun
2016-10-01
EDP-239, a potent and selective hepatitis C virus (HCV) nonstructural protein 5A (NS5A) inhibitor developed for the treatment of HCV infection, has been investigated in vitro and in vivo This study sought to characterize genotypic changes in the HCV NS5A sequence of genotype 1 (GT1) replicons and to compare those changes to GT1 viral RNA mutations isolated from clinical trial patients. Resistance selection experiments in vitro using a subgenomic replicon identified resistance-associated mutations (RAMs) at GT1a NS5A amino acid positions 24, 28, 30, 31, and 93 that confer various degrees of resistance to EDP-239. Key RAMs were similarly identified in GT1b NS5A at amino acid positions 31 and 93. Mutations F36L in GT1a and A92V in GT1b do not confer resistance to EDP-239 individually but were found to enhance the resistance of GT1a K24R and GT1b Y93H. RAMs were identified in GT1 patients at baseline or after dosing with EDP-239 that were similar to those detected in vitro Baseline RAMs identified at NS5A position 93 in GT1, or positions 28 or 30 in GT1a only, correlated with a reduced treatment response. RAMs at additional positions were also detected and may have contributed to reduced EDP-239 efficacy. The most common GT1a and GT1b RAMs found to persist up to weeks 12, 24, or 48 were those at NS5A positions 28, 30, 31, 58 (GT1a only), and 93. Those RAMs persisting at the highest frequencies up to weeks 24 or 48 were L31M and Q30H/R for GT1a and L31M and Y93H for GT1b. (This study has been registered at ClinicalTrials.gov under identifier NCT01856426.). Copyright © 2016, American Society for Microbiology. All Rights Reserved.
In vitro Induction and Generation of Tetraploid Plants of Sophora tonkinensis Gapnep
Wei, Kun Hua; Xu, Jian Ping; Li, Lin Xuan; Cai, Jin Yuan; Miao, Jian Hua; Li, Min Hui
2018-01-01
Background: Sophora tonkinensis Gapnep. is an important medical plant in China. Early researches of S. tonkinensis were focused on rapid propagation and quality analysis of in vitro tissue culture plantlet, and still no research focuses on the plant breeding of and there were no excellent varieties for artificial cultivation of S. tonkinensis. Objective: To set up a method to generate and select the best varieties of S. tonkinensis by polyploid breeding after induction by colchicine treatment. Materials and Methods: The adventitious buds were submerged in different concentrations of aqueous colchicine solution for different lengths of time to induce polyploidy in the plants, and the induced buds were identified by root-tip chromosome determination and leaf characteristics comparison. The contents of matrine and oxymatrine of radix ex rhizoma in 13 selected tetraploid lines were collected after 90 days in vitro rooting culture and were evaluated to provide evidence of good qualities of tetraploid S. tonkinensis. Results: The results showed that the highest percentage of tetraploid induction was 23.33% and occurred in the 0.2% (w/v) colchicine treatment for 30 h. Fifty lines of tetraploid plants were obtained and 12 of the 13 selected tetraploid lines exhibited higher productivity of total contents of matrine and oxymatrine when compared to controls. Conclusion: The data demonstrate that polyploidy induction can be beneficial for improving the medicinal value of S. tonkinensis. SUMMARY Colchicine has a good in vitro induction effect on the tetraploid plants of Sophora tonkinensisThe leaf indices and stomatal apparatus of tetraploid plants were slightly larger than diploid plantsThe total content of matrine and oxymatrine of some tetraploid lines for 90-day-old in vitro rooting culture was higher than the diploid. Abbreviations used: MS medium: Murashige and Skoog medium; BAP: 6-benzylaminopurine; NAA: A-naphthaleneacetic acid; IAA: Indole-3-acetic acid; KT: Kinetin; IBA: Indole-3-butyric acid; ABT: Rooting power. PMID:29720823
Van Beeren, H C; Jong, W M C; Kaptein, E; Visser, T J; Bakker, O; Wiersinga, W M
2003-02-01
Dronedarone (Dron), without iodine, was developed as an alternative to the iodine-containing antiarrhythmic drug amiodarone (AM). AM acts, via its major metabolite desethylamiodarone, in vitro and in vivo as a thyroid hormone receptor alpha(1) (TRalpha(1)) and TRbeta(1) antagonist. Here we investigate whether Dron and/or its metabolite debutyldronedarone inhibit T(3) binding to TRalpha(1) and TRbeta(1) in vitro and whether dronedarone behaves similarly to amiodarone in vivo. In vitro, Dron had a inhibitory effect of 14% on the binding of T(3) to TRalpha(1), but not on TRbeta(1). Desethylamiodarone inhibited T(3) binding to TRalpha(1) and TRbeta(1) equally. Debutyldronedarone inhibited T(3) binding to TRalpha(1) by 77%, but to TRbeta(1) by only 25%. In vivo, AM increased plasma TSH and rT(3), and decreased T(3). Dron decreased T(4) and T(3), rT(3) did not change, and TSH fell slightly. Plasma total cholesterol was increased by AM, but remained unchanged in Dron-treated animals. TRbeta(1)-dependent liver low density lipoprotein receptor protein and type 1 deiodinase activities decreased in AM-treated, but not in Dron-treated, animals. TRalpha(1)-mediated lengthening of the QTc interval was present in both AM- and Dron-treated animals. The in vitro and in vivo findings suggest that dronedarone via its metabolite debutyldronedarone acts as a TRalpha(1)-selective inhibitor.
In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display
Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain
2014-01-01
The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763