Sample records for vitro system combining

  1. In Vitro and In Vivo Efficacy of Amphotericin B Combined with Posaconazole against Experimental Disseminated Sporotrichosis

    PubMed Central

    Mario, Débora Nunes; Guarro, Josep; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-01-01

    We evaluated the combination of posaconazole with amphotericin B in vitro and in a murine model of systemic infections caused by Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In vitro data demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated. PMID:26014930

  2. In Vitro and In Vivo Efficacy of Amphotericin B Combined with Posaconazole against Experimental Disseminated Sporotrichosis.

    PubMed

    Mario, Débora Nunes; Guarro, Josep; Santurio, Janio Morais; Alves, Sydney Hartz; Capilla, Javier

    2015-08-01

    We evaluated the combination of posaconazole with amphotericin B in vitro and in a murine model of systemic infections caused by Sporothrix brasiliensis and Sporothrix schenckii sensu stricto. In vitro data demonstrated a synergistic effect, and although posaconazole alone was effective against sporotrichosis, efficacy in terms of survival and burden reduction was increased with the combination. This combination might be an option against disseminated sporotrichosis, especially when itraconazole or amphotericin B at optimal doses are contraindicated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Identifying Novel Regulators of Vacuolar Trafficking by Combining Fluorescence Imaging-Based Forward Genetic Screening and In Vitro Pollen Germination.

    PubMed

    Feng, Qiang-Nan; Zhang, Yan

    2017-01-01

    Subcellular targeting of vacuolar proteins depends on cellular machinery regulating vesicular trafficking. Plant-specific vacuolar trafficking routes have been reported. However, regulators mediating these processes are obscure. By combining a fluorescence imaging-based forward genetic approach and in vitro pollen germination system, we show an efficient protocol of identifying regulators of plant-specific vacuolar trafficking routes.

  4. Combination of caspofungin or anidulafungin with antimicrobial peptides results in potent synergistic killing of Candida albicans and Candida glabrata in vitro.

    PubMed

    Harris, Mark R; Coote, Peter J

    2010-04-01

    Administering synergistic combinations of antifungals could be a route to overcome problems with toxicity and the development of resistance. Combination of the echinocandins caspofungin or anidulafungin with a range of structurally diverse antimicrobial peptides resulted in potent synergistic killing of Candida spp. in vitro. Fungicidal synergy was measured by calculating fractional inhibitory concentration indices from checkerboard assays as well as loss of viability. Inhibitory combinations of the antifungals did not induce cytotoxicity in vitro. However, in a murine model of systemic candidiasis, co-administration of caspofungin with one example of the cationic peptides tested, ranalexin, did not show enhanced efficacy compared with the single treatments alone. Further study using alternative peptides will identify whether this combination approach could represent a novel treatment for fungal pathogens. (c) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  5. Genotoxicity evaluation of carbon monoxide and 1, 3-butadiene using a new joint technology - the in vitro γH2AX HCS assay combined with air-liquid interface system.

    PubMed

    Zhang, Sen; Chen, Huan; Wang, An; Liu, Yong; Hou, Hongwei; Hu, Qingyuan

    2018-05-21

    To investigate the genotoxicity of gaseous toxicants CO and 1,3-butadiene in vitro, a novel combination technology-the in vitro γH2AX high content screening assay combined with air-liquid interface system was established. The results showed that this new technology was available and effective. Based on the joint technology, genotoxicity of CO and 1,3-butadiene was evaluated further in this study. The results showed that treatment concentrations (0, 20%,40%, 80% and 100%, v/v) and exposure time (15, 30, 45, 60 and 90 min) of CO both had no statistically significant effects on the induction of γH2AX (p > 0.05). However, 1,3-butadiene can induce significant γH2AX (p < 0.01) in A549 cells in a dose/time-dependent manner both in the absence and presence of rat liver S9. When the concentrations of 1,3-butadiene were more than 80%, a higher γH2AX level could be induced than the 1.5-fold of vehicle controls after 1 h of treatment. Overall, this new technology can be used a complementary tool to evaluate the genotoxicity of airborne toxicants in vitro based on the in vitro γH2AX high content screening assay combined with air-liquid interface system. Based on the joint technology, CO was not genotoxic in A549 cells, while 1,3-butadiene showed significant genotoxicity in the dose/time-dependency on the induction of γH2AX.

  6. Pluripotent stem cells reveal the developmental biology of human megakaryocytes and provide a source of platelets for clinical application.

    PubMed

    Takayama, Naoya; Eto, Koji

    2012-10-01

    Human pluripotent stem cells [PSCs; including human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)] can infinitely proliferate in vitro and are easily accessible for gene manipulation. Megakaryocytes (MKs) and platelets can be created from human ESCs and iPSCs in vitro and represent a potential source of blood cells for transfusion and a promising tool for studying the human thrombopoiesis. Moreover, disease-specific iPSCs are a powerful tool for elucidating the pathogenesis of hematological diseases and for drug screening. In that context, we and other groups have developed in vitro MK and platelet differentiation systems from human pluripotent stem cells (PSCs). Combining this co-culture system with a drug-inducible gene expression system enabled us to clarify the novel role played by c-MYC during human thrombopoiesis. In the next decade, technical advances (e.g., high-throughput genomic sequencing) will likely enable the identification of numerous gene mutations associated with abnormal thrombopoiesis. Combined with such technology, an in vitro system for differentiating human PSCs into MKs and platelets could provide a novel platform for studying human gene function associated with thrombopoiesis.

  7. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  8. In vitro tuberization of Chlorophytum Borivilianum Sant & Fern (Safed musli) as influenced by sucrose, CCC and culture systems.

    PubMed

    Farshad Ashraf, Mehdi; Abd Aziz, Maheran; Abdul Kadir, Mihdzar; Stanslas, Johnson; Farokhian, Elmira

    2013-08-01

    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.

  9. Combination of injectable ethinyl estradiol and drospirenone drug-delivery systems and characterization of their in vitro release.

    PubMed

    Nippe, Stefanie; General, Sascha

    2012-11-20

    Our aim was to investigate the in vitro release and combination of ethinyl estradiol (EE) and drospirenone (DRSP) drug-delivery systems. DRSP poly(lactic-co-glycolic acid) (PLGA) microparticles and organogels containing DRSP microcrystals were prepared and characterized with regard to properties influencing drug release. The morphology and release kinetics of DRSP PLGA microparticles indicated that DRSP is dispersed in the polymer. The in vitro release profiles correlated well with in vivo data. Although DRSP degradation is known to be acid-catalyzed, DRSP was relatively stable in the PLGA matrix. Aqueous DRSP PLGA microparticle suspensions were combinable with EE PLGA microparticles and EE poly(butylcyanoacrylate) (PBCA) microcapsules without interacting. EE release from PLGA microparticles was faster than DRSP release; EE release is assumed to be primarily controlled by drug diffusion. Liquid-filled EE PBCA microcapsules were shown to be more robust than air-filled EE PBCA microcapsules; the bursting of microcapsules accelerating the drug delivery was therefore delayed. The drug release profile for DRSP organogels was fairly linear with the square root of time. The system was not combinable with EE PBCA microcapsules. In contrast, incorporation of EE PLGA microparticles in organogels resulted in prolonged EE release. The drug release of EE and DRSP was thus approximated. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. In vitro vascularization of a combined system based on a 3D printing technique.

    PubMed

    Zhao, Xinru; Liu, Libiao; Wang, Jiayin; Xu, Yufan; Zhang, Weiming; Khang, Gilson; Wang, Xiaohong

    2016-10-01

    A vital challenge in complex organ manufacturing is to vascularize large combined tissues. The aim of this study is to vascularize in vitro an adipose-derived stem cell (ADSC)/fibrin/collagen incorporated three-dimensional (3D) poly(d,l-lactic-co-glycolic acid) (PLGA) scaffold (10 × 10 × 10 mm 3 ) with interconnected channels. A low-temperature 3D printing technique was employed to build the PLGA scaffold. A step-by-step cocktail procedure was designed to engage or steer the ADSCs in the PLGA channels towards both endothelial and smooth muscle cell lineages. The combined system had sufficient mechanical properties to support the cell/fibrin/collagen hydrogel inside the predefined PLGA channels. The ADSCs encapsulated in the fibrin/collagen hydrogel differentiated to endothelial and smooth muscle cell lineage, respectively, corresponding to their respective locations in the construct and formed vascular-like structures. This technique allows in vitro vascularization of the predefined PLGA channels and provides a choice for complex organ manufacture. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies.

    PubMed

    Madhumathi, K; Rubaiya, Y; Doble, Mukesh; Venkateswari, R; Sampath Kumar, T S

    2018-05-01

    A dual local drug delivery system (DDS) composed of calcium phosphate bioceramic nanocarriers aimed at treating the antibacterial, anti-inflammatory, and bone-regenerative aspects of periodontitis has been developed. Calcium-deficient hydroxyapatite (CDHA, Ca/P = 1.61) and tricalcium phosphate (β-TCP) were prepared by microwave-accelerated wet chemical synthesis method. The phase purity of the nanocarriers was confirmed by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), while the transmission electron microscopy (TEM) confirmed their nanosized morphology. CDHA was selected as carrier for the antibiotic (tetracycline) while TCP was chosen as the anti-inflammatory drug (ibuprofen) carrier. Combined drug release profile was studied in vitro from CDHA/TCP (CTP) system and compared with a HA/TCP (BCP) biphasic system. The tetracycline and ibuprofen release rate was 71 and 23% from CTP system as compared to 63 and 20% from BCP system. CTP system also showed a more controlled drug release profile compared to BCP system. Modeling of drug release kinetics from CTP system indicated that the release follows Higuchi model with a non-typical Fickian diffusion profile. In vitro biological studies showed the CTP system to be biocompatible with significant antibacterial and anti-inflammatory activity. In vivo implantation studies on rat cranial defects showed greater bone healing and new bone formation in the drug-loaded CTP system compared to control (no carrier) at the end of 12 weeks. The in vitro and in vivo results suggest that the combined drug delivery platform can provide a comprehensive management for all bone infections requiring multi-drug therapy.

  12. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo.

    PubMed

    Xu, Na; Cheng, Hao; Xu, Jiangwen; Li, Feng; Gao, Biao; Li, Zi; Gao, Chenghao; Huo, Kaifu; Fu, Jijiang; Xiong, Wei

    2017-01-01

    Antibiotic-resistant bacteria have become a major issue due to the long-term use and abuse of antibiotics in treatments in clinics. The combination therapy of antibiotics and silver (Ag) nanoparticles is an effective way of both enhancing the antibacterial effect and decreasing the usage of antibiotics. Although the method has been proved to be effective in vitro, no in vivo tests have been carried out at present. Herein, we described a combination therapy of local delivery of Ag and systemic antibiotics treatment in vitro in an infection model of rat. Ag nanoparticle-loaded TiO 2 nanotube (NT) arrays (Ag-NTs) were fabricated on titanium implants for a customized release of Ag ion. The antibacterial properties of silver combined with antibiotics vancomycin, rifampin, gentamicin, and levofloxacin, respectively, were tested in vitro by minimum inhibitory concentration (MIC) assay, disk diffusion assay, and antibiofilm formation test. Enhanced antibacterial activity of combination therapy was observed for all the chosen bacterial strains, including gram-negative Escherichia coli (ATCC 25922), gram-positive Staphylococcus aureus (ATCC 25923), and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300). Moreover, after a relative short (3 weeks) combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection.

  13. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  14. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment.

    PubMed

    Harrill, Joshua A; Freudenrich, Theresa; Wallace, Kathleen; Ball, Kenneth; Shafer, Timothy J; Mundy, William R

    2018-04-05

    Medium- to high-throughput in vitro assays that recapitulate the critical processes of nervous system development have been proposed as a means to facilitate rapid testing and identification of chemicals which may affect brain development. In vivo neurodevelopment is a complex progression of distinct cellular processes. Therefore, batteries of in vitro assays that model and quantify effects on a variety of neurodevelopmental processes have the potential to identify chemicals which may affect brain development at different developmental stages. In the present study, the results of concentration-response screening of 67 reference chemicals in a battery of high content imaging and microplate reader-based assays that evaluate neural progenitor cell proliferation, neural proginitor cell apoptosis, neurite initiation/outgrowth, neurite maturation and synaptogenesis are summarized and compared. The assay battery had a high degree of combined sensitivity (87%) for categorizing chemicals known to affect neurodevelopment as active and a moderate degree of combined specificity (71%) for categorizing chemicals not associated with affects on neurodevelopment as inactive. The combined sensitivity of the assay battery was higher compared to any individual assay while the combined specificity of the assay battery was lower compared to any individual assay. When selectivity of effects for a neurodevelopmental endpoint as compared to general cytotoxicity was taken into account, the combined sensitivity of the assay battery decreased (68%) while the combined specificity increased (93%). The identity and potency of chemicals identified as active varied across the assay battery, underscoring the need for use of a combination of diverse in vitro models to comprehensively screen chemicals and identify those which potentially affect neurodevelopment. Overall, these data indicate that a battery of assays which address many different processes in nervous system development may be used to identify potential developmental neurotoxicants and to distinguish specific from generalized cytotoxic effects with a high degree of success. Published by Elsevier Inc.

  15. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  16. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure.

    PubMed

    Suzuki, Ryo; Maruyama, Kazuo

    2010-01-01

    Gene delivery with a physical mechanism using ultrasound (US) and nano/microbubbles is expected as an ideal system in terms of delivering plasmid DNA noninvasively into a specific target site. We developed novel liposomal bubbles (Bubble liposomes (BLs)) containing the lipid nanobubbles of perfluoropropane which were utilized for contrast enhancement in ultrasonography. BLs were smaller in diameter than conventional microbubbles and induced cavitation upon exposure ultrasound. In addition, when coupled with US exposure, BLs could deliver plasmid DNA into various types of cells in vitro and in vivo. The transfection efficiency with BLs and US was higher than that with conventional lipofection method. Therefore, the combination of BLs and US might be an efficient and novel nonviral gene delivery system.

  17. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering.

    PubMed

    Yao, Yi; He, Yu; Guan, Qian; Wu, Qiong

    2014-02-01

    Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Advances and perspectives in in vitro human gut fermentation modeling.

    PubMed

    Payne, Amanda N; Zihler, Annina; Chassard, Christophe; Lacroix, Christophe

    2012-01-01

    The gut microbiota is a highly specialized organ containing host-specific assemblages of microbes whereby metabolic activity directly impacts human health and disease. In vitro gut fermentation models present an unmatched opportunity of performing studies frequently challenged in humans and animals owing to ethical concerns. Multidisciplinary systems biology analyses supported by '-omics' platforms remain widely neglected in the field of in vitro gut fermentation modeling but are key to advancing the significance of these models. Model-driven experimentation using a combination of in vitro gut fermentation and in vitro human cell models represent an advanced approach in identifying complex host-microbe interactions and niches central to gut fermentation processes. The aim of this review is to highlight the advances and challenges exhibited by in vitro human gut fermentation modeling. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Combined effect of pulsed electromagnetic field and sound wave on In vitro and In vivo neural differentiation of human mesenchymal stem cells.

    PubMed

    Choi, Yun-Kyong; Urnukhsaikhan, Enerelt; Yoon, Hee-Hoon; Seo, Young-Kwon; Cho, Hyunjin; Jeong, Jong-Seob; Kim, Soo-Chan; Park, Jung-Keug

    2017-01-01

    Biophysical wave stimulus has been used as an effective tool to promote cellular maturation and differentiation in the construction of engineered tissue. Pulsed electromagnetic fields (PEMFs) and sound waves have been selected as effective stimuli that can promote neural differentiation. The aim of this study was to investigate the synergistic effect of PEMFs and sound waves on the neural differentiation potential in vitro and in vivo using human bone marrow mesenchymal stem cells (hBM-MSCs). In vitro, neural-related genes in hBM-MSCs were accelerated by the combined exposure to both waves more than by individual exposure to PEMFs or sound waves. The combined wave also up-regulated the expression of neural and synaptic-related proteins in a three-dimensional (3-D) culture system through the phosphorylation of extracellular signal-related kinase. In a mouse model of photochemically induced ischemia, exposure to the combined wave reduced the infarction volume and improved post-injury behavioral activity. These results indicate that a combined stimulus of biophysical waves, PEMFs and sound can enhance and possibly affect the differentiation of MSCs into neural cells. Our study is meaningful for highlighting the potential of combined wave for neurogenic effects and providing new therapeutic approaches for neural cell therapy. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:201-211, 2017. © 2016 American Institute of Chemical Engineers.

  20. In vitro acute and developmental neurotoxicity screening: an overview of cellular platforms and high-throughput technical possibilities.

    PubMed

    Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András

    2017-01-01

    Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.

  1. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  2. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.

    PubMed

    de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2015-12-01

    The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.

  3. Co-delivery of vascular endothelial growth factor and angiopoietin-1 using injectable microsphere/hydrogel hybrid systems for therapeutic angiogenesis.

    PubMed

    Shin, Seung-Hwa; Lee, Jangwook; Ahn, Dong-Gyun; Lee, Kuen Yong

    2013-08-01

    We hypothesized that combined delivery of vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-1) using microsphere/hydrogel hybrid systems could enhance mature vessel formation compared with administration of each factor alone. Hybrid delivery systems composed of alginate hydrogels and poly(D,L-lactic-co-glycolic acid) (PLGA) microspheres containing angiogenic factors were prepared. The release behavior of angiogenic factors from hybrid systems was monitored in vitro. The hybrid systems were injected into an ischemic rodent model, and blood vessel formation at the ischemic site was evaluated. The sustained release over 4 weeks of both VEGF and Ang-1 from hybrid systems was achieved in vitro. Co-delivery of VEGF and Ang-1 was advantageous to retain muscle tissues and significantly induced vessel enlargement at the ischemic site, compared to mice treated with either VEGF or Ang-1 alone. Sustained and combined delivery of VEGF and Ang-1 significantly enhances vessel enlargement at the ischemic site, compared with sustained delivery of either factor alone. Microsphere/hydrogel hybrid systems may be a promising vehicle for delivery of multiple drugs for many therapeutic applications.

  4. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation.

    PubMed

    Alvarez, Celeste; Andes, David R; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S

    2017-05-01

    Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination's activity against Candida albicans. We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 h. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy.

  5. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  6. Comparative antibacterial efficacies of hydrodynamic and ultrasonic irrigation systems in vitro.

    PubMed

    Cachovan, Georg; Schiffner, Ulrich; Altenhof, Saskia; Guentsch, Arndt; Pfister, Wolfgang; Eick, Sigrun

    2013-09-01

    To ensure root canal treatment success, endodontic microbiota should be efficiently reduced. The in vitro bactericidal effects of a hydrodynamic system and a passive ultrasonic irrigation system were compared. Single-rooted extracted teeth (n = 250) were contaminated with suspensions of Enterococcus faecalis ATCC 29212, mixed aerobic cultures, or mixed anaerobic cultures. First, the antibacterial effects of the hydrodynamic system (RinsEndo), a passive ultrasonic irrigation system (Piezo smart), and manual rinsing with 0.9% NaCl (the control) were compared. Colony-forming units were counted. Second, the 2 systems were used with 1.5% sodium hypochlorite (NaOCl) alone or NaOCl + 0.2% chlorhexidine (CHX). The colony-forming units in the treated and untreated roots were determined during a period of 5 days. Both irrigation systems reduced bacterial numbers more effectively than manual rinsing (P < .001). With NaCl, ultrasonic activated irrigation reduced bacterial counts significantly better than hydrodynamic irrigation (P = .042). The NaOCl + CHX combination was more effective than NaOCl alone for both systems (P < .001), but hydrodynamic irrigation was more effective with NaOCl + CHX than the passive ultrasonic irrigation system. Both irrigation systems, when combined with NaOCl + CHX, removed bacteria from root canals. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Nucleic acid encoding a self-assembling split-fluorescent protein system

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2014-04-01

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  8. Nucleic acid encoding a self-assembling split-fluorescent protein system

    DOEpatents

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-07

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  9. Nucleic acid encoding a self-assembling split-fluorescent protein system

    DOEpatents

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2015-07-14

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  10. [Construction of research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier].

    PubMed

    Sun, E; Xu, Feng-Juan; Zhang, Zhen-Hai; Wei, Ying-Jie; Tan, Xiao-Bin; Cheng, Xu-Dong; Jia, Xiao-Bin

    2014-02-01

    Based on practice of Epimedium processing mechanism for many years and integrated multidisciplinary theory and technology, this paper initially constructs the research system for processing mechanism of traditional Chinese medicine based on chemical composition transformation combined with intestinal absorption barrier, which to form an innovative research mode of the " chemical composition changes-biological transformation-metabolism in vitro and in vivo-intestinal absorption-pharmacokinetic combined pharmacodynamic-pharmacodynamic mechanism". Combined with specific examples of Epimedium and other Chinese herbal medicine processing mechanism, this paper also discusses the academic thoughts, research methods and key technologies of this research system, which will be conducive to systematically reveal the modem scientific connotation of traditional Chinese medicine processing, and enrich the theory of Chinese herbal medicine processing.

  11. Validation of an in vitro digestive system for studying macronutrient decomposition in humans.

    PubMed

    Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti

    2012-02-01

    The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.

  12. Efficient Genome Editing in Induced Pluripotent Stem Cells with Engineered Nucleases In Vitro.

    PubMed

    Termglinchan, Vittavat; Seeger, Timon; Chen, Caressa; Wu, Joseph C; Karakikes, Ioannis

    2017-01-01

    Precision genome engineering is rapidly advancing the application of the induced pluripotent stem cells (iPSCs) technology for in vitro disease modeling of cardiovascular diseases. Targeted genome editing using engineered nucleases is a powerful tool that allows for reverse genetics, genome engineering, and targeted transgene integration experiments to be performed in a precise and predictable manner. However, nuclease-mediated homologous recombination is an inefficient process. Herein, we describe the development of an optimized method combining site-specific nucleases and the piggyBac transposon system for "seamless" genome editing in pluripotent stem cells with high efficiency and fidelity in vitro.

  13. Enhanced efficacy of synergistic combinations of antimicrobial peptides with caspofungin versus Candida albicans in insect and murine models of systemic infection.

    PubMed

    MacCallum, D M; Desbois, A P; Coote, P J

    2013-08-01

    The objective of this study was to determine whether combinations of antimicrobial peptides (AMPs) with caspofungin display enhanced antifungal activity versus Candida albicans in vitro and in vivo. Three conventional AMPs that satisfied criteria favouring their potential development as novel antifungals were selected for investigation. Colistin sulphate was also included as a cyclic peptide antibiotic used in the clinic. Minimum inhibitory concentrations (MICs) were determined for each antifungal agent and checkerboard assays were used to determine fractional inhibitory concentration index (FICI) values for dual combinations of AMPs or colistin with caspofungin. Viability assays were performed for the same combinations in order to investigate fungicidal interactions. Synergistic antifungal combinations were then tested for efficacy in vivo and compared to monotherapies in wax moth larva and murine models of systemic C. albicans infection. In combination with caspofungin, each of the AMPs [hMUC7-12, DsS3(1-16), hLF(1-11)] and colistin were synergistic and candidacidal in vitro. The treatment of infected wax moth larvae with combinations of caspofungin with hMUC7-12, DsS3(1-16) or colistin resulted in significant enhancements in survival compared to treatment with monotherapies. Notably, the treatment of C. albicans-infected mice with a combination of caspofungin and DsS3(1-16) resulted in the enhancement of survival compared to groups treated with just the individual agents. This study demonstrates that combination therapies containing caspofungin and AMPs or colistin merit further development as potential novel treatments for C. albicans infections.

  14. Sex in a test tube: testing the benefits of in vitro recombination.

    PubMed

    Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M

    2016-10-19

    The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).

  15. Microbial ingrowth around single- and multi-component adhesives studied in vitro.

    PubMed

    Preussker, S; Klimm, W; Pöschmann, M; Koch, R

    2003-01-01

    The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel

  16. Delivery of risperidone from gels across porcine skin in vitro and in vivo in rabbits.

    PubMed

    Ning, Yuming; Chen, Xiaojin; Yu, Zhenwei; Liang, Wenquan; Li, Fanzhu

    2018-05-01

    The purpose of this study was to develop and evaluate a transdermal delivery system for RIS using hydrogels. First, the effects of different concentrations of hydroxypropyl methylcellulose and Carbomer 934 (CBR) on RIS permeation were investigated in porcine skin. The optimized formulation was chosen as the base gel to screen for penetration enhancers. The pharmacokinetics of the optimized RIS formulation was then studied in vitro in rabbits. A formulation with 0.5% CBR showed the highest RIS permeation and was selected as the base gel. RIS permeation was further increased by incorporation of Azone, lauryl alcohol, or menthol, and the enhancing effects of the three were dose-dependent. When each enhancer combined with propylene glycol (PG) a synergistic effect was found. A combination of 6% menthol and 6% PG exhibited highest RIS in vitro penetration rate and showed a high efficiency in vivo, with a relative bioavailability of 131.53% compared with intragastric administration. These findings showed that 1% RIS in 0.5% CBR, containing a combination of 6% menthol and 6% PG, can deliver doses of RIS that are therapeutically relevant for treating patients with schizophrenia.

  17. In vitro test systems supporting the development of improved pest control methods: a case study with chemical mixtures and bivalve biofoulers.

    PubMed

    Silva, Carlos; Nunes, Bruno; Nogueira, António Ja; Gonçalves, Fernando; Pereira, Joana L

    2016-11-01

    Using the bivalve macrofouler Corbicula fluminea, the suitability of in vitro testing as a stepping stone towards the improvement of control methods based on chemical mixtures was addressed in this study. In vitro cholinesterase (ChE) activity inhibition following single exposure of C. fluminea tissue to four model chemicals (the organophosphates dimethoate and dichlorvos, copper and sodium dodecyl phosphate [SDS]) was first assessed. Consequently, mixtures of dimethoate with copper and dichlorvos with SDS were tested and modelled; mixtures with ChE revealed synergistic interactions for both chemical pairs. These synergic combinations were subsequently validated in vivo and the increased control potential of these selected combinations was verified, with gains of up to 50% in C. fluminea mortality relative to corresponding single chemical treatments. Such consistency supports the suitability of using time- and cost-effective surrogate testing platforms to assist the development of biofouling control strategies incorporating mixtures.

  18. In vitro and in vivo studies of the combination of IGF1R inhibitor figitumumab (CP-751,871) with HER2 inhibitors trastuzumab and neratinib.

    PubMed

    Chakraborty, Ashok K; Zerillo, Cynthia; DiGiovanna, Michael P

    2015-08-01

    The insulin-like growth factor I receptor (IGF1R) has been linked to resistance to HER2-directed therapy with trastuzumab (Herceptin). We examined the anti-tumor activity of figitumumab (CP-751,871), a human monoclonal antibody that blocks IGF1R ligand binding, alone and in combination with the therapeutic anti-HER2 antibody trastuzumab and the pan-HER family tyrosine kinase inhibitor neratinib, using in vitro and in vivo breast cancer model systems. In vitro assays of proliferation, apoptosis, and signaling, and in vivo anti-tumor experiments were conducted in HER2-overexpressing (BT474) and HER2-normal (MCF7) models. We find single-agent activity of the HER2-targeting drugs but not figitumumab in the BT474 model, while the reverse is true in the MCF7 model. However, in both models, combining figitumumab with HER2-targeting drugs shows synergistic anti-proliferative and apoptosis-inducing effects, and optimum inhibition of downstream signaling. In murine xenograft models, synergistic anti-tumor effects were observed in the HER2-normal MCF7 model for the combination of figitumumab with trastuzumab, and, in the HER2-overexpressing BT474 model, enhanced anti-tumor effects were observed for the combination of figitumumab with either trastuzumab or neratinib. Analysis of tumor extracts from the in vivo experiments showed evidence of the most optimal inhibition of downstream signaling for the drug combinations over the single-agent therapies. These results suggest promise for such combinations in treating patients with breast cancer, and that, unlike the case for single-agent therapy, the therapeutic effects of such combinations may be independent of expression levels of the individual receptors or the single-agent activity profile.

  19. Houttuynia cordata extract increased systemic exposure and liver concentrations of metformin through OCTs and MATEs in rats.

    PubMed

    You, Byoung Hoon; Chin, Young-Won; Kim, Hojun; Choi, Han Seok; Choi, Young Hee

    2018-06-01

    The synergistic activity of Houttuynia cordata ethanol extract (HCT) and metformin combination in diabetic rats has been previously reported, but the fundamental causes remain unsolved. Organic cation transporters (OCTs) and multidrug and toxin extrusion proteins (MATEs) transport metformin to the liver and kidneys. Therefore, pharmacological activity and systemic exposure of metformin in HCT-metformin combination were determined from pharmacokinetic change and glucose-lowering activity using in vitro HEK-293 cells expressing human OCTs or human MATEs and in vivo rats. HCT inhibited human OCT2 and human MATE1-mediated metformin transports in vitro. In in vivo rats, treatment with HCT and metformin for 28 days in rats (28MH rats) reduced the rat Oct2-mediated renal excretion of metformin and thereby the increased systemic exposure of metformin compared with only metformin-treated rats for 28 days (28M rats). In 28MH rats, rat Oct1-mediated metformin uptake into the liver was enhanced, leading to an improved glucose-lowering effect without hypoglycaemia compared with 28M rats. There was no impairment of renal function in HCT and metformin treatments. These results suggest that HCT-metformin combination therapy is applicable in terms of efficacy and safety. Copyright © 2018 John Wiley & Sons, Ltd.

  20. Use of a combination of in vitro models to investigate the impact of chlorpyrifos and inulin on the intestinal microbiota and the permeability of the intestinal mucosa.

    PubMed

    Réquilé, Marina; Gonzàlez Alvarez, Dubàn O; Delanaud, Stéphane; Rhazi, Larbi; Bach, Véronique; Depeint, Flore; Khorsi-Cauet, Hafida

    2018-05-28

    Dietary exposure to the organophosphorothionate pesticide chlorpyrifos (CPF) has been linked to dysbiosis of the gut microbiota. We therefore sought to investigate whether (i) CPF's impact extends to the intestinal barrier and (ii) the prebiotic inulin could prevent such an effect. In vitro models mimicking the intestinal environment (the SHIME®) and the intestinal mucosa (Caco-2/TC7 cells) were exposed to CPF. After the SHIME® had been exposed to CPF and/or inulin, we assessed the system's bacterial and metabolic profiles. Extracts from the SHIME®'s colon reactors were then transferred to Caco-2/TC7 cultures, and epithelial barrier integrity and function were assessed. We found that inulin co-treatment partially reversed CPF-induced dysbiosis and increased short-chain fatty acid production in the SHIME®. Furthermore, co-treatment impacted tight junction gene expression and inhibited pro-inflammatory signaling in the Caco-2/TC7 intestinal cell line. Whereas, an isolated in vitro assessment of CPF and inulin effects provides useful information on the mechanism of dysbiosis, combining two in vitro models increases the in vivo relevance.

  1. The prediction of human skin responses by using the combined in vitro fluorescein leakage/Alamar Blue (resazurin) assay.

    PubMed

    Clothier, Richard; Starzec, Gemma; Pradel, Lionel; Baxter, Victoria; Jones, Melanie; Cox, Helen; Noble, Linda

    2002-01-01

    A range of cosmetics formulations with human patch-test data were supplied in a coded form, for the examination of the use of a combined in vitro permeability barrier assay and cell viability assay to generate, and then test, a prediction model for assessing potential human skin patch-test results. The target cells employed were of the Madin Darby canine kidney cell line, which establish tight junctions and adherens junctions able to restrict the permeability of sodium fluorescein across the barrier of the confluent cell layer. The prediction model for interpretation of the in vitro assay results included initial effects and the recovery profile over 72 hours. A set of the hand-wash, surfactant-based formulations were tested to generate the prediction model, and then six others were evaluated. The model system was then also evaluated with powder laundry detergents and hand moisturisers: their effects were predicted by the in vitro test system. The model was under-predictive for two of the ten hand-wash products. It was over-predictive for the moisturisers, (two out of six) and eight out of ten laundry powders. However, the in vivo human patch test data were variable, and 19 of the 26 predictions were correct or within 0.5 on the 0-4.0 scale used for the in vivo scores, i.e. within the same variable range reported for the repeat-test hand-wash in vivo data.

  2. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide.

    PubMed

    Castro, Pedro M; Baptista, Patrícia; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-05-22

    Oral administration of proteins and peptides still is a challenging task to overcome due to low permeability through absorptive epithelia, degradation and metabolism that lead to poor bioavailability. Attempting to overcome such limitations, an antihypertensive peptide derived from whey protein, with KGYGGVSLPEW sequence, was incorporated for the first time into polymeric nanoparticles. An experimental design was followed in order to optimize drug-loading, association efficiency, mean particle size, zeta-potential and polydispersity index of a formulation of poly(lactic-co-glycolic acid) (PLGA) nanoparticles as carriers for bioactive peptides. In sequence, peptide-loaded PLGA nanoparticles were incorporated in a guar-gum film matrix, resulting in a combined delivery system aiming to promote slow release and permeation across buccal epithelium. Neither PLGA nanoparticles, guar-gum films nor the conjugation of PLGA nanoparticles and guar-gum films (GfNp) significantly compromised in vitro TR146 human buccal carcinoma cell line viability after 12 h contact, as assessed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide reduction assay (MTT). In vitro release assay for developed formulations allowed to conclude that the combination of orodispersible film and nanoparticles granted a slower release of AhP when compared with PLGA or guar-gum films alone or with control. GfNp offered more effective, synergistic, in vitro permeation of TR146 cell multilayer in comparison with guar-gum films or PLGA nanoparticles alone. The combination of PLGA nanoparticles with guar-gum films represent a suitable alternative to conventional per os delivery systems, leading to an increased buccal permeability of carried antihypertensive peptide. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Self-assembly of proglycinin and hybrid proglycinin synthesized in vitro from cDNA

    PubMed Central

    Dickinson, Craig D.; Floener, Liliane A.; Lilley, Glenn G.; Nielsen, Niels C.

    1987-01-01

    An in vitro system was developed that results in the self-assembly of subunit precursors into complexes that resemble those found naturally in the endoplasmic reticulum. Subunits of glycinin, the predominant seed protein of soybeans, were synthesized from modified cDNAs using a combination of the SP6 transcription and the rabbit reticulocyte translation systems. Subunits produced from plasmid constructions that encoded either Gy4 or Gy5 gene products, but modified such that their signal sequences were absent, self-assembled into trimers equivalent in size to those precursors found in the endoplasmic reticulum. In contrast, proteins synthesized in vitro from Gy4 constructs failed to self-assemble when the signal sequence was left intact (e.g., preproglycinin) or when the coding sequence was modified to remove 27 amino acids from an internal hydrophobic region, which is highly conserved among the glycinin subunits. Various hybrid subunits were also produced by trading portions of Gy4 and Gy5 cDNAs and all self-assembled in our system. The in vitro assembly system provides an opportunity to study the self-assembly of precursors and to probe for regions important for assembly. It will also be helpful in attempts to engineer beneficial nutritional changes into this important food protein. Images PMID:16593868

  4. Human plasma-derived immunoglobulin G fractionated by an aqueous two-phase system, caprylic acid precipitation, and membrane chromatography has a high purity level and is free of detectable in vitro thrombogenic activity.

    PubMed

    Vargas, M; Segura, Á; Wu, Y-W; Herrera, M; Chou, M-L; Villalta, M; León, G; Burnouf, T

    2015-02-01

    Instituto Clodomiro Picado has developed an immunoglobulin G (IgG) plasma fractionation process combining a polyethylene glycol/phosphate aqueous two-phase system (ATPS), caprylic acid precipitation and anion-exchange membrane chromatography. We evaluated the purity and in vitro thrombogenicity of such IgG, in line with current international requirements. Contributions of the different production steps to reduce thrombogenicity were assessed at 0·2 l-scale, and then the methodology was scaled-up to a 10 l-scale and final products (n = 3) were analysed. Purity, immunoglobulin composition, and subclass distribution were determined by electrophoretic and immunochemical methods. The in vitro thrombogenic potential was determined by a thrombin generation assay (TGA) using a Technothrombin fluorogenic substrate. Prekallikrein activator (PKA), plasmin, factor Xa, thrombin and thrombin-like activities were assessed using S-2302, S-2251, S-2222, S-2238 and S-2288 chromogenic substrates, respectively, and FXI by an ELISA. The thrombogenicity markers were reduced mostly during the ATPS step and were found to segregate mostly into the discarded liquid upper phase. The caprylic acid precipitation eliminated the residual procoagulant activity. The IgG preparations made from the 10 l-batches contained 100% gamma proteins, low residual IgA and undetectable IgM. The IgG subclass distribution was not substantially affected by the process. TGA and amidolytic activities revealed an undetectable in vitro thrombogenic risk and the absence of proteolytic enzymes in the final product. Fractionating human plasma by an ATPS combined with caprylic acid and membrane chromatography resulted in an IgG preparation of high purity and free of a detectable in vitro thrombogenic risk. © 2014 International Society of Blood Transfusion.

  5. Culture and Drug Profiling of Patient Derived Malignant Pleural Effusions for Personalized Cancer Medicine.

    PubMed

    Ruiz, Christian; Kustermann, Stefan; Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I; Zippelius, Alfred; Roth, Adrian B; Bubendorf, Lukas

    2016-01-01

    The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.

  6. Effect of caffeine, caffeic acid and their various combinations on enzymes of cholinergic, monoaminergic and purinergic systems critical to neurodegeneration in rat brain-In vitro.

    PubMed

    Akomolafe, S F; Akinyemi, A J; Ogunsuyi, O B; Oyeleye, S I; Oboh, G; Adeoyo, O O; Allismith, Y R

    2017-09-01

    Caffeine and caffeic acid are two bioactive compounds that are present in plant foods and are major constituent of coffee, cocoa, tea, cola drinks and chocolate. Although not structurally related, caffeine and caffeic acid has been reported to elicit neuroprotective properties. However, their different proportional distribution in food sources and possible effect of such interactions are not often taken into consideration. Therefore, in this study, we investigated the effect of caffeine, caffeic acid and their various combinations on activities of some enzymes [acetylcholinesterase (AChE), monoamine oxidase (MAO) ecto-nucleoside triphosphate diphosphohydrolase (E-NTPase), ecto-5 1 -nucleotidase (E-NTDase) and Na + /K + ATPase relevant to neurodegeneration in vitro in rat brain. The stock concentration of caffeine and caffiec acid and their various proportional combinations were prepared and their interactions with the activities of these enzymes were assessed (in vitro) in different brain structures. The Fe 2+ and Cu 2+ chelating abilities of the samples were also investigated. The results revealed that caffeine, caffeic acid and their various combinations exhibited inhibitory effect on activities of AChE, MAO, E-NTPase and E-NTDase, but stimulatory effect on Na + /K + ATPase activity. The combinations also exhibited Fe 2+ and Cu 2+ chelating abilities. Considering the various combinations, a higher caffeine to caffeic acid ratio produced significantly highest enzyme modulatory effects; these were significantly lower to the effect of caffeine alone but significantly higher than the effect of caffeic acid alone. These findings may provide new insight into the effect of proportional combination of these bioactive compounds as obtained in many foods especially with respect to their neuroprotective effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. The Microphysiology Systems Database for Analyzing and Modeling Compound Interactions with Human and Animal Organ Models

    PubMed Central

    Vernetti, Lawrence; Bergenthal, Luke; Shun, Tong Ying; Taylor, D. Lansing

    2016-01-01

    Abstract Microfluidic human organ models, microphysiology systems (MPS), are currently being developed as predictive models of drug safety and efficacy in humans. To design and validate MPS as predictive of human safety liabilities requires safety data for a reference set of compounds, combined with in vitro data from the human organ models. To address this need, we have developed an internet database, the MPS database (MPS-Db), as a powerful platform for experimental design, data management, and analysis, and to combine experimental data with reference data, to enable computational modeling. The present study demonstrates the capability of the MPS-Db in early safety testing using a human liver MPS to relate the effects of tolcapone and entacapone in the in vitro model to human in vivo effects. These two compounds were chosen to be evaluated as a representative pair of marketed drugs because they are structurally similar, have the same target, and were found safe or had an acceptable risk in preclinical and clinical trials, yet tolcapone induced unacceptable levels of hepatotoxicity while entacapone was found to be safe. Results demonstrate the utility of the MPS-Db as an essential resource for relating in vitro organ model data to the multiple biochemical, preclinical, and clinical data sources on in vivo drug effects. PMID:28781990

  8. 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes.

    PubMed

    Stronati, L; Testa, A; Moquet, J; Edwards, A; Cordelli, E; Villani, P; Marino, C; Fresegna, A M; Appolloni, M; Lloyd, D

    2006-05-01

    The possibility of genotoxicity of radiofrequency radiation (RFR) applied alone or in combination with x-rays was investigated in vitro using several assays on human lymphocytes. The chosen specific absorption rate (SAR) values are near the upper limit of actual energy absorption in localized tissue when persons use some cellular telephones. The purpose of the combined exposures was to examine whether RFR might act epigenetically by reducing the fidelity of repair of DNA damage caused by a well-characterized and established mutagen. Blood specimens from 14 donors were exposed continuously for 24 h to a Global System for Mobile Communications (GSM) basic 935 MHz signal. The signal was applied at two SAR; 1 and 2 W/Kg, alone or combined with a 1-min exposure to 1.0 Gy of 250 kVp x-rays given immediately before or after the RFR. The assays employed were the alkaline comet technique to detect DNA strand breakage, metaphase analyses to detect unstable chromosomal aberrations and sister chromatid exchanges, micronuclei in cytokinesis-blocked binucleate lymphocytes and the nuclear division index to detect alterations in the speed of in vitro cell cycling. By comparison with appropriate sham-exposed and control samples, no effect of RFR alone could be found for any of the assay endpoints. In addition RFR did not modify any measured effects of the x-radiation. This study has used several standard in vitro tests for chromosomal and DNA damage in Go human lymphocytes exposed in vitro to a combination of x-rays and RFR. It has comprehensively examined whether a 24-h continuous exposure to a 935 MHz GSM basic signal delivering SAR of 1 or 2 W/Kg is genotoxic per se or whether, it can influence the genotoxicity of the well-established clastogenic agent; x-radiation. Within the experimental parameters of the study in all instances no effect from the RFR signal was observed.

  9. Antifungal Efficacy of an Intravenous Formulation Containing Monomeric Amphotericin B, 5-Fluorocytosine, and Saline for Sodium Supplementation

    PubMed Central

    Alvarez, Celeste; Andes, David R.; Kang, Jeong Yeon; Krug, Carmen; Kwon, Glen S.

    2017-01-01

    Purpose Amphotericin B (AmB) and 5-fluorocytosine (5-FC) exhibit additive to synergistic activity against systemic mycoses. Incompatibility of prescribed formulations precludes concomitant IV administration, a route with distinct advantages. Previously, we used PEG-DSPE micelles to produce a reformulation of Fungizone (AmB-SD), AmB solubilized by sodium deoxycholate, called mAmB-90. Herein, we describe a second reformulation that facilitates co-delivery of mAmB-90 and 5-FC, and evaluate the effect of PEG-DSPE micelles on the combination’s activity against Candida albicans. Methods We assessed the effect of 5-FC addition on the stability, in vitro toxicity, and antifungal efficacy of mAmB-90. The aggregation state and particle size of mAmB-90 combined with 5-FC (FmAmB-90) was evaluated over 48 hours. Hemolytic activity was measured in vitro. Antifungal activity was determined in vitro against C. albicans. The efficacy of monotherapy and combination treatment was evaluated in a neutropenic mouse model of disseminated candidiasis. Results The aggregation state, particle size, and hemolytic activity of mAmB-90 were unaffected by 5-FC. While antifungal activity was similar in vitro, mAmB-90 alone and combined with 5-FC was more potent than AmB-SD in vivo. Conclusions Short-term stability and in vivo efficacy of our formulation suggest potential to simultaneously deliver AmB and 5-FC for potent antifungal efficacy. PMID:28205003

  10. [Multiresistant Pseudomonas spp. in vitro susceptibility to a combination of two antibiotics].

    PubMed

    Pliego-Castañeda, Q F B Amanda; Yánez-Viguri, Jorge Antonio; López-Valle, Tiburcio

    2005-01-01

    In vitro antibiotic combination testing would guide therapy selection in patients severely affected by multi-drug resistant Pseudomonas. In vitro, a two-antibiotic combination susceptible against multi-drug resistant Pseudomonas isolated at the Laboratorio Clínico of the Hospital de Oncología, Centro Médico Nacional Siglo XXI in Mexico City were analyzed to determine which antibiotic combination showed the best bactericidal activity. During 10 months, 30 multi-drug resistant Pseudomonas strains were tested. An automated method was used, including a diluting solution with a well-known concentration of a second antibiotic. Quality controls recommended by the NCCLS were used. Pseudomonas aeruginosa ATCC 27853; Escherichia coli ATCC 25922; and Escherichia coli ATCC 35218. Combinations were betalactamics-aminoglycosides; carbapenemis-amikacin; fluoroquinolones-cefepime; and ciprofloxacin-ampicillin. Ampicillin-ciprofloxacin combination was bactericidal against 100% of the isolates. Cefazolin, cefixime and ticarcillin with amikacin: <50%; aztreonam, cefoxilin, cefuroxime, cefotaxime, ceftazidime and piperacillin with amikacin: 50-60%; cefepime with gentamicin: 76%; cefepime with amikacin: 86%; imipenem and meropenem with amikacin: 70% and 76%; cefepime with ciprofloxacin: 83%; cefepime with levofloxacin: 73%. In vitro antibiotic combination susceptibilities against multi-drug resistant bacteria would be the only way to guide clinicians to select the best therapy in severe infections. We found that the ampicillin-ciprofloxacin combination showed the best in vitro effect against multi-drug resistant Pseudomonas.

  11. Mathematical Modeling and Optimizing of in Vitro Hormonal Combination for G × N15 Vegetative Rootstock Proliferation Using Artificial Neural Network-Genetic Algorithm (ANN-GA)

    PubMed Central

    Arab, Mohammad M.; Yadollahi, Abbas; Ahmadi, Hamed; Eftekhari, Maliheh; Maleki, Masoud

    2017-01-01

    The efficiency of a hybrid systems method which combined artificial neural networks (ANNs) as a modeling tool and genetic algorithms (GAs) as an optimizing method for input variables used in ANN modeling was assessed. Hence, as a new technique, it was applied for the prediction and optimization of the plant hormones concentrations and combinations for in vitro proliferation of Garnem (G × N15) rootstock as a case study. Optimizing hormones combination was surveyed by modeling the effects of various concentrations of cytokinin–auxin, i.e., BAP, KIN, TDZ, IBA, and NAA combinations (inputs) on four growth parameters (outputs), i.e., micro-shoots number per explant, length of micro-shoots, developed callus weight (CW) and the quality index (QI) of plantlets. Calculation of statistical values such as R2 (coefficient of determination) related to the accuracy of ANN-GA models showed a considerably higher prediction accuracy for ANN models, i.e., micro-shoots number: R2 = 0.81, length of micro-shoots: R2 = 0.87, CW: R2 = 0.88, QI: R2 = 0.87. According to the results, among the input variables, BAP (19.3), KIN (9.64), and IBA (2.63) showed the highest values of variable sensitivity ratio for proliferation rate. The GA showed that media containing 1.02 mg/l BAP in combination with 0.098 mg/l IBA could lead to the optimal proliferation rate (10.53) for G × N15 rootstock. Another objective of the present study was to compare the performance of predicted and optimized cytokinin–auxin combination with the best optimized obtained concentrations of our other experiments. Considering three growth parameters (length of micro-shoots, micro-shoots number, and proliferation rate), the last treatment was found to be superior to the rest of treatments for G × N15 rootstock in vitro multiplication. Very little difference between the ANN predicted and experimental data confirmed high capability of ANN-GA method in predicting new optimized protocols for plant in vitro propagation. PMID:29163583

  12. Antibacterial efficacy and drug-induced tooth discolouration of antibiotic combinations for endodontic regenerative procedures.

    PubMed

    Mandras, N; Roana, J; Allizond, V; Pasqualini, D; Crosasso, P; Burlando, M; Banche, G; Denisova, T; Berutti, E; Cuffini, A M

    2013-01-01

    Elimination of microbial contamination from the root canal system is a precondition for successful root canal treatment. Teeth with immature root development, necrotic pulps and apical periodontitis present multiple challenges for successful treatment. Disinfection is achieved by irrigation followed by the placement of an intracanal medicament. A mixture of ciprofloxacin, metronidazole and minocycline (3-MIX S) has been shown to be very effective in eliminating endodontic pathogens in vitro and in vivo. Among the components of the mixture, minocycline can induce tooth discolouration after long-term oral use. Therefore, the elimination of minocycline from the above-mentioned combination has been suggested to prevent the occasion of this undesirable effect. The aim of this study was to investigate the potential antimicrobial efficacy of alternative antibiotic combinations [3-MIX C (clarithromycin); 3-MIX F (fosfomycin)] against bacteria from infected root canals. An additional objective was to evaluate their discolouration potential as possible alternatives to minocycline-based intracanal medicaments. Our in vitro results clearly demonstrated that 3-MIX C and 3-MIX F had a greater antimicrobial activity than 3-MIX S, underlying that clarithromycin still had a higher capacity to kill endodontic pathogens in vitro compared to fosfomycin. Both 3-MIX C and 3-MIX F were able to avoid the permanent staining effect of the crown.

  13. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret.

    PubMed

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N -trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs.

  14. Promotion of the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles combined with polypropylene electret

    PubMed Central

    Tu, Ye; Wang, Xinxia; Lu, Ying; Zhang, He; Yu, Yuan; Chen, Yan; Liu, Junjie; Sun, Zhiguo; Cui, Lili; Gao, Jing; Zhong, Yanqiang

    2016-01-01

    We recently reported that electret, which was prepared by a corona charging system with polypropylene film, could enhance the transdermal delivery of several drugs of low molecular weight. The aim of this study was to investigate whether electret could enhance the transdermal delivery of protein drugs by N-trimethyl chitosan nanoparticles (TMC NPs) prepared by an ionic gelation method. A series of experiments were performed, including in vitro skin permeation assays and anti-inflammatory effects, to evaluate the transdermal delivery of protein drugs by TMC NPs in the presence of electret. The results showed that in the presence of electret, the transdermal delivery of protein drugs in TMC NPs was significantly enhanced, as demonstrated by in vitro permeation studies and confocal laser scanning microscopy. Notably, superoxide dismutase-loaded TMC NPs combined with electret exhibited the best inhibitory effect on the edema of the mouse ear. TMC NPs combined with electret represent a novel platform for the transdermal delivery of protein drugs. PMID:27822034

  15. Interaction Between Domperidone and Ketoconazole: Toward Prediction of Consequent QTc Prolongation Using Purely In Vitro Information

    PubMed Central

    Mishra, H; Polak, S; Jamei, M; Rostami-Hodjegan, A

    2014-01-01

    We aimed to investigate the application of combined mechanistic pharmacokinetic (PK) and pharmacodynamic (PD) modeling and simulation in predicting the domperidone (DOM) triggered pseudo-electrocardiogram modification in the presence of a CYP3A inhibitor, ketoconazole (KETO), using in vitro–in vivo extrapolation. In vitro metabolic and inhibitory data were incorporated into physiologically based pharmacokinetic (PBPK) models within Simcyp to simulate time course of plasma DOM and KETO concentrations when administered alone or in combination with KETO (DOM+KETO). Simulated DOM concentrations in plasma were used to predict changes in gender-specific QTcF (Fridericia correction) intervals within the Cardiac Safety Simulator platform taking into consideration DOM, KETO, and DOM+KETO triggered inhibition of multiple ionic currents in population. Combination of in vitro–in vivo extrapolation, PBPK, and systems pharmacology of electric currents in the heart was able to predict the direction and magnitude of PK and PD changes under coadministration of the two drugs although some disparities were detected. PMID:25116274

  16. Combining Toxicological and Chemical Characterization of Complex Mixtures to Understand the Impact of the Unknown Fraction

    EPA Science Inventory

    Toxicological assessment of adverse health outcomes associated with exposure to complex mixtures provides an integrated response of the organism (or in vitro test system) that accounts for additivity among the components (both dose and response) as well as any greater than or les...

  17. A bioactive implant in situ and long-term releases combined drugs for treatment of osteoarticular tuberculosis.

    PubMed

    Zhou, Chao-Xi; Li, Litao; Ma, Yi-Guang; Li, Bing-Nan; Li, Guang; Zhou, Zhihang; Shi, Feng; Weng, Jie; Zhang, Cong; Wang, Fenghua; Cui, Xu; Wang, Lei; Wang, Hao

    2018-05-24

    Anti-tuberculosis chemotherapy with a long duration and adequate dosing is the mainstay for treatment of osteoarticular tuberculosis (TB). However, it is difficult for systemic administration to reach adequate local drug concentrations and achieve effective treatment. Herein, a hydroxyapatite (HA) scaffold implant combined with a drug-releasing system was designed to achieve in situ and long-term anti-TB drug release and highly efficient therapeutic activity in vitro and in vivo. The clinical anti-TB drugs hydrophilic isoniazid (INH) and hydrophobic rifampicin (RFP) were molecularly dispersed into polyvinyl alcohol (PVA) through immersion-curing techniques and were steadily adhered onto the surfaces of HA scaffolds (HA-drug@PVA). The HA-drug@PVA scaffolds showed a long-term, sustained drug release profile and killed proliferating Mycobacteriumin vitro. In vivo experimental results revealed that the HA-drug@PVA scaffolds provided over 10- and 100-fold higher concentrations in muscles and bones, respectively, as well as a much lower concentration (<0.025) in blood. Furthermore, the HA-drug@PVA scaffold implanted in an osteoarticular TB rabbit model showed obvious bone regeneration and fusion due to the inhibition of TB-associated inflammatory changes. The excellent therapeutic effects indicate that in situ implant materials combined with a long-term drug release system are promising for the treatment of osteoarticular TB and other osteoarticular infections. Copyright © 2018. Published by Elsevier Ltd.

  18. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  19. In vitro antibacterial effect of fosfomycin combination therapy against colistin-resistant Klebsiella pneumoniae.

    PubMed

    Yu, Wei; Luo, Qixia; Shi, Qingyi; Huang, Chen; Yu, Xiao; Niu, Tianshui; Zhou, Kai; Zhang, Jiajie; Xiao, Yonghong

    2018-01-01

    Colistin is still a "last-resort" antibiotic used to manage human infections due to multidrug-resistant (MDR) Klebsiella pneumoniae . However, colistin-resistant K. pneumoniae (CR-Kp) isolates emerged a decade ago and had a worldwide distribution. The purpose of this study was to evaluate the genetic data of CR-Kp and identify the antibacterial activity of fosfomycin (FM) alone and in combination with amikacin (AMK) or colistin (COL) against CR-Kp in vitro. Three clinical CR-Kp isolates from three patients were collected. Whole-genome sequencing and bioinformatics analysis were performed. The Pharmacokinetics Auto Simulation System 400, by simulating human pharmacokinetics in vitro, was employed to simulate FM, AMK, and COL alone and in combination. Different pharmacodynamic parameters were calculated for determining the antimicrobial effect. Whole-genome sequencing revealed that none of the three isolates contain mcr gene and that no insertion was found in pmrAB , phoPQ , or mgrB genes. We found the antibacterial activity of AMK alone was more efficient than FM or COL against CR-Kp. The area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was higher than 170 LogCFU/mL·h -1 . In addition, the area between the control growth and antibacterial killing curves of FM (8 g every 8 hours) combined with COL (75,000 IU/kg every12 hours) was higher than that of monotherapies (>100 LogCFU/mL·h -1 vs <80 LogCFU/mL·h -1 ). FM (8 g every 8 hours) combined with AMK (15 mg/kg once daily) was effective at maximizing bacterial killing against CR-Kp.

  20. Use of estetrol with other steroids for attenuation of neonatal hypoxic-ischemic brain injury: to combine or not to combine?

    PubMed

    Tskitishvili, Ekaterine; Pequeux, Christel; Munaut, Carine; Viellevoye, Renaud; Nisolle, Michelle; Noël, Agnes; Foidart, Jean-Michel

    2016-06-07

    Estetrol (E4), estradiol (E2) and progesterone (P4) have important antioxidative and neuroprotective effects in neuronal system. We aimed to study the consequence of combined steroid therapy in neonatal hypoxic-ischemic encephalopathy (HIE). In vitro the effect of E4 combined with other steroids on oxidative stress and the cell viability in primary hippocampal cultures was evaluated by lactate dehydrogenase and cell survival assays. In vivo neuroprotective and therapeutic efficacy of E4 combined with other steroids was studied in HIE model of immature rats. The rat pups rectal temperature, body and brain weights were evaluated.The hippocampus and the cortex were investigated by histo/immunohistochemistry: intact cell number counting, expressions of markers for early gray matter lose, neuro- and angiogenesis were studied. Glial fibrillary acidic protein was evaluated by ELISA in blood samples. In vitro E4 and combinations of high doses of E4 with P4 and/or E2 significantly diminished the LDH activity and upregulated the cell survival.In vivopretreatment or treatment by different combinations of E4 with other steroids had unalike effects on body and brain weight, neuro- and angiogenesis, and GFAP expression in blood. The combined use of E4 with other steroids has no benefit over the single use of E4.

  1. In-Vitro Approaches for Studying Blast-Induced Traumatic Brain Injury

    PubMed Central

    Chen, Yung Chia; Smith, Douglas H.

    2009-01-01

    Abstract Traumatic brain injury caused by explosive or blast events is currently divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct, and can be modeled in both in-vivo and in-vitro systems. The purpose of this review is to consider the mechanical phases of bTBI, how these phases are reproduced with in-vitro models, and to review findings from these models to assess how each phase of bTBI can be examined in more detail. Highlighted are some important gaps in the literature that may be addressed in the future to better identify the exact contributing mechanisms for bTBI. These in-vitro models, viewed in combination with in-vivo models and clinical studies, can be used to assess both the mechanisms and possible treatments for this type of trauma. PMID:19397424

  2. Urea plus nitrate pretreatment of rice and wheat straws enhances degradation and reduces methane production in in vitro ruminal culture.

    PubMed

    Zhang, Xiumin; Wang, Min; Wang, Rong; Ma, Zhiyuan; Long, Donglei; Mao, Hongxiang; Wen, Jiangnan; Bernard, Lukuyu A; Beauchemin, Karen A; Tan, Zhiliang

    2018-04-10

    Urea pretreatment of straw damages fiber structure, while nitrate supplementation of ruminal diets inhibits enteric methane production. The study examined the combined effects of these treatments on ruminal substrate biodegradation and methane production using an in vitro incubation system. Rice and wheat straws were pretreated with urea (40 g kg -1 straw dry matter, DM) and urea + ammonium nitrate (34 + 6 g kg -1 dry matter (DM), respectively), and each straw (control, urea, urea+nitrate) was used in batch culture incubations in three replications (runs). Urea pretreatment increased (P < 0.05) neutral-detergent solubles (NDS) content (+17%) and in vitro DM degradation of rice straw, in comparison with control. Urea+nitrate pretreatment of rice and wheat straws had higher (P < 0.05) NDS content, in vitro DM degradation and propionate molar proportion, and lower (P < 0.05) acetate:propionate ratio and lower methane production with a decline of methanogens, in comparison to control. Urea+nitrate pretreatment combines positive effects of urea pretreatment and nitrate supplementation, and can be a potential strategy to improve ruminal biodegradation, facilitate propionate production and reduce methane production from lignified straws. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  3. Towards toxicokinetic modelling of aluminium exposure from adjuvants in medicinal products.

    PubMed

    Weisser, Karin; Stübler, Sabine; Matheis, Walter; Huisinga, Wilhelm

    2017-08-01

    As a potentially toxic agent on nervous system and bone, the safety of aluminium exposure from adjuvants in vaccines and subcutaneous immune therapy (SCIT) products has to be continuously re-evaluated, especially regarding concomitant administrations. For this purpose, knowledge on absorption and disposition of aluminium in plasma and tissues is essential. Pharmacokinetic data after vaccination in humans, however, are not available, and for methodological and ethical reasons difficult to obtain. To overcome these limitations, we discuss the possibility of an in vitro-in silico approach combining a toxicokinetic model for aluminium disposition with biorelevant kinetic absorption parameters from adjuvants. We critically review available kinetic aluminium-26 data for model building and, on the basis of a reparameterized toxicokinetic model (Nolte et al., 2001), we identify main modelling gaps. The potential of in vitro dissolution experiments for the prediction of intramuscular absorption kinetics of aluminium after vaccination is explored. It becomes apparent that there is need for detailed in vitro dissolution and in vivo absorption data to establish an in vitro-in vivo correlation (IVIVC) for aluminium adjuvants. We conclude that a combination of new experimental data and further refinement of the Nolte model has the potential to fill a gap in aluminium risk assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Neuromuscular junction in a microfluidic device.

    PubMed

    Park, Hyun Sung; Liu, Su; McDonald, John; Thakor, Nitish; Yang, In Hong

    2013-01-01

    Malfunctions at the site of neuromuscular junction (NMJ) of post-injuries or diseases are major barriers to recovery of function. The ability to efficiently derive motor neurons (MN) from embryonic stem cells has indicated promise toward the development of new therapies in increasing functional outcomes post injury. Recent advances in micro-technologies have provided advanced culture platforms allowing compartmentalization of sub-cellular components of neurons. In this study, we combined these advances in science and technology to develop a compartmentalized in vitro NMJ model. The developed NMJ system is between mouse embryonic stem cell (mESC)-derived MNs and c2c12 myotubes cultured in a compartmentalized polydimethylsiloxane (PDMS) microfluidic device. While some functional in vitro NMJ systems have been reported, this system would further contribute to research in NMJ-related diseases by providing a system to study the site of action of NMJ aimed at improving promoting better functional recovery.

  5. In vivo and in vitro characterization of σ70 constitutive promoters by real-time PCR and fluorescent measurements.

    PubMed

    Chappell, James; Freemont, Paul

    2013-01-01

    The characterization of DNA regulatory elements such as ribosome binding sites and transcriptional promoters is a fundamental aim of synthetic biology. Characterization of such DNA regulatory elements by monitoring the synthesis of fluorescent proteins is a commonly used technique to resolve the relative or absolute strengths. These measurements can be used in combination with mathematical models and computer simulation to rapidly assess performance of DNA regulatory elements both in isolation and in combination, to assist predictable and efficient engineering of complex novel biological devices and systems. Here we describe the construction and relative characterization of Escherichia coli (E. coli) σ(70) transcriptional promoters by monitoring the synthesis of green fluorescent protein (GFP) both in vivo in E. coli and in vitro in a E. coli cell-free transcription and translation reaction.

  6. Synthetic Biology for Cell-Free Biosynthesis: Fundamentals of Designing Novel In Vitro Multi-Enzyme Reaction Networks.

    PubMed

    Morgado, Gaspar; Gerngross, Daniel; Roberts, Tania M; Panke, Sven

    Cell-free biosynthesis in the form of in vitro multi-enzyme reaction networks or enzyme cascade reactions emerges as a promising tool to carry out complex catalysis in one-step, one-vessel settings. It combines the advantages of well-established in vitro biocatalysis with the power of multi-step in vivo pathways. Such cascades have been successfully applied to the synthesis of fine and bulk chemicals, monomers and complex polymers of chemical importance, and energy molecules from renewable resources as well as electricity. The scale of these initial attempts remains small, suggesting that more robust control of such systems and more efficient optimization are currently major bottlenecks. To this end, the very nature of enzyme cascade reactions as multi-membered systems requires novel approaches for implementation and optimization, some of which can be obtained from in vivo disciplines (such as pathway refactoring and DNA assembly), and some of which can be built on the unique, cell-free properties of cascade reactions (such as easy analytical access to all system intermediates to facilitate modeling).

  7. Evaluation of trimethoprim-sulfamethoxazole based combination therapy against Stenotrophomonas maltophilia: in vitro effects and clinical efficacy in cancer patients.

    PubMed

    Araoka, Hideki; Baba, Masaru; Okada, Chikako; Abe, Masahiro; Kimura, Muneyoshi; Yoneyama, Akiko

    2017-05-01

    The aim of this study was to evaluate the in vitro effects and clinical efficacies of trimethoprim-sulfamethoxazole (SXT) combined with other antimicrobial agents against Stenotrophomonas maltophilia. In vitro analysis was conducted on 89 S. maltophilia strains isolated from blood and the respiratory tract between June 2012 and October 2014. Levofloxacin (LVX), ticarcillin-clavulanic acid (TIM), and minocycline (MIN) were selected for an examination of their effects when individually combined with SXT by the checkerboard method. In addition, 29 S. maltophilia bacteremia cases were reviewed and the clinical efficacies of SXT-based combination therapies were analyzed. SXT+LVX showed synergy in 21, no interactions in 61, and antagonism in 7. SXT+TIM showed synergy in 71, and no interactions in 18. SXT+MIN showed synergy in 10, and no interactions in 79. The review of clinical data indicated that a combination of SXT+fluoroquinolone was not associated with improved prognosis compared with monotherapy. The in vitro data indicated that SXT+TIM had beneficial microbiological effects and was not antagonistic. Our in vitro and clinical data analyses do not support the routine use of SXT+fluoroquinolone combination therapy for S. maltophilia infection. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Combination Anticancer Nanopreparations of Novel Proapoptotic Drug, TRAIL and siRNA

    NASA Astrophysics Data System (ADS)

    Riehle, Robert D.

    Development of drugs for the treatment of cancer is a challenging endeavor often hindered by the solubility and distribution of the drug in the body. Drug delivery systems have been used for many years to overcome these issues. Polyethylene glycol-phosphatidylethanolamine (PEG-PE) micelles in particular have shown utility as a nanosized drug delivery vehicle capable of incorporating poorly soluble drugs and preferentially delivering them to the tumor. Addition of PEG polymers to the surface prolongs the half-life of the particle in the blood by evading clearance by the reticuloendothelial system (RES) and increases tumor accumulation through the utilization of the enhanced permeability and retention (EPR) effect. Micelles have also been shown to successfully incorporate and protect modified siRNA, a notoriously challenging therapeutic to deliver. Additionally, co-delivery of multiple therapeutics in multifunctional micelles has emerged as an important area in combination therapy research. The main goal of this project was to develop a multifunctional PEG-PE micellar delivery system capable of delivering multiple therapeutics for increased anti-tumor activity. Previous studies have indicated the utility of a DM-PIT-1, a member of a class of novel PIP3-PH inhibitors, and its potential in the treatment of cancer. The PIP3-kinase (PI3K) pathway has been shown to have serious implications in cancer. Inhibiting this pathway has been shown to sensitize the cell to apoptosis. A second generation of more potent and druggable compounds has been developed based on the structure of DM- PIT-1. However, it has been difficult to develop successful compounds inhibiting PIP3 signaling while maintaining the physicochemical properties necessary for an effective drug. Many of these compounds are limited by their poor solubility and rapid clearance in vivo. Incorporating these compounds into PEG-PE micelles allows for increased solubility, prolonged half-life and tumor accumulation. The addition of TNFa-related apoptosis-inducing ligand (TRAIL) bound to the surface of the micelle creates a combination micelle with excellent cytotoxic effects. TRAIL has been shown to be an effective apoptosis inducing ligand in a variety of in vitro and in vivo studies. TRAIL receptors are preferentially expressed on many cancer cell types as compared to healthy cells making this ligand an intriguing potential therapy. The combination of TRAIL and PIP3-PH inhibitors in a micellar delivery system has the potential to create a powerful anti-cancer therapeutic. Including modified siRNA to down regulate cancer defense mechanisms can further sensitize the cell to apoptosis. siRNA delivery has been shown to be a difficult task. Rapid metabolism and clearance in the blood hinders their ability to reach the tumor. Additionally, their large size and negative charge prevents them from crossing the cell membrane to reach their location of action. Reversibly conjugating a modified siRNA to a lipid thereby creating an siRNA-S-S-PE, allows for their incorporation into PEG-PE micelles. These mixed micelles have been shown to protect the siRNA and successfully transfect cells. This study aimed to combine the aforementioned therapeutics into a multifunctional PEG-PE based micelle delivery system. Novel proapoptotic drugs targeting the PIP3-PH binding domain have been successfully incorporated into the lipid core of the micelle. These drugs were able to effectively sensitize the cell to the effects of surface-bound TRAIL. Additionally, siRNA targeting the anti-apoptotic protein survivin was shown to be incorporated into the micelles and further sensitize the tumor to the effects of the above compounds. Lastly, conjugating transferrin (TF) to the surface of the micelle was shown increase the tumor cell targeting and cytotoxicity in vitro. Critical evaluation of this system was performed along the following specific aims: (1) characterization of PIP3-PH inhibition and cytotoxicity of proapoptotic drug DM-PIT-1 and its novel analogs in vitro with and without TRAIL; (2) preparation and characterization of TRAIL-modified micelles loaded with DM-PIT-1 or its analogs; (3) evaluation of in vitro cytotoxicity of combination formulations across a range of tumor cell types; (4) characterization of TF-modified micelles targeting potential and their effects on cytotoxicity in vitro; (5) formulation and characterization of siRNA-S-S-PE mixed micelles and evaluation of gene silencing in vitro and in vivo; (6) evaluation of combination micelles as a multifunctional delivery system utilizing in vivo mouse models of human cancer.

  9. Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk.

    PubMed

    Garlíková, Zuzana; Silva, Ana Catarina; Rabata, Anas; Potěšil, David; Ihnatová, Ivana; Dumková, Jana; Koledová, Zuzana; Zdráhal, Zbyněk; Vinarský, Vladimír; Hampl, Aleš; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos

    2018-01-01

    Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.

  10. Keratomycosis due to Tintelnotia destructans refractory to common therapy treated successfully with systemic and local terbinafine in combination with polyhexamethylene biguanide.

    PubMed

    Behrens-Baumann, Wolfgang J; Hofmüller, Wolfram; Tammer, Ina; Tintelnot, Kathrin

    2018-04-28

    To report on a wearer of rigid gas-permeable contact lenses with a keratomycosis due to Tintelnotia-a new genus of Phaeosphaeriaceae-treated with terbinafine and polyhexamethylene biguanide. Chart review of a patient with fungal keratitis treated additionally with systemic and topical terbinafine 0.25% after symptoms increased under conventional antimycotic therapy with voriconazole. Antifungal susceptibility had been tested in vitro. After starting an additional treatment with systemic and topical terbinafine, the severe corneal infection was sufficiently resolved. The drug was well tolerated without any neurological, dermatological or gastroenterological problems. Terbinafine revealed a marked in vitro antifungal activity of 0.12 µg/ml. The fungus was identified as Tintelnotia destructans. Terbinafine might be considered as a therapeutic option in severe cases of fungal keratitis refractory to common antifungal therapy.

  11. Thicker three-dimensional tissue from a "symbiotic recycling system" combining mammalian cells and algae.

    PubMed

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-31

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro "symbiotic recycling system" composed of mammalian cells and algae.

  12. Fabrication of core-shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics.

    PubMed

    Shoba, Ekambaram; Lakra, Rachita; Syamala Kiran, Manikantan; Korrapati, Purna Sai

    2017-06-05

    The physiological and pathological complexity of the wound healing process makes it more challenging to design an ideal tissue regeneration scaffold. Precise scaffolding with high drug loading efficiency, efficient intracellular efficacy for therapeutic delivery, minimal nonspecific cellular and blood protein binding, and maximum biocompatibility forms the basis for an ideal delivery system. This paper describes a combinational multiphasic delivery system, where biomolecules are delivered through the fabrication of coaxial electrospinning of different biocompatible polymers. The ratio and specificity of polymers for specific biofunction are optimized and the delivery system is completely characterized with reference to the mechanical property and structural integrity of bromelain (debridement enzyme) and salvianolic acid B (pro-angiogenesis and re-epithelialization). The in vitro release profile illustrated the sustained release of debriding protease and bioactive component in a timely fashion. The fabricated scaffold showed angiogenic potential through in vitro migration of endothelial cells and increased new capillaries from the existing blood vessel in response to an in ovo chicken chorioallantoic membrane assay. In addition, in vivo studies confirm the efficacy of the fabricated scaffold. Our results therefore open up a new avenue for designing a bioactive combinational multiphasic delivery system to enhance wound healing.

  13. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    PubMed

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  14. A co-culture device with a tunable stiffness to understand combinatorial cell-cell and cell-matrix interactions.

    PubMed

    Rao, Nikhil; Grover, Gregory N; Vincent, Ludovic G; Evans, Samantha C; Choi, Yu Suk; Spencer, Katrina H; Hui, Elliot E; Engler, Adam J; Christman, Karen L

    2013-11-01

    Cell behavior on 2-D in vitro cultures is continually being improved to better mimic in vivo physiological conditions by combining niche cues including multiple cell types and substrate stiffness, which are well known to impact cell phenotype. However, no system exists in which a user can systematically examine cell behavior on a substrate with a specific stiffness (elastic modulus) in culture with a different cell type, while maintaining distinct cell populations. We demonstrate the modification of a silicon reconfigurable co-culture system with a covalently linked hydrogel of user-defined stiffness. This device allows the user to control whether two separate cell populations are in contact with each other or only experience paracrine interactions on substrates of controllable stiffness. To illustrate the utility of this device, we examined the role of substrate stiffness combined with myoblast co-culture on adipose derived stem cell (ASC) differentiation and found that the presence of myoblasts and a 10 kPa substrate stiffness increased ASC myogenesis versus co-culture on stiff substrates. As this example highlights, this technology better controls the in vitro microenvironment, allowing the user to develop a more thorough understanding of the combined effects of cell-cell and cell-matrix interactions.

  15. Modeling Effects of RNA on Capsid Assembly Pathways via Coarse-Grained Stochastic Simulation

    PubMed Central

    Smith, Gregory R.; Xie, Lu; Schwartz, Russell

    2016-01-01

    The environment of a living cell is vastly different from that of an in vitro reaction system, an issue that presents great challenges to the use of in vitro models, or computer simulations based on them, for understanding biochemistry in vivo. Virus capsids make an excellent model system for such questions because they typically have few distinct components, making them amenable to in vitro and modeling studies, yet their assembly can involve complex networks of possible reactions that cannot be resolved in detail by any current experimental technology. We previously fit kinetic simulation parameters to bulk in vitro assembly data to yield a close match between simulated and real data, and then used the simulations to study features of assembly that cannot be monitored experimentally. The present work seeks to project how assembly in these simulations fit to in vitro data would be altered by computationally adding features of the cellular environment to the system, specifically the presence of nucleic acid about which many capsids assemble. The major challenge of such work is computational: simulating fine-scale assembly pathways on the scale and in the parameter domains of real viruses is far too computationally costly to allow for explicit models of nucleic acid interaction. We bypass that limitation by applying analytical models of nucleic acid effects to adjust kinetic rate parameters learned from in vitro data to see how these adjustments, singly or in combination, might affect fine-scale assembly progress. The resulting simulations exhibit surprising behavioral complexity, with distinct effects often acting synergistically to drive efficient assembly and alter pathways relative to the in vitro model. The work demonstrates how computer simulations can help us understand how assembly might differ between the in vitro and in vivo environments and what features of the cellular environment account for these differences. PMID:27244559

  16. All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation.

    PubMed

    Paluch-Siegler, Shir; Mayblum, Tom; Dana, Hod; Brosh, Inbar; Gefen, Inna; Shoham, Shy

    2015-07-01

    Our understanding of neural information processing could potentially be advanced by combining flexible three-dimensional (3-D) neuroimaging and stimulation. Recent developments in optogenetics suggest that neurophotonic approaches are in principle highly suited for noncontact stimulation of network activity patterns. In particular, two-photon holographic optical neural stimulation (2P-HONS) has emerged as a leading approach for multisite 3-D excitation, and combining it with temporal focusing (TF) further enables axially confined yet spatially extended light patterns. Here, we study key steps toward bidirectional cell-targeted 3-D interfacing by introducing and testing a hybrid new 2P-TF-HONS stimulation path for accurate parallel optogenetic excitation into a recently developed hybrid multiphoton 3-D imaging system. The system is shown to allow targeted all-optical probing of in vitro cortical networks expressing channelrhodopsin-2 using a regeneratively amplified femtosecond laser source tuned to 905 nm. These developments further advance a prospective new tool for studying and achieving distributed control over 3-D neuronal circuits both in vitro and in vivo.

  17. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    PubMed

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Collagen-based brain microvasculature model in vitro using three-dimensional printed template

    PubMed Central

    Kim, Jeong Ah; Kim, Hong Nam; Im, Sun-Kyoung; Chung, Seok

    2015-01-01

    We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. PMID:25945141

  19. Anti-tumor effect of cisplatin in human oral squamous cell carcinoma was enhanced by andrographolide via upregulation of phospho-p53 in vitro and in vivo.

    PubMed

    Chen, Songjie; Hu, Hui; Miao, Shushu; Zheng, Jiayong; Xie, Zhijian; Zhao, Hui

    2017-05-01

    Oral squamous cell carcinoma is one of the most common neoplasm in the world. Despite the improvements in diagnosis and treatment, the outcome is still poor now. Thus, the development of novel therapeuticapproaches is needed. The aim of this study is to assess the synergistic anti-tumor effect of andrographolide with cisplatin (DDP) in oral squamous cell carcinoma CAL-27 cells in vitro and in vivo. We performed Cell Counting Kit-8 proliferation assay, apoptosis assay, and western blotting on CAL-27 cells treated with andrographolide, DDP or the combination in vitro. In vivo, we also treated CAL-27 xenografts with andrographolide or the combination, and performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling assay and immunohistochemical analysis of Ki-67. The results showed the combination of andrographolide and DDP synergistically inhibited CAL-27 cell proliferation in vitro and caused tumor regression in vivo in the CAL-27 xenografts. In addition, the synergistic anti-tumor effect of andrographolide with synergistic was due to an enhanced apoptosis. Moreover, the combination therapy upregulated the expression level of p-p53 in vitro and decreased Ki-67 expression in vivo. Our data indicate that the combination treatment of andrographolide and DDP results in synergistic anti-tumor growth activity against oral squamous cell carcinoma CAL-27 in vitro and in vivo. These results demonstrated that combination of andrographolide with DDP was likely to represent a potential therapeutic strategy for oral squamous cell carcinoma.

  20. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly.

    PubMed

    Kumar, M Senthil; Schwartz, Russell

    2010-12-09

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  1. A parameter estimation technique for stochastic self-assembly systems and its application to human papillomavirus self-assembly

    NASA Astrophysics Data System (ADS)

    Senthil Kumar, M.; Schwartz, Russell

    2010-12-01

    Virus capsid assembly has been a key model system for studies of complex self-assembly but it does pose some significant challenges for modeling studies. One important limitation is the difficulty of determining accurate rate parameters. The large size and rapid assembly of typical viruses make it infeasible to directly measure coat protein binding rates or deduce them from the relatively indirect experimental measures available. In this work, we develop a computational strategy to deduce coat-coat binding rate parameters for viral capsid assembly systems by fitting stochastic simulation trajectories to experimental measures of assembly progress. Our method combines quadratic response surface and quasi-gradient descent approximations to deal with the high computational cost of simulations, stochastic noise in simulation trajectories and limitations of the available experimental data. The approach is demonstrated on a light scattering trajectory for a human papillomavirus (HPV) in vitro assembly system, showing that the method can provide rate parameters that produce accurate curve fits and are in good concordance with prior analysis of the data. These fits provide an insight into potential assembly mechanisms of the in vitro system and give a basis for exploring how these mechanisms might vary between in vitro and in vivo assembly conditions.

  2. A non-laser light source for photodynamic therapy: in vitro effects on normal and malignant cells.

    PubMed

    Kashtan, Hanoch; Haddad, Riad; Greenberg, Ron; Skornick, Yehuda; Kaplan, Ofer

    2002-01-01

    Photodynamic therapy (PDT) involves the use of photosensitizing drugs combined with light to treat tumors. Laser systems, the current source of light for PDT, have several inherent drawbacks: the spectrum is essentially monochromatic which may be problematic for second generation photosensitizers, the systems are bulky and nearly impossible to move between hospital locations and require complicated electrical and cooling installations, the cost of a typical system is enormous, and its maintenance and operation require highly trained personnel. We now introduce a new non-laser light system, Versa-Light, which appears to work as effectively and has none of the above drawbacks. A series of in vitro studies were performed using various murine and human normal and cancer cells which underwent PDT using aluminum phthalocyanine (AlPcS4) as a photosensitizer and Versa-Light as the light source. PDT of cancer cells at light energy levels of 50, 100 and 200 j/cm2 significantly decreased cell viability. PDT also decreased cell viability of normal murine splenocytes and normal human lymphocytes, but to a lesser extent. The observed significant hyperthermia was light dose-dependent. We believe that Versa-Light can replace laser systems as an enhanced light source for PDT. Further in vitro and pre-clinical studies are in progress.

  3. Endocrine disrupters--testing strategies to assess human hazard.

    PubMed

    Baker, V A

    2001-01-01

    During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non-receptor mediated mechanisms of action) seems the most appropriate way at present of assessing the potential endocrine disrupting activities of chemicals. At Unilever we have used a combination of in vitro assays (receptor binding, reporter gene and cell proliferation assays) together with short-term in vivo tests (uterotrophic assay in immature rodents) to examine the oestrogenic potential of a large number of chemicals. An evaluation of the advantages and limitations of these methods is provided. Finally, any potential test system needs to be validated and standardized before the information generated can be for the identification of hazard, and possibly for risk assessment purposes.

  4. Effect of priming/booster immunisation protocols on immune response to canine parvovirus peptide induced by vaccination with a chimaeric plant virus construct.

    PubMed

    Nicholas, B L; Brennan, F R; Hamilton, W D O; Wakelin, D

    2003-06-02

    Expression of a 17-mer peptide sequence from canine parvovirus expressed on cowpea mosaic virus (CPMV) to form chimaeric virus particles (CVPs) creates vaccine antigens that elicit strong anti-peptide immune responses in mice. Systemic (subcutaneous, s.c.) immunisation and boosting with such CVP constructs produces IgG(2a) serum antibody responses, while mucosal (intranasal, i.n.) immunisation and boosting elicits intestinal IgA responses. Combinations of systemic and mucosal routes for priming and boosting immunisations were used to examine their influence on the level, type and location of immune response generated to one of these constructs (CVP-1). In all cases, s.c. administration, whether for immunisation or boosting, generated a Th1-biased response, reflected in a predominantly IgG(2a) serum antibody isotype and secretion of IFN-gamma from in vitro-stimulated lymphocytes. Serum antibody responses were greatest in animals primed and boosted subcutaneously, and least in mucosally vaccinated mice. The i.n. exposure also led to IFN-gamma release from in vitro-stimulated cells, but serum IgG(2a) was significantly elevated only in mice primed intranasally and boosted subcutaneously. Peptide- and wild-type CPMV-specific IgA responses in gut lavage fluid were greatest in animals exposed mucosally and least in those primed and boosted subcutaneously or primed subcutaneously and boosted orally. Lymphocytes from immunised mice proliferated in response to in vitro stimulation with CPMV but not with peptide. The predominant secretion of IFN-gamma from all immunising/boosting combinations indicates that the route of vaccination and challenge does not alter the Th1 bias of the response to CVP constructs. However, optimal serum and intestinal antibody responses were achieved by combining s.c. and i.n. administration.

  5. Identification of resistance of Plasmodium falciparum to artesunate-mefloquine combination in an area along the Thai-Myanmar border: integration of clinico-parasitological response, systemic drug exposure, and in vitro parasite sensitivity

    PubMed Central

    2013-01-01

    Background A markedly high failure rate of three-day artesunate-mefloquine was observed in the area along the Thai-Myanmar border. Methods Identification of Plasmodium falciparum isolates with intrinsic resistance to each component of the artesunate-mefloquine combination was analysed with integrated information on clinico-parasitological response, together with systemic drug exposure (area under blood/plasma concentration-time curves (AUC)) of dihydroartemisinin and mefloquine, and in vitro sensitivity of P. falciparum in a total of 17 out of 29 P. falciparum isolates from patients with acute uncomplicated falciparum malaria. Analysis of the contribution of in vitro parasite sensitivity and systemic drug exposure and relationship with pfmdr1 copy number in the group with sensitive response was performed in 21 of 69 cases. Results Identification of resistance and/or reduced intrinsic parasitocidal activity of artesunate and/or mefloquine without pharmacokinetic or other host-related factors were confirmed in six cases: one with reduced sensitivity to artesunate alone, two with resistance to mefloquine alone, and three with reduced sensitivity to artesunate combined with resistance to mefloquine. Resistance and/or reduced intrinsic parasitocidal activity of mefloquine/artesunate, together with contribution of pharmacokinetic factor of mefloquine and/or artesunate were identified in seven cases: two with resistance to mefloquine alone, and five with resistance to mefloquine combined with reduced sensitivity to artesunate. Pharmacokinetic factor alone contributed to recrudescence in three cases, all of which had inadequate whole blood mefloquine levels (AUC0-7days). Other host-related factors contributed to recrudescence in one case. Amplification of pfmdr1 (increasing of pfmdr1 copy number) is a related molecular marker of artesunate-mefloquine resistance and seems to be a suitable molecular marker to predict occurrence of recrudescence. Conclusions Despite the evidence of a low level of a decline in sensitivity of P. falciparum isolates to artemisinins in areas along the Thai-Myanmar border, artemisinin-based combination therapy (ACT) would be expected to remain the key anti-malarial drug for treatment of multidrug resistance P. falciparum. Continued monitoring and active surveillance of clinical efficacy of ACT, including identification of true artemisinin resistant parasites, is required for appropriate implementation of malaria control policy in this area. PMID:23898808

  6. Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.

    PubMed

    Adam, David; Bösche, Lisa; Castañeda-Losada, Leonardo; Winkler, Martin; Apfel, Ulf-Peter; Happe, Thomas

    2017-03-09

    We report a sustainable in vitro system for enzyme-based photohydrogen production. The [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii was tested for photohydrogen production as a proton-reducing catalyst in combination with eight different photosensitizers. Using the organic dye 5-carboxyeosin as a photosensitizer and plant-type ferredoxin PetF as an electron mediator, HydA1 achieves the highest light-driven turnover number (TON HydA1 ) yet reported for an enzyme-based in vitro system (2.9×10 6  mol(H 2 ) mol(cat) -1 ) and a maximum turnover frequency (TOF HydA1 ) of 550 mol(H 2 ) mol(HydA1) -1  s -1 . The system is fueled very effectively by ambient daylight and can be further simplified by using 5-carboxyeosin and HydA1 as a two-component photosensitizer/biocatalyst system without an additional redox mediator. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Effects of single pesticides and binary pesticide mixtures on estrone production in H295R cells.

    PubMed

    Prutner, Wiebke; Nicken, Petra; Haunhorst, Eberhard; Hamscher, Gerd; Steinberg, Pablo

    2013-12-01

    The aim of the present study was to determine whether the human adrenocortical carcinoma cell line H295R can be used as an in vitro test system to investigate the effects of binary pesticide combinations on estrone production as biological endpoint. In the first step ten pesticides selected according to a tiered approach were tested individually. The anilinopyrimidines cyprodinil and pyrimethanil as well as the dicarboximides iprodione and procymidone increased estrone concentration, while the triazoles myclobutanil and tebuconazole as well as the strobilurins azoxystrobin and kresoxim-methyl decreased estrone concentration in the supernatant of H295R cells. The N-methylcarbamate methomyl did not show any effects, and the phthalimide captan reduced estrone concentration unspecifically due to its detrimental impact on cellular viability. When cyprodinil and pyrimethanil, which belong to the same chemical group and increase estrone production, were combined, in most of the cases the overall effect was solely determined by the most potent compound in the mixture (i.e., cyprodinil). When cyprodinil and procymidone, which belong to different chemical groups but increase estrone production, were combined, in most cases an additive effect was observed. When cyprodinil, which increased estrone production, was combined with either myclobutanil or azoxystrobin, which decreased estrone production, the overall effect of the mixture was in most cases either entirely determined by myclobutanil or at least partially modulated by azoxystrobin. In conclusion, H295R cells appear to be an adequate in vitro test system to study the effect of combining two pesticides affecting estrone production.

  8. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems.

    PubMed

    Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G

    2018-01-25

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.

  9. Evaluation of the combined use of metronomic zoledronic acid and Coriolus versicolor in intratibial breast cancer mouse model.

    PubMed

    Ko, Chun-Hay; Yue, Grace Gar-Lee; Gao, Si; Luo, Ke-Wang; Siu, Wing-Sum; Shum, Wai-Ting; Shiu, Hoi-Ting; Lee, Julia Kin-Ming; Li, Gang; Leung, Ping-Chung; Evdokiou, Andreas; Lau, Clara Bik-San

    2017-05-23

    Coriolus versicolor (CV) is a mushroom traditionally used for strengthening the immune system and nowadays used as immunomodulatory adjuvant in anticancer therapy. Breast cancer usually metastasizes to the skeleton, interrupts the normal bone remodeling process and causes osteolytic bone lesions. The aims of the present study were to evaluate its herb-drug interaction with metronomic zoledronate in preventing cancer propagation, metastasis and bone destruction. Mice inoculated with human breast cancer cells tagged with a luciferase (MDA-MB-231-TXSA) in tibia were treated with CV aqueous extract, mZOL, or the combination of both for 4 weeks. Alteration of the luciferase signals in tibia, liver and lung were quantified using the IVIS imaging system. The skeletal response was evaluated using micro-computed tomography (micro-CT). In vitro experiments were carried out to confirm the in vivo findings. Results showed that combination of CV and mZOL diminished tumor growth without increasing the incidence of lung and liver metastasis in intratibial breast tumor model. The combination therapy also reserved the integrity of bones. In vitro studies demonstrated that combined use of CV and mZOL inhibited cancer cell proliferation and osteoclastogenesis. These findings suggested that combination treatment of CV and mZOL attenuated breast tumor propagation, protected against osteolytic bone lesion without significant metastases. This study provides scientific evidences on the beneficial outcome of using CV together with mZOL in the management of breast cancer and metastasis, which may lead to the development of CV as adjuvant health supplement for the control of breast cancer. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  10. Synergistic inhibition of glycinergic transmission in vitro and in vivo by flavonoids and strychnine.

    PubMed

    Raafat, Karim; Breitinger, Ulrike; Mahran, Laila; Ayoub, Nahla; Breitinger, Hans-Georg

    2010-11-01

    The inhibitory glycine receptor (GlyR) is a key mediator of synaptic signaling in spinal cord, brain stem, and higher central nervous system regions. The flavonoids quercetin and genistein have been identified previously as promising GlyR antagonists in vitro, but their detailed mechanism of action was not known. Here, inhibition of recombinant human α1 GlyRs in HEK 293 cells by genistein, quercetin, and strychnine was studied using whole-cell recording techniques. The interaction of several inhibitors applied alone or in combination was analyzed using a minimum mechanism of receptor activation and inhibition. Receptor inhibition in vivo was studied in a mouse model of strychnine toxicity. Genistein, quercetin, and strychnine were noncompetitive GlyR inhibitors. The inhibitory potency of one flavonoid (either genistein or quercetin) was not affected by simultaneous application of the other, suggesting that both flavonoids target the same site on the receptor. In combination with strychnine, flavonoid inhibition was augmented, indicating that strychnine binds to a position on the receptor physically distant from the flavonoid site. Potentiation of strychnine inhibition by flavonoids was also observed in vivo, where harmless doses of flavonoids enhanced strychnine toxicity in mice. Thus, in vitro and in vivo studies demonstrated a true synergism between flavonoids and strychnine for GlyR inhibition. The mechanism-based approach used here allows a rapid analysis of the effects of single drugs versus drug combinations.

  11. In vitro metabolism and interactions of pyridostigmine bromide, N,N-diethyl-m-toluamide, and permethrin in human plasma and liver microsomal enzymes.

    PubMed

    Abu-Qare, A W; Abou-Donia, M B

    2008-03-01

    1. The in vitro human plasma activity and liver microsomal metabolism of pyridostigmine bromide (PB), a prophylactic treatment against organophosphate nerve agent attack, N,N-diethyl-m-toluamide (DEET), an insect repellent, and permethrin, a pyrethroid insecticide, either alone or in combination were investigated. 2. The three chemicals disappeared from plasma in the following order: permethrin > PB > DEET. The combined incubation of DEET with either permethrin or PB had no effect on permethrin or PB. Binary incubation with permethrin decreased the metabolism of PB and its disappearance from plasma and binary incubation with PB decreased the metabolism of permethrin and its clearance from plasma. Incubation with PB and/or permethrin shortened the DEET terminal half-life in plasma. These agents behaved similarly when studied in liver microsomal assays. The combined incubation of DEET with PB or permethrin (alone or in combination) diminished DEET metabolism in microsomal systems. 3. The present study evidences that PB and permethrin are metabolized by both human plasma and liver microsomal enzymes and that DEET is mainly metabolized by liver oxidase enzymes. Combined exposure to test chemicals increases their neurotoxicity by impeding the body's ability to eliminate them because of the competition for detoxifying enzymes.

  12. A liposomal formulation of the synthetic curcumin analog EF24 (Lipo-EF24) inhibits pancreatic cancer progression: towards future combination therapies.

    PubMed

    Bisht, Savita; Schlesinger, Martin; Rupp, Alexander; Schubert, Rolf; Nolting, Jens; Wenzel, Jörg; Holdenrieder, Stefan; Brossart, Peter; Bendas, Gerd; Feldmann, Georg

    2016-07-11

    Pancreatic cancer is one of the most lethal of human malignancies known to date and shows relative insensitivity towards most of the clinically available therapy regimens. 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), a novel synthetic curcumin analog, has shown promising in vitro therapeutic efficacy in various human cancer cells, but insufficient water solubility and systemic bioavailability limit its clinical application. Here, we describe nano-encapsulation of EF24 into pegylated liposomes (Lipo-EF24) and evaluation of these particles in preclinical in vitro and in vivo model systems of pancreatic cancer. Transmission electron microscopy and size distribution studies by dynamic light scattering confirmed intact spherical morphology of the formed liposomes with an average diameter of less than 150 nm. In vitro, treatment with Lipo-EF24 induced growth inhibition and apoptosis in MIAPaCa and Pa03C pancreatic cancer cells as assessed by using cell viability and proliferation assays, replating and soft agar clonogenicity assays as well as western blot analyses. Lipo-EF24 potently suppressed NF-kappaB nuclear translocation by inhibiting phosphorylation and subsequent degradation of its inhibitor I-kappa-B-alpha. In vivo, synergistic tumor growth inhibition was observed in MIAPaCa xenografts when Lipo-EF24 was given in combination with the standard-of-care cytotoxic agent gemcitabine. In line with in vitro observations, western blot analysis revealed decreased phosphorylation of I-kappa-B-alpha in excised Lipo-EF24-treated xenograft tumor tissues. Due to its promising therapeutic efficacy and favorable toxicity profile Lipo-EF24 might be a promising starting point for development of future combinatorial therapeutic regimens against pancreatic cancer.

  13. Prodrug-based nano-drug delivery system for co-encapsulate paclitaxel and carboplatin for lung cancer treatment.

    PubMed

    Zhang, Wen; Li, Changzheng; Shen, Chengwu; Liu, Yuguo; Zhao, Xiaoting; Liu, Ying; Zou, Dongna; Gao, Zhenfa; Yue, Chunwen

    2016-09-01

    Paclitaxel (PTX) and carboplatin (CBP) are widely used for the combined chemotherapy of non-small cell lung cancer (NSCLC). However, the development of multidrug resistance of cancer cells, as well as systemic toxic side effects resulting from nonspecific localization of anticancer drugs to non-tumor areas are major obstacles to the success of chemotherapy in treating cancers. This study aimed to engineer a prodrug-based nano-drug delivery system for co-encapsulate hydrophilic (CBP) and hydrophobic anti-tumor drugs (PTX). This system was expected to resolve the multidrug resistance cause by single drug, and the dual-drug-loaded liposome was also planned to specifically target the cancer cells without obvious influence on normal cells and tissues. In this paper, PLGA-PEG-CBP was synthesized by the conjugation between the carboxylic group of PLGA-PEG-COOH and the amino group of CBP. Then, self-assembled nanoparticles for combination delivery of PTX and PLGA-PEG-CBP (PTX/CBP NPs) were prepared by solvent displacement technique. The in vitro and in vivo anti-tumor efficacy was assessed in NCL-H460 human non-small cell lung carcinoma cell line. PTX/CBP NPs achieved the highest cytotoxic effect among all formulations in vitro, as compared with single drug delivery NPs. In vivo investigation on NSCLC animal models showed that co-delivery of PTX and CBP possessed high tumor-targeting capacity and strong anti-tumor activity. The PTX/CBP NPs constructed in this research offers an effective strategy for targeted combinational lung cancer therapy.

  14. Assessing Ethanol's Actions in the Suprachiasmatic Circadian Clock Using In vivo and In vitro Approaches

    PubMed Central

    2014-01-01

    Research over the past decade has demonstrated substantial interactions between the circadian system and the processes through which alcohol affects behavior and physiology. Here we summarize the results of our collaborative efforts focused on this intersection. Using a combination of in vivo and in vitro approaches, we have shown that ethanol affects many aspects of the mammalian circadian system, both acutely as well as after chronic administration. Conversely, we have shown circadian influences on ethanol consumption. Importantly, we are beginning to delve into the cellular mechanisms associated with these effects. We are also starting to form a picture of the neuroanatomical bases for many of these actions. Finally, we put our current findings into perspective by suggesting new avenues of inquiry for our future efforts. PMID:25457753

  15. In vitro performance of lipid-PLGA hybrid nanoparticles as an antigen delivery system: lipid composition matters.

    PubMed

    Hu, Yun; Ehrich, Marion; Fuhrman, Kristel; Zhang, Chenming

    2014-01-01

    Due to the many beneficial properties combined from both poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) and liposomes, lipid-PLGA hybrid NPs have been intensively studied as cancer drug delivery systems, bio-imaging agent carriers, as well as antigen delivery vehicles. However, the impact of lipid composition on the performance of lipid-PLGA hybrid NPs as a delivery system has not been well investigated. In this study, the influence of lipid composition on the stability of the hybrid NPs and in vitro antigen release from NPs under different conditions was examined. The uptake of hybrid NPs with various surface charges by dendritic cells (DCs) was carefully studied. The results showed that PLGA NPs enveloped by a lipid shell with more positive surface charges could improve the stability of the hybrid NPs, enable better controlled release of antigens encapsulated in PLGA NPs, as well as enhance uptake of NPs by DC.

  16. Supplementation with CTGF, SDF1, NGF, and HGF promotes ovine in vitro oocyte maturation and early embryo development.

    PubMed

    Wang, D H; Ren, J; Zhou, C J; Han, Z; Wang, L; Liang, C G

    2018-05-17

    The strategies for improving the in vitro maturation (IVM) of domestic animal oocytes focus on promoting nuclear and cytoplasmic maturation. The identification of paracrine factors and their supplementation in the culture medium represent effective approaches for oocyte maturation and embryo development. This study investigated the effects of paracrine factor supplementation including connective tissue growth factor (CTGF), nerve growth factor (NGF), hepatocyte growth factor (HGF), and stromal derived factor 1 (SDF1) on ovine oocytes and early parthenogenetic embryos using an in vitro culture system. First, we identified the optimal concentrations of CTGF (30 ng/mL), SDF1 (10 ng/mL), NGF (3 ng/mL), and HGF (100 ng/mL) for promoting oocyte maturation, which combined, induced nuclear maturation in 94.19% of oocytes. This combination also promoted cumulus cell expansion and inhibited oocyte/cumulus apoptosis, while enabling a larger proportion (33.04%) of embryos to develop into blastocysts than in the controls and prevented embryo apoptosis. These novel findings demonstrate that the paracrine factors CTGF, SDF1, NGF, and HGF facilitate ovine oocyte and early parthenogenetic embryo development in vitro. Thus, supplementation with these factors may help optimize the IVM of ovine oocytes and early parthenogenetic embryo development strategies. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. A combination of ellagic acid and tetracycline inhibits biofilm formation and the associated virulence of Propionibacterium acnes in vitro and in vivo.

    PubMed

    Sivasankar, Chandran; Maruthupandiyan, Shanmugam; Balamurugan, Krishnaswamy; James, Prabhanand Bhaskar; Krishnan, Venkat; Pandian, Shunmugiah Karutha

    2016-01-01

    Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml(-1) + 0.312 μg ml(-1)) was determined to effectively inhibit biofilm formation by P. acnes (80-91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20-26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.

  18. Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation.

    PubMed

    Lozekoot, Pieter W J; de Jong, Monique M J; Gelsomino, Sandro; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; Kumar, N; Nijs, Jan; Czapla, Jens; Kwant, Paul; Bani, Daniele; Gensini, Gian Franco; Pison, Laurent; Crijns, Harry J G M; Maessen, Jos G; La Meir, Mark

    2016-03-01

    Data on epicardial contact force efficacy in dual epicardial-endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation's diameters, area, and volume. An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion's diameters, area, and volumes. Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial-endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary.

  19. Development of a Systems Computational Model to Investigate Early Biological Events in Hepatic Activation of Constitutive Androstane Receptor (CAR) by Phenobarbital

    EPA Science Inventory

    Activation of the nuclear receptor CAR (constitutive active/androstane receptor) is implicated in the control several key biological events such as metabolic pathways. Here, we combined data from literature with information obtained from in vitro assays in the US EPA ToxCast dat...

  20. Deciphering defective amelogenesis using in vitro culture systems.

    PubMed

    Arinawati, Dian Yosi; Miyoshi, Keiko; Tanimura, Ayako; Horiguchi, Taigo; Hagita, Hiroko; Noma, Takafumi

    2018-04-01

    The conventional two-dimensional (2D) in vitro culture system is frequently used to analyze the gene expression with or without extracellular signals. However, the cells derived from primary culture and cell lines frequently deviate the gene expression profile compared to the corresponding in vivo samples, which sometimes misleads the actual gene regulation in vivo. To overcome this gap, we developed the comparative 2D and 3D in vitro culture systems and applied them to the genetic study of amelogenesis imperfecta (AI) as a model. Recently, we found specificity protein 6 (Sp6) mutation in an autosomal-recessive AI rat that was previously named AMI. We constructed 3D structure of ARE-B30 cells (AMI-derived rat dental epithelial cells) or G5 (control wild type cells) combined with RPC-C2A cells (rat pulp cell line) separated by the collagen membrane, while in 2D structure, ARE-B30 or G5 was cultured with or without the collagen membrane. Comparative analysis of amelogenesis-related gene expression in ARE-B30 and G5 using our 2D and 3D in vitro systems revealed distinct expression profiles, showing the causative outcomes. Bone morphogenetic protein 2 and follistatin were reciprocally expressed in G5, but not in ARE-B30 cells. All-or-none expression of amelotin, kallikrein-related peptidase 4, and nerve growth factor receptor was observed in both cell types. In conclusion, our in vitro culture systems detected the phenotypical differences in the expression of the stage-specific amelogenesis-related genes. Parallel analysis with 2D and 3D culture systems may provide a platform to understand the molecular basis for defective amelogenesis caused by Sp6 mutation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Toxicological Assessment of Inhaled Nanoparticles: Role of in Vivo, ex Vivo, in Vitro, and in Silico Studies

    PubMed Central

    Fröhlich, Eleonore; Salar-Behzadi, Sharareh

    2014-01-01

    The alveolar epithelium of the lung is by far the most permeable epithelial barrier of the human body. The risk for adverse effects by inhaled nanoparticles (NPs) depends on their hazard (negative action on cells and organism) and on exposure (concentration in the inhaled air and pattern of deposition in the lung). With the development of advanced in vitro models, not only in vivo, but also cellular studies can be used for toxicological testing. Advanced in vitro studies use combinations of cells cultured in the air-liquid interface. These cultures are useful for particle uptake and mechanistic studies. Whole-body, nose-only, and lung-only exposures of animals could help to determine retention of NPs in the body. Both approaches also have their limitations; cellular studies cannot mimic the entire organism and data obtained by inhalation exposure of rodents have limitations due to differences in the respiratory system from that of humans. Simulation programs for lung deposition in humans could help to determine the relevance of the biological findings. Combination of biological data generated in different biological models and in silico modeling appears suitable for a realistic estimation of potential risks by inhalation exposure to NPs. PMID:24646916

  2. Extrapolation of systemic bioavailability assessing skin absorption and epidermal and hepatic metabolism of aromatic amine hair dyes in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manwaring, John, E-mail: manwaring.jd@pg.com; Rothe, Helga; Obringer, Cindy

    Approaches to assess the role of absorption, metabolism and excretion of cosmetic ingredients that are based on the integration of different in vitro data are important for their safety assessment, specifically as it offers an opportunity to refine that safety assessment. In order to estimate systemic exposure (AUC) to aromatic amine hair dyes following typical product application conditions, skin penetration and epidermal and systemic metabolic conversion of the parent compound was assessed in human skin explants and human keratinocyte (HaCaT) and hepatocyte cultures. To estimate the amount of the aromatic amine that can reach the general circulation unchanged after passagemore » through the skin the following toxicokinetically relevant parameters were applied: a) Michaelis–Menten kinetics to quantify the epidermal metabolism; b) the estimated keratinocyte cell abundance in the viable epidermis; c) the skin penetration rate; d) the calculated Mean Residence Time in the viable epidermis; e) the viable epidermis thickness and f) the skin permeability coefficient. In a next step, in vitro hepatocyte K{sub m} and V{sub max} values and whole liver mass and cell abundance were used to calculate the scaled intrinsic clearance, which was combined with liver blood flow and fraction of compound unbound in the blood to give hepatic clearance. The systemic exposure in the general circulation (AUC) was extrapolated using internal dose and hepatic clearance, and C{sub max} was extrapolated (conservative overestimation) using internal dose and volume of distribution, indicating that appropriate toxicokinetic information can be generated based solely on in vitro data. For the hair dye, p-phenylenediamine, these data were found to be in the same order of magnitude as those published for human volunteers. - Highlights: • An entirely in silico/in vitro approach to predict in vivo exposure to dermally applied hair dyes • Skin penetration and epidermal conversion assessed in human skin explants and HaCaT • Systemic metabolism was modeled using hepatocyte cultures. • Toxicokinetically relevant parameters were applied to estimate systemic exposure. • There was a good agreement between in vitro and in vivo data.« less

  3. In vitro porcine blood-brain barrier model for permeability studies: pCEL-X software pKa(FLUX) method for aqueous boundary layer correction and detailed data analysis.

    PubMed

    Yusof, Siti R; Avdeef, Alex; Abbott, N Joan

    2014-12-18

    In vitro blood-brain barrier (BBB) models from primary brain endothelial cells can closely resemble the in vivo BBB, offering valuable models to assay BBB functions and to screen potential central nervous system drugs. We have recently developed an in vitro BBB model using primary porcine brain endothelial cells. The model shows expression of tight junction proteins and high transendothelial electrical resistance, evidence for a restrictive paracellular pathway. Validation studies using small drug-like compounds demonstrated functional uptake and efflux transporters, showing the suitability of the model to assay drug permeability. However, one limitation of in vitro model permeability measurement is the presence of the aqueous boundary layer (ABL) resulting from inefficient stirring during the permeability assay. The ABL can be a rate-limiting step in permeation, particularly for lipophilic compounds, causing underestimation of the permeability. If the ABL effect is ignored, the permeability measured in vitro will not reflect the permeability in vivo. To address the issue, we explored the combination of in vitro permeability measurement using our porcine model with the pKa(FLUX) method in pCEL-X software to correct for the ABL effect and allow a detailed analysis of in vitro (transendothelial) permeability data, Papp. Published Papp using porcine models generated by our group and other groups are also analyzed. From the Papp, intrinsic transcellular permeability (P0) is derived by simultaneous refinement using a weighted nonlinear regression, taking into account permeability through the ABL, paracellular permeability and filter restrictions on permeation. The in vitro P0 derived for 22 compounds (35 measurements) showed good correlation with P0 derived from in situ brain perfusion data (r(2)=0.61). The analysis also gave evidence for carrier-mediated uptake of naloxone, propranolol and vinblastine. The combination of the in vitro porcine model and the software analysis provides a useful tool to better predict BBB permeability in vivo and gain better mechanistic information about BBB permeation. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Combination of Collagen Barrier Membrane with Enamel Matrix Derivative-Liquid Improves Osteoblast Adhesion and Differentiation.

    PubMed

    Miron, Richard J; Fujioka-Kobayashi, Masako; Buser, Daniel; Zhang, Yufeng; Bosshardt, Dieter D; Sculean, Anton

    Collagen barrier membranes were first introduced to regenerative periodontal and oral surgery to prevent fast ingrowing soft tissues (ie, epithelium and connective tissue) into the defect space. More recent attempts have aimed at combining collagen membranes with various biologics/growth factors to speed up the healing process and improve the quality of regenerated tissues. Recently, a new formulation of enamel matrix derivative in a liquid carrier system (Osteogain) has demonstrated improved physico-chemical properties for the adsorption of enamel matrix derivative to facilitate protein adsorption to biomaterials. The aim of this pioneering study was to investigate the use of enamel matrix derivative in a liquid carrier system in combination with collagen barrier membranes for its ability to promote osteoblast cell behavior in vitro. Undifferentiated mouse ST2 stromal bone marrow cells were seeded onto porcine-derived collagen membranes alone (control) or porcine membranes + enamel matrix derivative in a liquid carrier system. Control and enamel matrix derivative-coated membranes were compared for cell recruitment and cell adhesion at 8 hours; cell proliferation at 1, 3, and 5 days; and real-time polymerase chain reaction (PCR) at 3 and 14 days for genes encoding Runx2, collagen1alpha2, alkaline phosphatase, and bone sialoprotein. Furthermore, alizarin red staining was used to investigate mineralization. A significant increase in cell adhesion was observed at 8 hours for barrier membranes coated with enamel matrix derivative in a liquid carrier system, whereas no significant difference could be observed for cell proliferation or cell recruitment. Enamel matrix derivative in a liquid carrier system significantly increased alkaline phosphatase mRNA levels 2.5-fold and collagen1alpha2 levels 1.7-fold at 3 days, as well as bone sialoprotein levels twofold at 14 days postseeding. Furthermore, collagen membranes coated with enamel matrix derivative in a liquid carrier system demonstrated a sixfold increase in alizarin red staining at 14 days when compared with collagen membrane alone. The combination of enamel matrix derivative in a liquid carrier system with a barrier membrane significantly increased cell attachment, differentiation, and mineralization of osteoblasts in vitro. Future animal testing is required to fully characterize the additional benefits of combining enamel matrix derivative in a liquid carrier system with a barrier membrane for guided bone or tissue regeneration.

  5. Evidence-based integrative medicine in clinical veterinary oncology.

    PubMed

    Raditic, Donna M; Bartges, Joseph W

    2014-09-01

    Integrative medicine is the combined use of complementary and alternative medicine with conventional or traditional Western medicine systems. The demand for integrative veterinary medicine is growing, but evidence-based research on its efficacy is limited. In veterinary clinical oncology, such research could be translated to human medicine, because veterinary patients with spontaneous tumors are valuable translational models for human cancers. An overview of specific herbs, botanics, dietary supplements, and acupuncture evaluated in dogs, in vitro canine cells, and other relevant species both in vivo and in vitro is presented for their potential use as integrative therapies in veterinary clinical oncology. Published by Elsevier Inc.

  6. Hydrophobic Drug-Loaded PEGylated Magnetic Liposomes for Drug-Controlled Release

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Yang, Ming-Chien; Liu, Ting-Yu; Kuo, Chih-Yu; Huang, Li-Ying; Chan, Tzu-Yi

    2017-05-01

    Less targeted and limited solubility of hydrophobic-based drug are one of the serious obstacles in drug delivery system. Thus, new strategies to enhance the solubility of hydrophobic drug and controlled release behaviors would be developed. Herein, curcumin, a model of hydrophobic drug, has been loaded into PEGylated magnetic liposomes as a drug carrier platform for drug controlled release system. Inductive magnetic heating (hyperthermia)-stimulated drug release, in vitro cellular cytotoxicity assay of curcumin-loaded PEGylated magnetic liposomes and cellular internalization-induced by magnetic guidance would be investigated. The resultant of drug carriers could disperse homogeneously in aqueous solution, showing a superparamagnetic characteristic and could inductive magnetic heating with external high-frequency magnetic field (HFMF). In vitro curcumin release studies confirmed that the drug carriers exhibited no significant release at 37 °C, whereas exhibited rapid releasing at 45 °C. However, it would display enormous (three times higher) curcumin releasing under the HFMF exposure, compared with that without HFMF exposure at 45 °C. In vitro cytotoxicity test shows that curcumin-loaded PEGylated magnetic liposomes could efficiently kill MCF-7 cells in parallel with increasing curcumin concentration. Fluorescence microscopy observed that these drug carriers could internalize efficiently into the cellular compartment of MCF-7 cells. Thus, it would be anticipated that the novel hydrophobic drug-loaded PEGylated magnetic liposomes in combination with inductive magnetic heating are promising to apply in the combination of chemotherapy and thermotherapy for cancer therapy.

  7. Stem cell-derived systems in toxicology assessment.

    PubMed

    Suter-Dick, Laura; Alves, Paula M; Blaauboer, Bas J; Bremm, Klaus-Dieter; Brito, Catarina; Coecke, Sandra; Flick, Burkhard; Fowler, Paul; Hescheler, Jürgen; Ingelman-Sundberg, Magnus; Jennings, Paul; Kelm, Jens M; Manou, Irene; Mistry, Pratibha; Moretto, Angelo; Roth, Adrian; Stedman, Donald; van de Water, Bob; Beilmann, Mario

    2015-06-01

    Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.

  8. Antimetastatic Efficacy of the Combination of Caffeine and Valproic Acid on an Orthotopic Human Osteosarcoma Cell Line Model in Nude Mice.

    PubMed

    Igarashi, Kentaro; Kawaguchi, Kei; Kiyuna, Tasuku; Murakami, Takashi; Yamamoto, Norio; Hayashi, Katsuhiro; Kimura, Hiroaki; Miwa, Shinji; Tsuchiya, Hiroyuki; Hoffman, Robert M

    2017-03-01

    We have previously reported that caffeine can enhance chemotherapy efficacy of bone and soft tissue sarcoma via cell-cycle perturbation. Valproic acid has histone deacetylase (HDAC) inhibitory activity. We have also reported the anti-tumor efficacy of combination treatment with caffeine and valproic acid against osteosarcoma primary tumors in a cell-line orthotopic mouse model. In this study, we performed combination treatment of caffeine and valproic acid on osteosarcoma cell lines in vitro and in spontaneous and experimental lung metastasis mouse models of osteosarcoma. Survival of 143B-RFP human osteosarcoma cells after exposure to caffeine and valproic acid for 72 hours was determined using the WST-8 assay. IC 50 values and combination indices were calculated. Mouse models of primary osteosarcoma and spontaneous lung metastasis were obtained by orthotopic intra-tibial injection of 143B-RFP cells. Valproic acid, caffeine, and combination of both drugs were administered from day 7, five times a week, for four weeks. Six weeks after orthotopic injection, lung samples were excised and observed with a fluorescence imaging system. A mouse model of experimental lung metastasis was obtained by tail vein injection of 143B-RFP cells. The mice were treated with these agents from day 0, five times a week for four weeks. Both caffeine and valproic acid caused concentration-dependent cell kill in vitro. Synergistic efficacy of the combination treatment was observed. In the spontaneous lung-metastasis model, the number of lung metastasis was 9.0±2.6 in the untreated group (G1); 10.8±2.9 in the caffeine group (G2); 10.0±3.1 in the valproic-acid group (G3); and 3.0±1.1 in the combination group (G4); (p=6.78E-5 control vs. combination; p=0.006 valproic acid vs. combination; p=0.003 caffeine vs. combination). In the experimental lung-metastasis model, the combination group significantly reduced lung metastases and improved overall survival (p=0.0005). Efficacy of the combination of caffeine and valproic acid was observed in vitro and in spontaneous and experimental lung-metastasis mouse models of osteosarcoma. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  9. Gene delivery systems by the combination of lipid bubbles and ultrasound.

    PubMed

    Negishi, Yoichi; Endo-Takahashi, Yoko; Maruyama, Kazuo

    2016-11-28

    Gene therapy is promising for the treatment of many diseases including cancers and genetic diseases. From the viewpoint of safety, ultrasound (US)-mediated gene delivery with nano/ microbubbles was recently developed as a novel non-viral vector system. US-mediated gene delivery using nano/microbubbles are able to produce transient changes in the permeability of the cell membrane after US-induced cavitation while reducing cellular damage and enables the tissue-specific or the site-specific intracellular delivery of gene both in vitro and in vivo. We have recently developed novel lipid nanobubbles (Lipid Bubbles). These nanobubbles can also be used to enhance the efficacy of the US-mediated genes (plasmid DNA, siRNA, and miRNA etc.) delivery. In this review, we describe US-mediated delivery systems combined with nano/microbubbles and discuss their feasibility as non-viral vector systems.

  10. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities.

    PubMed

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10(5)-10(8) cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT(50)) using commercially available drugs which further correlated well with published in vivo LD(50) values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Ultra-performance liquid chromatography-tandem mass spectrometry for the determination of atypical antipsychotics and some metabolites in in vitro samples.

    PubMed

    Li, Kun-Yan; Zhou, Yan-Gang; Ren, Hua-Yi; Wang, Feng; Zhang, Bi-Kui; Li, Huan-De

    2007-05-01

    The ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) method has been developed to perform the determination of quetiapine, perospirone, aripiprazole and quetiapine sulfoxide in in vitro samples in less than 3 min. The UPLC separation was carried out using an Acquity UPLC BEH C18 column (100 mm x 2.1mm i.d., 1.7 microm particle size) that provided high efficiency and resolution in combination with high linear velocities. The UPLC system was coupled to a Waters Micromass Quattro Premier XE tandem quadrupole mass spectrometer. This system permits high-speed data acquisition without peak intensity degradation, and produces sharp and narrow chromatographic peaks (w(h) about 2.5s) of compounds. The determination was performed in multiple reaction monitoring (MRM) mode. The quantification parameters of the developed method were established, obtaining instrumental LODs lower than 0.005 microg/l and a repeatability at a low concentration level lower than 10% CV (n=10). Finally, the method was successfully applied to the analysis of atypical antipsychotics and some metabolites in in vitro samples.

  12. Combination of flavonoids from Oroxylum indicum seed extracts and acarbose improves the inhibition of postprandial blood glucose: In vivo and in vitro study.

    PubMed

    Zhang, Bo-Wei; Sang, Yuan-Bin; Sun, Wen-Long; Yu, He-Shui; Ma, Bai-Ping; Xiu, Zhi-Long; Dong, Yue-Sheng

    2017-07-01

    The combined effect of Oroxylum indicum seed extracts (OISE) or major flavonoids from OISE and acarbose on reducing postprandial blood glucose (PBG) levels was investigated in vitro and in vivo. In vitro, the IC 50 values of OISE and baicalein against α-glucosidase were 43.4±0.731μgmL -1 and 25.9±0.412μgmL -1 respectively. A combination of acarbose with OISE or baicalein synergistically inhibited rat intestinal α-glucosidase. The combination index (CI) values for acarbose with OISE ranged from 0.33 to 0.75, suggesting a synergistic but not additive effect. OISE was determined to be a non-competitive inhibitor of maltose-hydrolyzing activity. In vivo, OISE were administered to normoglycemic and diabetic mice, either alone or in combination with acarbose. At doses between 50 and 200mgkg -1 , OISE enhanced the efficacy of acarbose by up to 5-fold. These results demonstrated that OISE enhances the efficacy of acarbose in vivo, and that the combination of OISE and acarbose displayed a synergistic effect in vitro. Therefore, OISE can be used to design dietary supplements to treat diabetes. Copyright © 2017. Published by Elsevier Masson SAS.

  13. Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques.

    PubMed

    Beyer, Susanne; Xie, Li; Schmidt, Mike; de Bruin, Natasja; Ashtikar, Mukul; Rüschenbaum, Sabrina; Lange, Christian M; Vogel, Vitali; Mäntele, Werner; Parnham, Michael J; Wacker, Matthias G

    2016-08-10

    As a rapidly growing class of therapeutics, biopharmaceuticals have conquered the global market. Despite the great potential from a therapeutic perspective, such formulations often require frequent injections due to their short half-life. Aiming to establish a parenteral dosage form with prolonged release properties, a biodegradable implant was developed, based on a combination of nanoencapsulation of protein-heparin complexes, creation of a slow release matrix by freeze-drying, and compression using hyaluronan and methylcellulose. In order to investigate this novel delivery system, formulations containing IFN-β-1a and trypsinogen as model proteins were developed. No degradation of the proteins was observed at any stage of the formulation processing. The potential of the delivery system was evaluated in vivo and in vitro after fluorescence-labeling of the biopharmaceuticals. An optimized agarose gel was utilized as in vitro release medium to simulate the subcutaneous environment in a biorelevant manner. In addition, the formulations were administered to female SJL mice and release was innovatively tracked by fluorescence imaging, setting up an in vitro-in vivo correlation. A prolonged time of residence of approximately 12days was observed for the selected formulation design. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. In vitro digestion testing of lipid-based delivery systems: calcium ions combine with fatty acids liberated from triglyceride rich lipid solutions to form soaps and reduce the solubilization capacity of colloidal digestion products.

    PubMed

    Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2013-01-30

    In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Directed Evolution of a Cyclized Peptoid-Peptide Chimera against a Cell-Free Expressed Protein and Proteomic Profiling of the Interacting Proteins to Create a Protein-Protein Interaction Inhibitor.

    PubMed

    Kawakami, Takashi; Ogawa, Koji; Hatta, Tomohisa; Goshima, Naoki; Natsume, Tohru

    2016-06-17

    N-alkyl amino acids are useful building blocks for the in vitro display evolution of ribosomally synthesized peptides because they can increase the proteolytic stability and cell permeability of these peptides. However, the translation initiation substrate specificity of nonproteinogenic N-alkyl amino acids has not been investigated. In this study, we screened various N-alkyl amino acids and nonamino carboxylic acids for translation initiation with an Escherichia coli reconstituted cell-free translation system (PURE system) and identified those that efficiently initiated translation. Using seven of these efficiently initiating acids, we next performed in vitro display evolution of cyclized peptidomimetics against an arbitrarily chosen model human protein (β-catenin) cell-free expressed from its cloned cDNA (HUPEX) and identified a novel β-catenin-binding cyclized peptoid-peptide chimera. Furthermore, by a proteomic approach using direct nanoflow liquid chromatography-tandem mass spectrometry (DNLC-MS/MS), we successfully identified which protein-β-catenin interaction is inhibited by the chimera. The combination of in vitro display evolution of cyclized N-alkyl peptidomimetics and in vitro expression of human proteins would be a powerful approach for the high-speed discovery of diverse human protein-targeted cyclized N-alkyl peptidomimetics.

  16. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease.

    PubMed

    Bell, Catherine C; Hendriks, Delilah F G; Moro, Sabrina M L; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C A; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L; Jenkins, Rosalind E; Nordling, Åsa; Mkrtchian, Souren; Park, B Kevin; Kitteringham, Neil R; Goldring, Christopher E P; Lauschke, Volker M; Ingelman-Sundberg, Magnus

    2016-05-04

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI.

  17. Characterization of primary human hepatocyte spheroids as a model system for drug-induced liver injury, liver function and disease

    PubMed Central

    Bell, Catherine C.; Hendriks, Delilah F. G.; Moro, Sabrina M. L.; Ellis, Ewa; Walsh, Joanne; Renblom, Anna; Fredriksson Puigvert, Lisa; Dankers, Anita C. A.; Jacobs, Frank; Snoeys, Jan; Sison-Young, Rowena L.; Jenkins, Rosalind E.; Nordling, Åsa; Mkrtchian, Souren; Park, B. Kevin; Kitteringham, Neil R.; Goldring, Christopher E. P.; Lauschke, Volker M.; Ingelman-Sundberg, Magnus

    2016-01-01

    Liver biology and function, drug-induced liver injury (DILI) and liver diseases are difficult to study using current in vitro models such as primary human hepatocyte (PHH) monolayer cultures, as their rapid de-differentiation restricts their usefulness substantially. Thus, we have developed and extensively characterized an easily scalable 3D PHH spheroid system in chemically-defined, serum-free conditions. Using whole proteome analyses, we found that PHH spheroids cultured this way were similar to the liver in vivo and even retained their inter-individual variability. Furthermore, PHH spheroids remained phenotypically stable and retained morphology, viability, and hepatocyte-specific functions for culture periods of at least 5 weeks. We show that under chronic exposure, the sensitivity of the hepatocytes drastically increased and toxicity of a set of hepatotoxins was detected at clinically relevant concentrations. An interesting example was the chronic toxicity of fialuridine for which hepatotoxicity was mimicked after repeated-dosing in the PHH spheroid model, not possible to detect using previous in vitro systems. Additionally, we provide proof-of-principle that PHH spheroids can reflect liver pathologies such as cholestasis, steatosis and viral hepatitis. Combined, our results demonstrate that the PHH spheroid system presented here constitutes a versatile and promising in vitro system to study liver function, liver diseases, drug targets and long-term DILI. PMID:27143246

  18. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro

    NASA Astrophysics Data System (ADS)

    Yoshida, Mari; Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy

    2017-06-01

    Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs.

  19. Magnetic nanoparticles enhance adenovirus transduction in vitro and in vivo.

    PubMed

    Sapet, Cédric; Pellegrino, Christophe; Laurent, Nicolas; Sicard, Flavie; Zelphati, Olivier

    2012-05-01

    Adenoviruses are among the most powerful gene delivery systems. Even if they present low potential for oncogenesis, there is still a need for minimizing widespread delivery to avoid deleterious reactions. In this study, we investigated Magnetofection efficiency to concentrate and guide vectors for an improved targeted delivery. Magnetic nanoparticles formulations were complexed to a replication defective Adenovirus and were used to transduce cells both in vitro and in vivo. A new integrated magnetic procedure for cell sorting and genetic modification (i-MICST) was also investigated. Magnetic nanoparticles enhanced viral transduction efficiency and protein expression in a dose-dependent manner. They accelerated the transduction kinetics and allowed non-permissive cells infection. Magnetofection greatly improved adenovirus-mediated DNA delivery in vivo and provided a magnetic targeting. The i-MICST results established the efficiency of magnetic nanoparticles assisted viral transduction within cell sorting columns. The results showed that the combination of Magnetofection and Adenoviruses represents a promising strategy for gene therapy. Recently, a new integrated method to combine clinically approved magnetic cell isolation devices and genetic modification was developed. In this study, we validated that magnetic cell separation and adenoviral transduction can be accomplished in one reliable integrated and safe system.

  20. Novel in vitro and mathematical models for the prediction of chemical toxicity.

    PubMed

    Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.

  1. Novel in vitro and mathematical models for the prediction of chemical toxicity

    PubMed Central

    Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart

    2013-01-01

    The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512

  2. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  3. The vitamin C:vitamin K3 system - enhancers and inhibitors of the anticancer effect.

    PubMed

    Lamson, Davis W; Gu, Yu-Huan; Plaza, Steven M; Brignall, Matthew S; Brinton, Cathy A; Sadlon, Angela E

    2010-12-01

    The oxidizing anticancer system of vitamin C and vitamin K₃ (VC:VK₃, producing hydrogen peroxide via superoxide) was combined individually with melatonin, curcumin, quercetin, or cholecalciferol (VD₃) to determine interactions. Substrates were LNCaP and PC-3 prostate cancer cell lines. Three of the tested antioxidants displayed differences in cell line cytotoxicity. Melatonin combined with VC:VK₃ quenched the oxidizing effect, while VC:VK₃ applied 24 hours after melatonin showed no quenching. With increasing curcumin concentrations, an apparent combined effect of VC:VK₃ and curcumin occurred in LNCaP cells, but not PC-3 cells. Quercetin alone was cytotoxic on both cell lines, but demonstrated an additional 50-percent cytotoxicity on PC-3 cells when combined with VC:VK₃. VD₃ was effective against both cell lines, with more effect on PC-3. This effect was negated on LNCaP cells with the addition of VC:VK₃. In conclusion, a natural antioxidant can enhance or decrease the cytotoxicity of an oxidizing anticancer system in vitro, but generalizations about antioxidants cannot be made.

  4. Transformation products in the water cycle and the unsolved problem of their proactive assessment: A combined in vitro/in silico approach.

    PubMed

    Menz, Jakob; Toolaram, Anju Priya; Rastogi, Tushar; Leder, Christoph; Olsson, Oliver; Kümmerer, Klaus; Schneider, Mandy

    2017-01-01

    Transformation products (TPs) emerging from incomplete degradation of micropollutants in aquatic systems can retain the biological activity of the parent compound, or may even possess new unexpected toxic properties. The chemical identities of these substances remain largely unknown, and consequently, the risks caused by their presence in the water cycle cannot be assessed thoroughly. In this study, a combined approach for the proactive identification of hazardous elements in the chemical structures of TPs, comprising analytical, bioanalytical and computational methods, was assessed by the example of the pharmaceutically active micropollutant propranolol (PPL). PPL was photo-transformed using ultraviolet (UV) irradiation and 115 newly formed TPs were monitored in the reaction mixtures by LC-MS analysis. The reaction mixtures were screened for emerging effects using a battery of in vitro bioassays and the occurrence of cytotoxic and mutagenic activities in bacteria was found to be significantly correlated with the occurrence of specific TPs during the treatment process. The follow-up analysis of structure-activity-relationships further illustrated that only small chemical transformations, such as the hydroxylation or the oxidative opening of an aromatic ring system, could substantially alter the biological effects of micropollutants in aquatic systems. In conclusion, more efforts should be made to prevent the occurrence and transformation of micropollutants in the water cycle and to identify the principal degradation pathways leading to their toxicological activation. With regard to the latter, the judicious combination of bioanalytical and computational tools represents an appealing approach that should be developed further. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bifunctional capsular dosage form: novel fanicular cylindrical gastroretentive system of clarithromycin and immediate release granules of ranitidine HCl for simultaneous delivery.

    PubMed

    Rajput, Pallavi; Singh, Deshvir; Pathak, Kamla

    2014-01-30

    The study was aimed to develop a bifunctional single unit capsular system containing gastroretentive funicular cylindrical system (FCS) for controlled local delivery of clarithromycin and immediate release of ranitidine HCl. A 2(3) full factorial design was used to prepare gastroretentive FCS of clarithromycin using polyacrylamide (PAM), HPMC E15LV and Carbopol 934 P. The FCSs were evaluated for % cumulative drug release, floating time and in vitro detachment stress. Among the eight formulations, FCS5 (containing PAM and Carbopol 934 P at high and HPMC E15LV at low levels) showed % cumulative drug release of 97.09±1.14% in 8 h, floating time of 3 h and detachment stress of 8303.64±0.34 dynes/cm(2). Evaluation of optimized FCS by novel dynamic in vitro test proved superior bioadhesivity than cylindrical system under aggressive simulated peristaltic activity. Magnetic resonance imaging elucidated zero order release via constant swelling and erosion of FCS5. In vitro permeability across gastric mucin ensured its potential for effective eradication of deep seated Helicobactor pylori in gastric linings. The optimized FCS was combined with immediate release granules of rantidine HCl to get a bifunctional capsular dosage form. In vitro simultaneous drug release of clarithromycin and rantidine estimated by Vierordt's method exhibited a controlled drug release of 97.72±0.4% in 8 h for clarithromycin through FCS5 and 98.8±1.2% in 60 min from IR granules of ranitidine HCl. The novel system thus established its capability of simultaneous variable delivery of acid suppression agent and macrolide antibiotic that can be advantageous in clinical setting. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Chemical composition and antioxidant property of holy basil (Ocimum sanctum L.) leaves, stems, and inflorescence and their in vitro callus cultures.

    PubMed

    Hakkim, F Lukmanul; Shankar, C Gowri; Girija, S

    2007-10-31

    In this study, the chemical constituents and antioxidant property of holy basil (Ocimum sanctum Linn.) field-grown plant parts (leaves, stems, and inflorescence) were compared with those of respective callus cultures induced from each explant in in vitro. The callus cultures were successfully initiated on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D) (1 mg/L) combined with different concentrations (0.1-0.5 mg/L) of kinetin as plant growth regulators. The distribution of phenolic compounds in these extracts was analyzed using reverse phase high-performance liquid chromatography with reference standards. Interestingly, rosmarinic acid (RA) was found to be the predominant phenolic acid in all callus extracts in comparison with field-grown plant parts. In this study, the antioxidant activity of the extracts was evaluated with six different in vitro antioxidant-testing systems. Their activities of scavenging superoxide anion radicals, 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals, hydrogen peroxide, chelating ferrous iron, and ferric ion reducing potential were assessed. The antioxidant activity was increased in all testing systems with increasing amounts of extract. However, at the same concentration, the callus extracts exhibited higher antioxidant activity in all of the testing systems than the extract obtained from field-grown plant parts. The data obtained from this study suggested the possibility of the isolation of a high content of RA from in vitro callus cultures rather than field-grown plant organs of holy basil.

  7. In vitro biosynthesis of a universal t6A tRNA modification in Archaea and Eukarya

    PubMed Central

    Perrochia, Ludovic; Crozat, Estelle; Hecker, Arnaud; Zhang, Wenhua; Bareille, Joseph; Collinet, Bruno; van Tilbeurgh, Herman; Forterre, Patrick

    2013-01-01

    N6-threonylcarbamoyladenosine (t6A) is a modified nucleotide found in all transfer RNAs (tRNAs) decoding codons starting with adenosine. Its role is to facilitate codon–anticodon pairing and to prevent frameshifting during protein synthesis. Genetic studies demonstrated that two universal proteins, Kae1/YgjD and Sua5/YrdC, are necessary for t6A synthesis in Saccharomyces cerevisiae and Escherichia coli. In Archaea and Eukarya, Kae1 is part of a conserved protein complex named kinase, endopeptidase and other proteins of small size (KEOPS), together with three proteins that have no bacterial homologues. Here, we reconstituted for the first time an in vitro system for t6A modification in Archaea and Eukarya, using purified KEOPS and Sua5. We demonstrated binding of tRNAs to archaeal KEOPS and detected two distinct adenosine triphosphate (ATP)-dependent steps occurring in the course of the synthesis. Our data, together with recent reconstitution of an in vitro bacterial system, indicated that t6A cannot be catalysed by Sua5/YrdC and Kae1/YgjD alone but requires accessory proteins that are not universal. Remarkably, we observed interdomain complementation when bacterial, archaeal and eukaryotic proteins were combined in vitro, suggesting a conserved catalytic mechanism for the biosynthesis of t6A in nature. These findings shed light on the reaction mechanism of t6A synthesis and evolution of molecular systems that promote translation fidelity in present-day cells. PMID:23258706

  8. Improved in vitro models for preclinical drug and formulation screening focusing on 2D and 3D skin and cornea constructs.

    PubMed

    Beißner, Nicole; Bolea Albero, Antonio; Füller, Jendrik; Kellner, Thomas; Lauterboeck, Lothar; Liang, Jinghu; Böl, Markus; Glasmacher, Birgit; Müller-Goymann, Christel C; Reichl, Stephan

    2018-05-01

    The present overview deals with current approaches for the improvement of in vitro models for preclinical drug and formulation screening which were elaborated in a joint project at the Center of Pharmaceutical Engineering of the TU Braunschweig. Within this project a special focus was laid on the enhancement of skin and cornea models. For this reason, first, a computation-based approach for in silico modeling of dermal cell proliferation and differentiation was developed. The simulation should for example enhance the understanding of the performed 2D in vitro tests on the antiproliferative effect of hyperforin. A second approach aimed at establishing in vivo-like dynamic conditions in in vitro drug absorption studies in contrast to the commonly used static conditions. The reported Dynamic Micro Tissue Engineering System (DynaMiTES) combines the advantages of in vitro cell culture models and microfluidic systems for the emulation of dynamic drug absorption at different physiological barriers and, later, for the investigation of dynamic culture conditions. Finally, cryopreserved shipping was investigated for a human hemicornea construct. As the implementation of a tissue-engineering laboratory is time-consuming and cost-intensive, commercial availability of advanced 3D human tissue is preferred from a variety of companies. However, for shipping purposes cryopreservation is a challenge to maintain the same quality and performance of the tissue in the laboratory of both, the provider and the customer. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Selection of a discriminant and biorelevant in vitro dissolution test for the development of fenofibrate self-emulsifying lipid-based formulations.

    PubMed

    Pestieau, Aude; Krier, Fabrice; Brouwers, Adeline; Streel, Bruno; Evrard, Brigitte

    2016-09-20

    Fenofibrate, a BCS class II compound, has a low bioavailability especially when taken orally on an empty stomach. The challenge to find a new formulation for providing bioavailability, independent of food, is still ongoing. If the development of a suitable oral delivery formulation of BCS class II compounds is a frequent and great challenge to formulation scientists, the in vitro evaluation of these new formulations is also a great challenge. The purpose of this study was therefore to select an in vitro dissolution test that would be useful and as biorelevant as possible for the development of fenofibrate self-emulsifying lipid-based formulations. In this context, three different fenofibrate formulations, for which in vivo data are available in the literature, were tested using different dissolution tests until we found the one that was the most suitable. As part of this approach, we started with the simplest in vitro dissolution tests and progressed to tests that were increasingly more complex. The first tests were different single phase dissolution tests: a test under sink conditions based on the USP monograph, and different tests under non-sink conditions in non-biorelevant and biorelevant media. Given the inconclusive results obtained with these tests, biphasic dissolution systems were then tested: one with USP apparatus type II alone and another which combined USP apparatus types II and IV. This last combined test seemed the most suitable in vitro dissolution test for the development of the future fenofibrate lipid-based formulations we intend to develop in our own laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. In vitro V(D)J recombination: signal joint formation.

    PubMed

    Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D

    1996-11-26

    The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.

  11. High-Throughput Protein Expression Using a Combination of Ligation-Independent Cloning (LIC) and Infrared Fluorescent Protein (IFP) Detection

    PubMed Central

    Dortay, Hakan; Akula, Usha Madhuri; Westphal, Christin; Sittig, Marie; Mueller-Roeber, Bernd

    2011-01-01

    Protein expression in heterologous hosts for functional studies is a cumbersome effort. Here, we report a superior platform for parallel protein expression in vivo and in vitro. The platform combines highly efficient ligation-independent cloning (LIC) with instantaneous detection of expressed proteins through N- or C-terminal fusions to infrared fluorescent protein (IFP). For each open reading frame, only two PCR fragments are generated (with three PCR primers) and inserted by LIC into ten expression vectors suitable for protein expression in microbial hosts, including Escherichia coli, Kluyveromyces lactis, Pichia pastoris, the protozoon Leishmania tarentolae, and an in vitro transcription/translation system. Accumulation of IFP-fusion proteins is detected by infrared imaging of living cells or crude protein extracts directly after SDS-PAGE without additional processing. We successfully employed the LIC-IFP platform for in vivo and in vitro expression of ten plant and fungal proteins, including transcription factors and enzymes. Using the IFP reporter, we additionally established facile methods for the visualisation of protein-protein interactions and the detection of DNA-transcription factor interactions in microtiter and gel-free format. We conclude that IFP represents an excellent reporter for high-throughput protein expression and analysis, which can be easily extended to numerous other expression hosts using the setup reported here. PMID:21541323

  12. In vitro development of Strongylus edentatus to the fourth larval stage with notes on Strongylus vulgaris and Strongylus equinus.

    PubMed

    Farrar, R G; Klei, T R

    1985-08-01

    Strongylus edentatus was successfully cultured in vitro to the fourth larval stage (L4). Some growth continued for periods of 40-50 days at which time reductions in viability were observed in some of the culture systems tested. Various combinations of media, sera, buffers and organ explant cultures were tested. All cultures were incubated at 37 C in an atmosphere of 95% air and 5% CO2. Larvae underwent growth and differentiation to the L4 in all medium-serum combinations with and without organ explant cultures. Development and growth did occur but viability was reduced to insignificant levels in media without serum or cells. Optimal growth, differentiation, and longevity were observed in bicarbonate buffered RPMI-1640 containing 10% fetal calf serum and gerbil (Meriones unguiculatus) cecum explant cultures. Observations indicated that Strongylus vulgaris and Strongylus equinus also developed to the L4 stage using similar techniques. However, viability of S. vulgaris L4 was markedly limited. Specific morphological changes marked phases of development of S. edentatus, categorized as early, middle and late third stage, third molt and early fourth stage. Strongylus equinus appeared to follow the same developmental pattern in vitro as S. edentatus. Distinct differences in morphological features during differentiation were observed between S. edentatus and S. vulgaris.

  13. Interference of GSM mobile phones with communication between Cardiac Rhythm Management devices and programmers: A combined in vivo and in vitro study.

    PubMed

    Huang, Dong; Dong, Zhi-Feng; Chen, Yan; Wang, Fa-Bin; Wei, Zhi; Zhao, Wen-Bin; Li, Shuai; Liu, Ming-Ya; Zhu, Wei; Wei, Meng; Li, Jing-Bo

    2015-07-01

    To investigate interference, and how to avoid it, by high-frequency electromagnetic fields (EMFs) of Global System for Mobile Communications (GSM) mobile phone with communication between cardiac rhythm management devices (CRMs) and programmers, a combined in vivo and in vitro testing was conducted. During in vivo testing, GSM mobile phones interfered with CRM-programmer communication in 33 of 65 subjects tested (50.8%). Losing ventricle sensing was representative in this study. In terms of clinical symptoms, only 4 subjects (0.6%) felt dizzy during testing. CRM-programmer communication recovered upon termination of mobile phone communication. During in vitro testing, electromagnetic interference by high-frequency (700-950 MHz) EMFs reproducibly occurred in duplicate testing in 18 of 20 CRMs (90%). During each interference, the pacing pulse signal on the programmer would suddenly disappear while the synchronous signal was normal on the amplifier-oscilloscope. Simulation analysis showed that interference by radiofrequency emitting devices with CRM-programmer communication may be attributed to factors including materials, excitation source distance, and implant depth. Results suggested that patients implanted with CRMs should not be restricted from using GSM mobile phones; however, CRMs should be kept away from high-frequency EMFs of GSM mobile phone during programming. © 2015 Wiley Periodicals, Inc.

  14. In vitro and in vivo Nematocidal Activity of Allium sativum and Tagetes erecta Extracts Against Haemonchus contortus.

    PubMed

    Palacio- Landín, Josefina; Mendoza-de Gives, Pedro; Salinas-Sánchez, David Osvaldo; López-Arellano, María Eugenia; Liébano-Hernández, Enrique; Hernández-Velázquez, Victor Manuel; Valladares-Cisneros, María Guadalupe

    2015-12-01

    In the Mexican ethno-medicine, a number of plants have shown a successful anthelmintic activity. This fact could be crucial to identify possible green anti-parasitic strategies against nematodes affecting animal production. This research evaluated the in vitro and in vivo nematocidal effects of two single and combined plant extracts: bulbs of Allium sativum (n-hexane) and flowers of Tagetes erecta (acetone). The in vivo assay evaluated the administration of extracts either individually or combined against Haemonchus contortus in experimentally infected gerbils. The in vitro larvicidal activity percentage (LAP) of A. sativum and T. erecta extracts against H. contortus (L3) was determined by means of individual and combined usage of the extracts. Similarly, the extracts were evaluated in terms of reduction in the parasitic population in gerbils infected with H. contortus by individual and combined usage. The LAP at 40 mg/mL was 68% with A. sativum and 36.6% with T. erecta. The combination caused 83.3% mortality of parasites. The oral administration of A. sativum and T. erecta extracts at 40 mg/mL, caused 68.7% and 53.9% reduction of the parasitic burden, respectively. Meanwhile, the combined effect of both extracts shown 87.5% reduction. This study showed evidence about the effect of A. sativum and T. erecta plant extracts by means of individual and combined usage against H. contortus in in vitro and in vivo bioassays in artificially H. contortus-infected gerbils as a model.

  15. Antitubercular Nanocarrier Combination Therapy: Formulation Strategies and in Vitro Efficacy for Rifampicin and SQ641

    PubMed Central

    2015-01-01

    Tuberculosis (TB) remains a major global health concern, and new therapies are needed to overcome the problems associated with dosing frequency, patient compliance, and drug resistance. To reduce side effects associated with systemic drug distribution and improve drug concentration at the target site, stable therapeutic nanocarriers (NCs) were prepared and evaluated for efficacy in vitro in Mycobacterium tuberculosis-infected macrophages. Rifampicin (RIF), a current, broad-spectrum antibiotic used in TB therapy, was conjugated by degradable ester bonds to form hydrophobic prodrugs. NCs encapsulating various ratios of nonconjugated RIF and the prodrugs showed the potential ability to rapidly deliver and knockdown intracellular M. tuberculosis by nonconjugated RIF and to obtain sustained release of RIF by hydrolysis of the RIF prodrug. NCs of the novel antibiotic SQ641 and a combination NC with cyclosporine A were formed by flash nanoprecipitation. Delivery of SQ641 in NC form resulted in significantly improved activity compared to that of the free drug against intracellular M. tuberculosis. A NC formulation with a three-compound combination of SQ641, cyclosporine A, and vitamin E inhibited intracellular replication of M. tuberculosis significantly better than SQ641 alone or isoniazid, a current first-line anti-TB drug. PMID:25811733

  16. ADA-deficient SCID is associated with a specific microenvironment and bone phenotype characterized by RANKL/OPG imbalance and osteoblast insufficiency.

    PubMed

    Sauer, Aisha V; Mrak, Emanuela; Hernandez, Raisa Jofra; Zacchi, Elena; Cavani, Francesco; Casiraghi, Miriam; Grunebaum, Eyal; Roifman, Chaim M; Cervi, Maria C; Ambrosi, Alessandro; Carlucci, Filippo; Roncarolo, Maria Grazia; Villa, Anna; Rubinacci, Alessandro; Aiuti, Alessandro

    2009-10-08

    Adenosine deaminase (ADA) deficiency is a disorder of the purine metabolism leading to combined immunodeficiency and systemic alterations, including skeletal abnormalities. We report that ADA deficiency in mice causes a specific bone phenotype characterized by alterations of structural properties and impaired mechanical competence. These alterations are the combined result of an imbalanced receptor activator of nuclear factor-kappaB ligand (RANKL)/osteoprotegerin axis, causing decreased osteoclastogenesis and an intrinsic defect of osteoblast function with subsequent low bone formation. In vitro, osteoblasts lacking ADA displayed an altered transcriptional profile and growth reduction. Furthermore, the bone marrow microenvironment of ADA-deficient mice showed a reduced capacity to support in vitro and in vivo hematopoiesis. Treatment of ADA-deficient neonatal mice with enzyme replacement therapy, bone marrow transplantation, or gene therapy resulted in full recovery of the altered bone parameters. Remarkably, untreated ADA-severe combined immunodeficiency patients showed a similar imbalance in RANKL/osteoprotegerin levels alongside severe growth retardation. Gene therapy with ADA-transduced hematopoietic stem cells increased serum RANKL levels and children's growth. Our results indicate that the ADA metabolism represents a crucial modulatory factor of bone cell activities and remodeling.

  17. Evaluation of natural antimicrobials on typical meat spoilage bacteria in vitro and in vacuum-packed pork meat.

    PubMed

    Schirmer, Bjørn Christian; Langsrud, Solveig

    2010-03-01

    The aim of this study was to investigate the inhibitory effect of natural antimicrobials on the growth of typical spoilage bacteria from marinated pork. Minimum inhibitory concentrations (MIC) of thymol, cinnamaldehyde, allyl isothiocyanate, citric acid, ascorbic acid, a rosemary extract, and a grapefruit seed extract against Lactobacillus algidus, Leuconostoc mesenteroides, Leuconostoc carnosum, Carnobacterium maltaromaticum, Carnobacterium divergens, Brochothrix thermosphacta, and Serratia proteamaculans were determined in a microplate assay. Combinations of antimicrobials were tested and several combinations showed synergistic effects in inhibiting bacterial growth. Single and combined antimicrobials were added to vacuum-packed pork meat to evaluate preserving effects. Antimicrobial concentrations of up to 10 times the MIC values showed no effect on total bacterial growth in vacuum packed pork meaning that although most antimicrobials inhibited the growth of spoilage bacteria in vitro, results from the microplate assay could not be transferred to the meat system. Most natural antimicrobials possess strong odor and flavor that limit their use as a food preservative. In conclusion, this study showed that the use of natural antimicrobials in meat products is limited and that bacterial quality and shelf life was not enhanced under the chosen conditions.

  18. Effects of fermented milk treatment on microbial population and metabolomic outcomes in a three-stage semi-continuous culture system.

    PubMed

    Cha, Kwang Hyun; Lee, Eun Ha; Yoon, Hyo Shin; Lee, Jae Ho; Kim, Joo Yun; Kang, Kyungsu; Park, Jin-Soo; Jin, Jong Beom; Ko, GwangPyo; Pan, Cheol-Ho

    2018-10-15

    We investigated the impact of a fermented milk product on gut microbiota and their metabolism in 3 different conditions of the colon with a systemic viewpoint. An in vitro semi-continuous anaerobic cultivation was used to assess the colon compartment-specific influence of fermented milk, followed by a multiomics approach combining 16S rDNA amplicon sequencing and nuclear magnetic resonance (NMR) spectroscopy. The microbiome profiling and metabolomic features were significantly different across three colon compartments and after fermented milk treatment. Integrative correlation analysis indicated that the alteration of butyrate-producing microbiota (Veillonella, Roseburia, Lachnospira, and Coprococcus) and some primary metabolites (butyrate, ethanol, lactate, and isobutyrate) in the treatment group had a strong association with the fermented milk microorganisms. Our findings suggested that fermented milk treatment significantly affected microbial population in an in vitro cultivation system as well as the colonic metabolome in different ways in each of colon compartment. Copyright © 2018. Published by Elsevier Ltd.

  19. An in vitro synthetic biosystem based on acetate for production of phloroglucinol.

    PubMed

    Zhang, Rubing; Liu, Wei; Cao, Yujin; Xu, Xin; Xian, Mo; Liu, Huizhou

    2017-08-08

    Phloroglucinol is an important chemical, and the biosynthesis processes which can convert glucose to phloroglucinol have been established. However, due to approximate 80% of the glucose being transformed into undesirable by-products and biomass, this biosynthesis process only shows a low yield with the highest value of about 0.20 g/g. The industrial applications are usually hindered by the low current productivity and yield and also by the high costs. Generally, several different aspects limit the development of phloroglucinol biosynthesis. The yield of phloroglucinol is one of the most important parameters for its bioconversion especially from economic and ecological points of view. The in vitro biosynthesis of bio-based chemicals, is a flexible alternative with potentially high-yield to in vivo biosynthetic technology. By comparing the activity of acetyl-CoA synthetase (ACS) from Escherichia coli and Acetobacter pasteurianus, the highly active ACS2 was identified in A. pasteurianus. Acetyl-CoA carboxylase (ACC) from Acinetobacter calcoaceticus and phloroglucinol synthase (PhlD) from Pseudomonas fluorescens pf-5 were expressed and purified. Acetate was successfully transformed into phloroglucinol by the combined activity of above-mentioned enzymes and required cofactor. After optimization of the in vitro reaction system, phloroglucinol was then produced with a yield of nearly 0.64 g phloroglucinol/g acetic acid, which was equal to 91.43% of the theoretically possible maximum. In this work, a novel in vitro synthetic system for a highly efficient production of phloroglucinol from acetate was demonstrated. The system's performance suggests that in vitro synthesis of phloroglucinol has some advantages and is potential to become a feasible industrial alternative. Based on the results presented herewith, it is believed that in vitro biosystem will provide a feasible option for production of important industrial chemicals from acetate, which could work as a versatile biosynthetic platform.

  20. Protein phosphatase and kinase activities possibly involved in exocytosis regulation in Paramecium tetraurelia.

    PubMed Central

    Kissmehl, R; Treptau, T; Hofer, H W; Plattner, H

    1996-01-01

    In Paramecium tetraurelia cells synchronous exocytosis induced by aminoethyldextran (AED) is accompanied by an equally rapid dephosphorylation of a 63 kDa phosphoprotein (PP63) within 80 ms. In vivo, rephosphorylation occurs within a few seconds after AED triggering. In homogenates (P)P63 can be solubilized in all three phosphorylation states (phosphorylated, dephosphorylated and rephosphorylated) and thus tested in vitro. By using chelators of different divalent cations, de- and rephosphorylation of PP63 and P63 respectively can be achieved by an endogenous protein phosphatase/kinase system. Dephosphorylation occurs in the presence of EDTA, whereas in the presence of EGTA this was concealed by phosphorylation by endogenous kinase(s), thus indicating that phosphorylation of P63 is calcium-independent. Results obtained with protein phosphatase inhibitors (okadaic acid, calyculin A) allowed us to exclude a protein serine/threonine phosphatase of type I (with selective sensitivity in Paramecium). Protein phosphatase 2C is also less likely to be a candidate because of its requirement for high Mg2+ concentrations. According to previous evidence a protein serine/threonine phosphatase of type 2B (calcineurin; CaN) is possibly involved. We have now found that bovine brain CaN dephosphorylates PP63 in vitro. Taking into account the specific requirements of this phosphatase in vitro, with p-nitrophenyl phosphate as a substrate, we have isolated a cytosolic phosphatase of similar characteristics by combined preparative gel electrophoresis and affinity-column chromatography. In Paramecium this phosphatase also dephosphorylates PP63 in vitro (after 32P labelling in vivo). Using various combinations of ion exchange, affinity and hydrophobic interaction chromatography we have also isolated three different protein kinases from the soluble fraction, i.e. a cAMP-dependent protein kinase (PKA), a cGMP-dependent protein kinase (PKG) and a casein kinase. Among the kinases tested, PKA cannot phosphorylate P63, whereas either PKG or the casein kinase phosphorylate P63 in vitro. On the basis of these findings we propose that a protein phosphatase/kinase system is involved in the regulation of exocytosis in P. tetraurelia cells. PMID:8694788

  1. Plasmodium falciparum In Vitro Resistance to Monodesethylamodiaquine, Dakar, Senegal, 2014

    PubMed Central

    Fall, Bécaye; Madamet, Marylin; Camara, Cheikhou; Amalvict, Rémy; Fall, Mansour; Nakoulima, Aminata; Diatta, Bakary; Diémé, Yaya; Wade, Boubacar

    2016-01-01

    We successfully cultured 36 Plasmodium falciparum isolates from blood samples of 44 malaria patients admitted to the Hôpital Principal de Dakar (Dakar, Senegal) during August–December 2014. The prevalence of isolates with in vitro reduced susceptibility was 30.6% for monodesethylamodiaquine, 52.8% for chloroquine, 44.1% for mefloquine, 16.7% for doxycycline, 11.8% for piperaquine, 8.3% for artesunate, 5.9% for pyronaridine, 2.8% for quinine and dihydroartemisinin, and 0.0% for lumefantrine. The prevalence of isolates with reduced in vitro susceptibility to the artemisinin-based combination therapy partner monodesethylamodiaquine increased from 5.6% in 2013 to 30.6% in 2014. Because of the increased prevalence of P. falciparum parasites with impaired in vitro susceptibility to monodesethylamodiaquine, the implementation of in vitro and in vivo surveillance of all artemisinin-based combination therapy partners is warranted. PMID:27088703

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneckjee, R.; Minna, J.D.

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptidesmore » ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.« less

  3. Mutagenic, cytotoxic, and teratogenic effects of 2-acetylaminofluorene and reactive metabolites in vitro.

    PubMed

    Faustman-Watts, E M; Yang, H Y; Namkung, M J; Greenaway, J C; Fantel, A G; Juchau, M R

    1984-01-01

    The embryotoxic, mutagenic, and cytotoxic properties of 2-acetylaminofluorene (AAF) and two of its reactive metabolites, N-acetoxy-2-acetylaminofluorene (AAAF) and 2-nitrosofluorene (NF) were assessed in vitro. A combined embryo culture/biotransformation system was used to determine the ability of these compounds to produce embryonic malformations, growth retardation, and/or embryolethality. Salmonella typhimurium auxotrophs (his-) were utilized to measure the mutagenic and cytotoxic potentials of these compounds. The parent compound, AAF, did not produce embryonic malformations or mutagenicity in the absence of an added cytochrome P-450-dependent monooxygenase system. Both metabolites produced each of the measured toxic effects without supplementation of a bioactivation system. However, the three chemicals each elicited a different spectrum of malformations. Bioactivated AAF produced neural tube abnormalities, whereas embryos treated with AAAF primarily exhibited prosencephalic malformations, and NF produced abnormalities of axial rotation or flexure. NF was approximately ten times more potent than AAAF as a direct-acting mutagen but only slightly more active in producing embryonic malformations in vitro. The results indicated that differential effects on the various measured parameters could be produced by these chemicals. The results indicated further that neither NF nor AAAF appeared to be individually responsible for the neural tube abnormalities generated by biotransformed AAF.

  4. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  5. Improving porcine in vitro fertilization output by simulating the oviductal environment

    PubMed Central

    Soriano-Úbeda, Cristina; García-Vázquez, Francisco A.; Romero-Aguirregomezcorta, Jon; Matás, Carmen

    2017-01-01

    Differences between the in vitro and in vivo environment in which fertilization occurs seem to play a key role in the low efficiency of porcine in vitro fertilization (IVF). This work proposes an IVF system based on the in vivo oviductal periovulatory environment. The combined use of an IVF medium at the pH found in the oviduct in the periovulatory stage (pHe 8.0), a mixture of oviductal components (cumulus-oocyte complex secretions, follicular fluid and oviductal periovulatory fluid, OFCM) and a device that interposes a physical barrier between gametes (an inverted screw cap of a Falcon tube, S) was compared with the classical system at pHe 7.4, in a 4-well multidish (W) lacking oviduct biological components. The results showed that the new IVF system reduced polyspermy and increased the final efficiency by more than 48%. This higher efficiency seems to be a direct consequence of a reduced sperm motility and lower capacitating status and it could be related to the action of OFCM components over gametes and to the increase in the sperm intracellular pH (pHi) caused by the higher pHe used. In conclusion, a medium at pH 8.0 supplemented with OFCM reduces polyspermy and improves porcine IVF output.

  6. Engineered in vitro disease models.

    PubMed

    Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E

    2015-01-01

    The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.

  7. Wnt1a maintains characteristics of dermal papilla cells that induce mouse hair regeneration in a 3D preculture system.

    PubMed

    Dong, Liang; Hao, Haojie; Liu, Jiejie; Tong, Chuan; Ti, Dongdong; Chen, Deyun; Chen, Li; Li, Meirong; Liu, Huiling; Fu, Xiaobing; Han, Weidong

    2017-05-01

    Hair follicle morphogenesis and regeneration depend on intensive but well-orchestrated interactions between epithelial and mesenchymal components. Therefore, an alternative strategy to reproduce the process of epithelial-mesenchymal interaction in vitro could use a 3D system containing appropriate cell populations. The 3D air-liquid culture system for reproducibly generating hair follicles from dissociated epithelial and dermal papilla (DP) cells combined with a collagen-chitosan scaffold is described in this study. Wnt-CM was prepared from the supernatant of Wnt1a-expressing bone marrow mesenchymal stem cells (BM-MSCs) that maintain the hair-inducing gene expression of DP cells. The collagen-chitosan scaffold cells (CCS cells) were constructed using a two-step method by inoculating the Wnt-CM-treated DP cells and epidermal (EP) cells into the CCS. The cells in the air-liquid culture formed dermal condensates and a proliferative cell layer in vitro. The CCS cells were able to induce hair regeneration in nude mice. The results demonstrate that Wnt-CM can maintain the hair induction ability of DP cells in expansion cultures, and this approach can be used for large-scale preparation of CCS cells in vitro to treat hair loss. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Magnetic nanoparticles for targeted therapeutic gene delivery and magnetic-inducing heating on hepatoma

    NASA Astrophysics Data System (ADS)

    Yuan, Chenyan; An, Yanli; Zhang, Jia; Li, Hongbo; Zhang, Hao; Wang, Ling; Zhang, Dongsheng

    2014-08-01

    Gene therapy holds great promise for treating cancers, but their clinical applications are being hampered due to uncontrolled gene delivery and expression. To develop a targeted, safe and efficient tumor therapy system, we constructed a tissue-specific suicide gene delivery system by using magnetic nanoparticles (MNPs) as carriers for the combination of gene therapy and hyperthermia on hepatoma. The suicide gene was hepatoma-targeted and hypoxia-enhanced, and the MNPs possessed the ability to elevate temperature to the effective range for tumor hyperthermia as imposed on an alternating magnetic field (AMF). The tumoricidal effects of targeted gene therapy associated with hyperthermia were evaluated in vitro and in vivo. The experiment demonstrated that hyperthermia combined with a targeted gene therapy system proffer an effective tool for tumor therapy with high selectivity and the synergistic effect of hepatoma suppression.

  9. Guidance on Nanomaterial Hazards and Risks

    DTIC Science & Technology

    2015-05-21

    and at room temperature and 37 C°– solid separation by centrifugation, filtration , or chemical techniques (more experimental techniques combining...members in this potency sequence using bolus in vivo testing, verify the bolus results with selective inhalation testing. The potency of members of...measures in in vitro and limited in vivo experimental systems would facilitate the characterization of dose-response relationships across a set of ENMs

  10. Non-animal photosafety assessment approaches for cosmetics based on the photochemical and photobiochemical properties.

    PubMed

    Onoue, Satomi; Suzuki, Gen; Kato, Masashi; Hirota, Morihiko; Nishida, Hayato; Kitagaki, Masato; Kouzuki, Hirokazu; Yamada, Shizuo

    2013-12-01

    The main purpose of the present study was to establish a non-animal photosafety assessment approach for cosmetics using in vitro photochemical and photobiochemical screening systems. Fifty-one cosmetics, pharmaceutics and other chemicals were selected as model chemicals on the basis of animal and/or clinical photosafety information. The model chemicals were assessed in terms of photochemical properties by UV/VIS spectral analysis, reactive oxygen species (ROS) assay and 3T3 neutral red uptake phototoxicity testing (3T3 NRU PT). Most phototoxins exhibited potent UV/VIS absorption with molar extinction coefficients of over 1000M(-1)cm(-1), although false-negative prediction occurred for 2 cosmetic phototoxins owing to weak UV/VIS absorption. Among all the cosmetic ingredients, ca. 42% of tested chemicals were non-testable in the ROS assay because of low water solubility; thereby, micellar ROS (mROS) assay using a solubilizing surfactant was employed for follow-up screening. Upon combination use of ROS and mROS assays, the individual specificity was 88.2%, and the positive and negative predictivities were estimated to be 94.4% and 100%, respectively. In the 3T3 NRU PT, 3 cosmetics and 4 drugs were incorrectly predicted not to be phototoxic, although some of them were typical photoallergens. Thus, these in vitro screening systems individually provide false predictions; however, a systematic tiered approach using these assays could provide reliable photosafety assessment without any false-negatives. The combined use of in vitro assays might enable simple and fast non-animal photosafety evaluation of cosmetic ingredients. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.

    PubMed

    Wilson, Nedra F

    2008-01-01

    During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.

  12. Visible-light-sensitive titanium dioxide nanoplatform for tumor-responsive Fe2+ liberating and artemisinin delivery

    PubMed Central

    Zhang, Huijuan; Zhang, Hongling; Zhu, Xing; Zhang, Xiaoge; Chen, Qianqian; Chen, Jianjiao; Hou, Lin; Zhang, Zhenzhong

    2017-01-01

    Artemisinin is a kind of Fe2+-dependent drugs. Artemisinin and Fe2+ co-transport systems can improve its anti-tumor effect. In this study, a visible light-sensitive nanoplatform (HA-TiO2-IONPs/ART) was developed. Detailed investigation demonstrated that HA-TiO2-IONPs/ART could realize Fe2+ and artemisinin synchronous co-delivery and tumor-responsive release. This feature enhanced the anti-tumor efficiency of artemisinin significantly. In vitro results proved that hyaluronic acid modification could improve the biocompatibility, dispersion stability and cytophagy ability of nanocarriers. Furthermore, this drug delivery system could generate reactive oxygen species under visual light irradiation. In vitro and in vivo experiments demonstrated that HA-TiO2-IONPs/ART combining with laser irradiation displayed the best anti-tumor efficacy. This study affords a promising idea to improve the curative efficiency of artemisinin analogs for cancer therapy. PMID:28938592

  13. It's all in the timing: modeling isovolumic contraction through development and disease with a dynamic dual electromechanical bioreactor system.

    PubMed

    Morgan, Kathy Ye; Black, Lauren Deems

    2014-01-01

    This commentary discusses the rationale behind our recently reported work entitled "Mimicking isovolumic contraction with combined electromechanical stimulation improves the development of engineered cardiac constructs," introduces new data supporting our hypothesis, and discusses future applications of our bioreactor system. The ability to stimulate engineered cardiac tissue in a bioreactor system that combines both electrical and mechanical stimulation offers a unique opportunity to simulate the appropriate dynamics between stretch and contraction and model isovolumic contraction in vitro. Our previous study demonstrated that combined electromechanical stimulation that simulated the timing of isovolumic contraction in healthy tissue improved force generation via increased contractile and calcium handling protein expression and improved hypertrophic pathway activation. In new data presented here, we further demonstrate that modification of the timing between electrical and mechanical stimulation to mimic a non-physiological process negatively impacts the functionality of the engineered constructs. We close by exploring the various disease states that have altered timing between the electrical and mechanical stimulation signals as potential future directions for the use of this system.

  14. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation.

    PubMed

    Kapchina-Toteva, V; Dimitrova, M A; Stefanova, M; Koleva, D; Kostov, K; Yordanova, Zh P; Stefanov, D; Zhiponova, M K

    2014-09-15

    The white dead nettle, Lamium album L., is an herb that has been successfully cultivated under in vitro conditions. The L. album micropropagation system offers a combination of factors (light intensity, temperature, carbon dioxide (CO2) level, humidity) that are limiting for plant growth and bioactive capacity. To get a better understanding of the mechanism of plant acclimation towards environmental changes, we performed a comparative investigation on primary and secondary metabolism in fully expanded L. album leaves during the consecutive growth in in situ, in vitro, and ex vitro conditions. Although the genetic identity was not affected, structural and physiological deviations were observed, and the level of bioactive compounds was modified. During in vitro cultivation, the L. album leaves became thinner with unaffected overall leaf organization, but with a reduced number of palisade mesophyll layers. Structural deviation of the thylakoid membrane system was detected. In addition, the photosystem 2 (PS2) electron transport was retarded, and the plants were more vulnerable to light damage as indicated by the decreased photoprotection ability estimated by fluorescence parameters. The related CO2 assimilation and transpiration rates were subsequently reduced, as were the content of essential oils and phenolics. Transfer of the plants ex vitro did not increase the number of palisade numbers, but the chloroplast structure and PS2 functionality were recovered. Strikingly, the rates of CO2 assimilation and transpiration were increased compared to in situ control plants. While the phenolics content reached normal levels during ex vitro growth, the essential oils remained low. Overall, our study broadens the understanding about the nature of plant responses towards environmental conditions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Activity of fosfomycin alone or combined with cefoxitin in vitro and in vivo in a murine model of urinary tract infection due to Escherichia coli harbouring CTX-M-15-type extended-spectrum β-lactamase.

    PubMed

    Lefort, Agnès; Chau, Françoise; Lepeule, Raphaël; Dubée, Vincent; Kitzis, Marie-Dominique; Dion, Sara; Fantin, Bruno

    2014-04-01

    The efficacy of fosfomycin alone or combined with cefoxitin was investigated in vitro and in a murine model of urinary tract infection due to susceptible Escherichia coli CFT073-RR and its transconjugant CFT073-RR Tc (pblaCTX-M-15) harbouring a plasmid carrying the blaCTX-M-15 gene. In vitro, the combination of cefoxitin and fosfomycin was synergistic and bactericidal and prevented the emergence of fosfomycin-resistant mutants of CFT073-RR and CFT073-RR Tc (pblaCTX-M-15) that were selected with fosfomycin alone. In vivo, the combination conferred an advantage in terms of kidney sterilisation of mice infected with either strain compared with fosfomycin monotherapy. Copyright © 2013 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  16. In vitro activity of gentamicin as an adjunct to penicillin against biofilm group B Streptococcus.

    PubMed

    Ruppen, Corinne; Hemphill, Andrew; Sendi, Parham

    2017-02-01

    Group B Streptococcus (GBS) increasingly causes invasive disease in non-pregnant adults, particularly in elderly persons and those with underlying diseases. Combination therapy with penicillin plus gentamicin has been suggested for periprosthetic joint infection. The postulated synergism of this combination is based on experiments with planktonic bacteria. We aimed to assess the efficacy of this combination against sessile bacteria. Four different GBS strains were used. We compared results of MICs with those of minimal biofilm eradication concentrations (MBECs), applied chequerboard assays to the MBEC device and calculated the fractional inhibitory concentration index. Synergism was evaluated with time-kill assays against bacteria adherent to cement beads, using penicillin (0.048, 0.2 and 3 mg/L), gentamicin (4 and 12.5 mg/L) and a combination thereof. Results were evaluated via colony counting after sonication of beads and scanning electron microscopy. MBEC/MIC ratios were 2000-4000 for penicillin and 1-4 for gentamicin. In chequerboard assays, synergism was observed in all four isolates. In time-kill assays, penicillin and 12.5 mg/L gentamicin showed synergism in two isolates. In the other two isolates 12.5 mg/L gentamicin alone was as efficient as the combination therapy. These in vitro investigations show activity of 12.5 mg/L gentamicin, alone or as an adjunct to penicillin, against four strains of biofilm GBS. This concentration cannot be achieved in bone with systemic administration, but can be reached if administered locally. The combination of systemic penicillin plus local gentamicin indicates a potential application in orthopaedic-device-associated GBS infections. Studies with a larger number of strains are required to confirm our results. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. [Recording of ventricular pressure by conventional catheter manometer systems. Efficiency of several combinations of conventional catheters, modern transducers and catheter-flush systems (author's transl)].

    PubMed

    Hellige, G

    1976-01-01

    The experimentally in vitro determined dynamic response characteristics of 38 catheter manometer systems were uniform in the worst case to 5 c.p.s. and optimally to 26 c.p.s. Accordingly, some systems are only satisfactory for ordinary pressure recording in cardiac rest, while better systems record dp/dt correct up to moderate inotropic stimulation of the heart. In the frequency range of uniform response (amplitude error less +/- 5%) the phase distortion is also negligible. In clinical application the investigator is often restricted to special type of cardiac catheter. In this case a low compliant transducer yields superior results. In all examined systems the combination with MSD 10 transducers is best, whereas the combination with P 23 Db transducers leads to minimal results. An inadequate system for recording ventricular pressure pulses leads in most cases to overestimations of dp/dtmax. The use of low frequency pass filters to attenuate higher frequency artefacts is, under clinical conditions, not suitable for extending the range of uniform frequency response. The dynamic response of 14 catheter manometer systems with two types of continuous self flush units was determined. The use of the P 37 flush unit in combination with small internal diameter catheters leads to serious error in ordinary pressure recording, due to amplitude distortion of the lower harmonics. The frequency response characteristics of the combination of an Intraflow flush system and MSD 10 transducer was similar to the non-flushing P 23 Db transducer feature.

  18. Screening a repurposing library for potentiators of antibiotics against Staphylococcus aureus biofilms.

    PubMed

    Van den Driessche, Freija; Brackman, Gilles; Swimberghe, Rosalie; Rigole, Petra; Coenye, Tom

    2017-03-01

    Staphylococcus aureus biofilms are involved in a wide range of infections that are extremely difficult to treat with conventional antibiotic therapy. We aimed to identify potentiators of antibiotics against mature biofilms of S. aureus Mu50, a methicillin-resistant and vancomycin-intermediate-resistant strain. Over 700 off-patent drugs from a repurposing library were screened in combination with vancomycin in a microtitre plate (MTP)-based biofilm model system. This led to the identification of 25 hit compounds, including four phenothiazines among which thioridazine was the most potent. Their activity was evaluated in combination with other antibiotics both against planktonic and biofilm-grown S. aureus cells. The most promising combinations were subsequently tested in an in vitro chronic wound biofilm infection model. Although no synergistic activity was observed against planktonic cells, thioridazine potentiated the activity of tobramycin, linezolid and flucloxacillin against S. aureus biofilm cells. However, this effect was only observed in a general biofilm model and not in a chronic wound model of biofilm infection. Several drug compounds were identified that potentiated the activity of vancomycin against biofilms formed in a MTP-based biofilm model. A selected hit compound lost its potentiating activity in a model that mimics specific aspects of wound biofilms. This study provides a platform for discovering and evaluating potentiators against bacterial biofilms and highlights the necessity of using relevant in vitro biofilm model systems. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  19. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir.

    PubMed

    Cheng, Guofeng; Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O; Delaney, William

    2016-01-11

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. In Vitro Antiviral Activity and Resistance Profile Characterization of the Hepatitis C Virus NS5A Inhibitor Ledipasvir

    PubMed Central

    Tian, Yang; Doehle, Brian; Peng, Betty; Corsa, Amoreena; Lee, Yu-Jen; Gong, Ruoyu; Yu, Mei; Han, Bin; Xu, Simin; Dvory-Sobol, Hadas; Perron, Michel; Xu, Yili; Mo, Hongmei; Pagratis, Nikos; Link, John O.; Delaney, William

    2016-01-01

    Ledipasvir (LDV; GS-5885), a component of Harvoni (a fixed-dose combination of LDV with sofosbuvir [SOF]), is approved to treat chronic hepatitis C virus (HCV) infection. Here, we report key preclinical antiviral properties of LDV, including in vitro potency, in vitro resistance profile, and activity in combination with other anti-HCV agents. LDV has picomolar antiviral activity against genotype 1a and genotype 1b replicons with 50% effective concentration (EC50) values of 0.031 nM and 0.004 nM, respectively. LDV is also active against HCV genotypes 4a, 4d, 5a, and 6a with EC50 values of 0.11 to 1.1 nM. LDV has relatively less in vitro antiviral activity against genotypes 2a, 2b, 3a, and 6e, with EC50 values of 16 to 530 nM. In vitro resistance selection with LDV identified the single Y93H and Q30E resistance-associated variants (RAVs) in the NS5A gene; these RAVs were also observed in patients after a 3-day monotherapy treatment. In vitro antiviral combination studies indicate that LDV has additive to moderately synergistic antiviral activity when combined with other classes of HCV direct-acting antiviral (DAA) agents, including NS3/4A protease inhibitors and the nucleotide NS5B polymerase inhibitor SOF. Furthermore, LDV is active against known NS3 protease and NS5B polymerase inhibitor RAVs with EC50 values equivalent to those for the wild type. PMID:26824950

  1. Hybrid integrated biological-solid-state system powered with adenosine triphosphate.

    PubMed

    Roseman, Jared M; Lin, Jianxun; Ramakrishnan, Siddharth; Rosenstein, Jacob K; Shepard, Kenneth L

    2015-12-07

    There is enormous potential in combining the capabilities of the biological and the solid state to create hybrid engineered systems. While there have been recent efforts to harness power from naturally occurring potentials in living systems in plants and animals to power complementary metal-oxide-semiconductor integrated circuits, here we report the first successful effort to isolate the energetics of an electrogenic ion pump in an engineered in vitro environment to power such an artificial system. An integrated circuit is powered by adenosine triphosphate through the action of Na(+)/K(+) adenosine triphosphatases in an integrated in vitro lipid bilayer membrane. The ion pumps (active in the membrane at numbers exceeding 2 × 10(6) mm(-2)) are able to sustain a short-circuit current of 32.6 pA mm(-2) and an open-circuit voltage of 78 mV, providing for a maximum power transfer of 1.27 pW mm(-2) from a single bilayer. Two series-stacked bilayers provide a voltage sufficient to operate an integrated circuit with a conversion efficiency of chemical to electrical energy of 14.9%.

  2. Dual systemic tumor targeting with ligand-directed phage and Grp78 promoter induces tumor regression.

    PubMed

    Kia, Azadeh; Przystal, Justyna M; Nianiaris, Nastasia; Mazarakis, Nicholas D; Mintz, Paul J; Hajitou, Amin

    2012-12-01

    The tumor-specific Grp78 promoter is overexpressed in aggressive tumors. Cancer patients would benefit greatly from application of this promoter in gene therapy and molecular imaging; however, clinical benefit is limited by lack of strategies to target the systemic delivery of Grp78-driven transgenes to tumors. This study aims to assess the systemic efficacy of Grp78-guided expression of therapeutic and imaging transgenes relative to the standard cytomegalovirus (CMV) promoter. Combination of ligand and Grp78 transcriptional targeting into a single vector would facilitate systemic applications of the Grp78 promoter. We generated a dual tumor-targeted phage containing the arginine-glycine-aspartic acid tumor homing ligand and Grp78 promoter. Next, we combined flow cytometry, Western blot analysis, bioluminescence imaging of luciferase, and HSVtk/ganciclovir gene therapy and compared efficacy to conventional phage carrying the CMV promoter in vitro and in vivo in subcutaneous models of rat and human glioblastoma. We show that double-targeted phage provides persistent transgene expression in vitro and in tumors in vivo after systemic administration compared with conventional phage. Next, we showed significant tumor killing in vivo using the HSVtk/ganciclovir gene therapy and found a systemic antitumor effect of Grp78-driven HSVtk against therapy-resistant tumors. Finally, we uncovered a novel mechanism of Grp78 promoter activation whereby HSVtk/ganciclovir therapy upregulates Grp78 and transgene expression via the conserved unfolded protein response signaling cascade. These data validate the potential of Grp78 promoter in systemic cancer gene therapy and report the efficacy of a dual tumor targeting phage that may prove useful for translation into gene therapy and molecular imaging applications.

  3. Transdermal delivery of alprazolam from a monolithic patch: formulation based on in vitro characterization.

    PubMed

    Soler, L I; Boix, A; Lauroba, J; Colom, H; Domenech, J

    2012-10-01

    Alprazolam, a benzodiazepine widely used for the treatment of psychiatric disorders, has been aimed to be formulated in a transdermal delivery system (TDS) prototype. A series of TDS prototypes dosed in all cases at 0.35 mg·cm(-2) of alprazolam were prepared as a monolithic drug in adhesive matrix using acrylic pressure-sensitive adhesives (PSA) of acrylate vinyl acetate (Duro-tack(®)). The effects of several permeation enhancers as azone, transcutol, propylene glycol, dodecyl alcohol, decyl alcohol, diethanolamine, N-methyl pyrrolidone and lauric acid were studied. Prototypes have been characterized based on adhesion parameters (peel adhesion and shear adhesion), in vitro human skin permeation and in vitro drug release according to European Pharmacopoeia for the selected prototype. Best results show that a combination of permeation enhancers from different chemical groups is able to provide almost a 33 fold increase in the transdermal alprazolam flux of an aqueous saturated dispersion (from 0.054 ± 0.019 to 1.76 ± 0.21 μg h.cm(-2)). Based on these in vitro flux data, a predictive simulation of the achievable plasmatic levels was performed assuming a constant systemic infusion of drug. In summary, it is possible to obtain a prototype of a TDS of alprazolam with adequate adhesive properties (peel adhesion and shear adhesion) and able to predict sustained therapeutic plasmatic levels.

  4. [The effect of sodium phenylbutyrate to agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro].

    PubMed

    Gao, Jing; Ruan, Xinyong; Pan, Xinliang; Xu, Fenglei; Lei, Dapeng; Liu, Dayu

    2005-08-01

    To study the effect of sodium phenylbutyrate when it combined with agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro. MTT were used to examine the growth inhibition of Hep-2 cells treated by the combination of PB with 5-FU or CDDP in vitro. When 5-FU or CDDP combined with PB respectively, there was significantly difference between every two dose groups of the two agents or every dose group and control group ( P < 0.05). When the dosage of 5-FU or CDDP was definition,there was significantly difference between every two dose groups of PB ( P < 0.05). PB could enhance the cytotoxic effects of agents used in induction chemotherapy on laryngeal carcinoma cells Hep-2 in vitro, which showed the possibility in reinforcement the treatment effect and reduction the occurrence of the complication and toxic reaction of induction chemotherapy on laryngeal carcinoma.

  5. Hybrid System for Ex Vivo Hemorheological and Hemodynamic Analysis: A Feasibility Study

    PubMed Central

    Yeom, Eunseop; Jun Kang, Yang; Joon Lee, Sang

    2015-01-01

    Precise measurement of biophysical properties is important to understand the relation between these properties and the outbreak of cardiovascular diseases (CVDs). However, a systematic measurement for these biophysical parameters under in vivo conditions is nearly impossible because of complex vessel shape and limited practicality. In vitro measurements can provide more biophysical information, but in vitro exposure changes hemorheological properties. In this study, a hybrid system composed of an ultrasound system and microfluidic device is proposed for monitoring hemorheological and hemodynamic properties under more reasonable experimental conditions. Biophysical properties including RBC aggregation, viscosity, velocity, and pressure of blood flows are simultaneously measured under various conditions to demonstrate the feasibility and performance of this measurement system. The proposed technique is applied to a rat extracorporeal loop which connects the aorta and jugular vein directly. As a result, the proposed system is found to measure biophysical parameters reasonably without blood collection from the rat and provided more detailed information. This hybrid system, combining ultrasound imaging and microfluidic techniques to ex vivo animal models, would be useful for monitoring the variations of biophysical properties induced by chemical agents. It can be used to understand the relation between biophysical parameters and CVDs. PMID:26090816

  6. Effects of feeding condensed distillers solubles and crude glycerin alone or in combination on finishing beef cattle performance, carcass characteristics, and in vitro fermentation.

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to evaluate the effects of feeding condensed distillers solubles (DS) and crude glycerin alone or in combination on performance of finishing beef cattle and in vitro fermentation. In both experiments, dietary treatments consisted of a steam flaked corn (SFC) based diet...

  7. Synergistic Effects of Tetrandrine with Posaconazole Against Aspergillus fumigatus.

    PubMed

    Li, Shui-Xiu; Song, Yan-Jun; Jiang, Ling; Zhao, Ya-Jing; Guo, Hui; Li, Dong-Mei; Zhu, Kun-Ju; Zhang, Hong

    2017-09-01

    In our earlier in vitro and in vivo studies, synergistic effects were observed when itraconazole or voriconazole were combined with tetrandrine (TET) against Aspergillus fumigatus, and the synergistic mechanism was related to inhibition of the drug efflux pump. Posaconazole (PCZ) is a broad-spectrum triazole antifungal agent used for the treatment of diverse fungal infections, including aspergillosis and candidiasis. Herein, the antifungal effects of TET are further investigated in vitro and in vivo alone or combined with PCZ against 20 clinical isolates of A. fumigatus. We found that the minimal inhibitory concentrations (MICs) of PCZ were decreased one- to twofold and three- to fivefold across a series of concentration gradients in vitro in presence of TET. Time-killing curves revealed that the synergy was dependent on TET and PCZ concentrations as well as incubation time. The combination could further downregulate the expression of MDR2, MDR3, MDR4, and ATRF in PCZ-resistant strain, however, it has subtle effects on TET-synergized mechanism. In addition, TET in combination with PCZ significantly prolonged mice survival time and reduced kidney and brain tissue burdens in vivo. Our data in vitro and in vivo demonstrate that TET is an effective synergist with azoles against A. fumigates.

  8. In vitro antifungal activity of antipsychotic drugs and their combinations with conventional antifungals against Scedosporium and Pseudallescheria isolates.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Tóth, Liliána; Papp, Tamás; Chandrasekaran, Muthusamy; Kadaikunnan, Shine; Alharbi, Naiyf S; Vágvölgyi, Csaba

    2015-11-01

    In the present study, in vitro antifungal activities of five antipsychotic drugs (i.e., chlorpromazine hydrochloride, CPZ; trifluoperazine hydrochloride, TPZ; amantadine hydrochloride; R-(-)-deprenyl hydrochloride, and valproic acid sodium salt) and five conventional antifungal drugs (i.e., amphotericin B, AMB; caspofungin, CSP; itraconazole; terbinafine, TRB and voriconazole, VRC) were investigated in broth microdilution tests against four clinical and five environmental Scedosporium and Pseudallescheria isolates. When used alone, phenothiazines CPZ and TPZ exerted remarkable antifungal effects. Thus, their in vitro combinations with AMB, CSP, VRC, and TRB were also examined against the clinical isolates. In combination with antifungal agents, CPZ was able to act synergistically with AMB and TRB in cases of one and two isolates, respectively. In all other cases, indifferent interactions were revealed. Antagonism was not observed between the tested agents. These combinations may establish a more effective and less toxic therapy after further in vitro and in vivo studies for Scedosporium and Pseudallescheria infections. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Paradox between the responses of Escherichia coli K1 to ampicillin and chloramphenicol in vitro and in vivo.

    PubMed

    Kim, K S; Manocchio, M; Anthony, B F

    1984-11-01

    We evaluated the activity of ampicillin and chloramphenicol in vitro and in vivo against an Escherichia coli K1 strain. In vitro, the strain was relatively susceptible to both antibiotics (MIC and MBC of ampicillin, 2 and 4 micrograms/ml; MIC and MBC of chloramphenicol, 4 and 64 micrograms/ml). Checkerboard determinations of MBCs of drug combinations were consistent with antibiotic antagonism. Killing curves with concentrations of antibiotics similar to in vivo levels in blood and cerebrospinal fluid of infected rats indicated antagonism within the first 4 h and an indifferent effect of the combination at 24 h. Paradoxically, the combination was significantly more effective than ampicillin or chloramphenicol alone in vivo in infant rats. This was shown by (i) more rapid bacterial clearance from the blood and cerebrospinal fluid, (ii) a decreased incidence of meningitis in bacteremic animals, and (iii) improved survival. These findings illustrate a divergence between the effects of ampicillin and chloramphenicol against E. coli in vitro and in vivo and suggest that this combination is an effective synergistic regimen in this experimental model of E. coli bacteremia and meningitis.

  10. The JAK2/STAT3 inhibitor pacritinib effectively inhibits patient-derived GBM brain tumor initiating cells in vitro and when used in combination with temozolomide increases survival in an orthotopic xenograft model.

    PubMed

    Jensen, Katharine Victoria; Cseh, Orsolya; Aman, Ahmed; Weiss, Samuel; Luchman, Hema Artee

    2017-01-01

    The prognosis for patients diagnosed with glioblastoma multiforme (GBM) remains dismal, with current treatment prolonging survival only modestly. As such, there remains a strong need for novel therapeutic strategies. The janus kinase (JAK)2/signal transducer and activator of transcription (STAT)3 pathway regulates many cellular processes in GBM, including survival, proliferation, invasion, anti-apoptosis, and immune evasion. Here, we evaluated the preclinical efficacy of pacritinib, a novel compound targeting JAK2, using a collection of diverse patient-derived brain tumor initiating cells (BTICs). The effects of pacritinib on BTIC viability and sphere forming capacity were evaluated in vitro using the alamarBlue and neurosphere assays, respectively. On-target inhibition of JAK2/STAT3 signaling was investigated using western blotting. The efficacy of pacritinib was tested in vivo in pharmacokinetic analyses, liver microsome analyses, and Kaplan-Meier survival studies. In vitro, pacritinib decreased BTIC viability and sphere forming potential at low micromolar doses and demonstrated on-target inhibition of STAT3 signaling. Additionally, pacritinib was found to improve the response to temozolomide (TMZ) in TMZ-resistant BTICs. In vivo, systemic treatment with pacritinib demonstrated blood-brain barrier penetration and led to improved overall median survival in combination with TMZ, in mice orthotopically xenografted with an aggressive recurrent GBM BTIC culture. This preclinical study demonstrates the efficacy of pacritinib and supports the feasibility of testing pacritinib for the treatment of GBM, in combination with the standard of care TMZ.

  11. Mathematical Modeling of Cellular Cross-Talk Between Endothelial and Tumor Cells Highlights Counterintuitive Effects of VEGF-Targeted Therapies.

    PubMed

    Jain, Harsh; Jackson, Trachette

    2018-05-01

    Tumor growth and progression are critically dependent on the establishment of a vascular support system. This is often accomplished via the expression of pro-angiogenic growth factors, including members of the vascular endothelial growth factor (VEGF) family of ligands. VEGF ligands are overexpressed in a wide variety of solid tumors and therefore have inspired optimism that inhibition of the different axes of the VEGF pathway-alone or in combination-would represent powerful anti-angiogenic therapies for most cancer types. When considering treatments that target VEGF and its receptors, it is difficult to tease out the differential anti-angiogenic and anti-tumor effects of all combinations experimentally because tumor cells and vascular endothelial cells are engaged in a dynamic cross-talk that impacts key aspects of tumorigenesis, independent of angiogenesis. Here we develop a mathematical model that connects intracellular signaling responsible for both endothelial and tumor cell proliferation and death to population-level cancer growth and angiogenesis. We use this model to investigate the effect of bidirectional communication between endothelial cells and tumor cells on treatments targeting VEGF and its receptors both in vitro and in vivo. Our results underscore the fact that in vitro therapeutic outcomes do not always translate to the in vivo situation. For example, our model predicts that certain therapeutic combinations result in antagonism in vivo that is not observed in vitro. Mathematical modeling in this direction can shed light on the mechanisms behind experimental observations that manipulating VEGF and its receptors is successful in some cases but disappointing in others.

  12. In vitro flow cytometry-based screening platform for cellulase engineering

    PubMed Central

    Körfer, Georgette; Pitzler, Christian; Vojcic, Ljubica; Martinez, Ronny; Schwaneberg, Ulrich

    2016-01-01

    Ultrahigh throughput screening (uHTS) plays an essential role in directed evolution for tailoring biocatalysts for industrial applications. Flow cytometry-based uHTS provides an efficient coverage of the generated protein sequence space by analysis of up to 107 events per hour. Cell-free enzyme production overcomes the challenge of diversity loss during the transformation of mutant libraries into expression hosts, enables directed evolution of toxic enzymes, and holds the promise to efficiently design enzymes of human or animal origin. The developed uHTS cell-free compartmentalization platform (InVitroFlow) is the first report in which a flow cytometry-based screened system has been combined with compartmentalized cell-free expression for directed cellulase enzyme evolution. InVitroFlow was validated by screening of a random cellulase mutant library employing a novel screening system (based on the substrate fluorescein-di-β-D-cellobioside), and yielded significantly improved cellulase variants (e.g. CelA2-H288F-M1 (N273D/H288F/N468S) with 13.3-fold increased specific activity (220.60 U/mg) compared to CelA2 wildtype: 16.57 U/mg). PMID:27184298

  13. Fabrication of a biodegradable calcium polyphosphate/polyvinyl-urethane carbonate composite for high load bearing osteosynthesis applications.

    PubMed

    Ramsay, Scott D; Pilliar, Robert M; Santerre, J Paul

    2010-07-01

    The formation of biodegradable implants for use in osteosynthesis has been a major goal of biomaterials research for the past 2-3 decades. Self-reinforced polylactide systems represent the most significant success of this research to date, however, with elastic constants up to 12-15 GPa at best, they fail to provide the initial stiffness required of devices for stabilizing fractures of major load-bearing bones. Our research has investigated the use of calcium polyphosphate (CPP), an inorganic polymer in combination with polyvinyl-urethane carbonate (PVUC) organic polymers for such applications. Initial studies indicated that composite samples formed as interpenetrating phase composites (IPC) exhibited suitable as-made strength and stiffness, however, they displayed a rapid loss of properties when exposed to in vitro aging. An investigation to determine the mechanism of this accelerated in vitro degradation for the IPCs as well as to identify possible design changes to overcome this drawback was undertaken using a model IPC system. It was found that strong interfacial strength and minimal swelling of the PVUC are very important for obtaining and maintaining appropriate mechanical properties in vitro. (c) 2010 Wiley Periodicals, Inc.

  14. Synergistic interaction of ten essential oils against Haemonchus contortus in vitro.

    PubMed

    Katiki, L M; Barbieri, A M E; Araujo, R C; Veríssimo, C J; Louvandini, H; Ferreira, J F S

    2017-08-30

    Anthelmintic resistance in sheep gastrointestinal nematodes is a worldwide problem. Multi-drug resistant haemonchosis is the most serious impediment for small ruminant systems, and there are no new drug candidates currently under development. Molecules from natural sources have demonstrated anthelmintic activity against parasites. In this work, the monoterpenoids carvacrol, carvone, cineole, linalool, limonene, and thymol and the phenylpropanoids cinnamaldehyde, anethole, vanillin, and eugenol were assessed individually or in mixtures of ten binary, three ternary, and three quaternary combinations using the in vitro egg hatch assay with eggs of a multi-drug resistant strain of Haemonchus contortus. The main objective of this study was to identify the most effective interaction among essential oils with the greatest individual anthelmintic efficacy and to determine the most powerful combinations. The essential oils were ranked by their 50% lethal concentration (LC 50 ) as follows (mg/mL): cinamaldehyde (0.018), anethole (0.070), carvone (0.085), carvacrol (0.11), thymol (0.13), linalool (0.29), vanillin (0.57), eugenol (0.57), cineole (4.74), and limonene (207.5). Quantification of synergism, additive effect, and antagonism were calculated for binary, ternary, and quaternary combinations. The best anthelmintic effect resulting from synergistic activity among 16 different combinations was for cinnamaldehyde:carvacrol (CL 50 0.012mg/mL) and anethole:carvone (CL 50 0.013mg/mL). These results indicate that these binary combinations would be promising to be tested in sheep infected with H. contortus. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns.

    PubMed

    de Curtis, Marco; Librizzi, Laura; Uva, Laura

    2016-02-15

    Research on ictogenesis is based on the study of activity between seizures and during seizures in animal models of epilepsy (chronic condition) or in in vitro slices obtained from naïve non-epileptic brains after treatment with pro-convulsive drugs, manipulations of the extracellular medium and specific stimulation protocols. The in vitro isolated guinea pig brain retains the functional connectivity between brain structures and maintains interactions between neuronal, glial and vascular compartments. It is a close-to-in vivo preparation that offers experimental advantages not achieved with the use of other experimental models. Neurophysiological and imaging techniques can be utilized in this preparation to study brain activity during and between seizures induced by pharmacological or functional manipulations. Cellular and network determinants of interictal and ictal discharges that reproduce abnormal patterns observed in human focal epilepsies and the associated changes in extracellular ion and blood-brain permeability can be identified and analyzed in the isolated guinea pig brain. Ictal and interictal patterns recorded in in vitro slices may show substantial differences from seizure activity recorded in vivo due to slicing procedure itself. The isolated guinea pig brain maintained in vitro by arterial perfusion combines the typical facilitated access of in vitro preparations, that are difficult to approach during in vivo experiments, with the preservation of larger neuronal networks. The in vitro whole isolated guinea pig brain preparation offers an unique experimental model to study systemic and neurovascular changes during ictogenesis. Published by Elsevier B.V.

  16. Combination of ultrasound and rtPA enhances fibrinolysis in an In Vitro clot system

    PubMed Central

    Winter, Philipp; Müller-Werkmeister, Hendrik; Strand, Susanne; König, Jochem; Kempski, Oliver; Ringel, Florian; Kantelhardt, Sven R.; Keric, Naureen

    2017-01-01

    Background Catheter-based lysis with recombinant tissue plasminogen activator (rtPA) is a well-established therapy for spontaneous intracerebral hemorrhage (ICH). The effectiveness of this therapy can be increased with ultrasound, but the optimal conditions are not yet clearly established. Using a novel in vitro system of blood clots previously developed by our group, we investigated various parameters of intralesional sonothrombolysis using an endosonography catheter in combination with rtPA. Methods Standardized human blood clots were equipped with a drainage catheter and weighed before and after 4 treatments: control (drainage only), rtPA only, ultrasound only and the combination of rtPA+ultrasound. The effectiveness of ultrasound was further analysed in terms of optimal frequency, duration and distance to the probe. Temperature and acoustic peak rarefaction pressure (APRP) were assessed to analyse potential adverse effects and quantify lysis. Histo-morphological analysis of the treated clots was performed by H&E staining and confocal laser scanning microscopy using fluorescent fibrinogen. Results The combined treatment rtPA+ultrasound achieved the highest lysis rates with a relative weight of 30.3%±5.5% (p≤0.0001) compared to all other groups. Similar results were observed when treating aged clots. Confocal fluorescent microscopy of the treated clots revealed a rarefied fibrin mesh without cavitations. No relevant temperature increase occurred (0.53±0.75°C). The optimal insonation treatment time was 1 hour. APRP measurements showed a lysis threshold of 515.5±113.4 kPa. Application of 10 MHz achieved optimal lysis and lysis radius, while simultaneously proving to be the best frequency for morphologic imaging of the clot and surrounding tissue. Conclusions These promising data provide the basis for an individualized minimal invasive ICH therapy by rtPA and sonothrombolysis independent of ICH age. PMID:29145482

  17. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics

    PubMed Central

    Vorrink, Sabine U.; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M.

    2017-01-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.—Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. PMID:28264975

  18. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics.

    PubMed

    Vorrink, Sabine U; Ullah, Shahid; Schmidt, Staffan; Nandania, Jatin; Velagapudi, Vidya; Beck, Olof; Ingelman-Sundberg, Magnus; Lauschke, Volker M

    2017-06-01

    Adverse reactions or lack of response to medications are important concerns for drug development programs. However, faithful predictions of drug metabolism and toxicity are difficult because animal models show only limited translatability to humans. Furthermore, current in vitro systems, such as hepatic cell lines or primary human hepatocyte (PHH) 2-dimensional (2D) monolayer cultures, can be used only for acute toxicity tests because of their immature phenotypes and inherent instability. Therefore, the migration to novel phenotypically stable models is of prime importance for the pharmaceutical industry. Novel 3-dimensional (3D) culture systems have been shown to accurately mimic in vivo hepatic phenotypes on transcriptomic and proteomic level, but information about their metabolic stability is lacking. Using a combination of targeted and untargeted high-resolution mass spectrometry, we found that PHHs in 3D spheroid cultures remained metabolically stable for multiple weeks, whereas metabolic patterns of PHHs from the same donors cultured as conventional 2D monolayers rapidly deteriorated. Furthermore, pharmacokinetic differences between donors were maintained in 3D spheroid cultures, enabling studies of interindividual variability in drug metabolism and toxicity. We conclude that the 3D spheroid system is metabolically stable and constitutes a suitable model for in vitro studies of long-term drug metabolism and pharmacokinetics.-Vorrink, S. U., Ullah, S., Schmid, S., Nandania, J., Velagapudi, V., Beck, O., Ingelman-Sundberg, M., Lauschke, V. M. Endogenous and xenobiotic metabolic stability of primary human hepatocytes in long-term 3D spheroid cultures revealed by a combination of targeted and untargeted metabolomics. © The Author(s).

  19. In Vivo and In Vitro Antimalarial Properties of Azithromycin-Chloroquine Combinations That Include the Resistance Reversal Agent Amlodipine ▿ †

    PubMed Central

    Pereira, Marcus R.; Henrich, Philipp P.; Sidhu, Amar bir Singh; Johnson, David; Hardink, Joel; Van Deusen, Jeffrey; Lin, Jian; Gore, Katrina; O'Brien, Connor; Wele, Mamadou; Djimde, Abdoulaye; Chandra, Richa; Fidock, David A.

    2011-01-01

    Evidence of emerging Plasmodium falciparum resistance to artemisinin-based combination therapies, documented in western Cambodia, underscores the continuing need to identify new antimalarial combinations. Given recent reports of the resurgence of chloroquine-sensitive P. falciparum parasites in Malawi, after the enforced and prolonged withdrawal of this drug, and indications of a possible synergistic interaction with the macrolide azithromycin, we sought to further characterize chloroquine-azithromycin combinations for their in vitro and in vivo antimalarial properties. In vitro 96-h susceptibility testing of chloroquine-azithromycin combinations showed mostly additive interactions against freshly cultured P. falciparum field isolates obtained from Mali. Some evidence of synergy, however, was apparent at the fractional 90% inhibitory concentration level. Additional in vitro testing highlighted the resistance reversal properties of amlodipine for both chloroquine and quinine. In vivo experiments, using the Peters 4-day suppressive test in a P. yoelii mouse model, revealed up to 99.9% suppression of parasitemia following treatment with chloroquine-azithromycin plus the R enantiomer of amlodipine. This enantiomer was chosen because it does not manifest the cardiac toxicities observed with the racemic mixture. Pharmacokinetic/pharmacodynamic analyses in this rodent model and subsequent extrapolation to a 65-kg adult led to the estimation that 1.8 g daily of R-amlodipine would be required to achieve similar efficacy in humans, for whom this is likely an unsafe dose. While these data discount amlodipine as an additional partner for chloroquine-based combination therapy, our studies continue to support azithromycin as a safe and effective addition to antimalarial combination therapies. PMID:21464242

  20. Extended evaluation on the ES-D3 cell differentiation assay combined with the BeWo transport model, to predict relative developmental toxicity of triazole compounds.

    PubMed

    Li, Hequn; Flick, Burkhard; Rietjens, Ivonne M C M; Louisse, Jochem; Schneider, Steffen; van Ravenzwaay, Bennard

    2016-05-01

    The mouse embryonic stem D3 (ES-D3) cell differentiation assay is based on the morphometric measurement of cardiomyocyte differentiation and is a promising tool to detect developmental toxicity of compounds. The BeWo transport model, consisting of BeWo b30 cells grown on transwell inserts and mimicking the placental barrier, is useful to determine relative placental transport velocities of compounds. We have previously demonstrated the usefulness of the ES-D3 cell differentiation assay in combination with the in vitro BeWo transport model to predict the relative in vivo developmental toxicity potencies of a set of reference azole compounds. To further evaluate this combined in vitro toxicokinetic and toxicodynamic approach, we combined ES-D3 cell differentiation data of six novel triazoles with relative transport rates obtained from the BeWo model and compared the obtained ranking to the developmental toxicity ranking as derived from in vivo data. The data show that the combined in vitro approach provided a correct prediction for in vivo developmental toxicity, whereas the ES-D3 cell differentiation assay as stand-alone did not. In conclusion, we have validated the combined in vitro approach for developmental toxicity, which we have previously developed with a set of reference azoles, for a set of six novel triazoles. We suggest that this combined model, which takes both toxicodynamic and toxicokinetic aspects into account, should be further validated for other chemical classes of developmental toxicants.

  1. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts*

    PubMed Central

    Yoshida, Keisuke; Hara, Satoshi; Hisabori, Toru

    2015-01-01

    Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network. PMID:25878252

  2. The combined effect of thermal and chemotherapy on HeLa cells using magnetically actuated smart textured fibrous system.

    PubMed

    Tiwari, Pranav; Agarwal, Sakshi; Srivastava, Sachchidanand; Jain, Shilpee

    2018-01-01

    Thermal therapy combined with chemotherapy is one of the advanced and efficient methods to eradicate cancer. In this work, we fabricated magnetically actuated smart textured (MAST) fibrous systems and studied their candidacy for cancer treatment. The polycaprolactone-Fe 3 O 4 based MAST fibers were fabricated using electrospinning technique. These MAST fibrous systems contained carbogenic quantum dots as a tracking agent and doxorubicin hydrochloride anticancer drug. Additionally, as fabricated MAST fibrous systems were able to deliver anticancer drug and heat energy simultaneously to kill HeLa cells in a 10 min period in vitro. After treatment, the metabolic activity and morphology of HeLa cells were analyzed. In addition, the mechanism of cell death was studied using flow cytometry. Interestingly, the navigation of these systems in the fluid can be controlled with the application of gradient magnetic field. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 40-51, 2018. © 2016 Wiley Periodicals, Inc.

  3. A controlled double-duration inducible gene expression system for cartilage tissue engineering.

    PubMed

    Ma, Ying; Li, Junxiang; Yao, Yi; Wei, Daixu; Wang, Rui; Wu, Qiong

    2016-05-25

    Cartilage engineering that combines competent seeding cells and a compatible scaffold is increasingly gaining popularity and is potentially useful for the treatment of various bone and cartilage diseases. Intensive efforts have been made by researchers to improve the viability and functionality of seeding cells of engineered constructs that are implanted into damaged cartilage. Here, we designed an integrative system combining gene engineering and the controlled-release concept to solve the problems of both seeding cell viability and functionality through precisely regulating the anti-apoptotic gene bcl-2 in the short-term and the chondrogenic master regulator Sox9 in the long-term. Both in vitro and in vivo experiments demonstrated that our system enhances the cell viability and chondrogenic effects of the engineered scaffold after introduction of the system while restricting anti-apoptotic gene expression to only the early stage, thereby preventing potential oncogenic and overdose effects. Our system was designed to be modular and can also be readily adapted to other tissue engineering applications with minor modification.

  4. Enhanced antitumor effect of curcumin liposomes with local hyperthermia in the LL/2 model.

    PubMed

    Tang, Jian-Cai; Shi, Hua-Shan; Wan, Li-Qiang; Wang, Yong-Sheng; Wei, Yu-Quan

    2013-01-01

    Curcumin previously was proven to inhibit angiogenesis and display potent antitumor activity in vivo and in vitro. In the present study, we investigated whether a combination curcumin with hyperthermia would have a synergistic antitumor effect in the LL/2 model. The results indicated that combination therapy significantly inhibited cell proliferation of MS-1 and LL/2 in vitro. LL/2 experiment model also demonstrated that the combination therapy inhibited tumor growth and prolonged the life span in vivo. Furthermore, combination therapy reduced angiogenesis and increased tumor apoptosis. Our findings suggest that the combination therapy exerted synergistic antitumor effects, providing a new perspective fpr clinical tumor therapy.

  5. Enhanced antitumor effect of YM872 and AG1296 combination treatment on human glioblastoma xenograft models.

    PubMed

    Watanabe, Takashi; Ohtani, Toshiyuki; Aihara, Masanori; Ishiuchi, Shogo

    2013-04-01

    Blockade of Ca(++)-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) inhibits the proliferation of human glioblastoma by inhibiting Akt phosphorylation, which is independent of the phosphatidylinositol 3-kinase pathway. Inhibiting platelet-derived growth factor receptor (PDGFR)-mediated phosphorylation causes growth inhibition in glioblastoma cells. The authors of this study investigated the effects of YM872 and AG1296, singly and in combination and targeting different pathways upstream of Akt, on Akt-mediated tumor growth in glioblastoma cells in vivo and in vitro. The expression of AMPAR, PDGFR, and c-kit in glioblastoma cells was analyzed via immunofluorescence. Glioblastoma cells, both in culture and in xenografts grown in mice, were treated with YM872 and AG1296, singly or in combination. Inhibition of tumor growth was observed after treatment in the xenograft model. Cell proliferation assays were performed using anti-Ki 67 antibody in vivo and in vitro. The CD34-positive tumor vessel counts within the vascular hot spots of tumor specimens were evaluated. Phosphorylation of Akt was studied using Western blot analysis. Combined administration of YM872 and AG1296 had a significant enhanced effect on the inhibition of cell proliferation and reduction of tumor vascularity in the xenograft model. These agents singly and in combination demonstrated a significant reduction of Akt phosphorylation at Ser473 and inhibition of tumor proliferation in vitro, although combined administration had no enhanced antitumor effects. The strongly enhanced antitumor effect of this combination therapy in vivo rather than in vitro may be attributable to disruption of the aberrant vascular niche. This combination therapy might provide substantial benefits to patients with glioblastoma.

  6. Molecular Mechanics and Dynamics Characterization of an "in silico" Mutated Protein: A Stand-Alone Lab Module or Support Activity for "in vivo" and "in vitro" Analyses of Targeted Proteins

    ERIC Educational Resources Information Center

    Chiang, Harry; Robinson, Lucy C.; Brame, Cynthia J.; Messina, Troy C.

    2013-01-01

    Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems.…

  7. Thicker three-dimensional tissue from a “symbiotic recycling system” combining mammalian cells and algae

    PubMed Central

    Haraguchi, Yuji; Kagawa, Yuki; Sakaguchi, Katsuhisa; Matsuura, Katsuhisa; Shimizu, Tatsuya; Okano, Teruo

    2017-01-01

    In this paper, we report an in vitro co-culture system that combines mammalian cells and algae, Chlorococcum littorale, to create a three-dimensional (3-D) tissue. While the C2C12 mouse myoblasts and rat cardiac cells consumed oxygen actively, intense oxygen production was accounted for by the algae even in the co-culture system. Although cell metabolism within thicker cardiac cell-layered tissues showed anaerobic respiration, the introduction of innovative co-cultivation partially changed the metabolism to aerobic respiration. Moreover, the amount of glucose consumption and lactate production in the cardiac tissues and the amount of ammonia in the culture media decreased significantly when co-cultivated with algae. In the cardiac tissues devoid of algae, delamination was observed histologically, and the release of creatine kinase (CK) from the tissues showed severe cardiac cell damage. On the other hand, the layered cell tissues with algae were observed to be in a good histological condition, with less than one-fifth decline in CK release. The co-cultivation with algae improved the culture condition of the thicker tissues, resulting in the formation of 160 μm-thick cardiac tissues. Thus, the present study proposes the possibility of creating an in vitro “symbiotic recycling system” composed of mammalian cells and algae. PMID:28139713

  8. The combination of i-leader truncation and gemcitabine improves oncolytic adenovirus efficacy in an immunocompetent model.

    PubMed

    Puig-Saus, C; Laborda, E; Rodríguez-García, A; Cascalló, M; Moreno, R; Alemany, R

    2014-02-01

    Adenovirus (Ad) i-leader protein is a small protein of unknown function. The C-terminus truncation of the i-leader protein increases Ad release from infected cells and cytotoxicity. In the current study, we use the i-leader truncation to enhance the potency of an oncolytic Ad. In vitro, an i-leader truncated oncolytic Ad is released faster to the supernatant of infected cells, generates larger plaques, and is more cytotoxic in both human and Syrian hamster cell lines. In mice bearing human tumor xenografts, the i-leader truncation enhances oncolytic efficacy. However, in a Syrian hamster pancreatic tumor model, which is immunocompetent and less permissive to human Ad, antitumor efficacy is only observed when the i-leader truncated oncolytic Ad, but not the non-truncated version, is combined with gemcitabine. This synergistic effect observed in the Syrian hamster model was not seen in vitro or in immunodeficient mice bearing the same pancreatic hamster tumors, suggesting a role of the immune system in this synergism. These results highlight the interest of the i-leader C-terminus truncation because it enhances the antitumor potency of an oncolytic Ad and provides synergistic effects with gemcitabine in the presence of an immune competent system.

  9. A review of the influence of growth factors and cytokines in in vitro human keratinocyte migration.

    PubMed

    Peplow, Philip V; Chatterjee, Marissa P

    2013-04-01

    Keratinocyte migration from the wound edge is a crucial step in the reepithelization of cutaneous wounds. Growth factors and cytokines, released from cells that invade the wound matrix, play an important role, and several in vitro assays have been performed to elucidate this. The purposes of this study were to review in vitro human studies on keratinocyte migration to identify those growth factors or cytokines that stimulate keratinocyte migration and whether these assays might serve as a screening procedure prior to testing combinations of growth factors or cytokines to promote wound closure in vivo. Research papers investigating effect of growth factors and cytokines on human keratinocyte migration in vitro were retrieved from library sources, PubMed databases, reference lists of papers, and searches of relevant journals. Fourteen different growth factors and cytokines enhanced migration in scratch wound assay and HGF together with TGF-β, and IGF-1 with EGF, were more stimulatory than either growth factor alone. HGF with TGF-β1 had a greater chemokinetic effect than either growth factor alone in transmigration assay. TGF-β1, FGF-7, FGF-2 and AGF were chemotactic to keratinocytes. EGF, TGF-α, IL-1α, IGF and MGSA enhanced cell migration on ECM proteins. Many growth factors and cytokines enhanced migration of keratinocytes in vitro, and certain combinations of growth factors were more stimulatory than either alone. These and other combinations that stimulate keratinocyte migration in vitro should be tested for effect on wound closure and repair in vivo. The scratch wound assay provides a useful, inexpensive and easy-to-perform screening method for testing individual or combinations of growth factors or cytokines, or growth factors combined with other modalities such as laser irradiation, prior to performing wound healing studies with laboratory animals. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Efficient sequence-specific isolation of DNA fragments and chromatin by in vitro enChIP technology using recombinant CRISPR ribonucleoproteins.

    PubMed

    Fujita, Toshitsugu; Yuno, Miyuki; Fujii, Hodaka

    2016-04-01

    The clustered regularly interspaced short palindromic repeats (CRISPR) system is widely used for various biological applications, including genome editing. We developed engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR to isolate target genomic regions from cells for their biochemical characterization. In this study, we developed 'in vitro enChIP' using recombinant CRISPR ribonucleoproteins (RNPs) to isolate target genomic regions. in vitro enChIP has the great advantage over conventional enChIP of not requiring expression of CRISPR complexes in cells. We first showed that in vitro enChIP using recombinant CRISPR RNPs can be used to isolate target DNA from mixtures of purified DNA in a sequence-specific manner. In addition, we showed that this technology can be used to efficiently isolate target genomic regions, while retaining their intracellular molecular interactions, with negligible contamination from irrelevant genomic regions. Thus, in vitro enChIP technology is of potential use for sequence-specific isolation of DNA, as well as for identification of molecules interacting with genomic regions of interest in vivo in combination with downstream analysis. © 2016 The Authors. Genes to Cells published by Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  11. REJUVENATION OF PERIOSTEAL CHONDROGENESIS USING LOCAL GROWTH FACTOR INJECTION

    PubMed Central

    Reinholz, G.G.; Fitzsimmons, J.S.; Casper, M.; Ruesink, T.J.; Chung, H.W.; Schagemann, J.C.; O’Driscoll, S.W.

    2015-01-01

    Objective To examine the potential for rejuvenation of aged periosteum by local injection of transforming growth factor-beta1 (TGF-β1) and insulin-like growth factor-1 (IGF-1) alone or in combination to induce cambium cell proliferation and enhance in vitro periosteal cartilage formation. Methods A total of 367 New Zealand white rabbits (6, 12, and 24+ month-old) received subperiosteal injections of TGF-β1 and/or IGF-1 percutaneously. After 1, 3, 5, or 7 days, the rabbits were sacrificed and cambium cellularity or in vitro cartilage forming capacity was determined. Results A significant increase in cambium cellularity and thickness, and in vitro cartilage formation was observed after injection of TGF-β1 alone or in combination with IGF-1. In 12 month-old rabbits, mean cambium cellularity increased 5-fold from 49 to 237 cells/mm and in vitro cartilage production increased 12-fold from 0.8 to 9.7 mg seven days after TGF-β1 (200 ng) injection compared to vehicle controls (p<0.0001). A correlation was observed between cambium cellularity and in vitro cartilage production (R2=0.98). An added benefit of IGF-1 plus TGF-β1 on in vitro cartilage production compared to TGF-β1 alone was observed in the 2 year old rabbits. IGF-1 alone generally had no effect on either cambium cellularity or in vitro cartilage production in any of the age groups. Conclusions These results clearly demonstrate that it is possible to increase cambium cellularity and in vitro cartilage production in aged rabbit periosteum, to levels comparable to younger rabbits, using local injection of TGF-β1 alone or in combination with IGF-1, thereby rejuvenating aged periosteum. PMID:19064326

  12. Enhanced blood-brain barrier transport of vinpocetine by oral delivery of mixed micelles in combination with a message guider.

    PubMed

    Ding, Jiaojiao; Sun, Yujiao; Li, Jinfeng; Wang, Huimin; Mao, Shirui

    2017-07-01

    The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.

  13. Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro

    PubMed Central

    Teng, Geling; Ju, Yuanrong; Yang, Yepeng; Hua, Hu; Chi, Jingyu; Mu, Xiuan

    2016-01-01

    Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa cells and may improve the radiosensitivity of HeLa cells to γ-rays. It was observed that the NTR/CB1954 suicide gene system exerted marked cytotoxic effects on HeLa cells. The combined therapeutic effects of NTR/CB1954 and γ-rays on HeLa cells demonstrated a synergistic effect. CB1954 at concentrations of 12.5 and 25 µmol/l increased the sensitization enhancement ratio of HeLa cells to 1.54 and 1.66, respectively. Therefore, when compared with monotherapy, the combined therapy of NTR/CB1954 and γ-rays may increase the apoptotic rate and enhance the radiosensitivity of HeLa cells. The combined therapy of γ-ray radiation and the NTR/CB1954 suicide gene system may be a novel and potent therapeutic method for the treatment of cervical carcinoma. PMID:27840931

  14. Combined antitumor activity of the nitroreductase/CB1954 suicide gene system and γ-rays in HeLa cells in vitro.

    PubMed

    Teng, Geling; Ju, Yuanrong; Yang, Yepeng; Hua, Hu; Chi, Jingyu; Mu, Xiuan

    2016-12-01

    Escherichia coli nitroreductase (NTR) may convert the prodrug CB1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide) into a bifunctional alkylating agent, which may lead to DNA crosslinks and the apoptosis of cancer cells. NTR/CB1954 has been demonstrated to be an effective gene therapy in cancer cells. The present study examined whether the NTR/CB1954 suicide gene system had cytotoxic effects on HeLa cells and may improve the radiosensitivity of HeLa cells to γ‑rays. It was observed that the NTR/CB1954 suicide gene system exerted marked cytotoxic effects on HeLa cells. The combined therapeutic effects of NTR/CB1954 and γ‑rays on HeLa cells demonstrated a synergistic effect. CB1954 at concentrations of 12.5 and 25 µmol/l increased the sensitization enhancement ratio of HeLa cells to 1.54 and 1.66, respectively. Therefore, when compared with monotherapy, the combined therapy of NTR/CB1954 and γ‑rays may increase the apoptotic rate and enhance the radiosensitivity of HeLa cells. The combined therapy of γ‑ray radiation and the NTR/CB1954 suicide gene system may be a novel and potent therapeutic method for the treatment of cervical carcinoma.

  15. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel.

    PubMed

    Wein, Alexander N; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T; Leppla, Stephen H

    2013-02-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wildtype lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an antimitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an antiangiogenesis therapy such as sunitinib or sorafinib.

  16. Codelivery of dual drugs from polymeric micelles for simultaneous targeting of both cancer cells and cancer stem cells.

    PubMed

    Krishnamurthy, Sangeetha; Ng, Victor W L; Gao, Shujun; Tan, Min-Han; Hedrick, James L; Yang, Yi Yan

    2015-01-01

    Phenformin-loaded micelles (Phen M) were used in combination with gemcitabine-loaded micelles (Gem M) to study their combined effect against H460 human lung cancer cells and cancer stem cells (CSCs) in vitro and in vivo. Gem M and Phen M were prepared via self-assembly of a mixture of a diblock copolymer of PEG and urea-functionalized polycarbonate (PEG-PUC) and a diblock copolymer of PEG and acid-functionalized polycarbonate (PEG-PAC) through hydrogen bonding and ionic interactions. Gem M and Phen M were characterized and tested for efficacy both in vitro and in vivo against cancer cells and CSCs. The combination of Gem M/Phen M exhibited higher cytotoxicity against CSCs and non-CSCs than Gem M and Phen M alone, and showed significant cell cycle growth arrest in vitro. The combination therapy had superior tumor suppression and apoptosis in vivo without inducing toxicity to liver and kidney. The combination of Gem M and Phen M may be potentially used in lung cancer therapy.

  17. Building an experimental model of the human body with non-physiological parameters.

    PubMed

    Labuz, Joseph M; Moraes, Christopher; Mertz, David R; Leung, Brendan M; Takayama, Shuichi

    2017-03-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform - commonly called a 'human-on-a-chip (HOC)' - requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo -like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O 2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10 -6 ) microfluidic model of the human body.

  18. Real-Time Monitoring of Singlet Oxygen and Oxygen Partial Pressure During the Deep Photodynamic Therapy In Vitro.

    PubMed

    Li, Weitao; Huang, Dong; Zhang, Yan; Liu, Yangyang; Gu, Yueqing; Qian, Zhiyu

    2016-09-01

    Photodynamic therapy (PDT) is an effective noninvasive method for the tumor treatment. The major challenge in current PDT research is how to quantitatively evaluate therapy effects. To our best knowledge, this is the first time to combine multi-parameter detection methods in PDT. More specifically, we have developed a set of system, including the high-sensitivity measurement of singlet oxygen, oxygen partial pressure and fluorescence image. In this paper, the detection ability of the system was validated by the different concentrations of carbon quantum dots. Moreover, the correlation between singlet oxygen and oxygen partial pressure with laser irradiation was observed. Then, the system could detect the signal up to 0.5 cm tissue depth with 660 nm irradiation and 1 cm tissue depth with 980 nm irradiation by using up-conversion nanoparticles during PDT in vitro. Furthermore, we obtained the relationship among concentration of singlet oxygen, oxygen partial pressure and tumor cell viability under certain conditions. The results indicate that the multi-parameter detection system is a promising asset to evaluate the deep tumor therapy during PDT. Moreover, the system might be potentially used for the further study in biology and molecular imaging.

  19. Building an experimental model of the human body with non-physiological parameters

    PubMed Central

    Labuz, Joseph M.; Moraes, Christopher; Mertz, David R.; Leung, Brendan M.; Takayama, Shuichi

    2017-01-01

    New advances in engineering and biomedical technology have enabled recent efforts to capture essential aspects of human physiology in microscale, in-vitro systems. The application of these advances to experimentally model complex processes in an integrated platform — commonly called a ‘human-on-a-chip (HOC)’ — requires that relevant compartments and parameters be sized correctly relative to each other and to the system as a whole. Empirical observation, theoretical treatments of resource distribution systems and natural experiments can all be used to inform rational design of such a system, but technical and fundamental challenges (e.g. small system blood volumes and context-dependent cell metabolism, respectively) pose substantial, unaddressed obstacles. Here, we put forth two fundamental principles for HOC design: inducing in-vivo-like cellular metabolic rates is necessary and may be accomplished in-vitro by limiting O2 availability and that the effects of increased blood volumes on drug concentration can be mitigated through pharmacokinetics-based treatments of solute distribution. Combining these principles with natural observation and engineering workarounds, we derive a complete set of design criteria for a practically realizable, physiologically faithful, five-organ millionth-scale (× 10−6) microfluidic model of the human body. PMID:28713851

  20. Integration of Optical Manipulation and Electrophysiological Tools to Modulate and Record Activity in Neural Networks

    NASA Astrophysics Data System (ADS)

    Difato, F.; Schibalsky, L.; Benfenati, F.; Blau, A.

    2011-07-01

    We present an optical system that combines IR (1064 nm) holographic optical tweezers with a sub-nanosecond-pulsed UV (355 nm) laser microdissector for the optical manipulation of single neurons and entire networks both on transparent and non-transparent substrates in vitro. The phase-modulated laser beam can illuminate the sample concurrently or independently from above or below assuring compatibility with different types of microelectrode array and patch-clamp electrophysiology. By combining electrophysiological and optical tools, neural activity in response to localized stimuli or injury can be studied and quantified at sub-cellular, cellular, and network level.

  1. Imaging approach to mechanistic study of nanoparticle interactions with the blood-brain barrier.

    PubMed

    Bramini, Mattia; Ye, Dong; Hallerbach, Anna; Nic Raghnaill, Michelle; Salvati, Anna; Aberg, Christoffer; Dawson, Kenneth A

    2014-05-27

    Understanding nanoparticle interactions with the central nervous system, in particular the blood-brain barrier, is key to advances in therapeutics, as well as assessing the safety of nanoparticles. Challenges in achieving insights have been significant, even for relatively simple models. Here we use a combination of live cell imaging and computational analysis to directly study nanoparticle translocation across a human in vitro blood-brain barrier model. This approach allows us to identify and avoid problems in more conventional inferential in vitro measurements by identifying the catalogue of events of barrier internalization and translocation as they occur. Potentially this approach opens up the window of applicability of in vitro models, thereby enabling in depth mechanistic studies in the future. Model nanoparticles are used to illustrate the method. For those, we find that translocation, though rare, appears to take place. On the other hand, barrier uptake is efficient, and since barrier export is small, there is significant accumulation within the barrier.

  2. Microfluidics-assisted in vitro drug screening and carrier production

    PubMed Central

    Tsui, Jonathan H.; Lee, Woohyuk; Pun, Suzie H.; Kim, Jungkyu; Kim, Deok-Ho

    2013-01-01

    Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development. PMID:23856409

  3. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    PubMed

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kienhuis, Anne S., E-mail: anne.kienhuis@rivm.nl; RIKILT, Institute of Food Safety, Wageningen UR, PO Box 230, 6700 AE, Wageningen; Netherlands Toxicogenomics Centre

    Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is usedmore » to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.« less

  5. Functionalized graphene oxide-based thermosensitive hydrogel for near-infrared chemo-photothermal therapy on tumor.

    PubMed

    Zhu, Xiali; Zhang, Yingjie; Huang, Heqing; Zhang, Huijuan; Hou, Lin; Zhang, Zhenzhong

    2016-03-01

    A functionalized graphene oxide-based thermosensitive hydrogel loaded with docetaxel for intratumoral delivery was designed to enhance therapeutic efficacy and alleviate system toxicity. First, graphene oxide was functionalized with chitosan to acquire high stability in physiological solutions. And then docetaxel-graphene oxide/chitosan gel was formed by mixed docetaxel-graphene oxide/chitosan suspension with hydrogel which was made from Poloxamer 407 and Poloxamer 188. Cellular uptake, antitumor effect in vitro and in vivo, cell apoptosis, and biodistribution of docetaxel-graphene oxide/chitosan gel were investigated, compared with the docetaxel solution. Graphene oxide/chitosan was stable in physiological solution, and docetaxel released much slower from docetaxel-graphene oxide/chitosan gel with a pH-responsive feature. Compared with free docetaxel, docetaxel-graphene oxide/chitosan could afford higher antitumor efficacy in Michigan Cancer Foundation-7 (MCF-7) cells in vitro. Furthermore, docetaxel-grapheme oxide/chitosan gel which was injected within tumor could afford higher concentration and longer resident time in tumor tissues of mice in vivo, without obvious toxic effects to normal organs. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced tumor inhibition in vitro and in vivo. Docetaxel-graphene oxide/chitosan gel in combination with 808 nm near-infrared laser irradiation had great potential for cancer chemo-photothermal therapy. © The Author(s) 2016.

  6. Programmable In Vitro Coencapsidation of Guest Proteins for Intracellular Delivery by Virus-like Particles.

    PubMed

    Dashti, Noor H; Abidin, Rufika S; Sainsbury, Frank

    2018-05-22

    Bioinspired self-sorting and self-assembling systems using engineered versions of natural protein cages are being developed for biocatalysis and therapeutic delivery. The packaging and intracellular delivery of guest proteins is of particular interest for both in vitro and in vivo cell engineering. However, there is a lack of bionanotechnology platforms that combine programmable guest protein encapsidation with efficient intracellular uptake. We report a minimal peptide anchor for in vivo self-sorting of cargo-linked capsomeres of murine polyomavirus (MPyV) that enables controlled encapsidation of guest proteins by in vitro self-assembly. Using Förster resonance energy transfer, we demonstrate the flexibility in this system to support coencapsidation of multiple proteins. Complementing these ensemble measurements with single-particle analysis by super-resolution microscopy shows that the stochastic nature of coencapsidation is an overriding principle. This has implications for the design and deployment of both native and engineered self-sorting encapsulation systems and for the assembly of infectious virions. Taking advantage of the encoded affinity for sialic acids ubiquitously displayed on the surface of mammalian cells, we demonstrate the ability of self-assembled MPyV virus-like particles to mediate efficient delivery of guest proteins to the cytosol of primary human cells. This platform for programmable coencapsidation and efficient cytosolic delivery of complementary biomolecules therefore has enormous potential in cell engineering.

  7. Combinations of chlorocatechols and heavy metals cause DNA degradation in vitro but must not result in increased mutation rates in vivo.

    PubMed

    Schweigert, N; Belkin, S; Leong-Morgenthaler, P; Zehnder, A J; Eggen, R I

    1999-01-01

    Chlorocatechols introduced into the environment directly or as a result of degradation processes are highly toxic, particularly when combined with heavy metals. With in vitro DNA degradation assays, the high reactivity of chlorocatechols combined with heavy metals could be shown, whereby copper was shown to be more active than iron. Structure-activity analysis showed that the degradation potential of the chlorocatechols decreased with an increasing number of chloratoms. The addition of reactive oxygen species scavengers allowed the identification of hydrogen peroxide as an important agent leading to DNA damage in this reaction. The potential of other reactive compounds, however, can neither be determined nor excluded with this approach. Exposure of Escherichia coli and Salmonella typhimurium cultures to the same mixtures of chlorocatechols and copper surprisingly did not lead to an enhanced mutation rate. This phenomenon was explained by doing marker gene expression measurements and toxicity tests with E. coli mutants deficient in oxidative stress defense or DNA repair. In catechol-copper-exposed cultures an increased peroxide level could indeed be demonstrated, but the highly efficient defense and repair systems of E. coli avoid the phenotypical establishment of mutations. Increased mutation rates under chronic exposure, however, cannot be excluded.

  8. Stimuli-free programmable drug release for combination chemo-therapy

    NASA Astrophysics Data System (ADS)

    Fan, Li; Jin, Boquan; Zhang, Silu; Song, Chaojun; Li, Quan

    2016-06-01

    Combinational chemotherapy capable of targeted delivery and programmable multi-drug release leads to enhanced drug efficacy, and is highly desired for cancer treatment. However, effective approaches for achieving both features in a single treatment are limited. In the present work, we demonstrated programmed delivery of both chemotherapeutic and immunotherapeutic agents with tumor cell targeting capability by using SiO2 based self-decomposable nanoparticulate systems. The programmable drug delivery is realized by manipulating drug loading configurations instead of relying on external stimuli. Both in vitro and in vivo results showed specific drug binding to FAT1-expressing colon cancer cells. The loaded dual drugs were demonstrated to be delivered in a sequential manner with specific time intervals between their peak releases, which maximize the synergistic effect of the chemotherapeutics. These features led to significantly enhanced drug efficacy and reduced system toxicity. The tumor weight decreased by 1/350, together with a moderate increase in rats' body weight, which were observed when adopting the dual drug loaded nanoparticles, as compared to those of the control groups. The present system provides a simple and feasible method for the design of targeting and combination chemotherapy with programmed drug release.Combinational chemotherapy capable of targeted delivery and programmable multi-drug release leads to enhanced drug efficacy, and is highly desired for cancer treatment. However, effective approaches for achieving both features in a single treatment are limited. In the present work, we demonstrated programmed delivery of both chemotherapeutic and immunotherapeutic agents with tumor cell targeting capability by using SiO2 based self-decomposable nanoparticulate systems. The programmable drug delivery is realized by manipulating drug loading configurations instead of relying on external stimuli. Both in vitro and in vivo results showed specific drug binding to FAT1-expressing colon cancer cells. The loaded dual drugs were demonstrated to be delivered in a sequential manner with specific time intervals between their peak releases, which maximize the synergistic effect of the chemotherapeutics. These features led to significantly enhanced drug efficacy and reduced system toxicity. The tumor weight decreased by 1/350, together with a moderate increase in rats' body weight, which were observed when adopting the dual drug loaded nanoparticles, as compared to those of the control groups. The present system provides a simple and feasible method for the design of targeting and combination chemotherapy with programmed drug release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06305a

  9. Comparative activity of tedizolid and glycopeptide combination therapies for the treatment of Staphylococcus aureus infections: an in vitro and in vivo evaluation against strains with reduced susceptibility to glycopeptides.

    PubMed

    Betts, J W; Abdul Momin, H F; Phee, L M; Wareham, D W

    2018-02-01

    Glycopeptides are widely used for the treatment of meticillin-resistant Staphylococcus aureus (MRSA) infections. Although difficult to detect, isolates with reduced (GISA), hetero (hGISA) or complete (GRSA) resistance to glycopeptides are increasingly reported. Optimal therapy for such strains is unknown. We compared the in vitro and in vivo activity of tedizolid (TED), a recently licensed oxazolidonone, with vancomycin (VAN) and teicoplanin (TEIC) combined with fusidic acid (FD) or rifampicin (RIF) against S. aureus (SA) with reduced susceptibility to glycopeptides. Susceptibility was determined for six (GISA, hGISA and GRSA) reference strains and 72 clinical MRSA isolates screened for hGISA/GISA-like phenotypes. Synergy and bactericidal activity were assessed using chequerboard and time-kill assays. The G. mellonella wax moth caterpillar model was used to measure the activity of TED and the combinations in vivo. Glycopeptide MICs (VAN/TEIC) ranged from 0.5-8/4 and 0.125-1 for TED. No significant synergy was noted when VAN/TEIC were combined with either RIF or FD. Time-kill assays confirmed that TED was bacteriostatic but superior to VAN and TEIC against GISA strains. In G. mellonella TED was more effective than TEIC monotherapy versus GISA strains. The combination of TEIC with RIF was the most effective combination overall, both in vitro and in vivo. TED had good in vitro activity versus MRSA including those with reduced susceptibility to glycopeptides. Although bacteriostatic, it was effective in the G. mellonella model and superior to TEIC in the treatment of GISA. Although this supports the use of TED for MRSA and GISA, the TEIC/RIF combination also warrants further study.

  10. Tissue Tolerable Plasma and Polihexanide: Are Synergistic Effects Possible to Promote Healing of Chronic wounds? In Vivo and In Vitro Results

    NASA Astrophysics Data System (ADS)

    Bender, Claudia P.; Hübner, Nils-Olaf; Weltmann, Klaus-Dieter; Scharf, Christian; Kramer, Axel

    The assumption is that tissue tolerable plasma works as promoter for wound healing and can be beneficially combined with the antiseptic polihexanide to avoid bacterial recolonization. The effects of a combined plasma - polihexanide (PHMB) application on cell integrity, cytotoxicity and its irritative and inflammative potential were tested in vitro and in two dogs in vivo.

  11. The combined effects of vinclozolin and procymidone do not deviate from expected additivity in vitro and in vivo.

    PubMed

    Nellemann, Christine; Dalgaard, Majken; Lam, Henrik Rye; Vinggaard, Anne Marie

    2003-02-01

    The combination effects of the well-known antiandrogenic fungicides, vinclozolin and procymidone, were tested both in vitro and in vivo. In vitro both vinclozolin and procymidone significantly inhibited the binding of agonist to the androgen receptor with the concentration that resulted in 50% inhibition (IC(50)) values of 0.1 and 0.6 micro M, respectively. By applying the isobole method, the effect of combining the two pesticides in vitro was found to be additive. In castrated testosterone-treated rats the administration of vinclozolin starting at 10 mg/kg led to a decrease in organ weight of all tested reproductive organs. The levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were increased significantly with doses of 100 mg/kg vinclozolin and above. Expression of the androgen-responsive gene, TRPM-2, was increased starting at 100 mg/kg vinclozolin. For procymidone, reproductive organ weights were diminished at 10 mg/kg and LH was increased at a concentration of 25 mg/kg and above, compared to the testosterone-treated controls. FSH was significantly increased only at 25 mg/kg procymidone. The studied gene expressions were changed by 100 mg/kg procymidone. Dosing the animals with a combination of a 1:1 mixture of vinclozolin and procymidone resulted in a weight reduction in the reproductive organs and an increase of serum LH and FSH as early as with 10 mg/kg combined dose. The relative expressions of TRPM-2 and PBP C3 were changed compared to controls at 100 mg/kg. The level of 5-HT in the rat brain was increased after a dose of 10 mg/kg. Using the isobole method, comparisons of the observed and predicted effects assuming additivity on reproductive organ weights, hormone levels, and gene expression showed agreement and thus the combination effects are suggested to be additive in vivo as well as in vitro.

  12. Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High Efficiency Pulmonary Delivery: Comparison of CFD Predictions with Experimental Results

    PubMed Central

    Hindle, Michael

    2011-01-01

    Purpose The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Methods Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. Results The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6–2.5 µm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Conclusions Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery. PMID:21948458

  13. Condensational growth of combination drug-excipient submicrometer particles for targeted high efficiency pulmonary delivery: comparison of CFD predictions with experimental results.

    PubMed

    Longest, P Worth; Hindle, Michael

    2012-03-01

    The objective of this study was to investigate the hygroscopic growth of combination drug and excipient submicrometer aerosols for respiratory drug delivery using in vitro experiments and a newly developed computational fluid dynamics (CFD) model. Submicrometer combination drug and excipient particles were generated experimentally using both the capillary aerosol generator and the Respimat inhaler. Aerosol hygroscopic growth was evaluated in vitro and with CFD in a coiled tube geometry designed to provide residence times and thermodynamic conditions consistent with the airways. The in vitro results and CFD predictions both indicated that the initially submicrometer particles increased in mean size to a range of 1.6-2.5 μm for the 50:50 combination of a non-hygroscopic drug (budesonide) and different hygroscopic excipients. CFD results matched the in vitro predictions to within 10% and highlighted gradual and steady size increase of the droplets, which will be effective for minimizing extrathoracic deposition and producing deposition deep within the respiratory tract. Enhanced excipient growth (EEG) appears to provide an effective technique to increase pharmaceutical aerosol size, and the developed CFD model will provide a powerful design tool for optimizing this technique to produce high efficiency pulmonary delivery.

  14. Effect of the Combination Hot Water - Calcium Chloride on the In Vitro Growth of Colletotrichum gloeosporioides and the Postharvest Quality of Infected Papaya

    PubMed Central

    Ayón-Reyna, Lidia Elena; López-Valenzuela, José Ángel; Delgado-Vargas, Francisco; López-López, Martha Edith; Molina-Corral, Francisco Javier; Carrillo-López, Armando; Vega-García, Misael Odín

    2017-01-01

    Anthracnose of papaya fruit caused by the fungus Colletotrichum gloeosporioides is one of the most economically important postharvest diseases. Hot water immersion (HW) and calcium chloride (Ca) treatments have been used to control papaya postharvest diseases; however, the effect of the combination HW-Ca on the pathogen growth and the development of the disease in infected papaya fruit has been scarcely studied. The aim of this study was to evaluate the effect of the HW-Ca treatment on the in vitro growth of C. gloesporioides conidia and the quality of infected papaya. In vitro, the HW-Ca treated conidia showed reduced mycelial growth and germination. In vivo, the HW-Ca treatment of infected papaya delayed for 5 days the onset of the anthracnose symptoms and improved the papaya postharvest quality. The combined treatment HW-Ca was better than any of the individual treatments to inhibit the in vitro development of C. gloeosporioides and to reduce the negative effects of papaya anthracnose. PMID:29238280

  15. Human Pluripotent Stem Cell Based Developmental Toxicity Assays for Chemical Safety Screening and Systems Biology Data Generation.

    PubMed

    Shinde, Vaibhav; Klima, Stefanie; Sureshkumar, Perumal Srinivasan; Meganathan, Kesavan; Jagtap, Smita; Rempel, Eugen; Rahnenführer, Jörg; Hengstler, Jan Georg; Waldmann, Tanja; Hescheler, Jürgen; Leist, Marcel; Sachinidis, Agapios

    2015-06-17

    Efficient protocols to differentiate human pluripotent stem cells to various tissues in combination with -omics technologies opened up new horizons for in vitro toxicity testing of potential drugs. To provide a solid scientific basis for such assays, it will be important to gain quantitative information on the time course of development and on the underlying regulatory mechanisms by systems biology approaches. Two assays have therefore been tuned here for these requirements. In the UKK test system, human embryonic stem cells (hESC) (or other pluripotent cells) are left to spontaneously differentiate for 14 days in embryoid bodies, to allow generation of cells of all three germ layers. This system recapitulates key steps of early human embryonic development, and it can predict human-specific early embryonic toxicity/teratogenicity, if cells are exposed to chemicals during differentiation. The UKN1 test system is based on hESC differentiating to a population of neuroectodermal progenitor (NEP) cells for 6 days. This system recapitulates early neural development and predicts early developmental neurotoxicity and epigenetic changes triggered by chemicals. Both systems, in combination with transcriptome microarray studies, are suitable for identifying toxicity biomarkers. Moreover, they may be used in combination to generate input data for systems biology analysis. These test systems have advantages over the traditional toxicological studies requiring large amounts of animals. The test systems may contribute to a reduction of the costs for drug development and chemical safety evaluation. Their combination sheds light especially on compounds that may influence neurodevelopment specifically.

  16. In vitro investigation of antifungal activity of allicin alone and in combination with azoles against Candida species.

    PubMed

    Khodavandi, Alireza; Alizadeh, Fahimeh; Aala, Farzad; Sekawi, Zamberi; Chong, Pei Pei

    2010-04-01

    Candidiasis is a term describing infections by yeasts from the genus Candida, and the type of infection encompassed by candidiasis ranges from superficial to systemic. Treatment of such infections often requires antifungals such as the azoles, but increased use of these drugs has led to selection of yeasts with increased resistance to these drugs. In this study, we used allicin, an allyl sulfur derivative of garlic, to demonstrate both its intrinsic antifungal activity and its synergy with the azoles, in the treatment of these yeasts in vitro. In this study, the MIC(50) and MIC(90) of allicin alone against six Candida spp. ranged from 0.05 to 25 microg/ml. However, when allicin was used in combination with fluconazole or ketoconazole, the MICs were decreased in some isolates. Our results demonstrated the existing synergistic effect between allicin and azoles in some of the Candida spp. such as C. albicans, C. glabrata and C. tropicalis, but synergy was not demonstrated in the majority of Candida spp. tested. Nonetheless, In vivo testing needs to be performed to support these findings.

  17. Toward metabolic engineering in the context of system biology and synthetic biology: advances and prospects.

    PubMed

    Liu, Yanfeng; Shin, Hyun-dong; Li, Jianghua; Liu, Long

    2015-02-01

    Metabolic engineering facilitates the rational development of recombinant bacterial strains for metabolite overproduction. Building on enormous advances in system biology and synthetic biology, novel strategies have been established for multivariate optimization of metabolic networks in ensemble, spatial, and dynamic manners such as modular pathway engineering, compartmentalization metabolic engineering, and metabolic engineering guided by genome-scale metabolic models, in vitro reconstitution, and systems and synthetic biology. Herein, we summarize recent advances in novel metabolic engineering strategies. Combined with advancing kinetic models and synthetic biology tools, more efficient new strategies for improving cellular properties can be established and applied for industrially important biochemical production.

  18. Synergistic anti-tumor activity through combinational intratumoral injection of an in-situ injectable drug depot.

    PubMed

    Kim, Da Yeon; Kwon, Doo Yeon; Kwon, Jin Seon; Park, Ji Hoon; Park, Seung Hun; Oh, Hyun Ju; Kim, Jae Ho; Min, Byoung Hyun; Park, Kinam; Kim, Moon Suk

    2016-04-01

    Here, we describe combinational chemotherapy via intratumoral injection of doxorubicin (Dox) and 5-fluorouracil (Fu) to enhance the efficacy and reduce the toxicity of systemically administered Fu and Dox in cancer patients. As the key concept in this work, mixture formulations of Dox-loaded microcapsules (Dox-M) and Fu-loaded Pluronic(®) hydrogels (Fu-HP) or Fu-loaded diblock copolymer hydrogels (Fu-HC) have been employed as drug depots. The in vitro and in vivo drug depot was designed as a formulation of Dox-M dispersed inside an outer shell of Fu-HP or Fu-HC after injection. The Dox-M/Fu-HP and Dox-M/Fu-HC formulations are free flowing at room temperature, indicating injectability, and formed a structural gelatinous depot in vitro and in vivo at body temperature. The Fu-HP, Fu-HC, Dox-M/Fu-HP, Dox-M/Fu-HC, and Dox-M formulations were easily injected into tumor centers in mice using a needle. Dox-M/Fu-HC produced more significant inhibitory effects against tumor growth than that by Dox-M/Fu-HP, while Fu-HP, Fu-HC and Dox-M had the weakest inhibitory effects of the tested treatments. The in vivo study of Dox and Fu biodistribution showed that high Dox and Fu concentrations were maintained in the target tumor only, while distribution to normal tissues was not observed, indicating that Dox and Fu concentrations below their toxic plasma concentrations should not cause significant systemic toxicity. The Dox-M/Fu-HP and Dox-M/Fu-HC drug depots described in this work showed excellent performance as chemotherapeutic delivery systems. The results reported here indicate that intratumoral injection using combination chemotherapy with Dox-M/Fu-HP or Dox-M/Fu-HC could be of translational research by enhancing the synergistic inhibitory effects of Dox and Fu on tumor growth, while reducing their systemic toxicity in cancer patients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Live Cell in Vitro and in Vivo Imaging Applications: Accelerating Drug Discovery

    PubMed Central

    Isherwood, Beverley; Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I; Canel, Marta; Serrels, Alan; Brunton, Valerie G; Carragher, Neil O

    2011-01-01

    Dynamic regulation of specific molecular processes and cellular phenotypes in live cell systems reveal unique insights into cell fate and drug pharmacology that are not gained from traditional fixed endpoint assays. Recent advances in microscopic imaging platform technology combined with the development of novel optical biosensors and sophisticated image analysis solutions have increased the scope of live cell imaging applications in drug discovery. We highlight recent literature examples where live cell imaging has uncovered novel insight into biological mechanism or drug mode-of-action. We survey distinct types of optical biosensors and associated analytical methods for monitoring molecular dynamics, in vitro and in vivo. We describe the recent expansion of live cell imaging into automated target validation and drug screening activities through the development of dedicated brightfield and fluorescence kinetic imaging platforms. We provide specific examples of how temporal profiling of phenotypic response signatures using such kinetic imaging platforms can increase the value of in vitro high-content screening. Finally, we offer a prospective view of how further application and development of live cell imaging technology and reagents can accelerate preclinical lead optimization cycles and enhance the in vitro to in vivo translation of drug candidates. PMID:24310493

  20. Efficacy of Colistin and Its Combination With Rifampin in Vitro and in Experimental Models of Infection Caused by Carbapenemase-Producing Clinical Isolates of Klebsiella pneumoniae.

    PubMed

    Pachón-Ibáñez, María E; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; Del Palacio, José P; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M Carmen

    2018-01-01

    Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time-kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo . In vitro , colistin plus rifampin was synergistic against all the strains at 24 h. In vivo , compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.

  1. Efficacy of Colistin and Its Combination With Rifampin in Vitro and in Experimental Models of Infection Caused by Carbapenemase-Producing Clinical Isolates of Klebsiella pneumoniae

    PubMed Central

    Pachón-Ibáñez, María E.; Labrador-Herrera, Gema; Cebrero-Cangueiro, Tania; Díaz, Caridad; Smani, Younes; del Palacio, José P.; Rodríguez-Baño, Jesús; Pascual, Alvaro; Pachón, Jerónimo; Conejo, M. Carmen

    2018-01-01

    Despite the relevance of carbapenemase-producing Klebsiella pneumoniae (CP-Kp) infections there are a scarce number of studies to evaluate in vivo the efficacy of combinations therapies. The bactericidal activity of colistin, rifampin, and its combination was studied (time–kill curves) against four clonally unrelated clinical isolates of CP-Kp, producing VIM-1, VIM-1 plus DHA-1(acquired AmpC β-lactamase), OXA-48 plus CTX-M-15 (extended spectrum β-lactamase) and KPC-3, respectively, with colistin MICs of 0.5, 64, 0.5, and 32 mg/L, respectively. The efficacies of antimicrobials in monotherapy and in combination were tested in a murine peritoneal sepsis model, against all the CP-Kp. Their efficacies were tested in the pneumonia model against the OXA-48 plus CTX-M-15 producers. The development of colistin-resistance was analyzed for the colistin-susceptible strains in vitro and in vivo. In vitro, colistin plus rifampin was synergistic against all the strains at 24 h. In vivo, compared to the controls, rifampin alone reduced tissue bacterial concentrations against VIM-1 and OXA-48 plus CTX-M-15 strains; CMS plus rifampin reduced tissue bacterial concentrations of these two CP-Kp and of the KPC-3 strain. Rifampin and the combination increased the survival against the KPC-3 strain; in the pneumonia model, the combination also improved the survival. No resistant mutants appeared with the combination. In conclusion, CMS plus rifampin had a low and heterogeneous efficacy in the treatment of severe peritoneal sepsis model due to CP-Kp producing different carbapenemases, increasing survival only against the KPC-3 strain. The combination showed efficacy in the less severe pneumonia model. The combination prevented in vitro and in vivo the development of colistin resistant mutants.

  2. In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor

    PubMed Central

    Yu, Songlin; Li, Dachao; Chong, Hao; Sun, Changyue; Yu, Haixia; Xu, Kexin

    2013-01-01

    Because mid-infrared (mid-IR) spectroscopy is not a promising method to noninvasively measure glucose in vivo, a method for minimally invasive high-precision glucose determination in vivo by mid-IR laser spectroscopy combined with a tunable laser source and small fiber-optic attenuated total reflection (ATR) sensor is introduced. The potential of this method was evaluated in vitro. This research presents a mid-infrared tunable laser with a broad emission spectrum band of 9.19 to 9.77μm(1024~1088 cm−1) and proposes a method to control and stabilize the laser emission wavelength and power. Moreover, several fiber-optic ATR sensors were fabricated and investigated to determine glucose in combination with the tunable laser source, and the effective sensing optical length of these sensors was determined for the first time. In addition, the sensitivity of this system was four times that of a Fourier transform infrared (FT-IR) spectrometer. The noise-equivalent concentration (NEC) of this laser measurement system was as low as 3.8 mg/dL, which is among the most precise glucose measurements using mid-infrared spectroscopy. Furthermore, a partial least-squares regression and Clarke error grid were used to quantify the predictability and evaluate the prediction accuracy of glucose concentration in the range of 5 to 500 mg/dL (physiologically relevant range: 30~400 mg/dL). The experimental results were clinically acceptable. The high sensitivity, tunable laser source, low NEC and small fiber-optic ATR sensor demonstrate an encouraging step in the work towards precisely monitoring glucose levels in vivo. PMID:24466493

  3. Influence of the test method on in vitro drug release from intravitreal model implants containing dexamethasone or fluorescein sodium in poly (d,l-lactide-co-glycolide) or polycaprolactone.

    PubMed

    Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne

    2018-06-01

    Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Silibinin and indocyanine green-loaded nanoparticles inhibit the growth and metastasis of mammalian breast cancer cells in vitro.

    PubMed

    Sun, Hui-Ping; Su, Jing-Han; Meng, Qing-Shuo; Yin, Qi; Zhang, Zhi-Wen; Yu, Hai-Jun; Zhang, Peng-Cheng; Wang, Si-Ling; Li, Ya-Ping

    2016-07-01

    To improve the therapeutic efficacy of cancer treatments, combinational therapies based on nanosized drug delivery system (NDDS) has been developed recently. In this study we designed a new NDDS loaded with an anti-metastatic drug silibinin and a photothermal agent indocyanine green (ICG), and investigated its effects on the growth and metastasis of breast cancer cells in vitro. Silibinin and ICG were self-assembled into PCL lipid nanoparticles (SIPNs). Their physical characteristics including the particle size, zeta potential, morphology and in vitro drug release were examined. 4T1 mammalian breast cancer cells were used to evaluate their cellular internalization, cytotoxicity, and their influences on wound healing, in vitro cell migration and invasion. SIPNs showed a well-defined spherical shape with averaged size of 126.3±0.4 nm and zeta potential of -10.3±0.2 mV. NIR laser irradiation substantially increased the in vitro release of silibinin from the SIPNs (58.3% at the first 8 h, and 97.8% for the total release). Furthermore, NIR laser irradiation markedly increased the uptake of SIPNs into 4T1 cells. Under the NIR laser irradiation, both SIPNs and IPNs (PCL lipid nanoparticles loaded with ICG alone) caused dose-dependent ablation of 4T1 cells. The wound healing, migration and invasion experiments showed that SIPNs exposed to NIR laser irradiation exhibited dramatic in vitro anti-metastasis effects. SIPNs show temperature-sensitive drug release following NIR laser irradiation, which can inhibit the growth and metastasis of breast cancer cells in vitro.

  5. Co-loaded paclitaxel/rapamycin liposomes: Development, characterization and in vitro and in vivo evaluation for breast cancer therapy.

    PubMed

    Eloy, Josimar O; Petrilli, Raquel; Topan, José Fernando; Antonio, Heriton Marcelo Ribeiro; Barcellos, Juliana Palma Abriata; Chesca, Deise L; Serafini, Luciano Neder; Tiezzi, Daniel G; Lee, Robert J; Marchetti, Juliana Maldonado

    2016-05-01

    Paclitaxel and rapamycin have been reported to act synergistically to treat breast cancer. Albeit paclitaxel is available for breast cancer treatment, the most commonly used formulation in the clinic presents side effects, limiting its use. Furthermore, both drugs present pharmacokinetics drawbacks limiting their in vivo efficacy and clinic combination. As an alternative, drug delivery systems, particularly liposomes, emerge as an option for drug combination, able to simultaneously deliver co-loaded drugs with improved therapeutic index. Therefore, the purpose of this study is to develop and characterize a co-loaded paclitaxel and rapamycin liposome and evaluate it for breast cancer efficacy both in vitro and in vivo. Results showed that a SPC/Chol/DSPE-PEG (2000) liposome was able to co-encapsulate paclitaxel and rapamycin with suitable encapsulation efficiency values, nanometric particle size, low polydispersity and neutral zeta potential. Taken together, FTIR and thermal analysis evidenced drug conversion to the more bioavailable molecular and amorphous forms, respectively, for paclitaxel and rapamycin. The pegylated liposome exhibited excellent colloidal stability and was able to retain drugs encapsulated, which were released in a slow and sustained fashion. Liposomes were more cytotoxic to 4T1 breast cancer cell line than the free drugs and drugs acted synergistically, particularly when co-loaded. Finally, in vivo therapeutic evaluation carried out in 4T1-tumor-bearing mice confirmed the in vitro results. The co-loaded paclitaxel/rapamycin pegylated liposome better controlled tumor growth compared to the solution. Therefore, we expect that the formulation developed herein might be a contribution for future studies focusing on the clinical combination of paclitaxel and rapamycin. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. In vitro/in vivo comparison of drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides--a noninvasive approach by the combined use of electron paramagnetic resonance spectroscopy and nuclear magnetic resonance imaging.

    PubMed

    Mäder, K; Crémmilleux, Y; Domb, A J; Dunn, J F; Swartz, H M

    1997-06-01

    The purpose of this study was to compare drug release and polymer erosion from biodegradable P(FAD-SA) polyanhydrides in vitro and in vivo in real time and with minimal disturbance of the investigated system. P(FAD-SA) 20:80 and P(FAD-SA) 50:50 polymer tablets were loaded with the spin probe 3-carboxy-2,2,5,5-tetramethyl-pyrrollidine-1-oxyl (PCA) and implanted subcutaneously in the neck of rats or placed in 0.1 M phosphate buffer. 1.1 GHz EPR spectroscopy experiments and 7T MRI studies (T1 and T2 weighted) were performed. A front of water penetration was visible by MRI in vitro in the case of P(FAD-SA) 20:80, but not for P(FAD-SA) 50:50. For both polymers, the thickness of the tablets decreased with time and a insoluble, easy deformable residue remained. Important processes such as edema, deformation of the implant, encapsulation and bioresorption were observable by MRI in vivo. P(FAD-SA) 50:50 was almost entirely absorbed by day 44, whereas an encapsulated residue was found for P(FAD-SA) 20:80 after 65 days. The EPR studies gave direct evidence of a water penetration induced changes of the microenvironment inside the tablet. EPR signals were still detectable in P(FAD-SA) 20:80 implants after 65 days, while the nitroxide was released in vitro within 16 days. Important parameters and processes such as edema, deformation of the tablet, microviscosity inside the tablet and encapsulation can be monitored in real time by the combined use of the noninvasive techniques MRI and EPR leading to better understanding of the differences between the in vitro and in vivo situation.

  7. The pharmacokinetics and hepatic disposition of repaglinide in pigs: mechanistic modeling of metabolism and transport.

    PubMed

    Sjögren, Erik; Bredberg, Ulf; Lennernäs, Hans

    2012-04-02

    The predictive power of using in vitro systems in combination with physiologically based pharmacokinetic (PBPK) modeling to elucidate the relative importance of metabolism and carrier-mediated transport for the pharmacokinetics was evaluated using repaglinide as a model compound and pig as the test system. Repaglinide was chosen as model drug as previous studies in humans have shown that repaglinide is subject to both carrier-mediated influx to the liver cells and extensive hepatic metabolism. A multiple sampling site model in pig was chosen since it provides detailed in vivo information about the liver disposition. The underlying assumption was that both metabolism and carrier-mediated transport are also important for the hepatic disposition of repaglinide in pigs. Microsomes and primary hepatocytes were used for in vitro evaluation of enzyme kinetics and cellular disposition, respectively. In vitro data were generated both with and without metabolism inhibitors (ketoconazole, bezafibrate and trimethoprim) and transport inhibitors (diclofenac and quinine) providing input into a semi-PBPK model. In vivo data were also generated with and without the same enzyme and transporter inhibitors, alone and in combination. The pigs were given repaglinide as intravenous infusions with and without inhibitors in a sequential manner, i.e., a control phase and a test phase. Parameters describing the passive and carrier-mediated flux as well as metabolism were estimated in the control phase. The result from test phase was used to gain further knowledge of the findings from the control phase. The in vivo pig model enabled simultaneous sampling from plasma (pre- and postliver and peripheral) as well as from bile and urine. A semi-PBPK model consisting of 11 compartments (6 tissues + 5 sampling sites) was constructed for the mechanistic elucidation of the liver disposition, in vitro based in vivo predictions, sensitivity analyses and estimations of individual pharmacokinetic parameters. Both in vitro and in vivo results showed that carrier-mediated influx was important for the liver disposition. The in vivo findings were supported by the result from the test phase where hepatic clearance (4.3 mL min⁻¹ kg⁻¹) was decreased by 29% (metabolism inhibition), 43% (transport inhibition) and 57% (metabolism + transport inhibition). These effects were in good agreement with predicted levels. This study suggests that both metabolism and carrier-mediated uptake are of significant importance for the liver disposition of repaglinide in pigs.

  8. Recent Advance in Applications of Proteomics Technologies on Traditional Chinese Medicine Research

    PubMed Central

    Zhu, Fangshi; Liu, Xuan; Li, Qi; Su, Shi-bing

    2015-01-01

    Proteomics technology, a major component of system biology, has gained comprehensive attention in the area of medical diagnosis, drug development, and mechanism research. On the holistic and systemic theory, proteomics has a convergence with traditional Chinese medicine (TCM). In this review, we discussed the applications of proteomic technologies in diseases-TCM syndrome combination researches. We also introduced the proteomic studies on the in vivo and in vitro effects and underlying mechanisms of TCM treatments using Chinese herbal medicine (CHM), Chinese herbal formula (CHF), and acupuncture. Furthermore, the combined studies of proteomics with other “-omics” technologies in TCM were also discussed. In summary, this report presents an overview of the recent advances in the application of proteomic technologies in TCM studies and sheds a light on the future global and further research on TCM. PMID:26557869

  9. DNA Methylation and Methylation Polymorphism in Genetically Stable In vitro Regenerates of Jatropha curcas L. Using Methylation-Sensitive AFLP Markers.

    PubMed

    Rathore, Mangal S; Jha, Bhavanath

    2016-03-01

    The present investigation aimed to evaluate the degree and pattern of DNA methylation using methylation-sensitive AFLP (MS-AFLP) markers in genetically stable in vitro regenerates of Jatropha curcas L.. The genetically stable in vitro regenerates were raised through direct organogenesis via enhanced axillary shoot bud proliferation (Protocol-1) and in vitro-derived leaf regeneration (Protocol-2). Ten selective combinations of MS-AFLP primers produced 462 and 477 MS-AFLP bands in Protocol-1 (P-1) and Protocol-2 (P-2) regenerates, respectively. In P-1 regenerates, 15.8-31.17 % DNA was found methylated with an average of 25.24 %. In P-2 regenerates, 15.93-32.7 % DNA was found methylated with an average of 24.11 %. Using MS-AFLP in P-1 and P-2 regenerates, 11.52-25.53 % and 13.33-25.47 % polymorphism in methylated DNA was reported, respectively. Compared to the mother plant, P-1 regenerates showed hyper-methylation while P-2 showed hypo-methylation. The results clearly indicated alternation in degree and pattern of DNA methylation; hence, epigenetic instability in the genetically stable in vitro regenerates of J. curcas, developed so far using two different regeneration systems and explants of two different origins. The homologous nucleotide fragments in genomes of P-1 and P-2 regenerates showing methylation re-patterning might be involved in immediate adaptive responses and developmental processes through differential regulation of transcriptome under in vitro conditions.

  10. Chemical analysis and antioxidant activity in vitro of polysaccharides extracted from Boletus edulis.

    PubMed

    Zhang, Anqiang; Xiao, Nannan; He, Pengfei; Sun, Peilong

    2011-12-01

    Boletus edulis is a well-known delicious mushroom. In this study, three crude polysaccharides (BEPF30, BEPF60 and BEPF80) were isolated from the fruiting bodies of B. edulis with boiling water. Chemical and physical characteristics of the three crude polysaccharides were investigated by the combination of chemical and instrumental analysis methods. Their antioxidant activities were investigated in vitro systems including hydroxyl assay, superoxide radical assay, reducing power and chelating activity. Among these three polysaccharides, BEPF60 showed more significant reducing power and chelating activity; and highest inhibitory effects on superoxide radical and hydroxyl radical. These results indicated that polysaccharides extracted from B. edulis might be employed as ingredients in healthy and functional food to alleviate the oxidative stress. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Study of the Effects of Ultrasonic Waves on the Reproductive Integrity of Mammalian Cells Cultured in Vitro

    NASA Technical Reports Server (NTRS)

    Martins, B. I.

    1971-01-01

    The effects of monochromatic ultrasonic waves of 0.1, 0.5, 1.0, 2.0 and, 3.3 MHz frequency on the colony-forming ability of mammalian cells (M3-1,V79, Chang's and T-1) cultured in vitro have been studied to determine the nature of the action of ultrasonic energy on biological systems at the cellular level. The combined effect of ultrasound and X-rays has also been studied. It is concluded: (1) Ultrasonic irradiation causes both lethal and sublethal damage. (2) There is a threshold dose rate for lethal effects. (3) The effectiveness of ultrasonic waves in causing cell death probably depends on the frequency and the amplitude of the waves for a given cell line, indicating a possible resonance phenomenon.

  12. The biological effects and possible modes of action of nanosilver.

    PubMed

    Völker, Carolin; Oetken, Matthias; Oehlmann, Jörg

    2013-01-01

    Novel physicochemical and biological properties have led to a versatile spectrum of applications for nanosized silver particles. Silver nanoparticles are applied primarily for their antimicrobial effects, and may variety of commercially available products have emerged. To better predict and prevent possible environmental impacts from silver nanoparticles that are derived from increasing production volumes and environmental release, more data on the biological effects are needed on appropriate model organisms. We examined the literature that addressed the adverse effects of silver nanoparticles on different levels of biological integration, including in vitro and in vivo test systems. Results of in vitro studies indicate a dose-dependent programmed cell death included by oxidative stress as main possible pathway of toxicity. Furthermore, silver nanoparticles may affect cellular enzymes by interference with free thiol groups and mimicry of endogenous ions. Similar mechanisms may apply for antibacterial effects produced by nonasilver. These effects are primary from the interference nanosilver has with bacterial cell membranes. Few in vivo studies have been performed to evaluated the toxic mode of action of nanosilver or to provide evidence for oxidative stress as an important mechanism of nanosilver toxicity. Organisms that are most acutely sensitive to nanosilver toxicity are the freshwater filter-freeding organisms. Both in vitro and in vivo studies have demonstrated tha silver ions released from nanoparticle surface contribute to the toxicity, and, indeed, some findings indicated a unique nanoparticles effect. For an adequate evaluation of the environmental impact of nanosilver, greater emphasis should be placed on combining mechanistic investigations that are performed in vitro, with results obtained in in vivo test systems. Future in vivo test system studies should emphasize long-term exposure scenarios. Moreover, the dietary uptake of silver nanoparticles and the potential to bioaccumulate through the food web should be examined in detail.

  13. Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems.

    PubMed

    Edwards, Darin; Sommerhage, Frank; Berry, Bonnie; Nummer, Hanna; Raquet, Martina; Clymer, Brad; Stancescu, Maria; Hickman, James J

    2017-12-11

    Microelectrode arrays (MEAs) are innovative tools used to perform electrophysiological experiments for the study of electrical activity and connectivity in populations of neurons from dissociated cultures. Reliance upon neurons derived from embryonic tissue is a common limitation of neuronal/MEA hybrid systems and perhaps of neuroscience research in general, and the use of adult neurons could model fully functional in vivo parameters more closely. Spontaneous network activity was concurrently recorded from both embryonic and adult rat neurons cultured on MEAs for up to 10 weeks in vitro to characterize the synaptic connections between cell types. The cultures were exposed to synaptic transmission antagonists against NMDA and AMPA channels, which revealed significantly different receptor profiles of adult and embryonic networks in vitro. In addition, both embryonic and adult neurons were evaluated for NMDA and AMPA channel subunit expression over five weeks in vitro. The results established that neurons derived from embryonic tissue did not express mature synaptic channels for several weeks in vitro under defined conditions. Consequently, the embryonic response to synaptic antagonists was significantly different than that of neurons derived from adult tissue sources. These results are especially significant because most studies reported with embryonic hippocampal neurons do not begin at two to four weeks in culture. In addition, the utilization of MEAs in lieu of patch-clamp electrophysiology avoided a large-scale, labor-intensive study. These results establish the utility of this unique hybrid system derived from adult hippocampal tissue in combination with MEAs and offer a more appropriate representation of in vivo function for drug discovery. It has application for neuronal development and regeneration as well as for investigations into neurodegenerative disease, traumatic brain injury, and stroke.

  14. Targeted Drug and Gene Delivery Systems for Lung Cancer Therapy

    PubMed Central

    Sundaram, Sneha; Trivedi, Ruchit; Durairaj, Chandrasekar; Ramesh, Rajagopal; Ambati, Balamurali K.; Kompella, Uday B.

    2009-01-01

    Purpose To evaluate the efficacy of a novel docetaxel derivative of deslorelin, a luteinizing hormone releasing hormone (LHRH) agonist, and its combination in-vivo with RGD peptide conjugated nanoparticles encapsulating an anti-angiogenic, anti-VEGF intraceptor (Flt23k) (RGD-Flt23k-NP) in H1299 lung cancer cells and/or xenografts in athymic nude BALB/c mice. Experimental Design The in-vitro and in-vivo efficacy of the deslorelin-docetaxel conjugate (D-D) was evaluated in H1299 cells and xenografts in athymic nude mice. Co-administration of D-D and RGD-Flt23k-NP was tested in-vivo in mice. Tumor inhibition, apoptosis and VEGF inhibition were estimated in each of the treatment groups. Results The conjugate enhanced in-vitro docetaxel efficacy by 13-fold in H1299 cells compared to docetaxel at 24h, and this effect was inhibited following reduction of LHRH-receptor expression by an antisense oligonucleotide. Combination of the conjugate with the RGD-Flt23k-NP in-vivo resulted in an 82- and 15-fold tumor growth inhibition on day 39 following repeated weekly intravenous injections and a single intratumoral injection, respectively. These effects were significantly greater than individual targeted therapies or docetaxel alone. Similarly, apoptotic indices for the combination therapy were 14 and 10% in the intravenous and intratumoral groups, respectively, and higher than the individual therapies. Combination therapy groups exhibited greater VEGF inhibition in both the intravenous and intratumoral groups. Conclusions Docetaxel efficacy was enhanced by LHRH-receptor targeted deslorelin conjugate and further improved by combination with targeted anti-angiogenic nanoparticle gene therapy. Combination of novel targeted therapeutic approaches described here provides an attractive alternative to the current treatment options for lung cancer therapy. PMID:19920099

  15. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control.

    PubMed

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-Ming; Nishimura, Ichiro

    2013-12-05

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering.

  16. Anti-Semaphorin 3A neutralization monoclonal antibody prevents sepsis development in lipopolysaccharide-treated mice.

    PubMed

    Yamashita, Naoya; Jitsuki-Takahashi, Aoi; Ogawara, Miyuki; Ohkubo, Wataru; Araki, Tomomi; Hotta, Chie; Tamura, Tomohiko; Hashimoto, Shu-ichi; Yabuki, Takashi; Tsuji, Toru; Sasakura, Yukie; Okumura, Hiromi; Takaiwa, Aki; Koyama, Chika; Murakami, Koji; Goshima, Yoshio

    2015-09-01

    Semaphorin 3A (Sema3A), originally identified as a potent growth cone collapsing factor in developing sensory neurons, is now recognized as a key player in immune, cardiovascular, bone metabolism and neurological systems. Here we established an anti-Sema3A monoclonal antibody that neutralizes the effects of Sema3A both in vitro and in vivo. The anti-Sema3A neutralization chick IgM antibodies were screened by combining an autonomously diversifying library selection system and an in vitro growth cone collapse assay. We further developed function-blocking chick-mouse chimeric and humanized anti-Sema3A antibodies. We found that our anti-Sema3A antibodies were effective for improving the survival rate in lipopolysaccharide-induced sepsis in mice. Our antibody is a potential therapeutic agent that may prevent the onset of or alleviate symptoms of human diseases associated with Sema3A. © The Japanese Society for Immunology. 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. In vitro systems for the study of microtubule-based cell polarity in fission yeast.

    PubMed

    Taberner, Núria; Lof, Andries; Roth, Sophie; Lamers, Dimitry; Zeijlemaker, Hans; Dogterom, Marileen

    2015-01-01

    Establishment of cell polarity is essential for processes such as growth and division. In fission yeast, as well as other species, polarity factors travel at the ends of microtubules to cortical sites where they associate with the membrane and subsequently maintain a polarized activity pattern despite their ability to diffuse in the membrane. In this chapter we present methods to establish an in vitro system that captures the essential features of this process. This bottom-up approach allows us to identify the minimal molecular requirements for microtubule-based cell polarity. We employ microfabrication techniques combined with surface functionalization to create rigid chambers with affinity for proteins, as well as microfluidic techniques to create and shape emulsion droplets with functionalized lipid boundaries. Preliminary results are shown demonstrating that a properly organized microtubule cytoskeleton can be confined to these confined spaces, and proteins traveling at the ends of growing microtubules can be delivered to their boundaries. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Formulation development of physiological environment responsive periodontal drug delivery system for local delviery of metronidazole benzoate.

    PubMed

    Dabhi, Mahesh R; Sheth, Navin R

    2013-03-01

    The objective of the present investigation was to develop and evaluate physiological environment responsive periodontal drug delivery system (PERPDDS) for local delivery of metronidazole benzoate. Poly-ϵ-caprolactone an in situ precipitating polymer was used in combination with, carbopol 934P, a pH simulative polymer to develop PERPDDS. The prepared PERPDDS was evaluated for various parameters such as in vitro gelling capacity, viscosity, rheology, compatibility study, and in vitro diffusion study. A 3(2) full factorial design was used to investigate the influence of formulation variables. Drug release data from all formulations were fitted to different kinetic models and the korsemeyer-peppas model was found the best fit model. The value of diffusional exponent (n) was in between 0.3283 and 0.3979 indicating purely fickian diffusion release mechanism. Increasing the concentration of each polymeric component increases viscosity, and time for 50% and 90% drug release was observed and graphically represented by the surface response and contour plots.

  19. In-vitro analysis of the dissolution kinetics and systemic availability of plutonium ingested in the form of 'hot' particles from the Semipalatinsk NTS.

    PubMed

    Conway, M; León Vintró, L; Mitchell, P I; García-Tenorio, R; Jimenez-Ramos, M C; Burkitbayev, M; Priest, N D

    2009-05-01

    In-vitro leaching of radioactive 'hot' particles isolated from soils sampled at the Semipalatinsk Nuclear Test Site has been carried out in order to evaluate the fraction of plutonium activity released into simulated human stomach and small intestine fluids during digestion. Characterisation of the particles (10-100 Bq(239,240)Pu) and investigation of their dissolution kinetics in simulated fluids has been accomplished using a combination of high-resolution alpha-spectrometry, gamma-spectrometry and liquid scintillation counting. The results of these analyses indicate that plutonium transfer across the human gut following the ingestion of 'hot' particles can be up to two orders of magnitude lower than that expected for plutonium in a more soluble form, and show that for areas affected by local fallout, use of published ingestion dose coefficients, together with bulk radionuclide concentrations in soil, may lead to a considerable overestimation of systemic uptake via the ingestion pathway.

  20. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  1. Transient and Big Are Key Features of an Invertebrate T-type Channel (LCav3) from the Central Nervous System of Lymnaea stagnalis*

    PubMed Central

    Senatore, Adriano; Spafford, J. David

    2010-01-01

    Here we describe features of the first non-mammalian T-type calcium channel (LCav3) expressed in vitro. This molluscan channel possesses combined biophysical properties that are reminiscent of all mammalian T-type channels. It exhibits T-type features such as “transient” kinetics, but the “tiny” label, usually associated with Ba2+ conductance, is hard to reconcile with the “bigness” of this channel in many respects. LCav3 is 25% larger than any voltage-gated ion channel expressed to date. It codes for a massive, 322-kDa protein that conducts large macroscopic currents in vitro. LCav3 is also the most abundant Ca2+ channel transcript in the snail nervous system. A window current at typical resting potentials appears to be at least as large as that reported for mammalian channels. This distant gene provides a unique perspective to analyze the structural, functional, drug binding, and evolutionary aspects of T-type channels. PMID:20056611

  2. Discovery of Novel Anti-prion Compounds Using In Silico and In Vitro Approaches

    PubMed Central

    Hyeon, Jae Wook; Choi, Jiwon; Kim, Su Yeon; Govindaraj, Rajiv Gandhi; Jam Hwang, Kyu; Lee, Yeong Seon; An, Seong Soo A.; Lee, Myung Koo; Joung, Jong Young; No, Kyoung Tai; Lee, Jeongmin

    2015-01-01

    Prion diseases are associated with the conformational conversion of the physiological form of cellular prion protein (PrPC) to the pathogenic form, PrPSc. Compounds that inhibit this process by blocking conversion to the PrPSc could provide useful anti-prion therapies. However, no suitable drugs have been identified to date. To identify novel anti-prion compounds, we developed a combined structure- and ligand-based virtual screening system in silico. Virtual screening of a 700,000-compound database, followed by cluster analysis, identified 37 compounds with strong interactions with essential hotspot PrP residues identified in a previous study of PrPC interaction with a known anti-prion compound (GN8). These compounds were tested in vitro using a multimer detection system, cell-based assays, and surface plasmon resonance. Some compounds effectively reduced PrPSc levels and one of these compounds also showed a high binding affinity for PrPC. These results provide a promising starting point for the development of anti-prion compounds. PMID:26449325

  3. Guiding the osteogenic fate of mouse and human mesenchymal stem cells through feedback system control

    PubMed Central

    Honda, Yoshitomo; Ding, Xianting; Mussano, Federico; Wiberg, Akira; Ho, Chih-ming; Nishimura, Ichiro

    2013-01-01

    Stem cell-based disease modeling presents unique opportunities for mechanistic elucidation and therapeutic targeting. The stable induction of fate-specific differentiation is an essential prerequisite for stem cell-based strategy. Bone morphogenetic protein 2 (BMP-2) initiates receptor-regulated Smad phosphorylation, leading to the osteogenic differentiation of mesenchymal stromal/stem cells (MSC) in vitro; however, it requires supra-physiological concentrations, presenting a bottleneck problem for large-scale drug screening. Here, we report the use of a double-objective feedback system control (FSC) with a differential evolution (DE) algorithm to identify osteogenic cocktails of extrinsic factors. Cocktails containing significantly reduced doses of BMP-2 in combination with physiologically relevant doses of dexamethasone, ascorbic acid, beta-glycerophosphate, heparin, retinoic acid and vitamin D achieved accelerated in vitro mineralization of mouse and human MSC. These results provide insight into constructive approaches of FSC to determine the applicable functional and physiological environment for MSC in disease modeling, drug screening and tissue engineering. PMID:24305548

  4. Synergistic Antileukemic Activity of Carnosic Acid-Rich Rosemary Extract and the 19-nor Gemini Vitamin D Analogue in a Mouse Model of Systemic Acute Myeloid Leukemia

    PubMed Central

    Shabtay, Ayelet; Sharabani, Hagar; Barvish, Zeev; Kafka, Michael; Amichay, Doron; Levy, Joseph; Sharoni, Yoav; Uskokovic, Milan R.; Studzinski, George P.; Danilenko, Michael

    2008-01-01

    Objective Differentiation therapy with the hormonal form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25D3), is a promising approach to treatment of acute myeloid leukemia (AML); however, 1,25D3 induces hypercalcemia at pharmacologically active doses. We investigated the in vitro and in vivoantileukemic efficacy of combined treatment with non-toxic doses of a low-calcemic 1,25D3 analogue, 1,25-dihydroxy-21(3-hydroxy-3-methyl-butyl)-19-nor-cholecalciferol (19-nor-Gemini; Ro27-5646), and rosemary plant agents in a mouse model of AML. Methods Proliferation and differentiation of WEHI-3B D– (WEHI) murine myelomonocytic leukemia cellsin vitro were determined by standard assays. Reactive oxygen species, glutathione and protein expression levels were measured by flow cytometry, enzymatic assay and Western blotting, respectively. Systemic AML was developed by intravenous injection of WEHI cells in syngeneic Balb/c mice. Results 19-nor-Gemini had a higher potency than its parent compounds, Gemini (Ro27-2310) and 1,25D3, in the induction of differentiation (EC50 = 0.059 ± 0.011, 0.275 ± 0.093 and 0.652 ± 0.085 nM, respectively) and growth arrest (IC50 = 0.072 ± 0.018, 0.165 ± 0.061 and 0.895 ± 0.144 nM, respectively) in WEHI cells in vitro, and lower in vivo toxicity. Combined treatment of leukemia-bearing mice with 19-nor-Gemini (injected intraperitoneally) and standardized rosemary extract (mixed with food) resulted in a synergistic increase in survival (from 42.2 ± 2.5 days in untreated mice to 66.5 ± 4.2 days, n = 3) and normalization of white blood cell and differential counts. This was consistent with strong cooperative antiproliferative and differentiation effects of low concentrations of 19-nor-Gemini or 1,25D3 combined with rosemary extract or its major polyphenolic component, carnosic acid, as well as with the antioxidant action of rosemary agents and vitamin D derivatives in WEHI cell cultures. Conclusion Combined effectiveness of 1,25D3 analogues and rosemary agents against mouse AML warrants further exploration of this therapeutic approach in translational models of human leukemia. PMID:18852491

  5. In vitro propagation and conservation of Satureja avromanica Maroofi-an indigenous threatened medicinal plant of Iran.

    PubMed

    Mozafari, Ali Akbar; Vafaee, Yavar; Karami, Edris

    2015-07-01

    An efficient and rapid in vitro propagation system for Satureja avromanica, a rare and endangered folk medicinal plant of Iran was developed through the shoot tip and leaf disc explants. Nodal and leaf explants from wild plants were established on MS and WPM media supplemented with BA, BAP and TDZ (0, 0.1, 0.5, 1, 1.5, 2, 5 and 10 mgl(-1)) alone or by application of BA and TDZ (0, 2, 5 and 10 mgl(-1)) in combination with IBA and 2,4-D (0, 0.1, 0.5 and 1 mgl(-1)), respectively. Based on results, the highest mean shoot number (6.21) was obtained on MS medium supplemented with 2 mgl(-1) BA. Regarding the shoot elongation, MS supplemented with 2 mgl(-1) TDZ and MS containing 5 mgl(-1) BA showed the longest shoots (4.82 and 4.39 cm, respectively) after 6 weeks of culture. As a matter of fact, increasing all three tested cytokinins levels led to enhancement of explant response frequency and regenerated shoot number. On the other side, WPM medium supplemented with 0.1 mgl(-1) IBA was found suitable for rooting of regenerated shoots. RAPD molecular analysis revealed genetic stability of in vitro raised plants. In conclusion, individual application of BA, BAP and TDZ were in favor of S. avromanica direct shoot regeneration while treatment media with a combination of IBA and BA as well as 2,4-D and TDZ resulted in callogenesis in most explants. Finally, the in vitro raised plantlets were acclimatized and successfully established in the greenhouse conditions. Our developed protocol can be employed for the large-scale micropropagation and conservation of S. avromanica as a threatened medicinal plant.

  6. Secreted frizzled related protein 3 (SFRP3) is required for tumorigenesis of PAX3-FOXO1-positive alveolar rhabdomyosarcoma

    PubMed Central

    Kephart, Julie J.G.; Tiller, Rosanne G.J.; Crose, Lisa E.S.; Slemmons, Katherine K.; Chen, Po-Han; Hinson, Ashley R.; Bentley, Rex C.; Chi, Jen-Tsan Ashley; Linardic, Corinne M.

    2015-01-01

    Purpose Rhabdomyosarcoma is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a 5-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, the current study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Experimental Design Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 were used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. Results In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. Conclusions SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. PMID:26071485

  7. Secreted Frizzled-Related Protein 3 (SFRP3) Is Required for Tumorigenesis of PAX3-FOXO1-Positive Alveolar Rhabdomyosarcoma.

    PubMed

    Kephart, Julie J G; Tiller, Rosanne G J; Crose, Lisa E S; Slemmons, Katherine K; Chen, Po-Han; Hinson, Ashley R; Bentley, Rex C; Chi, Jen-Tsan Ashley; Linardic, Corinne M

    2015-11-01

    Rhabdomyosarcoma (RMS) is a soft tissue sarcoma associated with the skeletal muscle lineage. Of the two predominant subtypes, known as embryonal (eRMS) and alveolar (aRMS), aRMS has the poorer prognosis, with a five-year survival rate of <50%. The majority of aRMS tumors express the fusion protein PAX3-FOXO1. As PAX3-FOXO1 has proven chemically intractable, this study aims to identify targetable proteins that are downstream from or cooperate with PAX3-FOXO1 to support tumorigenesis. Microarray analysis of the transcriptomes of human skeletal muscle myoblasts expressing PAX3-FOXO1 revealed alteration of several Wnt pathway gene members, including secreted frizzled related protein 3 (SFRP3), a secreted Wnt pathway inhibitor. Loss-of-function using shRNAs against SFRP3 was used to interrogate the role of SFRP3 in human aRMS cell lines in vitro and conditional murine xenograft systems in vivo. The combination of SFRP3 genetic suppression and the chemotherapeutic agent vincristine was also examined. In vitro, suppression of SFRP3 inhibited aRMS cell growth, reduced proliferation accompanied by a G1 arrest and induction of p21, and induced apoptosis. In vivo, doxycycline-inducible suppression of SFRP3 reduced aRMS tumor growth and weight by more than three-fold, in addition to increasing myogenic differentiation and β-catenin signaling. The combination of SFRP3 suppression and vincristine was more effective at reducing aRMS cell growth in vitro than either treatment alone, and ablated tumorigenesis in vivo. SFRP3 is necessary for the growth of human aRMS cells both in vitro and in vivo and is a promising new target for investigation in aRMS. ©2015 American Association for Cancer Research.

  8. Simultaneous determination and stability studies of linezolid, meropenem and vancomycin in bacterial growth medium by high-performance liquid chromatography.

    PubMed

    Wicha, Sebastian G; Kloft, Charlotte

    2016-08-15

    For pharmacokinetic/pharmacodynamic (PK/PD) assessment of antibiotics combinations in in vitro infection models, accurate and precise quantification of drug concentrations in bacterial growth medium is crucial for derivation of valid PK/PD relationships. We aimed to (i) develop a high-performance liquid chromatography (HPLC) assay to simultaneously quantify linezolid (LZD), vancomycin (VAN) and meropenem (MER), as typical components of broad-spectrum antibiotic combination therapy, in bacterial growth medium cation-adjusted Mueller-Hinton broth (CaMHB) and (ii) determine the stability profiles of LZD, VAN and MER under conditions in in vitro infection models. To separate sample matrix components, the final method comprised the pretreatment of 100μL sample with 400μL methanol, the evaporation of supernatant and its reconstitution in water. A low sample volume of 2μL processed sample was injected onto an Accucore C-18 column (2.6μm, 100×2.1mm) coupled to a Dionex Ultimate 3000 HPLC+ system. UV detection at 251, 240 and 302nm allowed quantification limits of 0.5, 2 and 0.5μg/mL for LZD, VAN and MER, respectively. The assay was successfully validated according to the relevant EMA guideline. The rapid method (14min) was successfully applied to quantify significant degradation of LZD, VAN and MER in in vitro infection models: LZD was stable, VAN degraded to 90.6% and MER to 62.9% within 24h compared to t=0 in CaMHB at 37°C, which should be considered when deriving PK/PD relationships in in vitro infection models. Inclusion of further antibiotics into the flexible gradient-based HPLC assay seems promising. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Use of decimal assay for additivity to demonstrate synergy in pair combinations of econazole, nikkomycin Z, and ibuprofen against Candida albicans in vitro.

    PubMed Central

    Tariq, V N; Scott, E M; McCain, N E

    1995-01-01

    Interactions between six compounds (econazole, miconazole, amphotericin B, nystatin, nikkomycin Z, and ibuprofen) were investigated for their antifungal activities against Candida albicans by using pair combinations in an in vitro decimal assay for additivity based on disk diffusion. Additive interactions were observed between miconazole and econazole, amphotericin B and nystatin, and amphotericin B and ibuprofen, while an antagonistic interaction was observed between econazole and amphotericin B. Synergistic interactions were recorded for the combinations of econazole and ibuprofen, econazole and nikkomycin Z, and ibuprofen and nikkomycin Z. PMID:8592989

  10. Single-element ultrasound transducer for combined vessel localization and ablation.

    PubMed

    Chen, Wen-Shiang; Shen, Che-Chou; Wang, Jen-Chieh; Ko, Chung-Ting; Liu, Hao-Li; Ho, Ming-Chih; Chen, Chiung-Nien; Yeh, Chih-Kuang

    2011-04-01

    This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction. © 2011 IEEE

  11. A combined chitosan/nano-size hydroxyapatite system for the controlled release of icariin.

    PubMed

    Fan, Junjun; Bi, Long; Wu, Tao; Cao, Liangguo; Wang, Dexin; Nan, Kaihui; Chen, Jingdi; Jin, Dan; Jiang, Shan; Pei, Guoxian

    2012-02-01

    Icariin, a plant-derived flavonol glycoside, has been proved as an osteoinductive agent for bone regeneration. For this reason, we developed an icariin-loaded chitosan/nano-sized hydroxyapatite (IC-CS/HA) system which controls the release kinetics of icariin to enhance bone repairing. First, by Fourier transform infrared spectroscopy, we found that icariin was stable in the system developed without undergoing any chemical changes. On the other hand, X-ray diffraction, scanning electron microscopy and mechanical test revealed that the introduction of icariin did not remarkably change the phase, morphology, porosity and mechanical strength of the CS/HA composite. Then the hydrolytic degradation and drug release kinetics in vitro were investigated by incubation in phosphate buffered saline solution. The results indicated that the icariin was released in a temporally controlled manner and the release kinetics could be governed by degradation of both chitosan and hydroxyapatite matrix. Finally the in vitro bioactivity assay revealed that the loaded icariin was biologically active as evidenced by stimulation of bone marrow derived stroma cell alkaline phosphatase activity and formation of mineralized nodules. This successful IC-CS/HA system offers a new delivery method of osteoinductive agents and a useful scaffold design for bone regeneration.

  12. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  13. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  14. In-vitro activity of ciprofloxacin combined with flomoxef against Bacteroides fragilis, compared with that of ciprofloxacin combined with clindamycin.

    PubMed

    Kato, Komei; Iwai, Shigetomi; Sato, Takeshi; Harada, Tomohide; Nakagawa, Yoshiteru; Iwanaga, Hitomi; Ito, Yumiko; Takayama, Tadatoshi

    2002-06-01

    Using checkerboard and time-kill assays, the in-vitro activity of ciprofloxacin alone and in combination with flomoxef against clinical Bacteroides fragilis strains was evaluated. In addition, the microbiological efficacy of this combination was compared with that of ciprofloxacin plus clindamycin. In 88% of the 25 strains tested, the combination of ciprofloxacin plus flomoxef exhibited a synergistic or an additive effect, whereas only 56% of the 25 strains ( P< 0.01, chi(2) test) tested with the combination of ciprofloxacin plus clindamycin exhibited similar effects. In a time-kill study using 7 clinical strains, a synergistic or additive effect of the combination of ciprofloxacin plus flomoxef was observed in all 7 strains. In conclusion, the combination of ciprofloxacin plus flomoxef is very active against B. fragilis, suggesting that this combination may be very useful in the treatment of aerobic and B. fragilis mixed infections, because ciprofloxacin has an expanded spectrum against aerobes.

  15. Gene therapy approaches for spinal cord injury

    NASA Astrophysics Data System (ADS)

    Bright, Corinne

    As the biomedical engineering field expands, combination technologies are demonstrating enormous potential for treating human disease. In particular, intersections between the rapidly developing fields of gene therapy and tissue engineering hold promise to achieve tissue regeneration. Nonviral gene therapy uses plasmid DNA to deliver therapeutic proteins in vivo for extended periods of time. Tissue engineering employs biomedical materials, such as polymers, to support the regrowth of injured tissue. In this thesis, a combination strategy to deliver genes and drugs in a polymeric scaffold was applied to a spinal cord injury model. In order to develop a platform technology to treat spinal cord injury, several nonviral gene delivery systems and polymeric scaffolds were evaluated in vitro and in vivo. Nonviral vector trafficking was evaluated in primary neuronal culture to develop an understanding of the barriers to gene transfer in neurons and their supporting glia. Although the most efficient gene carrier in vitro differed from the optimal gene carrier in vivo, confocal and electron microscopy of these nonviral vectors provided insights into the interaction of these vectors with the nucleus. A novel pathway for delivering nanoparticles into the nuclei of neurons and Schwann cells via vesicle trafficking was observed in this study. Reporter gene expression levels were evaluated after direct and remote delivery to the spinal cord, and the optimal nonviral vector, dose, and delivery strategy were applied to deliver the gene encoding the basic fibroblast growth factor (bFGF) to the spinal cord. An injectable and biocompatible gel, composed of the amphiphillic polymer poly(ethylene glycol)-poly(epsilon-caprolactone)-poly(ethylene glycol) (PEG-PCL-PEG) was evaluated as a drug and gene delivery system in vitro, and combined with the optimized nonviral gene delivery system to treat spinal cord injury. Plasmid DNA encoding the bFGF gene and the therapeutic NEP1--40 peptide were incorporated in the PEG-PCL-PEG gel and injected into a lesion transecting the main dorsomedial and minor ventral medial corticospinal tract (CST). The degree of collateralization of the transected CST was quantified as an indicator of the regenerative potential of these treatments. At one month post-injury, we observed the robust rostral collateralization of the CST tract in response to the bFGF plasmid-loaded gel. In conclusion, we hope that this platform technology can be applied to the sustained local delivery of other proteins for the treatment of spinal cord injury.

  16. Multifunctional quantum dots and liposome complexes in drug delivery

    PubMed Central

    Wang, Qi; Chao, Yimin

    2018-01-01

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches. PMID:28866655

  17. Multifunctional quantum dots and liposome complexes in drug delivery.

    PubMed

    Wang, Qi; Chao, Yi-Min

    2017-09-03

    Incorporating both diagnostic and therapeutic functions into a single nanoscale system is an effective modern drug delivery strategy. Combining liposomes with semiconductor quantum dots (QDs) has great potential to achieve such dual functions, referred to in this review as a liposomal QD hybrid system (L-QD). Here we review the recent literature dealing with the design and application of L-QD for advances in bio-imaging and drug delivery. After a summary of L-QD synthesis processes and evaluation of their properties, we will focus on their multifunctional applications, ranging from in vitro cell imaging to theranostic drug delivery approaches.

  18. Backside Wear Analysis of Retrieved Acetabular Liners with a Press-Fit Locking Mechanism in Comparison to Wear Simulation In Vitro.

    PubMed

    Puente Reyna, Ana Laura; Jäger, Marcus; Floerkemeier, Thilo; Frecher, Sven; Delank, Karl-Stefan; Schilling, Christoph; Grupp, Thomas M

    2016-01-01

    Backside wear due to micromotion and poor conformity between the liner and its titanium alloy shell may contribute to the high rates of retroacetabular osteolysis and consequent aseptic loosening. The purpose of our study was to understand the wear process on the backside of polyethylene liners from two acetabular cup systems, whose locking mechanism is based on a press-fit cone in combination with a rough titanium conical inner surface on the fixation area. A direct comparison between in vitro wear simulator tests (equivalent to 3 years of use) and retrieved liners (average 13.1 months in situ) was done in order to evaluate the backside wear characteristics and behavior of these systems. Similar wear scores between in vitro tested and retrieved liners were observed. The results showed that this locking mechanism did not significantly produce wear marks at the backside of the polyethylene liners due to micromotion. In all the analyzed liners, the most common wear modes observed were small scratches at the cranial fixation zone directly below the rough titanium inner surface of the shell. It was concluded that most of the wear marks were produced during the insertion and removal of the liner, rather than during its time in situ.

  19. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  20. Tumor therapy with a urokinase plasminogen activator-activated anthrax lethal toxin alone and in combination with paclitaxel

    PubMed Central

    Wein, Alexander N.; Liu, Shihui; Zhang, Yi; McKenzie, Andrew T.; Leppla, Stephen H.

    2013-01-01

    PA-U2, an engineered anthrax protective antigen that is activated by urokinase was combined with wild-type lethal factor in the treatment of Colo205 colon adenocarcinoma in vitro and B16-BL6 mouse melanoma in vitro and in vivo. This therapy was also tested in combination with the small molecule paclitaxel, based on prior reports suggesting synergy between ERK1/2 inhibition and chemotherapeutics. Colo205 was sensitive to PA-U2/LF while B16-BL6 was not. For the combination treatment of B16-BL6, paclitaxel showed a dose response in vitro, but cells remained resistant to PA-U2/LF even in the presence of paclitaxel. In vivo, each therapy slowed tumor progression, and an additive effect between the two was observed. Since LF targets tumor vasculature while paclitaxel is an anti-mitotic, it is possible the agents were acting against different cells in the stroma, precluding a synergistic effect. The engineered anthrax toxin PA-U2/LF warrants further development and testing, possibly in combination with an anti-angiogenesis therapy such as sunitinib or sorafinib. PMID:22843210

  1. Preclinical testing of an Atr inhibitor demonstrates improved response to standard therapies for esophageal cancer.

    PubMed

    Leszczynska, Katarzyna B; Dobrynin, Greg; Leslie, Rhea E; Ient, Jonathan; Boumelha, Adam J; Senra, Joana M; Hawkins, Maria A; Maughan, Tim; Mukherjee, Somnath; Hammond, Ester M

    2016-11-01

    Esophageal cancer has a persistently low 5-year survival rate and has recently been classified as a cancer of unmet need by Cancer Research UK. Consequently, new approaches to therapy are urgently required. Here, we tested the hypothesis that an ATR inhibitor, VX-970, used in combination with standard therapies for esophageal cancer could improve treatment outcome. Using esophageal cancer cell lines we evaluated the efficacy of combining VX-970 with cisplatin and carboplatin in vitro and with radiation in vitro and in vivo. Radiation experiments were also carried out in hypoxic conditions to mimic the tumor microenvironment. Combining VX-970 with cisplatin, carboplatin and radiation increased tumor cell kill in vitro. A significant tumor growth delay was observed when VX-970 was combined with radiotherapy in vivo. VX-970 is an effective chemo/radiosensitizer which could be readily integrated in the current treatment paradigm to improve the treatment response in esophageal cancer and we plan to test it prospectively in the forthcoming phase I dose escalation safety study combining the ATR inhibitor VX-970 with chemoradiotherapy in esophageal cancer (EudraCT number: 2015-003965-27). Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  2. In vitro activities of ciprofloxacin and rifampin alone and in combination against growing and nongrowing strains of methicillin-susceptible and methicillin-resistant Staphylococcus aureus.

    PubMed Central

    Bahl, D; Miller, D A; Leviton, I; Gialanella, P; Wolin, M J; Liu, W; Perkins, R; Miller, M H

    1997-01-01

    We characterized the effects of ciprofloxacin and rifampin alone and in combination on Staphylococcus aureus in vitro. The effects of drug combinations (e.g., indifferent, antagonistic, or additive interactions) on growth inhibition were compared by disk approximation studies and by determining the fractional inhibitory concentrations. Bactericidal effects in log-phase bacteria and in nongrowing isolates were characterized by time-kill methods. The effect of drug combinations was dependent upon whether or not cells were growing and whether killing or growth inhibition was the endpoint used to measure drug interaction. Despite bactericidal antagonism in time-kill experiments, our in vitro studies suggest several possible explanations for the observed benefits in patients treated with a combination of ciprofloxacin and rifampin for deep-seated staphylococcal infections. Notably, when growth inhibition rather than killing was used to characterize drug interaction, indifference rather than antagonism was observed. An additive bactericidal effect was observed in nongrowing bacteria suspended in phosphate-buffered saline. While rifampin antagonized the bactericidal effects of ciprofloxacin, ciprofloxacin did not antagonize the bactericidal effects of rifampin. Each antimicrobial prevented the emergence of subpopulations that were resistant to the other. PMID:9174186

  3. Engineering of mesoporous silica nanoparticles for release of ginsenoside CK and Rh2 to enhance their anticancer and anti-inflammatory efficacy: in vitro studies

    NASA Astrophysics Data System (ADS)

    Singh, Priyanka; Singh, Hina; Castro-Aceituno, Verónica; Ahn, Sungeun; Kim, Yeon Ju; Farh, Mohamed El-Agamy; Yang, Deok Chun

    2017-07-01

    The current study highlights the fabrication of drug delivery system by utilizing 200 nm mesoporous silica nanoparticles (MSNPs) with 4-nm pore size, as a carrier system for delivery ginsenoside compound K (CK) and Rh2 to enhance their efficacy. The two pharmacologically imperative ginsenosides, CK and Rh2, were loaded to the MSNPs to prepare MSNPs-CK and MSNPs-Rh2, respectively. A fluorescein isothiocyanate (FITC) fluorescent dye was combined in the MSNPs carrier system, in order to trace the cellular uptake of ginsenoside-loaded nanoparticles for in vitro studies. Following purification, the so-prepared MSNPs-CK-FITC and MSNPs-Rh2-FITC were characterized by several analytical techniques, which includes, high-pressure liquid chromatography (HPLC), 1H NMR, field emission transmission electron microscopy (FE-TEM), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). In vitro cytotoxicity assay in HaCaT skin cells, A549 lung cancer cells, HepG2 liver carcinoma cells, and HT-29 colon cancer cell lines were tested for MSNPs-CK-FITC and MSNPs-Rh2-FITC. The results demonstrate the excellent biocompatibility of nanoparticles in normal cell lines (HaCaT skin cells) and anticancer efficacy in all the tested cancer cell lines at 10-μM concentration. Additionally, the in vitro anti-inflammatory behavior of MSNPs-CK-FITC and MSNPs-Rh2-FITC were checked in RAW264.7 (murine macrophage) cell lines. The outcomes showed higher anti-inflammatory efficacy of MSNPs-CK-FITC and MSNPs-Rh2-FITC as compared to standard ginsenosides CK and Rh2 in RAW264.7 cell lines. Thus, with 200 nm MSNPs carrier system for the delivery ginsenosides CK and Rh2, a high amount of loading and increasing in vitro pharmacological efficacies of ginsenosides were realized. This study may provide useful insights for designing and improving the applicability of MSNPs for ginsenoside delivery.

  4. Pilot study assessing differentiation of steatosis hepatis, hepatic iron overload, and combined disease using two-point dixon MRI at 3 T: in vitro and in vivo results of a 2D decomposition technique.

    PubMed

    Boll, Daniel T; Marin, Daniele; Redmon, Grace M; Zink, Stephen I; Merkle, Elmar M

    2010-04-01

    The purpose of our study was to evaluate whether two-point Dixon MRI using a 2D decomposition technique facilitates metabolite differentiation between lipids and iron in standardized in vitro liver phantoms with in vivo patient validation and allows semiquantitative in vitro assessment of metabolites associated with steatosis, iron overload, and combined disease. The acrylamide-based phantoms were made to reproduce the T1- and T2-weighted MRI appearances of physiologic hepatic parenchyma and hepatic steatosis-iron overload by the admixture of triglycerides and ferumoxides. Combined disease was simulated using joint admixtures of triglycerides and ferumoxides at various concentrations. For phantom validation, 30 patients were included, of whom 10 had steatosis, 10 had iron overload, and 10 had no liver disease. For MRI an in-phase/opposed-phase T1-weighted sequence with TR/TE(opposed-phase)/TE(in-phase) of 4.19/1.25/2.46 was used. Fat/water series were obtained by Dixon-based algorithms. In-phase and opposed-phase and fat/water ratios were calculated. Statistical cluster analysis assessed ratio pairs of physiologic liver, steatosis, iron overload, and combined disease in 2D metabolite discrimination plots. Statistical assessment proved that metabolite decomposition in phantoms simulating steatosis (1.77|0.22; in-phase/opposed-phase|fat/water ratios), iron overload (0.75|0.21), and healthy control subjects (1.09|0.05) formed three clusters with distinct ratio pairs. Patient validation for hepatic steatosis (3.29|0.51), iron overload (0.56|0.41), and normal control subjects (0.99|0.05) confirmed this clustering (p < 0.001). One-dimensional analysis assessing in vitro combined disease only with in-phase/opposed-phase ratios would have failed to characterize metabolites. The 2D analysis plotting in-phase/opposed-phase and fat/water ratios (2.16|0.59) provided accurate semiquantitative metabolite decomposition (p < 0.001). MR Dixon imaging facilitates metabolite decomposition of intrahepatic lipids and iron using in vitro phantoms with in vivo patient validation. The proposed decomposition technique identified distinct in-phase/opposed-phase and fat/water ratios for in vitro steatosis, iron overload, and combined disease.

  5. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine

    PubMed Central

    Chintalapudi, Ramprasad; Murthy, T. E. G. K.; Lakshmi, K. Rajya; Manohar, G. Ganesh

    2015-01-01

    Background: The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 22 factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Materials and Methods: Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 22 factorial designs. Results: The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Conclusion: Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology. PMID:26682191

  6. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity.

    PubMed

    Ding, Baoyue; Wu, Xin; Fan, Wei; Wu, Zhaoyong; Gao, Jing; Zhang, Wei; Ma, Lulu; Xiang, Wang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2011-01-01

    The increased incidence of malignant melanoma in recent decades, along with its high mortality rate and pronounced resistance to therapy pose an enormous challenge. Novel therapeutic strategies, such as immunotherapy and targeted therapy, are urgently needed for melanoma. In this study, a new active targeting drug delivery system was constructed to combine chemotherapy and active specific immunotherapy. The chemotherapeutic drug, dacarbazine (DTIC), that induces apoptosis through the intrinsic pathway which typically responds to severe DNA damage, was used as a model drug to prepare DTIC-loaded polylactic acid (PLA) nanoparticles (DTIC-NPs), which were covalently conjugated to a highly specific targeting functional TRAIL-receptor 2 (DR5) monoclonal antibody (mAb) that can contribute directly to cancer cell apoptosis or growth inhibition through the extrinsic pathway. Our in vitro experiments demonstrated that DTIC-PLA-DR5 mAb nanoparticles (DTIC-NPs-DR5 mAb) are an active targeting drug delivery system which can specifically target DR5-overexpressing malignant melanoma cells and become efficiently internalized. Most strikingly, compared with conventional DTIC-NPs, DTIC-NPs-DR5 mAb showed significantly enhanced cytotoxicity and increased cell apoptosis in DR5-positive malignant melanoma cells. The DTIC-NPs-DR5 mAb described in this paper might be a potential formulation for targeting chemotherapy and immunotherapy to DR5-overexpressing metastatic melanoma.

  7. Design of a Dissolving Microneedle Platform for Transdermal Delivery of a Fixed-Dose Combination of Cardiovascular Drugs.

    PubMed

    Quinn, Helen L; Bonham, Louise; Hughes, Carmel M; Donnelly, Ryan F

    2015-10-01

    Microneedles (MNs) are a minimally invasive drug delivery platform, designed to enhance transdermal drug delivery by breaching the stratum corneum. For the first time, this study describes the simultaneous delivery of a combination of three drugs using a dissolving polymeric MN system. In the present study, aspirin, lisinopril dihydrate, and atorvastatin calcium trihydrate were used as exemplar cardiovascular drugs and formulated into MN arrays using two biocompatible polymers, poly(vinylpyrrollidone) and poly(methylvinylether/maleic acid). Following fabrication, dissolution, mechanical testing, and determination of drug recovery from the MN arrays, in vitro drug delivery studies were undertaken, followed by HPLC analysis. All three drugs were successfully delivered in vitro across neonatal porcine skin, with similar permeation profiles achieved from both polymer formulations. An average of 126.3 ± 18.1 μg of atorvastatin calcium trihydrate was delivered, notably lower than the 687.9 ± 101.3 μg of lisinopril and 3924 ± 1011 μg of aspirin, because of the hydrophobic nature of the atorvastatin molecule and hence poor dissolution from the array. Polymer deposition into the skin may be an issue with repeat application of such a MN array, hence future work will consider more appropriate MN systems for continuous use, alongside tailoring delivery to less hydrophilic compounds. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  8. In Vitro Assessment of Combined Polymyxin B and Minocycline Therapy against Klebsiella pneumoniae Carbapenemase (KPC)-Producing K. pneumoniae.

    PubMed

    Huang, Dennis; Yu, Brenda; Diep, John K; Sharma, Rajnikant; Dudley, Michael; Monteiro, Jussimara; Kaye, Keith S; Pogue, Jason M; Abboud, Cely Saad; Rao, Gauri G

    2017-07-01

    The multidrug resistance profiles of Klebsiella pneumoniae carbapenemase (KPC) producers have led to increased clinical polymyxin use. Combination therapy with polymyxins may improve treatment outcomes, but it is uncertain which combinations are most effective. Clinical successes with intravenous minocycline-based combination treatments have been reported for infections caused by carbapenemase-producing bacteria. The objective of this study was to evaluate the in vitro activity of polymyxin B and minocycline combination therapy against six KPC-2-producing K. pneumoniae isolates (minocycline MIC range, 2 to 32 mg/liter). Polymyxin B monotherapy (0.5, 1, 2, 4, and 16 mg/liter) resulted in a rapid reduction of up to 6 log in bactericidal activity followed by regrowth by 24 h. Minocycline monotherapy (1, 2, 4, 8, and 16 mg/liter) showed no reduction of activity of >1.34 log against all isolates, although concentrations of 8 and 16 mg/liter prolonged the time to regrowth. When the therapies were used in combination, rapid bactericidal activity was followed by slower regrowth, with synergy (60 of 120 combinations at 24 h, 19 of 120 combinations at 48 h) and additivity (43 of 120 combinations at 24 h, 44 of 120 combinations at 48 h) against all isolates. The extent of killing was greatest against the more susceptible polymyxin B isolates (MICs of ≤0.5 mg/liter) regardless of the minocycline MIC. The pharmacodynamic activity of combined polymyxin B-minocycline therapy against KPC-producing K. pneumoniae is dependent on polymyxin B susceptibility. Further in vitro and animal studies must be performed to fully evaluate the efficacy of this drug combination. Copyright © 2017 American Society for Microbiology.

  9. Guiding neuron development with planar surface gradients of substrate cues deposited using microfluidic devices.

    PubMed

    Millet, Larry J; Stewart, Matthew E; Nuzzo, Ralph G; Gillette, Martha U

    2010-06-21

    Wiring the nervous system relies on the interplay of intrinsic and extrinsic signaling molecules that control neurite extension, neuronal polarity, process maturation and experience-dependent refinement. Extrinsic signals establish and enrich neuron-neuron interactions during development. Understanding how such extrinsic cues direct neurons to establish neural connections in vitro will facilitate the development of organized neural networks for investigating the development and function of nervous system networks. Producing ordered networks of neurons with defined connectivity in vitro presents special technical challenges because the results must be compliant with the biological requirements of rewiring neural networks. Here we demonstrate the ability to form stable, instructive surface-bound gradients of laminin that guide postnatal hippocampal neuron development in vitro. Our work uses a three-channel, interconnected microfluidic device that permits the production of adlayers of planar substrates through the combination of laminar flow, diffusion and physisorption. Through simple flow modifications, a variety of patterns and gradients of laminin (LN) and fluorescein isothiocyanate-conjugated poly-l-lysine (FITC-PLL) were deposited to present neurons with an instructive substratum to guide neuronal development. We present three variations in substrate design that produce distinct growth regimens for postnatal neurons in dispersed cell cultures. In the first approach, diffusion-mediated gradients of LN were formed on cover slips to guide neurons toward increasing LN concentrations. In the second approach, a combined gradient of LN and FITC-PLL was produced using aspiration-driven laminar flow to restrict neuronal growth to a 15 microm wide growth zone at the center of the two superimposed gradients. The last approach demonstrates the capacity to combine binary lines of FITC-PLL in conjunction with surface gradients of LN and bovine serum albumin (BSA) to produce substrate adlayers that provide additional levels of control over growth. This work demonstrates the advantages of spatio-temporal fluid control for patterning surface-bound gradients using a simple microfluidics-based substrate deposition procedure. We anticipate that this microfluidics-based patterning approach will provide instructive patterns and surface-bound gradients to enable a new level of control in guiding neuron development and network formation.

  10. Nanomedical strategy to prolong survival period, heighten cure rate, and lower systemic toxicity of S180 mice treated with MTX/MIT.

    PubMed

    Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi

    2016-01-01

    In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)-MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN-MTX. The loading of MIT into the surface pores of MSNN-MTX produced nanostructured MSNN-MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN-MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN-MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN-MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively.

  11. Nanomedical strategy to prolong survival period, heighten cure rate, and lower systemic toxicity of S180 mice treated with MTX/MIT

    PubMed Central

    Song, Ning; Zhao, Ming; Wang, Yuji; Hu, Xi; Wu, Jianhui; Jiang, Xueyun; Li, Shan; Cui, Chunying; Peng, Shiqi

    2016-01-01

    In spite of the usual combination form of methotrexate (MTX)/mitoxantrone (MIT) and various complex combination regimens of MTX/MIT with other anticancer drugs, the survival period, cure rate, and systemic toxicity still need to be improved. For this purpose, a nanostructured amino group-modified mesoporous silica nanoparticles (MSNN)−MTX/MIT was designed. In the preparation, the surface of mesoporous silica nanoparticles (MSNs) was modified with amino groups to form MSNN. The covalent modification of the amino groups on the surface of MSNN with MTX resulted in MSNN−MTX. The loading of MIT into the surface pores of MSNN−MTX produced nanostructured MSNN−MTX/MIT. Compared with the usual combination form (MTX/MIT), nanostructured MSNN−MTX/MIT increased the survival period greatly, heightened the cure rate to a great extent, and lowered the systemic toxicity of the treated S180 mice, significantly. These superior in vivo properties of nanostructured MSNN−MTX/MIT over the usual combination form (MTX/MIT) were correlated with the former selectively releasing MTX and MIT in tumor tissue and inside cancer cells in vitro. The chemical structure and the nanostructure of MSNN−MTX/MIT were characterized using infrared and differential scanning calorimeter spectra as well as transmission electron microscope images, respectively. PMID:27621591

  12. Assessment of early combination effects of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii in dynamic time-kill experiments.

    PubMed

    Tängdén, Thomas; Karvanen, Matti; Friberg, Lena E; Odenholt, Inga; Cars, Otto

    2017-07-01

    In view of the paucity of clinical evidence, in vitro studies are needed to find antibiotic combinations effective against multidrug-resistant Gram-negative bacteria. Interpretation of in vitro effects is usually based on bacterial growth after 24 h in time-kill and checkerboard experiments. However, the clinical relevance of the effects observed in vitro is not established. In this study we explored alternative output parameters to assess the activities of colistin and meropenem against Pseudomonas aeruginosa and Acinetobacter baumannii. Four strains each of P. aeruginosa and A. baumannii were exposed to colistin and meropenem, alone and in combination, in 8 h dynamic time-kill experiments. Initial (1 h), maximum and 8 h bacterial reductions and the area under the bacterial time-kill curve were evaluated. Checkerboards, interpreted based on fractional inhibitory concentration indices after 24 h, were performed for comparison. In the time-kill experiments, the combination resulted in enhanced 1 h, maximum and 8 h bacterial reductions against 2, 3 and 5 of 8 strains, respectively, as compared to the single drugs. A statistically significant reduction in the area under the time-kill curve was observed for three strains. In contrast, the checkerboards did not identify synergy for any of the strains. Combination effects were frequently found with colistin and meropenem against P. aeruginosa and A. baumannii in time-kill experiments but were not detected with the checkerboard method. We propose that the early dynamics of bacterial killing and growth, which may be of great clinical importance, should be considered in future in vitro combination studies.

  13. Influence of the pfmdr1 Gene on In Vitro Sensitivities of Piperaquine in Thai Isolates of Plasmodium falciparum

    PubMed Central

    Mungthin, Mathirut; Watanatanasup, Ekularn; Sitthichot, Naruemon; Suwandittakul, Nantana; Khositnithikul, Rommanee; Ward, Stephen A.

    2017-01-01

    Piperaquine combined with dihydroartemisinin is one of the artemisinin derivative combination therapies, which can replace artesunate–mefloquine in treating uncomplicated falciparum malaria in Thailand. The aim of this study was to determine the in vitro sensitivity of Thai Plasmodium falciparum isolates against piperaquine and the influence of the pfmdr1 gene on in vitro response. One hundred and thirty-seven standard laboratory and adapted Thai isolates of P. falciparum were assessed for in vitro piperaquine sensitivity. Polymorphisms of the pfmdr1 gene were determined by polymerase chain reaction methods. The mean and standard deviation of the piperaquine IC50 in Thai isolates of P. falciparum were 16.7 ± 6.3 nM. The parasites exhibiting chloroquine IC50 of ≥ 100 nM were significantly less sensitive to piperaquine compared with the parasite with chloroquine IC50 of < 100 nM. No significant association between the pfmdr1 copy number and piperaquine IC50 values was found. In contrast, the parasites containing the pfmdr1 86Y allele exhibited significantly reduced piperaquine sensitivity. Before nationwide implementation of dihydroartemisinin–piperaquine as the first-line treatment in Thailand, in vitro and in vivo evaluations of this combination should be performed especially in areas where parasites containing the pfmdr1 86Y allele are predominant such as the Thai–Malaysian border. PMID:28044042

  14. Combination lung cancer chemotherapy: Design of a pH-sensitive transferrin-PEG-Hz-lipid conjugate for the co-delivery of docetaxel and baicalin.

    PubMed

    Li, Shuang; Wang, Lin; Li, Na; Liu, Yucai; Su, Hui

    2017-11-01

    The aim of the present study is to design a novel dual-ligand lipid based nanoparticle system. It is conducted by a specific ligand and pH sensitive lipid conjugate. Docetaxel (DTX) and baicalein (BA) are co-delivered by this system for combination lung cancer chemotherapy. Firstly, transferrin (Tf)-polyethylene glycol (PEG)-hydrazone (hz)-glyceryl monostearate (GMS), Tf-PEG-hz-GMS, was synthesized. Tf decorated DTX and BA loaded solid lipid nanoparticles (Tf-D/B-SLNs) were prepared by emulsification method. The capability of Tf-D/B-SLNs in suppressing lung cancer cells in vitro and in vivo was investigated. The results revealed the better antitumor efficiency of Tf-D/B-SLNs than the non-decorated SLNs and single drug loaded SLNs. Significant synergistic effects were observed in the dual drugs loaded systems. The best tumor inhibition ability and the lowest systemic toxicity also proved the pH-sensitive co-delivery nano-system could be a promising strategy for treatment of lung cancer. Copyright © 2017. Published by Elsevier Masson SAS.

  15. In Vitro Anti-Candida Activity of Lidocaine and Nitroglycerin: Alone and Combined

    PubMed Central

    Palmeira-de-Oliveira, Ana; Ramos, Ana Rita; Gaspar, Carlos; Palmeira-de-Oliveira, Rita; Gouveia, Paula; Martinez-de-Oliveira, José

    2012-01-01

    The aim of this work was to study the anti-Candida activity of lidocaine and nitroglycerin alone and in combination. Ten Candida strains were included, corresponding to 1 collection type strain (ATCC 10231) and 9 clinical isolates: 4 C. albicans, 2 C. glabrata, 1 C. tropicalis, 1 C. krusei, and 1 C. parapsilosis. The CLSI reference M27-A3 micromethod was used to determine the anti-Candida activity of the drugs alone; minimal inhibitory and lethal concentrations were determined. The classic checkboard technique was used to determine the activity of combined drugs. Lidocaine fungicidal effect was dosedependent. Nitroglycerin exhibited a higher effect. The drugs combination resulted in a reduction of the inhibitory concentration, corresponding to an additive effect. In conclusion, both drugs exhibited an interesting anti-Candida activity. The combination of lidocaine with nitroglycerin was shown to have an additive effect against Candida spp., predicting the interest to include, in the future, these drugs in a new delivery system for the treatment of mucocutaneous candidosis. PMID:22675243

  16. The combination effect of auxin and cytokinin on in vitro callus formation of Physalis angulata L. - A medicinal plant

    NASA Astrophysics Data System (ADS)

    Mastuti, Retno; Munawarti, Aminatun; Firdiana, Elok Rifqi

    2017-11-01

    Physalis angulata L. (Ciplukan) is one member of Solanaceae that has a potential as herbal medicine. This plant grows wild in the crop fields, forest edges, etc. However, ciplukan is increasingly difficult to find recently. In vitro callus is an alternative source to produce secondary metabolite production as well as to regenerate plants through indirect organogenesis. This study aims to identify the response of hypocotyl explants on in vitro callus formation induced by a combination of auxin and cytokinins. Two types of cytokinins, Kinetin and BAP (0.5 ppm) were combined with three types of auxin, i.e. 2.4-D, IBA and IAA, at three concentrations 0.5, 1.0 and 1.5 ppm. In all combinations of cytokinin and auxin, 50-100% of hypocotyl explants derived from in vitro seedling were able to produce callus either in a compact or watery friable texture. In MS medium supplemented with 2.4-D, callus FW (fresh weight) began to decline in the fourth week after culture. Callus FW that increased until 5 weeks of culture was obtained in medium IAA 0.5 + Kin 0.5, IBA 1.0 + Kin 0.5 and IBA 1 + BA 0.5. Almost all calli induced on a medium + Kinetin also produced roots. While medium + BAP was able to induce shoots regeneration.

  17. Protective effects of broadly neutralizing immunoglobulin against homologous and heterologous equine infectious anemia virus infection in horses with severe combined immunodeficiency.

    PubMed

    Taylor, Sandra D; Leib, Steven R; Wu, Wuwei; Nelson, Robert; Carpenter, Susan; Mealey, Robert H

    2011-07-01

    Using the equine infectious anemia virus (EIAV) lentivirus model system, we previously demonstrated protective effects of broadly neutralizing immune plasma in young horses (foals) with severe combined immunodeficiency (SCID). However, in vivo selection of a neutralization-resistant envelope variant occurred. Here, we determined the protective effects of purified immunoglobulin with more potent broadly neutralizing activity. Overall, protection correlated with the breadth and potency of neutralizing activity in vitro. Four of five SCID foals were completely protected against homologous challenge, while partial protection occurred following heterologous challenge. These results support the inclusion of broadly neutralizing antibodies in lentivirus control strategies.

  18. An open-access microfluidic model for lung-specific functional studies at an air-liquid interface.

    PubMed

    Nalayanda, Divya D; Puleo, Christopher; Fulton, William B; Sharpe, Leilani M; Wang, Tza-Huei; Abdullah, Fizan

    2009-10-01

    In an effort to improve the physiologic relevance of existing in vitro models for alveolar cells, we present a microfluidic platform which provides an air-interface in a dynamic system combining microfluidic and suspended membrane culture systems. Such a system provides the ability to manipulate multiple parameters on a single platform along with ease in cell seeding and manipulation. The current study presents a comparison of the efficacy of the hybrid system with conventional platforms using assays analyzing the maintenance of function and integrity of A549 alveolar epithelial cell monolayer cultures. The hybrid system incorporates bio-mimetic nourishment on the basal side of the epithelial cells along with an open system on the apical side of the cells exposed to air allowing for easy access for assays.

  19. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-L-Methionine.

    PubMed

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-07-01

    S-methyl- L -methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of -3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM.

  20. Effect of Enhancers on in vitro and in vivo Skin Permeation and Deposition of S-Methyl-l-Methionine

    PubMed Central

    Kim, Ki Taek; Kim, Ji Su; Kim, Min-Hwan; Park, Ju-Hwan; Lee, Jae-Young; Lee, WooIn; Min, Kyung Kuk; Song, Min Gyu; Choi, Choon-Young; Kim, Won-Serk; Oh, Hee Kyung; Kim, Dae-Duk

    2017-01-01

    S-methyl-l-methionine (SMM), also known as vitamin U, is commercially available as skin care cosmetic products for its wound healing and photoprotective effects. However, the low skin permeation expected of SMM due to its hydrophilic nature with a log P value of −3.3, has not been thoroughly addressed. The purpose of this study thus was to evaluate the effect of skin permeation enhancers on the skin permeation/deposition of SMM. Among the enhancers tested for the in vitro skin permeation and deposition of SMM, oleic acid showed the most significant enhancing effect. Moreover, the combination of oleic acid and ethanol further enhanced in vitro permeation and deposition of SMM through hairless mouse skin. Furthermore, the combination of oleic acid and ethanol significantly increased the in vivo deposition of SMM in the epidermis/dermis for 12 hr, which was high enough to exert a therapeutic effect. Therefore, based on the in vitro and in vivo studies, the combination of oleic acid and ethanol was shown to be effective in improving the topical skin delivery of SMM, which may be applied in the cosmetic production process for SMM. PMID:28274096

  1. In vitro combination of antifungal agents against Malassezia pachydermatis.

    PubMed

    Schlemmer, Karine B; de Jesus, Francielli P K; Loreto, Erico S; Farias, Julia B; Alves, Sydney H; Ferreiro, Laerte; Santurio, Janio M

    2018-06-19

    The yeast Malassezia pachydermatis is a common commensal and occasional opportunistic pathogen of theskin microbiota of animals and humans. In this study, the susceptibility of M. pachydermatis isolates to fluconazole (FLC), itraconazole (ITZ), ketoconazole (KTZ), clotrimazole (CLZ), and miconazole (MCZ) alone and in combination with terbinafine (TRB), nystatin (NYS), and caspofungin (CSP) was evaluated in vitro based on the M27-A3 technique and the checkerboard microdilution method using Sabouraud dextrose broth with 1% tween 80 (SDB). Based on the mean FICI values, the main synergies observed were combinations of ITZ+CSP and CLZ+CSP (55.17%). The most significant combinations deserve in vivo evaluations because might provide effective alternative treatments against M. pachydermatis due to their synergistic interactions.

  2. In Vitro Activity of Rifampicin Combined with Daptomycin or Tigecycline on Staphylococcus haemolyticus Biofilms.

    PubMed

    Szczuka, Ewa; Grabska, Katarzyna; Kaznowski, Adam

    2015-08-01

    Staphylococcus haemolyticus is of increasing concern as a cause of several biofilm-associated infections, and today, it represents the second most common organism among clinical isolates of coagulase-negative staphylococci. However, little is known regarding the treatment of infections caused by these bacteria. In this study, we characterize the biofilm formed by S. haemolyticus strains isolated from bloodstream infections and assess in vitro the activity of rifampicin combined with daptomycin or tigecycline against bacteria growing in a biofilm. The results of our studies indicated that the majority (78 %) of methicillin-resistant Staphylococcus haemolyticus strains have the ability to form a biofilm in vitro. None of these strains carried icaADBC genes indicating that they form biofilm via ica-independent mechanisms. The molecular characterization of the biofilm showed that proteins are the predominant matrix component and play a major role in biofilm structure. Extracellular DNA and polysaccharides, other than polysaccharide intercellular adhesin, are also present in the biofilm matrix, but they play a minor role. The images obtained by confocal laser scanning microscopy showed that most S. haemolyticus strains formed a dense biofilm with a low number of dead cells. In vitro study demonstrated excellent activity of tigecycline in combination with rifampicin against cell growth in the proteinous biofilm. The BIC (biofilm inhibitory concentration) value for tigecycline/rifampicin ranged from 0.062 to 1 µg/ml, whereas for daptomycin/rifampicin from 0.125 to 2 µg/ml. These results indicated that the tigecycline/rifampicin combination was more effective against ica-independent biofilm, formed by S. haemolyticus strains, than the daptomycin/rifampicin combination.

  3. In vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts against Haemonchus contortus (Nematoda) and their anthelmintic effect in gerbils.

    PubMed

    Zamilpa, A; García-Alanís, C; López-Arellano, M E; Hernández-Velázquez, V M; Valladares-Cisneros, M G; Salinas-Sánchez, D O; Mendoza-de Gives, P

    2018-05-06

    The in vitro nematicidal effect of Chenopodium ambrosioides and Castela tortuosa n-hexane extracts (E-Cham and E-Cato, respectively) on Haemonchus contortus infective larvae (L3) and the anthelmintic effect of these extracts against the pre-adult stage of the parasite in gerbils were evaluated using both individual and combined extracts. The in vitro confrontation between larvae and extracts was performed in 24-well micro-titration plates. The results were considered 24 and 72 h post confrontation. The in vivo nematicidal effect was examined using gerbils as a study model. The extracts from the two assessed plants were obtained through maceration using n-hexane as an organic agent. Gerbils artificially infected with H. contortus L3 were treated intraperitoneally with the corresponding extract either individually or in combination. The results showed that the highest individual lethal in vitro effect (96.3%) was obtained with the E-Cham extract at 72 h post confrontation at 40 mg/ml, followed by E-Cato (78.9%) at 20 mg/ml after 72 h. The highest combined effect (98.7%) was obtained after 72 h at 40 mg/ml. The in vivo assay showed that the individual administration of the E-Cato and E-Cham extracts reduced the parasitic burden in gerbils by 27.1% and 45.8%, respectively. Furthermore, the anthelmintic efficacy increased to 57.3% when both extracts were administered in combination. The results of the present study show an important combined nematicidal effect of the two plant extracts assessed against L3 in gerbils.

  4. Development and Application of Computational/In Vitro Toxicological Methods for Chemical Hazard Risk Reduction of New Materials for Advanced Weapon Systems

    NASA Technical Reports Server (NTRS)

    Frazier, John M.; Mattie, D. R.; Hussain, Saber; Pachter, Ruth; Boatz, Jerry; Hawkins, T. W.

    2000-01-01

    The development of quantitative structure-activity relationship (QSAR) is essential for reducing the chemical hazards of new weapon systems. The current collaboration between HEST (toxicology research and testing), MLPJ (computational chemistry) and PRS (computational chemistry, new propellant synthesis) is focusing R&D efforts on basic research goals that will rapidly transition to useful products for propellant development. Computational methods are being investigated that will assist in forecasting cellular toxicological end-points. Models developed from these chemical structure-toxicity relationships are useful for the prediction of the toxicological endpoints of new related compounds. Research is focusing on the evaluation tools to be used for the discovery of such relationships and the development of models of the mechanisms of action. Combinations of computational chemistry techniques, in vitro toxicity methods, and statistical correlations, will be employed to develop and explore potential predictive relationships; results for series of molecular systems that demonstrate the viability of this approach are reported. A number of hydrazine salts have been synthesized for evaluation. Computational chemistry methods are being used to elucidate the mechanism of action of these salts. Toxicity endpoints such as viability (LDH) and changes in enzyme activity (glutahoione peroxidase and catalase) are being experimentally measured as indicators of cellular damage. Extrapolation from computational/in vitro studies to human toxicity, is the ultimate goal. The product of this program will be a predictive tool to assist in the development of new, less toxic propellants.

  5. Identify super quality markers from prototype-based pharmacokinetic markers of Tangzhiqing tablet (TZQ) based on in vitro dissolution/ permeation and in vivo absorption correlations.

    PubMed

    Li, Ziqiang; Liu, Jia; Li, Yazhuo; Du, Xi; Li, Yanfen; Wang, Ruihua; Lv, Chunxiao; He, Xin; Wang, Baohe; Huang, Yuhong; Zhang, Deqin

    2018-06-01

    A quality marker (Q-marker) is defined as an inherent chemical compound that is used for the quality control of a drug. Its biological activities are closely related to safety and therapeutic effects. Generally, a multiple-component herbal medicine may have many Q-markers. We therefore proposed a concept of "super Q-marker" satisfying both the criterion of Q-markers and PK-markers to be used in more effective quality control of herbal medicine. The first aim was to find suitable prototype-based PK-markers from Tangzhiqing tablets (TZQ), a Chinese patent medicine. Then super Q-markers were expected to be identified from the prototype-based PK-markers based on an in vitro-in vivo correlation study. Potentially eligible prototype-based PK-markers were identified in a single- and multiple-dose pharmacokinetic study on TZQ in 30 healthy volunteers. The in vitro dissolution and permeation profiles of the prototype-based PK-markers of TZQ were evaluated by the physiologically-based drug dissolution/absorption simulating system (DDASS). An in vitro-in vivo correlation analysis was conducted between the dissolution/permeation behaviors in DDASS and the actual absorption profiles in human to test the transferability and traceability of the promising super Q-markers for TZQ. In human, plasma paeoniflorin and nuciferine as prototype-based PK-markers exhibited the appropriate pharmacokinetic properties, including dose-dependent systemic exposure (AUC, C max ) and a proper elimination half-life (1∼3h). In DDASS, it was predicted that paeoniflorin and nuciferine are highly permeable but the absorption rates are primarily limited by the dissolution rates. Moreover, the established in vitro-in vivo correlations of paeoniflorin and nuciferine were in support of the super Q-markers features. Paeoniflorin and nuciferine are identified as the super Q-markers from the prototype-based PK-markers of TZQ based on findings from a combination of in vitro, in vivo, and in vitro-in vivo correlation studies. This method is practical for optimal identification of qualified Q-markers, thus helping improve the quality control of herbal medicines. Copyright © 2018 Elsevier GmbH. All rights reserved.

  6. [In vitro synergistic effect of moxifloxacin and amphotericin B combination against Candida strains].

    PubMed

    Yalçin, Burçe; Kalkanci, Ayşe; Gürelik, Feryal; Fidan, Işil; Kustimur, Semra; Ozdek, Sengül

    2010-01-01

    Contradictory results such as synergy or indifferent effect, have been reported about the interactions between quinolones and antifungal drugs in different studies. The aim of this study was to investigate the in vitro susceptibilities of Candida spp. to moxifloxacin (MOX) alone and MOX + amphotericin B (AmB) combination. A total of 20 strains were included to the study, of which 19 were clinical isolates (10 Candida albicans, 4 Candida glabrata, 2 Candida parapsilosis, 1 Candida tropicalis, 1 Candida pelliculosa ve 1 Candida sake) and 1 was a standard strain (C. albicans ATCC 90028). In vitro susceptibilities of the strains to MOX with AmB were investigated by broth microdilution method according to the recommendations of the Clinical and Laboratory Standards Institute (CLSI), and in vitro interaction of these drugs were determined by a chequerboard titration method. Minimal inhibitory concentration (MIC) values of Candida spp. for MOX were found > or = 400 microg/ml indicating that MOX, by itself has no antifungal activity. AmB MIC values were found 1 microg/ml in 11 of the clinical isolates, and < or = 0.5 microg/ml in the other 8 clinical isolates and 1 standard strain. The inhibitor activity of AmB was slightly enhanced when combined with MOX, there being a decrease of 1-4 fold dilutions in the AmB MICs against all isolates tested. Synergistic effect between MOX and AmB, defined as a fractional inhibitory concentration (FIC) index as < or = 0.5, was observed in 90% (18/20; all were clinical isolates) of the strains, whereas indifferent effect (FIC = 1) was detected in 10% (2/20; 1 was clinical and 1 was standard strain) of the strains. Antagonistic effect was not observed for this combination even at 48th hours. It was concluded that these preliminary results should be confirmed by large-scaled in vitro and in vivo studies to evaluate MOX + AmB combination as a therapeutic option for the treatment of Candida infections.

  7. Retention strength of impression materials to a tray material using different adhesive methods: an in vitro study.

    PubMed

    Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick

    2008-12-01

    A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.

  8. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS).

    PubMed

    Tsume, Yasuhiro; Matsui, Kazuki; Searls, Amanda L; Takeuchi, Susumu; Amidon, Gregory E; Sun, Duxin; Amidon, Gordon L

    2017-05-01

    The development of formulations and the assessment of oral drug absorption for Biopharmaceutical Classification System (BCS) class IIb drugs is often a difficult issue due to the potential for supersaturation and precipitation in the gastrointestinal (GI) tract. The physiological environment in the GI tract largely influences in vivo drug dissolution rates of those drugs. Thus, those physiological factors should be incorporated into the in vitro system to better assess in vivo performance of BCS class IIb drugs. In order to predict oral bioperformance, an in vitro dissolution system with multiple compartments incorporating physiologically relevant factors would be expected to more accurately predict in vivo phenomena than a one-compartment dissolution system like USP Apparatus 2 because, for example, the pH change occurring in the human GI tract can be better replicated in a multi-compartmental platform. The Gastrointestinal Simulator (GIS) consists of three compartments, the gastric, duodenal and jejunal chambers, and is a practical in vitro dissolution apparatus to predict in vivo dissolution for oral dosage forms. This system can demonstrate supersaturation and precipitation and, therefore, has the potential to predict in vivo bioperformance of oral dosage forms where this phenomenon may occur. In this report, in vitro studies were performed with dipyridamole and ketoconazole to evaluate the precipitation rates and the relationship between the supersaturation levels and oral absorption of BCS class II weak base drugs. To evaluate the impact of observed supersaturation levels on oral absorption, a study utilizing the GIS in combination with mouse intestinal infusion was conducted. Supersaturation levels observed in the GIS enhanced dipyridamole and ketoconazole absorption in mouse, and a good correlation between their supersaturation levels and their concentration in plasma was observed. The GIS, therefore, appears to represent in vivo dissolution phenomena and demonstrate supersaturation and precipitation of dipyridamole and ketoconazole. We therefore conclude that the GIS has been shown to be a good biopredictive tool to predict in vivo bioperformance of BCS class IIb drugs that can be used to optimize oral formulations. Copyright © 2017. Published by Elsevier B.V.

  9. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy †

    PubMed Central

    Costa Lima, Sofia A.; Bouziotis, Penelope; Vranješ-Djurić, Sanja; Efthimiadou, Eleni Κ.; Laurenzana, Anna; Barbosa, Ana Isabel; Jones, Carlton; Jankovic, Drina; Gobbo, Oliviero L.

    2018-01-01

    Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy (“Radiomag”). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work. PMID:29734795

  10. Recommendations for In Vitro and In Vivo Testing of Magnetic Nanoparticle Hyperthermia Combined with Radiation Therapy.

    PubMed

    Spirou, Spiridon V; Costa Lima, Sofia A; Bouziotis, Penelope; Vranješ-Djurić, Sanja; Efthimiadou, Eleni Κ; Laurenzana, Anna; Barbosa, Ana Isabel; Garcia-Alonso, Ignacio; Jones, Carlton; Jankovic, Drina; Gobbo, Oliviero L

    2018-05-06

    Magnetic nanoparticle (MNP)-mediated hyperthermia (MH) coupled with radiation therapy (RT) is a novel approach that has the potential to overcome various practical difficulties encountered in cancer treatment. In this work, we present recommendations for the in vitro and in vivo testing and application of the two treatment techniques. These recommendations were developed by the members of Working Group 3 of COST Action TD 1402: Multifunctional Nanoparticles for Magnetic Hyperthermia and Indirect Radiation Therapy ("Radiomag"). The purpose of the recommendations is not to provide definitive answers and directions but, rather, to outline those tests and considerations that a researcher must address in order to perform in vitro and in vivo studies. The recommendations are divided into 5 parts: (a) in vitro evaluation of MNPs; (b) in vitro evaluation of MNP-cell interactions; (c) in vivo evaluation of the MNPs; (d) MH combined with RT; and (e) pharmacokinetic studies of MNPs. Synthesis and characterization of the MNPs, as well as RT protocols, are beyond the scope of this work.

  11. Multifunctional Bioreactor System for Human Intestine Tissues

    PubMed Central

    2017-01-01

    The three-dimensional (3D) cultivation of intestinal cells and tissues in dynamic bioreactor systems to represent in vivo intestinal microenvironments is essential for developing regenerative medicine treatments for intestinal diseases. We have previously developed in vitro human intestinal tissue systems using a 3D porous silk scaffold system with intestinal architectures and topographical features for the adhesion, growth, and differentiation of intestinal cells under static culture conditions. In this study, we designed and fabricated a multifunctional bioreactor system that incorporates pre-epithelialized 3D silk scaffolds in a dynamic culture environment for in vitro engineering of human intestine tissues. The bioreactor system allows for control of oxygen levels in perfusion fluids (aerobic simulated intestinal fluid (SIF), microaerobic SIF, and anaerobic SIF), while ensuring control over the mechanical and chemical microenvironments present in native human intestines. The bioreactor system also enables 3D cell culture with spatial separation and cultivation of cocultured epithelial and stromal cells. Preliminary functional analysis of tissues housed in the bioreactor demonstrated that the 3D tissue constructs survived and maintained typical phenotypes of intestinal epithelium, including epithelial tight junction formation, intestinal biomarker expression, microvilli formation, and mucus secretion. The unique combination of a dynamic bioreactor and 3D intestinal constructs offers utility for engineering human intestinal tissues for the study of intestinal diseases and discovery options for new treatments. PMID:29333491

  12. In vitro and in situ degradation of alkali treated sorghum wet distillers grains alone or in combination with corn stalks to increase their nutritive value

    USDA-ARS?s Scientific Manuscript database

    This experiment was conducted to evaluate the effect of alkali treatment on in vitro and in situ digestibility of fiber sources. An in vitro and in situ experiment were conducted to determine the effects of treating sorghum WDG with solubles (SWDG) and corn stalks (CS) with calcium hydroxide on in ...

  13. Encapsulation system for the immunoisolation of living cells

    NASA Technical Reports Server (NTRS)

    Lacik, Igor (Inventor); Brissova, Marcela (Inventor); Wang, Taylor G. (Inventor); Anikumar, Amrutur V. (Inventor); Prokop, Ales (Inventor); Powers, Alvin C. (Inventor)

    1999-01-01

    The present invention is drawn to a composition of matter comprising high viscosity sodium alginate, cellulose sulfate and a multi-component polycation. Additionally, the present invention provides methods for making capsules, measuring capsule permeability to immunologically-relevant proteins and treating disease in an animal using encapsulated cells. Over one thousand combinations of polyanions and polycations were examined as polymer candidates suitable for encapsulation of living cells and thirty-three pairs were effective. The combination of sodium alginate, cellulose sulfate, poly(methylene-co-guanidine) hydrochloride, calcium chloride, and sodium chloride produced the most desirable results. Pancreatic islets encapsulated in this multicomponent capsule demonstrated glucose-stimulated insulin secretion in vitro and reversed diabetes without stimulating immune reaction in mice. The capsule formulation and system of the present invention allows independent adjustments of capsule size, wall thickness, mechanical strength and permeability, and offers distinct advantages for immunoisolating cells.

  14. Doxycycline potentiates antitumor effect of cyclophosphamide in mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chhipa, Rishi Raj; Singh, Sandeep; Surve, Sachin V.

    2005-02-01

    Cyclophosphamide (CPA) is a widely used chemotherapeutic drug in neoplasias. It is a DNA and protein alkylating agent that has a broad spectrum of activity against variety of neoplasms including breast cancer. The therapeutic effectiveness of CPA is limited by the high-dose hematopoietic, renal, and cardiac toxicity that accompanies the systemic distribution of liver-derived activated drug metabolites. The present study examines the potential of combining well-tolerated antibiotic doxycycline (DOX) with CPA and understanding the mechanism of cell killing. Interestingly, we found that DOX significantly enhances the tumor regression activity of CPA on xenograft mice model bearing MCF-7 cells. DOX alsomore » potentiates MCF-7 cell killing by CPA in vitro. In presence of DOX (3 {mu}g/ml), the IC{sub 50} value of CPA decreased significantly from 10 to 2.5 mM. Additional analyses indicate that the tumor suppressor p53 and p53-regulated proapoptotic Bax were upregulated in vivo and in vitro following CPA treatment in combination with DOX, suggesting that upregulation of p53 may contribute to the enhancement of antitumor effect of CPA by DOX. Furthermore, downregulation of antiapoptotic Bcl-2 was observed in animals treated with CPA and CPA plus DOX when compared to untreated or DOX-treated groups. Our results raise the possibility that this combination chemotherapeutic regimen may lead to additional improvements in treatment of breast cancer.« less

  15. Terbinafine inhibits Cryptococcus neoformans growth and modulates fungal morphology.

    PubMed

    Guerra, Caroline Rezende; Ishida, Kelly; Nucci, Marcio; Rozental, Sonia

    2012-08-01

    Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis. Central nervous system infection is the most common clinical presentation followed by pulmonary, skin and eye manifestations. Cryptococcosis is primarily treated with amphotericin B (AMB), fluconazole (FLC) and itraconazole (ITC). In the present work, we evaluated the in vitro effect of terbinafine (TRB), an antifungal not commonly used to treat cryptococcosis. We specifically examined the effects of TRB, either alone or in conjunction with AMB, FLC and ITC, on clinical C. neoformans isolates, including some isolates resistant to AMB and ITC. Broth microdilution assays showed that TRB was the most effective drug in vitro. Antifungal combinations demonstrated synergism of TRB with AMB, FLC and ITC. The drug concentrations used for the combination formulations were as much as 32 and 16-fold lower than the minimum inhibitory concentration (MIC) values of FLC and AMB alone, respectively. In addition, calcofluor white staining revealed the presence of true septa in hyphae structures that were generated after drug treatment. Ultrastructural analyses demonstrated several alterations in response to drug treatment, such as cell wall alterations, plasma membrane detachment, presence of several cytoplasmic vacuoles and mitochondrial swelling. Therefore, we believe that the use of TRB alone or in combination with AMB and azoles should be explored as an alternative treatment for cryptococcosis patients who do not respond to standard therapies.

  16. In vitro antibody-enzyme conjugates with specific bactericidal activity.

    PubMed

    Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C

    1973-06-01

    IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.

  17. Ribosome display: next-generation display technologies for production of antibodies in vitro.

    PubMed

    He, Mingyue; Khan, Farid

    2005-06-01

    Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.

  18. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro

    PubMed Central

    Posse, Viktor; Shahzad, Saba; Falkenberg, Maria; Hällberg, B. Martin; Gustafsson, Claes M.

    2015-01-01

    A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery. PMID:25690892

  19. Rapid in vitro labeling procedures for two-dimensional gel fingerprinting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.F.; Fowlks, E.R.

    1982-01-15

    Improvements of existing in vitro procedures for labeling RNA radioactively, and modifications of the two-dimensional polyacrylamide gel electrophoresis system for making RNA fingerprints are described. These improvements are (a) inactivation of phosphatase with nitric acid at pH 2.0 eliminated the phenol-cholorform extraction step during 5'-end labeling with polynucleotide kinase and (..gamma..-/sup 32/P)ATP; (b) ZnSO/sub 4/ inactivation of R Nase T/sub 1/ results in a highly efficient procedure for 3'-end labeling with T4 ligase and (5'-/sup 32/P)pCp; and (c) a rapid 4-min procedure for variable quantity range of /sup 125/I and RNA results in a qualitative and quantitative sample for high-molecularmore » weight RNA fingerprinting. Thus, these in vitro procedures become rapid and reproducible when combined with two-dimensional gel electrophoresis which eliminates simultaneously labeled impurities. Each labeling procedure is compared, using tobacco mosaic virus, Brome mosaic virus, and polio RNA. A series of Ap-rich oligonucleotides was discovered in the inner genome of Brome mosaic Virus RNA-3.« less

  20. Platinum covalent shell cross-linked micelles designed to deliver doxorubicin for synergistic combination cancer therapy

    PubMed Central

    Zhu, Caiying; Xiao, Jingjing; Tang, Ming; Feng, Hua; Chen, Wulian; Du, Ming

    2017-01-01

    The preparation of polymer therapeutics capable of controlled release of multiple chemotherapeutic drugs has remained a tough problem in synergistic combination cancer therapy. Herein, a novel dual-drug co-delivery system carrying doxorubicin (DOX) and platinum(IV) (Pt[IV]) was developed. An amphiphilic diblock copolymer, PCL-b-P(OEGMA-co-AzPMA), was synthesized and used as a nanoscale drug carrier in which DOX and Pt(IV) could be packaged together. The copolymers were shell cross-linked by Pt(IV) prodrug via a click reaction. Studies on the in vitro drug release and cellular uptake of the dual-drug co-delivery system showed that the micelles were effectively taken up by the cells and simultaneously released drugs in the cells. Futhermore, the co-delivery polymer nanoparticles caused much higher cell death in HeLa and A357 tumor cells than either the free drugs or single-drug-loaded micelles at the same dosage, exhibiting a synergistic combination of DOX and Pt(IV). The results obtained with the shell cross-linked micelles based on an anticancer drug used as a cross-linking linkage suggested a promising application of the micelles for multidrug delivery in combination cancer therapy. PMID:28553108

  1. Bird song: in vivo, in vitro, in silico

    NASA Astrophysics Data System (ADS)

    Mukherjee, Aryesh; Mandre, Shreyas; Mahadevan, Lakshminarayan

    2010-11-01

    Bird song, long since an inspiration for artists, writers and poets also poses challenges for scientists interested in dissecting the mechanisms underlying the neural, motor, learning and behavioral systems behind the beak and brain, as a way to recreate and synthesize it. We use a combination of quantitative visualization experiments with physical models and computational theories to understand the simplest aspects of these complex musical boxes, focusing on using the controllable elastohydrodynamic interactions to mimic aural gestures and simple songs.

  2. The In Vitro Antimicrobial Effects of Lavandula angustifolia Essential Oil in Combination with Conventional Antimicrobial Agents

    PubMed Central

    de Rapper, Stephanie; Viljoen, Alvaro

    2016-01-01

    The paper focuses on the in vitro antimicrobial activity of Lavandula angustifolia Mill. (lavender) essential oil in combination with four commercial antimicrobial agents. Stock solutions of chloramphenicol, ciprofloxacin, nystatin, and fusidic acid were tested in combination with L. angustifolia essential oil. The antimicrobial activities of the combinations were investigated against the Gram-positive bacterial strain Staphylococcus aureus (ATCC 6538) and Gram-negative Pseudomonas aeruginosa (ATCC 27858) and Candida albicans (ATCC 10231) was selected to represent the yeasts. The antimicrobial effect was performed using the minimum inhibitory concentration (MIC) microdilution assay. Isobolograms were constructed for varying ratios. The most prominent interaction was noted when L. angustifolia essential oil was combined with chloramphenicol and tested against the pathogen P. aeruginosa (ΣFIC of 0.29). Lavendula angustifolia essential oil was shown in most cases to interact synergistically with conventional antimicrobials when combined in ratios where higher volumes of L. angustifolia essential oil were incorporated into the combination. PMID:27891157

  3. National Cancer Institute Pediatric Preclinical Testing Program: Model Description for In Vitro Cytotoxicity Testing

    PubMed Central

    Kang, Min H.; Smith, Malcolm A.; Morton, Christopher L.; Keshelava, Nino; Houghton, Peter J.; Reynolds, C. Patrick

    2010-01-01

    Background The National Cancer Institute (NCI) has established the Pediatric Preclinical Testing Program (PPTP) for testing drugs against in vitro and in vivo childhood cancer models to aid in the prioritization of drugs considered for early phase pediatric clinical trials. Procedures In vitro cytotoxicity testing employs a semi-automated fluorescence-based digital imaging cytotoxicity assay (DIMSCAN) that has a 4-log dynamic range of detection. Curve fitting of the fractional survival data of the cell lines in response to various concentrations of the agents was used to calculate relative IC50, absolute IC50, and Ymin values The panel of 23 pediatric cancer cell lines included leukemia (n=6), lymphoma (n=2), rhabdomyosarcoma (n=4), brain tumors (n=3), Ewing family of tumors (EFT, n=4), and neuroblastoma (n=4). The doubling times obtained using DIMSCAN were incorporated into data analyses to estimate the relationship between input cell numbers and final cell number. Results We report in vitro activity data for three drugs (vincristine, melphalan, and etoposide) that are commonly used for pediatric cancer and for the mTOR inhibitor rapamycin, an agent that is currently under preclinical investigation for cancer. To date, the PPTP has completed in vitro testing of 39 investigational and approved agents for single drug activity and two investigational agents in combination with various “standard” chemotherapy drugs. Conclusions This robust in vitro cytotoxicity testing system for pediatric cancers will enable comparisons to response data for novel agents obtained from xenograft studies and from clinical trials. PMID:20922763

  4. Prebiotic Potential of Xylooligosaccharides Derived from Corn Cobs and Their In Vitro Antioxidant Activity When Combined with Lactobacillus.

    PubMed

    Yu, Xiuhua; Yin, Jianyuan; Li, Lin; Luan, Chang; Zhang, Jian; Zhao, Chunfang; Li, Shengyu

    2015-07-01

    In the present work, the in vitro prebiotic activity of xylooligosaccharides (XOS) derived from corn cobs combined with Lactobacillus plantarum, a probiotic microorganism, was determined. These probiotics exhibited different growth characteristics depending on strain specificity. L. plantarum S2 cells were denser and their growth rates were higher when cultured on XOS. Acetate was found to be the major short-chain fatty acid produced as the end-product of fermentation, and its amount varied from 1.50 to 1.78 mg/ml. The antimicrobial activity of XOS combined with L. plantarum S2 was determined against gastrointestinal pathogens. The results showed that XOS proved to be an effective substrate, enhancing antimicrobial activity for L. plantarum S2. In vivo evaluation of the influence of XOS and L. plantarum S2, used both alone and together, on the intestinal microbiota in a mouse model showed that XOS combined with L. plantarum S2 could increase the viable lactobacilli and bifidobacteria in mice feces and decrease the viable Enterococcus, Enterobacter, and Clostridia spp. Furthermore, in the in vitro antioxidant assay, XOS combined with L. plantarum S2 possessed significant 2,2-diphenyl-1- picrylhydrazyl, 2,2'-azino-bis, and superoxide anion radical-scavenging activities, and the combinations showed better antioxidant activity than either XOS or L. plantarum S2 alone.

  5. IVIVC for fenofibrate immediate release tablets using solubility and permeability as in vitro predictors for pharmacokinetics.

    PubMed

    Buch, Philipp; Holm, Per; Thomassen, Jesper Qvist; Scherer, Dieter; Branscheid, Robert; Kolb, Ute; Langguth, Peter

    2010-10-01

    The goal of this study was to investigate the in vitro-in vivo correlation (IVIVC) for fenofibrate immediate release (IR) tablet formulations based on MeltDose-technique. The in vitro determined drug solubility and permeability data were related to the C(max) values observed from two in vivo human studies. Solubility and permeation studies of fenofibrate were conducted in medium simulating the fasted state conditions in the upper jejunum, containing the surfactant compositions of the six formulations at different concentrations. The behavior of all surfactant compositions was characterized by surface tension, dynamic light scattering, and cryo-TEM. The obtained solubility and permeation data were combined and compared with the C(max) values for the fenofibrate formulations, assuming a 50 mL in vivo dissolution volume. A good IVIVC was observed for five fenofibrate formulations (R(2) = 0.94). The in vitro studies revealed that the formulation compositions containing sodium lauryl sulfate (SLS) interfered with the vesicular drug solubilizing system of the biorelevant medium and antagonized its solubilization capacity. The opposing interaction of surfactants with the emulsifying physiological constituents in intestinal juice should be taken into consideration in order to prevent unsatisfactory in vivo performance of orally administered formulations with low soluble active pharmaceutical ingredients.

  6. Short-Term PTEN Inhibition Improves In Vitro Activation of Primordial Follicles, Preserves Follicular Viability, and Restores AMH Levels in Cryopreserved Ovarian Tissue From Cancer Patients.

    PubMed

    Novella-Maestre, Edurne; Herraiz, Sonia; Rodríguez-Iglesias, Beatriz; Díaz-García, César; Pellicer, Antonio

    2015-01-01

    In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation.

  7. Sound waves and antineoplastic drugs: The possibility of an enhanced combined anticancer therapy.

    PubMed

    Feril, Loreto B; Kondo, Takashi; Umemura, Shin-Ichiro; Tachibana, Katsuro; Manalo, Angelo H; Riesz, Peter

    2002-12-01

    Kremkau wrote a historical review of the use of ultrasound in cancer therapy in 1979((1)) In 1990, Kondo and Kano published a Japanese review of the implications of the thermal and nonthermal effects of ultrasound in the treatment of cancer(2)). Again in 2000, Kondo et al reviewed the therapeutic applications of ultrasound and shock wave, emphasizing their thermal and cavitational effects(3)). Here we focus on the effects of ultrasound or shock waves in combination with anticancer agents, emphasizing their mechanisms of action and interaction. Most of the studies cited here reported promising results. Although the extent of the augmented combined effects in vivo is limited, synergism is the rule in vitro. In addition to the thermal effect of ultrasound, cavitational effects undoubtedly played a major role in both ultrasound and, more prominently, in shock wave therapy. Although the mechanism of the nonthermal noncavitational effects on biological processes is obscure, several factors, including temperature and the occurrence of cavitation and inertial cavitation, probably coexist and blend with these other effects. Magnification of anticancer activity results mainly from increased localization of drugs or other agents in vivo and increased intracellular permeabilisation both in vivo and in vitro. On the other hand, sublethal damage caused by ultrasound or shock waves may render cells more susceptible, to the effects of the agents, and both may act together, further amplifying these effects. We thus conclude that proper combination of an appropriate agent and ultrasound or shock wave should help improve cancer therapy by minimizing the side effects of drugs by lowering the effective dose and reducing the systemic concentration while increasing the efficiency of the therapy as a whole. Future studies should reveal specific conditions in this combined therapy that will lead to optimal outcome.

  8. Dopamine D2 receptor antagonist sulpiride enhances dexamethasone responses in the treatment of drug-resistant and metastatic breast cancer.

    PubMed

    Li, Jian; Yao, Qing-Yu; Xue, Jun-Sheng; Wang, Li-Jie; Yuan, Yin; Tian, Xiu-Yun; Su, Hong; Wang, Si-Yuan; Chen, Wen-Jun; Lu, Wei; Zhou, Tian-Yan

    2017-09-01

    Recent evidence shows that dopamine D2-like receptor (D2DR) antagonists, such as trifluoperazine and thioridazine, are effective for cancer therapy and inhibition of cancer stem-like cells (CSCs). In this study, we investigated the anti-cancer effects of combination therapy of dexamethasone (DEX) and sulpiride (SUL), an atypical antipsychotic, against drug-resistant and metastatic breast cancers and further explored the underlying mechanisms. Oral administration of SUL (25, 100 mg·kg -1 ·d -1 ) alone did not inhibit the tumor growth in human breast cancer MCF-7/Adr xenograft model, but dose-dependently decreased the proportion of CSCs in vitro and in vivo. In contrast, combination therapy of SUL (50 mg·kg -1 ·d -1 ) and DEX (8 mg·kg -1 ·d -1 ) markedly suppressed the tumor growth in MCF-7/Adr xenograft model with little systemic toxicity and lung metastasis in murine metastatic breast cancer 4T1 xenograft model. Among the metastasis-associated biomarkers analyzed, the combination therapy significantly decreased the levels of MMP-2, but increased E-cadherin levels in 4T1 xenograft tumors. Moreover, the combination therapy significantly inhibited the cell colony formation, migration and invasion of 4T1 and human breast cancer MDA-MB-231 cells in vitro. Addition of a specific D2DR agonist 7-OH-DPAT to the combination therapy reversed the enhanced anti-cancer effects in vivo and CSC population loss in tumor tissues. Our data demonstrate that SUL remarkably enhances the efficacy of DEX in the treatment of drug-resistant and metastatic breast cancer via the antagonism of D2DR, which might result from the eradication of CSCs.

  9. In vitro testing of drug combinations employing nilotinib and alkylating agents with regard to pretransplant conditioning treatment of advanced-phase chronic myeloid leukemia.

    PubMed

    Radujkovic, Aleksandar; Luft, Thomas; Dreger, Peter; Ho, Anthony D; Jens Zeller, W; Fruehauf, Stefan; Topaly, Julian

    2014-08-01

    The prognosis of patients with advanced-phase chronic myeloid leukemia (CML) remains dismal despite the availability of targeted therapies and allogeneic stem cell transplantation (allo-SCT). Increasing the antileukemic efficacy of the pretransplant conditioning regimen may be a strategy to increase remission rates and duration. We therefore investigated the antiproliferative effects of nilotinib in combination with drugs that are usually used for conditioning: the alkylating agents mafosfamide, treosulfan, and busulfan. Drug combinations were tested in vitro in different imatinib-sensitive and imatinib-resistant BCR-ABL-positive cell lines. A tetrazolium-based MTT assay was used for the assessment and quantification of growth inhibition after exposure to alkylating agents alone or to combinations with nilotinib. Drug interaction was analyzed using the median-effect method of Chou and Talalay, and combination index (CI) values were calculated according to the classic isobologram equation. Treatment of imatinib-sensitive, BCR-ABL-positive K562 and LAMA84 cells with nilotinib in combination with mafosfamide, treosulfan, or busulfan resulted in synergistic (CI < 1), additive (CI ~ 1), and predominantly antagonistic (CI > 1) effects, respectively. In imatinib-resistant K562-R and LAMA84-R cells, all applied drug combinations were synergistic (CI < 1) at higher growth inhibition levels. Our in vitro data warrant further investigation and may provide the basis for nilotinib-supplemented conditioning regimens for allo-SCT in advanced-phase CML.

  10. Combination of FVIII and by-passing agent potentiates in vitro thrombin production in haemophilia A inhibitor plasma.

    PubMed

    Klintman, Jenny; Astermark, Jan; Berntorp, Erik

    2010-11-01

    The by-passing agents, recombinant activated factor VII (rFVIIa) and activated prothrombin complex concentrate (APCC), are important tools in the treatment of patients with haemophilia A and high-responding inhibitory antibodies. It has been observed clinically that in some patients undergoing immune tolerance induction the bleeding frequency decreases, hypothetically caused by a transient haemostatic effect of infused FVIII not measurable ex vivo. We evaluated how by-passing agents and factor VIII (FVIII) affect thrombin generation (TG) in vitro using plasma from 11 patients with severe haemophilia A and high titre inhibitors. Samples were spiked with combinations of APCC, rFVIIa and five different FVIII products. Combination of APCC and FVIII showed a synergistic effect in eliciting TG (P<0·005) for four FVIII products. When rFVIIa and FVIII were combined the interaction between the preparations was found to be additive. APCC and rFVIIa were then combined without FVIII, resulting in an additive effect on thrombin production. Each product separately increased TG above baseline. In conclusion, the amount of thrombin formed in vitro by adding a by-passing agent, was higher in the presence of FVIII. Our findings support the use of FVIII in by-passing therapy to optimize the haemostatic effect. © 2010 Blackwell Publishing Ltd.

  11. In vitro and in vivo susceptibility of two-drug and three-drug combinations of terbinafine, itraconazole, caspofungin, ibuprofen and fluvastatin against Pythium insidiosum.

    PubMed

    Argenta, Juliana S; Alves, Sydney H; Silveira, Flávio; Maboni, Grazieli; Zanette, Régis A; Cavalheiro, Ayrton S; Pereira, Patrique L; Pereira, Daniela I B; Sallis, Elisa S V; Pötter, Luciana; Santurio, Janio M; Ferreiro, Laerte

    2012-05-25

    The present study investigated the in vitro inhibitory activity of terbinafine, itraconazole, caspofungin, fluvastatin and ibuprofen against 15 isolates of Pythium insidiosum in double and triple combinations and determined in vivo correlations using rabbits with experimental pythiosis. The minimal inhibitory concentration (MIC) was determined in accordance with the Clinical and Laboratory Standards Institute M 38-A2 protocol (2008), and the in vitro interactions were evaluated using a checkerboard microdilution method. For the in vivo study, 20 rabbits inoculated with P. insidiosum zoospores were divided into four groups: group 1 was treated with terbinafine and itraconazole; group 2 was treated with terbinafine, itraconazole and fluvastatin; group 3 was treated with terbinafine and caspofungin; and group 4 was the control group. Combinations of terbinafine with caspofungin or ibuprofen were synergistic for 47% of the isolates, and antagonism was not observed in any of the double combinations. The triple combinations were mostly indifferent, but synergism and antagonism were also observed. In the in vivo study, the histological aspect of the lesions was similar among the groups, but group 2 showed the lowest amount of hyphae and differed significantly from the other groups. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Treatment of in vitro enterohemorrhagic Escherichia coli infection using phage and probiotics.

    PubMed

    Dini, C; Bolla, P A; de Urraza, P J

    2016-07-01

    To assay the combination of phage and probiotics against EHEC in vitro on infected Hep-2 cells. Phage and probiotics treatments on EHEC O157:H7-infected Hep-2 cells were assayed individually or combined. The effect of freeze-drying on phage and probiotic antimicrobial activity was also studied. While treatment with phage alone increased cell detachment caused by EHEC infection, the treatments with MM alone or in combination with phage proved to effectively diminish cell damage caused by EHEC infection. Combined treatment showed a decrease in apoptotic cell count of 57·3% and a reduction in EHEC adhesion to cell monolayer of 1·2 log CFU. The simultaneous use of phage and probiotics showed no antagonistic effect, and freeze-drying did not affect their antipathogenic activity. The combination of phage and probiotics has great potential for reducing the number of pathogens adhered to epithelial cells during EHEC O157:H7 infection and attenuating the cytotoxic effect derived from it. Further in vivo assays are needed for assessing the actual effectiveness of the treatment. This study presents a freeze-dried formulation of phage and probiotics capable of controlling EHEC infections and reducing epithelial cell damage in vitro. © 2016 The Society for Applied Microbiology.

  13. Schiff base-Poloxamer P85 combination demonstrates chemotherapeutic effect on prostate cancer cells in vitro.

    PubMed

    Demirci, Selami; Doğan, Ayşegül; Türkmen, Neşe Başak; Telci, Dilek; Rizvanov, Albert A; Şahin, Fikrettin

    2017-02-01

    Prostate cancer is a multistep and complicated cancer type that is regulated by androgens at the cellular level and remains the second commonest cause of death among men. Discovery and development of novel chemotherapeutic agents enabling rapid tumor cell death with minimal toxic effects to healthy tissues might greatly improve the safety of chemotherapy. The present study evaluates the anti-cancer activity of a novel heterodinuclear copper(II)Mn(II) complex (Schiff base) in combination with poly(ethylene oxide) and poly(propylene oxide) block copolymer (Pluronic) P85. We used assays for cell proliferation, apoptosis, cell migration and invasion, DNA binding and cleavage to elucidate the molecular mechanisms of action, in addition to the anti-inflammatory potency of the new combination. The combined treatment of Schiff base and P85 lead to a remarkable anti-cancer effect on prostate cancer cell lines. Cell proliferation was inhibited in Schiff base-P85 treatment. The activity of this formulation is on DNA binding and cleavage and prevents inflammation in in vitro conditions. This is the first study presenting the anti-cancer activity of the present Schiff base derivative and its combination with P85 to treat prostate cancer in vitro. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. 3D polylactide-based scaffolds for studying human hepatocarcinoma processes in vitro

    NASA Astrophysics Data System (ADS)

    Scaffaro, Roberto; Lo Re, Giada; Rigogliuso, Salvatrice; Ghersi, Giulio

    2012-08-01

    We evaluated the combination of leaching techniques and melt blending of polymers and particles for the preparation of highly interconnected three-dimensional polymeric porous scaffolds for in vitro studies of human hepatocarcinoma processes. More specifically, sodium chloride and poly(ethylene glycol) (PEG) were used as water-soluble porogens to form porous and solvent-free poly(L,D-lactide) (PLA)-based scaffolds. Several characterization techniques, including porosimetry, image analysis and thermogravimetry, were combined to improve the reliability of measurements and mapping of the size, distribution and microarchitecture of pores. We also investigated the effect of processing, in PLA-based blends, on the simultaneous bulk/surface modifications and pore architectures in the scaffolds, and assessed the effects on human hepatocarcinoma viability and cell adhesion. The influence of PEG molecular weight on the scaffold morphology and cell viability and adhesion were also investigated. Morphological studies indicated that it was possible to obtain scaffolds with well-interconnected pores of assorted sizes. The analysis confirmed that SK-Hep1 cells adhered well to the polymeric support and emitted surface protrusions necessary to grow and differentiate three-dimensional systems. PEGs with higher molecular weight showed the best results in terms of cell adhesion and viability.

  15. Clinical evaluation of Pharmacia CAP System RAST FEIA amoxicilloyl and benzylpenicilloyl in patients with penicillin allergy.

    PubMed

    Blanca, M; Mayorga, C; Torres, M J; Reche, M; Moya, M C; Rodriguez, J L; Romano, A; Juarez, C

    2001-09-01

    The diagnosis of IgE-mediated immediate reactions to penicillins can be supported by in vivo or in vitro tests using classical benzylpenicillin determinants. The wide variety of beta-lactams and the description of new specificities requires a re-evaluation of the different tests available. The objective was to evaluate the diagnostic capacity of Pharmacia CAP System RAST FEIA amoxicilloyl c6 (AXO) and benzylpenicilloyl c1 (BPO) in patients with a documented IgE-mediated penicillin allergy. We studied 129 patients in five groups. Groups 1, 2, and 3 had developed an immediate reaction after penicillin treatment. Group 1 (n=19) were skin test positive to amoxicillin (AX) and/or BPO and/or minor determinant mixture (MDM); group 2 (n=29) were skin test positive to AX but negative to BPO and MDM; and group 3 (n=26) were skin test negative to all determinants, the diagnosis being confirmed by a previous repetitive history or controlled administration. Two control groups, one with nonimmediate reactions -- group 4 (n=25) -- and one with good tolerance to penicillin -- group 5 (n=30) -- were included. All samples were analyzed in vitro for AXO and BPO, and the results compared to the in vivo diagnosis. AX was the drug most often involved. In group 1, 53% were in vitro positive for AXO and 68% for BPO, but 74% had at least one positive test result. In group 2, only 10% had a positive in vitro test to BPO compared to 41% to AXO. In group 3, 42% had positive BPO and/or AXO in vitro tests. In the control groups 4 and 5, the negative in vitro results for AXO were 96% and 100%, and for BPO 100% and 97%, respectively. A positive correlation between specific IgE levels and the time interval from the reaction to the evaluation was found only for group 3. This in vitro assay is beneficial for evaluating subjects allergic to beta-lactams. It is necessary to test for specific IgE to AXO in addition to BPO in patients with immediate allergic reactions after AX. The combination of in vivo and in vitro tests for estimating IgE antibodies to penicillins is important because of the existence of patients with a positive history but negative skin test.

  16. Evaluation of in vitro percutaneous absorption of lorazepam and clonazepam from hydro-alcoholic gel formulations.

    PubMed

    Puglia, C; Bonina, F; Trapani, G; Franco, M; Ricci, M

    2001-10-09

    Clonazepam and lorazepam are two anxiolytics, antidepressant agents, having suitable features for transdermal delivery. The objectives of this study were to evaluate the in vitro percutaneous absorption of these drugs through excised human skin (stratum corneum and epidermis, SCE) and to determine their in vitro permeation behavior from a series of hydro-alcoholic gel formulations containing various enhancing agents. The best permeation profile was obtained for both drugs applying them together with Azone in combination with propylene glycol (PG): these enhancers were able to increase the clonazepam and lorazepam percutaneous fluxes at steady-state about threefold, compared to the free enhancer formulations (Control). To explain the mechanism of the used promoters, the benzodiazepine diffusion and partitioning coefficients from the gel containing the enhancers were calculated. The results indicated that the Azone in combination with PG could act by increasing the benzodiazepine diffusion coefficients, Transcutol increased only the SC/vehicle partition coefficients, limonene in combination with PG appeared to increase both partition and diffusion coefficients moderately, while PG did not increase both the parameters. Furthermore, to evaluate the potential application of tested benzodiazepine formulations containing Azone in combination with PG using the flux values from the in vitro experiments, the corresponding steady-state plasma concentrations (C(SS)) were calculated. The obtained calculated C(SS) values are within the lorazepam therapeutic range and suggest that transdermal delivery of this drug could be regarded as feasible.

  17. Combined in vivo and in vitro approach for the characterization of penicillin-specific polyclonal lymphocyte reactivity: tolerance tests with safe penicillins instead of challenge with culprit drugs.

    PubMed

    Sachs, B; Al Masaoudi, T; Merk, H F; Erdmann, S

    2004-10-01

    Amino-penicillins are a major cause of delayed-type reactions to penicillins. The aim of this study was to establish a diagnostic approach for the characterization of the individual penicillin-specific polyclonal lymphocyte reactivity in order to detect side chain-specific sensitization to amino-penicillins. Patients can then be advised to undergo a tolerance test with safe penicillins instead of provocation with culprit penicillins for confirmation of penicillin allergy. We investigated penicillin-specific polyclonal lymphocyte reactivity in nine patients with delayed-type reactions to amino-penicillins by a combined in vivo (patch, prick and intracutaneous tests with delayed readings) and in vitro (lymphocyte transformation test, LTT) approach. A combination of LTT and skin tests improved the sensitivity for the characterization of penicillin-specific polyclonal lymphocyte reactivity and allowed the detection of three different patterns of lymphocyte reactivity. Four patients showed a side chain-specific sensitization to amino-penicillins in vivo and in vitro and were advised to undergo tolerance tests with safe penicillins. Two patients agreed and were exposed to parenteral benzyl-penicillin and oral phenoxymethyl-penicillin which they tolerated without complications. These data suggest that a combined in vivo and in vitro approach is helpful for the detection of side chain-specific sensitization to amino-penicillins. Patients with such sensitization are very likely to tolerate safe penicillins, thereby expanding their therapeutic options when antibiotic treatment is required.

  18. Effect of a combination of inulin and polyphenol-containing adzuki bean extract on intestinal fermentation in vitro and in vivo.

    PubMed

    Nagata, Ryuji; Echizen, Mao; Yamaguchi, Yukari; Han, Kyu-Ho; Shimada, Kenichiro; Ohba, Kiyoshi; Kitano-Okada, Tomoko; Nagura, Taizo; Uchino, Hirokatsu; Fukushima, Michihiro

    2018-03-01

    The effect of a combination of inulin (INU) and polyphenol-containing adzuki bean extract (AE) on intestinal fermentation was examined in vitro using fermenters for 48 h and in vivo using rats for 28 d. The total short-chain fatty acid concentrations in the fermenters were decreased by a combination of INU and AE, but the concentration in the INU + AE group was higher than the cellulose (CEL) and CEL + AE groups. The cecal propionate concentration was increased by a combination of INU and AE compared with their single supplement. The ammonia-nitrogen concentration in the fermenters and rat cecum was decreased by INU and AE. Cecal mucin levels were increased by INU and AE respectively. Therefore, our observations suggested that the combination of INU and AE might be a material of functional food that includes several healthy effects through intestinal fermentation.

  19. Photodynamic Therapy Combined with Terbinafine Against Chromoblastomycosis and the Effect of PDT on Fonsecaea monophora In Vitro

    PubMed Central

    Hu, Yongxuan; Huang, Xiaowen; Lu, Sha; Hamblin, Michael R.; Mylonakis, Eleftherios; Zhang, Junmin

    2014-01-01

    Chromoblastomycosis, a chronic fungal infection of skin and subcutaneous tissue caused by dematiaceous fungi, is associated with low cure and high relapse rates. Among all factors affecting clinical outcome, etiological agents have an important position. In southern China, Fonsecaea pedrosoi and Fonsecaea monophora are main causative agents causing Chromoblastomycosis. We treated one case of chromoblastomycosis by photodynamic therapy (PDT) of 5-aminolevulinic acid (ALA) irradiation combined with terbinafine 250 mg a day. The lesions were improved after two sessions of ALA-PDT treatment, each including nine times, at an interval of 1 week, combined with terbinafine 250 mg/day oral, and clinical improvement could be observed. In the following study, based on the clinical treatment, the effect of PDT and antifungal drugs on this isolate was detected in vitro. It showed sensitivity to terbinafine, itraconazole or voriconazole, and PDT inhibited the growth. Both the clinic and experiments in vitro confirm the good outcome of ALA-PDT applied in the inhibition of F. monophora. It demonstrated that combination of antifungal drugs with ALA-PDT arises as a promising alternative method for the treatment of these refractory cases of chromoblastomycosis. PMID:25366276

  20. In vitro and in vivo synergism between amoxicillin and clavulanic acid against ampicillin-resistant Haemophilus influenzae type b.

    PubMed Central

    Yogev, R; Melick, C; Kabat, W J

    1981-01-01

    Eight strans of ampicillin-resistant beta-lactamase-producing Haemophilus influenzae type b were studied in vitro for synergy between amoxicillin and clavulanic acid. The minimal inhibitory concentrations for amoxicillin alone were 6.25 to 12.5 microgram/ml, and for clavulanic acid alone they were 12.5 to 25 microgram/ml. However, seven of eight strains were inhibited by a combination of 0.36 microgram of amoxicillin and 0.36 microgram of clavulanic acid per ml. Infant rat models of bacteremia and meningitis were used to test the efficacy of amoxicillin and clavulanic acid alone and in combination upon four strains of ampicillin-resistant H. influenzae. Neither amoxicillin alone (27 animals) nor clavulanic acid alone (20 animals) sterilized the blood or cerebrospinal fluid of the animals. In contrast, 30 of 33 blood cultures and 29 of 33 cerebrospinal fluid cultures were sterile when a combination of the two drugs in the same dosages was used. The observed in vitro and in vivo synergism between amoxicillin and clavulanic acid suggests that the combination may be effective therapy for invasive infections in humans caused by ampicillin-resistant H. influenzae type b. PMID:6973952

  1. In vitro growth and maturation of isolated caprine preantral follicles: Influence of insulin and FSH concentration, culture dish, coculture, and oocyte size on meiotic resumption.

    PubMed

    Silva, G M; Brito, I R; Sales, A D; Aguiar, F L N; Duarte, A B G; Araújo, V R; Vieira, L A; Magalhães-Padilha, D M; Lima, L F; Alves, B G; Silveira, L B R; Lo Turco, E G; Rodrigues, A P; Campello, C C; Wheeler, M B; Figueiredo, J R

    2017-03-01

    The aims of this study were: (1) to evaluate the effect of different insulin concentrations, alone or in combination with either a fixed FSH concentration or increasing FSH concentrations on the in vitro culture of isolated caprine preantral follicles and (2) to analyze the efficiency of two IVM media and maturation culture systems (with or without coculture with in vivo grown oocytes) on the meiosis resumption. Secondary follicles were cultured for 18 days in a basic medium supplemented with low- or high-insulin concentration alone or with a fixed FSH concentration or with increasing FSH concentrations. Oocytes grown in vivo or in vitro were matured alone or cocultured. The high-insulin concentration associated with fixed FSH treatment had higher meiotic resumption rate (P < 0.05) and was the only treatment capable of producing oocytes in metaphase II. The rates of germinal vesicle, germinal vesicle breakdown, metaphase I, metaphase II (MII), meiotic resumption, and oocyte diameter were similar between the maturation media. In conclusion, a basic medium supplemented with 10-μg/mL insulin and 100-μg/mL FSH throughout the culture period improved meiotic resumption rate and produced MII oocytes from caprine preantral follicles cultured in vitro. The MII rate was similar between in vivo and in vitro grown oocytes ≥110 μm. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Extracellular proteome analysis of Leptospira interrogans serovar Lai.

    PubMed

    Zeng, Lingbing; Zhang, Yunyi; Zhu, Yongzhang; Yin, Haidi; Zhuang, Xuran; Zhu, Weinan; Guo, Xiaokui; Qin, Jinhong

    2013-10-01

    Abstract Leptospirosis is one of the most important zoonoses. Leptospira interrogans serovar Lai is a pathogenic spirochete that is responsible for leptospirosis. Extracellular proteins play an important role in the pathogenicity of this bacterium. In this study, L. interrogans serovar Lai was grown in protein-free medium; the supernatant was collected and subsequently analyzed as the extracellular proteome. A total of 66 proteins with more than two unique peptides were detected by MS/MS, and 33 of these were predicted to be extracellular proteins by a combination of bioinformatics analyses, including Psortb, cello, SoSuiGramN and SignalP. Comparisons of the transcriptional levels of these 33 genes between in vivo and in vitro conditions revealed that 15 genes were upregulated and two genes were downregulated in vivo compared to in vitro. A BLAST search for the components of secretion system at the genomic and proteomic levels revealed the presence of the complete type I secretion system and type II secretion system in this strain. Moreover, this strain also exhibits complete Sec translocase and Tat translocase systems. The extracellular proteome analysis of L. interrogans will supplement the previously generated whole proteome data and provide more information for studying the functions of specific proteins in the infection process and for selecting candidate molecules for vaccines or diagnostic tools for leptospirosis.

  3. Systemic administration of thrombin peptide TP508 enhances VEGF-stimulated angiogenesis and attenuates effects of chronic hypoxia

    PubMed Central

    Olszewska-Pazdrak, Barbara; Carney, Darrell H.

    2015-01-01

    Revascularization of chronic wounds and ischemic tissue is attenuated by endothelial dysfunction and the inability of angiogenic factors to stimulate angiogenesis. We recently showed that TP508, a nonproteolytic thrombin peptide, increases perfusion and NO-dependent vasodilation in hearts with chronic ischemia and stimulates NO production by endothelial cells. In this study, we investigated systemic in vivo effects of TP508 on VEGF-stimulated angiogenesis in vitro using aortic explants in normoxic and hypoxic conditions. Mice were injected with saline or TP508 and 24h later aortas were removed and cultured to quantify endothelial sprouting. TP508 injection increased endothelial sprouting and potentiated the in vitro response to VEGF. Exposure of control explants to hypoxia inhibited basal and VEGF-stimulated endothelial cell sprouting. This effect of hypoxia was significantly prevented by TP508 injection. Thus, TP508 systemic administration increases responsiveness of aortic endothelial cells to VEGF and diminishes the effect of chronic hypoxia on endothelial cell sprouting. Studies using human endothelial cells in culture suggest that protective effects of TP508 during hypoxia may involve stimulation of endothelial cell NO production. These data suggest potential clinical benefit of using a combination of systemic TP508 and local VEGF as a therapy for revascularization of ischemic tissue. PMID:23594718

  4. Recent advances of in vitro culture systems for spermatogonial stem cells in mammals.

    PubMed

    Sahare, Mahesh G; Suyatno; Imai, Hiroshi

    2018-04-01

    Spermatogonial stem cells (SSCs) in the mammalian testis are unipotent stem cells for spermatozoa. They show unique cell characteristics as stem cells and germ cells after being isolated from the testis and cultured in vitro. This review introduces recent progress in the development of culture systems for the establishment of SSC lines in mammalian species, including humans. Based on the published reports, the isolation and purification of SSCs, identification and characteristics of SSCs, and culture system for mice, humans, and domestic animals have been summarized. In mice, cell lines from SSCs are established and can be reprogrammed to show pluripotent stem cell potency that is similar to embryonic stem cells. However, it is difficult to establish cell lines for animals other than mice because of the dearth of understanding about species-specific requirements for growth factors and mechanisms supporting the self-renewal of cultured SSCs. Among the factors that are associated with the development of culture systems, the enrichment of SSCs that are isolated from the testis and the combination of growth factors are essential. Providing an example of SSC culture in cattle, a rational consideration was made about how it can be possible to establish cell lines from neonatal and immature testes.

  5. Floating modular drug delivery systems with buoyancy independent of release mechanisms to sustain amoxicillin and clarithromycin intra-gastric concentrations.

    PubMed

    Rossi, Alessandra; Conti, Chiara; Colombo, Gaia; Castrati, Luca; Scarpignato, Carmelo; Barata, Pedro; Sandri, Giuseppina; Caramella, Carla; Bettini, Ruggero; Buttini, Francesca; Colombo, Paolo

    2016-01-01

    Release modules of amoxicillin and clarithromycin combined in a single dosage form designed to float in the gastric content and to sustain the intra-gastric concentrations of these two antibiotics used for the eradication of Helicobacter pylori have been studied. The modules having a disc shape with curved bases were formulated as hydrophilic matrices. Two modules of clarithromycin were assembled by sticking the concave base of one module to the concave base of the other, creating an internal void chamber. The final dosage form was a floating assembly of three modules of clarithromycin and two of amoxicillin in which the drug release mechanism did not interfere with the floatation mechanism. The assembled system showed immediate in vitro floatation at pH 1.2, lasting 5 h. The in vitro antibiotics release profiles from individual modules and assembled systems exhibited linear release rate during buoyancy for at least 8 h. The predicted antibiotic concentrations in the stomach maintained for long time levels significantly higher than the respective minimum inhibitory concentrations (MIC). In addition, an in vivo absorption study performed on beagle dogs confirmed the slow release of clarithromycin and amoxicillin from the assembled system during the assembly's permanence in the stomach for at least 4 h.

  6. Sinoporphyrin sodium triggered sono-photodynamic effects on breast cancer both in vitro and in vivo.

    PubMed

    Liu, Yichen; Wang, Pan; Liu, Quanhong; Wang, Xiaobing

    2016-07-01

    Sono-photodynamic therapy (SPDT) is a promising anti-cancer strategy. Briefly, SPDT combines ultrasound and light to activate sensitizers that produce mechanical, sonochemical and photochemical activities. Sinoporphyrin sodium (DVDMS) is a newly identified sensitizer that shows great potential in both sonodynamic therapy (SDT) and photodynamic therapy (PDT). In this study, we primarily evaluated the combined effects of SDT and PDT by using DVDMS on breast cancer both in vitro and in vivo. In vitro, DVDMS-SPDT elicits much serious cytotoxicity compared with either SDT or PDT alone by MTT and colony formation assays. 2',7'-Dichlorodihydrofluo-rescein-diacetate (DCFH-DA) and dihydroethidium (DHE) staining revealed that intracellular reactive oxygen species (ROS) were significantly increased in groups given combined therapy. Terephthalic acid (TA) method and FD500-uptake assay reflected that cavitational effects and cell membrane permeability changes after ultrasound irradiation were also involved in the enhancement of combination therapy. In vivo, DVDMS-SPDT markedly inhibits the tumor volume and tumor weight growth. Hematoxylin-eosin staining and immunohistochemistry analysis show DVDMS-SPDT greatly suppressed tumor proliferation. Further, DVDMS-SPDT significantly inhibits tumor lung metastasis in the highly metastatic 4T1 mouse xenograft model, which is consistent well with the in vitro findings evaluated by transwell assay. Moreover, DVDMS-SPDT did not produces obvious effect on body weight and major organs in 4T1 xenograft model. The results suggest that by combination SDT and PDT, the sensitizer DVDMS would produce much better therapeutic effects, and DVDMS-SPDT may be a potential strategy against highly metastatic breast cancer. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Comparison of the in vitro and in vivo effects of retinoids either alone or in combination with cisplatin and 5-fluorouracil on tumor development and metastasis of melanoma.

    PubMed

    Liu, Xin; Chan, Sui Yung; Ho, Paul Chi-Lui

    2008-12-01

    Retinoids have previously been reported to inhibit proliferation of melanoma cell lines in vitro. However, the relative antimetastatic efficacy of various retinoids on melanoma in vivo is unknown. Therefore, we investigated the effects of different retinoids on the invasion and metastasis of murine melanoma B16-F10 cells in vitro and in vivo. Based on the findings, the antitumor effects of a selected retinoid either alone or in combination with cisplatin were also investigated in a preclinical mouse melanoma model. Cell proliferation and invasion analyses of murine melanoma B16-F10 cells were assessed in the presence of different retinoids, either alone or in combination with cisplatin (CDDP) or 5-fluorouracil (5-FU). Experimental lung metastasis assay was performed in this study to investigate the antimetastatic efficacy of retinoids. Additionally, a mouse melanoma model was used to assess the antitumor efficacy of a selected retinoid in combination with cisplatin. Retinoids showed significant antiproliferation and anti-invasion effects on murine melanoma B16-F10 cells. Pretreatment with retinoids increased the sensitivity to CDDP but not to 5-FU in in-vitro. Moreover, the number of metastatic colonies formed in the lungs of mice injected intravenously with B16-F10 cells was significantly reduced by injecting the respective retinoid once a day for 10 days. Treatment with a combination of cisplatin and 13-cis-retinoic acid resulted in a significant reduction in primary tumor size and the number of lung metastatic nodules in melanoma-bearing mice. These results suggest that retinoids not only exhibit antimetastatic effect, but also enhance the antitumor activity of cisplatin in vivo.

  8. Modeling Zebrafish Developmental Toxicity using a Concurrent In vitro Assay Battery (SOT)

    EPA Science Inventory

    We describe the development of computational models that predict activity in a repeat-dose zebrafish embryo developmental toxicity assay using a combination of physico-chemical parameters and in vitro (human) assay measurements. The data set covered 986 chemicals including pestic...

  9. Photoacoustic-fluorescence in vitro flow cytometry for quantification of absorption, scattering and fluorescence properties of the cells

    NASA Astrophysics Data System (ADS)

    Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.

    2013-03-01

    Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.

  10. In vitro incorporation of nonnatural amino acids into protein using tRNACys-derived opal, ochre, and amber suppressor tRNAs

    PubMed Central

    Gubbens, Jacob; Kim, Soo Jung; Yang, Zhongying; Johnson, Arthur E.; Skach, William R.

    2010-01-01

    Amber suppressor tRNAs are widely used to incorporate nonnatural amino acids into proteins to serve as probes of structure, environment, and function. The utility of this approach would be greatly enhanced if multiple probes could be simultaneously incorporated at different locations in the same protein without other modifications. Toward this end, we have developed amber, opal, and ochre suppressor tRNAs derived from Escherichia coli, and yeast tRNACys that incorporate a chemically modified cysteine residue with high selectivity at the cognate UAG, UGA, and UAA stop codons in an in vitro translation system. These synthetic tRNAs were aminoacylated in vitro, and the labile aminoacyl bond was stabilized by covalently attaching a fluorescent dye to the cysteine sulfhydryl group. Readthrough efficiency (amber > opal > ochre) was substantially improved by eRF1/eRF3 inhibition with an RNA aptamer, thus overcoming an intrinsic hierarchy in stop codon selection that limits UGA and UAA termination suppression in higher eukaryotic translation systems. This approach now allows concurrent incorporation of two different modified amino acids at amber and opal codons with a combined apparent readthrough efficiency of up to 25% when compared with the parent protein lacking a stop codon. As such, it significantly expands the possibilities for incorporating nonnative amino acids for protein structure/function studies. PMID:20581130

  11. Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression.

    PubMed

    Choi, Dae-Woon; Jung, Sun Young; Kang, Jisu; Nam, Young-Do; Lim, Seong-Il; Kim, Ki Tae; Shin, Hee Soon

    2018-02-28

    Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-α, and interferon gamma (IFN-γ). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-α, and IFN-γ. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.

  12. In vitro synergy testing of macrolide-quinolone combinations against 41 clinical isolates of Legionella.

    PubMed Central

    Martin, S J; Pendland, S L; Chen, C; Schreckenberger, P; Danziger, L H

    1996-01-01

    Combination antimicrobial therapy against Legionella species has not been well studied. Several quinolones have activity against Legionella strains, which prompted this in vitro search for a synergistic combination with the macrolides. By a checkerboard assay, erythromycin, clarithromycin, and azithromycin, each in combination with ciprofloxacin and levofloxacin, were tested for synergy against 46 isolates of Legionella. The agar dilution method was employed using buffered charcoal-yeast extract media. A final inoculum of 10(4) CFU per spot was prepared from 24-h growth of each isolate. Plates were incubated at 35 degrees C for 48 h. Synergy, partial synergy, additive effect, or indifference was observed for all combinations of antibiotics tested. There was no antagonism observed. Synergy occurred to a significantly greater extent for the clarithromycin-levofloxacin (P = 0.0001) and azithromycin-levofloxacin (P = 0.003) combinations versus erythromycin-levofloxacin. The azithromycin-ciprofloxacin combination demonstrated significantly greater synergy than did either erythromycin-ciprofloxacin (P = 0.003) or clarithromycin-ciprofloxacin (P = 0.001). The newer macrolides clarithromycin and azithromycin may be more active in combination with a fluoroquinolone than is erythromycin. PMID:8726012

  13. An in vitro AChE inhibition assay combined with UF-HPLC-ESI-Q-TOF/MS approach for screening and characterizing of AChE inhibitors from roots of Coptis chinensis Franch.

    PubMed

    Zhao, Hengqiang; Zhou, Siduo; Zhang, Minmin; Feng, Jinhong; Wang, Shanshan; Wang, Daijie; Geng, Yanling; Wang, Xiao

    2016-02-20

    In this study, an in vitro acetylcholinesterase (AChE) inhibition assay based on microplate reader combined with ultrafiltration high performance liquid chromatography-electrospray quadrupole time of flight mass (UF-HPLC-ESI-Q-TOF/MS) was developed for the rapid screening and identification of acetylcholinesterase inhibitors (AChEI) from roots of Coptis chinensis Franch. Incubation conditions such as enzyme concentration, incubation time, incubation temperature and co-solvent was optimized so as to get better screening results. Five alkaloids including columbamine, jatrorrhizine, coptisine, palmatine and berberine were found with AChE inhibition activity in the 80% ethanol extract of C. chinensis Franch. The screened compounds were identified by HPLC-DAD-ESI-Q-TOF/MS compared with the reference stands and literatures. The screened results were verified by in vitro AChE inhibition assays, palmatine showed the best AChE inhibitory activities with IC50 values of 36.6μM among the five compounds. Results of the present study indicated that the combinative method using in vitro AChE inhibition assay and UF-HPLC-ESI-Q-TOF/MS could be widely applied for rapid screening and identification of AChEI from complex TCM extract. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Quantitative modeling of the dynamics and intracellular trafficking of far-red light-activatable prodrugs: implications in stimuli-responsive drug delivery system.

    PubMed

    Li, Mengjie; Thapa, Pritam; Rajaputra, Pallavi; Bio, Moses; Peer, Cody J; Figg, William D; You, Youngjae; Woo, Sukyung

    2017-12-01

    The combination of photodynamic therapy (PDT) with anti-tumor agents is a complimentary strategy to treat local cancers. We developed a unique photosensitizer (PS)-conjugated paclitaxel (PTX) prodrug in which a PS is excited by near-infrared wavelength light to site-specifically release PTX while generating singlet oxygen (SO) to effectively kill cancer cells with both PTX and SO. The aim of the present study was to identify the determinants influencing the combined efficacy of this light-activatable prodrug, especially the bystander killing effects from released PTX. Using PS-conjugated PTX as a model system, we developed a quantitative mathematical model describing the intracellular trafficking. Dynamics of the prodrug and the model predictions were verified with experimental data using human cancer cells in vitro. The sensitivity analysis suggested that parameters related to extracellular concentration of released PTX, prodrug uptake, target engagement, and target abundance are critical in determining the combined killing efficacy of the prodrug. We found that released PTX cytotoxicity was most sensitive to the retention time of the drug in extracellular space. Modulating drug internalization and conjugating the agents targeted to abundant receptors may provide a new strategy for maximizing the killing capacity of the far-red light-activatable prodrug system. These results provide guidance for the design of the PDT combination study in vivo and have implications for other stimuli-responsive drug delivery systems.

  15. Impact of combined sodium chloride and saturated long-chain fatty acid challenge on the differentiation of T helper cells in neuroinflammation.

    PubMed

    Hammer, Anna; Schliep, Anne; Jörg, Stefanie; Haghikia, Aiden; Gold, Ralf; Kleinewietfeld, Markus; Müller, Dominik N; Linker, Ralf A

    2017-09-12

    There has been a marked increase in the incidence of autoimmune diseases like multiple sclerosis (MS) in the last decades which is most likely driven by a change in environmental factors. Here, growing evidence suggests that ingredients of a Western diet like high intake of sodium chloride (NaCl) or saturated fatty acids may impact systemic immune responses, thus increasing disease susceptibility. Recently, we have shown that high dietary salt or long-chain fatty acid (LCFA) intake indeed aggravates T helper (Th) cell responses and neuroinflammation. Naïve CD4 + T cells were treated with an excess of 40 mM NaCl and/or 250 μM lauric acid (LA) in vitro to analyze effects on Th cell differentiation, cytokine secretion, and gene expression. We employed ex vivo analyses of the model disease murine experimental autoimmune encephalomyelitis (EAE) to investigate whether salt and LCFA may affect disease severity and T cell activation in vivo. LCFA, like LA, together with NaCl enhance the differentiation of Th1 and Th17 cells as well as pro-inflammatory cytokine and gene expression in vitro. In cell culture, we observed an additive effect of LA and hypertonic extracellular NaCl (NaCl + LA) in Th17 differentiation assays as well as on IL-17, GM-CSF, and IL-2 gene expression. In contrast, NaCl + LA reduced Th2 frequencies. We employed EAE as a model of Th1/Th17 cell-mediated autoimmunity and show that the combination of a NaCl- and LA-rich diet aggravated the disease course and increased T cell infiltration into the central nervous system (CNS) to the same extent as dietary NaCl. Our findings demonstrate a partially additive effect of NaCl and LA on Th cell polarization in vitro and on Th cell responses in autoimmune neuroinflammation. These data may help to better understand the pathophysiology of autoimmune diseases such as MS.

  16. Caprylic and Polygalacturonic Acid Combinations for Eradication of Microbial Organisms Embedded in Biofilm

    PubMed Central

    Rosenblatt, Joel; Reitzel, Ruth A.; Vargas-Cruz, Nylev; Chaftari, Anne-Marie; Hachem, Ray; Raad, Issam

    2017-01-01

    There is a need for non-antibiotic, antimicrobial compositions with low toxicity capable of broad-spectrum eradication of pathogenic biofilms in food preparation and healthcare settings. In this study we demonstrated complete biofilm eradication within 60 min with synergistic combinations of caprylic and polygalacturonic (PG) acids in an in vitro biofilm eradication model against representative hospital and foodborne infectious pathogen biofilms (methicillin-resistant Staphylococcus aureus, multidrug-resistant Pseudomonas aeruginosa, Candida albicans, Escherichia coli, and Salmonella enteritidis). Antimicrobial synergy against biofilms was demonstrated by quantifying viable organisms remaining in biofilms exposed to caprylic acid alone, PG acid alone, or combinations of the two. The combinations also synergistically inhibited growth of planktonic organisms. Toxicity of the combination was assessed in vitro on L929 fibroblasts incubated with extracts of caprylic and PG acid combinations using the Alamar Blue metabolic activity assay and the Trypan Blue exclusion cell viability assay. The extracts did not produce cytotoxic responses relative to untreated control fibroblasts. PMID:29093703

  17. Automated, Miniaturized and Integrated Quality Control-on-Chip (QC-on-a-Chip) for Advanced Cell Therapy Applications

    NASA Astrophysics Data System (ADS)

    Wartmann, David; Rothbauer, Mario; Kuten, Olga; Barresi, Caterina; Visus, Carmen; Felzmann, Thomas; Ertl, Peter

    2015-09-01

    The combination of microfabrication-based technologies with cell biology has laid the foundation for the development of advanced in vitro diagnostic systems capable of evaluating cell cultures under defined, reproducible and standardizable measurement conditions. In the present review we describe recent lab-on-a-chip developments for cell analysis and how these methodologies could improve standard quality control in the field of manufacturing cell-based vaccines for clinical purposes. We highlight in particular the regulatory requirements for advanced cell therapy applications using as an example dendritic cell-based cancer vaccines to describe the tangible advantages of microfluidic devices that overcome most of the challenges associated with automation, miniaturization and integration of cell-based assays. As its main advantage lab-on-a-chip technology allows for precise regulation of culturing conditions, while simultaneously monitoring cell relevant parameters using embedded sensory systems. State-of-the-art lab-on-a-chip platforms for in vitro assessment of cell cultures and their potential future applications for cell therapies and cancer immunotherapy are discussed in the present review.

  18. Microfabricated Electrochemical Cell-Based Biosensors for Analysis of Living Cells In Vitro

    PubMed Central

    Wang, Jun; Wu, Chengxiong; Hu, Ning; Zhou, Jie; Du, Liping; Wang, Ping

    2012-01-01

    Cellular biochemical parameters can be used to reveal the physiological and functional information of various cells. Due to demonstrated high accuracy and non-invasiveness, electrochemical detection methods have been used for cell-based investigation. When combined with improved biosensor design and advanced measurement systems, the on-line biochemical analysis of living cells in vitro has been applied for biological mechanism study, drug screening and even environmental monitoring. In recent decades, new types of miniaturized electrochemical biosensor are emerging with the development of microfabrication technology. This review aims to give an overview of the microfabricated electrochemical cell-based biosensors, such as microelectrode arrays (MEA), the electric cell-substrate impedance sensing (ECIS) technique, and the light addressable potentiometric sensor (LAPS). The details in their working principles, measurement systems, and applications in cell monitoring are covered. Driven by the need for high throughput and multi-parameter detection proposed by biomedicine, the development trends of electrochemical cell-based biosensors are also introduced, including newly developed integrated biosensors, and the application of nanotechnology and microfluidic technology. PMID:25585708

  19. Rapid and efficient CRISPR/Cas9 gene inactivation in human neurons during human pluripotent stem cell differentiation and direct reprogramming.

    PubMed

    Rubio, Alicia; Luoni, Mirko; Giannelli, Serena G; Radice, Isabella; Iannielli, Angelo; Cancellieri, Cinzia; Di Berardino, Claudia; Regalia, Giulia; Lazzari, Giovanna; Menegon, Andrea; Taverna, Stefano; Broccoli, Vania

    2016-11-18

    The CRISPR/Cas9 system is a rapid and customizable tool for gene editing in mammalian cells. In particular, this approach has widely opened new opportunities for genetic studies in neurological disease. Human neurons can be differentiated in vitro from hPSC (human Pluripotent Stem Cells), hNPCs (human Neural Precursor Cells) or even directly reprogrammed from fibroblasts. Here, we described a new platform which enables, rapid and efficient CRISPR/Cas9-mediated genome targeting simultaneously with three different paradigms for in vitro generation of neurons. This system was employed to inactivate two genes associated with neurological disorder (TSC2 and KCNQ2) and achieved up to 85% efficiency of gene targeting in the differentiated cells. In particular, we devised a protocol that, combining the expression of the CRISPR components with neurogenic factors, generated functional human neurons highly enriched for the desired genome modification in only 5 weeks. This new approach is easy, fast and that does not require the generation of stable isogenic clones, practice that is time consuming and for some genes not feasible.

  20. Reversible immortalization of Nestin-positive precursor cells from pancreas and differentiation into insulin-secreting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Pei; Li, Li; Qi, Hui

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The NPPCs from mouse pancreas were isolated. Black-Right-Pointing-Pointer Tet-on system for SV40 large in NPPCs was used to get RINPPCs. Black-Right-Pointing-Pointer The RINPPCs can undergo at least 80 population doublings without senescence. Black-Right-Pointing-Pointer The RINPPCs can be induced to differentiate into insulin-producing cells. Black-Right-Pointing-Pointer The combination of GLP-1 and sodium butyrate promoted the differentiation process. -- Abstract: Pancreatic stem cells or progenitor cells posses the ability of directed differentiation into pancreatic {beta} cells. However, these cells usually have limited proliferative capacity and finite lifespan in vitro. In the present study, Nestin-positive progenitor cells (NPPCs) from mouse pancreas thatmore » expressed the pancreatic stem cells or progenitor cell marker Nestin were isolated to obtain a sufficient number of differentiated pancreatic {beta} cells. Tet-on system for SV40 large T-antigen expression in NPPCs was used to achieve reversible immortalization. The reversible immortal Nestin-positive progenitor cells (RINPPCs) can undergo at least 80 population doublings without senescence in vitro while maintaining their biological and genetic characteristics. RINPPCs can be efficiently induced to differentiate into insulin-producing cells that contain a combination of glucagon-like peptide-1 (GLP-1) and sodium butyrate. The results of the present study can be used to explore transplantation therapy of type I diabetes mellitus.« less

  1. Anti-DR5 monoclonal antibody-mediated DTIC-loaded nanoparticles combining chemotherapy and immunotherapy for malignant melanoma: target formulation development and in vitro anticancer activity

    PubMed Central

    Ding, Baoyue; Wu, Xin; Fan, Wei; Wu, Zhaoyong; Gao, Jing; Zhang, Wei; Ma, Lulu; Xiang, Wang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2011-01-01

    Background The increased incidence of malignant melanoma in recent decades, along with its high mortality rate and pronounced resistance to therapy pose an enormous challenge. Novel therapeutic strategies, such as immunotherapy and targeted therapy, are urgently needed for melanoma. In this study, a new active targeting drug delivery system was constructed to combine chemotherapy and active specific immunotherapy. Methods The chemotherapeutic drug, dacarbazine (DTIC), that induces apoptosis through the intrinsic pathway which typically responds to severe DNA damage, was used as a model drug to prepare DTIC-loaded polylactic acid (PLA) nanoparticles (DTIC-NPs), which were covalently conjugated to a highly specific targeting functional TRAIL-receptor 2 (DR5) monoclonal antibody (mAb) that can contribute directly to cancer cell apoptosis or growth inhibition through the extrinsic pathway. Results Our in vitro experiments demonstrated that DTIC-PLA-DR5 mAb nanoparticles (DTIC-NPs-DR5 mAb) are an active targeting drug delivery system which can specifically target DR5-overexpressing malignant melanoma cells and become efficiently internalized. Most strikingly, compared with conventional DTIC-NPs, DTIC-NPs-DR5 mAb showed significantly enhanced cytotoxicity and increased cell apoptosis in DR5-positive malignant melanoma cells. Conclusion The DTIC-NPs-DR5 mAb described in this paper might be a potential formulation for targeting chemotherapy and immunotherapy to DR5-overexpressing metastatic melanoma. PMID:21976975

  2. Synergistic Effects and Mechanisms of Budesonide in Combination with Fluconazole against Resistant Candida albicans.

    PubMed

    Li, Xiuyun; Yu, Cuixiang; Huang, Xin; Sun, Shujuan

    2016-01-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases in the clinic. The emergence of drug resistance in Candida albicans has become a noteworthy phenomenon due to the extensive use of antifungal agents and the development of biofilms. This study showed that budesonide potentiates the antifungal effect of fluconazole against fluconazole-resistant Candida albicans strains both in vitro and in vivo. In addition, our results demonstrated, for the first time, that the combination of fluconazole and budesonide can reverse the resistance of Candida albicans by inhibiting the function of drug transporters, reducing the formation of biofilms, promoting apoptosis and inhibiting the activity of extracellular phospholipases. This is the first study implicating the effects and mechanisms of budesonide against Candida albicans alone or in combination with fluconazole, which may ultimately lead to the identification of new potential antifungal targets.

  3. Use of perfusion bioreactors and large animal models for long bone tissue engineering.

    PubMed

    Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E

    2014-04-01

    Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.

  4. In vitro and in vivo infectivity and pathogenicity of the lymphoid cell-derived woodchuck hepatitis virus.

    PubMed

    Lew, Y Y; Michalak, T I

    2001-02-01

    Woodchuck hepatitis virus (WHV) and human hepatitis B virus are closely related, highly hepatotropic mammalian DNA viruses that also replicate in the lymphatic system. The infectivity and pathogenicity of hepadnaviruses propagating in lymphoid cells are under debate. In this study, hepato- and lymphotropism of WHV produced by naturally infected lymphoid cells was examined in specifically established woodchuck hepatocyte and lymphoid cell cultures and coculture systems, and virus pathogenicity was tested in susceptible animals. Applying PCR-based assays discriminating between the total pool of WHV genomes and covalently closed circular DNA (cccDNA), combined with enzymatic elimination of extracellular viral sequences potentially associated with the cell surface, our study documents that virus replicating in woodchuck lymphoid cells is infectious to homologous hepatocytes and lymphoid cells in vitro. The productive replication of WHV from lymphoid cells in cultured hepatocytes was evidenced by the appearance of virus-specific DNA, cccDNA, and antigens, transmissibility of the virus through multiple passages in hepatocyte cultures, and the ability of the passaged virus to infect virus-naive animals. The data also revealed that WHV from lymphoid cells can initiate classical acute viral hepatitis in susceptible animals, albeit small quantities (approximately 10(3) virions) caused immunovirologically undetectable (occult) WHV infection that engaged the lymphatic system but not the liver. Our results provide direct in vitro and in vivo evidence that lymphoid cells in the infected host support propagation of infectious hepadnavirus that has the potential to induce hepatitis. They also emphasize a principal role of the lymphatic system in the maintenance and dissemination of hepadnavirus infection, particularly when infection is induced by low virus doses.

  5. Biochemical Principles and Functional Aspects of Pipecolic Acid Biosynthesis in Plant Immunity1[OPEN

    PubMed Central

    Kim, Denis; Schreiber, Stefan; Zeier, Tatyana; Schuck, Stefan; Reichel-Deland, Vanessa

    2017-01-01

    The nonprotein amino acid pipecolic acid (Pip) regulates plant systemic acquired resistance and basal immunity to bacterial pathogen infection. In Arabidopsis (Arabidopsis thaliana), the lysine (Lys) aminotransferase AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) mediates the pathogen-induced accumulation of Pip in inoculated and distal leaf tissue. Here, we show that ALD1 transfers the α-amino group of l-Lys to acceptor oxoacids. Combined mass spectrometric and infrared spectroscopic analyses of in vitro assays and plant extracts indicate that the final product of the ALD1-catalyzed reaction is enaminic 2,3-dehydropipecolic acid (DP), whose formation involves consecutive transamination, cyclization, and isomerization steps. Besides l-Lys, recombinant ALD1 transaminates l-methionine, l-leucine, diaminopimelate, and several other amino acids to generate oxoacids or derived products in vitro. However, detailed in planta analyses suggest that the biosynthesis of 2,3-DP from l-Lys is the major in vivo function of ALD1. Since ald1 mutant plants are able to convert exogenous 2,3-DP into Pip, their Pip deficiency relies on the inability to form the 2,3-DP intermediate. The Arabidopsis reductase ornithine cyclodeaminase/μ-crystallin, alias SYSTEMIC ACQUIRED RESISTANCE-DEFICIENT4 (SARD4), converts ALD1-generated 2,3-DP into Pip in vitro. SARD4 significantly contributes to the production of Pip in pathogen-inoculated leaves but is not the exclusive reducing enzyme involved in Pip biosynthesis. Functional SARD4 is required for proper basal immunity to the bacterial pathogen Pseudomonas syringae. Although SARD4 knockout plants show greatly reduced accumulation of Pip in leaves distal to P. syringae inoculation, they display a considerable systemic acquired resistance response. This suggests a triggering function of locally accumulating Pip for systemic resistance induction. PMID:28330936

  6. Molecular mechanism of Poria cocos combined with oxaliplatin on the inhibition of epithelial-mesenchymal transition in gastric cancer cells.

    PubMed

    Wang, Na; Liu, Dengxiang; Guo, Jun; Sun, Yawei; Guo, Ting; Zhu, Xiaoyan

    2018-06-01

    Natural product Poria cocos possesses antitumor effect. This study will explore the molecular mechanism of Poria cocos combined with chemotherapy in the inhibition of gastric cancer cell EMT process. The experiment was divided into blank control group, Poria cocos group, oxaliplatin group and Poria cocos combined with oxaliplatin group. Scratch and Transwell assay were used to detect cell migration and invasion respectively. RT-qPCR and Western Blot analyses were used to detect mRNA and protein expression of the epithelial-mesenchymal transition (EMT) related factors including Snail, Twist, Vimentin, E-cadherin and N-cadherin respectively. Morphologic assessment was performed with HPIAS-1000 automated image analysis system. The migration and invasion abilities of gastric cancer cells in the Poria cocos combined with oxaliplatin group were significantly decreased (P < 0.01). The mRNA and protein expression of Snail, Twist, Vimentin and N-cadherin were significantly decreased while the mRNA and protein expression of E-cadherin were significantly increased (P < 0.01) compared with blank control group. Nude mice model of gastric cancer was successfully established. Poria cocos combined with oxaliplatin could significantly inhibit gastric tumor progression. The expression of EMT related factors were consistent with in vitro study. Morphologic assessment showed that the nucleus area, perimeter, mean diameter, volume, long diameter and shape factor in the Poria cocos combined with oxaliplatin group were significantly different compared with the blank control group (P < 0.01) but not significantly different compared with the normal control. Poria cocos combined with oxaliplatin could significantly inhibit the migration and invasion of gastric cancer cells. Through both in vitro and in vivo studies, it is confirmed that Poria cocos combined with oxaliplatin could significantly inhibit the EMT process of gastric cancer. Poria cocos combined with oxaliplatin could significantly affect the morphology changes of gastric cancer cells. These findings may provide a theoretical guidance for the clinical treatment of gastric cancer. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. [Framework on drug interactions between herbal medicine and western medicine: building Ⅰ/Ⅱ/Ⅲ class pathways of interactions].

    PubMed

    Jin, Rui; Huang, Jian-Mei; Wang, Yu-Guang; Zhang, Bing

    2016-02-01

    Combined use of Chinese medicine and western medicine is one of the hot spots in the domestic medical and academic fields for many years. There are lots of involved reports and studies on interaction problems due to combined used of Chinese medicine and western medicine, however, framework understanding is still rarely seen, affecting the clinical rationality of drug combinations. Actually, the inference ideas of drug interactions in clinical practice are more extensive and practical, and the overall viewpoint and pragmatic idea are the important factors in evaluating the rationality of clinical drug combinations. Based on above points, this paper systemically analyzed the existing information and examples, deeply discuss the embryology background (environment and action mechanism of interactions), and principally divided the interactions into three important and independent categories. Among the three categories, the first category (Ⅰapproach) was defined as the physical/chemical reactions after direct contact in vivo or in vitro, such as the combination of Chinese medicine injections and western medicine injections (in vitro), combination of bromide and Chinese medicines containing cinnabar (in vivo). The evaluation method for such interactions may be generalized theory of Acid-Base reaction. The second category (Ⅱ approach) was defined as the interactions through the pharmacokinetic process including absorption (such as the combination of aspirin and Huowei capsule), distribution (such as the combination of artosin and medicinal herbs containing coumarin), metabolism (such as the combination of phenobarbital and glycyrrhiza) and excretion (such as the combination of furadantin and Crataegi Fructus). The existing pharmacokinetic theory can act as the evaluation method for this type of interaction. The third category (Ⅲ approach) was defined as the synergy/antagonism interactions by pharmacological effects or biological pathways. The combination of warfarin and Salvia miltiorrhiza is an example for synergy interaction, while the combination of guanethidine and ephedra is an example for anatagonism interaction. The repeated application of Chinese and western medicine compound preparations and same type of western medicine also belongs to this approach. The receptor competition theory under the view of the overall pathways might act as the evaluation method for this type of interactions. Above all, the research framework on interactions between Chinese medicine and western medicine was proposed, providing overall thinking and support for the essential study on combined application of Chinese medicine and western medicine. Copyright© by the Chinese Pharmaceutical Association.

  8. In Vitro Synergism between Azithromycin or Terbinafine and Topical Antimicrobial Agents against Pythium insidiosum

    PubMed Central

    Itaqui, Sabrina R.; Verdi, Camila M.; Tondolo, Juliana S. M.; da Luz, Thaisa S.; Alves, Sydney H.; Santurio, Janio M.

    2016-01-01

    We describe here in vitro activity for the combination of azithromycin or terbinafine and benzalkonium, cetrimide, cetylpyridinium, mupirocin, triclosan, or potassium permanganate. With the exception of potassium permanganate, the remaining antimicrobial drugs were active and had an MIC90 between 2 and 32 μg∕ml. The greatest synergism was observed for the combination of terbinafine and cetrimide (71.4%). In vivo experimental evaluations will clarify the potential of these drugs for the topical treatment of lesions caused by Pythium insidiosum. PMID:27216049

  9. In Vitro Interaction of Terbinafine with Itraconazole against Clinical Isolates of Scedosporium prolificans

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Rodriguez-Tudela, Juan L.; Meis, Jacques F. G. M.; Verweij, Paul E.

    2000-01-01

    In order to develop new approaches for the chemotherapy of invasive infections caused by Scedosporium prolificans, the in vitro interaction between itraconazole and terbinafine against 20 clinical isolates was studied using a checkerboard microdilution method. Itraconazole and terbinafine alone were inactive against most isolates, but the combination was synergistic against 95 and 85% of isolates after 48 and 72 h of incubation, respectively. Antagonism was not observed. The MICs obtained with the terbinafine-itraconazole combination were within levels that can be achieved in plasma. PMID:10639389

  10. Spiral and never-settling patterns in active systems

    NASA Astrophysics Data System (ADS)

    Yang, X.; Marenduzzo, D.; Marchetti, M. C.

    2014-01-01

    We present a combined numerical and analytical study of pattern formation in an active system where particles align, possess a density-dependent motility, and are subject to a logistic reaction. The model can describe suspensions of reproducing bacteria, as well as polymerizing actomyosin gels in vitro or in vivo. In the disordered phase, we find that motility suppression and growth compete to yield stable or blinking patterns, which, when dense enough, acquire internal orientational ordering to give asters or spirals. We predict these may be observed within chemotactic aggregates in bacterial fluids. In the ordered phase, the reaction term leads to previously unobserved never-settling patterns which can provide a simple framework to understand the formation of motile and spiral patterns in intracellular actin systems.

  11. Short-Term PTEN Inhibition Improves In Vitro Activation of Primordial Follicles, Preserves Follicular Viability, and Restores AMH Levels in Cryopreserved Ovarian Tissue From Cancer Patients

    PubMed Central

    Novella-Maestre, Edurne; Herraiz, Sonia; Rodríguez-Iglesias, Beatriz; Díaz-García, César; Pellicer, Antonio

    2015-01-01

    Introduction In vitro activation and growth of primordial dormant follicles to produce fertilizable oocytes would provide a useful instrument for fertility preservation. The employment of Phosphatase and TENsin homolog (PTEN) inhibitors, in combination with Protein kinase B (Akt) stimulating molecules, has been previously employed to increase follicular activation through the stimulation of the PTEN-Akt pathway. Methods We aim to establish improved in vitro activation also for cancer patients whose ovarian tissue has already been cryopreserved. Fresh and previously cryopreserved human ovarian cortex were exposed to short-term, low-concentration and ovary-specific treatment with only a PTEN inhibitor. Results Our in vitro activation protocol enhances the activation mechanisms of primordial follicles in both fresh and cryopreserved samples, and enlarges growing populations without inducing apoptosis in either follicles or the surrounding stroma. Treatment augments estradiol secretion and restores the expression levels of the previously diminished Anti-Müllerian hormone by means of cryopreservation procedures. Genomic modulation of the relative expression of PTEN pathway genes was found in treated samples. Conclusion The in vitro activation protocol offers new alternatives for patients with cryopreserved tissue as it increases the pool of viable activated follicles available for in vitro growth procedures. The combination of ovarian tissue cryopreservation and in vitro activation of primordial follicles, the main ovarian reserve component, will be a major advancement in fertility preservation. PMID:26024525

  12. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates.

    PubMed

    Denardi, Laura Bedin; Mario, Débora Alves Nunes; Loreto, Érico Silva; Santurio, Janio Morais; Alves, Sydney Hartz

    2015-03-01

    In vitro interaction between tacrolimus (FK506) and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole) against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%), followed by that of the combination with ketoconazole (37%), against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata , a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%), itraconazole (73%), voriconazole (63%) and fluconazole (60%). The synergisms that we observed in vitro , notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  13. Pluripotent stem cell-derived organoids: using principles of developmental biology to grow human tissues in a dish.

    PubMed

    McCauley, Heather A; Wells, James M

    2017-03-15

    Pluripotent stem cell (PSC)-derived organoids are miniature, three-dimensional human tissues generated by the application of developmental biological principles to PSCs in vitro The approach to generate organoids uses a combination of directed differentiation, morphogenetic processes, and the intrinsically driven self-assembly of cells that mimics organogenesis in the developing embryo. The resulting organoids have remarkable cell type complexity, architecture and function similar to their in vivo counterparts. In the past five years, human PSC-derived organoids with components of all three germ layers have been generated, resulting in the establishment of a new human model system. Here, and in the accompanying poster, we provide an overview of how principles of developmental biology have been essential for generating human organoids in vitro , and how organoids are now being used as a primary research tool to investigate human developmental biology. © 2017. Published by The Company of Biologists Ltd.

  14. Ultrasoft microgels displaying emergent platelet-like behaviours

    NASA Astrophysics Data System (ADS)

    Brown, Ashley C.; Stabenfeldt, Sarah E.; Ahn, Byungwook; Hannan, Riley T.; Dhada, Kabir S.; Herman, Emily S.; Stefanelli, Victoria; Guzzetta, Nina; Alexeev, Alexander; Lam, Wilbur A.; Lyon, L. Andrew; Barker, Thomas H.

    2014-12-01

    Efforts to create platelet-like structures for the augmentation of haemostasis have focused solely on recapitulating aspects of platelet adhesion; more complex platelet behaviours such as clot contraction are assumed to be inaccessible to synthetic systems. Here, we report the creation of fully synthetic platelet-like particles (PLPs) that augment clotting in vitro under physiological flow conditions and achieve wound-triggered haemostasis and decreased bleeding times in vivo in a traumatic injury model. PLPs were synthesized by combining highly deformable microgel particles with molecular-recognition motifs identified through directed evolution. In vitro and in silico analyses demonstrate that PLPs actively collapse fibrin networks, an emergent behaviour that mimics in vivo clot contraction. Mechanistically, clot collapse is intimately linked to the unique deformability and affinity of PLPs for fibrin fibres, as evidenced by dissipative particle dynamics simulations. Our findings should inform the future design of a broader class of dynamic, biosynthetic composite materials.

  15. In vitro transport activity of the fully assembled MexAB-OprM efflux pump from Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Verchère, Alice; Dezi, Manuela; Adrien, Vladimir; Broutin, Isabelle; Picard, Martin

    2015-04-01

    Antibiotic resistance is a major public health issue and many bacteria responsible for human infections have now developed a variety of antibiotic resistance mechanisms. For instance, Pseudomonas aeruginosa, a disease-causing Gram-negative bacteria, is now resistant to almost every class of antibiotics. Much of this resistance is attributable to multidrug efflux pumps, which are tripartite membrane protein complexes that span both membranes and actively expel antibiotics. Here we report an in vitro procedure to monitor transport by the tripartite MexAB-OprM pump. By combining proteoliposomes containing the MexAB and OprM portions of the complex, we are able to assay energy-dependent substrate translocation in a system that mimics the dual-membrane architecture of Gram-negative bacteria. This assay facilitates the study of pump transport dynamics and could be used to screen pump inhibitors with potential clinical use in restoring therapeutic activity of old antibiotics.

  16. Evaluation of efficacy of combinations of five endodontic sealers with five antibiotics against Enterococcus Faecalis – An in-vitro study

    PubMed Central

    Sharma, Deepak; Grover, Rohit; Pinnameneni, Prasanth Sai; Dey, Subhra; Raju, P Ramakrishnam

    2014-01-01

    Background: To evaluate and compare in vitro the antibacterial efficacy of five antibiotics when added individually to five endodontic sealers against Enterococcus faecalis (EF). Materials & Methods: This controlled trial with systematic allocation method was carried out to detect the combined antibacterial activity of five endodontic sealers (Kerr sealer EWT, Endomethasone, AH26, AH Plus, Roekoseal) with five antibiotics regularly used (Amoxicillin, metronidazole, azithromyacin, gatifloxacin, doxycycline) on EF. For each sealerantibiotic combinations, thirty BHI agar plates (15 aerobic and 15 anaerobic) were inoculated with EF, containing five sterile paper discs- three of various sealer- antibiotic combinations, one of sealer alone (positive control) & plain disc as negative control were incubated at 370C for 48 hrs and the zone of inhibition was measured. Data analysis was done by ANOVA and Tukey’s post- hoc test using SPSS( version 17). Results: The findings of this study revealed that sealer-antibiotic combination containing amoxicillin had the significant difference (p<0.001) in the mean zone of inhibition compared to other combinations. Metronidazole showed the minimum zone of inhibition among used antibiotics. The sealers in the decreasing order according to their effectiveness on EF were Kerr sealer endomethasone, AH26, Rockseal, AH plus. Conclusion: Addition of antibiotics to endodontic sealers enhances their antibacterial activity against Enterococcus faecalis. How to cite the article: Sharma D, Grover R, Pinnameneni PS, Dey S, Raju PR. Evaluation of efficacy of combinations of five endodontic sealers with five antibiotics against Enterococcus Faecalis – An in-vitro study. J Int Oral Health 2014;6(2):90-5. PMID:24876708

  17. In vitro leukocyte response of three-spined sticklebacks (Gasterosteus aculeatus) to helminth parasite antigens.

    PubMed

    Franke, Frederik; Rahn, Anna K; Dittmar, Janine; Erin, Noémie; Rieger, Jennifer K; Haase, David; Samonte-Padilla, Irene E; Lange, Joseph; Jakobsen, Per J; Hermida, Miguel; Fernández, Carlos; Kurtz, Joachim; Bakker, Theo C M; Reusch, Thorsten B H; Kalbe, Martin; Scharsack, Jörn P

    2014-01-01

    Helminth parasites of teleost fish have evolved strategies to evade and manipulate the immune responses of their hosts. Responsiveness of fish host immunity to helminth antigens may therefore vary depending on the degree of host-parasite counter-adaptation. Generalist parasites, infective for a number of host species, might be unable to adapt optimally to the immune system of a certain host species, while specialist parasites might display high levels of adaptation to a particular host species. The degree of adaptations may further differ between sympatric and allopatric host-parasite combinations. Here, we test these hypotheses by in vitro exposure of head kidney leukocytes from three-spined sticklebacks (Gasterosteus aculeatus) to antigens from parasites with a broad fish host range (Diplostomum pseudospathaceum, Triaenophorus nodulosus), a specific fish parasite of cyprinids (Ligula intestinalis) and parasites highly specific only to a single fish species as second intermediate host (Schistocephalus pungitii, which does not infect G. aculeatus, and Schistocephalus solidus, infecting G. aculeatus). In vitro responses of stickleback leukocytes to S. solidus antigens from six European populations, with S. solidus prevalence from <1% to 66% were tested in a fully crossed experimental design. Leukocyte cultures were analysed by means of flow cytometry and a chemiluminescence assay to quantify respiratory burst activity. We detected decreasing magnitudes of in vitro responses to antigens from generalist to specialist parasites and among specialists, from parasites that do not infect G. aculeatus to a G. aculeatus-infecting species. Generalist parasites seem to maintain their ability to infect different host species at the costs of relatively higher immunogenicity compared to specialist parasites. In a comparison of sympatric and allopatric combinations of stickleback leukocytes and antigens from S. solidus, magnitudes of in vitro responses were dependent on the prevalence of the parasite in the population of origin, rather than on sympatry. Antigens from Norwegian (prevalence 30-50%) and Spanish (40-66%) S. solidus induced generally higher in vitro responses compared to S. solidus from two German (<1%) populations. Likewise, leukocytes from stickleback populations with a high S. solidus prevalence showed higher in vitro responses to S. solidus antigens compared to populations with low S. solidus prevalence. This suggests a rather low degree of local adaptation in S. solidus populations, which might be due to high gene flow among populations because of their extremely mobile final hosts, fish-eating birds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Effects of Crude Oil, Dispersant, and Oil-Dispersant Mixtures on Human Fecal Microbiota in an In Vitro Culture System

    PubMed Central

    Kim, Jong Nam; Kim, Bong-Soo; Kim, Seong-Jae; Cerniglia, Carl E.

    2012-01-01

    ABSTRACT The Deepwater Horizon oil spill of 2010 raised concerns that dispersant and dispersed oil, as well as crude oil itself, could contaminate shellfish and seafood habitats with hazardous residues that had potential implications for human health and the ecosystem. However, little is known about the effects of crude oil and dispersant on the human fecal microbiota. The aim of this research was to evaluate the potential effects of Deepwater Horizon crude oil, Corexit 9500 dispersant, and their combination on human fecal microbial communities, using an in vitro culture test system. Fecal specimens from healthy adult volunteers were made into suspensions, which were then treated with oil, dispersant, or oil-dispersant mixtures under anaerobic conditions in an in vitro culture test system. Perturbations of the microbial community, compared to untreated control cultures, were assessed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and pyrosequencing methods. DGGE and pyrosequencing analysis showed that oil-dispersant mixtures reduced the diversity of fecal microbiota from all individuals. Real-time PCR results indicated that the copy numbers of 16S rRNA genes in cultures treated with dispersed oil or oil alone were significantly lower than those in control incubations. The abundance of the Bacteroidetes decreased in crude oil-treated and dispersed-oil-treated cultures, while the Proteobacteria increased in cultures treated with dispersed oil. In conclusion, the human fecal microbiota was affected differently by oil and dispersed oil, and the influence of dispersed oil was significantly greater than that of either oil or dispersant alone compared to control cultures. PMID:23093387

  19. Modeling the functional genomics of autism using human neurons.

    PubMed

    Konopka, G; Wexler, E; Rosen, E; Mukamel, Z; Osborn, G E; Chen, L; Lu, D; Gao, F; Gao, K; Lowe, J K; Geschwind, D H

    2012-02-01

    Human neural progenitors from a variety of sources present new opportunities to model aspects of human neuropsychiatric disease in vitro. Such in vitro models provide the advantages of a human genetic background combined with rapid and easy manipulation, making them highly useful adjuncts to animal models. Here, we examined whether a human neuronal culture system could be utilized to assess the transcriptional program involved in human neural differentiation and to model some of the molecular features of a neurodevelopmental disorder, such as autism. Primary normal human neuronal progenitors (NHNPs) were differentiated into a post-mitotic neuronal state through addition of specific growth factors and whole-genome gene expression was examined throughout a time course of neuronal differentiation. After 4 weeks of differentiation, a significant number of genes associated with autism spectrum disorders (ASDs) are either induced or repressed. This includes the ASD susceptibility gene neurexin 1, which showed a distinct pattern from neurexin 3 in vitro, and which we validated in vivo in fetal human brain. Using weighted gene co-expression network analysis, we visualized the network structure of transcriptional regulation, demonstrating via this unbiased analysis that a significant number of ASD candidate genes are coordinately regulated during the differentiation process. As NHNPs are genetically tractable and manipulable, they can be used to study both the effects of mutations in multiple ASD candidate genes on neuronal differentiation and gene expression in combination with the effects of potential therapeutic molecules. These data also provide a step towards better understanding of the signaling pathways disrupted in ASD.

  20. Piper nigrum: micropropagation, antioxidative enzyme activities, and chromatographic fingerprint analysis for quality control.

    PubMed

    Ahmad, Nisar; Abbasi, Bilal Haider; Rahman, Inayat ur; Fazal, Hina

    2013-04-01

    A reliable in vitro regeneration system for the economical and medicinally important Piper nigrum L. has been established. Callus and shoot regeneration was encouraged from leaf portions on Murashige and Skoog (MS) medium augmented with varied concentrations of plant growth regulators. A higher callus production (90 %) was observed in explants incubated on MS medium incorporated with 1.0 mg L(-1) 6-benzyladenine (BA) along with 0.5 mg L(-1) gibberellic acid after 4 weeks of culture. Moreover, a callogenic response of 85 % was also recorded for 1.0 mg L(-1) BA in combination with 0.25 mg L(-1) α-naphthalene acetic acid (NAA) and 0.25 mg L(-1) 2,4-dichlorophenoxyacetic acid or 0.5 mg L(-1) indole butyric acid (IBA) along with 0.25 mg L(-1) NAA and indole acetic acid. Subsequent sub-culturing of callus after 4 weeks of culture onto MS medium supplemented with 1.5 mg L(-1) thiodiazoran or 1.5 mg L(-1) IBA induced 100 % shoot response. Rooted plantlets were achieved on medium containing varied concentrations of auxins. The antioxidative enzyme activities [superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX)] revealed that significantly higher SOD was observed in regenerated plantlets than in other tissues. However, POD, CAT, and APX were higher in callus than in other tissues. A high-performance liquid chromatography (HPLC) fingerprint analysis protocol was established for quality control in different in vitro-regenerated tissues of P. nigrum L. During analysis, most of the common peaks represent the active principle "piperine." The chemical contents, especially piperine, showed variation from callus culture to whole plantlet regeneration. Based on the deviation in chromatographic peaks, the in vitro-regenerated plantlets exhibit a nearly similar piperine profile to acclimated plantlets. The in vitro regeneration system and HPLC fingerprint analysis established here brought a novel approach to the quality control of in vitro plantlets, producing metabolites of interest with substantial applications for the conservation of germplasm.

  1. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System.

    PubMed

    Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra

    2015-08-15

    There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.

  2. Forward design of a complex enzyme cascade reaction

    PubMed Central

    Hold, Christoph; Billerbeck, Sonja; Panke, Sven

    2016-01-01

    Enzymatic reaction networks are unique in that one can operate a large number of reactions under the same set of conditions concomitantly in one pot, but the nonlinear kinetics of the enzymes and the resulting system complexity have so far defeated rational design processes for the construction of such complex cascade reactions. Here we demonstrate the forward design of an in vitro 10-membered system using enzymes from highly regulated biological processes such as glycolysis. For this, we adapt the characterization of the biochemical system to the needs of classical engineering systems theory: we combine online mass spectrometry and continuous system operation to apply standard system theory input functions and to use the detailed dynamic system responses to parameterize a model of sufficient quality for forward design. This allows the facile optimization of a 10-enzyme cascade reaction for fine chemical production purposes. PMID:27677244

  3. Redifferentiation of in vitro expanded adult articular chondrocytes by combining the hanging-drop cultivation method with hypoxic environment.

    PubMed

    Martinez, Inigo; Elvenes, Jan; Olsen, Randi; Bertheussen, Kjell; Johansen, Oddmund

    2008-01-01

    The main purpose of this work has been to establish a new culturing technique to improve the chondrogenic commitment of isolated adult human chondrocytes, with the aim of being used during cell-based therapies or tissue engineering strategies. By using a rather novel technique to generate scaffold-free three-dimensional (3D) structures from in vitro expanded chondrocytes, we have explored the effects of different culture environments on cartilage formation. Three-dimensional chondrospheroids were developed by applying the hanging-drop technique. Cartilage tissue formation was attempted after combining critical factors such as serum-containing or serum-free media and atmospheric (20%) or low (2.5%) oxygen tensions. The quality of the formed microtissues was analyzed by histology, immunohistochemistry, electron microscopy, and real-time PCR, and directly compared with native adult cartilage. Our results revealed highly organized, 3D tissue-like structures developed by the hanging-drop method. All culture conditions allowed formation of 3D spheroids; however, cartilage generated under low oxygen tension had a bigger size, enhanced matrix deposition, and higher quality of cartilage formation. Real-time PCR demonstrated enhanced expression of cartilage-specific genes such us collagen type II and aggrecan in 3D cultures when compared to monolayers. Cartilage-specific matrix proteins and genes expressed in hanging-drop-developed spheroids were comparable to the expression obtained by applying the pellet culture system. In summary, our results indicate that a combination of 3D cultures of chondrocytes in hanging drops and a low oxygen environment represent an easy and convenient way to generate cartilage-like microstructures. We also show that a new specially tailored serum-free medium is suitable for in vitro cartilage tissue formation. This new methodology opens up the possibility of using autogenously produced solid 3D structures with redifferentiated chondrocytes as an attractive alternative to the currently used autologous chondrocyte transplantation for cartilage repair.

  4. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy.

    PubMed

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-10-03

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo . Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo . Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro . Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence.

  5. Characterization and functional analysis of a slow-cycling subpopulation in colorectal cancer enriched by cell cycle inducer combined chemotherapy

    PubMed Central

    Wu, Feng-Hua; Mu, Lei; Li, Xiao-Lan; Hu, Yi-Bing; Liu, Hui; Han, Lin-Tao; Gong, Jian-Ping

    2017-01-01

    The concept of cancer stem cells has been proposed in various malignancies including colorectal cancer. Recent studies show direct evidence for quiescence slow-cycling cells playing a role in cancer stem cells. There exists an urgent need to isolate and better characterize these slow-cycling cells. In this study, we developed a new model to enrich slow-cycling tumor cells using cell-cycle inducer combined with cell cycle-dependent chemotherapy in vitro and in vivo. Our results show that Short-term exposure of colorectal cancer cells to chemotherapy combined with cell-cycle inducer enriches for a cell-cycle quiescent tumor cell population. Specifically, these slow-cycling tumor cells exhibit increased chemotherapy resistance in vitro and tumorigenicity in vivo. Notably, these cells are stem-cell like and participate in metastatic dormancy. Further exploration indicates that slow-cycling colorectal cancer cells in our model are less sensitive to cytokine-induced-killer cell mediated cytotoxic killing in vivo and in vitro. Collectively, our cell cycle inducer combined chemotherapy exposure model enriches for a slow-cycling, dormant, chemo-resistant tumor cell sub-population that are resistant to cytokine induced killer cell based immunotherapy. Studying unique signaling pathways in dormant tumor cells enriched by cell cycle inducer combined chemotherapy treatment is expected to identify novel therapeutic targets for preventing tumor recurrence. PMID:29108242

  6. Anti-rotavirus effects by combination therapy of stevioside and Sophora flavescens extract.

    PubMed

    Alfajaro, Mia Madel; Rho, Mun-Chual; Kim, Hyun-Jeong; Park, Jun-Gyu; Kim, Deok-Song; Hosmillo, Myra; Son, Kyu-Yeol; Lee, Ju-Hwan; Park, Sang-Ik; Kang, Mun-Il; Ryu, Young Bae; Park, Ki Hun; Oh, Hyun-Mee; Lee, Seung Woong; Park, Su-Jin; Lee, Woo Song; Cho, Kyoung-Oh

    2014-06-01

    Anti-rotaviral activities of Sophora flavescens extract (SFE) and stevioside (SV) from Stevia rebaudiana Bertoni either singly or in various combinations were examined in vitro and in vivo using a porcine rotavirus G5[P7] strain. Combination of SFE and SV inhibited in vitro virus replication more efficiently than each single treatment. In the piglet model, SV had no effect on rotavirus enteritis, whereas SFE improved but did not completely cure rotaviral enteritis. Interestingly, combination therapy of SFE and SV alleviated diarrhea, and markedly improved small intestinal lesion score and fecal virus shedding. Acute toxicity tests including the piglet lethal dose 50, and body weight, organ weight and pathological changes for the combination therapy did not show any adverse effect on the piglets. These preliminary data suggest that the combination therapy of SV and SFE is a potential curative medication for rotaviral diarrhea in pigs. Determination of the efficacy of this combination therapy in other species including humans needs to be addressed in the future. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Differential Expression of In Vivo and In Vitro Protein Profile of Outer Membrane of Acidovorax avenae Subsp. avenae

    PubMed Central

    Qiu, Hui; Li, Bin; Jabeen, Amara; Li, Liping; Liu, He; Kube, Michael; Xie, Guanlin; Wang, Yanli; Sun, Guochang

    2012-01-01

    Outer membrane (OM) proteins play a significant role in bacterial pathogenesis. In this work, we examined and compared the expression of the OM proteins of the rice pathogen Acidovorax avenae subsp. avenae strain RS-1, a Gram-negative bacterium, both in an in vitro culture medium and in vivo rice plants. Global proteomic profiling of A. avenae subsp. avenae strain RS-1 comparing in vivo and in vitro conditions revealed the differential expression of proteins affecting the survival and pathogenicity of the rice pathogen in host plants. The shotgun proteomics analysis of OM proteins resulted in the identification of 97 proteins in vitro and 62 proteins in vivo by mass spectrometry. Among these OM proteins, there is a high number of porins, TonB-dependent receptors, lipoproteins of the NodT family, ABC transporters, flagellins, and proteins of unknown function expressed under both conditions. However, the major proteins such as phospholipase and OmpA domain containing proteins were expressed in vitro, while the proteins such as the surface anchored protein F, ATP-dependent Clp protease, OmpA and MotB domain containing proteins were expressed in vivo. This may indicate that these in vivo OM proteins have roles in the pathogenicity of A. avenae subsp. avenae strain RS-1. In addition, the LC-MS/MS identification of OmpA and MotB validated the in silico prediction of the existance of Type VI secretion system core components. To the best of our knowledge, this is the first study to reveal the in vitro and in vivo protein profiles, in combination with LC-MS/MS mass spectra, in silico OM proteome and in silico genome wide analysis, of pathogenicity or plant host required proteins of a plant pathogenic bacterium. PMID:23166741

  8. Experimental evidence for killing the resistant cells and raising the efficacy and decreasing the toxicity of cytostatics and irradiation by mixtures of the agents of the passive antitumor defense system in the case of various tumor and normal cell lines in vitro.

    PubMed

    Kulcsár, Gyula

    2009-02-01

    Despite the substantial decline of the immune system in AIDS, only a few kinds of tumors increase in incidence. This shows that the immune system has no absolute role in the prevention of tumors. Therefore, the fact that tumors do not develop in the majority of the population during their lifetime indicates the existence of other defense system(s). According to our hypothesis, the defense is made by certain substances of the circulatory system. Earlier, on the basis of this hypothesis, we experimentally selected 16 substances of the circulatory system and demonstrated that the mixture of them (called active mixture) had a cytotoxic effect (inducing apoptosis) in vitro and in vivo on different tumor cell lines, but not on normal cells and animals. In this paper, we provide evidence that different cytostatic drugs or irradiation in combination with the active mixture killed significantly more cancer cells, compared with either treatments alone. The active mixture decreased, to a certain extent, the toxicity of cytostatics and irradiation on normal cells, but the most important result was that the active mixture destroyed the multidrug-resistant cells. Our results provide the possibility to improve the efficacy and reduce the side-effects of chemotherapy and radiation therapy and to prevent the relapse by killing the resistant cells.

  9. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells.

    PubMed

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible.

  10. Effective combination treatment of GD2-expressing neuroblastoma and Ewing's sarcoma using anti-GD2 ch14.18/CHO antibody with Vγ9Vδ2+ γδT cells

    PubMed Central

    Fisher, Jonathan P H; Flutter, Barry; Wesemann, Florian; Frosch, Jennifer; Rossig, Claudia; Gustafsson, Kenth; Anderson, John

    2016-01-01

    Gamma delta T lymphocytes (γδT cells) have pleiotropic properties including innate cytotoxicity, which make them attractive effectors for cancer immunotherapy. Combination treatment with zoledronic acid and IL-2 can activate and expand the most common subset of blood γδT, which express the Vγ9Vδ2 T cell receptor (TCR) (Vδ2 T cells). Vγ9Vδ2 T cells are equipped for antibody-dependent cell-mediated cytotoxicity (ADCC) through expression of the low-affinity FcγR CD16. GD2 is a highly ranked tumor associated antigen for immunotherapy due to bright expression on the cell surface, absent expression on normal tissues and availability of therapeutic antibodies with known efficacy in neuroblastoma. To explore the hypothesis that zoledronic acid, IL-2 and anti-GD2 antibodies will synergize in a therapeutic combination, we evaluated in vitro cytotoxicity and tumor growth inhibition in the GD2 expressing cancers neuroblastoma and Ewing's sarcoma. Vδ2 T cells exert ADCC against GD2-expressing Ewing's sarcoma and neuroblastoma cell lines, an effect which correlates with the brightness of GD2 expression. In an immunodeficient mouse model of small established GD2-expressing Ewing's sarcoma or neuroblastoma tumors, the combination of adoptively transferred Vδ2+ T cells, expanded in vitro with zoledronic acid and IL-2, with anti-GD2 antibody ch14.18/CHO, and with systemic zoledronic acid, significantly suppressed tumor growth compared to antibody or γδT cell-free controls. Combination treatment using ch14.18/CHO, zoledronic acid and IL-2 is more effective than their use in isolation. The already-established safety profiles of these agents make testing of the combination in GD2 positive cancers such as neuroblastoma or Ewing's sarcoma both rational and feasible. PMID:26942051

  11. Viscoelastic Emulsion Improved the Bioaccessibility and Oral Bioavailability of Crystalline Compound: A Mechanistic Study Using in Vitro and in Vivo Models.

    PubMed

    Ting, Yuwen; Jiang, Yike; Lan, Yaqi; Xia, Chunxin; Lin, Zhenyu; Rogers, Michael A; Huang, Qingrong

    2015-07-06

    The oral bioavailability of hydrophobic compound is usually limited by the poor aqueous solubility in the gastrointestinal (GI) tract. Various oral formulations were developed to enhance the systemic concentration of such molecules. Moreover, compounds with high melting temperature that appear as insoluble crystals imposed a great challenge to the development of oral vehicle. Polymethoxyflavone, an emerging category of bioactive compounds with potent therapeutic efficacies, were characterized as having a hydrophobic and highly crystalline chemical structure. To enhance the oral dosing efficiency of polymethoxyflavone, a viscoelastic emulsion system with a high static viscosity was developed and optimized using tangeretin, one of the most abundant polymethoxyflavones found in natural sources, as a modeling compound. In the present study, different in vitro and in vivo models were used to mechanistically evaluate the effect of emulsification on oral bioavailability of tangeretin. In vitro lipolysis revealed that emulsified tangeretin was digested and became bioaccessible much faster than unprocessed tangeretin oil suspension. By simulating the entire human GI tract, TNO's gastrointestinal model (TIM-1) is a valuable tool to mechanistically study the effect of emulsification on the digestion events that lead to a better oral bioavailability of tangeretin. TIM-1 result indicated that tangeretin was absorbed in the upper GI tract. Thus, a higher oral bioavailability can be expected if the compound becomes bioaccessible in the intestinal lumen soon after dosing. In vivo pharmacokinetics analysis on mice again confirmed that the oral bioavailability of tangeretin increased 2.3 fold when incorporated in the viscoelastic emulsion than unformulated oil suspension. By using the combination of in vitro and in vivo models introduced in this work, the mechanism that underlie the effect of viscoelastic emulsion on the oral bioavailability of tangeretin was well-elucidated.

  12. Tissue explant coculture model of the hypothalamic-pituitary-gonadal-liver axis of the fathead minnow (Pimephales promelas) as a predictive tool for endocrine disruption.

    PubMed

    Johnston, Theresa K; Perkins, Edward; Ferguson, Duncan C; Cropek, Donald M

    2016-10-01

    Endocrine-disrupting compounds (EDCs) can impact the reproductive system by interfering with the hypothalamic-pituitary-gonadal (HPG) axis. Although in vitro testing methods have been developed to screen chemicals for endocrine disruption, extrapolation of in vitro responses to in vivo action shows inconsistent accuracy. The authors describe a tissue coculture of the fathead minnow (Pimephales promelas) HPG axis and liver (HPG-L) as a tissue explant model that mimics in vivo results. Brain (hypothalamus), pituitary, gonad, and liver tissue explants from adult fish were examined for function both individually and in coculture to determine combinations and conditions that could replicate in vivo behavior. Only cocultures had the ability to respond to an EDC, trenbolone, similarly to in vivo studies, based on estradiol, testosterone, and vitellogenin production trends, where lower exposure doses suppressed hormone production but higher doses increased production, resulting in distinctive U-shaped curves. These data suggest that a coculture system with all components of the HPG-L axis can be used as a link between in vitro and in vivo studies to predict endocrine system disruption in whole organisms. This tissue-based HPG-L system acts as a flexible deconstructed version of the in vivo system for better control and examination of the minute changes in system operation and response on EDC exposure with options to isolate, interrogate, and recombine desired components. Environ Toxicol Chem 2016;35:2530-2541. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US Government work and, as such, is in the public domain in the United States of America.

  13. Study on the main components interaction from Flos Lonicerae and Fructus Forsythiae and their dissolution in vitro and intestinal absorption in rats.

    PubMed

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations.

  14. Study on the Main Components Interaction from Flos Lonicerae and Fructus Forsythiae and Their Dissolution In Vitro and Intestinal Absorption in Rats

    PubMed Central

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations. PMID:25275510

  15. Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin

    PubMed Central

    Zemp, Franz J.; Lun, Xueqing; McKenzie, Brienne A.; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J.P.; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J. Gregory; Hamilton, Mark G.; Rabinovich, Brian A.; Rahman, Masmudur M.; Mohamed, Mohamed R.; Smallwood, Sherin; Senger, Donna L.; Bell, John; McFadden, Grant; Forsyth, Peter A.

    2013-01-01

    Background Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor–initiating cells (BTICs). Methods We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. Results The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing “advanced” BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Conclusions Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients. PMID:23585629

  16. Enhancing the Therapeutic Efficacy of Cancer Treatment With Cannabinoids

    PubMed Central

    Yasmin-Karim, Sayeda; Moreau, Michele; Mueller, Romy; Sinha, Neeharika; Dabney, Raymond; Herman, Allen; Ngwa, Wilfred

    2018-01-01

    Over the years, many in vitro and in vivo studies have shown the antineoplastic effects of cannabinoids (CBDs), with reports advocating for investigations of combination therapy approaches that could better leverage these effects in clinical translation. This study explores the potential of combination approaches employing CBDs with radiotherapy (RT) or smart biomaterials toward enhancing therapeutic efficacy during treatment of pancreatic and lung cancers. In in vitro studies, clonogenic assay results showed greater effective tumor cell killing, when combining CBDs and RT. Meanwhile, in vivo study results revealed major increase in survival when employing smart biomaterials for sustained delivery of CBDs to tumor cells. The significance of these findings, considerations for further research, and viable roadmap to clinical translation are discussed. PMID:29740535

  17. Combining Induced Pluripotent Stem Cells and Genome Editing Technologies for Clinical Applications.

    PubMed

    Chang, Chia-Yu; Ting, Hsiao-Chien; Su, Hong-Lin; Jeng, Jing-Ren

    2018-01-01

    In this review, we introduce current developments in induced pluripotent stem cells (iPSCs), site-specific nuclease (SSN)-mediated genome editing tools, and the combined application of these two novel technologies in biomedical research and therapeutic trials. The sustainable pluripotent property of iPSCs in vitro not only provides unlimited cell sources for basic research but also benefits precision medicines for human diseases. In addition, rapidly evolving SSN tools efficiently tailor genetic manipulations for exploring gene functions and can be utilized to correct genetic defects of congenital diseases in the near future. Combining iPSC and SSN technologies will create new reliable human disease models with isogenic backgrounds in vitro and provide new solutions for cell replacement and precise therapies.

  18. Combining microfluidics, optogenetics and calcium imaging to study neuronal communication in vitro.

    PubMed

    Renault, Renaud; Sukenik, Nirit; Descroix, Stéphanie; Malaquin, Laurent; Viovy, Jean-Louis; Peyrin, Jean-Michel; Bottani, Samuel; Monceau, Pascal; Moses, Elisha; Vignes, Maéva

    2015-01-01

    In this paper we report the combination of microfluidics, optogenetics and calcium imaging as a cheap and convenient platform to study synaptic communication between neuronal populations in vitro. We first show that Calcium Orange indicator is compatible in vitro with a commonly used Channelrhodopsine-2 (ChR2) variant, as standard calcium imaging conditions did not alter significantly the activity of transduced cultures of rodent primary neurons. A fast, robust and scalable process for micro-chip fabrication was developed in parallel to build micro-compartmented cultures. Coupling optical fibers to each micro-compartment allowed for the independent control of ChR2 activation in the different populations without crosstalk. By analyzing the post-stimuli activity across the different populations, we finally show how this platform can be used to evaluate quantitatively the effective connectivity between connected neuronal populations.

  19. Differential effects of nicotine treatment and ethanol self-administration on CYP2A6, CYP2B6 and nicotine pharmacokinetics in African green monkeys.

    PubMed

    Ferguson, C S; Miksys, S; Palmour, R M; Tyndale, R F

    2012-12-01

    In primates, nicotine is metabolically inactivated in the liver by CYP2A6 and possibly CYP2B6. Changes in the levels of these two enzymes may affect nicotine pharmacokinetics and influence smoking behaviors. This study investigated the independent and combined effects of ethanol self-administration and nicotine treatment (0.5 mg/kg b.i.d. s.c.) on hepatic CYP2A6 and CYP2B6 levels (mRNA, protein, and enzymatic activity), in vitro nicotine metabolism, and in vivo nicotine pharmacokinetics in monkeys. CYP2A6 mRNA and protein levels and in vitro coumarin (selective CYP2A6 substrate) and nicotine metabolism were decreased by nicotine treatment but unaffected by ethanol. CYP2B6 protein levels and in vitro bupropion (selective CYP2B6 substrate) metabolism were increased by ethanol but unaffected by nicotine treatment; CYP2B6 mRNA levels were unaltered by either treatment. Combined ethanol and nicotine exposure decreased CYP2A6 mRNA and protein levels, as well as in vitro coumarin and nicotine metabolism, and increased CYP2B6 protein levels and in vitro bupropion metabolism, with no change in CYP2B6 mRNA levels. Chronic nicotine resulted in higher nicotine plasma levels achieved after nicotine administration, consistent with decreased CYP2A6. Ethanol alone, or combined with nicotine, resulted in lower nicotine plasma levels by a mechanism independent of the change in these enzymes. Thus, nicotine can decrease hepatic CYP2A6, reducing the metabolism of its substrates, including nicotine, whereas ethanol can increase hepatic CYP2B6, increasing the metabolism of CYP2B6 substrates. In vivo nicotine pharmacokinetics are differentially affected by ethanol and nicotine, but when both drugs are used in combination the effect more closely resembles ethanol alone.

  20. Modeling breath-enhanced jet nebulizers to estimate pulmonary drug deposition.

    PubMed

    Wee, Wallace B; Leung, Kitty; Coates, Allan L

    2013-12-01

    Predictable delivery of aerosol medication for a given patient and drug-device combination is crucial, both for therapeutic effect and to avoid toxicity. The gold standard for measuring pulmonary drug deposition (PDD) is gamma scintigraphy. However, these techniques expose patients to radiation, are complicated, and are relevant for only one patient and drug-device combination, making them less available. Alternatively, in vitro experiments have been used as a surrogate to estimate in vivo performance, but this is time-consuming and has few "in vitro to in vivo" correlations for therapeutics delivered by inhalation. An alternative method for determining inhaled mass and PDD is proposed by deriving and validating a mathematical model, for the individual breathing patterns of normal subjects and drug-device operating parameters. This model was evaluated for patients with cystic fibrosis (CF). This study is comprised of three stages: mathematical model derivation, in vitro testing, and in vivo validation. The model was derived from an idealized patient's respiration cycle and the steady-state operating characteristics of a drug-device combination. The model was tested under in vitro dynamic conditions that varied tidal volume, inspiration-to-expiration time, and breaths per minute. This approach was then extended to incorporate additional physiological parameters (dead space, aerodynamic particle size distribution) and validated against in vivo nuclear medicine data in predicting PDD in both normal subjects and those with CF. The model shows strong agreement with in vitro testing. In vivo testing with normal subjects yielded good agreement, but less agreement for patients with chronic obstructive lung disease and bronchiectasis from CF. The mathematical model was successful in accommodating a wide range of breathing patterns and drug-device combinations. Furthermore, the model has demonstrated its effectiveness in predicting the amount of aerosol delivered to "normal" subjects. However, challenges remain in predicting deposition in obstructive lung disease.

  1. Profile and bioavailability analysis of myo-inositol phosphates in rye bread supplemented with phytases: a study using an in vitro method and Caco-2 monolayers.

    PubMed

    Duliński, R; Cielecka, E K; Pierzchalska, M; Byczyński, Ł; Żyła, K

    2016-06-01

    Commercial preparations of 6-phytase A alone and in combination with phytase B were used in rye breadmaking. Determination of bioavailability of myo-inositol phosphates from bread was performed by an in vitro digestion method followed by the measurement of an uptake by Caco-2 cells in culture. In bread supplemented with a combination of 6-phytase A and phytase B, a significant reduction in phytate content was observed from 3.62 μmol/g in the control to 0.7 μmol/g. Bioavailability of phytate estimated by an in vitro method simulating digestion in the human alimentary tract was 9% in the bread supplemented with phytase B, 7% (6-phytase A) and 50% in the control bread. In cell culture, the bioaccessibilities of inositol triphosphates from bread baked with the addition of 6-phytase A was higher by 36% as compared to the samples baked with phytase B and by 32% in breads baked with combination of both phytases.

  2. In vitro and in vivo effects of two coconut oils in comparison to monolaurin on Staphylococcus aureus: rodent studies.

    PubMed

    Manohar, Vijaya; Echard, Bobby; Perricone, Nicholas; Ingram, Cass; Enig, Mary; Bagchi, Debasis; Preuss, Harry G

    2013-06-01

    Since monolaurin, a monoglyceride formed in the human body in small quantities, has proven effective both in vitro and in vivo against certain strains of Staphylococcus aureus, an important question arises whether consuming a substance high in lauric acid content, such as coconut oil could increase intrinsic monolaurin production to levels that would be successful in overcoming staphylococcal and other microbial invaders. Both a cup plate method and a microdilution broth culture system were employed to test bacteriostatic and bactericidal effects of the test agents in vitro. To test effectiveness in vivo, female C3H/he mice (10-12 per group) were orally administered sterile saline (regular control), vancomycin (positive control), aqueous monolaurin, or two varieties of coconut oil (refined, bleached, deodorized coconut oil and virgin coconut oil) for 1 week before bacterial challenge and 30 days after. A final group received both monolaurin and vancomycin. In contrast to monolaurin, the coconut oils did not show bactericidal activity in vitro. In vivo, the groups receiving vancomycin, monolaurin, or the combination showed some protection--50-70% survival, whereas the protection from the coconut oils were virtually the same as control--0-16% survival. Although we did not find that the two coconut oils are helpful to overcome S. aureus infections, we corroborated earlier studies showing the ability of monolaurin to do such.

  3. Simultaneous In Vitro Characterisation of DNA Deaminase Function and Associated DNA Repair Pathways

    PubMed Central

    Franchini, Don-Marc; Incorvaia, Elisabetta; Rangam, Gopinath; Coker, Heather A.; Petersen-Mahrt, Svend K.

    2013-01-01

    During immunoglobulin (Ig) diversification, activation-induced deaminase (AID) initiates somatic hypermutation and class switch recombination by catalysing the conversion of cytosine to uracil. The synergy between AID and DNA repair pathways is fundamental for the introduction of mutations, however the molecular and biochemical mechanisms underlying this process are not fully elucidated. We describe a novel method to efficiently decipher the composition and activity of DNA repair pathways that are activated by AID-induced lesions. The in vitro resolution (IVR) assay combines AID based deamination and DNA repair activities from a cellular milieu in a single assay, thus avoiding synthetically created DNA-lesions or genetic-based readouts. Recombinant GAL4-AID fusion protein is targeted to a plasmid containing GAL4 binding sites, allowing for controlled cytosine deamination within a substrate plasmid. Subsequently, the Xenopus laevis egg extract provides a source of DNA repair proteins and functional repair pathways. Our results demonstrated that DNA repair pathways which are in vitro activated by AID-induced lesions are reminiscent of those found during AID-induced in vivo Ig diversification. The comparative ease of manipulation of this in vitro systems provides a new approach to dissect the complex DNA repair pathways acting on defined physiologically lesions, can be adapted to use with other DNA damaging proteins (e.g. APOBECs), and provide a means to develop and characterise pharmacological agents to inhibit these potentially oncogenic processes. PMID:24349193

  4. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    NASA Astrophysics Data System (ADS)

    Papa, Antonio; Guarino, Vincenzo; Cirillo, Valentina; Oliviero, Olimpia; Ambrosio, Luigi

    2015-12-01

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fully degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.

  5. Computational design and in vitro characterization of an integrated maglev pump-oxygenator.

    PubMed

    Zhang, Juntao; Taskin, M Ertan; Koert, Andrew; Zhang, Tao; Gellman, Barry; Dasse, Kurt A; Gilbert, Richard J; Griffith, Bartley P; Wu, Zhongjun J

    2009-10-01

    For the need for respiratory support for patients with acute or chronic lung diseases to be addressed, a novel integrated maglev pump-oxygenator (IMPO) is being developed as a respiratory assist device. IMPO was conceptualized to combine a magnetically levitated pump/rotor with uniquely configured hollow fiber membranes to create an assembly-free, ultracompact system. IMPO is a self-contained blood pump and oxygenator assembly to enable rapid deployment for patients requiring respiratory support or circulatory support. In this study, computational fluid dynamics (CFD) and computer-aided design were conducted to design and optimize the hemodynamics, gas transfer, and hemocompatibility performances of this novel device. In parallel, in vitro experiments including hydrodynamic, gas transfer, and hemolysis measurements were conducted to evaluate the performance of IMPO. Computational results from CFD analysis were compared with experimental data collected from in vitro evaluation of the IMPO. The CFD simulation demonstrated a well-behaved and streamlined flow field in the main components of this device. The results of hydrodynamic performance, oxygen transfer, and hemolysis predicted by computational simulation, along with the in vitro experimental data, indicate that this pump-lung device can provide the total respiratory need of an adult with lung failure, with a low hemolysis rate at the targeted operating condition. These detailed CFD designs and analyses can provide valuable guidance for further optimization of this IMPO for long-term use.

  6. Optimization of protein cross-linking in bicomponent electrospun scaffolds for therapeutic use

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papa, Antonio; IMAST SCaRL, Piazza Bovio 22, 80133 Naples; Guarino, Vincenzo, E-mail: vincenzo.guarino@cnr.it

    Bio-instructive electrospun scaffolds based on the combination of synthetic polymers, such as PCL or PLLA, and natural polymers (e.g., collagen) have been extensively investigated as temporary extracellular matrix (ECM) analogues able to support cell proliferation and stem cell differentiation for the regeneration of several tissues. The growing use of natural polymers as carrier of bioactive molecules is introducing new ideas for the design of polymeric drug delivery systems based on electrospun fibers with improved bioavailability, therapeutic efficacy and programmed drug release. In particular, the release mechanism is driven by the use of water soluble proteins (i.e., collagen, gelatin) which fullymore » degrade in in vitro microenvironment, thus delivering the active principles. However, these protein are generally rapidly digested by enzymes (i.e., collagenase) produced by many different cell types, both in vivo and in vitro with significant drawbacks in tissue engineering and controlled drug delivery. Here, we aim at investigating different chemical strategies to improve the in vitro stability and mechanical strength of scaffolds against enzymatic degradation, by modifying the biodegradation rates of proteins embedded in bicomponent fibers. By comparing scaffolds treated by different cross-linking agents (i.e., GC, EDC, BDDGE), we have provided an extensive morphological/chemical/physical characterization via SEM and TGA to identify the best conditions to control drug release via protein degradation from bicomponent fibers without compromising in vitro cell response.« less

  7. Development and Characterization of Novel Floating-Mucoadhesive Tablets Bearing Venlafaxine Hydrochloride.

    PubMed

    Misra, Raghvendra; Bhardwaj, Peeyush

    2016-01-01

    The present investigation is concerned about the development of floating bioadhesive drug delivery system of venlafaxine hydrochloride which after oral administration exhibits a unique combination of floating and bioadhesion to prolong gastric residence time and increase drug bioavailability within the stomach. The floating bioadhesive tablets were prepared by the wet granulation method using different ratios of hydroxypropyl methyl cellulose (HPMC K4MCR) and Carbopol 934PNF as polymers. Sodium bicarbonate (NaHCO3) and citric acid were used as gas (CO2) generating agents. Tablets were characterized for floating properties, in vitro drug release, detachment force, and swelling index. The concentration of hydroxypropyl methyl cellulose and Carbopol 934PNF significantly affects the in vitro drug release, floating properties, detachment force, and swelling properties of the tablets. The optimized formulation showed the floating lag time 72 ± 2.49 seconds and duration of floating 24.50 ± 0.74 hr. The in vitro release studies and floating behavior were studied in simulated gastric fluid (SGF) at pH 1.2. Different drug release kinetics models were also applied. The in vitro drug release from tablets was sufficiently sustained (more than 18 hr) and the Fickian transports of the drug from the tablets were confirmed. The radiological evidence suggests that the tablets remained buoyant and altered position in the stomach of albino rabbit and mean gastric residence time was prolonged (more than > 6 hr).

  8. Engineering a High-Throughput 3-D In Vitro Glioblastoma Model

    PubMed Central

    Fan, Yantao; Avci, Naze G.; Nguyen, Duong T.; Dragomir, Andrei; Xu, Feng; Akay, Metin

    2015-01-01

    Glioblastoma multiforme (GBM) is the most common and malignant primary brain tumor in adults because of its highly invasive behavior. The existing treatment for GBM, which involves a combination of resection, chemotherapy, and radiotherapy, has a very limited success rate with a median survival rate of <1 year. This is mainly because of the failure of early detection and effective treatment. We designed a novel 3-D GBM cell culture model based on microwells that could mimic in vitro environment and help to bypass the lack of suitable animal models for preclinical toxicity tests. Microwells were fabricated from simple and inexpensive polyethylene glycol material for the control of in vitro 3-D culture. We applied the 3-D micropatterning system to GBM (U-87) cells using the photolithography technique to control the cell spheroids’ shape, size, and thickness. Our preliminary results suggested that uniform GBM spheroids can be formed in 3-D, and the size of these GBM spheroids depends on the size of microwells. The viability of the spheroids generated in this manner was quantitatively evaluated using live/dead assay and shown to improve over 21 days. We believe that in vitro 3-D cell culture model could help to reduce the time of the preclinical brain tumor growth studies. The proposed novel platform could be useful and cost-effective for high-throughput screening of cancer drugs and assessment of treatment responses. PMID:27170911

  9. CAD-design, stress analysis and in vitro evaluation of three leaflet blood-pump valves.

    PubMed

    Knierbein, B; Rosarius, N; Unger, A; Reul, H; Rau, G

    1992-07-01

    The computer-supported development of valves for cardiac-assist devices or artificial hearts is shown in relation to plastic technology. A CAD-system is used for the design development, whereas the dimensioning of the critical and highly stressed membranes is examined by FEM-analyses. Economic manufacture is permitted by the combined thermoforming-dip moulding technique; the blood-side components are made from biocompatible polyurethane to minimize blood damage. The first long-term results in the test set-up are compared to the FEM results.

  10. A Combination RNAi-Chemotherapy Layer-by-Layer Nanoparticle for Systemic Targeting of KRAS/P53 with Cisplatin to Treat Non-small Cell Lung Cancer

    PubMed Central

    Gu, Li; Deng, Zhou J.; Roy, Sweta; Hammond, Paula T.

    2017-01-01

    Purpose Mutation of the Kirsten ras sarcoma viral oncogene homolog (KRAS) and loss of p53 function are commonly seen in non-small cell lung cancer (NSCLC). Combining therapeutics targeting these tumor defensive pathways with cisplatin in a single nanoparticle platform are rarely developed in clinic. Experimental Design Cisplatin was encapsulated in liposomes which multiple polyelectrolyte layers including siKRAS and miR-34a were built on to generate multifunctional layer-by-layer nanoparticle. Structure, size, and surface charge were characterized, in addition to in vitro toxicity studies. In vivo tumor targeting and therapy was investigated in an orthotopic lung cancer model by microCT, fluorescence imaging, and immunohistochemistry. Results The singular nanoscale formulation, incorporating oncogene siKRAS, tumor suppressor stimulating miR-34a, and cisplatin, has shown enhanced toxicity against lung cancer cell line, KP cell. In vivo, systemic delivery of the nanoparticles indicated a preferential uptake in lung of the tumor-bearing mice. Efficacy studies indicated prolonged survival of mice from the combination treatment. Conclusion The combination RNA-chemotherapy in an LbL formulation provides an enhanced treatment efficacy against NSCLC, indicating promising potential in clinic. PMID:28912139

  11. Activity of Oxantel Pamoate Monotherapy and Combination Chemotherapy against Trichuris muris and Hookworms: Revival of an Old Drug

    PubMed Central

    Keiser, Jennifer; Tritten, Lucienne; Silbereisen, Angelika; Speich, Benjamin; Adelfio, Roberto; Vargas, Mireille

    2013-01-01

    Background It is widely recognized that only a handful of drugs are available against soil-transmitted helminthiasis, all of which are characterized by a low efficacy against Trichuris trichiura, when administered as single doses. The re-evaluation of old, forgotten drugs is a promising strategy to identify alternative anthelminthic drug candidates or drug combinations. Methodology We studied the activity of the veterinary drug oxantel pamoate against Trichuris muris, Ancylostoma ceylanicum and Necator americanus in vitro and in vivo. In addition, the dose-effect of oxantel pamoate combined with albendazole, mebendazole, levamisole, pyrantel pamoate and ivermectin was studied against T. muris in vitro and additive or synergistic combinations were followed up in vivo. Principal Findings We calculated an ED50 of 4.7 mg/kg for oxantel pamoate against T. muris in mice. Combinations of oxantel pamoate with pyrantel pamoate behaved antagonistically in vitro (combination index (CI) = 2.53). Oxantel pamoate combined with levamisole, albendazole or ivermectin using ratios based on their ED50s revealed antagonistic effects in vivo (CI = 1.27, 1.90 and 1.27, respectively). A highly synergistic effect (CI = 0.15) was observed when oxantel pamoate-mebendazole was administered to T. muris-infected mice. Oxantel pamoate (10 mg/kg) lacked activity against Ancylostoma ceylanicum and Necator americanus in vivo. Conclusion/Significance Our study confirms the excellent trichuricidal properties of oxantel pamoate. Since the drug lacks activity against hookworms it is necessary to combine oxantel pamoate with a partner drug with anti-hookworm properties. Synergistic effects were observed for oxantel pamoate-mebendazole, hence this combination should be studied in more detail. Since, of the standard drugs, albendazole has the highest efficacy against hookworms, additional investigations on the combination effect of oxantel pamoate-albendazole should be launched. PMID:23556013

  12. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins.

    PubMed

    Kirkland, David; Reeve, Lesley; Gatehouse, David; Vanparys, Philippe

    2011-03-18

    In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Combined chemo- and photo-thermal therapy delivered by multifunctional theranostic gold nanorod-loaded microcapsules

    NASA Astrophysics Data System (ADS)

    Chen, Haiyan; di, Yingfeng; Chen, Dan; Madrid, Kyle; Zhang, Min; Tian, Caiping; Tang, Liping; Gu, Yueqing

    2015-05-01

    A polyelectrolyte microcapsule-based, cancer-targeting, and controlled drug delivery system has been developed as a multifunctional theranostic agent for synergistic cancer treatment. This new system, called FA-MC@GNR, is composed of folic acid (FA)-modified, multi-layered, hollow microcapsules loaded with gold nanorods (GNRs), and undergoes thermal degradation under near infrared (NIR) light. Either an NIR dye (MPA) or anti-cancer drug (doxorubicin, DOX) was loaded into the microcapsules via physical adsorption, yielding FA-MC@GNRs/MPA or FA-MC@GNRs/DOX, both of which exhibit no obvious toxicity, high stability, and remarkably improved tumor-targeting capabilities in vivo. Utilizing the strong NIR absorption of FA-MC@GNRs/DOX, we demonstrate the system's ability to simultaneously elicit photothermal therapy and controlled chemotherapy, achieving synergistic cancer treatment both in vitro cellular and in vivo animal experiments. Our study presents a new type of multifunctional micro-carrier for the delivery of chemotherapeutic drugs and photothermal agents, which has been shown to be an effective therapeutic approach for combined cancer treatment.

  14. Curcumin as fluorescent probe for directly monitoring in vitro uptake of curcumin combined paclitaxel loaded PLA-TPGS nanoparticles

    NASA Astrophysics Data System (ADS)

    Nguyen, Hoai Nam; Thu Ha, Phuong; Sao Nguyen, Anh; Nguyen, Dac Tu; Doan Do, Hai; Nguyen Thi, Quy; Nhung Hoang Thi, My

    2016-06-01

    Theranostics, which is the combination of both therapeutic and diagnostic capacities in one dose, is a promising tool for both clinical application and research. Although there are many chromophores available for optical imaging, their applications are limited due to the photobleaching property or intrinsic toxicity. Curcumin, a natural compound extracted from the rhizome of curcuma longa, is well known thanks to its bio-pharmaceutical activities and strong fluorescence as biocompatible probe for bio-imaging. In this study, we aimed to fabricate a system with dual functions: diagnostic and therapeutic, based on poly(lactide)-tocopheryl polyethylene glycol succinate (PLA-TPGS) micelles co-loaded curcumin (Cur) and paclitaxel (PTX). Two kinds of curcumin nanoparticle (NP) were fabricated and characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy and dynamic light scattering methods. The cellular uptake and fluorescent activities of curcumin in these systems were also tested by bioassay studies, and were compared with paclitaxe-oregon. The results showed that (Cur + PTX)-PLA-TPGS NPs is a potential system for cancer theranostics.

  15. A System Biology Perspective on Environment-Host-Microbe Interactions.

    PubMed

    Chen, Lianmin; Garmaeva, Sanzhima; Zherankova, Alexandra; Fu, Jingyuan; Wijmenga, Cisca

    2018-04-16

    A vast, complex and dynamic consortium of microorganisms known as the gut microbiome colonizes the human gut. Over the past few decades we have developed an increased awareness of its important role in human health. In this review we discuss the role of the gut microbiome in complex diseases and the possible causal scenarios behind its interactions with the host genome and environmental factors. We then propose a new analysis framework that combines a systems biology approach, cross-kingdom integration of multiple levels of omics data, and innovative in vitro models to yield an integrated picture of human host-microbe interactions. This new framework will lay the foundation for the development of the next phase in personalized medicine.

  16. Comprehensive summary--Predict-IV: A systems toxicology approach to improve pharmaceutical drug safety testing.

    PubMed

    Mueller, Stefan O; Dekant, Wolfgang; Jennings, Paul; Testai, Emanuela; Bois, Frederic

    2015-12-25

    This special issue of Toxicology in Vitro is dedicated to disseminating the results of the EU-funded collaborative project "Profiling the toxicity of new drugs: a non animal-based approach integrating toxicodynamics and biokinetics" (Predict-IV; Grant 202222). The project's overall aim was to develop strategies to improve the assessment of drug safety in the early stage of development and late discovery phase, by an intelligent combination of non animal-based test systems, cell biology, mechanistic toxicology and in silico modeling, in a rapid and cost effective manner. This overview introduces the scope and overall achievements of Predict-IV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The ibrutinib B-cell proliferation inhibition is potentiated in vitro by dexamethasone: Application to chronic lymphocytic leukemia.

    PubMed

    Manzoni, Delphine; Catallo, Régine; Chebel, Amel; Baseggio, Lucile; Michallet, Anne-Sophie; Roualdes, Olivier; Magaud, Jean-Pierre; Salles, Gilles; Ffrench, Martine

    2016-08-01

    New B-cell receptor-targeted therapies such as ibrutinib, a Bruton tyrosine kinase inhibitor, are now proposed for lymphoid pathologies. The putative benefits of its combination with glucocorticoids were evaluated here. We compared the effects of dexamethasone (DXM), ibrutinib and their in vitro combination on proliferation and metabolic stress markers in stimulated normal B-lymphocytes and in malignant lymphocytes from chronic lymphocytic leukemia (CLL) patients. In both cellular models, cell cycle progression was globally inhibited by DXM and/or ibrutinib. This inhibition was significantly amplified by DXM addition to ibrutinib and was related to a significant decrease in the expression of the cell cycle regulatory proteins CDK4 and cyclin E. Apoptosis increased especially with DXM/ibrutinib combination and was associated with a significant decrease in Mcl-1 expression. Treatment effects on metabolic stress were evaluated by DNA damage recognition after 53BP1 foci labeling. The percentage of cells with more than five 53BP1 foci decreased significantly with ibrutinib in normal and CLL lymphocytes. This decrease was strongly reinforced, in CLL, by DXM addition. Our data indicated that, in vitro, DXM potentiated antiproliferative effects of ibrutinib and decreased DNA damage in lymphoid B-cells. Thus their combination may be proposed for CLL treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. TiO2 nanoparticles as exogenous contrast agent for 1 µm swept source optical coherence tomography: an in vitro study

    NASA Astrophysics Data System (ADS)

    Kumar, Atul; Mondal, Indranil; Roy, Poulomi; Poddar, Raju

    2018-03-01

    Optical coherence tomography (OCT) is a rapidly evolving, robust technology that has profoundly changed the practice of medical imaging. Swept source OCT (SSOCT) combines the standard time domain and the spatially encoded frequency domain OCT. We have employed a high-speed SSOCT system that utilizes a swept source laser with an A-scan rate of 100 kHz and a central wavelength of 1060 nm for the imaging of the tissue. SSOCT at 1060 nm allows for high penetration in the tissue. TiO2 nanoparticles (NPs) are mostly used for various experimental purposes as an exogenous imaging contrast agent. The in vitro imaging of chicken breast tissue is performed with and without the application of TiO2 NPs for exogenous contrast. Characterization of the chemically synthesized TiO2 NPs was done with dynamic light scattering and a scanning electron microscope method. The effect of TiO2 is studied at different exposure times. A significant improvement in the contrast to noise ratio has been observed through the in vitro imaging of a TiO2 treated tissue.

  19. In vitro culture of large bone substitutes in a new bioreactor: importance of the flow direction.

    PubMed

    Olivier, V; Hivart, Ph; Descamps, M; Hardouin, P

    2007-09-01

    New biomaterials combined with osteogenic cells are now being developed as an alternative to autogeneous bone grafts when the skeletal defect reaches a critical size. Yet, the size issue appears to be a key obstacle in the development of bone tissue engineering. Bioreactors are needed to allow the in vitro expansion of cells inside large bulk materials under appropriate conditions. However, no bioreactor has yet been designed for large-scale 3D structures and custom-made scaffolds. In this study, we evaluate the efficiency of a new bioreactor for the in vitro development of large bone substitutes, ensuring the perfusion of large ceramic scaffolds by the nutritive medium. The survival and proliferation of cells inside the scaffolds after 7 and 28 days in this dynamic culture system and the impact of the direction of the flow circulation are evaluated. The follow-up of glucose consumption, DNA quantification and microscopic evaluation all confirmed cell survival and proliferation for a sample under dynamic culture conditions, whereas static culture leads to the death of cells inside the scaffolds. Two directions of flow perfusion were assayed; the convergent direction leads to enhanced results compared to divergent flow.

  20. In vitro plant regeneration of Aster scaber via somatic embryogenesis.

    PubMed

    Boo, Kyung Hwan; Cao, Dang Viet; Pamplona, Reniel S; Lee, Doseung; Riu, Key-Zung; Lee, Dong-Sun

    2015-01-01

    We established an in vitro plant regeneration system via somatic embryogenesis of Aster scaber, an important source of various biologically active phytochemicals. We examined the callus induction and embryogenic capacities of three explants, including leaves, petioles, and roots, on 25 different media containing different combinations of α-naphthalene acetic acid (NAA) and 6-benzyladenine (BA). The optimum concentrations of NAA and BA for the production of embryogenic calli were 5.0 μM and 0.05 μM, respectively. Media containing higher concentrations of auxin and cytokinin (such as 25 μM NAA and 25 μM BA) were suitable for shoot regeneration, especially for leaf-derived calli, which are the most readily available calli and are highly competent. For root induction from regenerated shoots, supplemental auxin and/or cytokinin did not improve rooting, but instead caused unwanted callus induction or retarded growth of regenerated plants. Therefore, plant growth regulator-free medium was preferable for root induction. Normal plants were successfully obtained from calli under the optimized conditions described above. This is the first report of the complete process of in vitro plant regeneration of A. scaber via somatic embryogenesis.

  1. Drug release from and hydrolytic degradation of a poly(ethylene glycol) grafted poly(3-hydroxyoctanoate).

    PubMed

    Kim, Hyung Woo; Chung, Chung Wook; Hwang, Sung Joo; Rhee, Young Ha

    2005-07-01

    Monoacrylate-poly(ethylene glycol)-grafted poly(3-hydroxyoctanoate) (PEGMA-g-PHO) copolymers were synthesized to develop a swelling-controlled release delivery system for ibuprofen as a model drug. The in vitro hydrolytic degradation of and the drug release from a film made of the PEGMA-g-PHO copolymer were carried out in a phosphate buffer saline (pH 7.4) medium. The hydrolytic degradation of the copolymer was strongly dependent on the degree of grafting (DG) of the PEGMA group. The degradation rate of the copolymer films in vitro increased with increasing DG of the PEGMA group on the PHO chain. The copolymer films showed a controlled delivery of ibuprofen to the medium in periods of time that depend on the composition, hydrophilic/hydrophobic characteristics, initial drug loading amount and film thickness of the graft copolymer support. The drug release rate from the grafted copolymer films was faster than the rate of weight loss of the films themselves. In particular, a combination of the low DG of the PEGMA group in the PHO chains with the low ibuprofen solubility in water led to long-term constant release from these matrices in vitro.

  2. In Vitro Activities of 35 Double Combinations of Antifungal Agents against Scedosporium apiospermum and Scedosporium prolificans▿

    PubMed Central

    Cuenca-Estrella, Manuel; Alastruey-Izquierdo, Ana; Alcazar-Fuoli, Laura; Bernal-Martinez, Leticia; Gomez-Lopez, Alicia; Buitrago, Maria J.; Mellado, Emilia; Rodriguez-Tudela, Juan L.

    2008-01-01

    Activities of 35 combinations of antifungal agents against Scedosporium spp. were analyzed by a checkerboard microdilution design and the summation of fractional concentration index. An average indifferent effect was detected apart from combinations of azole agents and echinocandins against Scedosporium apiospermum. Antagonism was absent for all antifungal combinations against both species. PMID:18195067

  3. Evaluation of methylene blue, pyrimethamine and its combination on an in vitro Neospora caninum model.

    PubMed

    Pereira, Luiz Miguel; Vigato-Ferreira, Isabel Cristina; DE Luca, Gabriela; Bronzon DA Costa, Cássia Mariana; Yatsuda, Ana Patrícia

    2017-05-01

    Neospora caninum is an apicomplexan parasite strongly related to reproductive problems in cattle. The neosporosis control is not well established and several fronts are under development, predominantly based on immune protection, immunomodulation and chemotherapy. The use of anti-malarial drugs as therapeutic sources has, in theory, considerable potential for any apicomplexan. Drugs such as methylene blue (MB) and pyrimethamine (Pyr) represent therapeutic options for malaria; thus, their use for neosporosis should be assessed. In this work, we tested the effects of MB and Pyr on N. caninum proliferation and clearance, using LacZ-tagged tachyzoites. The drugs inhibited at nanomolar dosages and its combination demonstrated an antagonistic interaction in proliferation assays, according to the Chou and Talalay method for drug combination index. However, the drug combination significantly improved the parasite in vitro clearance. The repositioning of well-established drugs opens a short-term strategy to obtain low-cost therapeutics approaches against neosporosis.

  4. Combined ALK and MDM2 inhibition increases antitumor activity and overcomes resistance in human ALK mutant neuroblastoma cell lines and xenograft models.

    PubMed

    Wang, Hui Qin; Halilovic, Ensar; Li, Xiaoyan; Liang, Jinsheng; Cao, Yichen; Rakiec, Daniel P; Ruddy, David A; Jeay, Sebastien; Wuerthner, Jens U; Timple, Noelito; Kasibhatla, Shailaja; Li, Nanxin; Williams, Juliet A; Sellers, William R; Huang, Alan; Li, Fang

    2017-04-20

    The efficacy of ALK inhibitors in patients with ALK -mutant neuroblastoma is limited, highlighting the need to improve their effectiveness in these patients. To this end, we sought to develop a combination strategy to enhance the antitumor activity of ALK inhibitor monotherapy in human neuroblastoma cell lines and xenograft models expressing activated ALK. Herein, we report that combined inhibition of ALK and MDM2 induced a complementary set of anti-proliferative and pro-apoptotic proteins. Consequently, this combination treatment synergistically inhibited proliferation of TP53 wild-type neuroblastoma cells harboring ALK amplification or mutations in vitro, and resulted in complete and durable responses in neuroblastoma xenografts derived from these cells. We further demonstrate that concurrent inhibition of MDM2 and ALK was able to overcome ceritinib resistance conferred by MYCN upregulation in vitro and in vivo. Together, combined inhibition of ALK and MDM2 may provide an effective treatment for TP53 wild-type neuroblastoma with ALK aberrations.

  5. Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinoma-bearing mice

    PubMed Central

    Touil, Yasmine S.; Seguin, Johanne; Scherman, Daniel; Chabot, Guy G.

    2011-01-01

    Purpose The natural flavonoid fisetin was recently identified as a lead compound that stabilizes endothelial cell microtubules. In this study we investigated the antiproliferative and antiangiogenic properties of fisetin in vitro and in vivo. Methods Fisetin cytotoxicity was evaluated using Lewis lung carcinoma cells (LLC), endothelial cells and NIH 3T3 cells. Endothelial cell (EC) migration and capillary-like structure formation were evaluated using EAhy 926 cells. In vivo tumour growth inhibition studies were performed using LLC bearing mice treated with fisetin and/or cyclophosphamide (CPA). Results The fisetin IC50 was 59 μM for LLC and 77 μM for EC cells, compared to 210 μM for normal NIH 3T3 cells (24 h). Fisetin inhibited EC migration and capillary-like structure formation at non-cytotoxic concentrations (22–44 μM). In mice, fisetin inhibited angiogenesis assessed using the Matrigel plug assay. In LLC bearing mice, fisetin produced a 67% tumour growth inhibition (223 mg/kg, intraperitoneal), similar to the 66% produced by low dose CPA (30 mg/kg, subcutaneous). When fisetin and CPA were combined, however, a marked improvement in antitumour activity was observed (92% tumour growth inhibition), with low systemic toxicity. Tumour histology showed decreased microvessel density with either fisetin or CPA alone, and a dramatic decrease after the fisetin/CPA combination. Conclusions We have shown that fisetin not only displays in vitro and in vivo antiangiogenic properties, but that it can also markedly improve the in vivo antitumour effect of CPA. We propose that this drug combination associating a non-toxic dietary flavonoid with a cytotoxic agent could advantageously be used in the treatment of solid tumours. PMID:21069336

  6. Dual mTORC1/2 blockade inhibits glioblastoma brain tumor initiating cells in vitro and in vivo and synergizes with temozolomide to increase orthotopic xenograft survival.

    PubMed

    Luchman, H Artee; Stechishin, Owen D M; Nguyen, Stephanie A; Lun, Xueqing Q; Cairncross, J Gregory; Weiss, Samuel

    2014-11-15

    The EGFR and PI3K/mTORC1/2 pathways are frequently altered in glioblastoma (GBM), but pharmacologic targeting of EGFR and PI3K signaling has failed to demonstrate efficacy in clinical trials. Lack of relevant models has rendered it difficult to assess whether targeting these pathways might be effective in molecularly defined subgroups of GBMs. Here, human brain tumor-initiating cell (BTIC) lines with different combinations of endogenous EGFR wild-type, EGFRvIII, and PTEN mutations were used to investigate response to the EGFR inhibitor gefitinib, mTORC1 inhibitor rapamycin, and dual mTORC1/2 inhibitor AZD8055 alone and in combination with temozolomide (TMZ) EXPERIMENTAL DESIGN: In vitro growth inhibition and cell death induced by gefitinib, rapamycin, AZD8055, and TMZ or combinations in human BTICs were assessed by alamarBlue, neurosphere, and Western blotting assays. The in vivo efficacy of AZD8055 was assessed in subcutaneous and intracranial BTIC xenografts. Kaplan-Meier survival studies were performed with AZD8055 and in combination with TMZ. We confirm that gefitinib and rapamycin have modest effects in most BTIC lines, but AZD8055 was highly effective at inhibiting Akt/mTORC2 activity and dramatically reduced the viability of BTICs regardless of their EGFR and PTEN mutational status. Systemic administration of AZD8055 effectively inhibited tumor growth in subcutaneous BTIC xenografts and mTORC1/2 signaling in orthotopic BTIC xenografts. AZD8055 was synergistic with the alkylating agent TMZ and significantly prolonged animal survival. These data suggest that dual inhibition of mTORC1/2 may be of benefit in GBM, including the subset of TMZ-resistant GBMs. ©2014 American Association for Cancer Research.

  7. Combined treatment with dipeptidyl peptidase-4 inhibitor (sitagliptin) and angiotensin-II type 1 receptor blocker (losartan) suppresses progression in a non-diabetic rat model of steatohepatitis.

    PubMed

    Okura, Yasushi; Namisaki, Tadashi; Moriya, Kei; Kitade, Mitsuteru; Takeda, Kosuke; Kaji, Kosuke; Noguchi, Ryuichi; Nishimura, Norihisa; Seki, Kenichiro; Kawaratani, Hideto; Takaya, Hiroaki; Sato, Shinya; Sawada, Yasuhiko; Shimozato, Naotaka; Furukawa, Masanori; Nakanishi, Keisuke; Saikawa, Soichiro; Kubo, Takuya; Asada, Kiyoshi; Yoshiji, Hitoshi

    2017-11-01

    Dipeptidyl peptidase-4 (DPP4) inhibitors (DPP4-I) are oral glucose-lowering drugs for type 2 diabetes mellitus. Previously, we reported that DPP4-I (sitagliptin) exerted suppressive effects on experimental liver fibrosis in rats. Blockade of the renin-angiotensin system by angiotensin-II type 1 receptor blocker (losartan), commonly used in the management of hypertension, has been shown to significantly alleviate hepatic fibrogenesis and carcinogenesis. We aimed to elucidate the effects and possible mechanisms of a sitagliptin + losartan combination on the progression of non-diabetic non-alcoholic steatohepatitis (NASH) in a rat model. To induce NASH, Fischer 344 rats were fed a choline-deficient L-amino acid-defined diet for 12 weeks. We elucidated the chemopreventive effects of sitagliptin + losartan, especially in conjunction with hepatic stellate cell (HSC) activation, angiogenesis, and oxidative stress, all known to play important roles in the progression of NASH. Sitagliptin + losartan suppressed choline-deficient L-amino acid-defined diet-induced hepatic fibrogenesis and carcinogenesis. The combination treatment exerted a greater inhibitory effect than monotherapy. These inhibitory effects occurred almost concurrently with the suppression of HSC activation, neovascularization, and oxidative stress. In vitro studies showed that sitagliptin + losartan inhibited angiotensin II-induced proliferation and expression of transforming growth factor-β1 and α1 (I)-procollagen mRNA of activated HSC and in vitro angiogenesis, in parallel with the suppression observed in in vivo studies. The widely and safely used sitagliptin + losartan combination treatment in clinical practice could be an effective strategy against NASH. © 2016 The Japan Society of Hepatology.

  8. Combination cancer therapy by hapten-targeted prodrug-activating enzymes and cytokines.

    PubMed

    Chuang, Kuo-Hsiang; Cheng, Chiu-Min; Roffler, Steve R; Lu, Yu-Lin; Lin, Shiu-Ru; Wang, Jaw-Yuan; Tzou, Wen-Shyong; Su, Yu-Cheng; Chen, Bing-Mae; Cheng, Tian-Lu

    2006-01-01

    Combination therapy can help overcome limitations in the treatment of heterogeneous tumors. In the current study, we examined whether multiple therapeutic agents could be targeted to anti-dansyl single-chain antibodies (DNS scFv) that were anchored on the plasma membrane of cancer cells. Functional DNS scFv could be stably expressed on CT-26 colon cancer cells both in vitro and in vivo. Dansyl moieties were covalently attached to recombinant beta-glucuronidase (betaG) and interleukin 2 (IL-2) via a flexible poly(ethylene glycol) linker to form DNS-PEG-betaG and DNS-PEG-IL-2 conjugates. The conjugates displayed enzymatic and splenocyte-stimulatory activities, respectively, that were similar to those of the unmodified proteins. The conjugates selectively bound CT-26 cells that expressed anti-DNS scFv (CT-26/DNS cells) but not CT-26 cells that expressed control scFv (CT-26/phOx cells). DNS-PEG-betaG preferentially activated a glucuronide prodrug (BHAMG) of p-hydroxy aniline mustard at CT-26/DNS cells in culture and accumulated in subcutaneous CT-26/DNS tumors after intravenous administration. Systemic administration of DNS-PEG-IL-2 or DNS-PEG-betaG and BHAMG significantly delayed the growth of CT-26/DNS but not control CT-26/phOx tumors. Combination treatment with DNS-PEG-betaG and BHAMG followed by DNS-PEG-IL-2 therapy significantly suppressed the growth of CT-26/DNS tumors as compared to either single-agent regimen. These results show that at least two DNS-modified therapeutic agents can be selectively delivered to DNS scFv receptors in vitro and in vivo, allowing combination therapy of DNS scFv-modified tumors.

  9. SPR741, an Antibiotic Adjuvant, Potentiates the In Vitro and In Vivo Activity of Rifampin against Clinically Relevant Extensively Drug-Resistant Acinetobacter baumannii

    PubMed Central

    Reinhart, Alexandria A.; Alamneh, Yonas A.; Pucci, Michael J.; Si, Yuanzheng; Abu-Taleb, Rania; Shearer, Jonathan P.; Demons, Samandra T.; Tyner, Stuart D.; Lister, Troy

    2017-01-01

    ABSTRACT Acinetobacter baumannii is responsible for 10% of all nosocomial infections and has >50% mortality rates when causing ventilator-associated pneumonia. In this proof-of-concept study, we evaluated SPR741, an antibiotic adjuvant that permeabilizes the Gram-negative membrane, in combination with rifampin against AB5075, an extensively drug-resistant (XDR) A. baumannii strain. In standard in vitro assays and in a murine pulmonary model, we found that this drug combination can significantly reduce bacterial burden and promote animal survival despite an aggressive infection. PMID:28947471

  10. A finite element solution to conjugated heat transfer in tissue using magnetic resonance angiography to measure the in vitro velocity field

    NASA Astrophysics Data System (ADS)

    Dutton, Andrew William

    1993-12-01

    A combined numerical and experimental system for tissue heat transfer analysis was developed. The goal was to develop an integrated set of tools for studying the problem of providing accurate temperature estimation for use in hyperthermia treatment planning in a clinical environment. The completed system combines (1) Magnetic Resonance Angiography (MRA) to non-destructively measure the velocity field in situ, (2) the Streamwise Upwind Petrov-Galerkin finite element solution to the 3D steady state convective energy equation (CEE), (3) a medical image based automatic 3D mesh generator, and (4) a Gaussian type estimator to determine unknown thermal model parameters such as thermal conductivity, blood perfusion, and blood velocities from measured temperature data. The system was capable of using any combination of three thermal models (1) the Convective Energy Equation (CEE), (2) the Bioheat Transfer Equation (BHTE), and (3) the Effective Thermal Conductivity Equation (ETCE) Incorporation of the theoretically correct CEE was a significant theoretical advance over approximate models made possible by the use of MRA to directly measure the 3D velocity field in situ. Experiments were carried out in a perfused alcohol fixed canine liver with hyperthermia induced through scanned focused ultrasound Velocity fields were measured using Phase Contrast Angiography. The complete system was then used to (1) develop a 3D finite element model based upon user traced outlines over a series of MR images of the liver and (2) simulate temperatures at steady state using the CEE, BHTE, and ETCE thermal models in conjunction with the gauss estimator. Results of using the system on an in vitro liver preparation indicate the need for improved accuracy in the MRA scans and accurate spatial registration between the thermocouple junctions, the measured velocity field, and the scanned ultrasound power No individual thermal model was able to meet the desired accuracy of 0.5 deg C, the resolution desired for prognostic evaluation of a treatment However the CEE model did produce the expected asymmetric results while the BHTE and ETCE, used in their simplest forms of homogeneous properties, produced symmetric results. Experimental measurements tended to show marked asymmetries which suggests further development of the CEE thermal model to be the most promising.

  11. THE IN VITRO PHASE I METABOLISM OF THE TRIAZOLE FUNGICIDE BROMUCONAZOLE AND ITS FOUR ENANTIOMERS

    EPA Science Inventory

    The triazole fungicide bromuconazole contains two chiral centers and exists as two diastereomers, each with two enantiomers. It has been widely used as a mixture of its diastereomers on food products. Here we report on the in vitro metabolism of the individual and combined dias...

  12. Sonodynamic therapy combined with novel anti-cancer agents, sanguinarine and ginger root extract: Synergistic increase in toxicity in the presence of PANC-1 cells in vitro.

    PubMed

    Prescott, Matthew; Mitchell, James; Totti, Stella; Lee, Judy; Velliou, Eirini; Bussemaker, Madeleine

    2018-01-01

    The presence of ultrasound-induced cavitation in sonodynamic therapy (SDT) treatments has previously enhanced the activity and delivery of certain sonosensitisers in biological systems. The purpose of this work was to investigate the potential for two novel anti-cancer agents from natural derivatives, sanguinarine and ginger root extract (GRE), as sonosensitisers in an SDT treatment with in vitro PANC-1 cells. Both anti-cancer compounds had a dose-dependent cytotoxicity in the presence of PANC-1 cells. A range of six discreet ultrasound power-frequency configurations were tested and it was found that the cell death caused directly by ultrasound was likely due to the sonomechanical effects of cavitation. Combined treatment used dosages of 100μM sanguinarine or 1mM of GRE with 15s sonication at 500kHz and 10W. The sanguinarine-SDT and GRE-SDT treatments showed a 6% and 17% synergistic increase in observed cell death, respectively. Therefore both sanguinarine and GRE were found to be effective sonosensitisers and warrant further development for SDT, with a view to maximising the magnitude of synergistic increase in toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In Vitro Ovule Cultivation for Live-cell Imaging of Zygote Polarization and Embryo Patterning in Arabidopsis thaliana.

    PubMed

    Kurihara, Daisuke; Kimata, Yusuke; Higashiyama, Tetsuya; Ueda, Minako

    2017-09-11

    In most flowering plants, the zygote and embryo are hidden deep in the mother tissue, and thus it has long been a mystery of how they develop dynamically; for example, how the zygote polarizes to establish the body axis and how the embryo specifies various cell fates during organ formation. This manuscript describes an in vitro ovule culture method to perform live-cell imaging of developing zygotes and embryos of Arabidopsis thaliana. The optimized cultivation medium allows zygotes or early embryos to grow into fertile plants. By combining it with a poly(dimethylsiloxane) (PDMS) micropillar array device, the ovule is held in the liquid medium in the same position. This fixation is crucial to observe the same ovule under a microscope for several days from the zygotic division to the late embryo stage. The resulting live-cell imaging can be used to monitor the real-time dynamics of zygote polarization, such as nuclear migration and cytoskeleton rearrangement, and also the cell division timing and cell fate specification during embryo patterning. Furthermore, this ovule cultivation system can be combined with inhibitor treatments to analyze the effects of various factors on embryo development, and with optical manipulations such as laser disruption to examine the role of cell-cell communication.

  14. In vitro and in vivo drug combination for the treatment of Trypanosoma cruzi infection: A multivariate approach.

    PubMed

    Strauss, Mariana; Rodrigues, Jean Henrique S; Lo Presti, María Silvina; Bazán, Paola Carolina; Báez, Alejandra Lidia; Paglini-Oliva, Patricia; Nakamura, Celso Vataru; Bustamante, Juan Manuel; Rivarola, Héctor Walter

    2018-06-01

    Combination therapies based on the available drugs have been proposed as promising therapeutic alternatives for many diseases. Clomipramine (CLO) has been found to modify the evolution of the experimental infection. The objective of this study was to evaluate the combined effect of benznidazole (BZ) and clomipramine (CLO) against different life-stages of Trypanosoma cruzi in vitro and their efficacy in a murine model. Life-stages of T. cruzi, BZ-partially-resistant (Y) strain, were incubated with BZ and CLO and isobolograms and combination index (CI) were obtained. Swiss mice were infected with trypomastigotes and different treatment schedules were performed, each of which consisted of 30 consecutive daily doses. Treatment efficacy was evaluated by comparing parasitemia, qPCR, survival and histological analysis. These results were analyzed using multivariate analysis to determine the combined effect of the drugs in vivo. CLO + BZ showed synergistic activity in vitro against the clinically relevant life-stages of T. cruzi. The most susceptible forms were the intracellular amastigotes (CI: 0.20), followed by trypomastigotes (CI: 0.60), with no toxicity upon mammalian cells. The combination of both drugs CLO (1.25 mg/kg) and BZ (6.25 mg/kg), in vivo, significantly diminished the parasitic load in blood and the mortality rate. CLO + BZ presented a similar inflammatory response in cardiac and skeletal muscle (amount of inflammatory cells) to BZ (6.25 mg/kg). Finally, the results from the principal component analysis reaffirmed that both drugs administered in combination presented higher activity compared with the individual administration in the acute experimental model. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. In vitro and in vivo evaluation of combined calcitriol and cisplatin in dogs with spontaneously occurring tumors

    PubMed Central

    Rassnick, Kenneth M.; Muindi, Josephia R.; Johnson, Candace S.; Balkman, Cheryl E.; Ramnath, Nithya; Yu, Wei-Dong; Engler, Kristie L.; Page, Rodney L.; Trump, Donald L.

    2009-01-01

    Purpose Calcitriol potentiates cisplatin-mediated activity in a variety of tumor models. We examine here, the effect of calcitriol and cisplatin pre-clinically and clinically in canine spontaneous tumors through in vitro studies on tumor cells and through a phase I study of calcitriol and cisplatin to identify the maximum-tolerated dosage (MTD) of this combination in dogs with cancer and to characterize the pharmacokinetic disposition of calcitriol in dogs. Methods Canine tumor cells were investigated for calcitriol/cisplatin interactions on proliferation using an MTT assay in a median-dose effect analysis; data were used to derive a combination index (CI). Cisplatin was given at a fixed dosage of 60 mg/m2. Calcitriol was given i.v. and the dosage was escalated in cohorts of three dogs until the MTD was defined. Serum calcitriol concentrations were quantified by radioimmunoassay. Results In vitro, CIs<1.0 were obtained for all combinations of calcitriol/cisplatin examined. The MTD was 3.75 μg/kg calcitriol in combination with cisplatin, and hypercalcemia was the dose-limiting toxicosis. The relationship between calcitriol dosage and either Cmax or AUC was linear. Calcitriol dosages >1.5 μg/kg achieved Cmax ≥ 9.8 ng/mL and dosages >1.0 μg/kg achieved AUC ≥ 45 h ng/mL. Conclusions Calcitriol and cisplatin have synergistic antiproliferative effects on multiple canine tumor cells and high-dosages of i.v. calcitriol in combination with cisplatin can be safely administered to dogs. Cmax and AUC at the MTD 3.75 μg/kg calcitriol exceed concentrations associated with antitumor activity in a murine model, indicating this combination might have significant clinical utility in dogs. PMID:18246349

  16. Mocetinostat combined with gemcitabine for the treatment of leiomyosarcoma: Preclinical correlates

    PubMed Central

    Braggio, Danielle; Zewdu, Abeba; Casadei, Lucia; Batte, Kara; Bid, Hemant Kumar; Koller, David; Yu, Peter; Iwenofu, Obiajulu Hans; Strohecker, Anne; Choy, Edwin; Lev, Dina; Pollock, Raphael

    2017-01-01

    Leiomyosarcoma (LMS) is a malignant soft tissue sarcoma (STS) with a dismal prognosis following metastatic disease. Chemotherapeutic intervention has demonstrated to have modest clinical efficacy with no curative potential in LMS patients. Previously, we demonstrated pan-HDAC inhibition to have a superior effect in various complex karyotypic sarcomas. In this study, our goal is to evaluate the therapeutic efficacy of mocetinostat alone and in combination with gemcitabine in LMS. Human leiomyosarcoma (LMS) cell lines were used for in vitro and in vivo studies. Compounds tested included the class I HDAC inhibitor, mocetinostat, and nucleoside analog, gemcitabine. MTS and clonogenic assays were used to evaluate the effect of mocetinostat on LMS cell growth. Cleaved caspase 3/7 analysis was used to determine the effects of mocetinostat on apoptosis. Compusyn software was used to determine in vitro synergy studies for the combination of mocetinostat plus gemcitabine. A LMS xenograft model in SCID mice was used to test the impact of mocetinostat alone, gemcitabine alone and the combination of mocetinostat plus gemcitabine. Mocetinostat abrogated LMS cell growth and clonogenic potential, and enhanced apoptosis in LMS cell lines. The combination of mocetinostat plus gemcitabine exhibited a synergistic effect in LMS cells in vitro. Similarly, mocetinostat combined with gemcitabine resulted in superior anti-LMS effects in vivo. Mocetinostat reduced the expression of gemcitabine-resistance markers RRM1, RRM2, and increased the expression of gemcitabine-sensitivity marker, hENT1, in LMS cells. LMS are aggressive, metastatic tumors with poor prognosis where effective therapeutic interventions are wanting. Our studies demonstrate the potential utility of mocetinostat combined with gemcitabine for the treatment of LMS. PMID:29186204

  17. Combined analysis of whole human blood parameters by Raman spectroscopy and spectral-domain low-coherence interferometry

    NASA Astrophysics Data System (ADS)

    Gnyba, M.; Wróbel, M. S.; Karpienko, K.; Milewska, D.; Jedrzejewska-Szczerska, M.

    2015-07-01

    In this article the simultaneous investigation of blood parameters by complementary optical methods, Raman spectroscopy and spectral-domain low-coherence interferometry, is presented. Thus, the mutual relationship between chemical and physical properties may be investigated, because low-coherence interferometry measures optical properties of the investigated object, while Raman spectroscopy gives information about its molecular composition. A series of in-vitro measurements were carried out to assess sufficient accuracy for monitoring of blood parameters. A vast number of blood samples with various hematological parameters, collected from different donors, were measured in order to achieve a statistical significance of results and validation of the methods. Preliminary results indicate the benefits in combination of presented complementary methods and form the basis for development of a multimodal system for rapid and accurate optical determination of selected parameters in whole human blood. Future development of optical systems and multivariate calibration models are planned to extend the number of detected blood parameters and provide a robust quantitative multi-component analysis.

  18. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy

    NASA Astrophysics Data System (ADS)

    Pasparakis, George; Manouras, Theodore; Vamvakaki, Maria; Argitis, Panagiotis

    2014-04-01

    Light-controlled drug delivery systems constitute an appealing means to direct and confine drug release spatiotemporally at the site of interest with high specificity. However, the utilization of light-activatable systems is hampered by the lack of suitable drug carriers that respond sharply to visible light stimuli at clinically relevant wavelengths. Here, a new class of self-assembling, photo- and pH-degradable polymers of the polyacetal family is reported, which is combined with photochemical internalization to control the intracellular trafficking and release of anticancer compounds. The polymers are synthesized by simple and scalable chemistries and exhibit remarkably low photolysis rates at tunable wavelengths over a large range of the spectrum up to the visible and near infrared regime. The combinational pH and light mediated degradation facilitates increased therapeutic potency and specificity against model cancer cell lines in vitro. Increased cell death is achieved by the synergistic activity of nanoparticle-loaded anticancer compounds and reactive oxygen species accumulation in the cytosol by simultaneous activation of porphyrin molecules and particle photolysis.

  19. Review of stochastic hybrid systems with applications in biological systems modeling and analysis.

    PubMed

    Li, Xiangfang; Omotere, Oluwaseyi; Qian, Lijun; Dougherty, Edward R

    2017-12-01

    Stochastic hybrid systems (SHS) have attracted a lot of research interests in recent years. In this paper, we review some of the recent applications of SHS to biological systems modeling and analysis. Due to the nature of molecular interactions, many biological processes can be conveniently described as a mixture of continuous and discrete phenomena employing SHS models. With the advancement of SHS theory, it is expected that insights can be obtained about biological processes such as drug effects on gene regulation. Furthermore, combining with advanced experimental methods, in silico simulations using SHS modeling techniques can be carried out for massive and rapid verification or falsification of biological hypotheses. The hope is to substitute costly and time-consuming in vitro or in vivo experiments or provide guidance for those experiments and generate better hypotheses.

  20. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  1. Ambroxol Hydrochloride Combined with Fluconazole Reverses the Resistance of Candida albicans to Fluconazole.

    PubMed

    Li, Xiuyun; Zhao, Yuanhao; Huang, Xin; Yu, Cuixiang; Yang, Yilei; Sun, Shujuan

    2017-01-01

    In this study, we found that ambroxol hydrochloride (128 μg/mL) exhibits synergistic antifungal effects in combination with fluconazole (2 μg/mL) against resistant planktonic Candida albicans ( C. albicans ) cells. This combination also exhibited synergistic effects against resistant C. albicans biofilms in different stages (4, 8, and 12 h) according to the microdilution method. In vitro data were further confirmed by the success of this combination in treating Galleria mellonella infected by resistant C. albicans . With respect to the synergistic mechanism, our result revealed that ambroxol hydrochloride has an effect on the drug transporters of resistant C. albicans , increasing the uptake and decreasing the efflux of rhodamine 6G, a fluorescent alternate of fluconazole. This is the first study to investigate the in vitro and in vivo antifungal effects, as well as the possible synergistic mechanism of ambroxol hydrochloride in combination with fluconazole against resistant C. albicans . The results show the potential role for this drug combination as a therapeutic alternative to treat resistant C. albicans and provide insights into the development of antifungal targets and new antifungal agents.

  2. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    PubMed

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  3. Combination therapeutics of Nilotinib and radiation in acute lymphoblastic leukemia as an effective method against drug-resistance.

    PubMed

    Kaveh, Kamran; Takahashi, Yutaka; Farrar, Michael A; Storme, Guy; Guido, Marcucci; Piepenburg, Jamie; Penning, Jackson; Foo, Jasmine; Leder, Kevin Z; Hui, Susanta K

    2017-07-01

    Philadelphia chromosome-positive (Ph+) acute lymphoblastic leukemia (ALL) is characterized by a very poor prognosis and a high likelihood of acquired chemo-resistance. Although tyrosine kinase inhibitor (TKI) therapy has improved clinical outcome, most ALL patients relapse following treatment with TKI due to the development of resistance. We developed an in vitro model of Nilotinib-resistant Ph+ leukemia cells to investigate whether low dose radiation (LDR) in combination with TKI therapy overcome chemo-resistance. Additionally, we developed a mathematical model, parameterized by cell viability experiments under Nilotinib treatment and LDR, to explain the cellular response to combination therapy. The addition of LDR significantly reduced drug resistance both in vitro and in computational model. Decreased expression level of phosphorylated AKT suggests that the combination treatment plays an important role in overcoming resistance through the AKT pathway. Model-predicted cellular responses to the combined therapy provide good agreement with experimental results. Augmentation of LDR and Nilotinib therapy seems to be beneficial to control Ph+ leukemia resistance and the quantitative model can determine optimal dosing schedule to enhance the effectiveness of the combination therapy.

  4. Combined laser-ray tracing and OCT system for biometry of the crystalline lens (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ruggeri, Marco; Maceo Heilman, Bianca M.; Yao, Yue; Chang, Yu-Cherng; Gonzalez, Alex; Rowaan, Cornelis; Mohamed, Ashik; Williams, Siobhan; Durkee, Heather A.; Silgado, Juan; Bernal, Andres; Arrieta-Quintero, Esdras; Ho, Arthur; Parel, Jean-Marie A.; Manns, Fabrice

    2017-02-01

    Age-related changes in the crystalline lens shape and refractive index gradient produce changes in dioptric power and high-order aberrations that influence the optics of the whole eye and contribute to a decrease in overall visual quality. Despite their key role, the changes in lens shape and refractive index gradient with age and accommodation and their effects on high-order aberrations are still not well understood. The goal of this project was to develop a combined laser ray tracing (LRT) and optical coherence tomography (OCT) system to measure high-order aberrations, shape and refractive index gradient in non-human primate and human lenses. A miniature motorized lens stretching system was built to enable imaging and aberrometry of the lens during simulated accommodation. A positioning system was also built to enable on- and off-axis OCT imaging and aberrometry for characterization of the peripheral defocus of the lens. We demonstrated the capability of the LRT-OCT system to produce OCT images and aberration measurements of crystalline lens with age and accommodation in vitro. In future work, the information acquired with the LRT-OCT system will be used to develop an accurate age-dependent lens model to predict the role of the lens in the development of refractive error and aberrations of the whole eye.

  5. Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.

    2010-01-01

    Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thrall, Brian D.; Minard, Kevin R.; Teeguarden, Justin G.

    A Cooperative Research and Development Agreement (CRADA) was sponsored by Battelle Memorial Institute (Battelle, Columbus), to initiate a collaborative research program across multiple Department of Energy (DOE) National Laboratories aimed at developing a suite of new capabilities for predictive toxicology. Predicting the potential toxicity of emerging classes of engineered nanomaterials was chosen as one of two focusing problems for this program. PNNL’s focus toward this broader goal was to refine and apply experimental and computational tools needed to provide quantitative understanding of nanoparticle dosimetry for in vitro cell culture systems, which is necessary for comparative risk estimates for different nanomaterialsmore » or biological systems. Research conducted using lung epithelial and macrophage cell models successfully adapted magnetic particle detection and fluorescent microscopy technologies to quantify uptake of various forms of engineered nanoparticles, and provided experimental constraints and test datasets for benchmark comparison against results obtained using an in vitro computational dosimetry model, termed the ISSD model. The experimental and computational approaches developed were used to demonstrate how cell dosimetry is applied to aid in interpretation of genomic studies of nanoparticle-mediated biological responses in model cell culture systems. The combined experimental and theoretical approach provides a highly quantitative framework for evaluating relationships between biocompatibility of nanoparticles and their physical form in a controlled manner.« less

  7. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    PubMed

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  8. In silico and in vitro methods to optimize the performance of experimental gastroretentive floating mini-tablets.

    PubMed

    Eberle, Veronika A; Häring, Armella; Schoelkopf, Joachim; Gane, Patrick A C; Huwyler, Jörg; Puchkov, Maxim

    2016-01-01

    Development of floating drug delivery systems (FDDS) is challenging. To facilitate this task, an evaluation method was proposed, which allows for a combined investigation of drug release and flotation. It was the aim of the study to use functionalized calcium carbonate (FCC)-based lipophilic mini-tablet formulations as a model system to design FDDS with a floating behavior characterized by no floating lag time, prolonged flotation and loss of floating capability after complete drug release. Release of the model drug caffeine from the mini-tablets was assessed in vitro by a custom-built stomach model. A cellular automata-based model was used to simulate tablet dissolution. Based on the in silico data, floating forces were calculated and analyzed as a function of caffeine release. Two floating behaviors were identified for mini-tablets: linear decrease of the floating force and maintaining of the floating capability until complete caffeine release. An optimal mini-tablet formulation with desired drug release time and floating behavior was developed and tested. A classification system for a range of varied floating behavior of FDDS was proposed. The FCC-based mini-tablets had an ideal floating behavior: duration of flotation is defined and floating capability decreases after completion of drug release.

  9. A modified parallel artificial membrane permeability assay for evaluating the bioconcentration of highly hydrophobic chemicals in fish.

    PubMed

    Kwon, Jung-Hwan; Escher, Beate I

    2008-03-01

    Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.

  10. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy.

    PubMed

    Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  11. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    PubMed Central

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-01-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223

  12. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  13. Novel Fish Oil-based Bigel System for Controlled Drug Delivery and its Influence on Immunomodulatory Activity of Imiquimod Against Skin Cancer.

    PubMed

    Rehman, Khurram; Zulfakar, Mohd Hanif

    2017-01-01

    To characterize bigel system as a topical drug delivery vehicle and to establish the immunomodulatory role of imiquimod-fish oil combination against skin cancer and inflammation resulting from chemical carcinogenesis. Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model. Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer. Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.

  14. Animal use in the chemical and product manufacturing sectors - can the downtrend continue?

    PubMed

    Curren, Rodger

    2009-12-01

    During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.

  15. Characterization and in vitro evaluation of freeze-dried microparticles composed of granisetron-cyclodextrin complex and carboxymethylcellulose for intranasal delivery.

    PubMed

    Cho, Hyun-Jong; Balakrishnan, Prabagar; Shim, Won-Sik; Chung, Suk-Jae; Shim, Chang-Koo; Kim, Dae-Duk

    2010-11-15

    The aim of this study was to prepare microparticles (MPs) of granisetron (GRN) in combination with hydroxypropyl-β-cyclodextrin (HP-β-CD) and sodium carboxymethylcellulose (CMC-Na) by the simple freeze-drying method for intranasal delivery. The composition of MPs was determined from the phase-solubility study of GRN in various CDs. Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD) analysis and differential scanning calorimetry (DSC) studies were performed to evaluate possible interactions between GRN and excipients. The results indicated the formation of inclusion complex between GRN and CD, and the conversion of drug into amorphous state. The in vitro release of GRN from MPs was determined in phosphate buffered saline (pH 6.4) at 37°C. Cytotoxicity of the MPs and in vitro permeation study were conducted by using primary human nasal epithelial (HNE) cells and their monolayer system cultured by air-liquid interface (ALI) method, respectively. The MPs showed significantly higher GRN release profile compared to pure GRN. Moreover, the prepared MPs showed significantly lower cytotoxicity and higher permeation profile than that of GRN powder (p<0.05). These results suggested that the MPs composed of GRN, HP-β-CD and CMC-Na represent a simple and new GRN intranasal delivery system as an alternative to the oral and intravenous administration of GRN. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Preparation and in vitro characterization of chitosan nanobubbles as theranostic agents.

    PubMed

    Cavalli, R; Argenziano, M; Vigna, E; Giustetto, P; Torres, E; Aime, S; Terreno, E

    2015-05-01

    Theranostic delivery systems are nanostructures that combine the modality of therapy and diagnostic imaging. Polymeric micro- and nanobubbles, spherical vesicles containing a gas core, have been proposed as new theranostic carriers for MRI-guided therapy. In this study, chitosan nanobubbles were purposely tuned for the co-delivery of prednisolone phosphate and a Gd(III) complex, as therapeutic and MRI diagnostic agent, respectively. Perfluoropentane was used for filling up the internal core of the formulation. These theranostic nanobubbles showed diameters of about 500nm and a positive surface charge that allows the interaction with the negatively charged Gd-DOTP complex. Pluronic F68 was added to the nanobubble aqueous suspension as stabilizer agent. The encapsulation efficiency was good for both the active compounds, and a prolonged drug release profile was observed in vitro. The effect of ultrasound stimulation on prednisolone phosphate release was evaluated at 37°C. A marked increase on drug release kinetics with no burst effect was obtained after the exposure of the system to ultrasound. Furthermore, the relaxivity of the MRI probe changed upon incorporation in the nanobubble shell, thereby offering interesting opportunity in dual MRI-US experiments. The ultrasound characterization showed a good in vitro echogenicity of the theranostic nanobubbles. In summary, chitosan drug-loaded nanobubbles with Gd(III) complex bound to their shell might be considered a new platform for imaging and drug delivery with the potential of improving anti-cancer treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Matching phosphate and maleate buffer systems for dissolution of weak acids: Equivalence in terms of buffer capacity of bulk solution or surface pH?

    PubMed

    Cristofoletti, Rodrigo; Dressman, Jennifer B

    2016-06-01

    The development of in vitro dissolution tests able to anticipate the in vivo fate of drug products has challenged pharmaceutical scientists over time, especially in the case of ionizable compounds. In the seminal model proposed by Mooney et al. thirty-five years ago, the pH at the solid-liquid interface (pH0) was identified as a key parameter in predicting dissolution rate. In the current work it is demonstrated that the in vitro dissolution of the weak acid ibuprofen in maleate and phosphate buffer systems is a function of the pH0, which in turn is affected by properties of the drug and the medium. The reported pH0 for ibuprofen dissolution in bicarbonate buffer, the predominant buffer species in the human small intestine under fasting conditions, can be achieved by reducing the phosphate buffer concentration to 5.0mM or the maleate buffer concentration to 2.2mM. Using this approach to identify the appropriate buffer/buffer capacity combination for in vitro experiments in FaSSIF-type media, it would be possible to increase the physiological relevance of this important biopharmaceutics tool. However, the necessity of monitoring and adjusting the bulk pH during the experiments carried out in 5.0mM phosphate or 2.2mM maleate buffers must also be taken into consideration. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Self-Assembled pH-Responsive Polymeric Micelles for Highly Efficient, Noncytotoxic Delivery of Doxorubicin Chemotherapy To Inhibit Macrophage Activation: In Vitro Investigation.

    PubMed

    Liao, Zhi-Sheng; Huang, Shan-You; Huang, Jyun-Jie; Chen, Jem-Kun; Lee, Ai-Wei; Lai, Juin-Yih; Lee, Duu-Jong; Cheng, Chih-Chia

    2018-04-26

    Self-assembled pH-responsive polymeric micelles, a combination of hydrophilic poly(ethylene glycol) segments and hydrogen bonding interactions within a biocompatible polyurethane substrate, can spontaneously self-assemble into highly controlled, nanosized micelles in aqueous solution. These newly developed micelles exhibit excellent pH-responsive behavior and biocompatibility, highly controlled drug (doxorubicin; DOX) release behavior, and high drug encapsulation stability in different aqueous environments, making the micelles highly attractive potential candidates for safer, more effective drug delivery in applications such as cancer chemotherapy. In addition, in vitro cell studies revealed the drug-loaded micelles possessed excellent drug entrapment stability and low cytotoxicity toward macrophages under normal physiological conditions (pH 7.4, 37 °C). When the pH of the culture media was reduced to 6.0 to mimic the acidic tumor microenvironment, the drug-loaded micelles triggered rapid release of DOX within the cells, which induced potent antiproliferative and cytotoxic effects in vitro. Importantly, fluorescent imaging and flow cytometric analyses confirmed the DOX-loaded micelles were efficiently delivered into the cytoplasm of the cells via endocytosis and then subsequently gradually translocated into the nucleus. Therefore, these multifunctional micelles could serve as delivery vehicles for precise, effective, controlled drug release to prevent accumulation and activation of tumor-promoting tumor-associated macrophages in cancer tissues. Thus, this unique system may offer a potential route toward the practical realization of next-generation pH-responsive therapeutic delivery systems.

  19. Incorporation of beads into oral films for buccal and oral delivery of bioactive molecules.

    PubMed

    Castro, Pedro M; Sousa, Flávia; Magalhães, Rui; Ruiz-Henestrosa, Victor Manuel Pizones; Pilosof, Ana M R; Madureira, Ana Raquel; Sarmento, Bruno; Pintado, Manuela E

    2018-08-15

    The association of alginate beads and guar-gum films in a single delivery system was idealized to promote a more effective buccal and oral delivery of bioactive molecules. A response surface method (experimental design approach) was performed to obtain optimal formulations of alginate beads to be incorporated into guar gum oral films as combined buccal and oral delivery systems for caffeine delivery. The combined formulation was further characterized regarding physicochemical properties, drug release, cell viability and buccal permeability. Beads average size, determined by dynamic light scattering (DLS), was of 3.37 ± 6.36 μm. Film thickness was set to 62 μm. Scanning electron microscopy micrographs revealed that beads were evenly distributed onto the film matrix and beads size was in accordance to data obtained from DLS analysis. Evaluation of Fourier-transform infrared spectra did not indicate the formation of new covalent bonds between the matrix of guar-gum films, alginate beads and caffeine. In vitro release assays by dialysis membrane allowed understanding that the combination of guar-gum films and alginate beads assure a slower release of caffeine when compared with the delivery profile of free caffeine from alginate beads or guar-gum films alone. MTT assay, performed on human buccal carcinoma TR146 cell line, allowed concluding that neither guar-gum film, alginate beads nor guar-gum film incorporated into alginate beads significantly compromised cell viability after 12 h of exposure. As demonstrated by in vitro permeability assay using TR146 human buccal carcinoma cell lines, combination of guar-gum films and alginate beads also promoted a slower release and, thus, lower apparent permeability (1.15E-05 ± 3.50E-06) than for caffeine solution (2.68E-05 ± 7.30E-06), guar-gum film (3.12E-05 ± 4.70E-06) or alginate beads (2.01E-05 ± 3.90E-06). The conjugation of alginate beads within an orodispersible film matrix represents an effective oral/buccal delivery system that induces a controlled release along with an enhanced intimate contact with cell layers that may promote higher in vivo bioavailability of carried drugs. Copyright © 2018. Published by Elsevier Ltd.

  20. New applications of CRISPR/Cas9 system on mutant DNA detection.

    PubMed

    Jia, Chenqiang; Huai, Cong; Ding, Jiaqi; Hu, Lingna; Su, Bo; Chen, Hongyan; Lu, Daru

    2018-01-30

    The detection of mutant DNA is critical for precision medicine, but low-frequency DNA mutation is very hard to be determined. CRISPR/Cas9 is a robust tool for in vivo gene editing, and shows the potential for precise in vitro DNA cleavage. Here we developed a DNA mutation detection system based on CRISPR/Cas9 that can detect gene mutation efficiently even in a low-frequency condition. The system of CRISPR/Cas9 cleavage in vitro showed a high accuracy similar to traditional T7 endonuclease I (T7E1) assay in estimating mutant DNA proportion in the condition of normal frequency. The technology was further used for low-frequency mutant DNA detection of EGFR and HBB somatic mutations. To the end, Cas9 was employed to cleave the wild-type (WT) DNA and to enrich the mutant DNA. Using amplified fragment length polymorphism analysis (AFLPA) and Sanger sequencing, we assessed the sensitivity of CRISPR/Cas9 cleavage-based PCR, in which mutations at 1%-10% could be enriched and detected. When combined with blocker PCR, its sensitivity reached up to 0.1%. Our results suggested that this new application of CRISPR/Cas9 system is a robust and potential method for heterogeneous specimens in the clinical diagnosis and treatment management. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. A Metaproteomics Approach to Elucidate Host and Pathogen Protein Expression during Catheter-Associated Urinary Tract Infections (CAUTIs)

    PubMed Central

    Lassek, Christian; Burghartz, Melanie; Chaves-Moreno, Diego; Otto, Andreas; Hentschker, Christian; Fuchs, Stephan; Bernhardt, Jörg; Jauregui, Ruy; Neubauer, Rüdiger; Becher, Dörte; Pieper, Dietmar H.; Jahn, Martina; Jahn, Dieter; Riedel, Katharina

    2015-01-01

    Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system. PMID:25673765

  2. A metaproteomics approach to elucidate host and pathogen protein expression during catheter-associated urinary tract infections (CAUTIs).

    PubMed

    Lassek, Christian; Burghartz, Melanie; Chaves-Moreno, Diego; Otto, Andreas; Hentschker, Christian; Fuchs, Stephan; Bernhardt, Jörg; Jauregui, Ruy; Neubauer, Rüdiger; Becher, Dörte; Pieper, Dietmar H; Jahn, Martina; Jahn, Dieter; Riedel, Katharina

    2015-04-01

    Long-term catheterization inevitably leads to a catheter-associated bacteriuria caused by multispecies bacterial biofilms growing on and in the catheters. The overall goal of the presented study was (1) to unravel bacterial community structure and function of such a uropathogenic biofilm and (2) to elucidate the interplay between bacterial virulence and the human immune system within the urine. To this end, a metaproteomics approach combined with in vitro proteomics analyses was employed to investigate both, the pro- and eukaryotic protein inventory. Our proteome analyses demonstrated that the biofilm of the investigated catheter is dominated by three bacterial species, that is, Pseudomonas aeruginosa, Morganella morganii, and Bacteroides sp., and identified iron limitation as one of the major challenges in the bladder environment. In vitro proteome analysis of P. aeruginosa and M. morganii isolated from the biofilm revealed that these opportunistic pathogens are able to overcome iron restriction via the production of siderophores and high expression of corresponding receptors. Notably, a comparison of in vivo and in vitro protein profiles of P. aeruginosa and M. morganii also indicated that the bacteria employ different strategies to adapt to the urinary tract. Although P. aeruginosa seems to express secreted and surface-exposed proteases to escape the human innate immune system and metabolizes amino acids, M. morganii is able to take up sugars and to degrade urea. Most interestingly, a comparison of urine protein profiles of three long-term catheterized patients and three healthy control persons demonstrated the elevated level of proteins associated with neutrophils, macrophages, and the complement system in the patient's urine, which might point to a specific activation of the innate immune system in response to biofilm-associated urinary tract infections. We thus hypothesize that the often asymptomatic nature of catheter-associated urinary tract infections might be based on a fine-tuned balance between the expression of bacterial virulence factors and the human immune system. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents.

    PubMed

    Homa, Mónika; Galgóczy, László; Tóth, Eszter; Virágh, Máté; Chandrasekaran, Muthusamy; Vágvölgyi, Csaba; Papp, Tamás

    2016-10-01

    In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. In vitro synchrotron-based radiography of micro-gap formation at the implant-abutment interface of two-piece dental implants.

    PubMed

    Rack, A; Rack, T; Stiller, M; Riesemeier, H; Zabler, S; Nelson, K

    2010-03-01

    Micro-gap formation at the implant-abutment interface of two-piece dental implants was investigated in vitro using high-resolution radiography in combination with hard X-ray synchrotron radiation. Images were taken with the specimen under different mechanical loads of up to 100 N. The aim of this investigation was to prove the existence of micro-gaps for implants with conical connections as well as to study the mechanical behavior of the mating zone of conical implants during loading. Synchrotron-based radiography in comparison with classical laboratory radiography yields high spatial resolution in combination with high contrast even when exploiting micro-sized features in highly attenuating objects. The first illustration of a micro-gap which was previously indistinguishable by laboratory methods underlines that the complex micro-mechanical behavior of implants requires further in vitro investigations where synchrotron-based micro-imaging is one of the prerequisites.

  5. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug.

    PubMed

    Rivard, Colleen; Geller, Melissa; Schnettler, Erica; Saluja, Manju; Vogel, Rachel Isaksson; Saluja, Ashok; Ramakrishnan, Sundaram

    2014-11-01

    Minnelide is a water-soluble pro-drug of triptolide, a natural product. The goal of this study was to evaluate the effectiveness of Minnelide on ovarian cancer growth in vitro and in vivo. The effect of Minnelide on ovarian cancer cell proliferation was determined by real time electrical impedance measurements. Multiple mouse models with C200 and A2780 epithelial ovarian cancer cell lines were used to assess the efficacy of Minnelide in inhibiting ovarian cancer growth. Minnelide decreased cell viability of both platinum sensitive and resistant epithelial ovarian cancer cells in vitro. Minnelide with carboplatin showed additive effects in vitro. Minnelide monotherapy increased the survival of mice bearing established ovarian tumors. Minnelide, in combination with carboplatin and paclitaxel, improved overall survival of mice. Minnelide is a promising pro-drug for the treatment of ovarian cancer, especially when combined with standard chemotherapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. In vitro antioxidant/prooxidant effects of combined use of flavonoids.

    PubMed

    Eren-Guzelgun, B; Ince, E; Gurer-Orhan, H

    2018-06-01

    The present study was undertaken to investigate the individual and combined antioxidant or prooxidant effects of genistein, daidzein and quercetin in human erythrocytes and rat microsomes in vitro. Their reducing potential against oxidation of a redox sensitive fluorescent probe, their protective effect against H 2 O 2 -induced membrane lipid peroxidation and their inhibitory effect on AAPH-induced hemolysis were evaluated. Genistein and daidzein were prooxidant in erythrocytes but antioxidant in microsomes where their metabolites might have been formed which suggests the importance of metabolic capacity in in vitro models to predict the physiological situation. Quercetin showed antioxidant effects in all models and conditions. Prooxidant effect of 'genistein-daidzein mixture', at their concentrations reflecting the real life, was suppressed by addition of quercetin to the mixture. Our study shows that flavonoids can exert prooxidant effects depending on the conditions, but the mixture effect should be considered while assessing their effects and safety in humans.

  7. Synergistic suppression of human breast cancer cells by combination of plumbagin and zoledronic acid In vitro.

    PubMed

    Qiao, Han; Wang, Ting-yu; Yan, Wei; Qin, An; Fan, Qi-ming; Han, Xiu-guo; Wang, Yu-gang; Tang, Ting-ting

    2015-09-01

    Zoledronic acid (ZA), a bisphosphonate, is currently used in combination with chemotherapeutic agents to suppress breast cancer cell proliferation or breast cancer-induced osteolysis. The aim of this study was to investigate the effects of ZA combined with a natural anticancer compound plumbagin (PL) against human breast cancer cells in vitro. Human breast cancer MDA-MB-231SArfp cells were treated with ZA, PL or a combination of ZA and PL. The cell growth, apoptosis and migration were evaluated using CCK-8 assay, flow cytometry and transwell assay, respectively. The expression of apoptosis-related proteins was measured using real-time PCR and Western blotting. Synergism was evaluated using Compusyn software, and the combination index (CI) and drug reduction index (DRI) values were determined. PL or ZA alone caused mild cytotoxicity (the IC50 value at 24 h was 12.18 and above 100 μmol/L, respectively). However, the combination of ZA and PL caused a synergistic cytotoxicity (CI=0.26). The DRI values also showed a synergistic effect between PL and ZA, with actual values of 5.52 and 3.59, respectively. Furthermore, PL and ZA synergistically induced apoptosis and inhibited migration of the breast cancer cells. Moreover, the combination of ZA and PL decreased the expression of Notch-1, cleaved PARP, Bcl-2 and Bcl-xl, and increased the expression of cleaved caspase-3, CDKN1A and ID1. When the breast cancer cells were transfected with specific siRNA against Notch-1, the combination of ZA and PL markedly increased the expression of Bcl-2. Combination of ZA and PL synergistically suppresses human breast cancer MDA-MB-231SArfp cells in vitro. PL can inhibit ZA-induced activation of the Notch-1 signaling pathway and subsequently reduce the expression of Bcl-2, thus potentiating cancer cell apoptosis.

  8. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo.

    PubMed

    Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin

    2015-01-01

    Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  9. Normal calves produced after transfer of embryos cultured in a chemically defined medium supplemented with epidermal growth factor and insulin-like growth factor I following ovum pick up and in vitro fertilization in Japanese black cows.

    PubMed

    Sakagami, Nobutada; Umeki, Hidenobu; Nishino, Osamu; Uchiyama, Hiroko; Ichikawa, Kyoko; Takeshita, Kazuhisa; Kaneko, Etsushi; Akiyama, Kiyoshi; Kobayashi, Shuji; Tamada, Hiromichi

    2012-01-01

    The objective of this study was to examine whether high concentrations of epidermal growth factor (EGF) and/or insulin-like growth factor I (IGF-I) would have a beneficial effect on bovine embryo development in vitro and to obtain normal calves by using an ovum pick up method and embryo culture in a chemically defined medium. When compared with controls, EGF (100 or 200 ng/ml) or IGF-I (50 or 100 ng/ml) significantly increased the rate of embryos that developed into blastocysts during an 8-day culture after the in vitro fertilization of oocytes obtained from ovaries from a slaughterhouse. IGF-I induced a dose-dependent increase in cell number in both the inner cell mass and the trophectoderm, whereas EGF stimulated proliferation only in the inner cell mass. A combination of EGF (100 ng/ml) and IGF-I (50 ng/ml) produced an additive effect, and embryos developed into blastocysts at a comparatively high rate (27.9%) compared with controls (12.0%). A similar rate of development was achieved using a combination of EGF and IGF-I in the culture of embryos following ovum pick up by ultrasound-guided transvaginal follicular aspiration and in vitro fertilization, and 5 blastocysts that developed after the culture were transferred into uteri; two embryos implanted, and normal calves were born. These results suggest that the combined use of EGF and IGF-I makes bovine embryo culture in a chemically defined medium a practical and useful procedure for producing blastocysts, and its application to embryo culture following ovum pick up and in vitro fertilization could be useful for producing normal calves.

  10. Effect of indomethacin and lactoferrin on human tenocyte proliferation and collagen formation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yaonan; Department of Orthopaedic, Beijing Hospital of Ministry of Public Health, Beijing, China 100730; Wang, Xiao

    Highlights: • Indomethacin, a classic NSAID, inhibited human tenocyte proliferation at high concentration (100 µM). • Lactoferrin at 50-100 µg/ml promoted human tenocyte survival, proliferation and collagen synthesis. • Lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes. - Abstract: Non-steroidal anti-inflammatory drugs (NSAIDs) are widely used in patients with injuries and inflammation of tendon and ligament, and as post-surgical analgesics. The aim of this study is to investigate the effect of indomethacin, a classic NSAID and its combinational effect with an anabolic agent of skeletal tissue, lactoferrin, on the proliferationmore » and collagen formation of human tenocytes in vitro. A factorial experimental design was employed to study the dose-dependent effect of the combination of indomethacin and lactoferrin. The results showed that indomethacin at high concentration (100 μM) inhibited human tenocyte proliferation in culture medium with 1–10% fetal bovine serum (FBS) in vitro. Also, high dose of indomethacin inhibited the collagen formation of human tenocytes in 1% FBS culture medium. Lactoferrin at 50–100 μg/ml promoted human tenocyte survival in serum-free culture medium and enhanced proliferation and collagen synthesis of human tenocytes in 1% FBS culture medium. When 50–100 μg/ml lactoferrin was used in combination with 100–200 μM indomethacin, it partially rescued the inhibitory effects of indomethacin on human tenocyte proliferation, viability and collagen formation. To our knowledge, it is the first evidence that lactoferrin is anabolic to human tenocytes in vitro and reverses potential inhibitory effects of NSAIDs on human tenocytes.« less

  11. Combinations of Adefovir with Nucleoside Analogs Produce Additive Antiviral Effects against Hepatitis B Virus In Vitro

    PubMed Central

    Delaney, William E.; Yang, Huiling; Miller, Michael D.; Gibbs, Craig S.; Xiong, Shelly

    2004-01-01

    Combination therapies may be required for long-term management of some patients chronically infected with hepatitis B virus (HBV). Adefovir is a nucleotide analog that has similar activity against wild-type and lamivudine-resistant HBV. In contrast to lamivudine, clinical resistance to the prodrug adefovir dipivoxil emerges infrequently. Based on its clinical efficacy and low frequency of resistance, adefovir dipivoxil may form an important component of combination regimens. We therefore investigated the in vitro antiviral efficacy of combinations of adefovir with other nucleoside analogs (lamivudine, entecavir, emtricitabine [FTC],and telbivudine [L-dT]) and the nucleotide analog tenofovir. Using a novel stable cell line that expresses high levels of wild-type HBV, we assayed the antiviral activity of each drug alone and in combination with adefovir. All two-drug combinations resulted in greater antiviral effects than treatments with single agents and could be characterized as additive by the Bliss independence model. Analysis using the Loewe additivity model indicated that adefovir exerted additive antiviral effects when combined with lamivudine, FTC, or L-dT and moderately synergistic effects when combined with entecavir or tenofovir. There was no evidence of cytotoxicity with any of the drugs when used alone or in combination at the tested doses. PMID:15388423

  12. Discovering Synergistic Drug Combination from a Computational Perspective.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Liang, Cheng; Xiao, Qiu; Cao, Buwen; Li, Guanghui

    2018-03-30

    Synergistic drug combinations play an important role in the treatment of complex diseases. The identification of effective drug combination is vital to further reduce the side effects and improve therapeutic efficiency. In previous years, in vitro method has been the main route to discover synergistic drug combinations. However, many limitations of time and resource consumption lie within the in vitro method. Therefore, with the rapid development of computational models and the explosive growth of large and phenotypic data, computational methods for discovering synergistic drug combinations are an efficient and promising tool and contribute to precision medicine. It is the key of computational methods how to construct the computational model. Different computational strategies generate different performance. In this review, the recent advancements in computational methods for predicting effective drug combination are concluded from multiple aspects. First, various datasets utilized to discover synergistic drug combinations are summarized. Second, we discussed feature-based approaches and partitioned these methods into two classes including feature-based methods in terms of similarity measure, and feature-based methods in terms of machine learning. Third, we discussed network-based approaches for uncovering synergistic drug combinations. Finally, we analyzed and prospected computational methods for predicting effective drug combinations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Mechanistic Study of Inhibitory Effects of Metformin and Atorvastatin in Combination on Prostate Cancer Cells in Vitro and in Vivo.

    PubMed

    Wang, Zhen-Shi; Huang, Hua-Rong; Zhang, Lan-Yue; Kim, Seungkee; He, Yan; Li, Dong-Li; Farischon, Chelsea; Zhang, Kun; Zheng, Xi; Du, Zhi-Yun; Goodin, Susan

    2017-01-01

    Metformin is a commonly used drug for the treatment of type II diabetes and atorvastatin is the most prescribed cholesterol-lowering statin. The present study investigated the effects and mechanisms of metformin and atorvastatin in combination on human prostate cancer cells cultured in vitro and grown as xenograft tumor in vivo. Metformin in combination with atorvastatin had stronger effects on growth inhibition and apoptosis in PC-3 cells than either drug alone. The combination also potently inhibited cell migration and the formation of tumorspheres. Metformin and atorvastatin in combination had a potent inhibitory effect on nuclear factor-kappaB (NF-κB) activity and caused strong decreases in the expression of its downstream anti-apoptotic gene Survivin. Moreover, strong decreases in the levels of phospho-Akt and phosphor-extracellular signal-regulated kinase (Erk)1/2 were found in the cells treated with the combination. The in vivo study showed that treatment of severe combined immunodeficient (SCID) mice with metformin or atorvastatin alone resulted in moderate inhibition of tumor growth while the combination strongly inhibited the growth of the tumors. Results of the present study indicate the combination of metformin and atorvastatin may be an effective strategy for inhibiting the growth of prostate cancer and should be evaluated clinically.

  14. The effect of PI3K inhibitor LY294002 and gemcitabine hydrochloride combined with ionizing radiation on the formation of vasculogenic mimicry of Panc-1 cells in vitro and in vivo.

    PubMed

    Bai, R; Ding, T; Zhao, J; Liu, S; Zhang, L; Lan, X; Yu, Y; Yin, L

    2016-01-01

    This research's purpose was to explore the existence of vasculogenic mimicry (VM) in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo and to test the hypothesis that PI3K inhibitor LY294002 and gemcitabine hydrochloride would offer clear treatment benefit when integrated into ionizing radiation (IR) therapeutic regimens for treatment of pancreatic cancer. We explored the existence of VM in both 3-D matrices of Panc-1 cells and orthotopic Panc-1 xenografts. We subsequently investigated the activation of the PI3K/MMPs/Ln-5γ2 signaling pathway in response to IR. LY294002 and gemcitabine hydrochloride were then evaluated for their radiosensitizing effect solely and in combination. We found that VM existed in both 3-D matrices of Panc-1 cells in vitro and orthotopic Panc-1 xenografts in vivo. The expressions of p-Akt and MMP- 2 were found to increase in response to IR. LY294002 and gemcitabine hydrochloride combined with IR better inhibited cell migration, VM formation and MMP-2 mRNA expression of Panc-1 cells in vitro, and we also proved that the novel therapeutic regimen better inhibited tumor growth, tumor metastasis and VM formation of orthotopic Panc-1 xenografts by suppressing the PI3K/MMPs/Ln-5γ2 signaling pathway in vivo. Our present study is among the first to prove the VM formation in orthotopic Panc-1 xenografts. Furthermore, our current study is also among the first to provide preliminary evidence for the use of the novel therapeutic regimen LY294002 and gemcitabine hydrochloride combined with IR for treatment of pancreatic cancer.

  15. Multi-kinetics and site-specific release of gabapentin and flurbiprofen from oral fixed-dose combination: in vitro release and in vivo food effect.

    PubMed

    Sonvico, Fabio; Conti, Chiara; Colombo, Gaia; Buttini, Francesca; Colombo, Paolo; Bettini, Ruggero; Barchielli, Marco; Leoni, Barbara; Loprete, Luca; Rossi, Alessandra

    2017-09-28

    In this work, a fixed-dose combination of gabapentin and flurbiprofen formulated as multilayer tablets has been designed, developed and studied in vitro and in vivo. The aim was to construct a single dosage form of the two drugs, able to perform a therapeutic program involving three release kinetics and two delivery sites, i.e., immediate release of gabapentin, intra-gastric prolonged release of gabapentin and intestinal (delayed) release of flurbiprofen. An oblong three-layer tablet was manufactured having as top layer a floating hydrophilic polymeric matrix for gastric release of gabapentin, as middle layer a disintegrating formulation for immediate release of a gabapentin loading dose and as bottom layer, an uncoated hydrophilic polymeric matrix, swellable but insoluble in gastric fluids, for delayed and prolonged release of flurbiprofen in intestinal environment. The formulations were studied in vitro and in vivo in healthy volunteers. The in vitro release rate assessment confirmed the programmed delivery design. A significant higher bioavailability of gabapentin administered 30min after meal, compared to fasting conditions or to dose administration 10min before meal, argued in favor of the gastro-retention of gabapentin prolonged release layer. The two drugs were delivered at different anatomical sites, since the food presence prolonged the gastric absorption of gabapentin from the floating layer and delayed the flurbiprofen absorption. The attainment of a successful delayed release of flurbiprofen was realized by a matrix based on a polymers' combination. The combined use of three hydrophilic polymers with different pH sensitivity provided the dosage form layer containing flurbiprofen with gastro-resistant characteristics without the use of film coating. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate.

    PubMed

    Gaspar, Lorena R; Tharmann, Julian; Maia Campos, Patricia M B G; Liebsch, Manfred

    2013-02-01

    The aim of this study was to evaluate the in vitro skin phototoxicity of cosmetic formulations containing photounstable and photostable UV-filters and vitamin A palmitate, assessed by two in vitro techniques: 3T3 Neutral Red Uptake Phototoxicity Test and Human 3-D Skin Model In Vitro Phototoxicity Test. For this, four different formulations containing vitamin A palmitate and different UV-filters combinations, two of them considered photostable and two of them considered photounstable, were prepared. Solutions of each UV-filter and vitamin under study and solutions of four different combinations under study were also prepared. The phototoxicity was assessed in vitro by the 3T3 NRU phototoxicity test (3T3-NRU-PT) and subsequently in a phototoxicity test on reconstructed human skin model (H3D-PT). Avobenzone presented a pronounced phototoxicity and vitamin A presented a tendency to a weak phototoxic potential. A synergistic effect of vitamin A palmitate on the phototoxicity of combinations containing avobenzone was observed. H3D-PT results did not confirm the positive 3T3-NRU-PT results. However, despite the four formulations studied did not present any acute phototoxicity potential, the combination 2 containing octyl methoxycinnamate (OMC), avobenzone (AVB) and 4-methylbenzilidene camphor (MBC) presented an indication of phototoxicity that should be better investigated in terms of the frequency of photoallergic or chronic phototoxicity in humans, once these tests are scientifically validated only to detect phototoxic potential with the aim of preventing phototoxic reactions in the general population, and positive results cannot predict the exact incidence of phototoxic reactions in humans. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Mechanical testing of bones: the positive synergy of finite-element models and in vitro experiments.

    PubMed

    Cristofolini, Luca; Schileo, Enrico; Juszczyk, Mateusz; Taddei, Fulvia; Martelli, Saulo; Viceconti, Marco

    2010-06-13

    Bone biomechanics have been extensively investigated in the past both with in vitro experiments and numerical models. In most cases either approach is chosen, without exploiting synergies. Both experiments and numerical models suffer from limitations relative to their accuracy and their respective fields of application. In vitro experiments can improve numerical models by: (i) preliminarily identifying the most relevant failure scenarios; (ii) improving the model identification with experimentally measured material properties; (iii) improving the model identification with accurately measured actual boundary conditions; and (iv) providing quantitative validation based on mechanical properties (strain, displacements) directly measured from physical specimens being tested in parallel with the modelling activity. Likewise, numerical models can improve in vitro experiments by: (i) identifying the most relevant loading configurations among a number of motor tasks that cannot be replicated in vitro; (ii) identifying acceptable simplifications for the in vitro simulation; (iii) optimizing the use of transducers to minimize errors and provide measurements at the most relevant locations; and (iv) exploring a variety of different conditions (material properties, interface, etc.) that would require enormous experimental effort. By reporting an example of successful investigation of the femur, we show how a combination of numerical modelling and controlled experiments within the same research team can be designed to create a virtuous circle where models are used to improve experiments, experiments are used to improve models and their combination synergistically provides more detailed and more reliable results than can be achieved with either approach singularly.

  18. Comparative study of the in vitro activity of various antifungal drugs against Scedosporium spp. in aerobic and hyperbaric atmosphere versus normal atmosphere.

    PubMed

    Farina, C; Marchesi, G; Passera, M; Diliberto, C; Russello, G

    2012-06-01

    Scedosporium spp. have been observed with increasing frequency over the last decade in immunocompromised patients and trauma patients. This mould is often multi-drug resistant and its mortality rate remains very high. The primary goal of this study was to obtain data concerning the in vitro susceptibility of 13 Scedosporium strains comparing the in vitro incubation in aerobic versus hyperbaric conditions. Chemosensitivity of thirteen Scedosporium strains was evaluated after a 72h-incubation in a normoxic (21% O2) normobaric (1 ATA) atmosphere versus a hyperoxic (100% O2) hyperbaric (2-3 ATA), and after a re-incubation at room temperature for an additional 72h. All S. apiospermum and S. prolificans strains showed no growth after incubation in hyperbaric hyperoxic atmosphere. However, when plates were then maintained at room temperature in aerobic conditions, growth was systematically observed from 36 to 96h, and Minimal inhibitory concentration (MIC) values were the same obtained after incubation in aerobic conditions. These results suggest impressive in vitro fungistatic activity of the hyperoxic hyperbaric atmosphere, even if its effect is strictly time-dependent. This preliminary in vitro study has potential clinical relevance because it focuses on examining in vitro combination therapy using hyperoxic hyperbaric conditions plus a single antifungal agent, rather than using combinations of different antifungal drugs, to potentially increase the antifungal activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Gold nanorods in an oil-base formulation for transdermal treatment of type 1 diabetes in mice

    NASA Astrophysics Data System (ADS)

    Nose, Keisuke; Pissuwan, Dakrong; Goto, Masahiro; Katayama, Yoshiki; Niidome, Takuro

    2012-05-01

    Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients.Efficient transdermal insulin delivery to the systemic circulation would bring major benefit to diabetic patients. We investigated the possibility of using gold nanorods (GNRs) that formed a complex with an edible surfactant and insulin (INS) in an oil phase to form a solid-in-oil (SO) formulation (SO-INS-GNR) for transdermal treatment of diabetes. Diabetic mice comprised the model for our study. In vitro, there was high penetration of insulin through the stratum corneum (SC) and the dermis in mouse skin treated with an SO-INS-GNR complex plus near-infrared (NIR) light irradiation. Blood glucose levels in the diabetic mice were significantly decreased after treatment with SO-INS-GNR plus irradiation. To our knowledge, this is the first study to use gold nanorods for systemic insulin delivery through the skin. The use of an SO-INS-GNR complex combined with NIR irradiation may provide the possibility of transdermal insulin delivery to diabetic patients. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr30651d

  20. Biological and medical applications of a brain-on-a-chip

    PubMed Central

    2016-01-01

    The desire to develop and evaluate drugs as potential countermeasures for biological and chemical threats requires test systems that can also substitute for the clinical trials normally crucial for drug development. Current animal models have limited predictivity for drug efficacy in humans as the large majority of drugs fails in clinical trials. We have limited understanding of the function of the central nervous system and the complexity of the brain, especially during development and neuronal plasticity. Simple in vitro systems do not represent physiology and function of the brain. Moreover, the difficulty of studying interactions between human genetics and environmental factors leads to lack of knowledge about the events that induce neurological diseases. Microphysiological systems (MPS) promise to generate more complex in vitro human models that better simulate the organ’s biology and function. MPS combine different cell types in a specific three-dimensional (3D) configuration to simulate organs with a concrete function. The final aim of these MPS is to combine different “organoids” to generate a human-on-a-chip, an approach that would allow studies of complex physiological organ interactions. The recent discovery of induced pluripotent stem cells (iPSCs) gives a range of possibilities allowing cellular studies of individuals with different genetic backgrounds (e.g., human disease models). Application of iPSCs from different donors in MPS gives the opportunity to better understand mechanisms of the disease and can be a novel tool in drug development, toxicology, and medicine. In order to generate a brain-on-a-chip, we have established a 3D model from human iPSCs based on our experience with a 3D rat primary aggregating brain model. After four weeks of differentiation, human 3D aggregates stain positive for different neuronal markers and show higher gene expression of various neuronal differentiation markers compared to 2D cultures. Here we present the applications and challenges of this emerging technology. PMID:24912505

  1. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro

    PubMed Central

    Jayaraman, Premkumar; Sakharkar, Meena K; Lim, Chu Sing; Tang, Thean Hock; Sakharkar, Kishore R.

    2010-01-01

    In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin) and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin) against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062). The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals). PMID:20941374

  2. A novel bile salts-lipase polymeric film-infused minitablet system for enhanced oral delivery of cholecalciferol.

    PubMed

    Braithwaite, Miles C; Choonara, Yahya E; Kumar, Pradeep; Tomar, Lomas K; Du Toit, Lisa C; Pillay, Viness

    2016-11-01

    Few researchers have investigated the use of multiple physiological enhancers combined with synthetic carriers to augment delivery of nutraceuticals. The current work describes the development of an oral delivery system termed a bioactive association platform (BAP) capable of delivering nutraceutical actives from a formulation framework specifically for enhancing the in vitro and in vivo performance of model vitamin, cholecalciferol (Vitamin D 3 ). Synthesis of a novel triple vitamin minitablet and an optimized bile salt/lipase alginate-glycerin film provided unique oral components for inclusion in a BAP capsule. Component validation and physicochemical characterizations included comparative ex vivo permeability, chemical structure mapping, thermodynamic analysis and magnetic resonance imaging. In vitro dissolution studies of the BAP produced an area under the dissolution curve (AUC) for cholecalciferol release that was 28% greater than a conventional comparator product. A total of 84.01% of cholecalciferol was released from the BAP within 3 h versus only 59% from a comparator. Ex vivo permeation studies revealed superior cholecalciferol membrane diffusion from the triple vitamin minitablet BAP component. In vivo performance showed a greater mean change from baseline cholecalciferol to peak plasma levels (C max ) from the BAP compared to the comparator (55.66 versus 46.05 ng/mL). Cholecalciferol bioavailability was improved in vivo with an AUC 0-inf from the BAP that was 3.2× greater than the conventional product. The BAP was also superior at improving and maintaining serum levels of the main metabolite, 25-hydroxyvitamin D 3 , compared to the conventional system. In vitro and in vivo results thus confirmed improvements in cholecalciferol dissolution, membrane permeability and plasma drug levels. The study results position the BAP as an ideal oral vehicle for enhanced delivery of cholecalciferol.

  3. Neonatal rat heart cells cultured in simulated microgravity

    NASA Technical Reports Server (NTRS)

    Akins, R. E.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R.

    1997-01-01

    In vitro characteristics of cardiac cells cultured in simulated microgravity are reported. Tissue culture methods performed at unit gravity constrain cells to propagate, differentiate, and interact in a two-dimensional (2D) plane. Neonatal rat cardiac cells in 2D culture organize predominantly as bundles of cardiomyocytes with the intervening areas filled by nonmyocyte cell types. Such cardiac cell cultures respond predictably to the addition of exogenous compounds, and in many ways they represent an excellent in vitro model system. The gravity-induced 2D organization of the cells, however, does not accurately reflect the distribution of cells in the intact tissue. We have begun characterizations of a three-dimensional (3D) culturing system designed to mimic microgravity. The NASA-designed High-Aspect Ratio Vessel (HARV) bioreactors provide a low shear environment that allows cells to be cultured in static suspension. HARV-3D cultures were prepared on microcarrier beads and compared to control-2D cultures using a combination of microscopic and biochemical techniques. Both systems were uniformly inoculated and medium exchanged at standard intervals. Cells in control cultures adhered to the polystyrene surface of the tissue culture dishes and exhibited typical 2D organization. Cells cultured in HARVs adhered to microcarrier beads, the beads aggregated into defined clusters containing 8 to 15 beads per cluster, and the clusters exhibited distinct 3D layers: myocytes and fibroblasts appeared attached to the surfaces of beads and were overlaid by an outer cell type. In addition, cultures prepared in HARVs using alternative support matrices also displayed morphological formations not seen in control cultures. Generally, the cells prepared in HARV and control cultures were similar; however, the dramatic alterations in 3D organization recommend the HARV as an ideal vessel for the generation of tissuelike organization of cardiac cells in vitro.

  4. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery.

    PubMed

    Duceppe, Nicolas; Tabrizian, Maryam

    2010-10-01

    This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.

  5. Enhanced antitumor activity of 3-bromopyruvate in combination with rapamycin in vivo and in vitro.

    PubMed

    Zhang, Qi; Pan, Jing; Lubet, Ronald A; Komas, Steven M; Kalyanaraman, Balaraman; Wang, Yian; You, Ming

    2015-04-01

    3-Bromopyruvate (3-BrPA) is an alkylating agent and a well-known inhibitor of energy metabolism. Rapamycin is an inhibitor of the serine/threonine protein kinase mTOR. Both 3-BrPA and rapamycin show chemopreventive efficacy in mouse models of lung cancer. Aerosol delivery of therapeutic drugs for lung cancer has been reported to be an effective route of delivery with little systemic distribution in humans. In this study, 3-BrPA and rapamycin were evaluated in combination for their preventive effects against lung cancer in mice by aerosol treatment, revealing a synergistic ability as measured by tumor multiplicity and tumor load compared treatment with either single-agent alone. No evidence of liver toxicity was detected by monitoring serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) enzymes. To understand the mechanism in vitro experiments were performed using human non-small cell lung cancer (NSCLC) cell lines. 3-BrPA and rapamycin also synergistically inhibited cell proliferation. Rapamycin alone blocked the mTOR signaling pathway, whereas 3-BrPA did not potentiate this effect. Given the known role of 3-BrPA as an inhibitor of glycolysis, we investigated mitochondrial bioenergetics changes in vitro in 3-BrPA-treated NSCLC cells. 3-BrPA significantly decreased glycolytic activity, which may be due to adenosine triphosphate (ATP) depletion and decreased expression of GAPDH. Our results demonstrate that rapamycin enhanced the antitumor efficacy of 3-BrPA, and that dual inhibition of mTOR signaling and glycolysis may be an effective therapeutic strategy for lung cancer chemoprevention. ©2015 American Association for Cancer Research.

  6. Non-invasive neural stem cells become invasive in vitro by combined FGF2 and BMP4 signaling.

    PubMed

    Sailer, Martin H M; Gerber, Alexandra; Tostado, Cristóbal; Hutter, Gregor; Cordier, Dominik; Mariani, Luigi; Ritz, Marie-Françoise

    2013-08-15

    Neural stem cells (NSCs) typically show efficient self-renewal and selective differentiation. Their invasion potential, however, is not well studied. In this study, Sox2-positive NSCs from the E14.5 rat cortex were found to be non-invasive and showed only limited migration in vitro. By contrast, FGF2-expanded NSCs showed a strong migratory and invasive phenotype in response to the combination of FGF2 and BMP4. Invasive NSCs expressed Podoplanin (PDPN) and p75NGFR (Ngfr) at the plasma membrane after exposure to FGF2 and BMP4. FGF2 and BMP4 together upregulated the expression of Msx1, Snail1, Snail2, Ngfr, which are all found in neural crest (NC) cells during or after epithelial-mesenchymal transition (EMT), but not in forebrain stem cells. Invasive cells downregulated the expression of Olig2, Sox10, Egfr, Pdgfra, Gsh1/Gsx1 and Gsh2/Gsx2. Migrating and invasive NSCs had elevated expression of mRNA encoding Pax6, Tenascin C (TNC), PDPN, Hey1, SPARC, p75NGFR and Gli3. On the basis of the strongest upregulation in invasion-induced NSCs, we defined a group of five key invasion-related genes: Ngfr, Sparc, Snail1, Pdpn and Tnc. These genes were co-expressed and upregulated in seven samples of glioblastoma multiforme (GBM) compared with normal human brain controls. Induction of invasion and migration led to low expression of differentiation markers and repressed proliferation in NSCs. Our results indicate that normal forebrain stem cells have the inherent ability to adopt a glioma-like invasiveness. The results provide a novel in vitro system to study stem cell invasion and a novel glioma invasion model: tumoral abuse of the developmental dorsoventral identity regulation.

  7. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  8. In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays.

    PubMed

    Le Fol, Vincent; Aït-Aïssa, Selim; Sonavane, Manoj; Porcher, Jean-Marc; Balaguer, Patrick; Cravedi, Jean-Pierre; Zalko, Daniel; Brion, François

    2017-08-01

    Bisphenol A (BPA) is a widely used chemical that has been extensively studied as an endocrine-disrupting chemical (EDC). Other bisphenols sharing close structural features with BPA, are increasingly being used as alternatives, increasing the need to assess associated hazards to the endocrine system. In the present study, the estrogenic activity of BPA, bisphenol S (BPS) and bisphenol F (BPF) was assessed by using a combination of zebrafish-specific mechanism-based in vitro and in vivo assays. The three bisphenols were found to efficiently transactivate all zebrafish estrogen receptor (zfER) subtypes in zebrafish hepatic reporter cell lines (ZELH-zfERs). BPA was selective for zfERα while BPS and BPF were slightly more potent on zfERβ subtypes. We further documented the estrogenic effect in vivo by quantifying the expression of brain aromatase using a transgenic cyp19a1b-GFP zebrafish embryo assay. All three bisphenols induced GFP in a concentration-dependent manner. BPS only partially induced brain aromatase at the highest tested concentrations (>30µM) while BPA and BPF strongly induced GFP, in an ER-dependent manner, at 1-10µM. Furthermore, we show that BPF strongly induced vitellogenin synthesis in adult male zebrafish. Overall, this study demonstrates the estrogenic activity of BPA, BPF and BPS in different cell- and tissue-contexts and at different stages of development. Differences between in vitro and in vivo responses are discussed in light of selective ER activation and the fate of the compounds in the models. This study confirms the relevance of combining cellular and whole-organism bioassays in a unique model species for the hazard assessment of candidate EDCs. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Coupling passive sampling with in vitro bioassays and chemical analysis to understand combined effects of bioaccumulative chemicals in blood of marine turtles.

    PubMed

    Jin, Ling; Escher, Beate I; Limpus, Colin J; Gaus, Caroline

    2015-11-01

    Conventional target analysis of biological samples such as blood limits our ability to understand mixture effects of chemicals. This study aimed to establish a rapid passive sampling technique using the polymer polydimethylsiloxane (PDMS) for exhaustive extraction of mixtures of neutral organic chemicals accumulated in blood of green turtles, in preparation for screening in in vitro bioassays. We designed a PDMS-blood partitioning system based on the partition coefficients of chemicals between PDMS and major blood components. The sampling kinetics of hydrophobic test chemicals (polychlorinated dibenzo-p-dioxins; PCDDs) from blood into PDMS were reasonably fast reaching steady state in <96 h. The geometric mean of the measured PDMS-blood partition coefficients for PCDDs, polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) was 14 L blood kg PDMS(-1) and showed little variability (95% confidence interval from 8.4 to 29) across a wide range of hydrophobicity (logKow 5.7-8.3). The mass transfer of these chemicals from 5 mL blood into 0.94 g PDMS was 62-84%, which is similar to analytical recoveries in conventional solvent extraction methods. The validated method was applied to 15 blood samples from green turtles with known concentrations of PCDD/Fs, dioxin-like PCBs, PBDEs and organochlorine pesticides. The quantified chemicals explained most of the dioxin-like activity (69-98%), but less than 0.4% of the oxidative stress response. The results demonstrate the applicability of PDMS-based passive sampling to extract bioaccumulative chemicals from blood as well as the value of in vitro bioassays for capturing the combined effects of unknown and known chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. A comparison of the in vitro cyto- and neurotoxicity of brominated and halogen-free flame retardants: prioritization in search for safe(r) alternatives.

    PubMed

    Hendriks, Hester S; Meijer, Marieke; Muilwijk, Mirthe; van den Berg, Martin; Westerink, Remco H S

    2014-04-01

    Brominated flame retardants (BFRs) are abundant persistent organic pollutants with well-studied toxicity. The toxicological and ecological concerns associated with BFRs argue for replacement by safe(r) alternatives. Though previous research identified the nervous system as a sensitive target organ for BFRs, the (neuro) toxic potential of alternative halogen-free flame retardants (HFFRs) is largely unknown. We therefore investigated the in vitro (neuro) toxicity of 13 HFFRs and three BFRs in dopaminergic pheochromocytoma (PC12) and neuroblastoma (B35) cells by assessing several cytotoxic and neurotoxic endpoints. Effects on cell viability and production of reactive oxygen species (ROS) were measured using a combined Alamar Blue and Neutral Red assay and a H2-DCFDA assay, respectively, whereas effects on calcium homeostasis were measured using single-cell fluorescent Ca(2+)-imaging. The majority of the tested flame retardants induced negligible cytotoxicity, except zinc hydroxystannate (ZHS) and zinc stannate (ZS). A considerable fraction of flame retardants affected ROS production (decabromodiphenyl ether (BDE-209), triphenylphosphate (TPP), aluminium trihydroxide (ATH), ammonium polyphosphate (APP), magnesium hydroxide (MHO), ZHS, ZS and melamine polyphosphate (MPP)). Interestingly, ATH, ZHS, ZS and montmorillonite (MMT) increased the basal intracellular calcium concentration ([Ca(2+)]i), whereas tetrabromobisphenol A (TBBPA), resorcinol bis (diphenylphosphate) (RDP), TPP, 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO), ATH, ZHS, ZS and MMT reduced depolarization-evoked increases in [Ca(2+)]i as a result of inhibition of voltage-gated calcium channels. These combined data on the in vitro (neuro) toxicity of HFFRs in comparison with BFRs are essential for prioritization of safe(r) flame retardants. Though additional data are required for a complete (toxic) risk assessment, our data demonstrate that several HFFRs could be suitable substitutes for BFRs.

  11. A novel extracellular drug conjugate significantly inhibits head and neck squamous cell carcinoma

    PubMed Central

    Sweeny, Larissa; Hartman, Yolanda E.; Zinn, Kurt R.; Prudent, James R.; Marshall, David J.; Shekhani, Mohammed S.; Rosenthal, Eben L.

    2014-01-01

    Objectives Despite advances in treatment modalities, head and neck squamous cell carcinoma (HNSCC) remains a challenge to treat with poor survival and high morbidity, necessitating a therapy with greater efficacy. EDC22 is an extracellular drug conjugate of the monoclonal antibody targeting CD147 (glycoprotein highly expressed on HNSCC cells) linked with a small drug molecule inhibitor of Na, K-ATPase. In this study, EDC22’s potential as a treatment modality for HNSCC was performed. Materials and methods HNSCC cell lines (FADU, OSC-19, Cal27, SCC-1) were cultured in vitro and proliferation and cell viability were assessed following treatment with a range of concentrations of EDC22 (0.25–5.00 μg/mL). Mice bearing HNSCC xenografts (OSC-19, SCC-1) were treated with either EDC22 (3–10 mg/kg), anti-CD147 monoclonal antibody, cisplatin (1 mg/kg) or radiation therapy (2 Gy/week) monotherapy or in combination. Results In vitro, treatment with minimal concentration of EDC22 (0.25 μg/mL) significantly decreased cellular proliferation and cell viability (p < 0.0001). In vivo, systemic treatment with EDC22 significantly decreased primary tumor growth rate in both an orthotopic mouse model (OSC-19) and a flank tumor mouse model (SCC-1) (p < 0.05). In addition, EDC22 therapy resulted in a greater reduction in tumor growth in vivo compared to radiation monotherapy (p < 0.05) and a similar reduction in tumor growth compared to cisplatin monotherapy. Combination therapy provided no significant further reduction in tumor growth relative to EDC22 monotherapy. Conclusion EDC22 is a potent inhibitor of HNSCC cell proliferation in vitro and in vivo, warranting further investigations of its clinical potential in the treatment of HNSCC. PMID:23920309

  12. Comparative potency of obeticholic acid and natural bile acids on FXR in hepatic and intestinal in vitro cell models.

    PubMed

    Zhang, Yuanyuan; LaCerte, Carl; Kansra, Sanjay; Jackson, Jonathan P; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-12-01

    Obeticholic acid (OCA) is a semisynthetic farnesoid X receptor (FXR) agonist, an analogue of chenodeoxycholic acid (CDCA) which is indicated for the treatment of primary biliary cholangitis (PBC) in combination with ursodeoxycholic acid (UDCA). OCA efficiently inhibits bile acid synthesis and promotes bile acid efflux via activating FXR-mediated mechanisms in a physiologically relevant in vitro cell system, Sandwich-cultured Transporter Certified ™ human primary hepatocytes (SCHH). The study herein evaluated the effects of UDCA alone or in combination with OCA in SCHH. UDCA (≤100 μmol/L) alone did not inhibit CYP7A1 mRNA, and thus, no reduction in the endogenous bile acid pool observed. UDCA ≤100 μmol/L concomitantly administered with 0.1 μmol/L OCA had no effect on bile acid synthesis beyond what was observed with OCA alone. Furthermore, this study evaluated human Caco-2 cells (clone C2BBe1) as in vitro intestinal models. Glycine conjugate of OCA increased mRNA levels of FXR target genes in Caco-2 cells, FGF-19, SHP, OSTα/β, and IBABP, but not ASBT, in a concentration-dependent manner, while glycine conjugate of UDCA had no effect on the expression of these genes. The results suggested that UDCA ≤100 μmol/L did not activate FXR in human primary hepatocytes or intestinal cell line Caco-2. Thus, co-administration of UDCA with OCA did not affect OCA-dependent pharmacological effects. © 2017 The Authors. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics.

  13. Evaluation of an alcohol-based surgical hand disinfectant containing a synergistic combination of farnesol and benzethonium chloride for immediate and persistent activity against resident hand flora of volunteers and with a novel in vitro pig skin model.

    PubMed

    Shintre, Milind S; Gaonkar, Trupti A; Modak, Shanta M

    2007-02-01

    To evaluate the immediate, persistent and sustained in vivo activity of an alcohol-based surgical hand disinfectant, consisting of a zinc gel and a preservative system containing a synergistic combination of farnesol and benzethonium chloride (ZBF disinfectant), and to develop a pig skin model for in vitro evaluation of the immediate and persistent efficacy of alcohol-based surgical hand disinfectants against resident hand flora. The in vivo immediate, persistent, and sustained activity of ZBF disinfectant was evaluated using human volunteers and the "glove-juice" method described in the US Food and Drug Administration's Tentative Final Monograph (FDA-TFM) for Healthcare Antiseptic Products. A novel in vitro pig skin model was developed to compare the immediate and persistent activity of alcohol-based surgical hand disinfectants against resident flora using Staphylococcus epidermidis as the test organism. Four alcohol-based surgical hand disinfectants were evaluated using this model. The results for the ZBF disinfectant exceed the FDA-TFM criteria for immediate, persistent, and sustained activity required for surgical hand disinfectants. The reduction factors for the 4 hand disinfectants obtained using the pig skin model show good agreement with the log(10) reductions in concentrations of hand flora obtained using human volunteers to test for immediate and persistent activity. The ZBF disinfectant we evaluated met the FDA-TFM criteria for surgical hand disinfectants. The immediate and persistent efficacy of the surgical hand disinfectants evaluated with the novel pig skin model described in this study shows good agreement with the results obtained in vivo.

  14. Combinatorial Analysis of Growth Factors Reveals the Contribution of Bone Morphogenetic Proteins to Chondrogenic Differentiation of Human Periosteal Cells.

    PubMed

    Mendes, Luis Filipe; Tam, Wai Long; Chai, Yoke Chin; Geris, Liesbet; Luyten, Frank P; Roberts, Scott J

    2016-05-01

    Successful application of cell-based strategies in cartilage and bone tissue engineering has been hampered by the lack of robust protocols to efficiently differentiate mesenchymal stem cells into the chondrogenic lineage. The development of chemically defined culture media supplemented with growth factors (GFs) has been proposed as a way to overcome this limitation. In this work, we applied a fractional design of experiment (DoE) strategy to screen the effect of multiple GFs (BMP2, BMP6, GDF5, TGF-β1, and FGF2) on chondrogenic differentiation of human periosteum-derived mesenchymal stem cells (hPDCs) in vitro. In a micromass culture (μMass) system, BMP2 had a positive effect on glycosaminoglycan deposition at day 7 (p < 0.001), which in combination with BMP6 synergistically enhanced cartilage-like tissue formation that displayed in vitro mineralization capacity at day 14 (p < 0.001). Gene expression of μMasses cultured for 7 days with a medium formulation supplemented with 100 ng/mL of BMP2 and BMP6 and a low concentration of GDF5, TGF-β1, and FGF2 showed increased expression of Sox9 (1.7-fold) and the matrix molecules aggrecan (7-fold increase) and COL2A1 (40-fold increase) compared to nonstimulated control μMasses. The DoE analysis indicated that in GF combinations, BMP2 was the strongest effector for chondrogenic differentiation of hPDCs. When transplanted ectopically in nude mice, the in vitro-differentiated μMasses showed maintenance of the cartilaginous phenotype after 4 weeks in vivo. This study indicates the power of using the DoE approach for the creation of new medium formulations for skeletal tissue engineering approaches.

  15. Recombinant raccoon pox vaccine protects mice against lethal plague

    USGS Publications Warehouse

    Osorio, J.E.; Powell, T.D.; Frank, R.S.; Moss, K.; Haanes, E.J.; Smith, S.R.; Rocke, T.E.; Stinchcomb, D.T.

    2003-01-01

    Using a raccoon poxvirus (RCN) expression system, we have developed new recombinant vaccines that can protect mice against lethal plague infection. We tested the effects of a translation enhancer (EMCV-IRES) in combination with a secretory (tPA) signal or secretory (tPA) and membrane anchoring (CHV-gG) signals on in vitro antigen expression of F1 antigen in tissue culture and the induction of antibody responses and protection against Yersinia pestis challenge in mice. The RCN vector successfully expressed the F1 protein of Y. pestis in vitro. In addition, the level of expression was increased by the insertion of the EMCV-IRES and combinations of this and the secretory signal or secretory and anchoring signals. These recombinant viruses generated protective immune responses that resulted in survival of 80% of vaccinated mice upon challenge with Y. pestis. Of the RCN-based vaccines we tested, the RCN-IRES-tPA-YpF1 recombinant construct was the most efficacious. Mice vaccinated with this construct withstood challenge with as many as 1.5 million colony forming units of Y. pestis (7.7×104 LD50). Interestingly, vaccination with F1 fused to the anchoring signal (RCN-IRES-tPA-YpF1-gG) elicited significant anti-F1 antibody titers, but failed to protect mice from plague challenge. Our studies demonstrate, in vitro and in vivo, the potential importance of the EMCV-IRES and secretory signals in vaccine design. These molecular tools provide a new approach for improving the efficacy of vaccines. In addition, these novel recombinant vaccines could have human, veterinary, and wildlife applications in the prevention of plague.

  16. Evaluation of linezolid or trimethoprim/sulfamethoxazole in combination with rifampicin as alternative oral treatments based on an in vitro pharmacodynamic model of staphylococcal biofilm.

    PubMed

    El Haj, Cristina; Murillo, Oscar; Ribera, Alba; Lloberas, Nuria; Gómez-Junyent, Joan; Tubau, Fe; Fontova, Pere; Cabellos, Carme; Ariza, Javier

    2018-06-01

    Combinations of linezolid (LZD) or trimethoprim/sulfamethoxazole (SXT) plus rifampicin (RIF) are alternative oral treatments for staphylococcal prosthetic joint infections (PJIs) when fluoroquinolones are not possible to use, but there is limited evidence regarding their activity. This study evaluated the efficacy of LZD and SXT, alone and in combination with RIF, against Staphylococcus aureus in an in vitro pharmacokinetic/pharmacodynamic biofilm model. Using the CDC Biofilm Reactor ® system, simulated regimens of LZD (600 mg every 12 h), SXT (160/800 mg every 8 h) and levofloxacin (LVX) (750 mg/day), alone and in combination with RIF (600 mg/day), were evaluated against one methicillin-susceptible S. aureus (MSSA) and one methicillin-resistant S. aureus (MRSA) strain. Antibiotic efficacy was evaluated by the decrease in planktonic bacterial counts from medium and biofilm-embedded bacteria from coupons over 56 h. Resistant strains were screened. In both strains, SXT alone was ineffective and LZD presented low activity, but no resistance emerged. Combinations with RIF significantly increased the antibiofilm efficacy against MSSA (Δlog CFU/mL 56h-0h: SXT + RIF, -2.9 and LZD + RIF, -3.1), but RIF-resistant strains appeared with SXT + RIF. Against MRSA, LZD + RIF (-3.1) protected against the emergence of resistance and was more effective than SXT + RIF (-0.6; P <0.05), in which RIF-resistant strains were again detected. LVX + RIF confirmed its high efficacy against biofilm-embedded bacteria, this being the most effective therapy (-5.1 against MSSA). The emergence of RIF-resistant strains with SXT + RIF poses serious concerns for its use in clinical practice. Interestingly, LZD + RIF appears to be an appropriate alternative for PJI caused by LVX-resistant S. aureus. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  17. Synergism of aspirin and heparin with a low-frequency non-invasive ultrasound system for augmentation of in-vitro clot lysis.

    PubMed

    Atar, Shaul; Neuman, Yoram; Miyamoto, Takashi; Chen, Ming; Birnbaum, Yochai; Luo, Huai; Kobal, Sergio; Siegel, Robert J

    2003-06-01

    Aspirin, glycoprotein IIb/IIIa inhibitors and heparin are routinely used in acute coronary syndromes. Previously we showed that there is synergism between ultrasound and heparin and tirofiban in augmenting blood clot disruption. However, there is a little data on a possible synergism of low-frequency ultrasound with aspirin for in-vitro clot dissolution, and especially on the combination of aspirin with heparin and/or glycoprotein IIb/IIIa inhibitors. Human blood clots (n = 320) were incubated for 10 or 20 minutes in saline containing aspirin alone or combined with heparin and/or tirofiban and/or eptifibatide. Clots were randomly treated with low-frequency ultrasound (27.3 kHz) or incubation only. The percent clot weight loss and the incremental effect of ultrasound were calculated. The most significant incremental effect of ultrasound on clot weight reduction was detected with aspirin alone (5.2 +/- 2.3% and 5.2 +/- 2.6% after 10' and 20', p = 0.04 and p = 0.06, respectively) and in combination with heparin (8.8 +/- 2.5% and 11.5 +/- 2.7% after 10' and 20', p = 0.01 and p = 0.0001, respectively). The greatest absolute magnitude of clot weight reduction was observed with ultrasound combined with aspirin and heparin (48.5 +/- 9.5% after 20'). The addition of tirofiban or eptifibatide to aspirin, heparin and ultrasound did not increase clot lysis. However, eptifibatide had significantly better synergism than tirofiban (p = 0.025 and p = 0.015, after 10 and 20 minutes, respectively). Aspirin alone or in combination with heparin results in significant augmentation of clot lysis and is synergistic with application of low-frequency ultrasound for 10 and 20 minutes only. These results may have important implications for a possible use of low-frequency ultrasound in treatment algorithms of acute coronary syndromes.

  18. Combination therapy of menstrual derived mesenchymal stem cells and antibiotics ameliorates survival in sepsis.

    PubMed

    Alcayaga-Miranda, Francisca; Cuenca, Jimena; Martin, Aldo; Contreras, Luis; Figueroa, Fernando E; Khoury, Maroun

    2015-10-16

    Sepsis is a clinical syndrome associated with a severe systemic inflammation induced by infection. Although different anti-microbial drugs have been used as treatments, morbidity and mortality rates remain high. Mesenchymal stem cells (MSCs) derived from the bone marrow have demonstrated a partial protective effect in sepsis. Menstrual derived MSCs (MenSCs) emerge as an attractive candidate because they present important advantages over other sources, including improved proliferation rates and paracrine response under specific stress conditions. Here, we evaluate their therapeutic effect in a polymicrobial severe sepsis model. The antimicrobial activity of MenSCs was determined in vitro through direct and indirect bacterial growth assays and the measurement of the expression levels of different antimicrobial peptides (AMPs) by quantitative reverse transcription-polymerase chain reaction. The therapeutic effect of MenSCs was determined in the cecal ligation and puncture (CLP) mouse model. Mice were then treated with antibiotics (AB) or MenSCs alone or in combination. The survival rates and histological and biochemical parameters were evaluated, and the systemic levels of pro- and anti-inflammatory cytokines as well as the response of specific lymphocyte subsets were determined by flow cytometry. MenSCs exerted an important antimicrobial effect in vitro, mediated by a higher expression of the AMP-hepcidin. In the CLP mouse model, MenSCs in synergy with AB (a) improved the survival rate (95 %) in comparison with saline (6 %), AB (73 %), and MenSCs alone (48 %) groups; (b) enhanced bacterial clearance in the peritoneal fluids and blood; (c) reduced organ injuries evaluated by lower concentrations of the liver enzymes alanine aminotransferase and aspartate aminotransferase; and (d) modulated the inflammatory response through reduction of pro- and anti-inflammatory cytokines without significant loss of T and B lymphocytes. We conclude that MenSCs in combination with AB enhance survival in CLP-induced sepsis by acting on multiples targets. MenSCs thus constitute a feasible approach for the future clinical treatment of sepsis.

  19. In vitro models and systems for evaluating the dynamics of drug delivery to the healthy and diseased brain.

    PubMed

    Modarres, Hassan Pezeshgi; Janmaleki, Mohsen; Novin, Mana; Saliba, John; El-Hajj, Fatima; RezayatiCharan, Mahdi; Seyfoori, Amir; Sadabadi, Hamid; Vandal, Milène; Nguyen, Minh Dang; Hasan, Anwarul; Sanati-Nezhad, Amir

    2018-03-10

    The blood-brain barrier (BBB) plays a crucial role in maintaining brain homeostasis and transport of drugs to the brain. The conventional animal and Transwell BBB models along with emerging microfluidic-based BBB-on-chip systems have provided fundamental functionalities of the BBB and facilitated the testing of drug delivery to the brain tissue. However, developing biomimetic and predictive BBB models capable of reasonably mimicking essential characteristics of the BBB functions is still a challenge. In addition, detailed analysis of the dynamics of drug delivery to the healthy or diseased brain requires not only biomimetic BBB tissue models but also new systems capable of monitoring the BBB microenvironment and dynamics of barrier function and delivery mechanisms. This review provides a comprehensive overview of recent advances in microengineering of BBB models with different functional complexity and mimicking capability of healthy and diseased states. It also discusses new technologies that can make the next generation of biomimetic human BBBs containing integrated biosensors for real-time monitoring the tissue microenvironment and barrier function and correlating it with the dynamics of drug delivery. Such integrated system addresses important brain drug delivery questions related to the treatment of brain diseases. We further discuss how the combination of in vitro BBB systems, computational models and nanotechnology supports for characterization of the dynamics of drug delivery to the brain. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. In Vitro Activity of Sodium New Houttuyfonate Alone and in Combination with Oxacillin or Netilmicin against Methicillin-Resistant Staphylococcus aureus

    PubMed Central

    Li, Xue; Lu, Yun; Ren, Zhitao; Zhao, Longyin; Hu, Xinxin; Jiang, Jiandong; You, Xuefu

    2013-01-01

    Background Staphylococcus aureus can cause severe infections, including bacteremia and sepsis. The spread of methicillin-resistant Staphylococcus aureus (MRSA) highlights the need for novel treatment options. Sodium new houttuyfonate (SNH) is an analogue of houttuynin, the main antibacterial ingredient of Houttuynia cordata Thunb. The aim of this study was to evaluate in vitro activity of SNH and its potential for synergy with antibiotics against hospital-associated MRSA. Methodology A total of 103 MRSA clinical isolates recovered in two hospitals in Beijing were evaluated for susceptibility to SNH, oxacillin, cephalothin, meropenem, vancomycin, levofloxacin, minocycline, netilmicin, and trimethoprim/sulfamethoxazole by broth microdilution. Ten isolates were evaluated for potential for synergy between SNH and the antibiotics above by checkerboard assay. Time-kill analysis was performed in three isolates to characterize the kill kinetics of SNH alone and in combination with the antibiotics that engendered synergy in checkerboard assays. Besides, two reference strains were included in all assays. Principal Findings SNH inhibited all test strains with minimum inhibitory concentrations (MICs) ranging from 16 to 64 µg/mL in susceptibility tests, and displayed inhibition to bacterial growth in concentration-dependent manner in time-kill analysis. In synergy studies, the combinations of SNH-oxacillin, SNH-cephalothin, SNH-meropenem and SNH-netilmicin showed synergistic effects against 12 MRSA strains with median fractional inhibitory concentration (FIC) indices of 0.38, 0.38, 0.25 and 0.38 in checkerboard assays. In time-kill analysis, SNH at 1/2 MIC in combination with oxacillin at 1/128 to 1/64 MIC or netilmicin at 1/8 to 1/2 MIC decreased the viable colonies by ≥2log10 CFU/mL. Conclusions/Significance SNH demonstrated in vitro antibacterial activity against 103 hospital-associated MRSA isolates. Combinations of sub-MIC levels of SNH and oxacillin or netilmicin significantly improved the in vitro antibacterial activity against MRSA compared with either drug alone. The SNH-based combinations showed promise in combating MRSA. PMID:23844154

  1. The combined transduction of copper, zinc-superoxide dismutase and catalase mediated by cell-penetrating peptide, PEP-1, to protect myocardium from ischemia-reperfusion injury.

    PubMed

    Huang, Guang-Qing; Wang, Jia-Ning; Tang, Jun-Ming; Zhang, Lei; Zheng, Fei; Yang, Jian-Ye; Guo, Ling-Yun; Kong, Xia; Huang, Yong-Zhang; Liu, Yong; Chen, Shi-You

    2011-05-21

    Our previous studies indicate that either PEP-1-superoxide dismutase 1 (SOD1) or PEP-1-catalase (CAT) fusion proteins protects myocardium from ischemia-reperfusion-induced injury in rats. The aim of this study is to explore whether combined use of PEP-1-SOD1 and PEP-1-CAT enhances their protective effects. SOD1, PEP-1-SOD1, CAT or PEP-1-CAT fusion proteins were prepared and purified by genetic engineering. In vitro and in vivo effects of these proteins on cell apoptosis and the protection of myocardium after ischemia-reperfusion injury were measured. Embryo cardiac myocyte H9c2 cells were used for the in vitro studies. In vitro cellular injury was determined by the expression of lactate dehydrogenase (LDH). Cell apoptosis was quantitatively assessed with Annexin V and PI double staining by Flow cytometry. In vivo, rat left anterior descending coronary artery (LAD) was ligated for one hour followed by two hours of reperfusion. Hemodynamics was then measured. Myocardial infarct size was evaluated by TTC staining. Serum levels of myocardial markers, creatine kinase-MB (CK-MB) and cTnT were quantified by ELISA. Bcl-2 and Bax expression in left ventricle myocardium were analyzed by western blot. In vitro, PEP-1-SOD1 or PEP-1-CAT inhibited LDH release and apoptosis rate of H9c2 cells. Combined transduction of PEP-1-SOD1 and PEP-1-CAT, however, further reduced the LDH level and apoptosis rate. In vivo, combined usage of PEP-1-SOD1 and PEP-1-CAT produced a greater effect than individual proteins on the reduction of CK-MB, cTnT, apoptosis rate, lipoxidation end product malondialdehyde, and the infarct size of myocardium. Functionally, the combination of these two proteins further increased left ventricle systolic pressure, but decreased left ventricle end-diastolic pressure. This study provided a basis for the treatment or prevention of myocardial ischemia-reperfusion injury with the combined usage of PEP-1-SOD1 and PEP-1-CAT fusion proteins.

  2. Preparation and evaluation of injectable Rasagiline mesylate dual-controlled drug delivery system for the treatment of Parkinson's disease.

    PubMed

    Jiang, Ying; Zhang, Xuemei; Mu, Hongjie; Hua, Hongchen; Duan, Dongyu; Yan, Xiuju; Wang, Yiyun; Meng, Qingqing; Lu, Xiaoyan; Wang, Aiping; Liu, Wanhui; Li, Youxin; Sun, Kaoxiang

    2018-11-01

    A microsphere-gel in situ forming implant (MS-Gel ISFI) dual-controlled drug delivery system was applied to a high water-soluble small-molecule compound Rasagiline mesylate (RM) for effective treatment of Parkinson's disease. This injectable complex depot system combined an in situ phase transition gel with high drug-loading and encapsulation efficiency RM-MS prepared by a modified emulsion-phase separation method and optimized by Box-Behnken design. It was evaluated for in vitro drug release, in vivo pharmacokinetics, and in vivo pharmacodynamics. We found that the RM-MS-Gel ISFI system showed no initial burst release and had a long period of in vitro drug release (60 days). An in vivo pharmacokinetic study indicated a significant reduction (p < .01) in the initial high plasma drug concentration of the RM-MS-Gel ISFI system compared to that of the single RM-MS and RM-in situ gel systems after intramuscular injection to rats. A pharmacodynamic study demonstrated a significant reduction (p < .05) in 6-hydroxydopamine-induced contralateral rotation behavior and an effective improvement (p < .05) in dopamine levels in the striatum of the lesioned side after 28 days in animals treated with the RM-MS-Gel ISFI compared with that of animals treated with saline. MS-embedded in situ phase transition gel is superior for use as a biodegradable and injectable sustained drug delivery system with a low initial burst and long period of drug release for highly hydrophilic small molecule drugs.

  3. Activity of Picolinic Acid in Combination with the Antiprotozoal Drug Quinacrine against Mycobacterium avium Complex

    PubMed Central

    Shimizu, Toshiaki; Tomioka, Haruaki

    2006-01-01

    We studied the in vitro and in vivo antimicrobial activities of picolinic acid (PA) in combination with the antiprotozoal drug quinacrine against intramacrophage Mycobacterium avium complex (MAC). Quinacrine significantly potentiated the anti-MAC activity of PA, suggesting the usefulness of this combination in the clinical control of MAC infection. PMID:16940126

  4. A first vascularized skin equivalent as an alternative to animal experimentation.

    PubMed

    Groeber, Florian; Engelhardt, Lisa; Lange, Julia; Kurdyn, Szymon; Schmid, Freia F; Rücker, Christoph; Mielke, Stephan; Walles, Heike; Hansmann, Jan

    2016-01-01

    Tissue-engineered skin equivalents mimic key aspects of the human skin, and can thus be employed as wound coverage for large skin defects or as in vitro test systems as an alternative to animal models. However, current skin equivalents lack a functional vasculature limiting clinical and research applications. This study demonstrates the generation of a vascularized skin equivalent with a perfused vascular network by combining a biological vascularized scaffold (BioVaSc) based on a decellularized segment of a porcine jejunum and a tailored bioreactor system. Briefly, the BioVaSc was seeded with human fibroblasts, keratinocytes, and human microvascular endothelial cells. After 14 days at the air-liquid interface, hematoxylin & eosin and immunohistological staining revealed a specific histological architecture representative of the human dermis and epidermis including a papillary-like architecture at the dermal-epidermal-junction. The formation of the skin barrier was measured non-destructively using impedance spectroscopy. Additionally, endothelial cells lined the walls of the formed vessels that could be perfused with a physiological volume flow. Due to the presence of a complex in-vivo-like vasculature, the here shown skin equivalent has the potential for skin grafting and represents a sophisticated in vitro model for dermatological research.

  5. Coinfection with Haemophilus influenzae promotes pneumococcal biofilm formation during experimental otitis media and impedes the progression of pneumococcal disease.

    PubMed

    Weimer, Kristin E D; Armbruster, Chelsie E; Juneau, Richard A; Hong, Wenzhou; Pang, Bing; Swords, W Edward

    2010-10-01

    Otitis media is an extremely common pediatric infection and is mostly caused by bacteria that are carried within the nasopharyngeal microbiota. It is clear that most otitis media cases involve simultaneous infection with multiple agents. Chinchillas were infected with nontypeable Haemophilus influenzae, Streptococcus pneumoniae, or a combination of both organisms, and the course of disease was compared. In vitro experiments were also performed to address how coinfection impacts biofilm formation. The incidence of systemic disease was reduced in coinfected animals, compared with those infected with pneumococcus alone. Pneumococci were present within surface-attached biofilms in coinfected animals, and a greater proportion of translucent colony type was observed in the coinfected animals. Because this colony type has been associated with pneumococcal biofilms, the impact of coinfection on pneumococcal biofilm formation was investigated. The results clearly show enhanced biofilm formation in vitro by pneumococci in the presence of H. influenzae. Based on these data, we conclude that coinfection with H. influenzae facilitates pneumococcal biofilm formation and persistence on the middle ear mucosal surface. This enhanced biofilm persistence correlates with delayed emergence of opaque colony variants within the bacterial population and a resulting decrease in systemic infection.

  6. Nanotechnology Enhanced Functional Assays of Actomyosin Motility - Potentials and Challenges

    NASA Astrophysics Data System (ADS)

    Månsson, A.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Montelius, L.

    Muscle contraction occurs as a result of force-producing interactions between the contractile proteins myosin II and actin with the two proteins highly ordered in the filament lattice of the muscle sarcomere. In contrast to this wellordered structure, most in vitro studies are performed with the contractile proteins in a disordered arrangement. Here we first review the existing in vitro motility assays and then consider how they can be improved by the use of nanotechnology. As a basis for such improvement we describe our recent work where we used chemically and topographically patterned surfaces to achieve selective localization of actomyosin motor function to predetermined areas of sub-micrometer dimensions. We also describe guidance and unidirectional actin filament sliding on nanosized tracks and suggest how such tracks can be combined with 1. microfluidics-based rapid solution exchange and 2. application of electromagnetic forces of well-defined orientation, thus simulating the lifting of a weight by actomyosin. As a related issue we discuss the usefulness of nanotechnology based assay systems for miniaturized highthroughput drug screening systems with molecular motors as drug targets. Finally, we consider the potentials and challenges in using nanotechnology to reconstruct the most essential aspects of cellular order within the muscle sarcomere.

  7. Combination of Amphotericin B and Flucytosine against Neurotropic Species of Melanized Fungi Causing Primary Cerebral Phaeohyphomycosis

    PubMed Central

    Deng, S.; Pan, W.; Liao, W.; de Hoog, G. S.; Gerrits van den Ende, A. H. G.; Vitale, R. G.; Rafati, H.; Ilkit, M.; Van der Lee, A. H.; Rijs, A. J. M. M.; Verweij, P. E.

    2016-01-01

    Primary central nervous system phaeohyphomycosis is a fatal fungal infection due mainly to the neurotropic melanized fungi Cladophialophora bantiana, Rhinocladiella mackenziei, and Exophiala dermatitidis. Despite the combination of surgery with antifungal treatment, the prognosis continues to be poor, with mortality rates ranging from 50 to 70%. Therefore, a search for a more-appropriate therapeutic approach is urgently needed. Our in vitro studies showed that with the combination of amphotericin B and flucytosine against these species, the median fractional inhibitory concentration (FIC) indices for strains ranged from 0.25 to 0.38, indicating synergy. By use of Bliss independence analysis, a significant degree of synergy was confirmed for all strains, with the sum ΔE ranging from 90.2 to 698.61%. No antagonism was observed. These results indicate that amphotericin B, in combination with flucytosine, may have a role in the treatment of primary cerebral infections caused by melanized fungi belonging to the order Chaetothyriales. Further in vivo studies and clinical investigations to elucidate and confirm these observations are warranted. PMID:26833164

  8. Application of Feedback System Control Optimization Technique in Combined Use of Dual Antiplatelet Therapy and Herbal Medicines

    PubMed Central

    Liu, Wang; Li, Yu-Long; Feng, Mu-Ting; Zhao, Yu-Wei; Ding, Xianting; He, Ben; Liu, Xuan

    2018-01-01

    Aim: Combined use of herbal medicines in patients underwent dual antiplatelet therapy (DAPT) might cause bleeding or thrombosis because herbal medicines with anti-platelet activities may exhibit interactions with DAPT. In this study, we tried to use a feedback system control (FSC) optimization technique to optimize dose strategy and clarify possible interactions in combined use of DAPT and herbal medicines. Methods: Herbal medicines with reported anti-platelet activities were selected by searching related references in Pubmed. Experimental anti-platelet activities of representative compounds originated from these herbal medicines were investigated using in vitro assay, namely ADP-induced aggregation of rat platelet-rich-plasma. FSC scheme hybridized artificial intelligence calculation and bench experiments to iteratively optimize 4-drug combination and 2-drug combination from these drug candidates. Results: Totally 68 herbal medicines were reported to have anti-platelet activities. In the present study, 7 representative compounds from these herbal medicines were selected to study combinatorial drug optimization together with DAPT, i.e., aspirin and ticagrelor. FSC technique first down-selected 9 drug candidates to the most significant 5 drugs. Then, FSC further secured 4 drugs in the optimal combination, including aspirin, ticagrelor, ferulic acid from DangGui, and forskolin from MaoHouQiaoRuiHua. Finally, FSC quantitatively estimated the possible interactions between aspirin:ticagrelor, aspirin:ferulic acid, ticagrelor:forskolin, and ferulic acid:forskolin. The estimation was further verified by experimentally determined Combination Index (CI) values. Conclusion: Results of the present study suggested that FSC optimization technique could be used in optimization of anti-platelet drug combinations and might be helpful in designing personal anti-platelet therapy strategy. Furthermore, FSC analysis could also identify interactions between different drugs which might provide useful information for research of signal cascades in platelet. PMID:29780330

  9. An in vitro evaluation of the apical sealing ability of new polymeric endodontic filling systems.

    PubMed

    Onay, Emel Olga; Ungor, Mete; Unver, Saadet; Ari, Hale; Belli, Sema

    2009-08-01

    The objective of this study was to compare the short-term sealing abilities of recently introduced polymeric endodontic filling systems. Root canals of 120 extracted and decoronated human single-rooted teeth were instrumented using crown-down technique with HERO Shaper rotary instruments. The roots were divided randomly into 8 groups (6 experimental and 2 control groups of 15 roots each) and filled with different combinations of core and sealer as follows: group 1, RealSeal/Resilon; group 2, RealSeal/Herofill; group 3, Hybrid Root Seal/Resilon; group 4, Hybrid Root Seal/Herofill; group 5, MM-Seal/Resilon; group 6, MM-Seal/Herofill; group 7, positive controls (Herofill only); group 8, negative controls. Apical leakage quantity was evaluated after 1 week by using a fluid filtration model. For each sample, measurements of fluid movement were recorded at 2-minute intervals for a total of 8 minutes, and then averaged. The data were calculated and analyzed using the Kolmogorov-Smirnov test, 1-way analysis of variance (ANOVA), and the Tukey test. Significance was set at P less than .05. Multiple paired comparisons (Tukey test) showed that, of all the groups, MM-Seal/Herofill combination exhibited the least microleakage, and RealSeal/Herofill combination ranked second in this regard. The mean leakage values for the RealSeal/Resilon and MM-Seal/Resilon combinations were both significantly higher than the means for the other 4 experimental groups (P < .01). Hybrid Root Seal combined with Resilon resulted in significantly less microleakage than Hybrid Root Seal combined with Herofill (P = .001). The results suggest that the sealing properties of epoxy-resin-based sealer (MM-Seal) combined with gutta-percha (Herofill) are superior to those of methacrylate-based sealers (Hybrid Root Seal and Realseal) combined with Resilon.

  10. A dual pH/thermal responsive nanocarrier for combined chemo-thermotherapy based on a copper-doxorubicin complex and gold nanorods

    NASA Astrophysics Data System (ADS)

    Lei, Mingzhu; Ma, Man; Pang, Xiaojuan; Tan, Fengping; Li, Nan

    2015-09-01

    The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer.The development of treatment protocols that results in a complete response to chemotherapy has been hampered by low efficacy and systemic toxicity. Here, we created a pH sensitive copper-doxorubicin complex within the core of temperature-sensitive liposomes to maintain the stability during blood circulation and trigger Dox release in the tumor site. Synergistically, we also rationally applied gold nanorods (AuNRs) coupled with near-infrared (NIR) field strength to produce a precise and localized temperature, which not only remotely controlled the drug release but also directly destroyed the tumor, to enhance the therapeutic efficacy. As expected, the in vitro release studies showed that the drug release from CuDox-TSLs (Copper ion mediated Doxorubicin loading-Temperature Sensitive Liposomes) was both pH-dependent and temperature-dependent. Furthermore, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assays showed that CuDox-TSLs combined with AuNRs exhibited a closer antiproliferative activity to free Dox in MCF-7 cells. The efficient intracellular Dox release from CuDox-TSLs toward the tumor cells further confirmed the anti-tumor effect. Moreover, the in vivo imaging and biodistribution studies revealed that CuDox-TSLs combined with AuNRs could actively target the tumor site. In addition, the therapeutic studies in MCF-7 nude mice exhibited CuDox-TSLs plus AuNRs in combination with NIR irradiation inhibited tumor growth to a great extent and possessed much lower side effects, which were further confirmed by systemic histological analyses. All detailed evidence suggested a considerable potential of CuDox-TSLs combined with AuNRs for treatment of metastatic cancer. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04353k

  11. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets.

    PubMed

    Rotger, A; Ferret, A; Calsamiglia, S; Manteca, X

    2006-05-01

    To investigate the effects of synchronizing nonstructural carbohydrate (NSC) and protein degradation on intake and rumen microbial fermentation, four ruminally fistulated Holstein heifers (BW = 132.3 +/- 1.61 kg) fed high-concentrate diets were assigned to a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments studied in vivo and in vitro with a dual-flow continuous culture system. Two NSC sources (barley and corn) and 2 protein sources [soybean meal (SBM) and sunflower meal (SFM)] differing in their rate and extent of ruminal degradation were combined resulting in a synchronized rapid fermentation diet (barley-SFM), a synchronized slow fermentation diet (corn-SBM), and 2 unsynchronized diets with a rapidly and a slowly fermenting component (barley-SBM, and corn-SFM). In vitro, the fermentation profile was studied at a constant pH of 6.2, and at a variable pH with 12 h at pH 6.4 and 12 h at pH 5.8. Synchronization tended to result in greater true OM digestion (P = 0.072), VFA concentration (P = 0.067), and microbial N flow (P = 0.092) in vitro, but had no effects on in vivo fermentation pattern or on apparent total tract digestibility. The NSC source affected the efficiency of microbial protein synthesis in vitro, tending to be greater (P = 0.07) for barley-based diets, and in vivo, the NSC source tended to affect intake. Dry matter and OM intake tended to be greater (P > or = 0.06) for corn- than barley-based diets. Ammonia N concentration was lower in vitro (P = 0.006) and tended to be lower in vivo (P = 0.07) for corn- than barley-based diets. In vitro, pH could be reduced from 6.4 to 5.8 for 12 h/d without any effect on ruminal fermentation or microbial protein synthesis. In summary, ruminal synchronization seemed to have positive effects on in vitro fermentation, but in vivo recycling of endogenous N or intake differences could compensate for these effects.

  12. An ex vivo approach to botanical-drug interactions: a proof of concept study.

    PubMed

    Wang, Xinwen; Zhu, Hao-Jie; Munoz, Juliana; Gurley, Bill J; Markowitz, John S

    2015-04-02

    Botanical medicines are frequently used in combination with therapeutic drugs, imposing a risk for harmful botanical-drug interactions (BDIs). Among the existing BDI evaluation methods, clinical studies are the most desirable, but due to their expense and protracted time-line for completion, conventional in vitro methodologies remain the most frequently used BDI assessment tools. However, many predictions generated from in vitro studies are inconsistent with clinical findings. Accordingly, the present study aimed to develop a novel ex vivo approach for BDI assessment and expand the safety evaluation methodology in applied ethnopharmacological research. This approach differs from conventional in vitro methods in that rather than botanical extracts or individual phytochemicals being prepared in artificial buffers, human plasma/serum collected from a limited number of subjects administered botanical supplements was utilized to assess BDIs. To validate the methodology, human plasma/serum samples collected from healthy subjects administered either milk thistle or goldenseal extracts were utilized in incubation studies to determine their potential inhibitory effects on CYP2C9 and CYP3A4/5, respectively. Silybin A and B, two principal milk thistle phytochemicals, and hydrastine and berberine, the purported active constituents in goldenseal, were evaluated in both phosphate buffer and human plasma based in vitro incubation systems. Ex vivo study results were consistent with formal clinical study findings for the effect of milk thistle on the disposition of tolbutamide, a CYP2C9 substrate, and for goldenseal׳s influence on the pharmacokinetics of midazolam, a widely accepted CYP3A4/5 substrate. Compared to conventional in vitro BDI methodologies of assessment, the introduction of human plasma into the in vitro study model changed the observed inhibitory effect of silybin A, silybin B and hydrastine and berberine on CYP2C9 and CYP3A4/5, respectively, results which more closely mirrored those generated in clinical study. Data from conventional buffer-based in vitro studies were less predictive than the ex vivo assessments. Thus, this novel ex vivo approach may be more effective at predicting clinically relevant BDIs than conventional in vitro methods. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. An ex vivo approach to botanical-drug interactions: A proof of concept study

    PubMed Central

    Wang, Xinwen; Zhu, Hao-Jie; Munoz, Juliana; Gurley, Bill J.; Markowitz, John S.

    2015-01-01

    Ethnopharmacological relevance Botanical medicines are frequently used in combination with therapeutic drugs, imposing a risk for harmful botanical-drug interactions (BDIs). Among the existing BDI evaluation methods, clinical studies are the most desirable, but due to their expense and protracted time-line for completion, conventional in vitro methodologies remain the most frequently used BDI assessment tools. However, many predictions generated from in vitro studies are inconsistent with clinical findings. Accordingly, the present study aimed to develop a novel ex vivo approach for BDI assessment and expand the safety evaluation methodoloy in applied ethnopharmacological research. Materials and Methods This approach differs from conventional in vitro methods in that rather than botanical extracts or individual phytochemicals being prepared in artificial buffers, human plasma/serum collected from a limited number of subjects administered botanical supplements was utilized to assess BDIs. To validate the methodology, human plasma/serum samples collected from healthy subjects administered either milk thistle or goldenseal extracts were utilized in incubation studies to determine their potential inhibitory effects on CYP2C9 and CYP3A4/5, respectively. Silybin A and B, two principal milk thistle phytochemicals, and hydrastine and berberine, the purported active constituents in goldenseal, were evaluated in both phosphate buffer and human plasma based in vitro incubation systems. Results Ex vivo study results were consistent with formal clinical study findings for the effect of milk thistle on the disposition of tolbutamide, a CYP2C9 substrate, and for goldenseal’s influence on the pharmacokinetics of midazolam, a widely accepted CYP3A4/5 substrate. Compared to conventional in vitro BDI methodologies of assessment, the introduction of human plasma into the in vitro study model changed the observed inhibitory effect of silybinA, silybin B and hydrastine and berberine on CYP2C9 and CYP3A4/5, respectively, results which more closely mirrored those generated in clinical study. Conclusions Data from conventional buffer-based in vitro studies were less predictive than the ex vivo assessments. Thus, this novel ex vivo approach may be more effective at predicting clinically relevant BDIs than conventional in vitro methods. PMID:25623616

  14. Systemic p53 gene therapy of cancer with immunolipoplexes targeted by anti-transferrin receptor scFv.

    PubMed Central

    Xu, L.; Tang, W. H.; Huang, C. C.; Alexander, W.; Xiang, L. M.; Pirollo, K. F.; Rait, A.; Chang, E. H.

    2001-01-01

    BACKGROUND: A long-standing goal in genetic therapy for cancer is a systemic gene delivery system that selectively targets tumor cells, including metastases. Here we describe a novel cationic immunolipoplex system that shows high in vivo gene transfer efficiency and anti- tumor efficacy when used for systemic p53 gene therapy of cancer. MATERIALS AND METHODS: A cationic immunolipoplex incorporating a biosynthetically lipid-tagged, anti-transferrin receptor single-chain antibody (TfRscFv), was designed to target tumor cells both in vitro and in vivo. A human breast cancer metastasis model was employed to evaluate the in vivo efficacy of systemically administered, TfRscFv-immunolipoplex-mediated, p53 gene therapy in combination with docetaxel. RESULTS: The TfRscFv-targeting cationic immunolipoplex had a size of 60-100 nm, showed enhanced tumor cell binding, and improved targeted gene delivery and transfection efficiencies, both in vitro and in vivo. The p53 tumor suppressor gene was not only systemically delivered by the immunolipoplex to human tumor xenografts in nude mice but also functionally expressed. In the nude mouse breast cancer metastasis model, the combination of the p53 gene delivered by the systemic administration of the TfRscFv-immunolipoplex and docetaxel resulted in significantly improved efficacy with prolonged survival. CONCLUSIONS: This is the first report using scFv-targeting immunolipoplexes for systemic gene therapy. The TfRscFv has a number of advantages over the transferrin (Tf) molecule itself: (1) scFv has a much smaller size than Tf producing a smaller immunolipoplex giving better penetration into solid tumors; (2) unlike Tf, the scFv is a recombinant protein, not a blood product; (3) large scale production and strict quality control of the recombinant scFv, as well as scFv-immunolipoplex, are feasible. The sensitization of tumors to chemotherapy by this tumor-targeted and efficient p53 gene delivery method could lower the effective dose of the drug, correspondingly lessening the severe side effects, while decreasing the possibility of recurrence. Moreover, this approach is applicable to both primary and recurrent tumors, and more significantly, metastatic disease. The TfRscFv-targeting of cationic immunolipoplexes is a promising method of tumor targeted gene delivery that can be used for systemic gene therapy of cancer with the potential to critically impact the clinical management of cancer. PMID:11713371

  15. SPR741, an Antibiotic Adjuvant, Potentiates the In Vitro and In Vivo Activity of Rifampin against Clinically Relevant Extensively Drug-Resistant Acinetobacter baumannii.

    PubMed

    Zurawski, Daniel V; Reinhart, Alexandria A; Alamneh, Yonas A; Pucci, Michael J; Si, Yuanzheng; Abu-Taleb, Rania; Shearer, Jonathan P; Demons, Samandra T; Tyner, Stuart D; Lister, Troy

    2017-12-01

    Acinetobacter baumannii is responsible for 10% of all nosocomial infections and has >50% mortality rates when causing ventilator-associated pneumonia. In this proof-of-concept study, we evaluated SPR741, an antibiotic adjuvant that permeabilizes the Gram-negative membrane, in combination with rifampin against AB5075, an extensively drug-resistant (XDR) A. baumannii strain. In standard in vitro assays and in a murine pulmonary model, we found that this drug combination can significantly reduce bacterial burden and promote animal survival despite an aggressive infection. Copyright © 2017 Zurawski et al.

  16. In Vitro Evaluation of the Type of Interaction Obtained by the Combination of Terbinafine and Itraconazole, Voriconazole, or Amphotericin B against Dematiaceous Molds▿

    PubMed Central

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Schreiber, Angélica Zaninelli

    2011-01-01

    In vitro associations using the checkerboard microdilution method indicated lower MIC ranges and MIC median values for each drug (terbinafine, itraconazole, voriconazole, and amphotericin B) in association than those obtained for each single drug. Fractional inhibitory concentration index (FIC) results showed 100% synergism in the association of terbinafine with voriconazole, 96.5% in the association of terbinafine with amphotericin B, and 75.9% in the association of terbinafine with itraconazole. Drug combinations may be useful for treatment of dematiaceous mold infections as an alternative treatment to enhance the effectiveness of each drug. PMID:21690288

  17. The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats

    PubMed Central

    2012-01-01

    Background The control of tick and flea burdens in dogs and cats has become essential to the control of important and emerging vector borne diseases, some of which are zoonoses. Flea worry and flea bite hypersensitivity are additionally a significant disease entity in dogs and cats. Owner compliance in maintaining the pressure of control measures has been shown to be poor. For these reasons efforts are continuously being made to develop ectoparasiticides and application methods that are safe, effective and easy to apply for pet owners. A new polymer matrix collar has recently been developed which is registered for 8 months use in cats and dogs. The basic properties of this collar have been investigated in several in vitro and in vivo studies. Methods The effects of imidacloprid, flumethrin and the combination were evaluated in vitro by means of whole cell voltage clamp measurement experiments conducted on isolated neuron cells from Spodoptera frugiperda. The in vitro efficacy of the two compounds and the combination against three species of ticks and their life stages and fleas were evaluated in a dry surface glass vial assay. The kinetics of the compounds over time in the collar were evaluated by the change in mass of the collar and measurement of the surface concentrations and concentrations of the actives in the collar matrix by HPLC. Hair clipped from collar treated dogs and cats, collected at various time points, was used to assess the acaricidal efficacy of the actives ex vivo. Results An in vitro isolated insect nerve model demonstrated the synergistic neurotoxic effects of the pyrethroid flumethrin and the neonicotinoid imidacloprid. An in vitro glass vial efficacy and mortality study against various life stages of the ticks Ixodes ricinus, Rhipicephalus sanguineus and Dermacentor reticulatus and against the flea (Ctenocephalides felis) demonstrated that the combination of these products was highly effective against these parasites. The release kinetics of these actives from a neck collar (compounded with 10% imidacloprid and 4.5% flumethrin) was extensively studied in dogs and cats under laboratory and field conditions. Acaricidal concentrations of the actives were found to be consistently released from the collar matrix for 8 months. None of the collar studies in dogs or cats were associated with any significant collar related adverse event. Conclusion Here we demonstrated the synergism between the pyrethroid flumethrin and the neonicotinoid imidacloprid, both provided in therapeutically relevant doses by a slow release collar matrix system over 8 months. This collar is therefore a convenient and safe tool for a long-term protection against ectoparasites. PMID:22498105

  18. [Study thought of material basis of secondary development of major traditional Chinese medicine varieties on basis of combination of in vivo and in vitro experiments].

    PubMed

    Cheng, Xu-Dong; Jia, Xiao-Bin; Feng, Liang; Jiang, Jun

    2013-12-01

    The secondary development of major traditional Chinese medicine varieties is one of important links during the modernization, scientification and standardization of traditional Chinese medicines. How to accurately and effectively identify the pharmacodynamic material basis of original formulae becomes the primary problem in the secondary development, as well as the bottleneck in the modernization development of traditional Chinese medicines. On the basis of the existing experimental methods, and according to the study thought that the multi-component and complex effects of traditional Chinese medicine components need to combine multi-disciplinary methods and technologies, we propose the study thought of the material basis of secondary development of major traditional Chinese medicine varieties based on the combination of in vivo and in vitro experiments. It is believed that studies on material basis needs three links, namely identification, screening and verification, and in vivo and in vitro study method corresponding to each link is mutually complemented and verified. Finally, the accurate and reliable material basis is selected. This thought provides reference for the secondary development of major traditional Chinese medicine varieties and studies on compound material basis.

  19. Combination of Bioactive Polymeric Membranes and Stem Cells for Periodontal Regeneration: In Vitro and In Vivo Analyses.

    PubMed

    Gonçalves, Flávia; de Moraes, Míriam Santos; Ferreira, Lorraine Braga; Carreira, Ana Cláudia Oliveira; Kossugue, Patrícia Mayumi; Boaro, Letícia Cristina Cidreira; Bentini, Ricardo; Garcia, Célia Regina da Silva; Sogayar, Mari Cleide; Arana-Chavez, Victor Elias; Catalani, Luiz Henrique

    2016-01-01

    Regeneration of periodontal tissues requires a concerted effort to obtain consistent and predictable results in vivo. The aim of the present study was to test a new family of bioactive polymeric membranes in combination with stem cell therapy for periodontal regeneration. In particular, the novel polyester poly(isosorbide succinate-co-L-lactide) (PisPLLA) was compared with poly(L-lactide) (PLLA). Both polymers were combined with collagen (COL), hydroxyapatite (HA) and the growth factor bone morphogenetic protein-7 (BMP7), and their osteoinductive capacity was evaluated via in vitro and in vivo experiments. Membranes composed of PLLA/COL/HA or PisPLLA/COL/HA were able to promote periodontal regeneration and new bone formation in fenestration defects in rat jaws. According to quantitative real-time polymerase chain reaction (qRT-PCR) and Alizarin Red assays, better osteoconductive capacity and increased extracellular mineralization were observed for PLLA/COL/HA, whereas better osteoinductive properties were associated with PisPLLA/COL/HA. We concluded that membranes composed of either PisPLLA/COL/HA or PLLA/COL/HA present promising results in vitro as well as in vivo and that these materials could be potentially applied in periodontal regeneration.

  20. Integrated in vivo genetic and pharmacologic screening identifies co-inhibition of EGRF and ROCK as a potential treatment regimen for triple-negative breast cancer.

    PubMed

    Iskit, Sedef; Lieftink, Cor; Halonen, Pasi; Shahrabi, Aida; Possik, Patricia A; Beijersbergen, Roderick L; Peeper, Daniel S

    2016-07-12

    Breast cancer is the second most common cause of cancer-related deaths worldwide among women. Despite several therapeutic options, 15% of breast cancer patients succumb to the disease owing to tumor relapse and acquired therapy resistance. Particularly in triple-negative breast cancer (TNBC), developing effective treatments remains challenging owing to the lack of a common vulnerability that can be exploited by targeted approaches. We have previously shown that tumor cells have different requirements for growth in vivo than in vitro. Therefore, to discover novel drug targets for TNBC, we performed parallel in vivo and in vitro genetic shRNA dropout screens. We identified several potential drug targets that were required for tumor growth in vivo to a greater extent than in vitro. By combining pharmacologic inhibitors acting on a subset of these candidates, we identified a synergistic interaction between EGFR and ROCK inhibitors. This combination effectively reduced TNBC cell growth by inducing cell cycle arrest. These results illustrate the power of in vivo genetic screens and warrant further validation of EGFR and ROCK as combined pharmacologic targets for breast cancer.

Top