Sample records for vitro system consisting

  1. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  2. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...

  3. 21 CFR 866.5180 - Fecal calprotectin immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... immunological test system is an in vitro diagnostic device that consists of reagents used to quantitatively measure, by immunochemical techniques, fecal calprotectin in human stool specimens. The device is intended forin vitro diagnostic use as an aid in the diagnosis of inflammatory bowel diseases (IBD), specifically...

  4. 21 CFR 866.6030 - AFP-L3% immunological test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... system is an in vitro device that consists of reagents and an automated instrument used to quantitatively measure, by immunochemical techniques, AFP and AFP-L3 subfraction in human serum. The device is intended for in vitro diagnostic use as an aid in the risk assessment of patients with chronic liver disease...

  5. In vitro transcription in E. coli crude lysates prepared on cellophane discs.

    PubMed Central

    Valla, S; Lindqvist, B H

    1978-01-01

    An in vitro RNA-synthesizing system consisting of gently lysed E. coli cells on cellophane discs is described. The system has been optimalized with respect to total RNA synthesis. Under certain standard conditions DNA dependent RNA polymerase (EC 2.7.7.6) is responsible for the majority of the RNA synthesis. The extensive rifampicin sensitivity of the synthesis indicates that most of the transcripts are initiated in vitro. The RNA synthesizing system described here has been developed with the aim of studying phage transcription in vitro. We show here that lysates of a P4 infected P2 lysogen support initiation and propagation of transcription from the P2 prophage. PMID:27767

  6. Towards the engineering of in vitro systems.

    PubMed

    Hold, Christoph; Panke, Sven

    2009-08-06

    Synthetic biology aims at rationally implementing biological systems from scratch. Given the complexity of living systems and our current lack of understanding of many aspects of living cells, this is a major undertaking. The design of in vitro systems can be considerably easier, because they can consist of fewer constituents, are quasi time invariant, their parameter space can be better accessed and they can be much more easily perturbed and then analysed chemically and mathematically. However, even for simplified in vitro systems, following a comprehensively rational design procedure is still difficult. When looking at a comparatively simple system, such as a medium-sized enzymatic reaction network as it is represented by glycolysis, major issues such as a lack of comprehensive enzyme kinetics and of suitable knowledge on crucial design parameters remain. Nevertheless, in vitro systems are very suitable to overcome these obstacles and therefore well placed to act as a stepping stone to engineering living systems.

  7. In vitro and in vivo evaluation of latex condoms using a two-phase nonoxynol 9 system.

    PubMed

    Rodgers-Neame, N; Duncan, S F; Bradley, E L; Blackwell, R E

    1985-06-01

    In vitro studies were carried out that indicated that a lubricant system consisting of 0.45 +/- 0.1 ml of silicon fluid containing 6.6% +/- 0.5% by volume of nonoxynol 9 and a spermicidal cream consisting of 0.45 +/- 0.1 ml made up of 63.4% polyethylene glycol 400 and 30.0% polyethylene glycol 3350 containing 6.6% +/- 0.5% nonoxynol 9 was effective in reducing sperm motility and viability. This system was tested in vivo with the use of simulated rupture techniques and was found to be equally as effective. Double-blind preference studies were carried out in vivo which showed that the condom system is convenient and comfortable to use, nonirritating to the vagina or urethral mucosa, and esthetically pleasing to the young, reproductive-age population.

  8. A Novel Feeder-free System for Mass Production of Murine Natural Killer Cells In Vitro.

    PubMed

    Tang, Patrick Ming-Kuen; Tang, Philip Chiu-Tsun; Chung, Jeff Yat-Fai; Hung, Jessica Shuk Chun; Wang, Qing-Ming; Lian, Guang-Yu; Sheng, Jingyi; Huang, Xiao-Ru; To, Ka-Fai; Lan, Hui-Yao

    2018-01-09

    Natural killer (NK) cells belong to the innate immune system and are a first-line anti-cancer immune defense; however, they are suppressed in the tumor microenvironment and the underlying mechanism is still largely unknown. The lack of a consistent and reliable source of NK cells limits the research progress of NK cell immunity. Here, we report an in vitro system that can provide high quality and quantity of bone marrow-derived murine NK cells under a feeder-free condition. More importantly, we also demonstrate that siRNA-mediated gene silencing successfully inhibits the E4bp4-dependent NK cell maturation by using this system. Thus, this novel in vitro NK cell differentiating system is a biomaterial solution for immunity research.

  9. A simple in vitro culture system for tracheal cartilage development.

    PubMed

    Park, Jinhyung; Zhang, Jennifer J R; Choi, Ruth; Trinh, Irene; Kim, Peter C W

    2010-02-01

    Semi-circular tracheal cartilage is a critical determinant of maintaining architectural integrity of the respiratory airway. The current effort to understand the morphogenesis of tracheal cartilage is challenged by the lack of appropriate model systems. Here we report an in vitro tracheal cartilage system using embryonic tracheal–lung explants to recapitulate in vivo tracheal cartilage developmental processes. With modifications of a current lung culture protocol, we report a consistent in vitro technique of culturing tracheal cartilage from primitive mouse embryonic foregut for the first time. This tracheal culture system not only induces the formation of tracheal cartilage from the mouse embryonic foregut but also allows for the proper patterning of the developed tracheal cartilage. Furthermore, we show that this culture technique can be applied to culturing other types of cartilage in vertebrae, limbs, and ribs. We believe that this novel application of our in vitro culture system will facilitate the manipulation of cartilage development under various conditions and thus enabling us to advance our current limited knowledge on cartilage biology and development.

  10. An In vitro Model for Bacterial Growth on Human Stratum Corneum.

    PubMed

    van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M

    2016-11-02

    The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.

  11. An Efficient In Vitro Regeneration System for Ornamental Ginger (Hedychium spp.)

    USDA-ARS?s Scientific Manuscript database

    An improved and efficient regeneration protocol was established for Hedychium via somatic embryogenesis. The plant material used consisted of 11 species and 9 cultivars of Hedychium. The explants consisted of young leaves taken from lateral or terminal shoots of mature greenhouse grown plants. These...

  12. Cardiovascular tissues contain independent circadian clocks

    NASA Technical Reports Server (NTRS)

    Davidson, A. J.; London, B.; Block, G. D.; Menaker, M.

    2005-01-01

    Acute cardiovascular events exhibit a circadian rhythm in the frequency of occurrence. The mechanisms underlying these phenomena are not yet fully understood, but they may be due to rhythmicity inherent in the cardiovascular system. We have begun to characterize rhythmicity of the clock gene mPer1 in the rat cardiovascular system. Luciferase activity driven by the mPer1 gene promoter is rhythmic in vitro in heart tissue explants and a wide variety of veins and arteries cultured from the transgenic Per1-luc rat. The tissues showed between 3 and 12 circadian cycles of gene expression in vitro before damping. Whereas peak per1-driven bioluminescence consistently occurred during the late night in the heart and all arteries sampled, the phases of the rhythms in veins varied significantly by anatomical location. Varying the time of the culture procedure relative to the donor animal's light:dark cycle revealed that, unlike some other rat tissues such as liver, the phases of in vitro rhythms of arteries, veins, and heart explants were affected by culture time. However, phase relationships among tissues were consistent across culture times; this suggests diversity in circadian regulation among components of the cardiovascular system.

  13. Reproducibility and Consistency of In Vitro Nucleosome Reconstitutions Demonstrated by Invitrosome Isolation and Sequencing

    PubMed Central

    Kempton, Colton E.; Heninger, Justin R.; Johnson, Steven M.

    2014-01-01

    Nucleosomes and their positions in the eukaryotic genome play an important role in regulating gene expression by influencing accessibility to DNA. Many factors influence a nucleosome's final position in the chromatin landscape including the underlying genomic sequence. One of the primary reasons for performing in vitro nucleosome reconstitution experiments is to identify how the underlying DNA sequence will influence a nucleosome's position in the absence of other compounding cellular factors. However, concerns have been raised about the reproducibility of data generated from these kinds of experiments. Here we present data for in vitro nucleosome reconstitution experiments performed on linear plasmid DNA that demonstrate that, when coverage is deep enough, these reconstitution experiments are exquisitely reproducible and highly consistent. Our data also suggests that a coverage depth of 35X be maintained for maximal confidence when assaying nucleosome positions, but lower coverage levels may be generally sufficient. These coverage depth recommendations are sufficient in the experimental system and conditions used in this study, but may vary depending on the exact parameters used in other systems. PMID:25093869

  14. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  15. An in vitro and hydroponic growing system for hypericin, pseudohypericin, and hyperforin production of St. John's wort (Hypericum perforatum CV new stem).

    PubMed

    Murch, Susan J; Rupasinghe, H P Vasantha; Saxena, Praveen K

    2002-12-01

    While the interest in medicinal plants continues to grow, there is a lack of basic information with respect to efficient protocols for plant production. Recently, in vitro regeneration protocols have been developed to provide masses of sterile, consistent St. John's wort. The current study assessed the potential for acclimatization of in vitro grown St. John's wort plantlets to a nutrient film technique (NFT) hydroponic system in a controlled environment greenhouse. Quantitative analyses of hypericin, hyperforin and pseudohypericin in flower tissues were used as the parameters to assess the quality of the greenhouse-grown plants. The three bioactive compounds were found to be present in similar or higher amounts than previously reported values for field-grown plants. These data provide evidence that greenhouse hydroponic systems can be effectively used for the efficient production of St. John's wort and other medicinal plants.

  16. Synthesis and assembly of retrovirus Gag precursors into immature capsids in vitro.

    PubMed Central

    Sakalian, M; Parker, S D; Weldon, R A; Hunter, E

    1996-01-01

    The assembly of retroviral particles is mediated by the product of the gag gene; no other retroviral gene products are necessary for this process. While most retroviruses assemble their capsids at the plasma membrane, viruses of the type D class preassemble immature capsids within the cytoplasm of infected cells. This has allowed us to determine whether immature capsids of the prototypical type D retrovirus, Mason-Pfizer monkey virus (M-PMV), can assemble in a cell-free protein synthesis system. We report here that assembly of M-PMV Gag precursor proteins can occur in this in vitro system. Synthesized particles sediment in isopycnic gradients to the appropriate density and in thin-section electron micrographs have a size and appearance consistent with those of immature retrovirus capsids. The in vitro system described in this report appears to faithfully mimic the process of assembly which occurs in the host cell cytoplasm, since M-PMV gag mutants defective in in vivo assembly also fail to assemble in vitro. Likewise, the Gag precursor proteins of retroviruses that undergo type C morphogenesis, Rous sarcoma virus and human immunodeficiency virus, which do not preassemble capsids in vivo, fail to assemble particles in this system. Additionally, we demonstrate, with the use of anti-Gag antibodies, that this cell-free system can be utilized for analysis in vitro of potential inhibitors of retrovirus assembly. PMID:8648705

  17. [Elaboration of Pseudo-natural Products Using Artificial In Vitro Biosynthesis Systems].

    PubMed

    Goto, Yuki

    2018-01-01

     Peptidic natural products often consist of not only proteinogenic building blocks but also unique non-proteinogenic structures such as macrocyclic scaffolds and N-methylated backbones. Since such non-proteinogenic structures are important structural motifs that contribute to diverse bioactivity, we have proposed that peptides with non-proteinogenic structures should be attractive candidates as artificial bioactive peptides mimicking natural products, or so-called pseudo-natural products. We previously devised an engineered translation system for pseudo-natural peptides, referred to as the flexible in vitro translation (FIT) system. This system enabled "one-pot" synthesis of highly diverse pseudo-natural peptide libraries, which can be rapidly screened by mRNA display technology for the discovery of pseudo-natural peptides with diverse bioactivities.

  18. Rationalizing the selection of oral lipid based drug delivery systems by an in vitro dynamic lipolysis model for improved oral bioavailability of poorly water soluble drugs.

    PubMed

    Dahan, Arik; Hoffman, Amnon

    2008-07-02

    As a consequence of modern drug discovery techniques, there has been a consistent increase in the number of new pharmacologically active lipophilic compounds that are poorly water soluble. A great challenge facing the pharmaceutical scientist is making these molecules into orally administered medications with sufficient bioavailability. One of the most popular approaches to improve the oral bioavailability of these molecules is the utilization of a lipid based drug delivery system. Unfortunately, current development strategies in the area of lipid based delivery systems are mostly empirical. Hence, there is a need for a simplified in vitro method to guide the selection of a suitable lipidic vehicle composition and to rationalize the delivery system design. To address this need, a dynamic in vitro lipolysis model, which provides a very good simulation of the in vivo lipid digestion process, has been developed over the past few years. This model has been extensively used for in vitro assessment of different lipid based delivery systems, leading to enhanced understanding of the suitability of different lipids and surfactants as a delivery system for a given poorly water soluble drug candidate. A key goal in the development of the dynamic in vitro lipolysis model has been correlating the in vitro data of various drug-lipidic delivery system combinations to the resultant in vivo drug profile. In this paper, we discuss and review the need for this model, its underlying theory, practice and limitations, and the available data accumulated in the literature. Overall, the dynamic in vitro lipolysis model seems to provide highly useful initial guidelines in the development process of oral lipid based drug delivery systems for poorly water soluble drugs, and it predicts phenomena that occur in the pre-enterocyte stages of the intestinal absorption cascade.

  19. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.

    PubMed

    Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J

    2009-06-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.

  20. Development of a microfluidic perfusion 3D cell culture system

    NASA Astrophysics Data System (ADS)

    Park, D. H.; Jeon, H. J.; Kim, M. J.; Nguyen, X. D.; Morten, K.; Go, J. S.

    2018-04-01

    Recently, 3-dimensional in vitro cell cultures have gained much attention in biomedical sciences because of the closer relevance between in vitro cell cultures and in vivo environments. This paper presents a microfluidic perfusion 3D cell culture system with consistent control of long-term culture conditions to mimic an in vivo microenvironment. It consists of two sudden expansion reservoirs to trap incoming air bubbles, gradient generators to provide a linear concentration, and microchannel mixers. Specifically, the air bubbles disturb a flow in the microfluidic channel resulting in the instability of the perfusion cell culture conditions. For long-term stable operation, the sudden expansion reservoir is designed to trap air bubbles by using buoyancy before they enter the culture system. The performance of the developed microfluidic perfusion 3D cell culture system was examined experimentally and compared with analytical results. Finally, it was applied to test the cytotoxicity of cells infected with Ewing’s sarcoma. Cell death was observed for different concentrations of H2O2. For future work, the developed microfluidic perfusion 3D cell culture system can be used to examine the behavior of cells treated with various drugs and concentrations for high-throughput drug screening.

  1. Modeling the pharmacokinetics of extended release pharmaceutical systems

    NASA Astrophysics Data System (ADS)

    di Muria, Michela; Lamberti, Gaetano; Titomanlio, Giuseppe

    2009-03-01

    The pharmacokinetic (PK) models predict the hematic concentration of drugs after the administration. In compartment modeling, the body is described by a set of interconnected “vessels” or “compartments”; the modeling consisting of transient mass balances. Usually the orally administered drugs were considered as immediately available: this cannot describe the administration of extended-release systems. In this work we added to the traditional compartment models the ability to account for a delay in administration, relating this delay to in vitro data. Firstly, the method was validated, applying the model to the dosage of nicotine by chewing-gum; the model was tuned by in vitro/in vivo data of drugs (divalproex-sodium and diltiazem) with medium-rate release kinetics, then it was applied in describing in vivo evolutions due to the assumption of fast- and slow-release systems. The model reveals itself predictive, the same of a Level A in vitro/in vivo correlation, but being physically based, it is preferable to a purely statistical method.

  2. Development, qualification, validation and application of the neutral red uptake assay in Chinese Hamster Ovary (CHO) cells using a VITROCELL® VC10® smoke exposure system.

    PubMed

    Fields, Wanda; Fowler, Kathy; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2017-04-01

    Cytotoxicity assessment of combustible tobacco products by neutral red uptake (NRU) has historically used total particulate matter (TPM) or solvent captured gas vapor phase (GVP), rather than fresh whole smoke. Here, the development, validation and application of the NRU assay in Chinese Hamster Ovary (CHO) cells, following exposure to fresh whole smoke generated with the VITROCELL® VC10® system is described. Whole smoke exposure is particularly important as both particulate and vapor phases of tobacco smoke show cytotoxicity in vitro. The VITROCELL® VC10® system provides exposure at the air liquid interface (ALI) to mimic in vivo conditions for assessing the toxicological impact of smoke in vitro. Instrument and assay validations are crucial for comparative analyses. 1) demonstrate functionality of the VITROCELL® VC10® system by installation, operational and performance qualification, 2) develop and validate a cellular system for assessing cytotoxicity following whole smoke exposure and 3) assess the whole smoke NRU assay sensitivity for statistical differentiation between a reference combustible cigarette (3R4F) and a primarily "heat-not-burn" cigarette (Eclipse). The VITROCELL® VC10® provided consistent generation and delivery of whole smoke; exposure-related changes in in vitro cytotoxicity were observed with reproducible IC 50 values; comparative analysis showed that the heat-not-burn cigarette was significantly (P<0.001) less cytotoxic than the 3R4F combustible cigarette, consistent with the lower levels of chemical constituents liberated by primarily-heating the cigarette versus burning. Copyright © 2017. Published by Elsevier Ltd.

  3. Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME.

    PubMed

    Godoy, Patricio; Hewitt, Nicola J; Albrecht, Ute; Andersen, Melvin E; Ansari, Nariman; Bhattacharya, Sudin; Bode, Johannes Georg; Bolleyn, Jennifer; Borner, Christoph; Böttger, Jan; Braeuning, Albert; Budinsky, Robert A; Burkhardt, Britta; Cameron, Neil R; Camussi, Giovanni; Cho, Chong-Su; Choi, Yun-Jaie; Craig Rowlands, J; Dahmen, Uta; Damm, Georg; Dirsch, Olaf; Donato, María Teresa; Dong, Jian; Dooley, Steven; Drasdo, Dirk; Eakins, Rowena; Ferreira, Karine Sá; Fonsato, Valentina; Fraczek, Joanna; Gebhardt, Rolf; Gibson, Andrew; Glanemann, Matthias; Goldring, Chris E P; Gómez-Lechón, María José; Groothuis, Geny M M; Gustavsson, Lena; Guyot, Christelle; Hallifax, David; Hammad, Seddik; Hayward, Adam; Häussinger, Dieter; Hellerbrand, Claus; Hewitt, Philip; Hoehme, Stefan; Holzhütter, Hermann-Georg; Houston, J Brian; Hrach, Jens; Ito, Kiyomi; Jaeschke, Hartmut; Keitel, Verena; Kelm, Jens M; Kevin Park, B; Kordes, Claus; Kullak-Ublick, Gerd A; LeCluyse, Edward L; Lu, Peng; Luebke-Wheeler, Jennifer; Lutz, Anna; Maltman, Daniel J; Matz-Soja, Madlen; McMullen, Patrick; Merfort, Irmgard; Messner, Simon; Meyer, Christoph; Mwinyi, Jessica; Naisbitt, Dean J; Nussler, Andreas K; Olinga, Peter; Pampaloni, Francesco; Pi, Jingbo; Pluta, Linda; Przyborski, Stefan A; Ramachandran, Anup; Rogiers, Vera; Rowe, Cliff; Schelcher, Celine; Schmich, Kathrin; Schwarz, Michael; Singh, Bijay; Stelzer, Ernst H K; Stieger, Bruno; Stöber, Regina; Sugiyama, Yuichi; Tetta, Ciro; Thasler, Wolfgang E; Vanhaecke, Tamara; Vinken, Mathieu; Weiss, Thomas S; Widera, Agata; Woods, Courtney G; Xu, Jinghai James; Yarborough, Kathy M; Hengstler, Jan G

    2013-08-01

    This review encompasses the most important advances in liver functions and hepatotoxicity and analyzes which mechanisms can be studied in vitro. In a complex architecture of nested, zonated lobules, the liver consists of approximately 80 % hepatocytes and 20 % non-parenchymal cells, the latter being involved in a secondary phase that may dramatically aggravate the initial damage. Hepatotoxicity, as well as hepatic metabolism, is controlled by a set of nuclear receptors (including PXR, CAR, HNF-4α, FXR, LXR, SHP, VDR and PPAR) and signaling pathways. When isolating liver cells, some pathways are activated, e.g., the RAS/MEK/ERK pathway, whereas others are silenced (e.g. HNF-4α), resulting in up- and downregulation of hundreds of genes. An understanding of these changes is crucial for a correct interpretation of in vitro data. The possibilities and limitations of the most useful liver in vitro systems are summarized, including three-dimensional culture techniques, co-cultures with non-parenchymal cells, hepatospheres, precision cut liver slices and the isolated perfused liver. Also discussed is how closely hepatoma, stem cell and iPS cell-derived hepatocyte-like-cells resemble real hepatocytes. Finally, a summary is given of the state of the art of liver in vitro and mathematical modeling systems that are currently used in the pharmaceutical industry with an emphasis on drug metabolism, prediction of clearance, drug interaction, transporter studies and hepatotoxicity. One key message is that despite our enthusiasm for in vitro systems, we must never lose sight of the in vivo situation. Although hepatocytes have been isolated for decades, the hunt for relevant alternative systems has only just begun.

  4. Evaluation of potential endocrine activity of 2,4-dichlorophenoxyacetic acid using in vitro assays.

    PubMed

    Coady, Katherine K; Kan, H Lynn; Schisler, Melissa R; Gollapudi, B Bhaskar; Neal, Barbara; Williams, Amy; LeBaron, Matthew J

    2014-08-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was evaluated in five in vitro screening assays to assess the potential for interaction with the androgen, estrogen and steroidogenesis pathways in the endocrine system. The assays were conducted to meet the requirements of the in vitro component of Tier 1 of the United States Environmental Protection Agency's Endocrine Disruptor Screening Program (EDSP), and included assays for estrogen receptor (ER) binding (rat uterine cytosol ER binding assay), ER-mediated transcriptional activation (HeLa-9903-ERα transactivation assay), androgen receptor (AR) binding (rat prostate cytosol AR binding assay), aromatase enzymatic activity inhibition (recombinant human CYP19 aromatase inhibition assay), and interference with steroidogenesis (H295R steroidogenesis assay). Results from these five assays demonstrated that 2,4-D does not have the potential to interact in vitro with the estrogen, androgen, or steroidogenesis pathways. These in vitro data are consistent with a corresponding lack of endocrine effects observed in apical in vivo animal studies, and thus provide important supporting data valuable in a comprehensive weight of evidence evaluation indicating a low potential of 2,4-D to interact with the endocrine system. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. An integrated dispersion preparation, characterization and in vitro dosimetry methodology for engineered nanomaterials

    PubMed Central

    DeLoid, Glen M.; Cohen, Joel M.; Pyrgiotakis, Georgios; Demokritou, Philip

    2018-01-01

    Summary Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. In order to ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for 1) generation of stable ENM suspensions in cell culture media, 2) colloidal characterization of suspended ENMs, particularly properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density), and 3) robust numerical fate and transport modeling for accurate determination of ENM dose delivered to cells over the course of the in vitro exposure. Here we present such an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical steps. The entire protocol requires approximately 6-12 hours to complete. PMID:28102836

  6. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro

    PubMed Central

    Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth

    2004-01-01

    In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047

  7. Stress Distribution in Single Dental Implant System: Three-Dimensional Finite Element Analysis Based on an In Vitro Experimental Model.

    PubMed

    Rezende, Carlos Eduardo Edwards; Chase-Diaz, Melody; Costa, Max Doria; Albarracin, Max Laurent; Paschoeto, Gabriela; Sousa, Edson Antonio Capello; Rubo, José Henrique; Borges, Ana Flávia Sanches

    2015-10-01

    This study aimed to analyze the stress distribution in single implant system and to evaluate the compatibility of an in vitro model with finite element (FE) model. The in vitro model consisted of Brånemark implant; multiunit set abutment of 5 mm height; metal-ceramic screw-retained crown, and polyurethane simulating the bone. Deformations were recorded in the peri-implant region in the mesial and distal aspects, after an axial 300 N load application at the center of the occlusal aspect of the crown, using strain gauges. This in vitro model was scanned with micro CT to design a three-dimensional FE model and the strains in the peri-implant bone region were registered to check the compatibility between both models. The FE model was used to evaluate stress distribution in different parts of the system. The values obtained from the in vitro model (20-587 με) and the finite element analysis (81-588 με) showed agreement among them. The highest stresses because of axial and oblique load, respectively were 5.83 and 40 MPa for the cortical bone, 55 and 1200 MPa for the implant, and 80 and 470 MPa for the abutment screw. The FE method proved to be effective for evaluating the deformation around single implant. Oblique loads lead to higher stress concentrations.

  8. Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides

    PubMed Central

    Cipollo, John F.; Awad, Antoine; Costello, Catherine E.; Robbins, Phillips W.; Hirschberg, Carlos B.

    2004-01-01

    The biosynthesis in vitro of phosphorylcholine oligosaccharides in Caenorhabditis elegans has been investigated. Here we show that extracts of C. elegans' microsomes transfer phosphorylcholine from L-α-dipalmitoyl phosphatidylcholine to hybrid and complex type N-linked oligosaccharides containing mannose residues disubstituted with N-acetylglucosamine. The reaction products are consistent with structures reported for C. elegans as well those found in the filarial nematodes Acanthocheilonema viteae, Onchocerca volvulus, and Brugia malayi, strongly supporting the concept that the phosphorylcholine oligosaccharide biosynthetic enzymes are conserved in this group of organisms. Because it is thought that phosphorylcholine substitution of oligosaccharides modulates host immune response in filarial infections, this in vitro system may help in gaining an understanding of the basis for this response. PMID:14993596

  9. Improving the Production of L-Phenylalanine by Identifying Key Enzymes Through Multi-Enzyme Reaction System in Vitro

    PubMed Central

    Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin

    2016-01-01

    L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633

  10. The stentable in vitro artery: an instrumented platform for endovascular device development and optimization.

    PubMed

    Antoine, Elizabeth E; Cornat, François P; Barakat, Abdul I

    2016-12-01

    Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies. © 2016 The Author(s).

  11. In vitro culture of coconut (Cocos nucifera L.) zygotic embryos.

    PubMed

    Engelmann, Florent; Malaurie, Bernard; N'Nan, Oulo

    2011-01-01

    Coconut is a very important crop for millions of people in tropical countries. With coconut, in vitro culture protocols have been developed with two main objectives, viz. the large scale production of particular types of coconuts and the international exchange and conservation of coconut germplasm. The methods described in this chapter have been developed in the framework of collaborative activities between research institutes in Côte d'Ivoire and France. Two coconut embryo in vitro collecting protocols have been established, one consisting of storing the disinfected embryos in a KCl solution until they are brought back to the laboratory, where they are re-disinfected and inoculated in vitro under sterile conditions, and the other including in vitro inoculation of the embryos in the field. For international germplasm exchange, zygotic embryos inoculated in vitro in plastic test tubes or endosperm cylinders containing embryos in plastic bags are used. For in vitro culture, embryos are inoculated on semi-solid medium supplemented with sucrose and activated charcoal and placed in the dark, and then transferred to light conditions with the same (solid or liquid) medium once the first true leaf is visible and the root system has started developing.

  12. Construction of in vitro transcription system for Corynebacterium glutamicum and its use in the recognition of promoters of different classes.

    PubMed

    Holátko, Jiří; Silar, Radoslav; Rabatinová, Alžbeta; Sanderová, Hana; Halada, Petr; Nešvera, Jan; Krásný, Libor; Pátek, Miroslav

    2012-10-01

    To facilitate transcription studies in Corynebacterium glutamicum, we have developed an in vitro transcription system for this bacterium used as an industrial producer of amino acids and a model organism for actinobacteria. This system consists of C. glutamicum RNA polymerase (RNAP) core (α2, β, β'), a sigma factor and a promoter-carrying DNA template, that is specifically recognized by the RNAP holoenzyme formed. The RNAP core was purified from the C. glutamicum strain with the modified rpoC gene, which produced His-tagged β' subunit. The C. glutamicum sigA and sigH genes were cloned and overexpressed using the Escherichia coli plasmid vector, and the sigma subunits σ(A) and σ(H) were purified by affinity chromatography. Using the reconstituted C. glutamicum holo-RNAPs, recognition of the σ(A)- and σ(H)-dependent promoters and synthesis of the specific transcripts was demonstrated. The developed in vitro transcription system is a novel tool that can be used to directly prove the specific recognition of a promoter by the particular σ factor(s) and to analyze transcriptional control by various regulatory proteins in C. glutamicum.

  13. Human breast cancer histoid: an in vitro 3-dimensional co-culture model that mimics breast cancer tissue.

    PubMed

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R; Ingram, Marylou; Imam, S Ashraf

    2011-12-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue.

  14. In vitro enteroid-derived three-dimensional tissue model of human small intestinal epithelium with innate immune responses.

    PubMed

    Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L

    2017-01-01

    There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.

  15. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens.

    PubMed

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N

    2015-12-01

    The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.

  16. 21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... an in vitro diagnostic device that consists of the reagents used to measure, by immunochemical techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S. cerevisiae antibodies may aid in the diagnosis of Crohn's disease. (b) Classification. Class II (special...

  17. Structural requirements for bioactivation of anticonvulsants to cytotoxic metabolites in vitro.

    PubMed Central

    Riley, R J; Kitteringham, N R; Park, B K

    1989-01-01

    The formation of cytotoxic metabolites from the anticonvulsants phenytoin and carbamazepine was investigated in vitro using a hepatic microsomal enzyme system and human mononuclear leucocytes as target cells. Both drugs were metabolised to cytotoxic products. In order to assess the structural requirements for this bioactivation, a series of structurally related compounds was investigated. It was found that molecules which contain either an amide function or an aryl ring may undergo activation in vitro, but only the metabolism-dependent toxicity of the latter is potentiated by pre-treatment of the target cells with an epoxide hydrolase inhibitor. Taken collectively, these data are consistent with the concept that reactive epoxide metabolites of both phenytoin and carbamazepine may produce toxicity in individuals with an inherited deficiency in epoxide hydrolase. PMID:2590607

  18. Collagen-based brain microvasculature model in vitro using three-dimensional printed template

    PubMed Central

    Kim, Jeong Ah; Kim, Hong Nam; Im, Sun-Kyoung; Chung, Seok

    2015-01-01

    We present an engineered three-dimensional (3D) in vitro brain microvasculature system embedded within the bulk of a collagen matrix. To create a hydrogel template for the functional brain microvascular structure, we fabricated an array of microchannels made of collagen I using microneedles and a 3D printed frame. By culturing mouse brain endothelial cells (bEnd.3) on the luminal surface of cylindrical collagen microchannels, we reconstructed an array of brain microvasculature in vitro with circular cross-sections. We characterized the barrier function of our brain microvasculature by measuring transendothelial permeability of 40 kDa fluorescein isothiocyanate-dextran (Stoke's radius of ∼4.5 nm), based on an analytical model. The transendothelial permeability decreased significantly over 3 weeks of culture. We also present the disruption of the barrier function with a hyperosmotic mannitol as well as a subsequent recovery over 4 days. Our brain microvasculature model in vitro, consisting of system-in-hydrogel combined with the widely emerging 3D printing technique, can serve as a useful tool not only for fundamental studies associated with blood-brain barrier in physiological and pathological settings but also for pharmaceutical applications. PMID:25945141

  19. In vitro CpG methylation increases the transformation efficiency of Borrelia burgdorferi strains harboring the endogenous linear plasmid lp56.

    PubMed

    Chen, Qiang; Fischer, Joshua R; Benoit, Vivian M; Dufour, Nicholas P; Youderian, Philip; Leong, John M

    2008-12-01

    Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.

  20. Synthetic thrombus model for in vitro studies of laser thrombolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermes, R.E.; Trajkovska, K.

    1998-07-01

    Laser thrombolysis is the controlled ablation of a thrombus (blood clot) blockage in a living arterial system. Theoretical modeling of the interaction of laser light with thrombi relies on the ability to perform in vitro experiments with well characterized surrogate materials. A synthetic thrombus formulation may offer more accurate results when compared to in vivo clinical experiments. The authors describe the development of new surrogate materials based on formulations incorporating chick egg, guar gum, modified food starch, and a laser light absorbing dye. The sound speed and physical consistency of the materials were very close to porcine (arterial) and humanmore » (venous) thrombi. Photographic and videotape recordings of pulsed dye laser ablation experiments under various experimental conditions were used to evaluate the new material as compared to in vitro tests with human (venous) thrombus. The characteristics of ablation and mass removal were similar to that of real thrombi, and therefore provide a more realistic model for in vitro laser thrombolysis when compared to gelatin.« less

  1. Benzodiazepine antagonism by harmane and other beta-carbolines in vitro and in vivo.

    PubMed

    Rommelspacher, H; Nanz, C; Borbe, H O; Fehske, K J; Müller, W E; Wollert, U

    1981-03-26

    Harmane and other related beta-carbolines are putative endogenous ligands of the benzodiazepine receptor. Since the compounds are potent convulsants they may have agonist activities at the benzodiazepine receptor while the benzodiazepines may be antagonists. This hypothesis was proved by comparing the in vivo and in vitro antagonism of benzodiazepines by harmane and other beta-carbolines. Harmane is clearly a competitive inhibitor of benzodiazepine receptor binding in vitro. Moreover, harmane-induced convulsions can be inhibited reversibly by diazepam in a manner which is consistent with the assumption of competitive antagonism in vivo. For some beta-carboline derivatives a correlation was found between the affinity for the benzodiazepine receptor in vitro and the convulsive potency in vivo. Thus, the data reported suggest that harmane or other related beta-carbolines are putative endogenous agonists of the benzodiazepine receptor. This suggestion is further supported by the observation that diazepam is equally potent in inhibiting harmane- or picrotoxin-induced convulsions, indicating a convulsive mechanism within the GABA receptor-benzodiazepine receptor system.

  2. Synthesis and biological activities of fluorinated chalcone derivatives.

    PubMed

    Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio

    2002-03-01

    We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.

  3. Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.

    PubMed

    Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric

    2007-06-01

    Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.

  4. A new method for assessing relative dynamic motion of vertebral bodies during cyclic loading in vitro.

    PubMed

    Dean, J C; Wilcox, C H; Daniels, A U; Goodwin, R R; Van Wagoner, E; Dunn, H K

    1991-01-01

    A new experimental technique for measuring generalized three-dimensional motion of vertebral bodies during cyclic loading in vitro is presented. The system consists of an orthogonal array of three lasers mounted rigidly to one vertebra, and a set of three mutually orthogonal charge-coupled devices mounted rigidly to an adjacent vertebra. Each laser strikes a corresponding charge-coupled device screen. The mathematical model of the system is reduced to a linear set of equations with consequent matrix algebra allowing fast real-time data reduction during cyclic movements of the spine. The range and accuracy of the system is well suited for studying thoracolumbar motion segments. Distinct advantages of the system include miniaturization of the components, the elimination of the need for mechanical linkages between the bodies, and a high degree of accuracy which is not dependent on viewing volume as found in photogrammetric systems. More generally, the spectrum of potential applications of systems of this type to the real-time measurement of the relative motion of two bodies is extremely broad.

  5. In-vitro radiosensitivity in patients with systemic lupus erythematosus.

    PubMed

    Carrillo-Alascio, P L; Sabio, J M; Núñez-Torres, M I; López, E; Muñoz-Gámez, J A; Hidalgo-Tenorio, C; Jáimez, L; Martín, J; Jiménez-Alonso, J

    2009-06-01

    To determine the "in-vitro" intrinsic cell radiosensitivity (RS) as a risk indicator of radiation-related side-effects in patients with systemic lupus erythematosus (SLE) compared with healthy subjects (control group). Moreover, we elucidated if clinical, therapeutic and biological parameters could affect the "in-vitro" intrinsic RS in patients with SLE. Intrinsic RS was determined by the quantification of the initial radiation-induced DNA double-strand breaks in peripheral lymphocytes, measured by pulsed-field gel electrophoresis from 52 patients with SLE and a control group consisting of 48 sex- and age-matched healthy subjects. No difference in intrinsic RS was found among both groups. However, SLE patients with anaemia, increased erythrocyte sedimentation rate and those with positive result for anti-La/SSB and anti-RNP antibodies showed significantly higher DNA double-strand breaks than those without them. In our study, patients with SLE did not have a higher intrinsic RS than healthy subjects. According to these results, and with the caution of being a limited laboratory study, the use of radiotherapy should not be avoided in patients with SLE when it is clinically needed.

  6. Spatial and Temporal Controlled Tissue Heating on a Modified Clinical Ultrasound Scanner for Generating Mild Hyperthermia in Tumors

    PubMed Central

    Kruse, Dustin E.; Lai, Chun-Yen; Stephens, Douglas N.; Sutcliffe, Patrick; Paoli, Eric E.; Barnes, Stephen H.; Ferrara, Katherine W.

    2009-01-01

    A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37–42ºC. The system consists of a Siemens Antares™ ultrasound scanner, a custom dual-frequency 3-row transducer array and an external temperature feedback control system. The transducer has 2 outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6ºC for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42ºC. We show that the system is able to maintain the temperature to within 0.1ºC of the desired temperature both in vitro and in vivo. PMID:20064754

  7. Development of an in-vitro circulatory system with known resistance and capacitance

    NASA Technical Reports Server (NTRS)

    Offerdahl, C. D.; Schaub, J. D.; Koenig, S. C.; Swope, R. D.; Ewert, D. L.; Convertino, V. A. (Principal Investigator)

    1996-01-01

    An in-vitro (hydrodynamic) model of the circulatory system was developed. The model consisted of a pump, compliant tubing, and valves for resistance. The model is used to simulate aortic pressure and flow. These parameters were measured using a Konigsburg Pressure transducer and a Triton ART2 flow probe. In addition, venous pressure and flow were measured on the downstream side of the resistance. The system has a known compliance and resistance. Steady and pulsatile flow tests were conducted to determine the resistance of the model. A static compliance test was used to determine the compliance of the system. The aortic pressure and flow obtained from the hydrodynamic model will be used to test the accuracy of parameter estimation models such as the 2-element and 4-element Windkessel models and the 3-element Westkessel model. Verifying analytical models used in determining total peripheral resistance (TPR) and systemic arterial compliance (SAC) is important because it provides insight into hemodynamic parameters that indicate baroreceptor responsiveness to situations such as changes in gravitational acceleration.

  8. Flow cytometric investigations of diploid and tetraploid plants and in vitro cultures of Datura stramonium and Hyoscyamus niger.

    PubMed

    Weber, Jost; Georgiev, Vasil; Pavlov, Atanas; Bley, Thomas

    2008-10-01

    Plant in vitro systems are valuable sources for the production of biological active substances. However, changed profiles of secondary metabolites, and low, variable yields possibly caused by genetic instabilities complicate their industrial implementation. DNA profiling of plant in vitro cultures may provide data for the selection of highly producing in vitro cultures. Diploid and tetraploid Datura stramonium and Hyoscyamus niger plant as well as calli, and hairy root lines derived from them were analyzed by flow cytometry. Plant in vitro cultures undergo several cycles of endoreduplication more than the explants from which they were obtained. The highest cycle values were observed in calli (e.g. 1.19 for diploid H. niger) possibly induced by the growth factors. However, hairy roots cultivated without growth factor exhibited significant degrees of endoreduplication (cycle value 0.88 for diploid H. niger). Sets of five hairy root lines from each plant and ploidy level showed consistent within-set ploidy patterns. The ploidy profiles of investigated plant in vitro and in vivo differ. For the first time we report that hairy roots of two Solanaceae species undergo endoreduplication. Theploidy profiles of in vitro cultures (hairy roots and calli) seem to be influenced by the genome size, the growth factors applied, and the type of in vitro culture. The transformation of several hairy root lines showed no differences in the ploidy patterns. Copyright 2008 International Society for Advancement of Cytometry.

  9. The vaccines consistency approach project: an EPAA initiative.

    PubMed

    De Mattia, F; Hendriksen, C; Buchheit, K H; Chapsal, J M; Halder, M; Lambrigts, D; Redhead, K; Rommel, E; Scharton-Kersten, T; Sesardic, T; Viviani, L; Ragan, I

    2015-01-01

    The consistency approach for release testing of established vaccines promotes the use of in vitro, analytical, non-animal based systems allowing the monitoring of quality parameters during the whole production process. By using highly sensitive non-animal methods, the consistency approach has the potential to improve the quality of testing and to foster the 3Rs (replacement, refinement and reduction of animal use) for quality control of established vaccines. This concept offers an alternative to the current quality control strategy which often requires large numbers of laboratory animals. In order to facilitate the introduction of the consistency approach for established human and veterinary vaccine quality control, the European Partnership for Alternatives to Animal Testing (EPAA) initiated a project, the "Vaccines Consistency Approach Project", aiming at developing and validating the consistency approach with stakeholders from academia, regulators, OMCLs, EDQM, European Commission and industry. This report summarises progress since the project's inception.

  10. AltitudeOmics: Red Blood Cell metabolic adaptation to high altitude hypoxia

    PubMed Central

    D’Alessandro, Angelo; Nemkov, Travis; Sun, Kaiqi; Liu, Hong; Song, Anren; Monte, Andrew A.; Subudhi, Andrew W.; Lovering, Andrew T.; Dvorkin, Daniel; Julian, Colleen G.; Kevil, Christopher G.; Kolluru, Gopi K.; Shiva, Sruthi; Gladwin, Mark T.; Xia, Yang; Hansen, Kirk C.; Roach, Robert C.

    2017-01-01

    Red blood cells (RBCs) are key players in systemic oxygen transport. RBCs respond to in vitro hypoxia through the so-called oxygen-dependent metabolic regulation, which involves the competitive binding of deoxyhemoglobin and glycolytic enzymes to the N-terminal cytosolic domain of band 3. This mechanism promotes the accumulation of 2,3-DPG, stabilizing the deoxygenated state of hemoglobin, and cytosol acidification, triggering oxygen off-loading through the Bohr effect. Despite in vitro studies, in vivo adaptations to hypoxia have not yet been completely elucidated. Within the framework of the AltitudeOmics study, erythrocytes were collected from 21 healthy volunteers at sea level, after exposure to high altitude (5260m) for 1, 7 and 16days, and following reascent after 7days at 1525m. UHPLC-MS metabolomics results were correlated to physiological and athletic performance parameters. Immediate metabolic adaptations were noted as early as a few hours from ascending to >5000m, and maintained for 16 days at high altitude. Consistent with the mechanisms elucidated in vitro, hypoxia promoted glycolysis and deregulated the pentose phosphate pathway, as well purine catabolism, glutathione homeostasis, arginine/nitric oxide and sulphur/H2S metabolism. Metabolic adaptations were preserved one week after descent, consistently with improved physical performances in comparison to the first ascendance, suggesting a mechanism of metabolic memory. PMID:27646145

  11. 3D biomaterial matrix to support long term, full thickness, immuno-competent human skin equivalents with nervous system components.

    PubMed

    Vidal, Sarah E Lightfoot; Tamamoto, Kasey A; Nguyen, Hanh; Abbott, Rosalyn D; Cairns, Dana M; Kaplan, David L

    2018-04-24

    Current commercially available human skin equivalents (HSEs) are used for relatively short term studies (∼1 week) due in part to the time-dependent contraction of the collagen gel-based matrix and the limited cell types and skin tissue components utilized. In contrast, here we describe a new matrix consisting of a silk-collagen composite system that provides long term, stable cultivation with reduced contraction and degradation over time. This matrix supports full thickness skin equivalents which include nerves. The unique silk-collagen composite system preserves cell-binding domains of collagen while maintaining the stability and mechanics of the skin system for long-term culture with silk. The utility of this new composite protein-based biomaterial was demonstrated by bioengineering full thickness human skin systems using primary cells, including nerves and immune cells to establish an HSE with a neuro-immuno-cutaneous system. The HSEs with neurons and hypodermis, compared to in vitro skin-only HSEs controls, demonstrated higher secretion of pro-inflammatory cytokines. Proteomics analysis confirmed the presence of several proteins associated with inflammation across all sample groups, but HSEs with neurons had the highest amount of detected protein due to the complexity of the model. This improved, in vitro full thickness HSE model system utilizes cross-linked silk-collagen as the biomaterial and allows reduced reliance on animal models and provides a new in vitro tissue system for the assessment of chronic responses related to skin diseases and drug discovery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  13. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  14. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  15. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  16. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  17. Electroinduced Delivery of Hydrogel Nanoparticles in Colon 26 Cells, Visualized by Confocal Fluorescence System.

    PubMed

    Atanasova, Severina; Nikolova, Biliana; Murayama, Shuhei; Stoyanova, Elena; Tsoneva, Iana; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana

    2016-09-01

    Nano-scale drug delivery systems (nano-DDS) are under intense investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs)] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltage-dependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  18. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.

    PubMed

    Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas

    2018-05-01

    Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.

  19. In Vitro Comparison of Dynesys, PEEK, and Titanium Constructs in the Lumbar Spine

    PubMed Central

    Yeager, Matthew S.; Cook, Daniel J.; Cheng, Boyle C.

    2015-01-01

    Introduction. Pedicle based posterior dynamic stabilization systems aim to stabilize the pathologic spine while also allowing sufficient motion to mitigate adjacent level effects. Two flexible constructs that have been proposed to act in such a manner, the Dynesys Dynamic Stabilization System and PEEK rod, have yet to be directly compared in vitro to a rigid Titanium rod. Methods. Human lumbar specimens were tested in flexion extension, lateral bending, and axial torsion to evaluate the following conditions at L4-L5: Intact, Dynesys, PEEK rod, Titanium rod, and Destabilized. Intervertebral range of motion, interpedicular travel, and interpedicular displacement metrics were evaluated from 3rd-cycle data using an optoelectric tracking system. Results. Statistically significant decreases in ROM compared to Intact and Destabilized conditions were detected for the instrumented conditions during flexion extension and lateral bending. AT ROM was significantly less than Destabilized but not the Intact condition. Similar trends were found for interpedicular displacement in all modes of loading; however, interpedicular travel trends were less consistent. More importantly, no metrics under any mode of loading revealed significant differences between Dynesys, PEEK, and Titanium. Conclusion. The results of this study support previous findings that Dynesys and PEEK constructs behave similarly to a Titanium rod in vitro. PMID:26366303

  20. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors.

    PubMed

    Xiang, Jie; Wu, Dai-Chen; Chen, Yuanting; Paulson, Robert F

    2015-03-12

    Tissue hypoxia induces a systemic response designed to increase oxygen delivery to tissues. One component of this response is increased erythropoiesis. Steady-state erythropoiesis is primarily homeostatic, producing new erythrocytes to replace old erythrocytes removed from circulation by the spleen. In response to anemia, the situation is different. New erythrocytes must be rapidly made to increase hemoglobin levels. At these times, stress erythropoiesis predominates. Stress erythropoiesis is best characterized in the mouse, where it is extramedullary and utilizes progenitors and signals that are distinct from steady-state erythropoiesis. In this report, we use an in vitro culture system that recapitulates the in vivo development of stress erythroid progenitors. We identify cell-surface markers that delineate a series of stress erythroid progenitors with increasing maturity. In addition, we use this in vitro culture system to expand human stress erythroid progenitor cells that express analogous cell-surface markers. Consistent with previous suggestions that human stress erythropoiesis is similar to fetal erythropoiesis, we demonstrate that human stress erythroid progenitors express fetal hemoglobin upon differentiation. These data demonstrate that similar to murine bone marrow, human bone marrow contains cells that can generate BMP4-dependent stress erythroid burst-forming units when cultured under stress erythropoiesis conditions. © 2015 by The American Society of Hematology.

  1. To QC or not to QC: the key to a consistent laboratory?

    PubMed

    Lane, Michelle; Mitchell, Megan; Cashman, Kara S; Feil, Deanne; Wakefield, Sarah; Zander-Fox, Deirdre L

    2008-01-01

    A limiting factor in every embryology laboratory is its capacity to grow 'normal' embryos. In human in vitro fertilisation (IVF), there is considerable awareness that the environment of the laboratory itself can alter the quality of the embryos produced and the industry as a whole has moved towards the implementation of auditable quality management systems. Furthermore, in some countries, such as Australia, an established quality management system is mandatory for clinical IVF practice, but such systems are less frequently found in other embryology laboratories. Although the same challenges of supporting consistent and repeatable embryo development are paramount to success in all embryology laboratories, it could be argued that they are more important in a research setting where often the measured outcomes are at an intracellular or molecular level. In the present review, we have outlined the role and importance of quality control and quality assurance systems in any embryo laboratory and have highlighted examples of how simple monitoring can provide consistency and avoid the induction of artefacts, irrespective of the laboratory's purpose, function or species involved.

  2. Real-time analysis of Drosophila post-embryonic haemocyte behaviour.

    PubMed

    Sampson, Christopher J; Williams, Michael J

    2012-01-01

    The larval stage of the model organism Drosophila is frequently used to study host-pathogen interactions. During embryogenesis the cellular arm of the immune response, consisting of macrophage-like cells known as plasmatocytes, is extremely motile and functions to phagocytise pathogens and apoptotic bodies, as well as produce extracellular matrix. The cellular branch of the larval (post-embryonic) innate immune system consists of three cell types--plasmatocytes, crystal cells and lamellocytes--which are involved in the phagocytosis, encapsulation and melanisation of invading pathogens. Post-embryonic haemocyte motility is poorly understood thus further characterisation is required, for the purpose of standardisation. In order to examine post-embryonic haemocyte cytoskeletal dynamics or migration, the most commonly used system is in vitro cell lines. The current study employs an ex vivo system (an adaptation of in vitro cell incubation using primary cells), in which primary larval or pre-pupal haemocytes are isolated for short term analysis, in order to discover various aspects of their behaviour during events requiring cytoskeleton dynamics. The ex vivo method allows for real-time analysis and manipulation of primary post-embryonic haemocytes. This technique was used to characterise, and potentially standardised, larval and pre-pupal haemocyte cytoskeleton dynamics, assayed on different extracellular matrices. Using this method it was determined that, while larval haemocytes are unable to migrate, haemocytes recovered from pre-pupae are capable of migration.

  3. Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution

    PubMed Central

    Fan, Wei; Wu, Xin; Ding, Baoyue; Gao, Jing; Cai, Zhen; Zhang, Wei; Yin, Dongfeng; Wang, Xiang; Zhu, Quangang; Liu, Jiyong; Ding, Xueying; Gao, Shen

    2012-01-01

    Background Cationic copolymers consisting of polycations linked to nonionic amphiphilic block polymers have been evaluated as nonviral gene delivery systems, and a large number of different polymers and copolymers of linear, branched, and dendrimeric architectures have been tested in terms of their suitability and efficacy for in vitro and in vivo transfection. However, the discovery of new potent materials still largely relies on empiric approaches rather than a rational design. The authors investigated the relationship between the polymers’ structures and their biological performance, including DNA compaction, toxicity, transfection efficiency, and the effect of cellular uptake. Methods This article reports the synthesis and characterization of a series of cationic copolymers obtained by grafting polyethyleneimine with nonionic amphiphilic surfactant polyether-Pluronic® consisting of hydrophilic ethylene oxide and hydrophobic propylene oxide blocks. Transgene expression, cytotoxicity, localization of plasmids, and cellular uptake of these copolymers were evaluated following in vitro transfection of HeLa cell lines with various individual components of the copolymers. Results Pluronics can exhibit biological activity including effects on enhancing DNA cellular uptake, nuclear translocation, and gene expression. The Pluronics with a higher hydrophilic-lipophilic balance value lead to homogeneous distribution in the cytoplasm; those with a lower hydrophilic-lipophilic balance value prefer to localize in the nucleus. Conclusion This Pluronic-polyethyleneimine system may be worth exploring as components in the cationic copolymers as the DNA or small interfering RNA/microRNA delivery system in the near future. PMID:22403492

  4. Implantable wireless powered light emitting diode (LED) for near-infrared photoimmunotherapy: device development and experimental assessment in vitro and in vivo.

    PubMed

    Nakajima, Kohei; Kimura, Toshihiro; Takakura, Hideo; Yoshikawa, Yasuo; Kameda, Atsushi; Shindo, Takayuki; Sato, Kazuhide; Kobayashi, Hisataka; Ogawa, Mikako

    2018-04-13

    The aim of this study was to develop and assess a novel implantable, wireless-powered, light-emitting diode (LED) for near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a recently developed cancer therapy that uses NIR light and antibody-photosensitizer conjugates and is able to induce cancer-specific cell death. Due to limited light penetration depth it is currently unable to treat tumors in deep tissues. Use of implanted LED might potentially overcome this limitation. The wireless LED system was able to emit NIR light up to a distance of 20 cm from the transmitter coil by using low magnetic fields as compliant with limits for use in humans. Results indicated that the LED system was able to kill tumor cells in vitro and to suppress tumor growth in implanted tumor-bearing mice. Results indicated that the proposed implantable wireless LED system was able to suppress tumor growth in vivo . These results are encouraging as wireless LED systems such as the one here developed might be a possible solution to treat tumors in deep regions in humans. Further research in this area would be important. An implantable LED system was developed. It consisted of a LED capsule including two LED sources and a receiver coil coupled with an external coil and power source. Wireless power transmission was guaranteed by using electromagnetic induction. The system was tested in vitro by using EGFR-expressing cells and HER2-expressing cells. The system was also tested in vivo in tumor-bearing mice.

  5. Wireless patient monitoring system for a moving-actuator type artificial heart.

    PubMed

    Nam, K W; Chung, J; Choi, S W; Sun, K; Min, B G

    2006-10-01

    In this study, we developed a wireless monitoring system for outpatients equipped with a moving-actuator type pulsatile bi-ventricular assist device, AnyHeart. The developed monitoring system consists of two parts; a Bluetooth-based short-distance self-monitoring system that can monitor and control the operating status of a VAD using a Bluetooth-embedded personal digital assistant or a personal computer within a distance of 10 meters, and a cellular network-based remote monitoring system that can continuously monitor and control the operating status of AnyHeart at any location. Results of in vitro experiments demonstrate the developed system's ability to monitor the operational status of an implanted AnyHeart.

  6. Design and in vitro evaluation of multiparticulate floating drug delivery system of zolpidem tartarate.

    PubMed

    Amrutkar, P P; Chaudhari, P D; Patil, S B

    2012-01-01

    Zolpidem tartarate is a non-benzodiazepine, sedative-hypnotic, which finds its major use in various types of insomnia. The present work relates to development of multiparticulate floating drug delivery system based on gas generation technique to prolong the gastric residence time and to increase the overall bioavailability. Modified release dosage form of zolpidem tartarate adapted to release over a predetermined time period, according to biphasic profile of dissolution, where the first phase is immediate release phase for inducing the sleep and the second phase is modified release phase for maintaining the sleep up to 10 h. The system consists of zolpidem tartarate layered pellets coated with effervescent layer and polymeric membrane. The floating ability and in vitro drug release of the system were dependent on amount of the effervescent agent (sodium bicarbonate) layered onto the drug layered pellets, and coating level of the polymeric membrane (Eudragit(®) NE 30D). The system could float completely within 5 min and maintain the floating over a period of 10 h. The multiparticulate floating delivery system of zolpidem tartarate with rapid floating and modified drug release was obtained. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    PubMed Central

    Correa de Sampaio, Pedro; Auslaender, David; Krubasik, Davia; Failla, Antonio Virgilio; Skepper, Jeremy N.; Murphy, Gillian; English, William R.

    2012-01-01

    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis. PMID:22363483

  8. Inhibition of Prostate Cancer Skeletal Metastases by Targeting Cathepsin K

    DTIC Science & Technology

    2009-05-01

    micro synthetic calcium phosphate thin films coated onto the culture vessels. As a parallel study, a 96-well plate which contained dentin slice...bone resorption in vitro. (A) Representative images of resorption pits on dentin slices or synthetic calcium phosphate thin films are shown. Left...Osteologic Bone cell culture system (BD Bioscience) that consist of sub-micro synthetic calcium phosphate thin films coated on to the culture vessels and

  9. Human Breast Cancer Histoid

    PubMed Central

    Kaur, Pavinder; Ward, Brenda; Saha, Baisakhi; Young, Lillian; Groshen, Susan; Techy, Geza; Lu, Yani; Atkinson, Roscoe; Taylor, Clive R.; Ingram, Marylou

    2011-01-01

    Progress in our understanding of heterotypic cellular interaction in the tumor microenvironment, which is recognized to play major roles in cancer progression, has been hampered due to unavailability of an appropriate in vitro co-culture model. The aim of this study was to generate an in vitro 3-dimensional human breast cancer model, which consists of cancer cells and fibroblasts. Breast cancer cells (UACC-893) and fibroblasts at various densities were co-cultured in a rotating suspension culture system to establish co-culture parameters. Subsequently, UACC-893, BT.20, or MDA.MB.453 were co-cultured with fibroblasts for 9 days. Co-cultures resulted in the generation of breast cancer histoid (BCH) with cancer cells showing the invasion of fibroblast spheroids, which were visualized by immunohistochemical (IHC) staining of sections (4 µm thick) of BCH. A reproducible quantitative expression of C-erbB.2 was detected in UACC-893 cancer cells in BCH sections by IHC staining and the Automated Cellular Imaging System. BCH sections also consistently exhibited qualitative expression of pancytokeratins, p53, Ki-67, or E-cadherin in cancer cells and that of vimentin or GSTPi in fibroblasts, fibronectin in the basement membrane and collagen IV in the extracellular matrix. The expression of the protein analytes and cellular architecture of BCH were markedly similar to those of breast cancer tissue. PMID:22034518

  10. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).

    PubMed

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-07

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R(2) = 0.821 at p < 0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  11. High Intensity Focused Ultrasound (HIFU) Focal Spot Localization Using Harmonic Motion Imaging (HMI)

    PubMed Central

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-01-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of High-Intensity Focused Ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the −3 dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p<0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes. PMID:26184846

  12. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI)

    NASA Astrophysics Data System (ADS)

    Han, Yang; Hou, Gary Yi; Wang, Shutao; Konofagou, Elisa

    2015-08-01

    Several ultrasound-based imaging modalities have been proposed for image guidance and monitoring of high-intensity focused ultrasound (HIFU) treatment. However, accurate localization and characterization of the effective region of treatment (focal spot) remain important obstacles in the clinical implementation of HIFU ablation. Harmonic motion imaging for focused ultrasound (HMIFU) is a HIFU monitoring technique that utilizes radiation-force-induced localized oscillatory displacement. HMIFU has been shown to correctly identify the formation and extent of HIFU thermal ablation lesions. However a significant problem remains in identifying the location of the HIFU focus, which is necessary for treatment planning. In this study, the induced displacement was employed to localize the HIFU focal spot inside the tissue prior to treatment. Feasibility was shown with two separate systems. The 1D HMIFU system consisted of a HIFU transducer emitting an amplitude-modulated HIFU beam for mechanical excitation and a confocal single-element, pulse-echo transducer for simultaneous RF acquisition. The 2D HIFU system consists of a HIFU phased array, and a co-axial imaging phased array for simultaneous imaging. Initial feasibility was first performed on tissue-mimicking gelatin phantoms and the focal zone was defined as the region corresponding to the  -3dB full width at half maximum of the HMI displacement. Using the same parameters, in vitro experiments were performed in canine liver specimens to compare the defined focal zone with the lesion. In vitro measurements showed good agreement between the HMI predicted focal zone and the induced HIFU lesion location. HMIFU was experimentally shown to be capable of predicting and tracking the focal region in both phantoms and in vitro tissues. The accuracy of focal spot localization was evaluated by comparing with the lesion location in post-ablative tissues, with a R2 = 0.821 at p  <  0.002 in the 2D HMI system. We demonstrated the feasibility of using this HMI-based technique to localize the HIFU focal spot without inducing thermal changes during the planning phase. The focal spot localization method has also been applied on ex vivo human breast tissue ablation and can be fully integrated into any HMI system for planning purposes.

  13. Control of brushing variables for the in vitro assessment of toothpaste abrasivity using a novel laboratory model.

    PubMed

    Parry, Jason; Harrington, Edward; Rees, Gareth D; McNab, Rod; Smith, Anthony J

    2008-02-01

    Design and construct a tooth-brushing simulator incorporating control of brushing variables including brushing force, speed and temperature, thereby facilitating greater understanding of their importance in toothpaste abrasion testing methodologies. A thermostable orbital shaker was selected as a base unit and 16- and 24-specimen brushing rigs were constructed to fit inside, consisting of: a square bath partitioned horizontally to provide brushing channels, specimen holders for 25 mm diameter mounted specimens to fit the brushing channels and individually weighted brushing arms, able to support four toothbrush holders suspended over the brushing channels. Brush head holders consisted of individually weighted blocks of Delrin, or PTFE onto which toothbrush heads were fixed. Investigating effects of key design criteria involved measuring abrasion depths of polished human enamel and dentine. The brushing simulator demonstrated good reproducibility of abrasion on enamel and dentine across consecutive brushing procedures. Varying brushing parameters had a significant impact on wear results: increased brushing force demonstrated a trend towards increased wear, with increased reproducibility for greater abrasion levels, highlighting the importance of achieving sufficient wear to optimise accuracy; increasing brushing temperature demonstrated increased enamel abrasion for silica and calcium carbonate systems, which may be related to slurry viscosities and particle suspension; varying brushing speed showed a small effect on abrasion of enamel at lower brushing speed, which may indicate the importance of maintenance of the abrasive in suspension. Adjusting key brushing variables significantly affected wear behaviour. The brushing simulator design provides a valuable model system for in vitro assessment of toothpaste abrasivity and the influence of variables in a controlled manner. Control of these variables will allow more reproducible study of in vitro tooth wear processes.

  14. In vitro test systems supporting the development of improved pest control methods: a case study with chemical mixtures and bivalve biofoulers.

    PubMed

    Silva, Carlos; Nunes, Bruno; Nogueira, António Ja; Gonçalves, Fernando; Pereira, Joana L

    2016-11-01

    Using the bivalve macrofouler Corbicula fluminea, the suitability of in vitro testing as a stepping stone towards the improvement of control methods based on chemical mixtures was addressed in this study. In vitro cholinesterase (ChE) activity inhibition following single exposure of C. fluminea tissue to four model chemicals (the organophosphates dimethoate and dichlorvos, copper and sodium dodecyl phosphate [SDS]) was first assessed. Consequently, mixtures of dimethoate with copper and dichlorvos with SDS were tested and modelled; mixtures with ChE revealed synergistic interactions for both chemical pairs. These synergic combinations were subsequently validated in vivo and the increased control potential of these selected combinations was verified, with gains of up to 50% in C. fluminea mortality relative to corresponding single chemical treatments. Such consistency supports the suitability of using time- and cost-effective surrogate testing platforms to assist the development of biofouling control strategies incorporating mixtures.

  15. Micropatterned coculture of primary human hepatocytes and supportive cells for the study of hepatotropic pathogens

    PubMed Central

    March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.

    2018-01-01

    Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444

  16. In vitro enzymatic reduction kinetics of mineral oxides by membrane fractions from Shewanella oneidensis MR-1

    NASA Astrophysics Data System (ADS)

    Ruebush, Shane S.; Icopini, Gary A.; Brantley, Susan L.; Tien, Ming

    2006-01-01

    This study documents the first example of in vitro solid-phase mineral oxide reduction by enzyme-containing membrane fractions. Previous in vitro studies have only reported the reduction of aqueous ions. Total membrane (TM) fractions from iron-grown cultures of Shewanella oneidensis MR-1 were isolated and shown to catalyze the reduction of goethite, hematite, birnessite, and ramsdellite/pyrolusite using formate. In contrast, nicotinamide adenine dinucleotide (NADH) and succinate cannot function as electron donors. The significant implications of observations related to this cell-free system are: (i) both iron and manganese mineral oxides are reduced by the TM fraction, but aqueous U(VI) is not; (ii) TM fractions from anaerobically grown, but not aerobically grown, cells can reduce the mineral oxides; (iii) electron shuttles and iron chelators are not needed for this in vitro reduction, documenting conclusively that reduction can occur by direct contact with the mineral oxide; (iv) electron shuttles and EDTA stimulate the in vitro Fe(III) reduction, documenting that exogenous molecules can enhance rates of enzymatic mineral reduction; and (v) multiple membrane components are involved in solid-phase oxide reduction. The membrane fractions, consisting of liposomes of cytoplasmic and outer membrane segments, contain at least 100 proteins including the enzyme that oxidizes formate, formate dehydrogenase. Mineral oxide reduction was inhibited by the addition of detergent Triton X-100, which solubilizes membranes and their associated proteins, consistent with the involvement of multiple electron carriers that are disrupted by detergent addition. In contrast, formate dehydrogenase activity was not inhibited by Triton X-100. The addition of anthraquinone-2,6-disulfonate (AQDS) and menaquinone-4 was unable to restore activity; however, menadione (MD) restored 33% of the activity. The addition of AQDS and MD to reactions without added detergent increased the rate of goethite reduction. The Michaelis-Menten Km values of 71 ± 22 m 2/L for hematite and 50 ± 16 m 2/L for goethite were calculated as a function of surface area of the two insoluble minerals. Vmax was determined to be 123 ± 14 and 156 ± 13 nmol Fe(II)/min/mg of TM protein for hematite and goethite, respectively. These values are consistent with in vivo rates of reduction reported in the literature. These observations are consistent with our conclusion that the enzymatic reduction of mineral oxides is an effective probe that will allow elucidation of molecular chemistry of the membrane-mineral interface where electron transfer occurs.

  17. Hydrophobic interaction mediated coating of Pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy.

    PubMed

    Sha, Luping; Wang, Da; Mao, Yuling; Shi, Wei; Gao, Tianbin; Zhao, Qinfu; Wang, Si-Ling

    2018-05-22

    In this research, a novel method was used to successfully make Pluronic P123 stably coated on mesoporous silica nanoparticles (MSN). That P123 and MSN co-constructed a drug delivery system (DDS) had not been reported. In this DDS, the coating of P123 was realized through hydrophobic interaction with octadecyl chain modified MSN. Experiments found only Pluronic with an appropriate ratio of hydrophilic and lipophilic segment could keep the nanoassemblies stable. For comparison, nanoassemblies consisted of P123 and octadecyl chain modified MSN with or without disulfide bond were prepared, which were denoted as PSMSN and PMSN respectively. Disulfide bond was expected to endow the system with redox-responsiveness to enhance the therapeutic effect meanwhile decrease toxicity. A series of experiments including characterization of the nanoparticles, in vitro drug release, cell uptake and cellular drug release, in vitro cytotoxicity, cell migration and biodistribution of the nanoparticles were carried out. Compared with PMSN, PSMSN displayed redox-responsive drug release property not only in in vitro release text, but also on the cellular level. In addition, cell migration experiments proved that the coating of P123 endowed the system with the ability of anti-metastasis. The accumulation of P123 in tumor was enhanced after coating on MSN by virtue of the "EPR" effect of nanoparticles compared with the solution form. . © 2018 IOP Publishing Ltd.

  18. 7-dehydrocholesterol efficiently supports Ret signaling in a mouse model of Smith-Opitz-Lemli syndrome

    PubMed Central

    Gou-Fàbregas, Myriam; Macià, Anna; Anerillas, Carlos; Vaquero, Marta; Jové, Mariona; Jain, Sanjay; Ribera, Joan; Encinas, Mario

    2016-01-01

    Smith-Lemli-Opitz syndrome (SLOS) is a rare disorder of cholesterol synthesis. Affected individuals exhibit growth failure, intellectual disability and a broad spectrum of developmental malformations. Among them, renal agenesis or hypoplasia, decreased innervation of the gut, and ptosis are consistent with impaired Ret signaling. Ret is a receptor tyrosine kinase that achieves full activity when recruited to lipid rafts. Mice mutant for Ret are born with no kidneys and enteric neurons, and display sympathetic nervous system defects causing ptosis. Since cholesterol is a critical component of lipid rafts, here we tested the hypothesis of whether the cause of the above malformations found in SLOS is defective Ret signaling owing to improper lipid raft composition or function. No defects consistent with decreased Ret signaling were found in newborn Dhcr7−/− mice, or in Dhcr7−/− mice lacking one copy of Ret. Although kidneys from Dhcr7−/− mice showed a mild branching defect in vitro, GDNF was able to support survival and downstream signaling of sympathetic neurons. Consistently, GFRα1 correctly partitioned to lipid rafts in brain tissue. Finally, replacement experiments demonstrated that 7-DHC efficiently supports Ret signaling in vitro. Taken together, our findings do not support a role of Ret signaling in the pathogenesis of SLOS. PMID:27334845

  19. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles.

    PubMed

    Tu, Thomas; Budzinska, Magdalena A; Vondran, Florian W R; Shackel, Nicholas A; Urban, Stephan

    2018-02-07

    Chronic infection by the Hepatitis B Virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (cccDNA), integration of HBV DNA into the host cell genome is regularly observed in the liver of infected patients. While reported as a pro-oncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well-understood, chiefly due to the lack of in vitro infection models that have detectable integration events. Here, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10000 cells, with the most consistent detection in Huh7-NTCP cells. Integration rate remained stable between 3 and 9 days post-infection. HBV DNA integration was efficiently blocked by treatment with 200nM of the HBV entry inhibitor Myrcludex B, but not with 10μM Tenofovir, 100U Interferon alpha, or 1μM of the capsid assembly inhibitor GLS4. This suggests integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration. Importance Hepatitis B Virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer formation and persistence of virus infection. However, when and the mechanism(s) by which HBV DNA integration occurs is not clear. Here, we have developed and characterized an in vitro system to reliably detect HBV DNA integrations that result from a true HBV infection event and that closely resemble those found in patient tissues. Using this model, we show that integration already occurs when the infection is first established. Importantly, we provide here a system to analyze molecular factors involved in HBV integration, which can be used to develop strategies to halt its formation. Copyright © 2018 American Society for Microbiology.

  20. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 1: method parameterization and comparison of in vitro digestion profiles across a range of representative formulations.

    PubMed

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Porter, Christopher J H; Pouton, Colin W

    2012-09-01

    The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation. Copyright © 2012 Wiley Periodicals, Inc.

  1. Fold or hold: experimental evolution in vitro

    PubMed Central

    Collins, S; Rambaut, A; Bridgett, S J

    2013-01-01

    We introduce a system for experimental evolution consisting of populations of short oligonucleotides (Oli populations) evolving in a modified quantitative polymerase chain reaction (qPCR). It is tractable at the genetic, genomic, phenotypic and fitness levels. The Oli system uses DNA hairpins designed to form structures that self-prime under defined conditions. Selection acts on the phenotype of self-priming, after which differences in fitness are amplified and quantified using qPCR. We outline the methodological and bioinformatics tools for the Oli system here and demonstrate that it can be used as a conventional experimental evolution model system by test-driving it in an experiment investigating adaptive evolution under different rates of environmental change. PMID:24003997

  2. Potentiodynamic Corrosion Testing.

    PubMed

    Munir, Selin; Pelletier, Matthew H; Walsh, William R

    2016-09-04

    Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.

  3. In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes.

    PubMed

    Ahmed, Farrukh Rafiq; Shoaib, Muhammad Harris; Azhar, Mudassar; Um, Soong Ho; Yousuf, Rabia Ismail; Hashmi, Shahkamal; Dar, Ahsana

    2015-11-01

    Halloysite is a clay mineral with chemical similarity to kaolin, a pharmaceutical ingredient. It consists of mainly aluminosilicate nanotubular particles in the size range of ∼ 200-1000 nm. Many studies have tried to empirically explore this novel clay for its potential in drug delivery systems but no work has yet studied its cytotoxicity from the perspective of oral drug delivery system. In this study, the halloysite nanotubes (HNTs) were subjected to size distribution analyses, which reveal more than 50% of nanotubes in the size range of 500 nm and rest mainly in the sub micrometer range. HNTs were then evaluated for in-vitro cytotoxicity against HCT116 (colorectal carcinoma) and HepG2 (hepatocellular carcinoma) cells which represent the earliest entry point and the first accumulating organ, respectively, for nanoparticles en-route to systemic circulation after oral delivery. Moreover, HNTs were tested for their cytogenetic toxicity against human peripheral blood lymphocytes. Both these results collectively indicated that HNTs are generally safe at practical concentrations of excipients for oral dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Pharmacokinetics of the Novel, Selective, Non-steroidal Mineralocorticoid Receptor Antagonist Finerenone in Healthy Volunteers: Results from an Absolute Bioavailability Study and Drug-Drug Interaction Studies In Vitro and In Vivo.

    PubMed

    Heinig, Roland; Gerisch, Michael; Engelen, Anna; Nagelschmitz, Johannes; Loewen, Stephanie

    2018-05-19

    Finerenone is a selective, non-steroidal mineralocorticoid receptor antagonist. In vivo and in vitro studies were performed to assess absolute bioavailability of finerenone, the effect of metabolic enzyme inhibitors on the pharmacokinetics of finerenone and its metabolites, the quantitative contribution of the involved enzymes cytochrome P450 (CYP) 3A4 and CYP2C8 and the relevance of gut wall versus liver metabolism. The pharmacokinetics, safety and tolerability of finerenone (1.25-10 mg orally or 0.25-1.0 mg intravenously) were evaluated in healthy male volunteers in four crossover studies. Absolute bioavailability was assessed in volunteers receiving finerenone orally and by intravenous infusion (n = 15) and the effects of erythromycin (n = 15), verapamil (n = 13) and gemfibrozil (n = 16) on finerenone pharmacokinetics were investigated. Finerenone was also incubated with cryopreserved human hepatocytes in vitro in the presence of erythromycin, verapamil or gemfibrozil. Finerenone absolute bioavailability was 43.5% due to first-pass metabolism in the gut wall and liver. The geometric mean AUC 0-∞ ratios of finerenone (drug + inhibitor/drug alone) were 3.48, 2.70 and 1.10 with erythromycin, verapamil and gemfibrozil, respectively. The contribution ratio of CYP3A4 to the metabolic clearance of finerenone derived from these values was 0.88-0.89 and was consistent with estimations based on in vitro data, with the remaining metabolic clearance due to CYP2C8 involvement. Finerenone is predominantly metabolized by CYP3A4 in the gut wall and liver. Increases in systemic exposure upon concomitant administration of inhibitors of this isoenzyme are predictable and consistent with in vitro data. Inhibition of CYP2C8, the second involved metabolic enzyme, has no relevant effect on finerenone in vivo.

  5. Evaluation of an in vitro system to simulate equine foregut digestion and the influence of acidity on protein and fructan degradation in the horse's stomach.

    PubMed

    Strauch, S; Wichert, B; Greef, J M; Hillegeist, D; Zeyner, A; Liesegang, A

    2017-06-01

    The aim of this study was to improve an in vitro system in order to gather optimized information on the digestion of different forages in the horse's upper gastrointestinal tract. Therefore, foregut digestion of several forages was simulated in vitro (Part 1). The effect of different pH values on in vitro fructan degradation of two selected grasses (Part 2) was tested subsequently. Part 1: We hypothesized that our system produces representative results simulating digestive processes in the upper alimentary tract, but neglects microbial fermentation. In vitro digestion of six forages (grass mixture for horses, grass mixture for cows (GMC), tall fescue, English perennial ryegrass (ER), white clover, lucerne) was performed in two phases with pepsin and pancreatin. The results are consistent with current data from in vivo studies, including a degradation of crude protein and monosaccharides as well as a relative increase in fibres. Interestingly, a loss of fructan was measured in two feedstuffs (ER/GMC: 4.1/4.4% DM fructan before and 0.59/0.00% DM after simulated foregut digestion). Part 2: As fructans are thought not to be fragmented by digestive enzymes, another hypothesis was developed: acidic hydrolysis leads to a degradation of fructans. To evaluate the influence of gastric pH on the digestion of fructan and protein, different pH values (2, 3 and 4) were adjusted in a second series of in vitro foregut digestion trials with ER and GMC. As expected, the highest degradation of protein was seen at the lowest pH (protein in ER/GMC at pH 2: 6.11/8.28% DM and at pH 4: 7.73/10.64% DM), whereas fructan degradation was highest at pH 4 (fructan in ER/GMC at pH 2: 1.63/1.95% DM and at pH 4: 1.31/0.91% DM). We presume that not only acidic hydrolysis but also plant enzymes cause the loss of fructans in an acidic environment. Journal of Animal Physiology and Animal Nutrition © 2017 Blackwell Verlag GmbH.

  6. Ovine recombinant PrP as an inhibitor of ruminant prion propagation in vitro.

    PubMed

    Workman, Rob G; Maddison, Ben C; Gough, Kevin C

    2017-07-04

    Prion diseases are fatal and incurable neurodegenerative diseases of humans and animals. Despite years of research, no therapeutic agents have been developed that can effectively manage or reverse disease progression. Recently it has been identified that recombinant prion proteins (rPrP) expressed in bacteria can act as inhibitors of prion replication within the in vitro prion replication system protein misfolding cyclic amplification (PMCA). Here, within PMCA reactions amplifying a range of ruminant prions including distinct Prnp genotypes/host species and distinct prion strains, recombinant ovine VRQ PrP displayed consistent inhibition of prion replication and produced IC50 values of 122 and 171 nM for ovine scrapie and bovine BSE replication, respectively. These findings illustrate the therapeutic potential of rPrPs with distinct TSE diseases.

  7. The role of management in an in vitro fertilization practice.

    PubMed

    Masler, Steve; Strickland, Robert R

    2013-05-01

    An in vitro fertilization (IVF) practice is an enterprise. Like any enterprise, it has management that plays a major role, forming the structure, framework, and components that make the practice viable. Management of an IVF practice consists of two key teams: the fertility team and the management team. Management activities of the teams fall into eight core areas: business operations, financial, human resources, information technology, organizational governance, risk management, patient care systems, and quality management. Shady Grove Fertility Centers and Huntington Reproductive Center are two examples of professionally managed large fertility practices, one managed mostly centrally and the other largely managed in a decentralized way. Management is what takes a physician's IVF practice and converts it to a professional enterprise. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  8. Validation of in vitro assays in three-dimensional human dermal constructs.

    PubMed

    Idrees, Ayesha; Chiono, Valeria; Ciardelli, Gianluca; Shah, Siegfried; Viebahn, Richard; Zhang, Xiang; Salber, Jochen

    2018-05-01

    Three-dimensional cell culture systems are urgently needed for cytocompatibility testing of biomaterials. This work aimed at the development of three-dimensional in vitro dermal skin models and their optimization for cytocompatibility evaluation. Initially "murine in vitro dermal construct" based on L929 cells was generated, leading to the development of "human in vitro dermal construct" consisting of normal human dermal fibroblasts in rat tail tendon collagen type I. To assess the viability of the cells, different assays CellTiter-Blue ® , RealTime-Glo ™ MT, and CellTiter-Glo ® (Promega) were evaluated to optimize the best-suited assay to the respective cell type and three-dimensional system. Z-stack imaging (Live/Dead and Phalloidin/DAPI-Promokine) was performed to visualize normal human dermal fibroblasts inside matrix revealing filopodia-like morphology and a uniform distribution of normal human dermal fibroblasts in matrix. CellTiter-Glo was found to be the optimal cell viability assay among those analyzed. CellTiter-Blue reagent affected the cell morphology of normal human dermal fibroblasts (unlike L929), suggesting an interference with cell biological activity, resulting in less reliable viability data. On the other hand, RealTime-Glo provided a linear signal only with a very low cell density, which made this assay unsuitable for this system. CellTiter-Glo adapted to three-dimensional dermal construct by optimizing the "shaking time" to enhance the reagent penetration and maximum adenosine triphosphate release, indicating 2.4 times higher viability value by shaking for 60 min than for 5 min. In addition, viability results showed that cells were viable inside the matrix. This model would be further advanced with more layers of skin to make a full thickness model.

  9. Generation of mature T cells from human hematopoietic stem and progenitor cells in artificial thymic organoids.

    PubMed

    Seet, Christopher S; He, Chongbin; Bethune, Michael T; Li, Suwen; Chick, Brent; Gschweng, Eric H; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B; Baltimore, David; Crooks, Gay M; Montel-Hagen, Amélie

    2017-05-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3 + TCR-αβ + single-positive CD8 + or CD4 + cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naive phenotypes, a diverse T cell receptor (TCR) repertoire and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ-encoding loci. ATOs provide a robust tool for studying human T cell differentiation and for the future development of stem-cell-based engineered T cell therapies.

  10. Generation of mature T cells from human hematopoietic stem/progenitor cells in artificial thymic organoids

    PubMed Central

    Seet, Christopher S.; He, Chongbin; Bethune, Michael T.; Li, Suwen; Chick, Brent; Gschweng, Eric H.; Zhu, Yuhua; Kim, Kenneth; Kohn, Donald B.; Baltimore, David; Crooks, Gay M.; Montel-Hagen, Amélie

    2017-01-01

    Studies of human T cell development require robust model systems that recapitulate the full span of thymopoiesis, from hematopoietic stem and progenitor cells (HSPCs) through to mature T cells. Existing in vitro models induce T cell commitment from human HSPCs; however, differentiation into mature CD3+TCRab+ single positive (SP) CD8+ or CD4+ cells is limited. We describe here a serum-free, artificial thymic organoid (ATO) system that supports highly efficient and reproducible in vitro differentiation and positive selection of conventional human T cells from all sources of HSPCs. ATO-derived T cells exhibited mature naïve phenotypes, a diverse TCR repertoire, and TCR-dependent function. ATOs initiated with TCR-engineered HSPCs produced T cells with antigen specific cytotoxicity and near complete lack of endogenous TCR Vβ expression, consistent with allelic exclusion of Vβ loci. ATOs provide a robust tool for studying human T cell development and stem cell based approaches to engineered T cell therapies. PMID:28369043

  11. The cutaneous bacterium Janthinobacterium lividum inhibits the growth of Trichophyton rubrum in vitro.

    PubMed

    Ramsey, Jeremy P; Mercurio, Albert; Holland, Jessica A; Harris, Reid N; Minbiole, Kevin P C

    2015-02-01

    Tinea pedis (athlete's foot) is a fungal infection that is both widespread and challenging to treat. Standard treatments consist of topical and systemic therapies of antifungal agents, such as miconazole, itraconazole, and terbinafine. The extended nature of topical therapy and the toxicity of long-term systemic therapy limit the utility of current treatments. An alternate approach relies on an understanding of bacterial-fungal interactions. Specifically, a probiotic antifungal bacterium such as Janthinobacterium lividum can counter infection; Janthinobacterium is a major constituent of the human skin microbiota. Janthinobacterium lividum has been shown to ameliorate the effects of the cutaneous fungal disease chytridiomycosis in a vertebrate species (Rana muscosa). Dual-culture plate challenge assays were performed using J. lividum and Trichophyton rubrum, the leading cause of athlete's foot. In all cases, T. rubrum colonies grew significantly smaller when co-cultured with J. lividum. These in vitro results suggest that J. lividum merits further investigation as a human cutaneous probiotic. © 2013 The International Society of Dermatology.

  12. Experiments in clustered neuronal networks: A paradigm for complex modular dynamics

    NASA Astrophysics Data System (ADS)

    Teller, Sara; Soriano, Jordi

    2016-06-01

    Uncovering the interplay activity-connectivity is one of the major challenges in neuroscience. To deepen in the understanding of how a neuronal circuit shapes network dynamics, neuronal cultures have emerged as remarkable systems given their accessibility and easy manipulation. An attractive configuration of these in vitro systems consists in an ensemble of interconnected clusters of neurons. Using calcium fluorescence imaging to monitor spontaneous activity in these clustered neuronal networks, we were able to draw functional maps and reveal their topological features. We also observed that these networks exhibit a hierarchical modular dynamics, in which clusters fire in small groups that shape characteristic communities in the network. The structure and stability of these communities is sensitive to chemical or physical action, and therefore their analysis may serve as a proxy for network health. Indeed, the combination of all these approaches is helping to develop models to quantify damage upon network degradation, with promising applications for the study of neurological disorders in vitro.

  13. Prespacer processing and specific integration in a Type I-A CRISPR system

    PubMed Central

    Rollie, Clare; Graham, Shirley; Rouillon, Christophe

    2018-01-01

    Abstract The CRISPR–Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3′ ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3′ ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR–Cas elements and host proteins across CRISPR types. PMID:29228332

  14. Formulation development of allopurinol suppositories and injectables.

    PubMed

    Lee, D K; Wang, D P

    1999-11-01

    Allopurinol was formulated into injectable and suppository dosage forms. The injectable formulation was prepared by dissolving allopurinol in a cosolvent system consisting of dimethyl sulfoxide (DMSO) and propylene glycol (v/v = 50/50). The stability of allopurinol in the cosolvent system was studied under accelerated storage conditions, and results indicate first-order degradation kinetics with an activation energy of 24.3 kcal/mol. The development of suppository dosage forms was performed by formulating allopurinol with polyethylene glycol (PEG) mixtures of different molecular weights. In vitro release profiles of suppositories formulated with different polyethylene bases were obtained in the pH 7.4 buffer solution using the USP 23 paddle method at 100 rpm. Results indicate that the release rate of the suppository formulations containing PEG 1500/PEG 4000 at the ratio (w/w) of 2.5/10 to 10/2.5 appeared to be similar. However, the addition of sodium lauryl sulfate in the suppository decreased the release rate of allopurinol significantly. A future study to establish in vitro/in vivo correlation (iv/ivc) is suggested.

  15. In-vitro and in-vivo characterization of a buprenorphine delivery system.

    PubMed

    Kleppner, Sofie R; Patel, Raj; McDonough, Joseph; Costantini, Lauren C

    2006-03-01

    Buprenorphine is a mu-opioid receptor partial agonist with enhanced safety and comparable efficacy to methadone for treatment of opioid dependence. The sublingual formulation of buprenorphine, approved for treatment of opioid dependence, produces variable buprenorphine blood levels and requires frequent dosing that limits patient compliance. To achieve stable buprenorphine levels that may improve patient outcome, an implantable sustained buprenorphine delivery system was developed. Each implant consists of ethylene vinyl acetate copolymer and 90 mg buprenorphine HCl, and measures 26 mm in length and 2.4 mm in diameter. Steady-state release in-vitro was 0.5 mg/implant/day. In-vivo pharmacokinetics and safety were examined for up to 52 weeks in beagle dogs receiving 8, 16 or 24 subcutaneous implants. Plasma buprenorphine concentrations correlated with the number of implants administered. Peak buprenorphine concentrations were generally reached within 24 h after implantation. Steady-state plasma levels were attained between 3 and 8 weeks, and were maintained for study duration, with a calculated mean release rate of 0.14+/-0.04 mg/implant/day. There were no test-article-related adverse effects. This delivery system can provide long-term stable systemic buprenorphine levels, and may increase patient compliance, thereby improving outcome for opioid-dependent patients.

  16. Electrophysiology of Hypothalamic Magnocellular Neurons In vitro: A Rhythmic Drive in Organotypic Cultures and Acute Slices.

    PubMed

    Israel, Jean-Marc; Oliet, Stéphane H; Ciofi, Philippe

    2016-01-01

    Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

  17. In-vitro corneal transparency measuring system

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; da Costa Vieira, Marcelo A.; Isaac, Flavio; Chiaradia, Caio; Faria de Sousa, Sidney J.

    2001-06-01

    A system for measuring the average corneal transparency of preserved corneas has been developed in order to provide a more accurate and standard report of the corneal tissue. The donated cornea transparency is one of the features to be analyzed previously to its indication for the transplant. The small portable system consists of two main parts: the optical and the electronic parts. The optical system consists of a white light, lenses and pin-holes that collimate white light beams that illuminates the cornea in its preservative medium. The light that passes through the cornea is detected by a resistive detector and the average corneal transparency is shown in a display. In order to obtain just the tissue transparency, the electronic circuit was built in a way that there is a baseline input of the preservative medium, previous to the measurement of the corneal transparency. Manipulating the system consists of three steps: (1) Adjusting the zero percentage in the absence of light (at this time the detectors in the dark); (2) Placing the preservative medium in the system and adjusting the 100% value (this is the baseline input); (3) Preserving the cornea and placing it in the system. The system provides the tissue transparency. The system is connected to an endothelium evaluation system for Slit Lamp, that we have developed, and statistics about the relationship of the corneal transparency and density of the endothelial cells will be provided in the next years. The system is being used in a public Eye Bank in Brasil.

  18. In vitro cultured primary roots derived from stem segments of cassava (Manihot esculenta) can behave like storage organs.

    PubMed

    Medina, Ricardo D; Faloci, Mirta M; Gonzalez, Ana M; Mroginski, Luis A

    2007-03-01

    Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0.54 microM 1-naphthaleneacetic acid and 0.44 microM 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization.

  19. In vitro model of production of antibodies; a new approach to reveal the presence of key bacteria in polymicrobial environments.

    PubMed

    Wu, Chongcong; Nakka, Sravya; Mansouri, Sepahdar; Bengtsson, Torbjörn; Nayeri, Tayeb; Nayeri, Fariba

    2016-09-09

    There is a rapid emergence of multiple resistant gram-negative bacteria due to overuse of antibiotics in the treatment of infections. Biofilms consist of polymicrobial communities that survive the host's defense system. The key bacteria in biofilms are slow growing and support an attachment and rapid growth of other microorganisms. Current antimicrobial strategies often fail due to poor diagnosis of key pathogens in biofilms. The study aims to develop anti-bacterial human antibodies in vitro from patients who had recently undergone a systemic infection by pathogenic bacteria and to use these antibodies as a tool for detecting bacteria in biofilms. Lymphocytes were separated from whole blood of patients (n = 10) and stimulated with heat-killed bacteria to produce antibodies in vitro. The specificity of antibodies in recognizing the bacteria against which they were directed was evaluated by surface plasmon resonance system (SPR) and electron microscopy. The ulcer secretions from patients with chronic and acute leg ulcers and healthy controls were analyzed by the SPR system and the results were compared with culture studies. The produced antibodies recognized bacteria with high sensitivity (SPR). The antibodies against Enterococcus fecalis bound specifically to the microorganism in a bacterial co-culture that was visualized by electron microscopy. In the present work, a method for producing specific antibodies against bacteria is introduced to recognize bacterial components in body fluids of patients suffering from pathogenic biofilms. This diagnostic technique may be most useful in clinical microbiology and in the choice of antibiotics in the treatment of serious infections.

  20. NIR and MR imaging supported hydrogel based delivery system for anti-TNF alpha probiotic therapy of IBD

    NASA Astrophysics Data System (ADS)

    Janjic, Jelena M.; Berlec, Ales; Bagia, Christina; Liu, Lu S.; Jeric, Irenej; Gach, Michael; Janjic, Bratislav M.; Strukelj, Borut

    2016-03-01

    Current treatment of inflammatory bowel disease (IBD) is largely symptomatic and consists of anti-inflammatory agents, immune-suppressives or antibiotics, whereby local luminal action is preferred to minimize systemic side-effects. Recently, anti-TNFα therapy has shown considerable success and is now being routinely used. Here we present a novel approach of using perfluorocarbon (PFC) nanoemulsion containing hydrogels (nanoemulgels) as imaging supported delivery systems for anti-TNF alpha probiotic delivery in IBD. To further facilitate image-guided therapy a food-grade lactic acid bacterium Lactococcus lactis capable of TNFα-binding was engineered to incorporate infrared fluorescent protein (IRFP). This modified bacteria was then incorporated into novel PFC nanoemulgels. The nanoemulgels presented here are designed to deliver locally anti-TNFα probiotic in the lower colon and rectum and provide dual imaging signature of gel delivery (MRI) across the rectum and lower colon and bacteria release (NIR). NIR imaging data in vitro demonstrates high IRFP expressing and TNFα-binding bacteria loading in the hydrogel and complete release in 3 hours. Stability tests indicate that gels remain stable for at least 14 days showing no significant change in droplet size, zeta potential and pH. Flow cytometry analyses demonstrate the NIRF expressing bacteria L. lactis binds TNFα in vitro upon release from the gels. Magnetic resonance and near-infrared imaging in vitro demonstrates homogeneity of hydrogels and the imaging capacity of the overall formulation.

  1. The impact of supersaturation level for oral absorption of BCS class IIb drugs, dipyridamole and ketoconazole, using in vivo predictive dissolution system: Gastrointestinal Simulator (GIS).

    PubMed

    Tsume, Yasuhiro; Matsui, Kazuki; Searls, Amanda L; Takeuchi, Susumu; Amidon, Gregory E; Sun, Duxin; Amidon, Gordon L

    2017-05-01

    The development of formulations and the assessment of oral drug absorption for Biopharmaceutical Classification System (BCS) class IIb drugs is often a difficult issue due to the potential for supersaturation and precipitation in the gastrointestinal (GI) tract. The physiological environment in the GI tract largely influences in vivo drug dissolution rates of those drugs. Thus, those physiological factors should be incorporated into the in vitro system to better assess in vivo performance of BCS class IIb drugs. In order to predict oral bioperformance, an in vitro dissolution system with multiple compartments incorporating physiologically relevant factors would be expected to more accurately predict in vivo phenomena than a one-compartment dissolution system like USP Apparatus 2 because, for example, the pH change occurring in the human GI tract can be better replicated in a multi-compartmental platform. The Gastrointestinal Simulator (GIS) consists of three compartments, the gastric, duodenal and jejunal chambers, and is a practical in vitro dissolution apparatus to predict in vivo dissolution for oral dosage forms. This system can demonstrate supersaturation and precipitation and, therefore, has the potential to predict in vivo bioperformance of oral dosage forms where this phenomenon may occur. In this report, in vitro studies were performed with dipyridamole and ketoconazole to evaluate the precipitation rates and the relationship between the supersaturation levels and oral absorption of BCS class II weak base drugs. To evaluate the impact of observed supersaturation levels on oral absorption, a study utilizing the GIS in combination with mouse intestinal infusion was conducted. Supersaturation levels observed in the GIS enhanced dipyridamole and ketoconazole absorption in mouse, and a good correlation between their supersaturation levels and their concentration in plasma was observed. The GIS, therefore, appears to represent in vivo dissolution phenomena and demonstrate supersaturation and precipitation of dipyridamole and ketoconazole. We therefore conclude that the GIS has been shown to be a good biopredictive tool to predict in vivo bioperformance of BCS class IIb drugs that can be used to optimize oral formulations. Copyright © 2017. Published by Elsevier B.V.

  2. Metabolite formation kinetics and intrinsic clearance of phenacetin, tolbutamide, alprazolam, and midazolam in adenoviral cytochrome P450-transfected HepG2 cells and comparison with hepatocytes and in vivo.

    PubMed

    Donato, M Teresa; Hallifax, David; Picazo, Laura; Castell, José V; Houston, J Brian; Gomez-Lechón, M José; Lahoz, Agustin

    2010-09-01

    Cryopreserved human hepatocytes and other in vitro systems often underpredict in vivo intrinsic clearance (CL(int)). The aim of this study was to explore the potential utility of HepG2 cells transduced with adenovirus vectors expressing a single cytochrome P450 enzyme (Ad-CYP1A2, Ad-CYP2C9, or Ad-CYP3A4) for metabolic clearance predictions. The kinetics of metabolite formation from phenacetin, tolbutamide, and alprazolam and midazolam, selected as substrates probes for CYP1A2, CYP2C9, and CYP3A4, respectively, were characterized in this in vitro system. The magnitude of the K(m) or S(50) values observed in Ad-P450 cells was similar to those found in the literature for other human liver-derived systems. For each substrate, CL(int) (or CL(max)), values from Ad-P450 systems were scaled to human hepatocytes in primary culture using the relative activity factor (RAF) approach. Scaled Ad-P450 CL(int) values were approximately 3- to 6-fold higher (for phenacetin O-deethylation, tolbutamide 4-hydroxylation, and alprazolam 4-hydroxyaltion) or lower (midazolam 1'-hydroxylation) than those reported for human cryopreserved hepatocytes in suspension. Comparison with the in vivo data reveals that Ad-P450 cells provide a favorable prediction of CL(int) for the substrates studied (in a range of 20-200% in vivo observed CL(int)). This is an improvement compared with the consistent underpredictions (<10-50% in in vivo observed CL(int)) found in cryopreserved hepatocyte studies with the same substrates. These results suggest that the Ad-P450 cell is a promising in vitro system for clearance predictions of P450-metabolized drugs.

  3. Shear Bond Strength of Superficial, Intermediate and Deep Dentin In Vitro with Recent Generation Self-etching Primers and Single Nano Composite Resin.

    PubMed

    Singh, Kulshrest; Naik, Rajaram; Hegde, Srinidhi; Damda, Aftab

    2015-01-01

    This in vitro study is intended to compare the shear bond strength of recent self-etching primers to superficial, intermediate, and deep dentin levels. All teeth were sectioned at various levels and grouped randomly into two experimental groups and two control groups having three subgroups. The experimental groups consisted of two different dentin bonding system. The positive control group consisted of All Bond 2 and the negative control group was without the bonding agent. Finally, the specimens were subjected to shear bond strength study under Instron machine. The maximum shear bond strengths were noted at the time of fracture. The results were statistically analyzed. Comparing the shear bond strength values, All Bond 2 (Group III) demonstrated fairly higher bond strength values at different levels of dentin. Generally comparing All Bond 2 with the other two experimental groups revealed highly significant statistical results. In the present investigation with the fourth generation, higher mean shear bond strength values were recorded compared with the self-etching primers. When intermediate dentin shear bond strength was compared with deep dentin shear bond strength statistically significant results were found with Clearfil Liner Bond 2V, All Bond 2 and the negative control. There was a statistically significant difference in shear bond strength values both with self-etching primers and control groups (fourth generation bonding system and without bonding system) at superficial, intermediate, and deep dentin. There was a significant fall in bond strength values as one reaches deeper levels of dentin from superficial to intermediate to deep.

  4. A New Low-frequency Sonophoresis System Combined with Ultrasonic Motor and Transducer

    NASA Astrophysics Data System (ADS)

    Zhu, Pancheng; Peng, Hanmin; Yang, Jianzhi; Mao, Ting; Sheng, Juan

    2018-03-01

    Low frequency sonophoresis (LFS) is currently being attempted as a transdermal drug delivery method in clinical areas. However, it lacks both an effective control method and the equipment to satisfy the varying drug dosage requirements of individual patients. Herein, a novel method aimed at controlling permeability is proposed and developed, using a pressure control strategy which is based on an accurate, adjustable and non-invasive ultrasound transdermal drug delivery system in in vitro LFS. The system mainly consists of a lead screw linear ultrasonic motor and an ultrasonic transducer, in which the former offers pressure and the latter provides ultrasound wave in the liquid. The ultrasound can enhance non-invasive permeation and the pressure from the motor can control the permeability. The calculated and experimental results demonstrate that the maximum pressure on artificial skin is under the area with the maximum vibration amplitude of the ultrasonic transducer, and the total pressure consists of acoustic pressure from the transducer and approximate static pressure from the motor. Changing the static pressure from the ultrasonic motor can effectively control the non-invasive permeability, by adjusting the duty ratio or the amplitude of the motor’s driving voltage. In addition, the permeability control of calcein by thrust control is realized in 15 min, indicating the suitability of this method for application in accurate medical technology. The obtained results reveal that the issue of difficult permeability control can be addressed, using this control method in in vitro LFS to open up a route to the design of accurate drug delivery technology for individual patients.

  5. Synthesis and biochemical characterization of EGF receptor in a water-soluble membrane model system

    DOE PAGES

    Scharadin, Tiffany M.; He, Wei; Yiannakou, Yianni; ...

    2017-06-06

    ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) receptor tyrosine kinases are critical for tissue development and maintenance, and frequently become oncogenic when mutated or overexpressed. In vitro analysis of ErbB receptor kinases can be difficult because of their large size and poor water solubility. Here we report improved production and assembly of the correctly folded full-length EGF receptor (EGFR) into nanolipoprotein particles (NLPs). NLPs are ~10 nm in diameter discoidal cell membrane mimics composed of apolipoproteins surrounding a lipid bilayer. NLPs containing EGFR were synthesized via incubation of baculovirus-produced recombinant EGFR with apolipoprotein and phosphoplipids under conditions that favor self-assembly. Themore » resulting EGFR-NLPs were the correct size, formed dimers and multimers, had intrinsic autophosphorylation activity, and retained the ability to interact with EGFR-targeted ligands and inhibitors consistent with previously-published in vitro binding affinities. Lastly, we anticipate rapid adoption of EGFR-NLPs for structural studies of full-length receptors and drug screening, as well as for the in vitro characterization of ErbB heterodimers and disease-relevant mutants.« less

  6. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems

    PubMed Central

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J.; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K.V.; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-01-01

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients. PMID:27556862

  7. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  8. Synthesis and biochemical characterization of EGF receptor in a water-soluble membrane model system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharadin, Tiffany M.; He, Wei; Yiannakou, Yianni

    ErbB (Erythroblastic Leukemia Viral Oncogene Homolog) receptor tyrosine kinases are critical for tissue development and maintenance, and frequently become oncogenic when mutated or overexpressed. In vitro analysis of ErbB receptor kinases can be difficult because of their large size and poor water solubility. Here we report improved production and assembly of the correctly folded full-length EGF receptor (EGFR) into nanolipoprotein particles (NLPs). NLPs are ~10 nm in diameter discoidal cell membrane mimics composed of apolipoproteins surrounding a lipid bilayer. NLPs containing EGFR were synthesized via incubation of baculovirus-produced recombinant EGFR with apolipoprotein and phosphoplipids under conditions that favor self-assembly. Themore » resulting EGFR-NLPs were the correct size, formed dimers and multimers, had intrinsic autophosphorylation activity, and retained the ability to interact with EGFR-targeted ligands and inhibitors consistent with previously-published in vitro binding affinities. Lastly, we anticipate rapid adoption of EGFR-NLPs for structural studies of full-length receptors and drug screening, as well as for the in vitro characterization of ErbB heterodimers and disease-relevant mutants.« less

  9. Identification of fatty acid binding protein 4 as an adipokine that regulates insulin secretion during obesity

    PubMed Central

    Wu, Lindsay E.; Samocha-Bonet, Dorit; Whitworth, P. Tess; Fazakerley, Daniel J.; Turner, Nigel; Biden, Trevor J.; James, David E.; Cantley, James

    2014-01-01

    A critical feature of obesity is enhanced insulin secretion from pancreatic β-cells, enabling the majority of individuals to maintain glycaemic control despite adiposity and insulin resistance. Surprisingly, the factors coordinating this adaptive β-cell response with adiposity have not been delineated. Here we show that fatty acid binding protein 4 (FABP4/aP2) is an adipokine released from adipocytes under obesogenic conditions, such as hypoxia, to augment insulin secretion. The insulinotropic action of FABP4 was identified using an in vitro system that recapitulates adipocyte to β-cell endocrine signalling, with glucose-stimulated insulin secretion (GSIS) as a functional readout, coupled with quantitative proteomics. Exogenous FABP4 potentiated GSIS in vitro and in vivo, and circulating FABP4 levels correlated with GSIS in humans. Insulin inhibited FABP4 release from adipocytes in vitro, in mice and in humans, consistent with feedback regulation. These data suggest that FABP4 and insulin form an endocrine loop coordinating the β-cell response to obesity. PMID:24944906

  10. Zinc enhances temozolomide cytotoxicity in glioblastoma multiforme model systems.

    PubMed

    Toren, Amos; Pismenyuk, Tatyana; Yalon, Michal; Freedman, Shani; Simon, Amos J; Fisher, Tamar; Moshe, Itai; Reichardt, Juergen K V; Constantini, Shlomi; Mardor, Yael; Last, David; Guez, David; Daniels, Dianne; Assoulin, Moria; Mehrian-Shai, Ruty

    2016-11-15

    Temozolomide (TMZ) is an alkylating agent that has become the mainstay treatment of the most malignant brain cancer, glioblastoma multiforme (GBM). Unfortunately only a limited number of patients positively respond to it. It has been shown that zinc metal reestablishes chemosensitivity but this effect has not been tested with TMZ. Using both in vitro and in vivo experimental approaches, we investigated whether addition of zinc to TMZ enhances its cytotoxicity against GBM. In vitro cell viability analysis showed that the cytotoxic activity of TMZ was substantially increased with addition of zinc and this response was accompanied by an elevation of p21, PUMA, BAX and Caspase-3 expression and a decrease in growth fraction as manifested by low ki67 and lower colony formation. Analysis of GBM as intracranial xenografts in athymic mice and administration of concurrent TMZ and zinc yielded results consistent with those of the in vitro analyses. The co-treatment resulted in significant reduction in tumor volume in TMZ/zinc treated mice relative to treatment with TMZ alone. Our results suggest that zinc may serve as a potentiator of TMZ therapy in GBM patients.

  11. Formulation, development, and evaluation of floating pulsatile drug delivery system of atenolol.

    PubMed

    Jagdale, Swati C; Sali, Monali S; Barhate, Ajay L; Kuchekar, Bhanudas S; Chabukswar, Aniruddha R

    2013-01-01

    The objective of this work was to develop and evaluate a floating-pulsatile drug delivery of atenolol. The floating-pulsatile concept was applied to increase the gastric residence of the dosage form by having lag phase followed by a burst release. The system was generated which consisted of three different parts: a core tablet, containing the active ingredient; an erodible outer shell; and a top cover buoyant layer. The dry, coated tablet consists in a drug-containing core, coated by a hydrophilic erodible polymer responsible for a lag phase in the onset of pulsatile release. The buoyant layer, prepared with hydroxypropyl methylcellulose (HPMC) K100 M, citric acid, and sodium bicarbonate, provides buoyancy to increase the retention of the oral dosage form in the stomach. The effect of the hydrophilic erodible polymer characteristics on the lag time and drug release was investigated. Developed formulations were evaluated for their physical properties in vitro release as well as in vivo behavior. The results showed that K3 (180 mg of HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulation, with lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively. Floating time was controlled by the quantity and composition of the buoyant layer. In-vitro results point out the capability of the system with its prolonged residence of the tablets in the stomach and release of drug after a programmed lag time. This was confirmed by in vivo x-ray technique. The objective of the present work was to develop a floating-pulsatile oral drug delivery system of atenolol with addition of hydroxylpropyl methylcellulose (HPMC) K100 M, HPMC K4 M, and HPMC E15 LV in different ratios with citric acid and sodium bicarbonate as gas-forming agents. The system consist of three different parts: a core tablet, containing the active ingredient; a bottom layer that erodes; and a top cover floating layer. Atenolol, a β-blocker, is prescribed widely in diverse cardiovascular diseases, for example, hypertension, angina pectoris, arrhythmias, and myocardial infarction. Developed formulations were evaluated for their physical properties and vitro release as well as in vivo behavior. The results showed that K3 (180 mg HPMC K4 M) and K6 (290 mg of HPMC E15 LV) with a buoyant layer were the best formulations with the lag times of 5.2 ± 0.1 h and 4.1 ± 0.2 h, respectively, and were found to be the best choice for manufacturing tablets.

  12. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo.

    PubMed

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg H W

    2009-10-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc.

  13. Lack of inhibitory effects of the anti-fibrotic drug imatinib on endothelial cell functions in vitro and in vivo

    PubMed Central

    Venalis, Paulius; Maurer, Britta; Akhmetshina, Alfiya; Busch, Nicole; Dees, Clara; Stürzl, Michael; Zwerina, Jochen; Jüngel, Astrid; Gay, Steffen; Schett, Georg; Distler, Oliver; Distler, Jörg HW

    2009-01-01

    Systemic sclerosis (SSc) is a systemic autoimmune disease that is characterized by microangiopathy with progressive loss of capillaries and tissue fibrosis. Imatinib exerts potent anti-fibrotic effects and is currently evaluated in clinical trials. The aim of the present study was to exclude that the anti-fibrotic effects of imatinib are complicated by inhibitory effects on endothelial cell functions, which might augment vascular disease in SSc. Endothelial cells and mice were treated with pharmacologically relevant concentrations of imatinib. The expression of markers of vascular activation was assessed with real-time PCR. Proliferation was analysed with the cell counting experiments and the MTT assay. Apoptosis was quantified with caspase 3 assays, annexin V in vitro and with TUNEL staining in vivo. Migration was studied with scratch and transwell assays. Tube forming was investigated with the matrigel assay. Imatinib did not alter the expression of markers of vascular activation. Imatinib did not increase the percentage of annexin V positive cells or the activity of caspase 3. No reduction in proliferation or metabolic activity of endothelial cells was observed. Imatinib did not affect migration of endothelial cells and did not reduce the formation of capillary tubes. Consistent with the in vitro data, no difference in the number of apoptotic endothelial cells was observed in vivo in mice treated with imatinib. Imatinib does not inhibit activation, viability, proliferation, migration or tube forming of endothelial cells in vitro and in vivo. Thus, treatment with imatinib might not augment further endothelial cell damage in SSc. PMID:18774958

  14. Enhanced percutaneous permeability of diclofenac using a new U-type dilutable microemulsion.

    PubMed

    Shevachman, Marina; Garti, Nissim; Shani, Arnon; Sintov, Amnon C

    2008-04-01

    Enhanced systemic absorption in vivo and percutaneous penetration in vitro was demonstrated after transdermal administration of diclofenac sodium formulated in U-type microemulsion. Diclofenac sodium was solubilized in a typical four-component system consisting of an oil, polyoxyethylene-10EO-oleyl alcohol (Brij 96V) as the surfactant, and 1-hexanol along water dilution line W46 (40 wt % surfactant and 60 wt % oil phase before water titration). Viscosity and small angle X-ray scattering measurements have evidenced bicontinuous structures within water fractions of 0.25 and 0.5 along the dilution line. Self-diffusion NMR studies showed that drug molecules accumulated in the interfacial film and, to some extent, dissolved in the oil. Relative to a commercial macro-emulsion cream (Voltaren Emulgel), microemulsions containing paraffin oil or isopropyl myristate increased the in vivo transdermal penetration rate of diclofenac by two order of magnitude, whereas the rat plasma levels were increased by one order of magnitude. The in vitro data obtained from excised rat skin were comparable to the in vivo results, but suffered from discrepancies from the ideal in vivo-in vitro correlation, which might be explained by optimal in vitro conditions of perfusion and hydration. It has also been found that when jojoba oil is formulated as the oil phase in the microemulsion, the penetration rate of the drug decreases significantly. Based on the three-dimensional structure of jojoba oil, the wax is presumed to prevent the drug from being freely diffused into the skin while migrating from the interfacial film into the continuous oil phase.

  15. [Immortalization of erythroid progenitors for in vitro large-scale red cell production].

    PubMed

    Caulier, A; Guyonneau Harmand, L; Garçon, L

    2017-09-01

    Population ageing and increase in cancer incidence may lead to a decreased availability of red blood cell units. Thus, finding an alternative source of red blood cells is a highly relevant challenge. The possibility to reproduce in vitro the human erythropoiesis opens a new era, particularly since the improvement in the culture systems allows to produce erythrocytes from induced-Pluripotent Stem Cells (iPSCs), or CD34 + Hematopoietic Stem Cells (HSCs). iPSCs have the advantage of in vitro self-renewal, but lead to poor amplification and maturation defects (high persistence of nucleated erythroid precursors). Erythroid differentiation from HSC allows a far better amplification and adult-like hemoglobin synthesis. But the inability of these progenitors to self-renew in vitro remains a limit in their use as a source of stem cells. A major improvement would consist in immortalizing these erythroid progenitors so that they could expand indefinitively. Inducible transgenesis is the first way to achieve this goal. To date, the best immortalized-cell models involve strong oncogenes induction, such as c-Myc, Bcl-xL, and mostly E6/E7 HPV16 viral oncoproteins. However, the quality of terminal differentiation of erythroid progenitors generated by these oncogenes is not optimal yet and the long-term stability of such systems is unknown. Moreover, viral transgenesis and inducible expression of oncogenes raise important problems in term of safety, since the enucleation rate is not 100% and no nucleated cells having replicative capacities should be present in the final product. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Development of low erosive carbonated fruit drinks. 1. Evaluation of two experimental orange drinks in vitro and in situ.

    PubMed

    Hunter, M L; Hughes, J A; Parker, D M; West, N X; Newcombe, R G; Addy, M

    2003-05-01

    To determine the in vitro erosive potential and in situ erosive effect of two new formulation low calorie carbonated orange drinks with that of two conventional diet products and water. In the in vitro study, six specimens of deciduous and permanent enamel were randomly allocated to each of the five products and a '4h' protocol employed. In the in situ study, 15 healthy volunteers participated in a single centre, single blind, 5-phase crossover study, conducted according to Good Clinical Practice, and employing a validated model. The in vitro erosive potential of the experimental formulations was less than that of the comparators at all time points. Conversely, the observed erosive potential of both experimental formulations was greater than that of the control. Consistent statistically significant differences were found in relation to permanent enamel only. Unfortunately, the in situ study did not produce results entirely consistent with those of the in vitro study. Notably, a generally progressive loss of enamel was observed in specimens exposed to the control. The data from the in vitro study show the experimental formulations to have low comparative erosivity. However, the methodologies in vitro and in situ somewhat unusually do not correlate in ranking the erosivity of drinks. The results of this study should therefore be viewed with caution, further research being clearly warranted.

  17. Comparison of synthetic membranes in the development of an in vitro feeding system for Dermanyssus gallinae.

    PubMed

    Harrington, D W J; Guy, J H; Robinson, K; Sparagano, O A E

    2010-04-01

    Although artificial feeding models for the poultry red mite (Dermanyssus gallinae) most frequently use biological membranes consisting of day-old chick skin, there are ethical considerations associated with the use of skin. The few studies reported in the literature that have investigated the use of synthetic membranes to feed D. gallinae in vitro have reported limited success. The current study describes an investigation into the use of synthetic membranes made from either Nescofilm or rayon and silicone, used either alone or in combination with different feather or skin extracts, as well as the use of capillary tubes. In all, 12 different treatments were used, and the feeding rate of D. gallinae was compared to that of day-old chick skin. Allowing mites to feed on a membrane consisting of Nescofilm with a skin extract resulted in the highest proportion of mites feeding (32.3%), which was not significantly different to the feeding rate of mites on day-old chick skin (38.8%). This study confirms that synthetic membranes can be used to feed D. gallinae artificially. Further optimization of the membrane and mite storage conditions is still necessary, but the study demonstrates a proof of concept.

  18. Initial in vitro and in vivo evaluation of a self-monitoring prosthetic bypass graft.

    PubMed

    Neville, Richard F; Gupta, Samit K; Kuraguntla, David J

    2017-06-01

    Prosthetic grafts used for lower extremity revascularization and dialysis access fail because of hyperplastic stenosis and thrombosis. Graft surveillance is advocated to monitor function; however, graft failure can occur between episodic examinations. An innovative sensor with wireless, microchip technology allows automated surveillance with assessment of graft function using a "cloud"-based algorithm. We performed proof-of-concept experiments with in vitro and in vivo models to assess the feasibility such a real-time graft surveillance system. A self-monitoring graft system was evaluated consisting of a prosthetic conduit of expanded polytetrafluoroethylene and a sensor unit, and a microsensor, microelectronics, battery, and remote processor with a monitor. The sensor unit was integrated on the extraluminal surface of expanded polytetrafluoroethylene grafts without compromise to the lumen of the conduit. The grafts were tested in vitro in a pulsatile, recirculating flow system under physiologic flow parameters. The hemodynamic parameters were varied to assess the ability to obtain wireless signal acquisition reflecting real-time flow properties in vitro. Segments of custom tubing with reduced diameters were inserted into the model to mimic stenosis proximal and distal to the grafts. After characterization of the initial data, the self-monitoring grafts were implanted in an ovine carotid model to assess proof of concept in vivo with 30-day follow-up of signal acquisition as well as arteriographic and histologic analysis. In vitro flow data demonstrated the device was able to determine factors related to prosthetic graft function under varied hemodynamic flow conditions. Wireless signal acquisition using Bluetooth technology (Bluetooth SIG, Inc, Kirkland, Wash) allowed remote data analysis reflecting graft flow parameters through changes in microsensor voltage and frequency. Waveform analysis was applied to construct an algorithm using proprietary software and determine a parameter for graft flow characteristics. This algorithm allowed determination of the degree of stenosis and location of stenosis location (proximal or distal) for display on a remote monitor in real time. Subsequent in vivo experiments confirmed the ability of the system to generate signal acquisition through skin and soft tissue under biologic conditions with no arteriographic stenosis and a favorable healing response at 30-day harvest. Initial in vitro and in vivo experiments demonstrate the ability for a self-monitoring graft system to remotely monitor hemodynamic parameters reflecting graft function using wireless data transmission. This automated system shows promise to deliver real-time data that can be analyzed by cloud-based algorithms alerting the clinician of a change in graft function or development of stenosis for further diagnostic study or intervention before graft failure. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  19. Antigenic switching of TSA 417, a trophozoite variable surface protein, following completion of the life cycle of Giardia lamblia.

    PubMed Central

    Meng, T C; Hetsko, M L; Gillin, F D

    1993-01-01

    Expression of TSA 417, the predominant cysteine-rich variable surface protein of Giardia lamblia WB clone C6 trophozoites, did not change during encystation in vitro. However, in vitro excystation of cysts derived in vitro or in vivo consistently produced TSA 417 nonexpressing trophozoite populations, suggesting that completion of the life cycle leads to antigenic switching. Images PMID:8225614

  20. Modelling and shadowgraph imaging of cocrystal dissolution and assessment of in vitro antimicrobial activity for sulfadimidine/4-aminosalicylic acid cocrystals.

    PubMed

    Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie

    2016-06-30

    The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Toxicological perspectives of inhaled therapeutics and nanoparticles.

    PubMed

    Hayes, Amanda J; Bakand, Shahnaz

    2014-07-01

    The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.

  2. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes

    PubMed Central

    Ohta, Naoki; Kato, Yasuhiko; Watanabe, Hajime; Mori, Hirotada; Matsuura, Tomoaki

    2016-01-01

    Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach. PMID:27808179

  3. A conservation law for virus infection kinetics in vitro.

    PubMed

    Kakizoe, Yusuke; Morita, Satoru; Nakaoka, Shinji; Takeuchi, Yasuhiro; Sato, Kei; Miura, Tomoyuki; Beauchemin, Catherine A A; Iwami, Shingo

    2015-07-07

    Conservation laws are among the most important properties of a physical system, but are not commonplace in biology. We derived a conservation law from the basic model for viral infections which consists in a small set of ordinary differential equations. We challenged the conservation law experimentally for the case of a virus infection in a cell culture. We found that the derived, conserved quantity remained almost constant throughout the infection period, implying that the derived conservation law holds in this biological system. We also suggest a potential use for the conservation law in evaluating the accuracy of experimental measurements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. A new minimally invasive heart surgery instrument for atrial fibrillation treatment: first in vitro and animal tests.

    PubMed

    Abadie, J; Faure, A; Chaillet, N; Rougeot, P; Beaufort, D; Goldstein, J P; Finlay, P A; Bogaerts, G

    2006-06-01

    The paper presents a new robotic system for beating heart surgery. The final goal of this project is to develop a tele-operated system for the thoracoscopic treatment of patients with atrial fibrillation. The system consists of a robot that moves an innovative end-effector used to perform lines as in the Cox-Maze technique. The device is an electrode mesh that is introduced in the thorax through a trocar and is deployed inside the left atrium, where it can create selective ablation lines at any atrial region, using radio frequency. The current version of the umbrella has 22 electrodes. Using visual feedback from an ultrasound based navigation system, the surgeon can choose which electrodes on the mesh to activate. Once the umbrella is in contact with the endocardium of the left atrium, at the expected position, the surgeon activates the chosen electrodes sequentially. The umbrella can then be moved to another position. In vitro and in vivo animal tests have been carried out in order to test and improve the instrument, the robotic system and the operative procedure. The performed trials proved the ability of the system to treat atrial fibrillation. More in vivo tests are currently being performed to make the robot and its device ready for clinical use. Copyright 2006 John Wiley & Sons, Ltd.

  5. Semiquantitative bacterial observations with group B streptococcal vulvovaginitis.

    PubMed Central

    Monif, G R

    1999-01-01

    OBJECTIVE: Group B streptococcal (GBS) vulvovaginitis is a poorly-delineated clinical entity. The purpose of this study is to report semiquantitative data from four cases of GBS vulvovaginitis and to comment on their significance in terms of the in vitro inhibitory capabilities of GBS. METHODOLOGY: Four patients whose clinical presentations were consistent with GBS vulvovaginitis, from whom GBS was isolated and for whom semi-quantitative as well as qualitative microbiologic data existed, were identified. RESULTS: To produce vulvovaginitis, GBS must be at a high multiplicity (10(8) CFU/g of vaginal fluid). Single coisolates were identified in three of the four cases (two cases of Escherichia coli and one case of Staphylococcus aureus). Group B streptococcus does not inhibit either of these bacteria in vitro. CONCLUSION: When the growth requirements for the demonstration of in vitro inhibition for GBS or lack thereof are met in vivo, the in vivo observations are consistent with those projected from the in vitro data. PMID:10524667

  6. In Vitro Evolution and Affinity-Maturation with Coliphage Qβ Display

    PubMed Central

    Skamel, Claudia; Aller, Stephen G.; Bopda Waffo, Alain

    2014-01-01

    The Escherichia coli bacteriophage, Qβ (Coliphage Qβ), offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV). DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb) SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets. PMID:25393763

  7. Application of an in vitro DDASS to evaluate oral absorption of two chemicals simultaneously: establishment of a level A in vitro-in vivo correlation.

    PubMed

    Hou, Jipeng; He, Xin; Xu, Xuefang; Shi, Xiaoyan; Xu, Yanyan; Liu, Changxiao

    2012-11-01

    The aim of this study was to evaluate the oral absorption of two chemicals simultaneously using a drug dissolution/absorption simulating system (DDASS), and to establish a correlation between DDASS and in vivo absorption to clarify the prediction of this in vitro model. Ferulic acid (FA) and tetrahydropalmatine (THP), the components of Angelicae Sinensis Radix and Corydalis Yanhusuo Rhizoma, respectively, were chosen as model compounds. Three groups including FA, THP, and FA and THP together (FA + THP) were studied in DDASS. The corresponding in vivo pharmacokinetics study was performed in rats. Then the correlation was analysed between DDASS permeation in vitro and rat absorption data in vivo. A strong level A correlation (r > 0.84) was obtained after a correlation coefficient test (p < 0.05 or 0.01). Moreover, when FA and THP were used together in DDASS, the cumulative permeation of FA increased by 38.5%, while THP permeation decreased by 25.8%. In rats, the area under the concentration-time curve from time to infinity for FA increased 2.6-fold, while THP decreased 19.6%. The changes in rat intestinal permeation modeled by the DDASS were consistent with the absorption changes in rats. We conclude that DDASS is a valid in vitro model to evaluate oral absorption of two drug components simultaneously and reflect the in vivo characteristics of drug absorption accurately.

  8. The release profiles of intact and enzymatically digested hyaluronic acid from semisolid formulations using multi-layer membrane system.

    PubMed

    Alkrad, Jamal Alyoussef; Mrestani, Yahya; Neubert, Reinhard H H

    2003-07-01

    A multi-layer membrane system was used to measure in vitro release of hydrophilic macromolecules such as hyaluronic acid (HA) from semisolid formulations. One enzymatically digested HA-derivative with molecular mass of 22 kDa (HA-D) and 1200 kDa intact HA (HA) were incorporated into three semisolid formulations: water-containing hydrophilic ointment (WHO), amphiphilic cream (AC) and water-containing wool wax alcohol ointment (WWO). Because of the high hydrophilic properties of HA-D and HA, the artificial model membranes consisted of collodion as the matrix and glycerol as the hydrophilic acceptor phase. The area under the concentration-time curve and the mean dissolution time were used as a quantitative parameter to characterise the rate and extent of release in vitro. This study showed that the HA-D and HA release as hydrophilic substances from WHO was higher than both from AC and WWO. It was observed that 83% of HA-D1 was released from WHO after 2 h; in contrast, only 10% was released from 2% HA from the same vehicle during the same time. In conclusion, the in vitro availability of enzymatically digested HA-D was higher for WHO than for the other formulations, AC and WWO. Similarly, the availability of HA-D was higher than that of HA from the same formulations.

  9. Measuring the effect of avermectins and milbemycins on somatic muscle contraction of adult Haemonchus contortus and on motility of Ostertagia circumcincta in vitro.

    PubMed

    Demeler, Janina; VON Samson-Himmelstjerna, Georg; Sangster, Nicholas C

    2014-06-01

    The mechanism of anthelmintic resistance against the widely used macrocyclic lactones (MLs) is still not fully understood. Pharyngeal, somatic body muscles and the ovijector have been proposed as putative sites of action as well as resistance. In the present study the effects of three avermectins and three milbemycins on adult parasitic nematodes were evaluated in vitro. The Muscle Transducer system was used to investigate the effects of MLs on muscle contraction in female Haemonchus contortus and effects on motility were measured in Ostertagia (Teladorsagia) circumcincta using the Micromotility Meter. Concentration-response curves for all substances in both systems shifted to the right in the resistant isolates. Resistance was present to ivermectin (IVM) and its components IVM B1a and IVM B1b, suggesting that both components are involved in the mode of action and resistance. No consistent patterns of potency and resistance of the substances were observed except that milbemycins generally showed lower resistance ratios (RRs) than IVM. IVM and IVM B1b were the most potent inhibitors of contraction and motility in both susceptible isolates and also showed the highest RR in both species. Low RRs for milbemycins recorded in vitro for highly resistant isolates in vivo suggest that other factors such as pharmacokinetics influence drug potency in vivo.

  10. Immune-Enhancing Effect of Nanometric Lactobacillus plantarum nF1 (nLp-nF1) in a Mouse Model of Cyclophosphamide-Induced Immunosuppression.

    PubMed

    Choi, Dae-Woon; Jung, Sun Young; Kang, Jisu; Nam, Young-Do; Lim, Seong-Il; Kim, Ki Tae; Shin, Hee Soon

    2018-02-28

    Nanometric Lactobacillus plantarum nF1 (nLp-nF1) is a biogenics consisting of dead L. plantarum cells pretreated with heat and a nanodispersion process. In this study, we investigated the immune-enhancing effects of nLp-nF1 in vivo and in vitro. To evaluate the immunostimulatory effects of nLp-nF1, mice immunosuppressed by cyclophosphamide (CPP) treatment were administered with nLp-nF1. As expected, CPP restricted the immune response of mice, whereas oral administration of nLp-nF1 significantly increased the total IgG in the serum, and cytokine production (interleukin-12 (IL-12) and tumor necrosis factor alpha (TNF-α)) in bone marrow cells. Furthermore, nLp-nF1 enhanced the production of splenic cytokines such as IL-12, TNF-α, and interferon gamma (IFN-γ). In vitro, nLp-nF1 stimulated the immune response by enhancing the production of cytokines such as IL-12, TNF-α, and IFN-γ. Moreover, nLp-nF1 given a food additive enhanced the immune responses when combined with various food materials in vitro. These results suggest that nLp-nF1 could be used to strengthen the immune system and recover normal immunity in people with a weak immune system, such as children, the elderly, and patients.

  11. Experimental support for the effects of a probiotic/digestive enzyme supplement on serum cholesterol concentrations and the intestinal microbiome.

    PubMed

    Ichim, Thomas E; Patel, Amit N; Shafer, Kim A

    2016-06-22

    Elevated levels of blood cholesterol are associated with cardiovascular disease, a leading cause of morbidity and mortality worldwide. Current therapies for addressing elevated blood cholesterol can be inadequate, ineffective or associated with side effects; therefore, the search for additional therapies is ongoing. This study evaluated Daily Body Restore (DBR), a proprietary blend of 9 probiotic organisms of the genera Lactobacillus and Bifidobacterium, and 10 digestive enzymes, for its effects on cholesterol metabolism using an in vitro system and a mouse model. We used a murine model of hypercholesterolemia induced by a high fat diet to evaluate the effects of DBR on blood cholesterol concentrations. Hypercholesterolemic mice were supplemented with DBR in their drinking water for 8 weeks and compared to control mice given low fat diets or unsupplemented high fat diets. To evaluate the effects of DBR on the activity of gut microbiota in vitro, the Shime(®) system consisting of sequential colon reactors was supplemented with DBR for analysis of short chain fatty acid production. Analysis of hypercholesterolemic mice after 4 and 8 weeks of DBR supplementation revealed significant decreases in blood concentrations of low-density lipoprotein (LDL) and increases in high-density lipoprotein (HDL) while triglyceride concentrations were unaltered. Specifically, after 4 weeks of DBR supplementation, there was a 47 % decrease in LDL and a 32 % increase in HDL in peripheral blood compared to unsupplemented, high fat diet-fed mice. After 8 weeks of DBR treatment, LDL concentrations were dramatically reduced by 78 % and HDL was increased by 52 % relative to control mice. Addition of DBR to the Shime(®) system led to significantly increased production of propionate in colon reactors, indicative of microbial production of short chain fatty acids known to inhibit cholesterol synthesis. DBR, a probiotic and digestive enzyme supplement, lowered harmful LDL and increased HDL levels in a mouse model and also exerted in vitro effects consistent with cholesterol-lowering activity. Given the magnitude of the effects of DBR, these findings are promising for clinical implementation of DBR for treating hypercholesterolemia.

  12. A microfluidic circulatory system integrated with capillary-assisted pressure sensors.

    PubMed

    Chen, Yangfan; Chan, Ho Nam; Michael, Sean A; Shen, Yusheng; Chen, Yin; Tian, Qian; Huang, Lu; Wu, Hongkai

    2017-02-14

    The human circulatory system comprises a complex network of blood vessels interconnecting biologically relevant organs and a heart driving blood recirculation throughout this system. Recreating this system in vitro would act as a bridge between organ-on-a-chip and "body-on-a-chip" and advance the development of in vitro models. Here, we present a microfluidic circulatory system integrated with an on-chip pressure sensor to closely mimic human systemic circulation in vitro. A cardiac-like on-chip pumping system is incorporated in the device. It consists of four pumping units and passive check valves, which mimic the four heart chambers and heart valves, respectively. Each pumping unit is independently controlled with adjustable pressure and pump rate, enabling users to control the mimicked blood pressure and heartbeat rate within the device. A check valve is located downstream of each pumping unit to prevent backward leakage. Pulsatile and unidirectional flow can be generated to recirculate within the device by programming the four pumping units. We also report an on-chip capillary-assisted pressure sensor to monitor the pressure inside the device. One end of the capillary was placed in the measurement region, while the other end was sealed. Time-dependent pressure changes were measured by recording the movement of the liquid-gas interface in the capillary and calculating the pressure using the ideal gas law. The sensor covered the physiologically relevant blood pressure range found in humans (0-142.5 mmHg) and could respond to 0.2 s actuation time. With the aid of the sensor, the pressure inside the device could be adjusted to the desired range. As a proof of concept, human normal left ventricular and arterial pressure profiles were mimicked inside this device. Human umbilical vein endothelial cells (HUVECs) were cultured on chip and cells can respond to mechanical forces generated by arterial-like flow patterns.

  13. [Comparative study of root canal morphology of mandibular first premolar by micro-CT and radio visio graphy].

    PubMed

    Li, Xiangjie; Liu, Na; Liu, Rui; Dong, Zhengmou; Liu, Luchuan; Deng, Manjing

    2012-02-01

    To compare the consistency of root canal configuration types of mandibular first premolar by using micro-CT and radio visio graphy (RVG). One hundred extracted mandibular first premolars with complete dental root and apex which received no endodontic treatment were randomly selected. Each tooth was radiographed with RVG through a buccolingual and mesiodistal direction, and then scanned with micro-CT and reconstructed. The classifications of the root canal types according to Vertucci's type with the two methods were compared. The canal patterns were classified as type I (67%), type III (3%), type V (18%), type VII (2%), additional type (10%) with micro-CT and canal patterns as type I (71%), type III (2%), type V (23%), type VII (1%), additional type (3%) with RVG. 63% of teeth showed one canal in both micro-CT and RVG. Only 25% of teeth were diagnosed as complex canal by the same canal type in both micro-CT and RVG. The Kappa value between micro-CT and RVG was 0.541 which suggested that the two kinds of methods had intermediate consistency. 82.8% of the premolars with root groove had two or more than two canals. Although RVG can basically reflect the root canal system type of the mandibular first premolars in vitro, it offers poor accuracy images to complex root canals. Micro-CT three-dimensional images could clearly and precisely display the root canal system morphology of the mandibular first pre-molars in vitro.

  14. Release of metal ions from fixed orthodontic appliance: an in vitro study in continuous flow system.

    PubMed

    Mikulewicz, Marcin; Chojnacka, Katarzyna; Wołowiec, Paulina

    2014-01-01

    To evaluate the release of metal ions from fixed orthodontic appliances. A new system for in vitro testing of dental materials was constructed and consisted of a thermostatic glass reactor that enabled immersion of the studied material. Experimental conditions reflected the human oral cavity, with a temperature of 37°C and a saliva flow rate of 0.5mL/min. The simulated fixed orthodontic appliance made of stainless steel was evaluated. Sampling was performed at several time points during the 28-day study, and the metal ion concentration was determined by inductively coupled plasma optical emission spectrometry. The total mass of released metal ions from the appliance during 4 weeks of the experiment was as follows nickel 18.7 μg, chromium 5.47 μg, copper 31.3 μg. The estimated doses of nickel, chromium, and copper determined by extrapolation of experimental data released during the treatment period were far below the toxic dose to humans. This shows that orthodontic treatment might not be a significant source of exposure to these metal ions.

  15. Application of a biphasic test for characterization of in vitro drug release of immediate release formulations of celecoxib and its relevance to in vivo absorption.

    PubMed

    Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili

    2010-10-04

    A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.

  16. Novel and traditional traits of frozen-thawed porcine sperm related to in vitro fertilization success

    USDA-ARS?s Scientific Manuscript database

    Cryopreserved semen allows the use of single ejaculates for repeated analyses, potentially improving in vitro fertilization (IVF) consistency by eliminating inter-ejaculate variability observed with fresh semen. However, the freezing and thawing processes result in compromised sperm function and IVF...

  17. Sparse matrix beamforming and image reconstruction for 2-D HIFU monitoring using harmonic motion imaging for focused ultrasound (HMIFU) with in vitro validation.

    PubMed

    Hou, Gary Y; Provost, Jean; Grondin, Julien; Wang, Shutao; Marquet, Fabrice; Bunting, Ethan; Konofagou, Elisa E

    2014-11-01

    Harmonic motion imaging for focused ultrasound (HMIFU) utilizes an amplitude-modulated HIFU beam to induce a localized focal oscillatory motion simultaneously estimated. The objective of this study is to develop and show the feasibility of a novel fast beamforming algorithm for image reconstruction using GPU-based sparse-matrix operation with real-time feedback. In this study, the algorithm was implemented onto a fully integrated, clinically relevant HMIFU system. A single divergent transmit beam was used while fast beamforming was implemented using a GPU-based delay-and-sum method and a sparse-matrix operation. Axial HMI displacements were then estimated from the RF signals using a 1-D normalized cross-correlation method and streamed to a graphic user interface with frame rates up to 15 Hz, a 100-fold increase compared to conventional CPU-based processing. The real-time feedback rate does not require interrupting the HIFU treatment. Results in phantom experiments showed reproducible HMI images and monitoring of 22 in vitro HIFU treatments using the new 2-D system demonstrated reproducible displacement imaging, and monitoring of 22 in vitro HIFU treatments using the new 2-D system showed a consistent average focal displacement decrease of 46.7 ±14.6% during lesion formation. Complementary focal temperature monitoring also indicated an average rate of displacement increase and decrease with focal temperature at 0.84±1.15%/(°)C, and 2.03±0.93%/(°)C , respectively. These results reinforce the HMIFU capability of estimating and monitoring stiffness related changes in real time. Current ongoing studies include clinical translation of the presented system for monitoring of HIFU treatment for breast and pancreatic tumor applications.

  18. A comparative transcriptomic analysis of astrocytes differentiation from human neural progenitor cells.

    PubMed

    Magistri, Marco; Khoury, Nathalie; Mazza, Emilia Maria Cristina; Velmeshev, Dmitry; Lee, Jae K; Bicciato, Silvio; Tsoulfas, Pantelis; Faghihi, Mohammad Ali

    2016-11-01

    Astrocytes are a morphologically and functionally heterogeneous population of cells that play critical roles in neurodevelopment and in the regulation of central nervous system homeostasis. Studies of human astrocytes have been hampered by the lack of specific molecular markers and by the difficulties associated with purifying and culturing astrocytes from adult human brains. Human neural progenitor cells (NPCs) with self-renewal and multipotent properties represent an appealing model system to gain insight into the developmental genetics and function of human astrocytes, but a comprehensive molecular characterization that confirms the validity of this cellular system is still missing. Here we used an unbiased transcriptomic analysis to characterize in vitro culture of human NPCs and to define the gene expression programs activated during the differentiation of these cells into astrocytes using FBS or the combination of CNTF and BMP4. Our results demonstrate that in vitro cultures of human NPCs isolated during the gliogenic phase of neurodevelopment mainly consist of radial glial cells (RGCs) and glia-restricted progenitor cells. In these cells the combination of CNTF and BMP4 activates the JAK/STAT and SMAD signaling cascades, leading to the inhibition of oligodendrocytes lineage commitment and activation of astrocytes differentiation. On the other hand, FBS-derived astrocytes have properties of reactive astrocytes. Our work suggests that in vitro culture of human NPCs represents a valuable cellular system to study human disorders characterized by impairment of astrocytes development and function. Our datasets represent an important resource for researchers studying human astrocytes development and might set the basis for the discovery of novel human-specific astrocyte markers. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

    NASA Astrophysics Data System (ADS)

    Fujita, Keisuke; Iwaki, Mitsuhiro; Yanagida, Toshio

    2016-12-01

    Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether transcriptional bursting is intertwined with many transcriptional regulatory factors or is an intrinsic characteristic of RNA polymerase on DNA. Here we design an in vitro single-molecule measurement system to analyse the kinetics of transcriptional bursting. The results indicate that transcriptional bursting is caused by interplay between RNA polymerases on DNA. The kinetics of in vitro transcriptional bursting is quantitatively consistent with the gene-nonspecific kinetics previously observed in noisy gene expression in vivo. Our kinetic analysis based on a cellular automaton model confirms that arrest and rescue by trailing RNA polymerase intrinsically causes transcriptional bursting.

  20. In vitro interactions between splenocytes and dansylamide dye-embedded nanoparticles detected by flow cytometry

    PubMed Central

    Nyland, Jennifer F.; Bai, Jennifer J. K.; Katz, Howard E.; Silbergeld, Ellen K.

    2009-01-01

    Engineered nanoparticles (NPs) possess a range of biological activity. In vitro methods for assessing toxicity and efficacy would be enhanced by simultaneous quantitative information on the behavior of NPs in culture systems and signals of cell response. We have developed a method for visualizing NPs within cells using standard flow cytometric techniques and uniquely designed spherical siloxane NPs with an embedded (covalently bound) dansylamide dye. This method allowed NP visualization without obscuring detection of relevant biomarkers of cell subtype, activation state, and other events relevant to assessing bioactivity. We determined that NPs penetrated cells and induced a range of biological signals consistent with activation and costimulation. These results indicate that NPs may affect cell function at concentrations below those inducing cytotoxicity or apoptosis and demonstrate a novel method to image both localization of NPs and cell-level effects. PMID:19523425

  1. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  2. In vitro Cultured Primary Roots Derived from Stem Segments of Cassava (Manihot esculenta) Can Behave Like Storage Organs

    PubMed Central

    Medina, Ricardo D.; Faloci, Mirta M.; Gonzalez, Ana M.; Mroginski, Luis A.

    2007-01-01

    Background and Aims Cassava (Manihot esculenta) has three adventitious root types: primary and secondary fibrous roots, and storage roots. Different adventitious root types can also regenerate from in vitro cultured segments. The aim of this study was to investigate aspects of in vitro production of storage roots. Methods Morphological and anatomical analyses were performed to identify and differentiate each root type. Twenty-nine clones were assayed to determine the effect of genotype on the capacity to form storage roots in vitro. The effects of cytokinins and auxins on the formation of storage roots in vitro were also examined. Key Results Primary roots formed in vitro and in vivo had similar tissue kinds; however, storage roots formed in vitro exhibited physiological specialization for storing starch. The only consistent diagnostic feature between secondary fibrous and storage roots was their functional differentiation. Anatomical analysis of the storage roots formed in vitro showed that radial expansion as a consequence of massive proliferation and enlargement of parenchymatous cells occurred in the middle cortex, but not from cambial activity as in roots formed in vivo. Cortical expansion could be related to dilatation growth favoured by hormone treatments. Starch deposition of storage roots formed in vitro was confined to cortical tissue and occurred earlier than in storage roots formed in vivo. Auxin and cytokinin supplementation were absolutely required for in vitro storage root regeneration; these roots were not able to develop secondary growth, but formed a tissue competent for starch storing. MS medium with 5 % sucrose plus 0·54 μm 1-naphthaleneacetic acid and 0·44 μm 6-benzylaminopurine was one of the most effective in stimulating the storage root formation. Genotypes differed significantly in their capacity to produce storage roots in vitro. Storage root formation was considerably affected by the segment's primary position and strongly influenced by hormone treatments. Conclusions The storage root formation system reported here is a first approach to develop a tuberization model, and additional efforts are required to improve it. Although it was not possible to achieve root secondary growth, after this work it will be feasible to advance in some aspects of in vitro cassava tuberization. PMID:17267513

  3. Species-Specific Predictive Signatures of Developmental Toxicity Using the ToxCast Chemical Library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive signatures that correlate with observed in vivo toxicity. In vitro profiling methods from ToxCast data consist of over 600 high-throughput screening (HTS) and high-content screening ...

  4. Post-thaw motility of frozen boar sperm does not predict success with in vitro fertilization

    USDA-ARS?s Scientific Manuscript database

    Using cryopreserved boar sperm rather than liquid semen for in vitro fertilization (IVF) allows improved IVF consistency. However, cryopreservation of boar sperm results in reduced post-thaw motility, fertilization and embryo development. Boars are often screened on an individual basis prior to use ...

  5. Pharmacodynamics of cisplatin in human head and neck cancer: correlation between platinum content, DNA adduct levels and drug sensitivity in vitro and in vivo

    PubMed Central

    Welters, M J P; Fichtinger-Schepman, A M J; Baan, R A; Jacobs-Bergmans, A J; Kegel, A; van der Vijgh, W J F; Braakhuis, B J M

    1999-01-01

    Total platinum contents and cisplatin–DNA adduct levels were determined in vivo in xenografted tumour tissues in mice and in vitro in cultured tumour cells of head and neck squamous cell carcinoma (HNSCC), and correlated with sensitivity to cisplatin. In vivo, a panel of five HNSCC tumour lines growing as xenografts in nude mice was used. In vitro, the panel consisted of five HNSCC cell lines, of which four had an in vivo equivalent. Sensitivity to cisplatin varied three- to sevenfold among cell lines and tumours respectively. However, the ranking of the sensitivities of the tumour lines (in vivo), also after reinjection of the cultured tumour cells, did not coincide with that of the corresponding cell lines, which showed that cell culture systems are not representative for the in vivo situation. Both in vitro and in vivo, however, significant correlations were found between total platinum levels, measured by atomic absorption spectrophotometry (AAS), and tumour response to cisplatin therapy at all time points tested. The levels of the two major cisplatin–DNA adduct types were determined by a recently developed and improved32P post-labelling assay at various time points after cisplatin treatment. Evidence is presented that the platinum–AG adduct, in which platinum is bound to guanine and an adjacent adenine, may be the cytotoxic lesion because a significant correlation was found between the platinum–AG levels and the sensitivities in our panel of HNSCC, in vitro as well as in vivo. This correlation with the platinum–AG levels was established at 1 h (in vitro) and 3 h (in vivo) after the start of the cisplatin treatment, which emphasizes the importance of early sampling. © 1999 Cancer Research Campaign PMID:10408697

  6. Congruent Strain Specific Intestinal Persistence of Lactobacillus plantarum in an Intestine-Mimicking In Vitro System and in Human Volunteers

    PubMed Central

    van Bokhorst-van de Veen, Hermien; van Swam, Iris; Wels, Michiel; Bron, Peter A.; Kleerebezem, Michiel

    2012-01-01

    Background An important trait of probiotics is their capability to reach their intestinal target sites alive to optimally exert their beneficial effects. Assessment of this trait in intestine-mimicking in vitro model systems has revealed differential survival of individual strains of a species. However, data on the in situ persistence characteristics of individual or mixtures of strains of the same species in the gastrointestinal tract of healthy human volunteers have not been reported to date. Methodology/Principal Findings The GI-tract survival of individual L. plantarum strains was determined using an intestine mimicking model system, revealing substantial inter-strain differences. The obtained data were correlated to genomic diversity of the strains using comparative genome hybridization (CGH) datasets, but this approach failed to discover specific genetic loci that explain the observed differences between the strains. Moreover, we developed a next-generation sequencing-based method that targets a variable intergenic region, and employed this method to assess the in vivo GI-tract persistence of different L. plantarum strains when administered in mixtures to healthy human volunteers. Remarkable consistency of the strain-specific persistence curves were observed between individual volunteers, which also correlated significantly with the GI-tract survival predicted on basis of the in vitro assay. Conclusion The survival of individual L. plantarum strains in the GI-tract could not be correlated to the absence or presence of specific genes compared to the reference strain L. plantarum WCFS1. Nevertheless, in vivo persistence analysis in the human GI-tract confirmed the strain-specific persistence, which appeared to be remarkably similar in different healthy volunteers. Moreover, the relative strain-specific persistence in vivo appeared to be accurately and significantly predicted by their relative survival in the intestine-mimicking in vitro assay, supporting the use of this assay for screening of strain-specific GI persistence. PMID:22970257

  7. Rapid in vitro propagation system through shoot tip cultures of Vitex trifolia L.-an important multipurpose plant of the Pacific traditional Medicine.

    PubMed

    Ahmed, Rafique; Anis, Mohammad

    2014-07-01

    A rapid and efficient plant propagation system through shoot tip explants was established in Vitex trifolia L., a medicinally important plant belonging to the family Verbenaceae. Multiple shoots were induced directly on Murashige and Skoog (MS) medium consisting of different cytokinins, 6-benzyladenine (BA), kinetin (Kin) and 2-isopentenyl adenine (2-iP), BA at an optimal concentration of 5.0 μM was most effective in inducing multiple shoots where 90 % explants responded with an average shoot number (4.4±0.1) and shoot length (2.0±0.1 cm) after 6 weeks of culture. Inclusion of NAA in the culture medium along with the optimum concentration of BA promoted a higher rate of shoot multiplication and length of the shoot, where 19.2±0.3 well-grown healthy shoots with an average shoot length of 4.4±0.1 cm were obtained on completion of 12 weeks culture period. Ex vitro rooting was achieved best directly in soilrite when basal portion of the shoots were treated with 500 μM indole-3-butyric acid for 15 min which was the most effective in inducing roots, as 95 % of the microshoots produced roots. Plantlets went through a hardening phase in a controlled plant growth chamber, prior to ex-vitro transfer. Micropropagated plants grew well, attained maturity and flowered with 92 % survival rate. The results of this study provide the first report on in vitro plant regeneration of Vitex trifolia L. using shoot tip explants.

  8. In vitro and in vivo evaluation of a water-in-oil microemulsion system for enhanced peptide intestinal delivery.

    PubMed

    Liu, Dongyun; Kobayashi, Taku; Russo, Steven; Li, Fengling; Plevy, Scott E; Gambling, Todd M; Carson, Johnny L; Mumper, Russell J

    2013-01-01

    Peptide and protein drugs have become the new generation of therapeutics, yet most of them are only available as injections, and reports on oral local intestinal delivery of peptides and proteins are quite limited. The aim of this work was to develop and evaluate a water-in-oil (w/o) microemulsion system in vitro and in vivo for local intestinal delivery of water-soluble peptides after oral administration. A fluorescent labeled peptide, 5-(and-6)-carboxytetramethylrhodamine labeled HIV transactivator protein TAT (TAMRA-TAT), was used as a model peptide. Water-in-oil microemulsions consisting of Miglyol 812, Capmul MCM, Tween 80, and water were developed and characterized in terms of appearance, viscosity, conductivity, morphology, and particle size analysis. TAMRA-TAT was loaded and its enzymatic stability was assessed in modified simulated intestinal fluid (MSIF) in vitro. In in vivo studies, TAMRA-TAT intestinal distribution was evaluated using fluorescence microscopy after TAMRA-TAT microemulsion, TAMRA-TAT solution, and placebo microemulsion were orally gavaged to mice. The half-life of TAMRA-TAT in microemulsion was enhanced nearly three-fold compared to that in the water solution when challenged by MSIF. The treatment with TAMRA-TAT microemulsion after oral administration resulted in greater fluorescence intensity in all intestine sections (duodenum, jejunum, ileum, and colon) compared to TAMRA-TAT solution or placebo microemulsion. The in vitro and in vivo studies together suggested TAMRA-TAT was better protected in the w/o microemulsion in an enzyme-containing environment, suggesting that the w/o microemulsions developed in this study may serve as a potential delivery vehicle for local intestinal delivery of peptides or proteins after oral administration.

  9. Food Matrix Effects on Bioaccessibility of β-Carotene Can be Measured in an in Vitro Gastrointestinal Model

    PubMed Central

    2015-01-01

    Since the food matrix determines β-carotene availability for intestinal absorption, food matrix effects on the bioaccessibility of β-carotene from two diets were investigated in vitro and compared with in vivo data. The “mixed diet” consisted of β-carotene-rich vegetables, and the “oil diet” contained β-carotene-low vegetables with supplemental β-carotene. The application of extrinsically labeled β-carotene was also investigated. The bioaccessibility of β-carotene was 28 μg/100 μg β-carotene from the mixed diet and 53 μg/100 μg β-carotene from the oil diet. This ratio of 1.9:1 was consistent with in vivo data, where the apparent absorption was 1.9-fold higher in the oil diet than in the mixed diet. The labeled β-carotene was not equally distributed over time. In conclusion, the food matrix effects on bioaccessibility of β-carotene could be measured using an in vitro model and were consistent with in vivo data. The application of extrinsically labeled β-carotene was not confirmed. PMID:24397305

  10. Evaluation of matrix type mucoadhesive tablets containing indomethacin for buccal application.

    PubMed

    Ikeuchi-Takahashi, Yuri; Sasatsu, Masanaho; Onishi, Hiraku

    2013-09-10

    Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered for pain relief from oral mucositis. However, the systemic administration of NSAIDs is limited due to systemic side effects. To avoid these side effects and treat local lesions effectively, a matrix type mucoadhesive tablet was developed. A mixture of hard fat, ethylcellulose (EC) and polyethylene glycol (PEG) was used as a matrix base, and indomethacin (IMC) was used as the principal agent. In tablets consisting of hard fat, EC and IMC, the drug release was sustained. In tablets consisting of hard fat, EC, considerable amounts of PEG and IMC, the drug release was relatively increased and IMC existed as the molecular phase or in an amorphous state. The in vitro adhesive force of the tablets consisting of hard fat, EC, considerable amounts of PEG and IMC was significantly increased as compared with the tablets consisting of hard fat and IMC. A significantly high tissue concentration and significantly low plasma concentration were observed after buccal administration of this matrix type mucoadhesive tablet as compared with that after oral administration of IMC. Thus, the matrix type mucoadhesive tablet has good potential as a preparation for the treatment of pain due to oral aphtha. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Release of EPA and DHA from salmon oil - a comparison of in vitro digestion with human and porcine gastrointestinal enzymes.

    PubMed

    Aarak, K E; Kirkhus, B; Holm, H; Vogt, G; Jacobsen, M; Vegarud, G E

    2013-10-01

    In the present study, we hypothesised whether in vitro digestion of salmon oil would release different amounts of PUFA depending on the origin of the lipolytic enzymes used. For this purpose, in vitro digestion of salmon oil (SO) was performed using human duodenal juice (HDJ) or a commercial enzyme preparation consisting of porcine pancreatin and bile (PB). The lipolytic effect was determined by measuring the release of fatty acids (FA) using solid-phase extraction and GC-flame ionisation detection, withdrawing samples every 20 min during digestion. The amount of FA released indicated that a plateau was reached after 80 min with approximately similar amounts of FA detected using both HDJ and PB (379 (sd 18) and 352 (sd 23) mg/g SO, respectively). However, the release of 18 : 2, EPA (20 : 5) and DHA (22 : 6) was significantly different during in vitro digestion. At 80 min, HDJ and PB released 43 and 33% of 18 : 2, 14 and 9% of EPA and 11 and 9% of DHA, respectively. Both enzyme preparations released approximately the same amounts of the other FA analysed. The effect of the addition of bile salts (BS) was significantly different in the two enzyme systems, where porcine pancreatin highly responded to the increase in BS concentration, in contrast to HDJ.

  12. Actinidin enhances protein digestion in the small intestine as assessed using an in vitro digestion model.

    PubMed

    Kaur, Lovedeep; Rutherfurd, Shane M; Moughan, Paul J; Drummond, Lynley; Boland, Mike J

    2010-04-28

    This paper describes an in vitro study that tests the proposition that actinidin from green kiwifruit influences the digestion of proteins in the small intestine. Different food proteins, from sources including soy, meat, milk, and cereals, were incubated in the presence or absence of green kiwifruit extract (containing actinidin) using a two-stage in vitro digestion system consisting of an incubation with pepsin at stomach pH (simulating gastric digestion) and then with added pancreatin at small intestinal pH, simulating upper tract digestion in humans. The digests from the small intestinal stage (following the gastric digestion phase) were subjected to gel electrophoresis (SDS-PAGE) to assess loss of intact protein and development of large peptides during the in vitro simulated digestion. Kiwifruit extract influenced the digestion patterns of all of the proteins to various extents. For some proteins, actinidin had little impact on digestion. However, for other proteins, the presence of kiwifruit extract resulted in a substantially greater loss of intact protein and different peptide patterns from those seen after digestion with pepsin and pancreatin alone. In particular, enhanced digestion of whey protein isolate, zein, gluten, and gliadin was observed. In addition, reverse-phase HPLC (RP-HPLC) analysis showed that a 2.5 h incubation of sodium caseinate with kiwifruit extract alone resulted in approximately 45% loss of intact protein.

  13. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins.

    PubMed

    Kirkland, David; Reeve, Lesley; Gatehouse, David; Vanparys, Philippe

    2011-03-18

    In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Biology on a Chip: Microfabrication for Studying the Behavior of Cultured Cells

    PubMed Central

    Li, Nianzhen; Tourovskaia, Anna; Folch, Albert

    2013-01-01

    The ability to culture cells in vitro has revolutionized hypothesis testing in basic cell and molecular biology research and has become a standard methodology in drug screening and toxicology assays. However, the traditional cell culture methodology—consisting essentially of the immersion of a large population of cells in a homogeneous fluid medium—has become increasingly limiting, both from a fundamental point of view (cells in vivo are surrounded by complex spatiotemporal microenvironments) and from a practical perspective (scaling up the number of fluid handling steps and cell manipulations for high-throughput studies in vitro is prohibitively expensive). Micro fabrication technologies have enabled researchers to design, with micrometer control, the biochemical composition and topology of the substrate, the medium composition, as well as the type of neighboring cells surrounding the microenvironment of the cell. In addition, microtechnology is conceptually well suited for the development of fast, low-cost in vitro systems that allow for high-throughput culturing and analysis of cells under large numbers of conditions. Here we review a variety of applications of microfabrication in cell culture studies, with an emphasis on the biology of various cell types. PMID:15139302

  15. Somatic embryogenesis and massive shoot regeneration from immature embryo explants of tef.

    PubMed

    Gugsa, Likyelesh; Kumlehn, Jochen

    2011-01-01

    Tef (Eragrostis tef) provides a major source of human nutrition in the Horn of Africa, but biotechnology has had little impact on its improvement to date. Here, we report the elaboration of an in vitro regeneration protocol, based on the use of immature zygotic embryos as explant. Explant size was an important determinant of in vitro regeneration efficiency, as was the formulation of the culture medium. Optimal results were obtained by culturing 0.2-0.35 mm embryo explants on a medium containing KBP minerals, 9.2-13.8 μM 2,4-dichlorophenoxyacetic acid, 6 mM glutamine, and 0.5% Phytagel. Although this protocol was effective for both the improved cultivar "DZ-01-196" and the landrace "Fesho", the former produced consistently more embryogenic tissue and a higher number of regenerants. An average of more than 2,800 shoots could be obtained from each "DZ-01-196" explant after 12 weeks of in vitro culture. These shoots readily formed roots, and plantlets transferred to soil were able to develop into morphologically normal, fertile plants. This regeneration and multiplication system should allow for the application of a range of biotechnological methods to tef.

  16. Species-specific predictive models of developmental toxicity using the ToxCast chemical library

    EPA Science Inventory

    EPA’s ToxCastTM project is profiling the in vitro bioactivity of chemicals to generate predictive models that correlate with observed in vivo toxicity. In vitro profiling methods are based on ToxCast data, consisting of over 600 high-throughput screening (HTS) and high-content sc...

  17. [Development of an incubation system for an inverted microscopy for long-term observation of cell cultures using chamber slides].

    PubMed

    Feicht, W; Buchner, A; Riesenberg, R

    2001-05-01

    Trifunctional bispecific antibodies open up new immunological possibilities in tumour treatment. Prior to clinical application, comprehensive investigations using animal models and in vitro examinations need to be done. To investigate long-term interactions between various immunologically active blood cells and individual tumour cells in the presence of antibodies, we developed an incubation system for experimental cell cultures on an inverted microscope. The system consists of a perspex box with a central moisture chamber with integrated water reservoir, external air circulation heating, and a CO2 supply. The sterile cell cultures are located in the wells of a slide positioned within a depression in the water reservoir. The newly developed incubation system enables continuous observation over the long term of experiments under optimal cell cultures conditions in combination with modern video techniques.

  18. A small molecule nanodrug consisting of amphiphilic targeting ligand-chemotherapy drug conjugate for targeted cancer therapy.

    PubMed

    Mou, Quanbing; Ma, Yuan; Zhu, Xinyuan; Yan, Deyue

    2016-05-28

    Targeted drug delivery is a broadly applicable approach for cancer therapy. However, the nanocarrier-based targeted delivery system suffers from batch-to-batch variation, quality concerns and carrier-related toxicity issues. Thus, to develop a carrier-free targeted delivery system with nanoscale characteristics is very attractive. Here, a novel targeting small molecule nanodrug self-delivery system consisting of targeting ligand and chemotherapy drug was constructed, which combined the advantages of small molecules and nano-assemblies together and showed excellent targeting ability and long blood circulation time with well-defined structure, high drug loading ratio and on-demand drug release behavior. As a proof-of-concept, lactose (Lac) and doxorubicin (DOX) were chosen as the targeting ligand and chemotherapy drug, respectively. Lac and DOX were conjugated through a pH-responsive hydrazone group. For its intrinsic amphiphilic property, Lac-DOX conjugate could self-assemble into nanoparticles in water. Both in vitro and in vivo assays indicated that Lac-DOX nanoparticles exhibited enhanced anticancer activity and weak side effects. This novel active targeting nanodrug delivery system shows great potential in cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. PAMAM dendrimer-baculovirus nanocomplex for microencapsulated adipose stem cell-gene therapy: in vitro and in vivo functional assessment.

    PubMed

    Paul, Arghya; Shao, Wei; Abbasi, Sana; Shum-Tim, Dominique; Prakash, Satya

    2012-09-04

    The present study aims to develop a new stem cell based gene delivery system consisting of human adipose tissue derived stem cells (hASCs) genetically modified with self-assembled nanocomplex of recombinant baculovirus and PAMAM dendrimer (Bac-PAMAM) to overexpress the vascular endothelial growth factor (VEGF). Cells were enveloped into branched PEG surface functionalized polymeric microcapsules for efficient transplantation. In vitro analysis confirmed efficient transduction of hASCs expressing 7.65 ± 0.86 ng functionally active VEGF per 10(6) microencapsulated hASCs (ASC-VEGF). To determine the potential of the developed system, chronically infarcted rat hearts were treated with either empty microcapsules (MC), microencapsulated hASCs expressing MGFP reporter protein (MC+ASC-MGFP), or MC+ASC-VEGF, and analyzed for 10 weeks. Post-transplantation data confirmed higher myocardial VEGF expressions with significantly enhanced neovasculature in the MC+ASC-VEGF group. In addition, the cardiac performance, as measured by percentage ejection fraction, also improved significantly in the MC+ASC-VEGF group (48.6 ± 6.1%) compared to that in MC+ASC-MGFP (38.8 ± 5.3%) and MC groups (31.5 ± 3.3%). Collectively, these data demonstrate the feasibility of this system for improved stem cell therapy applications.

  20. Flagellar motility is a key determinant of the magnitude of the inflammasome response to Pseudomonas aeruginosa.

    PubMed

    Patankar, Yash R; Lovewell, Rustin R; Poynter, Matthew E; Jyot, Jeevan; Kazmierczak, Barbara I; Berwin, Brent

    2013-06-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system.

  1. Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa

    PubMed Central

    Patankar, Yash R.; Lovewell, Rustin R.; Poynter, Matthew E.; Jyot, Jeevan; Kazmierczak, Barbara I.

    2013-01-01

    We previously demonstrated that bacterial flagellar motility is a fundamental mechanism by which host phagocytes bind and ingest bacteria. Correspondingly, loss of bacterial motility, consistently observed in clinical isolates from chronic Pseudomonas aeruginosa infections, enables bacteria to evade association and ingestion of P. aeruginosa by phagocytes both in vitro and in vivo. Since bacterial interactions with the phagocyte cell surface are required for type three secretion system-dependent NLRC4 inflammasome activation by P. aeruginosa, we hypothesized that reduced bacterial association with phagocytes due to loss of bacterial motility, independent of flagellar expression, will lead to reduced inflammasome activation. Here we report that inflammasome activation is reduced in response to nonmotile P. aeruginosa. Nonmotile P. aeruginosa elicits reduced IL-1β production as well as caspase-1 activation by peritoneal macrophages and bone marrow-derived dendritic cells in vitro. Importantly, nonmotile P. aeruginosa also elicits reduced IL-1β levels in vivo in comparison to those elicited by wild-type P. aeruginosa. This is the first demonstration that loss of bacterial motility results in reduced inflammasome activation and antibacterial IL-1β host response. These results provide a critical insight into how the innate immune system responds to bacterial motility and, correspondingly, how pathogens have evolved mechanisms to evade the innate immune system. PMID:23529619

  2. Optical coherence tomography for blood glucose monitoring in vitro through spatial and temporal approaches

    NASA Astrophysics Data System (ADS)

    De Pretto, Lucas Ramos; Yoshimura, Tania Mateus; Ribeiro, Martha Simões; Zanardi de Freitas, Anderson

    2016-08-01

    As diabetes causes millions of deaths worldwide every year, new methods for blood glucose monitoring are in demand. Noninvasive approaches may increase patient adherence to treatment while reducing costs, and optical coherence tomography (OCT) may be a feasible alternative to current invasive diagnostics. This study presents two methods for blood sugar monitoring with OCT in vitro. The first, based on spatial statistics, exploits changes in the light total attenuation coefficient caused by different concentrations of glucose in the sample using a 930-nm commercial OCT system. The second, based on temporal analysis, calculates differences in the decorrelation time of the speckle pattern in the OCT signal due to blood viscosity variations with the addition of glucose with data acquired by a custom built Swept Source 1325-nm OCT system. Samples consisted of heparinized mouse blood, phosphate buffer saline, and glucose. Additionally, further samples were prepared by diluting mouse blood with isotonic saline solution to verify the effect of higher multiple scattering components on the ability of the methods to differentiate glucose levels. Our results suggest a direct relationship between glucose concentration and both decorrelation rate and attenuation coefficient, with our systems being able to detect changes of 65 mg/dL in glucose concentration.

  3. Kinetic Limitations of Cooperativity-Based Drug Delivery Systems

    NASA Astrophysics Data System (ADS)

    Licata, Nicholas A.; Tkachenko, Alexei V.

    2008-04-01

    We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell-specific chemotherapy. The system consists of dendrimers conjugated with “keys” (ex: folic acid) which “key-lock” bind to particular cell-membrane proteins (ex: folate receptor). The increased concentration of “locks” on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea.

  4. Modeling the Blood-Brain Barrier in a 3D triple co-culture microfluidic system.

    PubMed

    Adriani, G; Ma, D; Pavesi, A; Goh, E L K; Kamm, R D

    2015-01-01

    The need for a blood-brain barrier (BBB) model that accurately mimics the physiological characteristics of the in-vivo situation is well-recognized by researchers in academia and industry. However, there is currently no in-vitro model allowing studies of neuronal growth and/or function influenced by factors from the blood that cross through the BBB. Therefore, we established a 3D triple co-culture microfluidic system using human umbilical vein endothelial cells (HUVEC) together with primary rat astrocytes and neurons. Immunostaining confirmed the successful triple co-culture system consisting of an intact BBB with tight intercellular junctions in the endothelial monolayer. The BBB selective permeability was determined by a fluorescent-based assay using dextrans of different molecular weights. Finally, neuron functionality was demonstrated by calcium imaging.

  5. Novel approach to study the cardiovascular effects and mechanism of action of urban particulate matter using lung epithelial-endothelial tetra-culture system.

    PubMed

    Kim, Ha Ryong; Cho, Han Soo; Shin, Da Young; Chung, Kyu Hyuck

    2017-02-01

    In vitro models have become increasingly sophisticated, and their usefulness in supporting toxicity testing is well established. The present study was designed to establish a novel in vitro model that mimics the cellular network surrounding airways and pulmonary blood vessels, to study the cardiovascular toxic effects of particulate matter (PM). Transwell culture method was used to develop a novel tetra-culture system consisting of tri-cultures (one lung epithelial and two immune cell lines) in the apical chamber and endothelial cells in the basolateral chamber. Tri-cultures were exposed to standard reference material (SRM) 1648a, an urban PM. SRM 1648a did not show cytotoxic effects; however, it increased IL-6 level in apical and basolateral chambers. The cells in the basolateral chamber showed increased monocyte adhesion. Furthermore, exposure of tri-cultured cells to SRM 1648a in the apical chamber induced ICAM-1 expression in endothelial cells in the basolateral chamber by activating the IL-6/STAT3 pathway. In conclusion, a tetra-culture system was established to facilitate the identification of cellular adhesion molecule expression induced by the interaction between pulmonary epithelial and endothelial cells. The tetra-culture system will contribute to elucidation of the relationships between inhalable PM and cardiovascular diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Development of a novel tablet-in-capsule formulation of mesalamine for inflammatory bowel disease.

    PubMed

    Patel, Mayur M; Amin, Avani F

    2013-01-01

    The objective of the present work was to develop a tablet-in-capsule type of multiunit system, which releases the drug in a controlled manner at pre-programmed time intervals. The system consists of an enteric-coated hydroxypropyl methylcellulose capsule filled with four units of mesalamine minitablets, each of which was further coated with different ratios of Eudragit(®) E100 and Eudragit(®) RS100. In vitro evaluation of tablets coated with Eudragit(®) E100 and Eudragit(®) RS100 at different pH conditions revealed that at lower pH levels (2.0, 3.6 and 5.5 pH), the drug release is mainly governed by the dissolution of Eudragit(®) E100 from the Eudragit(®) E100 and Eudragit(®) RS100 coat. In vitro evaluation of capsules enteric coated with Eudragit(®) L100 and Eudragit(®) S100 revealed that a maximum lag time of 3 h and 4 h was obtained, respectively. In vivo roentgenographic evaluation in rabbits revealed that the developed system remained intact until it reaches the targeted region of the gastrointestinal tract, i.e. ileum and colon, where the tablets were released after the dissolution of the enteric coat Eudragit(®) L100 and Eudragit(®) S100, respectively. The developed system exhibited a promising targeting behavior and hence may be used for the treatment of inflammatory bowel disease.

  7. The 32-Kilodalton Subunit of Replication Protein A Interacts with Menin, the Product of the MEN1 Tumor Suppressor Gene

    PubMed Central

    Sukhodolets, Karen E.; Hickman, Alison B.; Agarwal, Sunita K.; Sukhodolets, Maxim V.; Obungu, Victor H.; Novotny, Elizabeth A.; Crabtree, Judy S.; Chandrasekharappa, Settara C.; Collins, Francis S.; Spiegel, Allen M.; Burns, A. Lee; Marx, Stephen J.

    2003-01-01

    Menin is a 70-kDa protein encoded by MEN1, the tumor suppressor gene disrupted in multiple endocrine neoplasia type 1. In a yeast two-hybrid system based on reconstitution of Ras signaling, menin was found to interact with the 32-kDa subunit (RPA2) of replication protein A (RPA), a heterotrimeric protein required for DNA replication, recombination, and repair. The menin-RPA2 interaction was confirmed in a conventional yeast two-hybrid system and by direct interaction between purified proteins. Menin-RPA2 binding was inhibited by a number of menin missense mutations found in individuals with multiple endocrine neoplasia type 1, and the interacting regions were mapped to the N-terminal portion of menin and amino acids 43 to 171 of RPA2. This region of RPA2 contains a weak single-stranded DNA-binding domain, but menin had no detectable effect on RPA-DNA binding in vitro. Menin bound preferentially in vitro to free RPA2 rather than the RPA heterotrimer or a subcomplex consisting of RPA2 bound to the 14-kDa subunit (RPA3). However, the 70-kDa subunit (RPA1) was coprecipitated from HeLa cell extracts along with RPA2 by menin-specific antibodies, suggesting that menin binds to the RPA heterotrimer or a novel RPA1-RPA2-containing complex in vivo. This finding was consistent with the extensive overlap in the nuclear localization patterns of endogenous menin, RPA2, and RPA1 observed by immunofluorescence. PMID:12509449

  8. Biomimetic Randall's plaque as an in vitro model system for studying the role of acidic biopolymers in idiopathic stone formation.

    PubMed

    Chidambaram, Archana; Rodriguez, Douglas; Khan, Saeed; Gower, Laurie

    2015-01-01

    Randall's plaque (RP) deposits seem to be consistent among the most common type of kidney stone formers, idiopathic calcium oxalate stone formers. This group forms calcium oxalate renal stones without any systemic symptoms, which contributes to the difficulty of understanding and treating this painful and recurring disease. Thus, the development of an in vitro model system to study idiopathic nephrolithiasis, beginning with RP pathogenesis, can help in identifying how plaques and subsequently stones form. One main theory of RP formation is that calcium phosphate deposits initially form in the basement membrane of the thin loops of Henle, which then fuse and spread into the interstitial tissue, and ultimately make their way across the urothelium, where upon exposure to the urine, the mineralized tissue serves as a nidus for overgrowth with calcium oxalate into a stone. Our group has found that many of the unusual morphologies found in RP and stones, such as concentrically laminated spherulites and mineralized collagenous tissue, can be reproduced in vitro using a polymer-induced liquid precursor (PILP) process, in which acidic polypeptides induce a liquid phase amorphous precursor to the mineral, yielding non-equilibrium crystal morphologies. Given that there are many acidic proteins and polysaccharides present in the renal tissue and urine, we have put forth the hypothesis that the PILP system may be involved in urolithiasis. Therefore, our goal is to develop an in vitro model system of these two stages of composite stone formation to study the role that various acidic macromolecules may play. In our initial experiments presented here, the development of "biomimetic" RP was investigated, which will then serve as a nidus for calcium oxalate overgrowth studies. To mimic the tissue environment, MatriStem(®) (ACell, Inc.), a decellularized porcine urinary bladder matrix was used, because it has both an intact epithelial basement membrane surface and a tunica propria layer, thus providing the two types of matrix constituents found associated with mineral in the early stages of RP formation. We found that when using the PILP process to mineralize this tissue matrix, the two sides led to dramatically different mineral textures, and they bore a striking resemblance to native RP, which was not seen in the tissue mineralized via the classical crystal nucleation and growth process. The interstitium side predominantly consisted of collagen-associated mineral, while the luminal side had much less mineral, which appeared to be tiny spherules embedded within the basement membrane. Although these studies are only preliminary, they support our hypothesis that kidney stones may involve non-classical crystallization pathways induced by the large variety of macromolecular species in the urinary environment. We believe that mineralization of native tissue scaffolds is useful for developing a model system of stone formation, with the ultimate goal of developing strategies to avoid RP and its detrimental consequences in stone formation, or developing therapeutic treatments to prevent or cure the disease. Supported by NIDDK grant RO1DK092311.

  9. Her4 and Her2/neu tyrosine kinase domains dimerize and activate in a reconstituted in vitro system.

    PubMed

    Monsey, John; Shen, Wei; Schlesinger, Paul; Bose, Ron

    2010-03-05

    Her4 (ErbB-4) and Her2/neu (ErbB-2) are receptor-tyrosine kinases belonging to the epidermal growth factor receptor (EGFR) family. Crystal structures of EGFR and Her4 kinase domains demonstrate kinase dimerization and activation through an allosteric mechanism. The kinase domains form an asymmetric dimer, where the C-lobe surface of one monomer contacts the N-lobe of the other monomer. EGFR kinase dimerization and activation in vitro was previously reported using a nickel-chelating lipid-liposome system, and we now apply this system to all other members of the EGFR family. Polyhistidine-tagged Her4, Her2/neu, and Her3 kinase domains are bound to these nickel-liposomes and are brought to high local concentration, mimicking what happens to full-length receptors in vivo following ligand binding. Addition of nickel-liposomes to Her4 kinase domain results in 40-fold activation in kinase activity and marked enhancement of C-terminal tail autophosphorylation. Activation of Her4 shows a sigmoidal dependence on kinase concentration, consistent with a cooperative process requiring kinase dimerization. Her2/neu kinase activity is also activated by nickel-liposomes, and is increased further by heterodimerization with Her3 or Her4. The ability of Her3 and Her4 to heterodimerize and activate other family members is studied in vitro. Her3 kinase domain readily activates Her2/neu but is a poor activator of Her4, which differs from the prediction made by the asymmetric dimer model. Mutation of Her3 residues (952)ENI(954) to the corresponding sequence in Her4 enhanced the ability of Her3 to activate Her4, demonstrating that sequence differences on the C-lobe surface influence the heterodimerization and activation of ErbB kinase domains.

  10. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo.

    PubMed

    Wang, Xiao-Fei; Song, Yang; Liu, Yun-Song; Sun, Yu-Chun; Wang, Yu-Guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects.

  11. In vivo diagnosis of skin cancer using polarized and multiple scattered light spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartlett, Matthew Allen

    This thesis research presents the development of a non-invasive diagnostic technique for distinguishing between skin cancer, moles, and normal skin using polarized and multiple scattered light spectroscopy. Polarized light incident on the skin is single scattered by the epidermal layer and multiple scattered by the dermal layer. The epidermal light maintains its initial polarization while the light from the dermal layer becomes randomized and multiple scattered. Mie theory was used to model the epidermal light as the scattering from the intercellular organelles. The dermal signal was modeled as the diffusion of light through a localized semi-homogeneous volume. These models were confirmed using skin phantom experiments, studied with in vitro cell cultures, and applied to human skin for in vivo testing. A CCD-based spectroscopy system was developed to perform all these experiments. The probe and the theory were tested on skin phantoms of latex spheres on top of a solid phantom. We next extended our phantom study to include in vitro cells on top of the solid phantom. Optical fluorescent microscope images revealed at least four distinct scatterers including mitochondria, nucleoli, nuclei, and cell membranes. Single scattering measurements on the mammalian cells consistently produced PSD's in the size range of the mitochondria. The clinical portion of the study consisted of in vivo measurements on cancer, mole, and normal skin spots. The clinical study combined the single scattering model from the phantom and in vitro cell studies with the diffusion model for multiple scattered light. When parameters from both layers were combined, we found that a sensitivity of 100% and 77% can be obtained for detecting cancers and moles, respectively, given the number of lesions examined.

  12. Osteogenic Differentiation of Three-Dimensional Bioprinted Constructs Consisting of Human Adipose-Derived Stem Cells In Vitro and In Vivo

    PubMed Central

    Liu, Yun-Song; Sun, Yu-chun; Wang, Yu-guang; Wang, Yong; Lyu, Pei-Jun

    2016-01-01

    Here, we aimed to investigate osteogenic differentiation of human adipose-derived stem cells (hASCs) in three-dimensional (3D) bioprinted tissue constructs in vitro and in vivo. A 3D Bio-plotter dispensing system was used for building 3D constructs. Cell viability was determined using live/dead cell staining. After 7 and 14 days of culture, real-time quantitative polymerase chain reaction (PCR) was performed to analyze the expression of osteogenesis-related genes (RUNX2, OSX, and OCN). Western blotting for RUNX2 and immunofluorescent staining for OCN and RUNX2 were also performed. At 8 weeks after surgery, osteoids secreted by osteogenically differentiated cells were assessed by hematoxylin-eosin (H&E) staining, Masson trichrome staining, and OCN immunohistochemical staining. Results from live/dead cell staining showed that most of the cells remained alive, with a cell viability of 89%, on day 1 after printing. In vitro osteogenic induction of the 3D construct showed that the expression levels of RUNX2, OSX, and OCN were significantly increased on days 7 and 14 after printing in cells cultured in osteogenic medium (OM) compared with that in normal proliferation medium (PM). Fluorescence microscopy and western blotting showed that the expression of osteogenesis-related proteins was significantly higher in cells cultured in OM than in cells cultured in PM. In vivo studies demonstrated obvious bone matrix formation in the 3D bioprinted constructs. These results indicated that 3D bioprinted constructs consisting of hASCs had the ability to promote mineralized matrix formation and that hASCs could be used in 3D bioprinted constructs for the repair of large bone tissue defects. PMID:27332814

  13. Natural products that reduce rotavirus infectivity identified by a cell-based moderate-throughput screening assay.

    PubMed

    Shaneyfelt, Mark E; Burke, Anna D; Graff, Joel W; Jutila, Mark A; Hardy, Michele E

    2006-09-01

    There is widespread interest in the use of innate immune modulators as a defense strategy against infectious pathogens. Using rotavirus as a model system, we developed a cell-based, moderate-throughput screening (MTS) assay to identify compounds that reduce rotavirus infectivity in vitro, toward a long-term goal of discovering immunomodulatory agents that enhance innate responses to viral infection. A natural product library consisting of 280 compounds was screened in the assay and 15 compounds that significantly reduced infectivity without cytotoxicity were identified. Time course analysis of four compounds with previously characterized effects on inflammatory gene expression inhibited replication with pre-treatment times as minimal as 2 hours. Two of these four compounds, alpha-mangostin and 18-beta-glycyrrhetinic acid, activated NFkappaB and induced IL-8 secretion. The assay is adaptable to other virus systems, and amenable to full automation and adaptation to a high-throughput format. Identification of several compounds with known effects on inflammatory and antiviral gene expression that confer resistance to rotavirus infection in vitro suggests the assay is an appropriate platform for discovery of compounds with potential to amplify innate antiviral responses.

  14. The N-Terminal Amphipathic Helix of the Topological Specificity Factor MinE Is Associated with Shaping Membrane Curvature

    PubMed Central

    Shih, Yu-Ling; Huang, Kai-Fa; Lai, Hsin-Mei; Liao, Jiahn-Haur; Lee, Chai-Siah; Chang, Chiao-Min; Mak, Huey-Ming; Hsieh, Cheng-Wei; Lin, Chu-Chi

    2011-01-01

    Pole-to-pole oscillations of the Min proteins in Escherichia coli are required for the proper placement of the division septum. Direct interaction of MinE with the cell membrane is critical for the dynamic behavior of the Min system. In vitro, this MinE-membrane interaction led to membrane deformation; however, the underlying mechanism remained unclear. Here we report that MinE-induced membrane deformation involves the formation of an amphipathic helix of MinE2–9, which, together with the adjacent basic residues, function as membrane anchors. Biochemical evidence suggested that the membrane association induces formation of the helix, with the helical face, consisting of A2, L3, and F6, inserted into the membrane. Insertion of this helix into the cell membrane can influence local membrane curvature and lead to drastic changes in membrane topology. Accordingly, MinE showed characteristic features of protein-induced membrane tubulation and lipid clustering in in vitro reconstituted systems. In conclusion, MinE shares common protein signatures with a group of membrane trafficking proteins in eukaryotic cells. These MinE signatures appear to affect membrane curvature. PMID:21738659

  15. An ex vivo approach to botanical-drug interactions: a proof of concept study.

    PubMed

    Wang, Xinwen; Zhu, Hao-Jie; Munoz, Juliana; Gurley, Bill J; Markowitz, John S

    2015-04-02

    Botanical medicines are frequently used in combination with therapeutic drugs, imposing a risk for harmful botanical-drug interactions (BDIs). Among the existing BDI evaluation methods, clinical studies are the most desirable, but due to their expense and protracted time-line for completion, conventional in vitro methodologies remain the most frequently used BDI assessment tools. However, many predictions generated from in vitro studies are inconsistent with clinical findings. Accordingly, the present study aimed to develop a novel ex vivo approach for BDI assessment and expand the safety evaluation methodology in applied ethnopharmacological research. This approach differs from conventional in vitro methods in that rather than botanical extracts or individual phytochemicals being prepared in artificial buffers, human plasma/serum collected from a limited number of subjects administered botanical supplements was utilized to assess BDIs. To validate the methodology, human plasma/serum samples collected from healthy subjects administered either milk thistle or goldenseal extracts were utilized in incubation studies to determine their potential inhibitory effects on CYP2C9 and CYP3A4/5, respectively. Silybin A and B, two principal milk thistle phytochemicals, and hydrastine and berberine, the purported active constituents in goldenseal, were evaluated in both phosphate buffer and human plasma based in vitro incubation systems. Ex vivo study results were consistent with formal clinical study findings for the effect of milk thistle on the disposition of tolbutamide, a CYP2C9 substrate, and for goldenseal׳s influence on the pharmacokinetics of midazolam, a widely accepted CYP3A4/5 substrate. Compared to conventional in vitro BDI methodologies of assessment, the introduction of human plasma into the in vitro study model changed the observed inhibitory effect of silybin A, silybin B and hydrastine and berberine on CYP2C9 and CYP3A4/5, respectively, results which more closely mirrored those generated in clinical study. Data from conventional buffer-based in vitro studies were less predictive than the ex vivo assessments. Thus, this novel ex vivo approach may be more effective at predicting clinically relevant BDIs than conventional in vitro methods. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. An ex vivo approach to botanical-drug interactions: A proof of concept study

    PubMed Central

    Wang, Xinwen; Zhu, Hao-Jie; Munoz, Juliana; Gurley, Bill J.; Markowitz, John S.

    2015-01-01

    Ethnopharmacological relevance Botanical medicines are frequently used in combination with therapeutic drugs, imposing a risk for harmful botanical-drug interactions (BDIs). Among the existing BDI evaluation methods, clinical studies are the most desirable, but due to their expense and protracted time-line for completion, conventional in vitro methodologies remain the most frequently used BDI assessment tools. However, many predictions generated from in vitro studies are inconsistent with clinical findings. Accordingly, the present study aimed to develop a novel ex vivo approach for BDI assessment and expand the safety evaluation methodoloy in applied ethnopharmacological research. Materials and Methods This approach differs from conventional in vitro methods in that rather than botanical extracts or individual phytochemicals being prepared in artificial buffers, human plasma/serum collected from a limited number of subjects administered botanical supplements was utilized to assess BDIs. To validate the methodology, human plasma/serum samples collected from healthy subjects administered either milk thistle or goldenseal extracts were utilized in incubation studies to determine their potential inhibitory effects on CYP2C9 and CYP3A4/5, respectively. Silybin A and B, two principal milk thistle phytochemicals, and hydrastine and berberine, the purported active constituents in goldenseal, were evaluated in both phosphate buffer and human plasma based in vitro incubation systems. Results Ex vivo study results were consistent with formal clinical study findings for the effect of milk thistle on the disposition of tolbutamide, a CYP2C9 substrate, and for goldenseal’s influence on the pharmacokinetics of midazolam, a widely accepted CYP3A4/5 substrate. Compared to conventional in vitro BDI methodologies of assessment, the introduction of human plasma into the in vitro study model changed the observed inhibitory effect of silybinA, silybin B and hydrastine and berberine on CYP2C9 and CYP3A4/5, respectively, results which more closely mirrored those generated in clinical study. Conclusions Data from conventional buffer-based in vitro studies were less predictive than the ex vivo assessments. Thus, this novel ex vivo approach may be more effective at predicting clinically relevant BDIs than conventional in vitro methods. PMID:25623616

  17. Heterogeneous Binding and Central Nervous System Distribution of the Multitargeted Kinase Inhibitor Ponatinib Restrict Orthotopic Efficacy in a Patient-Derived Xenograft Model of Glioblastoma.

    PubMed

    Laramy, Janice K; Kim, Minjee; Gupta, Shiv K; Parrish, Karen E; Zhang, Shuangling; Bakken, Katrina K; Carlson, Brett L; Mladek, Ann C; Ma, Daniel J; Sarkaria, Jann N; Elmquist, William F

    2017-11-01

    This study investigated how differences in drug distribution and free fraction at different tumor and tissue sites influence the efficacy of the multikinase inhibitor ponatinib in a patient-derived xenograft model of glioblastoma (GBM). Efficacy studies in GBM6 flank (heterotopic) and intracranial (orthotopic) models showed that ponatinib is effective in the flank but not in the intracranial model, despite a relatively high brain-to-plasma ratio. In vitro binding studies indicated that flank tumor had a higher free (unbound) drug fraction than normal brain. The total and free drug concentrations, along with the tissue-to-plasma ratio (Kp) and its unbound derivative (Kp,uu), were consistently higher in the flank tumor than the normal brain at 1 and 6 hours after a single dose in GBM6 flank xenografts. In the orthotopic xenografts, the intracranial tumor core displayed higher Kp and Kp,uu values compared with the brain-around-tumor (BAT). The free fractions and the total drug concentrations, hence free drug concentrations, were consistently higher in the core than in the BAT at 1 and 6 hours postdose. The delivery disadvantages in the brain and BAT were further evidenced by the low total drug concentrations in these areas that did not consistently exceed the in vitro cytotoxic concentration (IC 50 ). Taken together, the regional differences in free drug exposure across the intracranial tumor may be responsible for compromising efficacy of ponatinib in orthotopic GBM6. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  18. Molecularly Imprinted Microrods via Mesophase Polymerization.

    PubMed

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  19. Haematic pH sensor for extracorporeal circulation

    NASA Astrophysics Data System (ADS)

    Ferrari, Luca; Fabbri, Paola; Rovati, Luigi; Pilati, Francesco

    2012-03-01

    The design and realization of an optical sensor for measuring haematic pH during extracorporeal circulation is presented. It consists of a chemical sensing element in contact with the blood, an interrogation optical head to externally probe the sensing element and the front-end electronics to acquire and process the information of interest. The fluorescein O-methacrylate 97% is used as the indicator. The developed system has been tested in-vitro and on an in-vivo animal model. It showed a linear behavior in the haematic range of interest with a mean error lower than 0.01 units of pH.

  20. Effects of feeding condensed distillers solubles and crude glycerin alone or in combination on finishing beef cattle performance, carcass characteristics, and in vitro fermentation.

    USDA-ARS?s Scientific Manuscript database

    Two experiments were conducted to evaluate the effects of feeding condensed distillers solubles (DS) and crude glycerin alone or in combination on performance of finishing beef cattle and in vitro fermentation. In both experiments, dietary treatments consisted of a steam flaked corn (SFC) based diet...

  1. Effects of Azithromycin, Metronidazole, Amoxicillin, and Metronidazole plus Amoxicillin on an In Vitro Polymicrobial Subgingival Biofilm Model

    PubMed Central

    Teles, Flavia; Starr, Jacqueline R.; Feres, Magda; Patel, Michele; Martin, Lynn

    2015-01-01

    Chronic periodontitis is one of the most prevalent human diseases and is caused by dysbiosis of the subgingival microbiota. Treatment involves primarily mechanical disruption of subgingival biofilms and, in certain cases, adjunctive use of systemic antibiotic therapy. In vitro biofilm models have been developed to study antimicrobial agents targeting subgingival species. However, these models accommodate a limited number of taxa, lack reproducibility, and have low throughput. We aimed to develop an in vitro multispecies biofilm model that mimics subgingival plaque, to test antimicrobial agents. Biofilms were cultivated using the Calgary Biofilm Device and were exposed to amoxicillin (AMX), metronidazole (MTZ), azithromycin (AZM), and AMX-MTZ at four different concentrations for 12, 24, or 36 h. Chlorhexidine (CHX) (0.12%) was used as the positive control. The compositions of the biofilms were analyzed by checkerboard DNA-DNA hybridization, and the percent reduction in biofilm metabolic activity was determined using 2,3,5-triphenyltetrazolium chloride and spectrophotometry. Thirty-five of the 40 species used in the inoculum were consistently recovered from the resulting in vitro biofilms. After 36 h of exposure at the 1:27 dilution, AMX-MTZ reduced metabolic activity 11% less than CHX (q = 0.0207) but 54% more than AMX (q = 0.0031), 72% more than MTZ (q = 0.0031), and 67% more than AZM (q = 0.0008). Preliminary evidence of a synergistic interaction between AMX and MTZ was also observed. In summary, we developed reproducible biofilms with 35 subgingival bacterial species, and our results suggested that the combination of AMX and MTZ had greater antimicrobial effects on these in vitro multispecies biofilms than expected on the basis of the independent effects of the drugs. PMID:25733510

  2. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo

    PubMed Central

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M.; Brennan, Patrick J.; Banerjee, Pinaki P.; Wiener, Susan J.; Orange, Jordan S.; Brenner, Michael B.; Grupp, Stephan A.; Nichols, Kim E.

    2013-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we find that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially-induced by iNKT cell agonists of varying TCR affinities, such as OCH, α-galactosyl ceramide and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of T cell receptor (TCR) signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell-deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T-lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T-lymphoma. PMID:24563871

  3. iNKT cell cytotoxic responses control T-lymphoma growth in vitro and in vivo .

    PubMed

    Bassiri, Hamid; Das, Rupali; Guan, Peng; Barrett, David M; Brennan, Patrick J; Banerjee, Pinaki P; Wiener, Susan J; Orange, Jordan S; Brenner, Michael B; Grupp, Stephan A; Nichols, Kim E

    2014-01-01

    Invariant natural killer T (iNKT) cells comprise a lineage of CD1d-restricted glycolipid-reactive T lymphocytes with important roles in host immunity to cancer. iNKT cells indirectly participate in antitumor responses by inducing dendritic cell maturation and producing cytokines that promote tumor clearance by CD8+ T and NK cells. Although iNKT cells thereby act as potent cellular adjuvants, it is less clear whether they directly control the growth of tumors. To gain insights into the direct contribution of iNKT cells to tumor immune surveillance, we developed in vitro and in vivo systems to selectively examine the antitumor activity of iNKT cells in the absence of other cytolytic effectors. Using the EL4 T-lymphoma cell line as a model, we found that iNKT cells exert robust and specific lysis of tumor cells in vitro in a manner that is differentially induced by iNKT cell agonists of varying T-cell receptor (TCR) affinities, such as OCH, α-galactosyl ceramide, and PBS44. In vitro blockade of CD1d-mediated lipid antigen presentation, disruption of TCR signaling, or loss of perforin expression significantly reduce iNKT cell killing. Consistent with these findings, iNKT cell reconstitution of T, B, and NK cell–deficient mice slows EL4 growth in vivo via TCR-CD1d and perforin-dependent mechanisms. Together, these observations establish that iNKT cells are sufficient to control the growth of T lymphoma in vitro and in vivo. They also suggest that the induction of iNKT cell cytotoxic responses in situ might serve as a more effective strategy to prevent and/or treat CD1d+ cancers, such as T lymphoma. ©2013 AACR.

  4. Enhancement of in vivo antioxidant ability in the brain of rats fed tannin.

    PubMed

    Nakajima, Akira; Ueda, Yuto; Matsuda, Emiko; Sameshima, Hiroshi; Ikenoue, Tsuyomu

    2013-07-01

    The effect of the oral administration of mimosa tannin (MMT) on the rat intra-hippocampal antioxidant ability was examined. Wistar rats at the age of 6 weeks were reared for 8 weeks with the rodent diet (RD) consisting of 0.1 g/kg of MMT (RD-MMT). The antioxidant ability of rat brain was evaluated from the decay of a brain-blood-barrier permeable stable nitroxide, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (PCAM) measured by the microdialysis-electron spin resonance system under a freely moving state. The decay rate of PCAM in the brain of rats fed RD-MMT was significantly larger than that of rats fed control rodent diet, which indicates the increase of the antioxidant ability in the brain of rats fed RD-MMT. In vitro study showed that MMT did not reduce PCAM directly but enhanced the reduction of PCAM by ascorbic acid. These results indicate that MMT is a potent antioxidant in vitro and in vivo.

  5. Antitumor activity of EGFR-specific CAR T cells against non-small-cell lung cancer cells in vitro and in mice.

    PubMed

    Li, He; Huang, Yao; Jiang, Du-Qing; Cui, Lian-Zhen; He, Zhou; Wang, Chao; Zhang, Zhi-Wei; Zhu, Hai-Li; Ding, Yong-Mei; Li, Lin-Fang; Li, Qiang; Jin, Hua-Jun; Qian, Qi-Jun

    2018-02-07

    Effective control of non-small-cell lung cancer (NSCLC) remains clinically challenging, especially during advanced stages of the disease. This study developed an adoptive T-cell treatment through expression of a chimeric antigen receptor (CAR) to target human epidermal growth factor receptor (EGFR) in NSCLC. We optimized the non-viral piggyBac transposon system to engineer human T cells for the expression of EGFR-CAR, consisting of EGFR scFv, transmembrane domain, and intracellular 4-1BB-CD3ζ signaling domains. The modified CAR T cells exhibited expansion capability and anticancer efficacy in a time- and antigen-dependent manner in vitro as well as regression of EGFR-positive human lung cancer xenografts in vivo. EGFR-CAR T therapy is a promising strategy to improve the efficacy and potency of the adoptive immunotherapy in NSCLC. Moreover, EGFR-CAR T therapy could become a clinical application for NSCLC patients in the future.

  6. In vitro and in vivo lung deposition of coated magnetic aerosol particles.

    PubMed

    Xie, Yuanyuan; Longest, P Worth; Xu, Yun Hao; Wang, Jian Ping; Wiedmann, Timothy Scott

    2010-11-01

    The magnetic induced deposition of polydispersed aerosols composed of agglomerated superparamagnetic particles was measured with an in vitro model system and in the mouse trachea and deep lung for the purpose of investigating the potential of site specific respiratory drug delivery. Oleic acid coated superparamagnetic particles were prepared and characterized by TEM, induced magnetic moment, and iron content. The particles were dispersed in cyclohexane, aerosolized with an ultrasonic atomizer and dried by sequential reflux and charcoal columns. The fraction of iron deposited on glass tubes increased with particle size and decreasing flow rate. High deposition occurred with a small diameter tube, but the deposition fraction was largely independent of tube size at larger diameters. Results from computational fluid dynamics qualitatively agreed with the experimental results. Enhanced deposition was observed in the mouse lung but not in the trachea consistent with the analysis of the aerodynamic time allowed for deposition and required magnetic deposition time. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  7. Cell-free NADPH oxidase activation assays: "in vitro veritas".

    PubMed

    Pick, Edgar

    2014-01-01

    The superoxide (O2 (∙-))-generating NADPH oxidase complex of phagocytes comprises a membrane-imbedded heterodimeric flavocytochrome, known as cytochrome b 558 (consisting of Nox2 and p22 (phox) ) and four cytosolic regulatory proteins, p47 (phox) , p67 (phox) , p40 (phox) , and the small GTPase Rac. Under physiological conditions, in the resting phagocyte, O2 (∙-) generation is initiated by engagement of membrane receptors by a variety of stimuli, followed by specific signal transduction sequences leading to the translocation of the cytosolic components to the membrane and their association with the cytochrome. A consequent conformational change in Nox2 initiates the electron "flow" along a redox gradient, from NADPH to oxygen, leading to the one-electron reduction of molecular oxygen to O2 (∙-). Methodological difficulties in the dissection of this complex mechanism led to the design "cell-free" systems (also known as "broken cells" or in vitro systems). In these, membrane receptor stimulation and all or part of the signal transduction sequence are missing, the accent being placed on the actual process of "NADPH oxidase assembly," thus on the formation of the complex between cytochrome b 558 and the cytosolic components and the resulting O2 (∙-) generation. Cell-free assays consist of a mixture of the individual components of the NADPH oxidase complex, derived from resting phagocytes or in the form of purified recombinant proteins, exposed in vitro to an activating agent (distinct from and unrelated to whole cell stimulants), in the presence of NADPH and oxygen. Activation is commonly quantified by measuring the primary product of the reaction, O2 (∙-), trapped immediately after its generation by an appropriate acceptor in a kinetic assay, permitting the calculation of the linear rate of O2 (∙-) production, but numerous variations exist, based on the assessment of reaction products or the consumption of substrates. Cell-free assays played a paramount role in the identification and characterization of the components of the NADPH oxidase complex, the deciphering of the mechanisms of assembly, the search for inhibitory drugs, and the diagnosis of various forms of chronic granulomatous disease (CGD).

  8. Vaccine-Mediated Activation of Human TLR4 Is Affected by Modulation of Culture Conditions during Whole-Cell Pertussis Vaccine Preparation

    PubMed Central

    Hoonakker, Marieke E.; Verhagen, Lisa M.; Pupo, Elder; de Haan, Alex; Metz, Bernard; Hendriksen, Coenraad F. M.; Han, Wanda G. H.; Sloots, Arjen

    2016-01-01

    The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer. PMID:27548265

  9. In vitro characterization of a magnetically suspended continuous flow ventricular assist device.

    PubMed

    Kim, H C; Bearnson, G B; Khanwilkar, P S; Olsen, D B; Maslen, E H; Allaire, P E

    1995-01-01

    A magnetically suspended continuous flow ventricular assist device using magnetic bearings was developed aiming at an implantable ventricular assist device. The main advantage of this device includes no mechanical wear and minimal chance of blood trauma such, as thrombosis and hemolysis, because there is no mechanical contact between the stationary and rotating parts. The total system consists of two subsystems: the centrifugal pump and the magnetic bearing. The centrifugal pump is comprised of a 4 vane logarithmic spiral radial flow impeller and a brushless DC motor with slotless stator, driven by the back emf commutation scheme. Two radial and one thrust magnetic bearing that dynamically controls the position of the rotor in a radial and axial direction, respectively, contains magnetic coils, the rotor's position sensors, and feedback electronic control system. The magnetic bearing system was able to successfully suspend a 365.5g rotating part in space and sustain it for up to 5000 rpm of rotation. Average force-current square factor of the magnetic bearing was measured as 0.48 and 0.44 (kg-f/Amp2) for radial and thrust bearing, respectively. The integrated system demonstrated adequate performance in mock circulation tests by providing a 6 L/min flow rate against 100 mmHg differential pressure at 2300 rpm. Based on these in vitro performance test results, long-term clinical application of the magnetically suspended continuous flow ventricular assist device is very promising after system optimization with a hybrid system using both active (electromagnet) and passive (permanent magnets) magnet bearings.

  10. [Micro/nano-engineering to control growth of neuronal cells and tissue engineering applied to the central nervous system].

    PubMed

    Béduer, Amélie; Vaysse, Laurence; Loubinoux, Isabelle; Vieu, Christophe

    2013-01-01

    Central nervous system pathologies are often characterized by the loss of cell populations. A promising therapy now being developed consists in using bioactive materials, associating grafted cells to biopolymers which provide a scaffold for the in vitro building of new tissues, to be implanted in vivo. In the present article, the state of the art of this field, at crossroads between microtechnology and neuroscience, is described in detail; thereafter our own approach and results about interactions between adult human neural stem cells and microstructured polymers are summarized and discussed. In a second part, some central nervous system repair strategies, based on cerebral tissue engineering, are presented. We will report the main results of our studies to work out and characterize in vivo a cerebral bioprosthesis. © Société de Biologie, 2014.

  11. Glioma Selectivity of Magnetically Targeted Nanoparticles: A Role of Abnormal Tumor Hydrodynamics

    PubMed Central

    Chertok, Beata; David, Allan E.; Huang, Yongzhuo; Yang, Victor C.

    2007-01-01

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma-versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting. PMID:17628157

  12. Somatic Embryogenesis and Massive Shoot Regeneration from Immature Embryo Explants of Tef

    PubMed Central

    Gugsa, Likyelesh; Kumlehn, Jochen

    2011-01-01

    Tef (Eragrostis tef) provides a major source of human nutrition in the Horn of Africa, but biotechnology has had little impact on its improvement to date. Here, we report the elaboration of an in vitro regeneration protocol, based on the use of immature zygotic embryos as explant. Explant size was an important determinant of in vitro regeneration efficiency, as was the formulation of the culture medium. Optimal results were obtained by culturing 0.2–0.35 mm embryo explants on a medium containing KBP minerals, 9.2–13.8 μM 2,4-dichlorophenoxyacetic acid, 6 mM glutamine, and 0.5% Phytagel. Although this protocol was effective for both the improved cultivar “DZ-01-196” and the landrace “Fesho”, the former produced consistently more embryogenic tissue and a higher number of regenerants. An average of more than 2,800 shoots could be obtained from each “DZ-01-196” explant after 12 weeks of in vitro culture. These shoots readily formed roots, and plantlets transferred to soil were able to develop into morphologically normal, fertile plants. This regeneration and multiplication system should allow for the application of a range of biotechnological methods to tef. PMID:22028975

  13. Skin-on-a-chip model simulating inflammation, edema and drug-based treatment

    PubMed Central

    Wufuer, Maierdanjiang; Lee, GeonHui; Hur, Woojune; Jeon, Byoungjun; Kim, Byung Jun; Choi, Tae Hyun; Lee, SangHoon

    2016-01-01

    Recent advances in microfluidic cell cultures enable the construction of in vitro human skin models that can be used for drug toxicity testing, disease study. However, current in vitro skin model have limitations to emulate real human skin due to the simplicity of model. In this paper, we describe the development of ‘skin-on-a-chip’ to mimic the structures and functional responses of the human skin. The proposed model consists of 3 layers, on which epidermal, dermal and endothelial components originated from human, were cultured. The microfluidic device was designed for co-culture of human skin cells and each layer was separated by using porous membranes to allow interlayer communication. Skin inflammation and edema were induced by applying tumor necrosis factor alpha on dermal layer to demonstrate the functionality of the system. The expression levels of proinflammatory cytokines were analyzed to illustrate the feasibility. In addition, we evaluated the efficacy of therapeutic drug testing model using our skin chip. The function of skin barrier was evaluated by staining tight junctions and measuring a permeability of endothelium. Our results suggest that the skin-on-a-chip model can potentially be used for constructing in vitro skin disease models or for testing the toxicity of cosmetics or drugs. PMID:27869150

  14. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles.

    PubMed

    Molina-Sánchez, Maria D; García-Rodríguez, Fernando M; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3' end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro . The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods.

  15. Functionality of In vitro Reconstituted Group II Intron RmInt1-Derived Ribonucleoprotein Particles

    PubMed Central

    Molina-Sánchez, Maria D.; García-Rodríguez, Fernando M.; Toro, Nicolás

    2016-01-01

    The functional unit of mobile group II introns is a ribonucleoprotein particle (RNP) consisting of the intron-encoded protein (IEP) and the excised intron RNA. The IEP has reverse transcriptase activity but also promotes RNA splicing, and the RNA-protein complex triggers site-specific DNA insertion by reverse splicing, in a process called retrohoming. In vitro reconstituted ribonucleoprotein complexes from the Lactococcus lactis group II intron Ll.LtrB, which produce a double strand break, have recently been studied as a means of developing group II intron-based gene targeting methods for higher organisms. The Sinorhizobium meliloti group II intron RmInt1 is an efficient mobile retroelement, the dispersal of which appears to be linked to transient single-stranded DNA during replication. The RmInt1IEP lacks the endonuclease domain (En) and cannot cut the bottom strand to generate the 3′ end to initiate reverse transcription. We used an Escherichia coli expression system to produce soluble and active RmInt1 IEP and reconstituted RNPs with purified components in vitro. The RNPs generated were functional and reverse-spliced into a single-stranded DNA target. This work constitutes the starting point for the use of group II introns lacking DNA endonuclease domain-derived RNPs for highly specific gene targeting methods. PMID:27730127

  16. Optimization of gatifloxacin liposomal hydrogel for enhanced transcorneal permeation.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The aim of this study was to prepare and characterize a topically effective prolonged-release ophthalmic gatifloxacin liposomal hydrogel formulation. Reverse-phase evaporation was used for the preparation of liposomes consisting of phosphatidylcholine (PC) and cholesterol (CH). The effect of PC:CH molar ratio on the percentage of drug encapsulated was investigated. The effect of additives, such as stearylamine (SA) or dicetyl phosphate (DP), as positive and negative charge inducers, respectively, was studied. Morphology, mean size, encapsulation efficiency, and in vitro release of gatifloxacin from liposomes were evaluated. For hydrogel preparation, carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency was found at the 5:3 PC:CH molar ratio; by increasing CH content above this limit, the encapsulation efficiency decreased. Positively charged liposomes showed superior entrapment efficiency over other liposomes. Hydrogel-containing liposomes with lipid content PC, CH, and SA in a molar ratio of 5:3:1, respectively, showed best release and transcorneal permeation. These results suggest that the encapsulation of gatifloxacin into liposomes prolonged the in vitro release, depending on composition of the vesicles. In addition, the polymer hydrogel used in the preparation ensured steady, prolonged transcorneal permeation. In conclusion, gatifloxacin liposomal hydrogel is a suitable delivery system for the improvement of the ocular bioavailability of gatifloxacin.

  17. In vitro transcriptomic prediction of hepatotoxicity for early drug discovery

    PubMed Central

    Cheng, Feng; Theodorescu, Dan; Schulman, Ira G.; Lee, Jae K.

    2012-01-01

    Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems. However, only a small number of preselected compounds can be examined in vivo due to high experimental costs. A more efficient yet accurate screening technique which can identify potentially hepatotoxic compounds in the early stages of drug development would thus be valuable. Here, we develop and apply a novel genomic prediction technique for screening hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged to a subset of 32 genes that can be used as a multi-gene expression signature to predict hepatotoxicity. This multi-gene predictor was independently validated and showed consistently high prediction performance on five test sets of in vitro human liver cell and in vivo animal toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of toxicity in response to drug concentrations which may be useful not only for discerning a compound’s general hepatotoxicity but also for determining its toxic concentration. PMID:21884709

  18. Glioma selectivity of magnetically targeted nanoparticles: a role of abnormal tumor hydrodynamics.

    PubMed

    Chertok, Beata; David, Allan E; Huang, Yongzhuo; Yang, Victor C

    2007-10-08

    Magnetic targeting is a promising strategy for achieving localized drug delivery. Application of this strategy to treat brain tumors, however, is complicated by their deep intracranial location, since magnetic field density cannot be focused at a distance from an externally applied magnet. This study intended to examine whether, with magnetic targeting, pathological alteration in brain tumor flow dynamics could be of value in discriminating the diseased site from healthy brain. To address this question, the capture of magnetic nanoparticles was first assessed in vitro using a simple flow system under theoretically estimated glioma and normal brain flow conditions. Secondly, accumulation of nanoparticles via magnetic targeting was evaluated in vivo using 9L-glioma bearing rats. In vitro results that predicted a 7.6-fold increase in nanoparticle capture at glioma- versus contralateral brain-relevant flow rates were relatively consistent with the 9.6-fold glioma selectivity of nanoparticle accumulation over the contralateral brain observed in vivo. Based on these finding, the in vitro ratio of nanoparticle capture can be viewed as a plausible indicator of in vivo glioma selectivity. Overall, it can be concluded that the decreased blood flow rate in glioma, reflecting tumor vascular abnormalities, is an important contributor to glioma-selective nanoparticle accumulation with magnetic targeting.

  19. In vitro immunomodulatory effects of herbal products.

    PubMed

    Wilasrusmee, Chumpon; Siddiqui, Josephine; Bruch, David; Wilasrusmee, Skuntala; Kittur, Smita; Kittur, Dilip S

    2002-10-01

    Immunosuppressive drugs have been developed from natural products such as soil and fungi, which are also the sources of some commonly used herbal products. However, the effect of herbal products on immune response has not been investigated. Because these products can affect the host immune system they can induce either rejection or tolerance after a transplant procedure. To investigate the effects of ten commonly used herbal products on transplant-related immune function we performed in vitro lymphocyte proliferation tests using phytohemagglutinin, mixed lymphocyte culture (MLC) assay, and interleukin (IL)-2 and IL-10 production from MLC. Dong quai, ginseng, and milk thistle had nonspecific immunostimulatory effects on lymphocyte proliferation, whereas ginger and green tea had immunosuppressive effects. Dong quai and milk thistle increased alloresponsiveness in MLC, whereas ginger and tea decreased these responses. The immunostimulatory effects of dong quai and milk thistle were consistently seen in both cell-mediated immune response and nonspecific lymphoproliferation, whereas that of ginseng was not. The immunosuppressive effect of green tea and ginger were mediated through a decrease in IL-2 production, but the immunostimulatory effects of dong quai and milk thistle were not. We conclude that green tea, dong quai, ginseng, milk thistle, and ginger have effects on in vitro immune assays that may be relevant in transplantation in humans.

  20. Comparative efficacies of candidate antibiotics against Yersinia pestis in an in vitro pharmacodynamic model.

    PubMed

    Louie, Arnold; Vanscoy, Brian; Liu, Weiguo; Kulawy, Robert; Brown, David; Heine, Henry S; Drusano, George L

    2011-06-01

    Yersinia pestis, the bacterium that causes plague, is a potential agent of bioterrorism. Streptomycin is the "gold standard" for the treatment of plague infections in humans, but the drug is not available in many countries, and resistance to this antibiotic occurs naturally and has been generated in the laboratory. Other antibiotics have been shown to be active against Y. pestis in vitro and in vivo. However, the relative efficacies of clinically prescribed regimens of these antibiotics with streptomycin and with each other for the killing of Yersinia pestis are unknown. The efficacies of simulated pharmacokinetic profiles for human 10-day clinical regimens of ampicillin, meropenem, moxifloxacin, ciprofloxacin, and gentamicin were compared with the gold standard, streptomycin, for killing of Yersinia pestis in an in vitro pharmacodynamic model. Resistance amplification with therapy was also assessed. Streptomycin killed the microbe in one trial but failed due to resistance amplification in the second trial. In two trials, the other antibiotics consistently reduced the bacterial densities within the pharmacodynamic systems from 10⁸ CFU/ml to undetectable levels (<10² CFU/ml) between 1 and 3 days of treatment. None of the comparator agents selected for resistance. The comparator antibiotics were superior to streptomycin against Y. pestis and deserve further evaluation.

  1. Intra- and Interprotein Phosphorylation between Two-hybrid Histidine Kinases Controls Myxococcus xanthus Developmental Progression*

    PubMed Central

    Schramm, Andreas; Lee, Bongsoo; Higgs, Penelope I.

    2012-01-01

    Histidine-aspartate phosphorelay signaling systems are used to couple stimuli to cellular responses. A hallmark feature is the highly modular signal transmission modules that can form both simple “two-component” systems and sophisticated multicomponent systems that integrate stimuli over time and space to generate coordinated and fine-tuned responses. The deltaproteobacterium Myxococcus xanthus contains a large repertoire of signaling proteins, many of which regulate its multicellular developmental program. Here, we assign an orphan hybrid histidine protein kinase, EspC, to the Esp signaling system that negatively regulates progression through the M. xanthus developmental program. The Esp signal system consists of the hybrid histidine protein kinase, EspA, two serine/threonine protein kinases, and a putative transport protein. We demonstrate that EspC is an essential component of this system because ΔespA, ΔespC, and ΔespA ΔespC double mutants share an identical developmental phenotype. Neither substitution of the phosphoaccepting histidine residue nor deletion of the entire catalytic ATPase domain in EspC produces an in vivo mutant developmental phenotype. In contrast, substitution of the receiver phosphoaccepting residue yields the null phenotype. Although the EspC histidine kinase can efficiently autophosphorylate in vitro, it does not act as a phosphodonor to its own receiver domain. Our in vitro and in vivo analyses suggest the phosphodonor is instead the EspA histidine kinase. We propose EspA and EspC participate in a novel hybrid histidine protein kinase signaling mechanism involving both inter- and intraprotein phosphotransfer. The output of this signaling system appears to be the combined phosphorylated state of the EspA and EspC receiver modules. This system regulates the proteolytic turnover of MrpC, an important regulator of the developmental program. PMID:22661709

  2. Can in vitro systems capture the characteristic differences between the flexion-extension kinematics of the healthy and TKA knee?

    PubMed

    Varadarajan, Kartik M; Harry, Rubash E; Johnson, Todd; Li, Guoan

    2009-10-01

    In vitro systems provide a powerful means to evaluate the efficacy of total knee arthroplasty (TKA) in restoring normal knee kinematics. The Oxford knee rig (OKR) and the robotic knee testing system (RKTS) represent two systems that have been extensively used to study TKA biomechanics. Nonetheless, a frequently asked question is whether in vitro simulations can capture the in vivo behavior of the knee. Here, we compared the flexion-extension kinematics of intact knees and knees after TKA tested on the OKR and RKTS, to results of representative in vivo studies. The goal was to determine if the in vitro systems could capture the key kinematic features of knees in healthy subjects and TKA patients. Results showed that the RKTS and the OKR can replicate the femoral rollback and 'screw home' tibial rotation between 0 degrees and 30 degrees flexion seen in healthy subjects, and the reduced femoral rollback and absence of 'screw home' motion in TKA patients. The RKTS also replicated the overall internally rotated position of the tibia beyond 30 degrees flexion. However, ability of the OKR to replicate the internally rotated position of the knee beyond 30 degrees flexion was inconsistent. These data could aid in validation of new in vitro systems and physiologic interpretations of in vitro results.

  3. Are In Vitro Methods for the Detection of Endocrine Potentials in the Aquatic Environment Predictive for In Vivo Effects? Outcomes of the Projects SchussenAktiv and SchussenAktivplus in the Lake Constance Area, Germany

    PubMed Central

    Henneberg, Anja; Bender, Katrin; Blaha, Ludek; Giebner, Sabrina; Kuch, Bertram; Köhler, Heinz-R.; Maier, Diana; Oehlmann, Jörg; Richter, Doreen; Scheurer, Marco; Schulte-Oehlmann, Ulrike; Sieratowicz, Agnes; Ziebart, Simone; Triebskorn, Rita

    2014-01-01

    Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively. PMID:24901835

  4. CSAHi study-2: Validation of multi-electrode array systems (MEA60/2100) for prediction of drug-induced proarrhythmia using human iPS cell-derived cardiomyocytes: Assessment of reference compounds and comparison with non-clinical studies and clinical information.

    PubMed

    Nozaki, Yumiko; Honda, Yayoi; Watanabe, Hitoshi; Saiki, Shota; Koyabu, Kiyotaka; Itoh, Tetsuji; Nagasawa, Chiho; Nakamori, Chiaki; Nakayama, Chiaki; Iwasaki, Hiroshi; Suzuki, Shinobu; Tanaka, Kohji; Takahashi, Etsushi; Miyamoto, Kaori; Morimura, Kaoru; Yamanishi, Atsuhiro; Endo, Hiroko; Shinozaki, Junko; Nogawa, Hisashi; Shinozawa, Tadahiro; Saito, Fumiyo; Kunimatsu, Takeshi

    2017-08-01

    With the aim of reconsidering ICH S7B and E14 guidelines, a new in vitro assay system has been subjected to worldwide validation to establish a better prediction platform for potential drug-induced QT prolongation and the consequent TdP in clinical practice. In Japan, CSAHi HEART team has been working on hiPS-CMs in the MEA (hiPS-CMs/MEA) under a standardized protocol and found no inter-facility or lot-to-lot variability for proarrhythmic risk assessment of 7 reference compounds. In this study, we evaluated the responses of hiPS-CMs/MEA to another 31 reference compounds associated with cardiac toxicities, and gene expression to further clarify the electrophysiological characteristics over the course of culture period. The hiPS-CMs/MEA assay accurately predicted reference compounds potential for arrhythmogenesis, and yielded results that showed better correlation with target concentrations of QTc prolongation or TdP in clinical setting than other current in vitro and in vivo assays. Gene expression analyses revealed consistent profiles in all samples within and among the testing facilities. This report would provide CiPA with informative guidance on the use of the hiPS-CMs/MEA assay, and promote the establishment of a new paradigm, beyond conventional in vitro and in vivo assays for cardiac safety assessment of new drugs. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation

    PubMed Central

    Simons, Michelle; Diffin, Fiona M.; Szczelkun, Mark D.

    2014-01-01

    We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction–modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host, upon generation of new sites by genome rearrangement/mutation or during homologous recombination between hemimethylated DNA. Using recombinant DNA and proteins in vitro, we demonstrate that ClpXP targets EcoKI HsdR during dsDNA translocation on circular DNA but not on linear DNA. Protein roadblocks did not activate HsdR proteolysis. We suggest that DNA translocation lifetime, which is elevated on circular DNA relative to linear DNA, is important to RA. To identify the ClpX degradation tag (degron) in HsdR, we used bioinformatics and biochemical assays to design N- and C-terminal mutations that were analysed in vitro and in vivo. None of the mutants produced a phenotype consistent with loss of the degron, suggesting an as-yet-unidentified recognition pathway. We note that an EcoKI nuclease mutant still produces cell death in a clpx− strain, consistent with DNA damage induced by unregulated motor activity. PMID:25260590

  6. Time and pH dependent colon specific, pulsatile delivery of theophylline for nocturnal asthma.

    PubMed

    Mastiholimath, V S; Dandagi, P M; Jain, S Samata; Gadad, A P; Kulkarni, A R

    2007-01-02

    In this study, investigation of an oral colon specific, pulsatile device to achieve time and/or site specific release of theophylline, based on chronopharmaceutical consideration. The basic design consists of an insoluble hard gelatin capsule body, filled with eudragit microcapsules of theophylline and sealed with a hydrogel plug. The entire device was enteric coated, so that the variability in gastric emptying time can be overcome and a colon-specific release can be achieved. The theophylline microcapsules were prepared in four batches, with Eudragit L-100 and S-100 (1:2) by varying drug to polymer ratio and evaluated for the particle size, drug content and in vitro release profile and from the obtained results; one better formulation was selected for further fabrication of pulsatile capsule. Different hydrogel polymers were used as plugs, to maintain a suitable lag period and it was found that the drug release was controlled by the proportion of polymers used. In vitro release studies of pulsatile device revealed that, increasing the hydrophilic polymer content resulted in delayed release of theophylline from microcapsules. The gamma scintigraphic study pointed out the capability of the system to release drug in lower parts of GIT after a programmed lag time for nocturnal asthma. Programmable pulsatile, colon-specific release has been achieved from a capsule device over a 2-24h period, consistent with the demands of chronotherapeutic drug delivery.

  7. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children.

    PubMed

    Grimaldi, Roberta; Cela, Drinalda; Swann, Jonathan R; Vulevic, Jelena; Gibson, Glenn R; Tzortzis, George; Costabile, Adele

    2017-02-01

    Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1 H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. © FEMS 2016.

  8. In vitro fermentation of B-GOS: impact on faecal bacterial populations and metabolic activity in autistic and non-autistic children

    PubMed Central

    Cela, Drinalda; Swann, Jonathan R.; Vulevic, Jelena; Gibson, Glenn R.; Tzortzis, George; Costabile, Adele

    2016-01-01

    Abstract Children with autism spectrum disorders (ASD) often suffer gastrointestinal problems consistent with imbalances in the gut microbial population. Treatment with antibiotics or pro/prebiotics has been postulated to regulate microbiota and improve gut symptoms, but there is a lack of evidence for such approaches, especially for prebiotics. This study assessed the influence of a prebiotic galactooligosaccharide (B-GOS) on gut microbial ecology and metabolic function using faecal samples from autistic and non-autistic children in an in vitro gut model system. Bacteriology was analysed using flow cytometry combined with fluorescence in situ hybridization and metabolic activity by HPLC and 1H-NMR. Consistent with previous studies, the microbiota of children with ASD contained a higher number of Clostridium spp. and a lower number of bifidobacteria compared with non-autistic children. B-GOS administration significantly increased bifidobacterial populations in each compartment of the models, both with autistic and non-autistic-derived samples, and lactobacilli in the final vessel of non-autistic models. In addition, changes in other bacterial population have been seen in particular for Clostridium, Rosburia, Bacteroides, Atopobium, Faecalibacterium prausnitzii, Sutterella spp. and Veillonellaceae. Furthermore, the addition of B-GOS to the models significantly altered short-chain fatty acid production in both groups, and increased ethanol and lactate in autistic children. PMID:27856622

  9. Increased NIH 3T3 fibroblast functions on cell culture dishes which mimic the nanometer fibers of natural tissues.

    PubMed

    Bhardwaj, Garima; Webster, Thomas J

    2015-01-01

    Traditional flat tissue cell culture dishes have consisted of polystyrene treated with plasma gases for growing, subculturing, and studying cell behavior in vitro. However, increasingly it has been observed that mimicking natural tissue properties (such as chemistry, three-dimensional structure, mechanical properties, etc) in vitro can lead to a better correlation of in vitro to in vivo cellular functions. The following studies compared traditional NIH 3T3 fibroblasts' functions on XanoMatrix scaffolds to standard tissue culture polystyrene. Results found significantly greater fibroblast adhesion and proliferation on XanoMatrix cell culture dishes which mimic the nanoscale geometry of natural tissue fibers with true, tortuous fiber beds creating a robust, consistent, and versatile growth platform. In this manner, this study supports that cell culture dishes which mimic features of natural tissues should be continually studied for a wide range of applications in which mimicking natural cellular functions are important.

  10. Environmental Impact on Vascular Development Predicted by High-Throughput Screening

    PubMed Central

    Judson, Richard S.; Reif, David M.; Sipes, Nisha S.; Singh, Amar V.; Chandler, Kelly J.; DeWoskin, Rob; Dix, David J.; Kavlock, Robert J.; Knudsen, Thomas B.

    2011-01-01

    Background: Understanding health risks to embryonic development from exposure to environmental chemicals is a significant challenge given the diverse chemical landscape and paucity of data for most of these compounds. High-throughput screening (HTS) in the U.S. Environmental Protection Agency (EPA) ToxCast™ project provides vast data on an expanding chemical library currently consisting of > 1,000 unique compounds across > 500 in vitro assays in phase I (complete) and Phase II (under way). This public data set can be used to evaluate concentration-dependent effects on many diverse biological targets and build predictive models of prototypical toxicity pathways that can aid decision making for assessments of human developmental health and disease. Objective: We mined the ToxCast phase I data set to identify signatures for potential chemical disruption of blood vessel formation and remodeling. Methods: ToxCast phase I screened 309 chemicals using 467 HTS assays across nine assay technology platforms. The assays measured direct interactions between chemicals and molecular targets (receptors, enzymes), as well as downstream effects on reporter gene activity or cellular consequences. We ranked the chemicals according to individual vascular bioactivity score and visualized the ranking using ToxPi (Toxicological Priority Index) profiles. Results: Targets in inflammatory chemokine signaling, the vascular endothelial growth factor pathway, and the plasminogen-activating system were strongly perturbed by some chemicals, and we found positive correlations with developmental effects from the U.S. EPA ToxRefDB (Toxicological Reference Database) in vivo database containing prenatal rat and rabbit guideline studies. We observed distinctly different correlative patterns for chemicals with effects in rabbits versus rats, despite derivation of in vitro signatures based on human cells and cell-free biochemical targets, implying conservation but potentially differential contributions of developmental pathways among species. Follow-up analysis with antiangiogenic thalidomide analogs and additional in vitro vascular targets showed in vitro activity consistent with the most active environmental chemicals tested here. Conclusions: We predicted that blood vessel development is a target for environmental chemicals acting as putative vascular disruptor compounds (pVDCs) and identified potential species differences in sensitive vascular developmental pathways. PMID:21788198

  11. In vitro regeneration of solanum aethiopicum L. (scarlet eggplant), an african vegetable crop with potential ornamental value

    USDA-ARS?s Scientific Manuscript database

    Successful in vitro regeneration of plantlets was obtained from shoot tips of five Solanum aethiopicum (African eggplants) accessions evaluated in two media, M1 and M2. The M1 medium consisted of Murashige and Skoog (MS) basal salt mixture supplemented with 20 g/L sucrose, 0.75 g/L MgCl2, and 2 g/L ...

  12. Influence of glioma cells on a new co-culture in vitro blood-brain barrier model for characterization and validation of permeability.

    PubMed

    Mendes, Bárbara; Marques, Cláudia; Carvalho, Isabel; Costa, Paulo; Martins, Susana; Ferreira, Domingos; Sarmento, Bruno

    2015-07-25

    The blood-brain barrier plays an important role in protecting the brain from injury and diseases, but also restrains the delivery of potential therapeutic drugs for the treatment of brain illnesses, such as tumors. Glioma is most common cancer type of central nervous system in adults and the most lethal in children. The treatment is normally poor and ineffective. To better understand the ability of drug delivery systems to permeate this barrier, a blood-brain barrier model using human brain endothelial cells and a glioma cell line is herein proposed. The consistent trans-endothelial electrical values, immunofluorescence and scanning electronic microscopy showed a confluent endothelial cell monolayer with high restrictiveness. Upon inclusion of glioma cell line, the trans-endothelial electrical resistance decreased, with consequent increase of apparent permeability of fluorescein isothiocyanate dextran used as model drug, revealing a reduction of the barrier robustness. In addition, it was demonstrated a cell shape modification in the co-culture, with loss of tight junctions. The microenvironment of co-cultured model presented significant increase of of CCL2/MCP-1 and IL-6 production, correlating with the modulation of permeation. The results encourage the use of the proposed in vitro model as a screening tool when performing drugs permeability for the treatment of disorders among the central nervous system. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A multichannel integrated circuit for electrical recording of neural activity, with independent channel programmability.

    PubMed

    Mora Lopez, Carolina; Prodanov, Dimiter; Braeken, Dries; Gligorijevic, Ivan; Eberle, Wolfgang; Bartic, Carmen; Puers, Robert; Gielen, Georges

    2012-04-01

    Since a few decades, micro-fabricated neural probes are being used, together with microelectronic interfaces, to get more insight in the activity of neuronal networks. The need for higher temporal and spatial recording resolutions imposes new challenges on the design of integrated neural interfaces with respect to power consumption, data handling and versatility. In this paper, we present an integrated acquisition system for in vitro and in vivo recording of neural activity. The ASIC consists of 16 low-noise, fully-differential input channels with independent programmability of its amplification (from 100 to 6000 V/V) and filtering (1-6000 Hz range) capabilities. Each channel is AC-coupled and implements a fourth-order band-pass filter in order to steeply attenuate out-of-band noise and DC input offsets. The system achieves an input-referred noise density of 37 nV/√Hz, a NEF of 5.1, a CMRR > 60 dB, a THD < 1% and a sampling rate of 30 kS/s per channel, while consuming a maximum of 70 μA per channel from a single 3.3 V. The ASIC was implemented in a 0.35 μm CMOS technology and has a total area of 5.6 × 4.5 mm². The recording system was successfully validated in in vitro and in vivo experiments, achieving simultaneous multichannel recordings of cell activity with satisfactory signal-to-noise ratios.

  14. Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro

    NASA Astrophysics Data System (ADS)

    Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan

    2016-07-01

    Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.

  15. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.

    PubMed

    Shen, Jie; Burgess, Diane J

    2012-07-01

    This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.

  16. Accelerated in vitro release testing methods for extended release parenteral dosage forms

    PubMed Central

    Shen, Jie; Burgess, Diane J.

    2012-01-01

    Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344

  17. Geometrical accuracy of metallic objects produced with additive or subtractive manufacturing: A comparative in vitro study.

    PubMed

    Braian, Michael; Jönsson, David; Kevci, Mir; Wennerberg, Ann

    2018-07-01

    To evaluate the accuracy and precision of objects produced by additive manufacturing systems (AM) for use in dentistry and to compare with subtractive manufacturing systems (SM). Ten specimens of two geometrical objects were produced by five different AM machines and one SM machine. Object A mimics an inlay-shaped object, while object B imitates a four-unit bridge model. All the objects were sorted into different measurement dimensions (x, y, z), linear distances, angles and corner radius. None of the additive manufacturing or subtractive manufacturing groups presented a perfect match to the CAD file with regard to all parameters included in the present study. Considering linear measurements, the precision for subtractive manufacturing group was consistent in all axes for object A, presenting results of <0.050mm. The additive manufacturing groups had consistent precision in the x-axis and y-axis but not in the z-axis. With regard to corner radius measurements, the SM group had the best overall accuracy and precision for both objects A and B when compared to the AM groups. Within the limitations of this in vitro study, the conclusion can be made that subtractive manufacturing presented overall precision on all measurements below 0.050mm. The AM machines also presented fairly good precision, <0.150mm, on all axes except for the z-axis. Knowledge regarding accuracy and precision for different production techniques utilized in dentistry is of great clinical importance. The dental community has moved from casting to milling and additive techniques are now being implemented. Thus all these production techniques need to be tested, compared and validated. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Inc. All rights reserved.

  18. Ocular TRUST: nationwide antimicrobial susceptibility patterns in ocular isolates.

    PubMed

    Asbell, Penny A; Colby, Kathryn A; Deng, Sophie; McDonnell, Peter; Meisler, David M; Raizman, Michael B; Sheppard, John D; Sahm, Daniel F

    2008-06-01

    Ocular Tracking Resistance in U.S. Today (TRUST) annually evaluates in vitro antimicrobial susceptibility of Staphylococcus aureus, Streptococcus pneumoniae, and Haemophilus influenzae to ciprofloxacin, gatifloxacin, levofloxacin, moxifloxacin, penicillin, azithromycin, tobramycin, trimethoprim, and polymyxin B in national samples of ocular isolates. Laboratory investigation. Prospectively collected ocular isolates (197 S. aureus, 49 S. pneumoniae, and 32 H. influenzae) from 35 institutions and archived ocular isolates (760 S. pneumoniae and 356 H. influenzae) from 34 institutions were tested by an independent, central laboratory. Mean minimum inhibitory concentrations that would inhibit growth of 90% of the tested isolates (MIC(90)) were interpreted as susceptible, intermediate, or resistant according to standardized breakpoints for systemic treatment. S. aureus isolates were classified as methicillin susceptible (MSSA) or methicillin resistant (MRSA). MSSA or MRSA susceptibility patterns were virtually identical for the fluoroquinolones, that is, MSSA susceptibility was 79.9% to 81.1% and MRSA susceptibility was 15.2%. Trimethoprim was the only agent tested with high activity against MRSA. All S. pneumoniae isolates were susceptible to gatifloxacin, levofloxacin, and moxifloxacin; 89.8% were susceptible to ciprofloxacin. H. influenzae isolates were 100% susceptible to all tested agents but trimethoprim. Ocular TRUST 1 data were consistent with the eight-year longitudinal sample of archived ocular isolates. The fluoroquinolones were consistently active in MSSA, S. pneumoniae, and H. influenzae. After more than a decade of intensive ciprofloxacin and levofloxacin use as systemic therapy, 100% of ocular S. pneumoniae isolates were susceptible to gatifloxacin, levofloxacin, and moxifloxacin; nonsusceptibility to ciprofloxacin was less than 15%. High-level in vitro MRSA resistance suggests the need to consider alternative therapy to fluoroquinolones when MRSA is a likely pathogen.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jee, S.S.; DiMasi, E.; Kasinath, R.K.

    Bone is a hierarchically structured composite which imparts it with unique mechanical properties and bioresorptive potential. These properties are primarily influenced by the underlying nanostructure of bone, which consists of nanocrystals of hydroxyapatite embedded and uniaxially aligned within collagen fibrils. There is also a small fraction of non-collagenous proteins in bone, and these are thought to play an important role in bone's formation. In our in vitro model system of bone formation, polyanionic peptides are used to mimic the role of the non-collagenous proteins. In our prior studies, we have shown that intrafibrillar mineralization can be achieved in synthetic reconstitutedmore » collagen sponges using a polymer-induced liquid-precursor (PILP) mineralization process. This led to a nanostructured arrangement of hydroxyapatite crystals within the individual fibrils which closely mimics that of bone. This report demonstrates that biogenic collagen scaffolds obtained from turkey tendon, which consist of densely packed and oriented collagen fibrils, can also be mineralized by the PILP process. Synchrotron X-ray diffraction studies show that the mineralization process leads to a high degree of crystallographic orientation at the macroscale, thus emulating that found in the biological system of naturally mineralizing turkey tendon.« less

  20. Lattice model for self-assembly with application to the formation of cytoskeletal-like structures

    NASA Astrophysics Data System (ADS)

    Stewman, Shannon F.; Dinner, Aaron R.

    2007-07-01

    We introduce a stochastic approach for self-assembly in systems far from equilibrium. The building blocks are represented by a lattice of discrete variables (Potts-like spins), and physically meaningful mechanisms are obtained by restricting transitions through spatially local rules based on experimental data. We use the method to study nucleation of filopodia-like bundles in a system consisting of purified actin, fascin, actin-related protein 2/3 , and beads coated with Wiskott-Aldrich syndrome protein. Consistent with previous speculation based on static experimental images, we find that bundles derive from Λ -precursor-like patterns of spins on the lattice. The ratcheting of the actin network relative to the surface that represents beads plays an important role in determining the number and orientation of bundles due to the fact that branching is the primary means for generating barbed ends pointed in directions that allow rapid filament growth. By enabling the de novo formation of coexisting morphologies without the computational cost of explicit representation of proteins, the approach introduced complements earlier models of cytoskeletal behavior in vitro and in vivo.

  1. CHARACTERISTICS OF GROWTH OF SARCOMA AND CARCINOMA CULTIVATED IN VITRO

    PubMed Central

    Lambert, Robert A.; Hanes, Frederic M.

    1911-01-01

    1. The transplantable sarcomata of rats and mice grow very readily by the method of cultivating tissues in vitro. 2. Sarcomatous tissue grows in conformity to a type which may be regarded as characteristic for tissues of mesenchymal origin. 3. The growth of sarcoma cells in vitro consists in ameboid wandering into the surrounding plasma, karyokinetic proliferation. and evidences of active metabolism on the part of the cells. 4. Mouse carcinomata can be cultivated in vitro. The outgrowth of carcinoma cells assumes a sheet-like form, only one cell in thickness. They migrate into the plasma by ameboid movement, the advancing edge showing numerous prolongations of the cytoplasm into pseudopods. 5. Karyokinetic figures are frequently seen in growing carcinoma cells. The cells show evidences of active metabolism. 6. Both sarcoma and carcinoma cells cultivated in vitro show active phagocytosis; carmin particles placed in the plasma are taken up rapidly by the growing cells. PMID:19867430

  2. In Vitro Exposure Systems and Dosimetry Assessment Tools ...

    EPA Pesticide Factsheets

    In 2009, the passing of The Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP) and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed “modified risk”. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference titled “In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products” to bring together stakeholders representing regulatory agencies, academia, and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapor exposure systems, as well as the various approaches and challenges to quantifying the complex exposures, in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were, 1) Tobacco Smoke And E-Cigarette Aerosols, 2) Air-Liquid Interface-In Vitro Exposure Systems, 3) Dosimetry Approaches For Particles And Vapors; In Vitro Dosimetry Determinations and 4) Exposure Microenvironment/Physiology Of Cells. The two and a half day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will re

  3. Module assemblage technology for floating systems: in vitro flotation and in vivo gastro-retention.

    PubMed

    Strusi, Orazio Luca; Sonvico, Fabio; Bettini, Ruggero; Santi, Patrizia; Colombo, Gaia; Barata, Pedro; Oliveira, Ana; Santos, Delfim; Colombo, Paolo

    2008-07-14

    The aim of this research was to study, in vitro by resultant-weight measurement and in vivo by gamma-scintigraphy experiments in humans, the floatation behavior of systems obtained by modules assembled in void configuration. The assembled system technology allowed the manufacturing of a system characterized by the presence of an internal void space that provided an apparent density lower than water. The gastro-retention times of floating assembled systems were determined in comparison with non-floating systems having the same mass and composition. In vitro the floatation of the system started immediately after immersion in water and lasted for more than 5 h. The in vivo studies confirmed that the in vitro floating ability of void configuration was maintained also in the human stomach where the system stayed for periods of time ranging from 2.5 to 5.0 h, depending on the food regimen and the sex of the subject. Reiterate eating and drinking further prolonged the stomach residence time.

  4. Glyceryl monooleyl ether-based liquid crystalline nanoparticles as a transdermal delivery system of flurbiprofen: characterization and in vitro transport.

    PubMed

    Uchino, Tomonobu; Murata, Akiko; Miyazaki, Yasunori; Oka, Toshihiko; Kagawa, Yoshiyuki

    2015-01-01

    Liquid crystalline nanoparticles (LCNs) were prepared using glyceryl monooleyl ether (GME) by the modified film rehydration method. Hydrogenated lecithin (HL), 1,3-butylene glycol (1,3-BG), and Poloxamer 407 were used as additives. The prepared LCN formulations were evaluated based on particle size, small-angle X-ray diffraction (SAXS) analysis, (1)H- and (19)F-NMR spectra, and in vitro skin permeation across Yucatan micropig skin. The composition (weight percent) of the LCN formulations were GME-HL-1,3-BG (4 : 1 : 15), 4% GME-based LCN and GME-HL-1,3-BG (8 : 1 : 15), 8% GME-based LCN and their mean particle sizes were 130-175 nm. Flurbiprofen 5 and 10 mg was loaded into 4% GME-based LCN and 8% GME-based LCN systems, respectively. The results of SAXS and NMR suggested that both flurbiprofen-loaded formulations consist of particles with reverse type hexagonal phase (formation of hexosome) and flurbiprofen molecules were localized in the lipid domain through interaction of flurbiprofen with the lipid components. Flurbiprofen transport from the LCN systems across the Yucatan micropig skin was increased compared to flurbiprofen in citric buffer (pH=3.0). The 8% GME-based LCN systems was superior to the 4% GME-based LCN for flurbiprofen transport. Since the internal hexagonal phase in the 8% GME-based LCN systems had a higher degree of order compared to the 4% GME-based LCN in SAXS patterns, the 8% GME-based LCN system had a larger surface area, which might influence flurbiprofen permeation. These results indicated that the GME-based LCN system is effective in improving the skin permeation of flurbiprofen across the skin.

  5. An x-ray fluorescence imaging system for gold nanoparticle detection.

    PubMed

    Ricketts, K; Guazzoni, C; Castoldi, A; Gibson, A P; Royle, G J

    2013-11-07

    Gold nanoparticles (GNPs) may be used as a contrast agent to identify tumour location and can be modified to target and image specific tumour biological parameters. There are currently no imaging systems in the literature that have sufficient sensitivity to GNP concentration and distribution measurement at sufficient tissue depth for use in in vivo and in vitro studies. We have demonstrated that high detecting sensitivity of GNPs can be achieved using x-ray fluorescence; furthermore this technique enables greater depth imaging in comparison to optical modalities. Two x-ray fluorescence systems were developed and used to image a range of GNP imaging phantoms. The first system consisted of a 10 mm(2) silicon drift detector coupled to a slightly focusing polycapillary optic which allowed 2D energy resolved imaging in step and scan mode. The system has sensitivity to GNP concentrations as low as 1 ppm. GNP concentrations different by a factor of 5 could be resolved, offering potential to distinguish tumour from non-tumour. The second system was designed to avoid slow step and scan image acquisition; the feasibility of excitation of the whole specimen with a wide beam and detection of the fluorescent x-rays with a pixellated controlled drift energy resolving detector without scanning was investigated. A parallel polycapillary optic coupled to the detector was successfully used to ascertain the position where fluorescence was emitted. The tissue penetration of the technique was demonstrated to be sufficient for near-surface small-animal studies, and for imaging 3D in vitro cellular constructs. Previous work demonstrates strong potential for both imaging systems to form quantitative images of GNP concentration.

  6. Development, qualification, validation and application of the Ames test using a VITROCELL® VC10® smoke exposure system.

    PubMed

    Fowler, Kathy; Fields, Wanda; Hargreaves, Victoria; Reeve, Lesley; Bombick, Betsy

    2018-01-01

    The Ames test has established use in the assessment of potential mutagenicity of tobacco products but has generally been performed using partitioned exposures (e.g. total particulate matter [TPM], gas vapor phase [GVP]) rather than whole smoke (WS). The VITROCELL ® VC10 ® smoke exposure system offers multiple platforms for air liquid interface (ALI), or air agar interface (AAI) in the case of the Ames test exposure to mimic in vivo -like conditions for assessing the toxicological impact of fresh WS in in vitro assays. The goals of this study were to 1) qualify the VITROCELL ® VC10 ® to demonstrate functionality of the system, 2) develop and validate the Ames test following WS exposure with the VITROCELL ® VC10 ® and 3) assess the ability of the Ames test to differentiate between a reference combustible product (3R4F Kentucky reference cigarette) and a primarily tobacco heating product (Eclipse). Based on critical function assessments, the VITROCELL ® VC10 ® was demonstrated to be fit for the purpose of consistent generation of WS. Assay validation was conducted for 5 bacterial strains (TA97, TA98, TA100, TA1535 and TA102) and reproducible exposure-related changes in revertants were observed for TA98 and TA100 in the presence of rat liver S-9 following exposure to 3R4F WS. In the comparative studies, exposure-related changes in in vitro mutagenicity following exposure of TA98 and TA100 in the presence of S9 to both 3R4F and Eclipse WS were observed, with the response for Eclipse being significantly less than that for 3R4F (p < 0.001) which is consistent with the fewer chemical constituents liberated by primarily-heating the product.

  7. Corneal protection with high-molecular-weight hyaluronan against in vitro and in vivo sodium lauryl sulfate-induced toxic effects.

    PubMed

    Pauloin, Thierry; Dutot, Mélody; Liang, Hong; Chavinier, Emilie; Warnet, Jean-Michel; Rat, Patrice

    2009-10-01

    The aim of this study was to investigate high-molecular-weight hyaluronan (HA-HMW) corneal protection against sodium lauryl sulfate (SLS)-induced toxic effects with in vitro and in vivo experimental approaches. In vitro experiments consisted of a human corneal epithelial cell line incubated with HA-HMW, rinsed, and incubated with SLS. Cell viability, oxidative stress, chromatin condensation, caspase-3, -8, -9, and P2X7 cell death receptor activation, interleukin-6, and interleukin-8 production were investigated. In vivo experiments consisted of 36 New Zealand white rabbits treated for 3 days, 3 times per day, with HA-HMW or phosphate-buffered salt solution. At day 4, eyes were treated with SLS. Clinical observation and in vivo confocal microscopy using the Rostock Cornea Module of the Heidelberg Retina Tomograph-II were performed to evaluate and to compare SLS-induced toxicity between eyes treated with HA-HMW and eyes treated with phosphate-buffered salt solution. In vitro data indicate that exposure of human corneal epithelial cells to HA-HMW significantly decreased SLS-induced oxidative stress, apoptosis, and inflammation cytokine production. In vivo data indicate that SLS cornea injuries, characterized by damaged corneal epithelium, damaged anterior stroma, and inflammatory infiltrations, were attenuated with HA-HMW treatment. A good correlation was seen between in vitro and in vivo findings showing that HA-HMW decreases SLS-induced toxic effects and protects cornea.

  8. A new in vitro lipid digestion - in vivo absorption model to evaluate the mechanisms of drug absorption from lipid-based formulations.

    PubMed

    Crum, Matthew F; Trevaskis, Natalie L; Williams, Hywel D; Pouton, Colin W; Porter, Christopher J H

    2016-04-01

    In vitro lipid digestion models are commonly used to screen lipid-based formulations (LBF), but in vitro-in vivo correlations are in some cases unsuccessful. Here we enhance the scope of the lipid digestion test by incorporating an absorption 'sink' into the experimental model. An in vitro model of lipid digestion was coupled directly to a single pass in situ intestinal perfusion experiment in an anaesthetised rat. The model allowed simultaneous real-time analysis of the digestion and absorption of LBFs of fenofibrate and was employed to evaluate the influence of formulation digestion, supersaturation and precipitation on drug absorption. Formulations containing higher quantities of co-solvent and surfactant resulted in higher supersaturation and more rapid drug precipitation in vitro when compared to those containing higher quantities of lipid. In contrast, when the same formulations were examined using the coupled in vitro lipid digestion - in vivo absorption model, drug flux into the mesenteric vein was similar regardless of in vitro formulation performance. For some drugs, simple in vitro lipid digestion models may underestimate the potential for absorption from LBFs. Consistent with recent in vivo studies, drug absorption for rapidly absorbed drugs such as fenofibrate may occur even when drug precipitation is apparent during in vitro digestion.

  9. Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.

    2003-03-01

    Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  10. Development and evaluation of a long-term, implantable, electrically actuated left ventricular assist system: THI/Gould LVAS.

    PubMed

    Norman, J C; McGee, M G; Fuqua, J M; Igo, S R; Turner, S A; Sterling, R; Urrutia, C O; Frazier, O H; Clay, W C; Chambers, J A

    1983-02-01

    A long-term, implantable, electrically actuated left ventricular assist system (THI/Gould LVAS) is being developed and characterized in vitro and in vivo for utilization in patients with end-stage heart disease. This system consists of five major components: a long-term, implantable blood pump (THI E-type ALVAD); an electrical-mechanical energy converter (Gould Model V); a control unit with batteries; a volume compensation system; and an external power supply and monitoring unit. Two of these components (blood pump and electrical-mechanical energy converter) have been integrated, and are undergoing chronic in vivo evaluations in calves. Thus far, 44 pneumatically and electrically actuated THI/Gould LVAS evaluations have been performed. This experience has resulted in greater than 6.5 years of actuation in vivo, with durations exceeding 1 year. System in vivo performance in terms of durability, mechanical reliability, hemodynamic effectiveness, and biocompatibility has been satisfactory. Demonstration of long-term (2-year) effectiveness in supporting the circulation is the ultimate goal.

  11. A miniaturized glucose biosensor for in vitro and in vivo studies.

    PubMed

    Yang, Yang-Li; Huang, Jian-Feng; Tseng, Ta-Feng; Lin, Chia-Ching; Lou, Shyh-Liang

    2008-01-01

    A miniaturized wireless glucose biosensor has been developed to perform in vitro and in vivo studies. It consists of an external control subsystem and an implant sensing subsystem. The implant subsystem consists of a micro-processor, which coordinates circuitries of radio frequency, power regulator, command demodulator, glucose sensing trigger and signal read-out. Except for a set of sensing electrodes, the micro-processor, the circuitries and a receiving coil were hermetically sealed with polydimethylsiloxane. The electrode set is a substrate of silicon oxide coated with platinum, which includes a working electrode and a reference electrode. Glucose oxidase was immobilized on the surface of the working electrode. The implant subsystem bi-directionally communicates with the external subsystem via radio frequency technologies. The external subsystem wirelessly supplies electricity to power the implant, issues commands to the implant to perform tasks, receives the glucose responses detected by the electrode, and relays the response signals to a computer through a RS-232 connection. Studies of in vitro and in vivo were performed to evaluate the biosensor. The linear response of the biosensor is up to 15 mM of glucose in vitro. The results of in vivo study show significant glucose variations measured from the interstitial tissue fluid of a diabetes rat in fasting and non-fasting periods.

  12. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro.

    PubMed

    Mannino, Robert G; Santiago-Miranda, Adriana N; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C; Neelapu, Sattva S; Roy, Krishnendu; Lam, Wilbur A

    2017-01-31

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ∼22 000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design.

  13. 3D microvascular model recapitulates the diffuse large B-cell lymphoma tumor microenvironment in vitro

    PubMed Central

    Mannino, Robert G.; Santiago-Miranda, Adriana N.; Pradhan, Pallab; Qiu, Yongzhi; Mejias, Joscelyn C.; Neelapu, Sattva S.; Roy, Krishnendu; Lam, Wilbur A.

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is an aggressive cancer that affects ~22,000 people in the United States yearly. Understanding the complex cellular interactions of the tumor microenvironment is critical to the success and development of DLBCL treatment strategies. In vitro platforms that successfully model the complex tumor microenvironment without introducing the variability of in vivo systems are vital for understanding these interactions. To date, no such in vitro model exists that can accurately recapitulate the interactions that occur between immune cells, cancer cells, and endothelial cells in the tumor microenvironment of DLBCL. To that end, we developed a lymphoma-on-chip model consisting of a hydrogel based tumor model traversed by a vascularized, perfusable, round microchannel that successfully recapitulates key complexities and interactions of the in vivo tumor microenvironment in vitro. We have shown that the perfusion capabilities of this technique allow us to study targeted treatment strategies, as well as to model the diffusion of infused reagents spatiotemporally. Furthermore, this model employs a novel fabrication technique that utilizes common laboratory materials, and allows for the microfabrication of multiplex microvascular environments without the need for advanced microfabrication facilities. Through our facile microfabrication process, we are able to achieve micro vessels within a tumor model that are highly reliable and precise over the length of the vessel. Overall, we have developed a tool that enables researchers from many diverse disciplines to study previously inaccessible aspects of the DLBCL tumor microenvironment, with profound implications for drug delivery and design. PMID:28054086

  14. A comparative assessment of cigarette smoke aerosols using an in vitro air–liquid interface cytotoxicity test

    PubMed Central

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    Abstract This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  15. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models.

    PubMed

    Teng, S; Tebby, C; Barcellini-Couget, S; De Sousa, G; Brochot, C; Rahmani, R; Pery, A R R

    2016-08-15

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro - in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-time cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Rational design of functional and tunable oscillating enzymatic networks

    NASA Astrophysics Data System (ADS)

    Semenov, Sergey N.; Wong, Albert S. Y.; van der Made, R. Martijn; Postma, Sjoerd G. J.; Groen, Joost; van Roekel, Hendrik W. H.; de Greef, Tom F. A.; Huck, Wilhelm T. S.

    2015-02-01

    Life is sustained by complex systems operating far from equilibrium and consisting of a multitude of enzymatic reaction networks. The operating principles of biology's regulatory networks are known, but the in vitro assembly of out-of-equilibrium enzymatic reaction networks has proved challenging, limiting the development of synthetic systems showing autonomous behaviour. Here, we present a strategy for the rational design of programmable functional reaction networks that exhibit dynamic behaviour. We demonstrate that a network built around autoactivation and delayed negative feedback of the enzyme trypsin is capable of producing sustained oscillating concentrations of active trypsin for over 65 h. Other functions, such as amplification, analog-to-digital conversion and periodic control over equilibrium systems, are obtained by linking multiple network modules in microfluidic flow reactors. The methodology developed here provides a general framework to construct dissipative, tunable and robust (bio)chemical reaction networks.

  17. Engineering based assessment for a shape design of a pediatric ePTFE pulmonary conduit valve.

    PubMed

    Tsuboko, Yusuke; Shiraishi, Yasuyuki; Yamada, Akihiro; Yambe, Tomoyuki; Miura, Hidekazu; Mura, Seitaro; Yamagishi, Masaaki

    2016-08-01

    The authors examined the hemodynamic characteristics of expanded polytetrafluoroethylene (ePTFE) pulmonary valved conduits quantitatively by our originally developed pediatric pulmonary mechanical circulatory system, in order to suggest the optimal shape design. The system consisted of pneumatically driven right atrium and ventricle model, a pulmonary valve chamber, and elastic pulmonary compliance model with peripheral vascular resistance units, a venous reservoir. We employed two different types of ePTFE valve and evaluated the relationship between the leaflets motion and hemodynamic characteristics by using a high-speed video camera. As a result, we successfully reproduced hemodynamic simulations in our pediatric pulmonary mock system. We confirmed that the presence of bulging sinuses in the pulmonary valved conduit reduced the transvalvular energy loss and increased the valve opening area during systolic period. Our engineering-based in vitro analysis could be useful for proposing a shape design optimization of sophisticated pediatric ePTFE pulmonary valve.

  18. Elution characteristics of teicoplanin-loaded biodegradable borate glass/chitosan composite.

    PubMed

    Jia, Wei-Tao; Zhang, Xin; Zhang, Chang-Qing; Liu, Xin; Huang, Wen-Hai; Rahaman, Mohamed N; Day, Delbert E

    2010-03-15

    Local antibiotic delivery system has an advantage over systemic antibiotic for osteomyelitis treatment due to the delivery of high local antibiotic concentration while avoiding potential systemic toxicity. Composite biomaterials with multifunctional roles, consisting of a controlled antibiotic release, a mechanical (load-bearing) function, and the ability to promote bone regeneration, gradually become the most active area of investigation and development of local antibiotic delivery vehicles. In the present study, a composite of borate glass and chitosan (designated BG/C) was developed as teicoplanin delivery vehicle. The in vitro elution kinetics and antibacterial activity of teicoplanin released from BG/C composite as a function of immersion time were determined. Moreover, the pH changes of eluents and the bioactivity of the composite were characterized using scanning electron microscopy coupled with energy-dispersive spectroscopy and X-ray diffraction analysis. 2009 Elsevier B.V. All rights reserved.

  19. Controlled poorly soluble drug release from solid self-microemulsifying formulations with high viscosity hydroxypropylmethylcellulose.

    PubMed

    Yi, Tao; Wan, Jiangling; Xu, Huibi; Yang, Xiangliang

    2008-08-07

    The objective of this work was the development of a controlled release system based on self-microemulsifying mixture aimed for oral delivery of poorly water-soluble drugs. HPMC-based particle formulations were prepared by spray drying containing a model drug (nimodipine) of low water solubility and hydroxypropylmethylcellulose (HPMC) of high viscosity. One type of formulations contained nimodipine mixed with HPMC and the other type of formulations contained HPMC and nimodipine dissolved in a self-microemulsifying system (SMES) consisting of ethyl oleate, Cremophor RH 40 and Labrasol. Based on investigation by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and X-ray powder diffraction, differences were found in the particle structure between both types of formulations. In vitro release was performed and characterized by the power law. Nimodipine release from both types of formulations showed a controlled release profile and the two power law parameters, n and K, correlated to the viscosity of HPMC. The parameters were also influenced by the presence of SMES. For the controlled release solid SMES, oil droplets containing dissolved nimodipine diffused out of HPMC matrices following exposure to aqueous media. Thus, it is possible to control the in vitro release of poorly soluble drugs from solid oral dosage forms containing SMES.

  20. Determination of tenogenic differentiation in human mesenchymal stem cells by terahertz waves for measurement of the optical property of cellular suspensions

    NASA Astrophysics Data System (ADS)

    Morita, Yasuyuki; Azuchi, Kosuke; Ju, Yang; Suzuki, Satoshi; Xu, Baiyao; Yamamoto, Shuhei

    2014-06-01

    Technology for identifying stem cell-to-tenocyte differentiation that is non-contact and non-destructive in vitro is essential in tissue engineering. It has been found that expression of various RNA and proteins produced by differentiated cells is elevated when human bone marrow mesenchymal stem cells (hBMSCs) differentiate into tenocytes. Also, such biomolecules have absorption bands in the terahertz range. Thus, we attempted to evaluate whether terahertz waves could be used to distinguish hBMSC-to-tenocyte differentiation. Terahertz time-domain spectroscopy (THz-TDS) using femtosecond laser pulses was used for terahertz measurements. HBMSCs differentiated into tenocytes with mechanical stimulation: 10% cyclical uniaxial stretching at 1 Hz for 24 or 48 h. Cellular suspensions before and after differentiation were measured with terahertz waves. Complex refractive index, consisting of a refractive index (real) and an extinction coefficient (imaginary) obtained from the transmitted terahertz signals, was evaluated before and after differentiation at 1.0 THz. As a result, the THz-TDS system enabled discrimination of hBMSC-to-tenocyte differentiation due to the marked contrast in optical parameter before and after differentiation. This is the first report of the potential of a THz-TDS system for the detection of tenogenic differentiation using a non-contact and non-destructive in vitro technique.

  1. In vitro tuberization of Chlorophytum Borivilianum Sant & Fern (Safed musli) as influenced by sucrose, CCC and culture systems.

    PubMed

    Farshad Ashraf, Mehdi; Abd Aziz, Maheran; Abdul Kadir, Mihdzar; Stanslas, Johnson; Farokhian, Elmira

    2013-08-01

    This study focuses on the establishment of in vitro tuberization of Chlorophytum borivilianum using solid and liquid culture systems. A high in vitro tuberization rate on solid and stationary liquid Murashige and Skoog media was observed in the presence of 60 g l⁻¹ sucrose with 950, 1,265 and 1,580 µM 2-chloroethyl-trimethylammonium chloride (CCC). Application of a higher sucrose concentration of 90 g l⁻¹ showed a negative interaction with CCC on in vitro tuber number and days to in vitro tuber induction. For economic feasibility, 950 µM CCC with 60 g l⁻¹ sucrose was chosen as the best combination for in vitro tuberization in both solid and stationary liquid media. For optimization of in vitro tuber production,a comparison between solid, stationary liquid and shake liquid culture was carried out. Liquid culture with shaking at 80 r.p.m. resulted in a >2.5-fold increase in in vitro tuber production compared with solid culture.

  2. Moloney leukemia virus immortalizes B lymphocytes in vitro.

    PubMed Central

    Runnels, J; Serunian, L; Thursby, M; Rosenberg, N

    1991-01-01

    An in vitro culture system in which Moloney murine leukemia virus induces immortalization of mature B lymphocytes has been developed. The cell lines derived in this way are nontumorigenic, and virus production is not required to sustain them. This system provides a new in vitro model with which to study the stepwise process of transformation by retroviruses lacking oncogenes. Images PMID:1895405

  3. Investigation of Dendrimer-Membrane Interactions

    NASA Astrophysics Data System (ADS)

    Mecke, Almut; Hessler, Jessica; Lee, Inhan; Banaszak Holl, Mark; Orr, Bradford; Patri, Anil K.; Baker, J. R.

    2003-03-01

    Modified Polyamidoamine (PAMAM) dendrimers show great promise as targeted drug transport agents. Current research efforts point to the possibility of dramatic improvements to conventional chemotherapy by selectively delivering a therapeutic to antigen bearing tumor cells. In order to better understand the uptake mechanism of such devices into cells we are investigating dendrimer-surface adsorption and dendrimer-membrane interactions using atomic force microscopy, light scattering and computer simulations. Model systems consisting of supported DMPC lipid bilayers have shown interesting results suggesting the shape and architecture of nano-devices play an important role for their biologic activity. We are also investigating the effect of targeted drug vehicles on cells in vitro.

  4. Towards active capsular endoscopy: preliminary results on a legged platform.

    PubMed

    Menciassi, Arianna; Stefanini, Cesare; Orlandi, Giovanni; Quirini, Marco; Dario, Paolo

    2006-01-01

    This paper illustrates the problem of active locomotion in the gastrointestinal tract for endoscopic capsules. Authors analyze the problem of locomotion in unstructured, flexible and tubular environments and explain the reasons leading to the selection of a legged system. They present a theoretical simulation of legged capsule locomotion, which is used to define the optimal parameters for capsule design and gait selection. Finally, a legged capsule--about 3 cm3 in volume--is presented; it consists of 4 back legs whose actuation is achieved thanks to a miniaturized DC brushless motor. In vitro tests demonstrate good performance in terms of achievable speed (92 mm/min).

  5. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  6. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system. PMID:25346683

  7. GCaMP expression in retinal ganglion cells characterized using a low-cost fundus imaging system

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Chuan; Walston, Steven T.; Chow, Robert H.; Weiland, James D.

    2017-10-01

    Objective. Virus-transduced, intracellular-calcium indicators are effective reporters of neural activity, offering the advantage of cell-specific labeling. Due to the existence of an optimal time window for the expression of calcium indicators, a suitable tool for tracking GECI expression in vivo following transduction is highly desirable. Approach. We developed a noninvasive imaging approach based on a custom-modified, low-cost fundus viewing system that allowed us to monitor and characterize in vivo bright-field and fluorescence images of the mouse retina. AAV2-CAG-GCaMP6f was injected into a mouse eye. The fundus imaging system was used to measure fluorescence at several time points post injection. At defined time points, we prepared wholemount retina mounted on a transparent multielectrode array and used calcium imaging to evaluate the responsiveness of retinal ganglion cells (RGCs) to external electrical stimulation. Main results. The noninvasive fundus imaging system clearly resolves individual (RGCs and axons. RGC fluorescence intensity and the number of observable fluorescent cells show a similar rising trend from week 1 to week 3 after viral injection, indicating a consistent increase of GCaMP6f expression. Analysis of the in vivo fluorescence intensity trend and in vitro neurophysiological responsiveness shows that the slope of intensity versus days post injection can be used to estimate the optimal time for calcium imaging of RGCs in response to external electrical stimulation. Significance. The proposed fundus imaging system enables high-resolution digital fundus imaging in the mouse eye, based on off-the-shelf components. The long-term tracking experiment with in vitro calcium imaging validation demonstrates the system can serve as a powerful tool monitoring the level of genetically-encoded calcium indicator expression, further determining the optimal time window for following experiment.

  8. A sensory complex consisting of an ATP-binding cassette transporter and a two-component regulatory system controls bacitracin resistance in Bacillus subtilis.

    PubMed

    Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne

    2014-10-03

    Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A Sensory Complex Consisting of an ATP-binding Cassette Transporter and a Two-component Regulatory System Controls Bacitracin Resistance in Bacillus subtilis*

    PubMed Central

    Dintner, Sebastian; Heermann, Ralf; Fang, Chong; Jung, Kirsten; Gebhard, Susanne

    2014-01-01

    Resistance against antimicrobial peptides in many Firmicutes bacteria is mediated by detoxification systems that are composed of a two-component regulatory system (TCS) and an ATP-binding cassette (ABC) transporter. The histidine kinases of these systems depend entirely on the transporter for sensing of antimicrobial peptides, suggesting a novel mode of signal transduction where the transporter constitutes the actual sensor. The aim of this study was to investigate the molecular mechanisms of this unusual signaling pathway in more detail, using the bacitracin resistance system BceRS-BceAB of Bacillus subtilis as an example. To analyze the proposed communication between TCS and the ABC transporter, we characterized their interactions by bacterial two-hybrid analyses and could show that the permease BceB and the histidine kinase BceS interact directly. In vitro pulldown assays confirmed this interaction, which was found to be independent of bacitracin. Because it was unknown whether BceAB-type transporters could detect their substrate peptides directly or instead recognized the peptide-target complex in the cell envelope, we next analyzed substrate binding by the transport permease, BceB. Direct and specific binding of bacitracin by BceB was demonstrated by surface plasmon resonance spectroscopy. Finally, in vitro signal transduction assays indicated that complex formation with the transporter influenced the autophosphorylation activity of the histidine kinase. Taken together, our findings clearly show the existence of a sensory complex composed of TCS and ABC transporters and provide the first functional insights into the mechanisms of stimulus perception, signal transduction, and antimicrobial resistance employed by Bce-like detoxification systems. PMID:25118291

  10. A CMOS IC-based multisite measuring system for stimulation and recording in neural preparations in vitro.

    PubMed

    Tateno, Takashi; Nishikawa, Jun

    2014-01-01

    In this report, we describe the system integration of a complementary metal oxide semiconductor (CMOS) integrated circuit (IC) chip, capable of both stimulation and recording of neurons or neural tissues, to investigate electrical signal propagation within cellular networks in vitro. The overall system consisted of three major subunits: a 5.0 × 5.0 mm CMOS IC chip, a reconfigurable logic device (field-programmable gate array, FPGA), and a PC. To test the system, microelectrode arrays (MEAs) were used to extracellularly measure the activity of cultured rat cortical neurons and mouse cortical slices. The MEA had 64 bidirectional (stimulation and recording) electrodes. In addition, the CMOS IC chip was equipped with dedicated analog filters, amplification stages, and a stimulation buffer. Signals from the electrodes were sampled at 15.6 kHz with 16-bit resolution. The measured input-referred circuitry noise was 10.1 μ V root mean square (10 Hz to 100 kHz), which allowed reliable detection of neural signals ranging from several millivolts down to approximately 33 μ Vpp. Experiments were performed involving the stimulation of neurons with several spatiotemporal patterns and the recording of the triggered activity. An advantage over current MEAs, as demonstrated by our experiments, includes the ability to stimulate (voltage stimulation, 5-bit resolution) spatiotemporal patterns in arbitrary subsets of electrodes. Furthermore, the fast stimulation reset mechanism allowed us to record neuronal signals from a stimulating electrode around 3 ms after stimulation. We demonstrate that the system can be directly applied to, for example, auditory neural prostheses in conjunction with an acoustic sensor and a sound processing system.

  11. In Vitro Reconstitution of Functional Type III Protein Export and Insights into Flagellar Assembly.

    PubMed

    Terashima, Hiroyuki; Kawamoto, Akihiro; Tatsumi, Chinatsu; Namba, Keiichi; Minamino, Tohru; Imada, Katsumi

    2018-06-26

    The type III secretion system (T3SS) forms the functional core of injectisomes, protein transporters that allow bacteria to deliver virulence factors into their hosts for infection, and flagella, which are critical for many pathogens to reach the site of infection. In spite of intensive genetic and biochemical studies, the T3SS protein export mechanism remains unclear due to the difficulty of accurate measurement of protein export in vivo Here, we developed an in vitro flagellar T3S protein transport assay system using an inverted cytoplasmic membrane vesicle (IMV) for accurate and controlled measurements of flagellar protein export. We show that the flagellar T3SS in the IMV fully retains export activity. The flagellar hook was constructed inside the lumen of the IMV by adding purified component proteins externally to the IMV solution. We reproduced the hook length control and export specificity switch in the IMV consistent with that seen in the native cell. Previous in vivo analyses showed that flagellar protein export is driven by proton motive force (PMF) and facilitated by ATP hydrolysis by FliI, a T3SS-specific ATPase. Our in vitro assay recapitulated these previous in vivo observations but furthermore clearly demonstrated that even ATP hydrolysis by FliI alone can drive flagellar protein export. Moreover, this assay showed that addition of the FliH 2 /FliI complex to the assay solution at a concentration similar to that in the cell dramatically enhanced protein export, confirming that the FliH 2 /FliI complex in the cytoplasm is important for effective protein transport. IMPORTANCE The type III secretion system (T3SS) is the functional core of the injectisome, a bacterial protein transporter used to deliver virulence proteins into host cells, and bacterial flagella, critical for many pathogens. The molecular mechanism of protein transport is still unclear due to difficulties in accurate measurements of protein transport under well-controlled conditions in vivo We succeeded in developing an in vitro transport assay system of the flagellar T3SS using inverted membrane vesicles (IMVs). Flagellar hook formation was reproduced in the IMV, suggesting that the export apparatus in the IMV retains a protein transport activity similar to that in the cell. Using this system, we revealed that ATP hydrolysis by the T3SS ATPase can drive protein export without PMF. Copyright © 2018 Terashima et al.

  12. Immunologic features of a carcinogen-induced murine bladder cancer: in vivo and in vitro studies.

    PubMed

    Javadpour, N; Hyatt, C L; Soares, T

    1979-01-01

    Certain in vivo and in vitro immunologic features of carcinogen-induced murine bladder cancer have been studied. The consistency of tumor induction, its natural history, and immunogenicity both in vivo and in vitro render this syngeneic murine bladder tumor a suitable model for immunologic studies. Pre-immunization of strain C3H/Hen mice with mid-gestational fetal cells did not protect the animals from tumor challenge. Sera of mice immunized with mid-gestational fetal cells were not cytotoxic to cultured tumor cells in a microcytotoxicity assay indicative of dissimilarity between the tumor associated antigen and the syngeneic mid-gestational fetal antigen.

  13. Use of piracetam improves sickle cell deformability in vitro and in vivo.

    PubMed Central

    Gini, E K; Sonnet, J

    1987-01-01

    Microsieving diluted suspensions of oxygenated sickle cell anaemia (HbSS) cells on polycarbonate filters shows that piracetam improves the red cell deformability in vitro. In vivo an oral intake of 160 mg/kg/day divided in four doses enhances the HbSS cell deformability as actively as it does in in vitro experiments. The drug is also able partially to restore the impaired deformability of physiologically deoxygenated HbSS cells. These findings are consistent with the results of clinical trials, which show that continuous treatment with piracetam reduces the incidence of vaso-occlusive crises in patients with sickle cell disease. PMID:3818978

  14. Androgen receptor polyglutamine repeat length (AR-CAGn) modulates the effect of testosterone on androgen-associated somatic traits in Filipino young adult men.

    PubMed

    Ryan, Calen P; Georgiev, Alexander V; McDade, Thomas W; Gettler, Lee T; Eisenberg, Dan T A; Rzhetskaya, Margarita; Agustin, Sonny S; Hayes, M Geoffrey; Kuzawa, Christopher W

    2017-06-01

    The androgen receptor (AR) mediates expression of androgen-associated somatic traits such as muscle mass and strength. Within the human AR is a highly variable glutamine short-tandem repeat (AR-CAGn), and CAG repeat number has been inversely correlated to AR transcriptional activity in vitro. However, evidence for an attenuating effect of long AR-CAGn on androgen-associated somatic traits has been inconsistent in human populations. One possible explanation for this lack of consistency is that the effect of AR-CAGn on AR bioactivity in target tissues likely varies in relation to circulating androgen levels. We tested whether relationships between AR-CAGn and several androgen-associated somatic traits (waist circumference, lean mass, arm muscle area, and grip strength) were modified by salivary (waking and pre-bed) and circulating (total) testosterone (T) levels in young adult males living in metropolitan Cebu, Philippines (n = 675). When men's waking T was low, they had a reduction in three out of four androgen-associated somatic traits with lengthening AR-CAGn (p < .1), consistent with in vitro research. However, when waking T was high, we observed the opposite effect-lengthening AR-CAGn was associated with an increase in these same somatic traits. Our finding that longer AR-CAGn predicts greater androgen-associated trait expression among high-T men runs counter to in vitro work, but is generally consistent with the few prior studies to evaluate similar interactions in human populations. Collectively, these results raise questions about the applicability of findings derived from in vitro AR-CAGn studies to the receptor's role in maintaining androgen-associated somatic traits in human populations. © 2017 Wiley Periodicals, Inc.

  15. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system.

    PubMed

    Kazuta, Yasuaki; Matsuura, Tomoaki; Ichihashi, Norikazu; Yomo, Tetsuya

    2014-11-01

    In this study, the amount of protein synthesized using an in vitro protein synthesis system composed of only highly purified components (the PURE system) was optimized. By varying the concentrations of each system component, we determined the component concentrations that result in the synthesis of 0.38 mg/mL green fluorescent protein (GFP) in batch mode and 3.8 mg/mL GFP in dialysis mode. In dialysis mode, protein concentrations of 4.3 and 4.4 mg/mL were synthesized for dihydrofolate reductase and β-galactosidase, respectively. Using the optimized system, the synthesized protein represented 30% (w/w) of the total protein, which is comparable to the level of overexpressed protein in Escherichia coli cells. This optimized reconstituted in vitro protein synthesis system may potentially be useful for various applications, including in vitro directed evolution of proteins, artificial cell assembly, and protein structural studies. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  16. Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods.

    PubMed

    Elespuru, Rosalie; Pfuhler, Stefan; Aardema, Marilyn; Chen, Tao; Doak, Shareen H; Doherty, Ann; Farabaugh, Christopher S; Kenny, Julia; Manjanatha, Mugimane; Mahadevan, Brinda; Moore, Martha M; Ouédraogo, Gladys; Stankowski, Leon F; Tanir, Jennifer Y

    2018-04-26

    Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.

  17. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization.

    PubMed

    Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David

    2012-01-01

    The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.

  18. New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization

    PubMed Central

    Cavalli, Roberta; Bisazza, Agnese; Trotta, Michele; Argenziano, Monica; Civra, Andrea; Donalisio, Manuela; Lembo, David

    2012-01-01

    Background The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Methods and results Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Conclusion Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery. PMID:22802689

  19. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    PubMed

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Micromatricial metronidazole benzoate film as a local mucoadhesive delivery system for treatment of periodontal diseases.

    PubMed

    El-Kamel, Amal Hassan; Ashri, Lubna Y; Alsarra, Ibrahim A

    2007-09-14

    The main objective of this study was to develop a local, oral mucoadhesive metronidazole benzoate (MET) delivery system that can be applied and removed by the patient for the treatment of periodontal diseases. Mucoadhesive micromatricial chitosan/poly(epsilon-caprolactone) (CH/PCL) films and chitosan films were prepared. Thermal behavior, morphology, and particle size measurements were used to evaluate the prepared films. The effect of different molar masses of CH and different ratios of medium Mwt molar mass chitosan (MCH):PCL on water absorption, in vitro bioadhesion, mechanical properties, and in vitro drug release was examined. In vivo performance of the selected formulation was also evaluated. Differential scanning calorimetry examination revealed that MET existed mainly in amorphous form. Under microscopic examination, PCL microparticles were homogeneously dispersed in the films. The use of different molar masses of CH and different ratios of (MCH):PCL affected the size of the entrapped particles. Addition of PCL significantly decreased percentage water uptake and bioadhesion force compared with pure CH film. With regard to mechanical properties, the 2-layered film containing 1:0.625 MCH:PCL had the best tensile properties. At fixed CH:PCL ratio (1:1.25), the slowest drug release was obtained from films containing high molar mass CH. On the other hand, the 2-layered film that consisted of 1:0.625 MCH:PCL had the slowest MET release. In vivo evaluation of the selected film revealed that metronidazole concentration in saliva over 6 hours ranged from 5 to 15 microg/mL, which was within and higher than the reported range of minimum inhibitory concentration for metronidazole. A significant in vitro/in vivo correlation under the adopted experimental conditions was obtained.

  1. Evidence for a causative role of N-methyl-D-aspartate receptors in an in vitro model of alcohol withdrawal hyperexcitability.

    PubMed

    Thomas, M P; Monaghan, D T; Morrisett, R A

    1998-10-01

    Synaptic mechanisms underlying hyperexcitability due to withdrawal from chronic ethanol exposure were investigated in a hippocampal explant model system using electrophysiological techniques. Whole-cell voltage clamp recordings from CA1 pyramidal cells demonstrated that acute ethanol exposure inhibited N-methyl-D-aspartate receptor (NMDAR)-mediated excitatory postsynaptic currents by over 40%. Chronic ethanol exposure for 6 to 11 days at 35 or 75 mM induced no differences from control explants in the fast component of the population synaptic response (non-NMDAR-mediated). Prolonged field potential recordings (to 10 hr) were used to monitor the withdrawal process in vitro. Ethanol-exposed explants from both 35 and 75 mM groups displayed an increase (60% and 89%, respectively) in the NMDAR-mediated component of synaptic transmission on withdrawal from chronic exposure. Prolonged tonic-clonic electrographic seizure activity was consistently observed after ethanol withdrawal only after the increase in NMDAR function. This hyperexcitability was inhibited by the NMDAR antagonist D-2-amino-5-phosphonovaleric acid and returned once the NMDAR component was reestablished after antagonist washout. In situ hybridization studies suggest that expression of NR2B subunit mRNA may be enhanced in explants after chronic ethanol exposure. No lasting differences were observed in the NMDAR component after acute in vitro ethanol exposure and withdrawal. These data suggest that the occurance of ethanol withdrawal hyperexcitability in this system may be directly dependent on alterations in NMDAR function after chronic exposure. Since this region and others that contain ethanol sensitive NMDARs may serve as epileptic foci, long term alterations in NMDAR function may be expected to generate paroxysmal depolarizing shifts underlying ictal events after withdrawal from ethanol exposure.

  2. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro.

    PubMed

    Xiao, Li; Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-08-11

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro.

  3. Human Dental Pulp Cells Differentiate toward Neuronal Cells and Promote Neuroregeneration in Adult Organotypic Hippocampal Slices In Vitro

    PubMed Central

    Ide, Ryoji; Saiki, Chikako; Kumazawa, Yasuo; Okamura, Hisashi

    2017-01-01

    The adult mammalian central nerve system has fundamental difficulties regarding effective neuroregeneration. The aim of this study is to investigate whether human dental pulp cells (DPCs) can promote neuroregeneration by (i) being differentiated toward neuronal cells and/or (ii) stimulating local neurogenesis in the adult hippocampus. Using immunostaining, we demonstrated that adult human dental pulp contains multipotent DPCs, including STRO-1, CD146 and P75-positive stem cells. DPC-formed spheroids were able to differentiate into neuronal, vascular, osteogenic and cartilaginous lineages under osteogenic induction. However, under neuronal inductive conditions, cells in the DPC-formed spheroids differentiated toward neuronal rather than other lineages. Electrophysiological study showed that these cells consistently exhibit the capacity to produce action potentials, suggesting that they have a functional feature in neuronal cells. We further co-cultivated DPCs with adult mouse hippocampal slices on matrigel in vitro. Immunostaining and presto blue assay showed that DPCs were able to stimulate the growth of neuronal cells (especially neurons) in both the CA1 zone and the edges of the hippocampal slices. Brain-derived neurotrophic factor (BDNF), was expressed in co-cultivated DPCs. In conclusion, our data demonstrated that DPCs are well-suited to differentiate into the neuronal lineage. They are able to stimulate neurogenesis in the adult mouse hippocampus through neurotrophic support in vitro. PMID:28800076

  4. Design and Performance Evaluation of Real-time Endovascular Interventional Surgical Robotic System with High Accuracy.

    PubMed

    Wang, Kundong; Chen, Bing; Lu, Qingsheng; Li, Hongbing; Liu, Manhua; Shen, Yu; Xu, Zhuoyan

    2018-05-15

    Endovascular interventional surgery (EIS) is performed under a high radiation environment at the sacrifice of surgeons' health. This paper introduces a novel endovascular interventional surgical robot that aims to reduce radiation to surgeons and physical stress imposed by lead aprons during fluoroscopic X-ray guided catheter intervention. The unique mechanical structure allowed the surgeon to manipulate the axial and radial motion of the catheter and guide wire. Four catheter manipulators (to manipulate the catheter and guide wire), and a control console which consists of four joysticks, several buttons and two twist switches (to control the catheter manipulators) were presented. The entire robotic system was established on a master-slave control structure through CAN (Controller Area Network) bus communication, meanwhile, the slave side of this robotic system showed highly accurate control over velocity and displacement with PID controlling method. The robotic system was tested and passed in vitro and animal experiments. Through functionality evaluation, the manipulators were able to complete interventional surgical motion both independently and cooperatively. The robotic surgery was performed successfully in an adult female pig and demonstrated the feasibility of superior mesenteric and common iliac artery stent implantation. The entire robotic system met the clinical requirements of EIS. The results show that the system has the ability to imitate the movements of surgeons and to accomplish the axial and radial motions with consistency and high-accuracy. Copyright © 2018 John Wiley & Sons, Ltd.

  5. Systems Toxicology of Male Reproductive Development: Profiling 774 Chemicals for Molecular Targets and Adverse Outcomes

    PubMed Central

    Leung, Maxwell C.K.; Phuong, Jimmy; Baker, Nancy C.; Sipes, Nisha S.; Klinefelter, Gary R.; Martin, Matthew T.; McLaurin, Keith W.; Setzer, R. Woodrow; Darney, Sally Perreault; Judson, Richard S.; Knudsen, Thomas B.

    2015-01-01

    Background: Trends in male reproductive health have been reported for increased rates of testicular germ cell tumors, low semen quality, cryptorchidism, and hypospadias, which have been associated with prenatal environmental chemical exposure based on human and animal studies. Objective: In the present study we aimed to identify significant correlations between environmental chemicals, molecular targets, and adverse outcomes across a broad chemical landscape with emphasis on developmental toxicity of the male reproductive system. Methods: We used U.S. EPA’s animal study database (ToxRefDB) and a comprehensive literature analysis to identify 774 chemicals that have been evaluated for adverse effects on male reproductive parameters, and then used U.S. EPA’s in vitro high-throughput screening (HTS) database (ToxCastDB) to profile their bioactivity across approximately 800 molecular and cellular features. Results: A phenotypic hierarchy of testicular atrophy, sperm effects, tumors, and malformations, a composite resembling the human testicular dysgenesis syndrome (TDS) hypothesis, was observed in 281 chemicals. A subset of 54 chemicals with male developmental consequences had in vitro bioactivity on molecular targets that could be condensed into 156 gene annotations in a bipartite network. Conclusion: Computational modeling of available in vivo and in vitro data for chemicals that produce adverse effects on male reproductive end points revealed a phenotypic hierarchy across animal studies consistent with the human TDS hypothesis. We confirmed the known role of estrogen and androgen signaling pathways in rodent TDS, and importantly, broadened the list of molecular targets to include retinoic acid signaling, vascular remodeling proteins, G-protein coupled receptors (GPCRs), and cytochrome P450s. Citation: Leung MC, Phuong J, Baker NC, Sipes NS, Klinefelter GR, Martin MT, McLaurin KW, Setzer RW, Darney SP, Judson RS, Knudsen TB. 2016. Systems toxicology of male reproductive development: profiling 774 chemicals for molecular targets and adverse outcomes. Environ Health Perspect 124:1050–1061; http://dx.doi.org/10.1289/ehp.1510385 PMID:26662846

  6. Bacterial cell-free expression technology to in vitro systems engineering and optimization.

    PubMed

    Caschera, Filippo

    2017-06-01

    Cell-free expression system is a technology for the synthesis of proteins in vitro . The system is a platform for several bioengineering projects, e.g. cell-free metabolic engineering, evolutionary design of experiments, and synthetic minimal cell construction. Bacterial cell-free protein synthesis system (CFPS) is a robust tool for synthetic biology. The bacteria lysate, the DNA, and the energy module, which are the three optimized sub-systems for in vitro protein synthesis, compose the integrated system. Currently, an optimized E. coli cell-free expression system can produce up to ∼2.3 mg/mL of a fluorescent reporter protein. Herein, I will describe the features of ATP-regeneration systems for in vitro protein synthesis, and I will present a machine-learning experiment for optimizing the protein yield of E. coli cell-free protein synthesis systems. Moreover, I will introduce experiments on the synthesis of a minimal cell using liposomes as dynamic containers, and E. coli cell-free expression system as biochemical platform for metabolism and gene expression. CFPS can be further integrated with other technologies for novel applications in environmental, medical and material science.

  7. Critical Evaluation of Air-Liquid Interface Cell Exposure Systems for in Vitro Assessment of Atmospheric Pollutants

    EPA Science Inventory

    We compared various in vitro exposure systems for their ability to expose cells to particles and gases. The systems tested use different mechanisms to deliver multi-pollutants to the cells: diffusion, sedimentation, thermophoresis (THP) and electrostatic precipitation (ESP). Vari...

  8. Effects of gastric pH on oral drug absorption: In vitro assessment using a dissolution/permeation system reflecting the gastric dissolution process.

    PubMed

    Kataoka, Makoto; Fukahori, Miho; Ikemura, Atsumi; Kubota, Ayaka; Higashino, Haruki; Sakuma, Shinji; Yamashita, Shinji

    2016-04-01

    The aim of the present study was to evaluate the effects of gastric pH on the oral absorption of poorly water-soluble drugs using an in vitro system. A dissolution/permeation system (D/P system) equipped with a Caco-2 cell monolayer was used as the in vitro system to evaluate oral drug absorption, while a small vessel filled with simulated gastric fluid (SGF) was used to reflect the gastric dissolution phase. After applying drugs in their solid forms to SGF, SGF solution containing a 1/100 clinical dose of each drug was mixed with the apical solution of the D/P system, which was changed to fasted state-simulated intestinal fluid. Dissolved and permeated amounts on applied amount of drugs were then monitored for 2h. Similar experiments were performed using the same drugs, but without the gastric phase. Oral absorption with or without the gastric phase was predicted in humans based on the amount of the drug that permeated in the D/P system, assuming that the system without the gastric phase reflected human absorption with an elevated gastric pH. The dissolved amounts of basic drugs with poor water solubility, namely albendazole, dipyridamole, and ketoconazole, in the apical solution and their permeation across a Caco-2 cell monolayer were significantly enhanced when the gastric dissolution process was reflected due to the physicochemical properties of basic drugs. These amounts resulted in the prediction of higher oral absorption with normal gastric pH than with high gastric pH. On the other hand, when diclofenac sodium, the salt form of an acidic drug, was applied to the D/P system with the gastric phase, its dissolved and permeated amounts were significantly lower than those without the gastric phase. However, the oral absorption of diclofenac was predicted to be complete (96-98%) irrespective of gastric pH because the permeated amounts of diclofenac under both conditions were sufficiently high to achieve complete absorption. These estimations of the effects of gastric pH on the oral absorption of poorly water-soluble drugs were consistent with observations in humans. In conclusion, the D/P system with the gastric phase may be a useful tool for better predicting the oral absorption of poorly water-soluble basic drugs. In addition, the effects of gastric pH on the oral absorption of poorly water-soluble drugs may be evaluated by the D/P system with and without the gastric phase. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Assessing the In Vitro Drug Release from Lipid-Core Nanocapsules: a New Strategy Combining Dialysis Sac and a Continuous-Flow System.

    PubMed

    de Andrade, Diego Fontana; Zuglianello, Carine; Pohlmann, Adriana Raffin; Guterres, Silvia Stanisçuaski; Beck, Ruy Carlos Ruver

    2015-12-01

    The in vitro assessment of drug release from polymeric nanocapsules suspensions is one of the most studied parameters in the development of drug-loaded nanoparticles. Nevertheless, official methods for the evaluation of drug release from submicrometric carriers are not available. In this work, a new approach to assess the in vitro drug release profile from drug-loaded lipid-core nanocapsules (LNC) was proposed. A continuous-flow system (open system) was designed to evaluate the in vitro drug release profiles from different LNC formulations containing prednisolone or clobetasol propionate (LNC-CP) as drug model (LNC-PD) using a homemade apparatus. The release medium was constantly renewed throughout the experiment. A dialysis bag containing 5 mL of formulation (0.5 mg mL(-1)) was maintained inside the apparatus, under magnetic stirring and controlled temperature (37°C). In parallel, studies based on the conventional dialysis sac technique (closed system) were performed. It was possible to discriminate the in vitro drug release profile of different formulations using the open system. The proposed strategy improved the sink condition, by constantly renewing the release medium, thus maintaining the drug concentration farther from the saturated concentration in the release medium. Moreover, problems due to sampling errors can be easily overcome using this semi-automated system, since the collection is done automatically without interference from the analyst. The system proposed in this paper brings important methodological and analytical advantages, becoming a promising prototype semi-automated apparatus for performing in vitro drug release studies from drug-loaded lipid-core nanocapsules and other related nanoparticle drug delivery systems.

  10. Age-related alterations in basal expression and in vitro, tumour necrosis factor alpha mediated, upregulation of CD11b.

    PubMed

    Armstrong, M E; Alexander, H D; Ritchie, J L; McMillan, S A; Rea, I M

    2001-01-01

    The beta(2-)integrin CD11b (Mac-1) plays a crucial role in the firm attachment of leucocytes to the endothelium during the inflammatory response. This study aimed to determine whether the increased incidence of infections witnessed in elderly individuals compared to their younger counterparts was associated with deficiencies in basal expression and/or upregulation of CD11b. Flow cytometry was used to measure CD11b expression, before and after in vitro tumour necrosis factor alpha (TNF-alpha) stimulation, on neutrophils, monocytes and lymphocytes from healthy volunteers aged less than 36 years and Senieur-approximated 70-85 and over 85 year olds. The TNF-alpha levels in serum were measured using a commercially available enzyme-linked immunoassay technique. The basal expression of CD11b on monocytes and lymphocytes was highest in the 70-85-year-olds and lowest in the > 85-year-olds. Following in vitro stimulation using low (10 IU) and high (100 IU) TNF-alpha concentrations, subjects > 85 years consistently showed significantly lower increases in CD11b expression on each of the three cell types. The maximal increase in CD11b expression was in the 70-85-year age group for neutrophils and monocytes and in < 36-year-olds for lymphocytes. Serum TNF-alpha was significantly higher in the elderly groups. Regression analysis showed a significant association between TNF-alpha and expression of CD11b on lymphocytes before and after TNF-alpha stimulation and for neutrophils before stimulation. The results of this study suggest that CD11b expression on leucocytes may not be consistent throughout life. Such age-related changes could compromise the inflammatory response, rendering individuals > 85 years old more susceptible to infections. Alternatively, the lower levels of CD11b expression in this group may represent downregulation and protection against excess leucocyte activation within the vascular system and may, therefore, provide a mechanism for successful ageing. Copyright 2001 S. Karger AG, Basel

  11. In vitro and in vivo percutaneous absorption of retinol from cosmetic formulations: Significance of the skin reservoir and prediction of systemic absorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yourick, Jeffrey J.; Jung, Connie T.; Bronaugh, Robert L.

    2008-08-15

    The percutaneous absorption of retinol (Vitamin A) from cosmetic formulations was studied to predict systemic absorption and to understand the significance of the skin reservoir in in vitro absorption studies. Viable skin from fuzzy rat or human subjects was assembled in flow-through diffusion cells for in vitro absorption studies. In vivo absorption studies using fuzzy rats were performed in glass metabolism cages for collection of urine, feces, and body content. Retinol (0.3%) formulations (hydroalcoholic gel and oil-in-water emulsion) containing {sup 3}H-retinol were applied and absorption was measured at 24 or 72 h. All percentages reported are % of applied dose.more » In vitro studies using human skin and the gel and emulsion vehicles found 0.3 and 1.3% retinol, respectively, in receptor fluid at 24 h. Levels of absorption in the receptor fluid increased over 72 h with the gel and emulsion vehicles. Using the gel vehicle, in vitro rat skin studies found 23% in skin and 6% in receptor fluid at 24 h, while 72-h studies found 18% in skin and 13% in receptor fluid. Thus, significant amounts of retinol remained in rat skin at 24 h and decreased over 72 h, with proportional increases in receptor fluid. In vivo rat studies with the gel found 4% systemic absorption of retinol after 24 h and systemic absorption did not increase at 72 h. Retinol remaining in rat skin after in vivo application was 18% and 13% of the applied dermal dose after 24 and 72 h, respectively. Similar observations were made with the oil-in water emulsion vehicle in the rat. Retinol formed a reservoir in rat skin both in vivo and in vitro. Little additional retinol was bioavailable after 24 h. Comparison of these in vitro and in vivo results for absorption through rat skin indicates that the 24-h in vitro receptor fluid value accurately estimated 24-h in vivo systemic absorption. Therefore, the best single estimate of retinol systemic absorption from in vitro human skin studies is the 24-h receptor fluid value. However, the receptor fluid value from the 72-h extended study may be used in a worst-case exposure estimate. In conclusion, in vivo skin absorption studies can be useful in determining whether to include material in the in vitro skin reservoir as absorbable material in estimates of systemic absorption.« less

  12. Genotoxicity of endosseous implants using two cellular lineages in vitro.

    PubMed

    Matsumoto, Mariza; Filho, Hugo Nary; Ferrari, Raquel; Fernandes, Kristianne; Renno, Ana Claudia; Ribeiro, Daniel

    2014-02-01

    The genotoxic potential of corrosion eluates obtained from a single dental implant using murine fibroblasts or osteoblasts cells in vitro by the single-cell gel (comet) assay was examined. A single commercially available dental implant (Biotechnology) was eluted in a solution consisting of equal amounts of acetic acid and sodium chloride (0.1 M) for 1, 3, 7, 14, and 21 days. Murine fibroblast or osteoblast cultures were then exposed to all corrosion eluates obtained from endosseous dental implants for 30 minutes at 37°C. The results suggest that none of the eluates produced genotoxic changes in murine fibroblasts regardless of the length of exposure to the eluate. Similarly, no genotoxicity was found in osteoblasts. The results suggest that the dental implant eluates tested in this study did not induce genetic damage as depicted by the single-cell gel (comet) assay. Because DNA damage is an important event during oncogenesis, this study represents a relevant contribution to estimate the real risks to the cellular system induced by the corrosion products of a dental implant.

  13. Role of carbonic anhydrase in bone resorption induced by prostaglandin E2 in vitro

    NASA Technical Reports Server (NTRS)

    Hall, G. E.; Kenny, A. D.

    1985-01-01

    The possible role of carbonic anhydrase in bone resorption induced by prostaglandin E2 (PGE2) was studied using an in vitro neonatal mouse calvarial culture system. PGE2 (10 to the -6th M) was effective in stimulating resorption, as assessed by calcium release into culture media. This enhanced resorption was accompanied by significant increases in calvarial carbonic anhydrase activity over control values at 48 and 96 h. At 48 h, bones treated with PGE2 had 20 percent more carbonic anhydrase activity than controls. By 96 h, treated bones contained 79 percent more carbonic anhydrase activity than controls. PGE2-induced bone resorption was inhibited by the carbonic anhydrase inhibitor acetazolamide in a dose-dependent fashion from 10 to the -5th to 10 to the -4th M with 77 percent inhibition observed at 10 to the -4th M. The acetazolamide analogue CL 13,850 (N-t-butylacetazolamide), which does not inhibit carbonic anhydrase, failed to inhibit PGE2-induced resorption. These results are consistent with the hypothesis that carbonic anhydrase is a necessary component of the osteoclastic bone resorptive mechanism.

  14. Detection of Variation in Long-Term Micropropagated Mature Pistachio via DNA-Based Molecular Markers.

    PubMed

    Akdemir, Hülya; Suzerer, Veysel; Tilkat, Engin; Onay, Ahmet; Çiftçi, Yelda Ozden

    2016-12-01

    Determination of genetic stability of in vitro-grown plantlets is needed for safe and large-scale production of mature trees. In this study, genetic variation of long-term micropropagated mature pistachio developed through direct shoot bud regeneration using apical buds (protocol A) and in vitro-derived leaves (protocol B) was assessed via DNA-based molecular markers. Randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR), and amplified fragment length polymorphism (AFLP) were employed, and the obtained PIC values from RAPD (0.226), ISSR (0.220), and AFLP (0.241) showed that micropropagation of pistachio for different periods of time resulted in "reasonable polymorphism" among donor plant and its 18 clones. Mantel's test showed a consistence polymorphism level between marker systems based on similarity matrices. In conclusion, this is the first study on occurrence of genetic variability in long-term micropropagated mature pistachio plantlets. The obtained results clearly indicated that different marker approaches used in this study are reliable for assessing tissue culture-induced variations in long-term cultured pistachio plantlets.

  15. The effect of interstitial air on the in vitro thrombogenicity of ePTFE vascular grafts

    NASA Technical Reports Server (NTRS)

    Rashid, S. N.; Clark, H. G.; Vann, R. D.; Gerth, W. A.; Palmos, L. A.; Mikat, E. M.

    1992-01-01

    Gas trapped in the interstices of the biomaterials used for vascular prostheses causes thrombosis, and the process of eliminating this gas is known as denucleation. An apparatus was developed for testing in the in vitro effects of denucleation on 4 mm I.D. expanded polytetrafluoroethylene (ePTFE) Vitagraft (Johnson and Johnson). The apparatus was designed to ensure that neither the blood nor the grafts came in contact with air. Blood from a single donor was incubated with control and denucleated grafts for 5, 10, 15, 20, and 30 minutes. The thrombus volume in the graft lumen was measured with a computer assisted videometric system. Little thrombus formed by 5 or 10 minutes, but there was less thrombus in the denucleated graft than in the control graft at all times. The differences were statistically significant at 15 and 20 minutes (p < 0.05). Denucleation nearly doubled the thrombus formation time. Thrombus was more adherent to denucleated grafts than to control grafts. These results are consistent with in vivo observations in the rat where denucleation decreased thrombus formation and increased patency duration.

  16. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.

    PubMed

    Corrigan, Deirdre O; Corrigan, Owen I; Healy, Anne Marie

    2006-09-28

    The physicochemical and aerodynamic properties of spray dried powders of the drug/drug mixture salbutamol sulphate/ipratropium bromide were investigated. The in vitro deposition properties of spray dried salbutamol sulphate and the spray dried drug/excipient mixtures salbutamol sulphate/lactose and salbutamol sulphate/PEG were also determined. Spray drying ipratropium bromide monohydrate resulted in a crystalline material from both aqueous and ethanolic solution. The product spray dried from aqueous solution consisted mainly of ipratropium bromide anhydrous. There was evidence of the presence of another polymorphic form of ipratropium bromide. When spray dried from ethanolic solution the physicochemical characterisation suggested the presence of an ipratropium bromide solvate with some anhydrous ipratropium bromide. Co-spray drying salbutamol sulphate with ipratropium bromide resulted in amorphous composites, regardless of solvent used. Particles were spherical and of a size suitable for inhalation. Twin impinger studies showed an increase in the fine particle fraction (FPF) of spray dried salbutamol sulphate compared to micronised salbutamol sulphate. Co-spray dried salbutamol sulphate:ipratropium bromide 10:1 and 5:1 systems also showed an increase in FPF compared to micronised salbutamol sulphate. Most co-spray dried salbutamol sulphate/excipient systems investigated demonstrated FPFs greater than that of micronised drug alone. The exceptions to this were systems containing PEG 4000 20% or PEG 20,000 40% both of which had FPFs not significantly different from micronised salbutamol sulphate. These two systems were crystalline unlike most of the other spray dried composites examined which were amorphous in nature.

  17. Untethered magnetic millirobot for targeted drug delivery.

    PubMed

    Iacovacci, Veronica; Lucarini, Gioia; Ricotti, Leonardo; Dario, Paolo; Dupont, Pierre E; Menciassi, Arianna

    2015-01-01

    This paper reports the design and development of a novel millimeter-sized robotic system for targeted therapy. The proposed medical robot is conceived to perform therapy in relatively small diameter body canals (spine, urinary system, ovary, etc.), and to release several kinds of therapeutics, depending on the pathology to be treated. The robot is a nearly-buoyant bi-component system consisting of a carrier, in which the therapeutic agent is embedded, and a piston. The piston, by exploiting magnetic effects, docks with the carrier and compresses a drug-loaded hydrogel, thus activating the release mechanism. External magnetic fields are exploited to propel the robot towards the target region, while intermagnetic forces are exploited to trigger drug release. After designing and fabricating the robot, the system has been tested in vitro with an anticancer drug (doxorubicin) embedded in the carrier. The efficiency of the drug release mechanism has been demonstrated by both quantifying the amount of drug released and by assessing the efficacy of this therapeutic procedure on human bladder cancer cells.

  18. Generation of structures formed by lens and retinal cells differentiating from embryonic stem cells.

    PubMed

    Hirano, Mariko; Yamamoto, Akitsugu; Yoshimura, Naoko; Tokunaga, Tomoyuki; Motohashi, Tsutomu; Ishizaki, Katsuhiko; Yoshida, Hisahiro; Okazaki, Kenji; Yamazaki, Hidetoshi; Hayashi, Shin-Ichi; Kunisada, Takahiro

    2003-12-01

    Embryonic stem cells have the potential to give rise to all cell lineages when introduced into the early embryo. They also give rise to a limited number of different cell types in vitro in specialized culture systems. In this study, we established a culture system in which a structure consisting of lens, neural retina, and pigmented retina was efficiently induced from embryonic stem cells. Refractile cell masses containing lens and neural retina were surrounded by retinal pigment epithelium layers and, thus, designated as eye-like structures. Developmental processes required for eye development appear to proceed in this culture system, because the formation of the eye-like structures depended on the expression of Pax6, a key transcription factor for eye development. The present culture system opens up the possibility of examining early stages of eye development and also of producing cells for use in cellular therapy for various diseases of the eye. Copyright 2003 Wiley-Liss, Inc.

  19. ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis

    PubMed Central

    Dong, Chun-Hai; Xia, Gui-Xian; Hong, Yan; Ramachandran, Srinivasan; Kost, Benedikt; Chua, Nam-Hai

    2001-01-01

    Based mostly on the results of in vitro experiments, ADF (actin-depolymerizing factor) proteins are thought to be key modulators of the dynamic organization of the actin cytoskeleton. The few studies concerned with the in vivo function of ADF proteins that have been reported to date were performed almost exclusively using single-cell systems and have failed to produce consistent results. To investigate ADF functions in vivo and during the development of multicellular organs, we generated transgenic Arabidopsis plants that express a cDNA encoding an ADF protein (AtADF1) in the sense or the antisense orientation under the control of a strong constitutively active promoter. Selected lines with significantly altered levels of AtADF protein expression were characterized phenotypically. Overexpression of AtADF1 resulted in the disappearance of thick actin cables in different cell types, caused irregular cellular and tissue morphogenesis, and reduced the growth of cells and organs. In contrast, reduced AtADF expression promoted the formation of actin cables, resulted in a delay in flowering, and stimulated cell expansion as well as organ growth. These results are consistent with the molecular functions of ADF as predicted by in vitro studies, support the global roles of ADF proteins during the development of a multicellular organism, and demonstrate that these proteins are key regulators of F-actin organization, flowering, and cell and organ expansion in Arabidopsis. PMID:11402164

  20. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  1. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.

    PubMed

    Al-Ghabeish, Manar; Xu, Xiaoming; Krishnaiah, Yellela S R; Rahman, Ziyaur; Yang, Yang; Khan, Mansoor A

    2015-11-30

    The availability of in vitro performance tests such as in vitro drug release testing (IVRT) and in vitro permeation testing (IVPT) are critical to comprehensively assure consistent delivery of the active component(s) from semisolid ophthalmic drug products. The objective was to study the impact of drug loading and type of ointment base on the in vitro performance (IVRT and IVPT) of ophthalmic ointments using acyclovir as a model drug candidate. The in vitro drug release for the ointments was evaluated using a modified USP apparatus 2 with Enhancer cells. The transcorneal permeation was carried out using rabbit cornea on modified vertical Franz cells. The drug retention in cornea (DRC) was also determined at the end of transcorneal drug permeation study. The in vitro drug release, transcorneal drug permeation as well as DRC exhibited a proportional increase with increasing drug loading in the ointment. On comparing the in vitro drug release profile with transcorneal permeation profile, it appears that drug release from the ointment is controlling acyclovir transport through the cornea. Furthermore, enhanced in vitro transcorneal permeation relative to the in vitro drug release underscores the importance of the interplay between the physiology of the ocular tissue and ointment formulation. The results indicated that IVRT and IVPT could be used to discriminate the impact of changes in drug load and formulation composition of ophthalmic ointments. Copyright © 2015. Published by Elsevier B.V.

  2. Disruption of dopamine transport by DDT and its metabolites

    PubMed Central

    Hatcher, Jaime M.; Delea, Kristin C.; Richardson, Jason R.; Pennell, Kurt D.; Miller, Gary W.

    2016-01-01

    Epidemiological studies suggest a link between pesticide exposure and an increased risk of developing Parkinson’s disease (PD). Although studies have been unable to clearly identify specific pesticides that contribute to PD, a few human studies have reported higher levels of the organochlorine pesticides dieldrin and DDE (a metabolite of DDT) in post-mortem PD brains. Previously, we found that exposure of mice to dieldrin caused perturbations in the nigrostriatal dopamine system consistent with those seen in PD. Given the concern over the environmental persistence and reintroduction of DDT for the control of malaria-carrying mosquitoes and other pests, we sought to determine whether DDT and its two major metabolites, DDD and DDE, could damage the dopamine system. In vitro analyses in mouse synaptosomes and vesicles demonstrated that DDT and its metabolites inhibit the plasma membrane dopamine transporter (DAT) and the vesicular monoamine transporter (VMAT2). However, exposure of mice to either DDT or DDE failed to show evidence of nigrostriatal damage or behavioral abnormalities in any of the measures examined. Thus, we report that in vitro effects of DDT and its metabolites on components of the dopamine system do not translate into neurotoxicological outcomes in orally exposed mice and DDT appears to have less dopamine toxicity when compared to dieldrin. These data suggest elevated DDE levels in PD patients may represent a measure of general pesticide exposure and that other pesticides may be responsible for the association between pesticide exposure and PD. PMID:18533268

  3. Development of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid). II.

    PubMed

    Rohm, Henning W; Lurtz, Claudia; Wegmann, Juergen; Odermatt, Erich K; Behrend, Detlef; Schmitz, Klaus-Peter; Sternberg, Katrin

    2011-04-01

    In body regions where damage and bleeding must be avoided, a substitute for mechanical tissue fixation by sutures or staplers is needed. Since tissue adhesives provide easy and fast handling they are a promising alternative. The present study reports the development and analysis of a tissue adhesive that consists of two adhesive components: hexamethylene diisocyanate (HDI) functionalized 1,2-ethylene glycol bis(dilactic acid) (ELA-NCO) and chitosan chloride. This composition was chosen based on preliminary studies on several chain elongation agents. The present study evaluates this adhesive system by IR-spectroscopy, tensile tests, and gel point measurements in comparison to fibrin glue. The system's in vitro biocompatibility was tested with mouse fibroblasts (L929) according to ISO 10993-5. Furthermore, an implantation study was performed in SPF-Wistar rats. The adhesive strength of manually applied mixtures or mixtures applied by double chamber syringes with a mixing extruder was determined to be significantly higher than that of fibrin glue on bovine muscle tissue at 37°C. Tensile strength increased further when exposure time of the adhesive was increased from 10 min to 48 h. The rheological gel point determination showed that the mixture of ELA-NCO/DMSO and chitosan chloride offers a time window large enough to readjust the fused joint during surgery, as opposed to fibrin glue. Additionally, the in vitro and in vivo biocompatibility studies of the adhesive system revealed no toxic effects on the surrounding tissue. Copyright © 2010 Wiley Periodicals, Inc.

  4. In vitro studies of the blood-brain barrier using isolated brain capillaries and cultured endothelial cells.

    PubMed

    Goldstein, G W; Betz, A L; Bowman, P D; Dorovini-Zis, K

    1986-01-01

    The endothelial cells in brain capillaries are the anatomic site of the blood-brain barrier. To learn more about the biology of these specialized cells, we developed methods to prepare suspensions of purified brain microvessels as well as primary cultures of endothelial cells in monolayer. These two preparations allow for direct investigation of the metabolism, transport properties, and receptor content of the brain capillary. We used isolated brain microvessels to study distribution of membrane carriers between the luminal and the abluminal plasma membrane of endothelial cells. We found that Na+K+-ATPase and the A-system amino-acid transport system are located predominantly on the abluminal surface of brain capillary endothelial cells. This distribution of transport carriers is consistent with the low permeability of potassium and small neutral amino acids in the blood-to-brain direction. It suggests, however, that both solutes can be actively transported across brain capillaries from the brain interstitial fluid to the blood. In tissue culture, the endothelial cells form continuous tight junctions with their neighbors. This results in a cellular layer impermeable to protein tracers. When exposed to hyperosmolar solutions, in an attempt to mimic the conditions that open the blood-brain barrier in vivo, we found a reversible separation of the tight junctions between contiguous endothelial cells. No indication of activation of pinocytosis was observed. In vitro systems provide a novel approach for studying the function of the blood-brain barrier and allow for observations not possible with intact animals.

  5. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    PubMed

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs.

  6. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    PubMed Central

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  7. Anticipatory Life Cycle Analysis of In Vitro Biomass Cultivation for Cultured Meat Production in the United States.

    PubMed

    Mattick, Carolyn S; Landis, Amy E; Allenby, Braden R; Genovese, Nicholas J

    2015-10-06

    Cultured, or in vitro, meat consists of edible biomass grown from animal stem cells in a factory, or carnery. In the coming decades, in vitro biomass cultivation could enable the production of meat without the need to raise livestock. Using an anticipatory life cycle analysis framework, the study described herein examines the environmental implications of this emerging technology and compares the results with published impacts of beef, pork, poultry, and another speculative analysis of cultured biomass. While uncertainty ranges are large, the findings suggest that in vitro biomass cultivation could require smaller quantities of agricultural inputs and land than livestock; however, those benefits could come at the expense of more intensive energy use as biological functions such as digestion and nutrient circulation are replaced by industrial equivalents. From this perspective, large-scale cultivation of in vitro meat and other bioengineered products could represent a new phase of industrialization with inherently complex and challenging trade-offs.

  8. VNTR diversity in Yersinia pestis isolates from an animal challenge study reveals the potential for in vitro mutations during laboratory cultivation

    USGS Publications Warehouse

    Vogler, Amy J.; Nottingham, Roxanne; Busch, Joseph D.; Sahl, Jason W.; Shuey, Megan M.; Foster, Jeffrey T.; Schupp, James M.; Smith, Susan; Rocke, Tonie E.; Klein, Paul; Wagner, David M.

    2016-01-01

    Underlying mutation rates and other evolutionary forces shape the population structure of bacteria in nature. Although easily overlooked, similar forces are at work in the laboratory and may influence observed mutations. Here, we investigated tissue samples and Yersinia pestis isolates from a rodent laboratory challenge with strain CO92 using whole genome sequencing and multi-locus variable-number tandem repeat (VNTR) analysis (MLVA). We identified six VNTR mutations that were found to have occurred in vitro during laboratory cultivation rather than in vivo during the rodent challenge. In contrast, no single nucleotide polymorphism (SNP) mutations were observed, either in vivo or in vitro. These results were consistent with previously published mutation rates and the calculated number of Y. pestis generations that occurred during the in vitro versus the in vivo portions of the experiment. When genotyping disease outbreaks, the potential for in vitro mutations should be considered, particularly when highly variable genetic markers such as VNTRs are used.

  9. A reliable in vitro fruiting system for armillaria mellea for evaluation of agrobacterium tumefaciens transformation vectors

    USDA-ARS?s Scientific Manuscript database

    Armillaria mellea is a serious pathogen of horticultural and agricultural systems in Europe and North America. The lack of a reliable in vitro fruiting system has hindered research, and necessitated dependence on intermittently available wild-collected basidiospores. Here we describe a reliable, rep...

  10. Present status and future potential of enhancing bone healing using nanotechnology.

    PubMed

    Stylios, George; Wan, Taoyu; Giannoudis, Peter

    2007-03-01

    An overview of the current state of tissue engineering material systems used in bone healing is presented. A variety of fabrication processes have been developed that have resulted in porous implant substrates that can address unresolved clinical problems. The merits of these biomaterial systems are evaluated in the context of the mechanical properties and biomedical performances most suitable for bone healing. An optimal scaffold for bone tissue engineering applications should be biocompatible and act as a 3D template for in vitro and in vivo bone growth; in addition, its degradation products should be non-toxic and easily excreted by the body. To achieve these features, scaffolds must consist of an interconnected porous network of micro- and nanoscale to allow extensive body fluid transport through the pores, which will trigger bone ingrowth, cell migration, tissue ingrowth, and eventually vascularization.

  11. Ultrasensitivity by Molecular Titration in Spatially Propagating Enzymatic Reactions

    PubMed Central

    Semenov, Sergey N.; Markvoort, Albert J.; Gevers, Wouter B.L.; Piruska, Aigars; de Greef, Tom F.A.; Huck, Wilhelm T.S.

    2013-01-01

    Delineating design principles of biological systems by reconstitution of purified components offers a platform to gauge the influence of critical physicochemical parameters on minimal biological systems of reduced complexity. Here we unravel the effect of strong reversible inhibitors on the spatiotemporal propagation of enzymatic reactions in a confined environment in vitro. We use micropatterned, enzyme-laden agarose gels which are stamped on polyacrylamide films containing immobilized substrates and reversible inhibitors. Quantitative fluorescence imaging combined with detailed numerical simulations of the reaction-diffusion process reveal that a shallow gradient of enzyme is converted into a steep product gradient by addition of strong inhibitors, consistent with a mathematical model of molecular titration. The results confirm that ultrasensitive and threshold effects at the molecular level can convert a graded input signal to a steep spatial response at macroscopic length scales. PMID:23972857

  12. The pharmacokinetics and hepatic disposition of repaglinide in pigs: mechanistic modeling of metabolism and transport.

    PubMed

    Sjögren, Erik; Bredberg, Ulf; Lennernäs, Hans

    2012-04-02

    The predictive power of using in vitro systems in combination with physiologically based pharmacokinetic (PBPK) modeling to elucidate the relative importance of metabolism and carrier-mediated transport for the pharmacokinetics was evaluated using repaglinide as a model compound and pig as the test system. Repaglinide was chosen as model drug as previous studies in humans have shown that repaglinide is subject to both carrier-mediated influx to the liver cells and extensive hepatic metabolism. A multiple sampling site model in pig was chosen since it provides detailed in vivo information about the liver disposition. The underlying assumption was that both metabolism and carrier-mediated transport are also important for the hepatic disposition of repaglinide in pigs. Microsomes and primary hepatocytes were used for in vitro evaluation of enzyme kinetics and cellular disposition, respectively. In vitro data were generated both with and without metabolism inhibitors (ketoconazole, bezafibrate and trimethoprim) and transport inhibitors (diclofenac and quinine) providing input into a semi-PBPK model. In vivo data were also generated with and without the same enzyme and transporter inhibitors, alone and in combination. The pigs were given repaglinide as intravenous infusions with and without inhibitors in a sequential manner, i.e., a control phase and a test phase. Parameters describing the passive and carrier-mediated flux as well as metabolism were estimated in the control phase. The result from test phase was used to gain further knowledge of the findings from the control phase. The in vivo pig model enabled simultaneous sampling from plasma (pre- and postliver and peripheral) as well as from bile and urine. A semi-PBPK model consisting of 11 compartments (6 tissues + 5 sampling sites) was constructed for the mechanistic elucidation of the liver disposition, in vitro based in vivo predictions, sensitivity analyses and estimations of individual pharmacokinetic parameters. Both in vitro and in vivo results showed that carrier-mediated influx was important for the liver disposition. The in vivo findings were supported by the result from the test phase where hepatic clearance (4.3 mL min⁻¹ kg⁻¹) was decreased by 29% (metabolism inhibition), 43% (transport inhibition) and 57% (metabolism + transport inhibition). These effects were in good agreement with predicted levels. This study suggests that both metabolism and carrier-mediated uptake are of significant importance for the liver disposition of repaglinide in pigs.

  13. Can in vitro assays substitute for in vivo studies in assessing the pulmonary hazards of fine and nanoscale materials?

    NASA Astrophysics Data System (ADS)

    Sayes, Christie M.; Reed, Kenneth L.; Subramoney, Shekhar; Abrams, Lloyd; Warheit, David B.

    2009-02-01

    Risk evaluations for nanomaterials require the generation of hazard data as well as exposure assessments. Most of the validated nanotoxicity studies have been conducted using in vivo experimental designs. It would be highly desirable to develop in vitro pulmonary hazard tests to assess the toxicity of fine and nanoscale particle-types. However, in vitro evaluations for pulmonary hazards are known to have limited predictive value for identifying in vivo lung toxicity effects. Accordingly, this study investigated the capacity of in vitro screening studies to predict in vivo pulmonary toxicity of several fine or nanoparticle-types following exposures in rats. Initially, complete physicochemical characterization of particulates was conducted, both in the dry and wet states. Second, rats were exposed by intratracheal instillation to 1 or 5 mg/kg of the following particle-types: carbonyl iron, crystalline silica, amorphous silica, nanoscale zinc oxide, or fine zinc oxide. Inflammation and cytotoxicity endpoints were measured at 24 h, 1 week, 1 month and 3 months post-instillation exposure. In addition, histopathological analyses of lung tissues were conducted at 3 months post-exposure. Pulmonary cell in vitro studies consisted of three different culture conditions at 4 different time periods. These included (1) rat L2 lung epithelial cells, (2) primary rat alveolar macrophages, and (3) alveolar macrophage—L2 lung epithelial cell co-cultures which were incubated with the same particles as tested in the in vivo study for 1, 4, 24, or 48 h. Cell culture fluids were evaluated for cytotoxicity endpoints and inflammatory cytokines at the different time periods in an attempt to match the biomarkers assessed in the in vivo study. Results of in vivo pulmonary toxicity studies demonstrated that instilled carbonyl iron particles produced little toxicity. Crystalline silica and amorphous silica particle exposures produced substantial inflammatory and cytotoxic effects initially, but only the crystalline silica variety produced sustained and progressive inflammatory and cytotoxic responses, leading to the development of pulmonary fibrosis. Exposures to nanoscale or fine-sized zinc oxide particles produced potent but typical "metal fume fever"-like reversible inflammation/cytotoxic effects which were resolved by 1-month postinstillation exposure. In contrast to the in vivo results, using cytotoxicity and inflammation endpoints, in vitro effects to the various particle-types were difficult to gauge, owing to the number of variables that were studied (i.e., cell-types, time-course, dose response (including particle overload doses)), and various endpoints (e.g., cytotoxicity = LDH, MTT; inflammation/cytokines = MIP-2). For instance, none of the in vitro endpoints could mimic a transient inflammatory/cytotoxic response—as was measured following exposures to amorphous silica, or fine or nanoscale zinc oxide particles. We conclude that current in vitro cell culture systems do not accurately forecast the pulmonary hazard responses of instilled particle-types. It seems clear that in vitro cellular systems will need to be further developed, standardized, and validated (relative to in vivo effects) in order to provide useful screening data on the relative toxicity of inhaled particles.

  14. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology

    PubMed Central

    Chappell, James; Jensen, Kirsten; Freemont, Paul S.

    2013-01-01

    A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology. PMID:23371936

  15. Construction of an in vitro primary lung co-culture platform derived from New Zealand white rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Powell, Joshua D.; Hess, Becky M.; Hutchison, Janine R.

    2015-05-01

    We report the construction of an in vitro three dimensional (3D) co-culture platform consisting of differentiated lung epithelial cells and monocytes from New Zealand white rabbits. Rabbit lung epithelial cells were successfully grown at air-liquid interface, produced mucus, and expressed both sialic acid alpha-2,3 and alpha-2,6. Blood-derived CD14+ monocytes were deposited above the epithelial layer resulting in the differentiation of a subset of monocytes into CD11c+ cells within the co-culture. These proof-of-concept findings provide a convenient means to comparatively study in vitro versus in vivo rabbit lung responses as they relate to inhalation or lung-challenge studies.

  16. Establishment of an in vitro transcription system for Peste des petits ruminant virus.

    PubMed

    Yunus, Mohammad; Shaila, Melkote S

    2012-12-05

    Peste-des-petits ruminants virus (PPRV) is a non segmented negative strand RNA virus of the genus Morbillivirus within Paramyxoviridae family. Negative strand RNA viruses are known to carry nucleocapsid (N) protein, phospho (P) protein and RNA polymerase (L protein) packaged within the virion which possess all activities required for transcription, post-transcriptional modification of mRNA and replication. In order to understand the mechanism of transcription and replication of the virus, an in vitro transcription reconstitution system is required. In the present work, an in vitro transcription system has been developed with ribonucleoprotein (RNP) complex purified from virus infected cells as well as partially purified recombinant polymerase (L-P) complex from insect cells along with N-RNA (genomic RNA encapsidated by N protein) template isolated from virus infected cells. RNP complex isolated from virus infected cells and recombinant L-P complex purified from insect cells was used to reconstitute transcription on N-RNA template. The requirement for this transcription reconstitution has been defined. Transcription of viral genes in the in vitro system was confirmed by PCR amplification of cDNAs corresponding to individual transcripts using gene specific primers. In order to measure the relative expression level of viral transcripts, real time PCR analysis was carried out. qPCR analysis of the transcription products made in vitro showed a gradient of polarity of transcription from 3' end to 5' end of the genome similar to that exhibited by the virus in infected cells. This report describes for the first time, the development of an in vitro transcription reconstitution system for PPRV with RNP complex purified from infected cells and recombinant L-P complex expressed in insect cells. Both the complexes were able to synthesize all the mRNA species in vitro, exhibiting a gradient of polarity in transcription.

  17. In vitro transcription of a cloned mouse ribosomal RNA gene.

    PubMed Central

    Mishima, Y; Yamamoto, O; Kominami, R; Muramatsu, M

    1981-01-01

    An in vitro transcription system which utilizes cloned mouse ribosomal RNA gene (rDNA) fragments and a mouse cell extract has been developed. RNA polymerases I is apparently responsible for this transcription as evidenced by the complete resistance to a high concentration (200 micrograms/ml) of alpha-amanitin. Run-off products obtained with three different truncated rDNA fragments indicated that RNA was transcribed from a unique site of rDNA. The S1 nuclease protection mapping of the in vitro product and of in vivo 45S RNA confirmed this site, indicating that, in this in vitro system, transcription of rDNA started from the same site as in vivo. This site is located at several hundred nucleotides upstream from the putative initiation site reported by us (1) and by others (2). Some sequence homology surrounding this region was noted among mouse, Xenopus laevis and Drosophila melanogaster. The data also suggest that some processing of the primary transcript occurs in this in vitro system. Images PMID:6278446

  18. A quantitative framework to evaluate modeling of cortical development by neural stem cells

    PubMed Central

    Stein, Jason L.; de la Torre-Ubieta, Luis; Tian, Yuan; Parikshak, Neelroop N.; Hernandez, Israel A.; Marchetto, Maria C.; Baker, Dylan K.; Lu, Daning; Hinman, Cassidy R.; Lowe, Jennifer K.; Wexler, Eric M.; Muotri, Alysson R.; Gage, Fred H.; Kosik, Kenneth S.; Geschwind, Daniel H.

    2014-01-01

    Summary Neural stem cells have been adopted to model a wide range of neuropsychiatric conditions in vitro. However, how well such models correspond to in vivo brain has not been evaluated in an unbiased, comprehensive manner. We used transcriptomic analyses to compare in vitro systems to developing human fetal brain and observed strong conservation of in vivo gene expression and network architecture in differentiating primary human neural progenitor cells (phNPCs). Conserved modules are enriched in genes associated with ASD, supporting the utility of phNPCs for studying neuropsychiatric disease. We also developed and validated a machine learning approach called CoNTExT that identifies the developmental maturity and regional identity of in vitro models. We observed strong differences between in vitro models, including hiPSC-derived neural progenitors from multiple laboratories. This work provides a systems biology framework for evaluating in vitro systems and supports their value in studying the molecular mechanisms of human neurodevelopmental disease. PMID:24991955

  19. Development of a flow feedback pulse duplicator system with rhesus monkey arterial input impedance characteristics

    NASA Technical Reports Server (NTRS)

    Schaub, J. D.; Koenig, S. C.; Schroeder, M. J.; Ewert, D. L.; Drew, G. A.; Swope, R. D.; Convertino, V. A. (Principal Investigator)

    1999-01-01

    An in vitro pulsatile pump flow system that is capable of producing physiologic pressures and flows in a mock circulatory system tuned to reproduce the first nine harmonics of the input impedance of a rhesus monkey was developed and tested. The system was created as a research tool for evaluating cardiovascular function and for the design, testing, and evaluation of electrical-mechanical cardiovascular models and chronically implanted sensors. The system possesses a computerized user interface for controlling a linear displacement pulsatile pump in a controlled flow loop format to emulate in vivo cardiovascular characteristics. Evaluation of the pump system consisted of comparing its aortic pressure and flow profiles with in vivo rhesus hemodynamic waveforms in the time and frequency domains. Comparison of aortic pressure and flow data between the pump system and in vivo data showed good agreement in the time and frequency domains, however, the pump system produced a larger pulse pressure. The pump system can be used for comparing cardiovascular parameters with predicted cardiovascular model values and for evaluating such items as vascular grafts, heart valves, biomaterials, and sensors. This article describes the development and evaluation of this feedback controlled cardiovascular dynamics simulation modeling system.

  20. Low-cost, high-speed back-end processing system for high-frequency ultrasound B-mode imaging.

    PubMed

    Chang, Jin Ho; Sun, Lei; Yen, Jesse T; Shung, K Kirk

    2009-07-01

    For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution.

  1. Low-Cost, High-Speed Back-End Processing System for High-Frequency Ultrasound B-Mode Imaging

    PubMed Central

    Chang, Jin Ho; Sun, Lei; Yen, Jesse T.; Shung, K. Kirk

    2009-01-01

    For real-time visualization of the mouse heart (6 to 13 beats per second), a back-end processing system involving high-speed signal processing functions to form and display images has been developed. This back-end system was designed with new signal processing algorithms to achieve a frame rate of more than 400 images per second. These algorithms were implemented in a simple and cost-effective manner with a single field-programmable gate array (FPGA) and software programs written in C++. The operating speed of the back-end system was investigated by recording the time required for transferring an image to a personal computer. Experimental results showed that the back-end system is capable of producing 433 images per second. To evaluate the imaging performance of the back-end system, a complete imaging system was built. This imaging system, which consisted of a recently reported high-speed mechanical sector scanner assembled with the back-end system, was tested by imaging a wire phantom, a pig eye (in vitro), and a mouse heart (in vivo). It was shown that this system is capable of providing high spatial resolution images with fast temporal resolution. PMID:19574160

  2. Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro.

    PubMed

    Choi, Young Ji; Kim, Da Hye; Kim, Sang Jun; Kim, Ju; Jeong, Seung-Il; Chung, Chang Ho; Yu, Kang-Yeol; Kim, Seon-Young

    2014-07-17

    We studied that a potent antifibrotic effect of decursin on in vivo liver damage model and the mechanism in inhibiting which transforming growth factor (TGF)-β1-induced human hepatic stellate cells (HSCs) activation. Liver injury was induced in vivo by intraperitoneal injection of carbon tetrachloride (CCl4) with or without decursin for 4weeks in mice. Human hepatic stellate cell line, an immortalized human HSC line, was used in in vitro assay system. The effects of decursin on HSC activation were measured by analyzing the expression of α-smooth muscle actin (α-SMA) and collagen I in liver tissue and human HSCs. Decursin treatment significantly reduced the ratio of liver/body weight, α-SMA activation, and type I collagen overexpression in CCl4 treated mice liver. The elevated serum levels, including ALT, AST, and ALP, were also decreased by decursin treatment. Treatment of decursin markedly proved the generation of reactive oxygen species, NAD(P)H oxidase (NOX) protein (1, 2, and 4) upregulation, NOX activity, and superoxide anion production in HSCs by TGF-β1. It also significantly reduced TGF-β1-induced Smad 2/3 phosphorylation, nuclear translocation of Smad 4, and association of Smad 2/3-Smad 4 complex. Consistent with in vitro results, decursin treatment effectively blocked the levels of NOX protein, and Smad 2/3 phosphorylation in injured mice liver. Decursin blocked CCl4-induced liver fibrosis and inhibited TGF-β1-mediated HSC activation in vitro. These data demonstrated that decursin exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1 induced NOX activation and Smad signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges.

    PubMed

    Zhang, Yi-Heng Percival

    2015-11-15

    The largest obstacle to the cost-competitive production of low-value and high-impact biofuels and biochemicals (called biocommodities) is high production costs catalyzed by microbes due to their inherent weaknesses, such as low product yield, slow reaction rate, high separation cost, intolerance to toxic products, and so on. This predominant whole-cell platform suffers from a mismatch between the primary goal of living microbes - cell proliferation and the desired biomanufacturing goal - desired products (not cell mass most times). In vitro synthetic biosystems consist of numerous enzymes as building bricks, enzyme complexes as building modules, and/or (biomimetic) coenzymes, which are assembled into synthetic enzymatic pathways for implementing complicated bioreactions. They emerge as an alternative solution for accomplishing a desired biotransformation without concerns of cell proliferation, complicated cellular regulation, and side-product formation. In addition to the most important advantage - high product yield, in vitro synthetic biosystems feature several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this perspective review, the general design rules of in vitro synthetic pathways are presented with eight supporting examples: hydrogen, n-butanol, isobutanol, electricity, starch, lactate,1,3-propanediol, and poly-3-hydroxylbutyrate. Also, a detailed economic analysis for enzymatic hydrogen production from carbohydrates is presented to illustrate some advantages of this system and the remaining challenges. Great market potentials will motivate worldwide efforts from multiple disciplines (i.e., chemistry, biology and engineering) to address the remaining obstacles pertaining to cost and stability of enzymes and coenzymes, standardized building parts and modules, biomimetic coenzymes, biosystem optimization, and scale-up, soon. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. In vitro studies of cutaneous retention of magnetic nanoemulsion loaded with zinc phthalocyanine for synergic use in skin cancer treatment

    NASA Astrophysics Data System (ADS)

    Primo, Fernando L.; Rodrigues, Marcilene M. A.; Simioni, Andreza R.; Bentley, Maria V. L. B.; Morais, Paulo C.; Tedesco, Antonio C.

    In this study was developed a new nano drug delivery system (NDDS) based on association of biodegradable surfactants with biocompatible magnetic fluid of maguemita citrate derivative. This formulation consists in a magnetic emulsion with nanostructured colloidal particles. Preliminary in vitro experiments showed that the formulation presents a great potential for synergic application in the topical release of photosensitizer drug (PS) and excellent target tissue properties in the photodynamic therapy (PDT) combined with hyperthermia (HPT) protocols. The physical chemistry characterization and in vitro assays were carried out by Zn(II) Phtalocyanine (ZnPc) photosensitizer incorporated into NDDS in the absence and the presence of magnetic fluid, showed good results and high biocompatibility. In vitro experiments were accomplished by tape-stripping protocols for quantification of drug association with different skin tissue layers. This technique is a classical method for analyses of drug release in stratum corneum and epidermis+ dermis skin layers. The NDDS formulations were applied directly in pig skin (tissue model) fixed in the cell's Franz device with receptor medium container with a PBS/EtOH 20% solution (10 mM, pH 7.4) at 37 °C. After 12 h of topical administration stratum corneum was removed from fifty tapes and the ZnPc retained was evaluated by solvent extraction in dimetil-sulphoxide under ultrasonic bath. These results indicated that magnetic nanoemulsion (MNE) increase the drug release on the deeper skin layers when compared with classical formulation in the absence of magnetic particles. This could be related with the increase of biocompatibility of NDDS due to the great affinity for the polar extracelullar matrix in the skin and also for the increase in the drug partition inside of corneocites wall.

  5. Analysis of real-time mixture cytotoxicity data following repeated exposure using BK/TD models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teng, S.; Tebby, C.

    Cosmetic products generally consist of multiple ingredients. Thus, cosmetic risk assessment has to deal with mixture toxicity on a long-term scale which means it has to be assessed in the context of repeated exposure. Given that animal testing has been banned for cosmetics risk assessment, in vitro assays allowing long-term repeated exposure and adapted for in vitro – in vivo extrapolation need to be developed. However, most in vitro tests only assess short-term effects and consider static endpoints which hinder extrapolation to realistic human exposure scenarios where concentration in target organs is varies over time. Thanks to impedance metrics, real-timemore » cell viability monitoring for repeated exposure has become possible. We recently constructed biokinetic/toxicodynamic models (BK/TD) to analyze such data (Teng et al., 2015) for three hepatotoxic cosmetic ingredients: coumarin, isoeugenol and benzophenone-2. In the present study, we aim to apply these models to analyze the dynamics of mixture impedance data using the concepts of concentration addition and independent action. Metabolic interactions between the mixture components were investigated, characterized and implemented in the models, as they impacted the actual cellular exposure. Indeed, cellular metabolism following mixture exposure induced a quick disappearance of the compounds from the exposure system. We showed that isoeugenol substantially decreased the metabolism of benzophenone-2, reducing the disappearance of this compound and enhancing its in vitro toxicity. Apart from this metabolic interaction, no mixtures showed any interaction, and all binary mixtures were successfully modeled by at least one model based on exposure to the individual compounds. - Highlights: • We could predict cell response over repeated exposure to mixtures of cosmetics. • Compounds acted independently on the cells. • Metabolic interactions impacted exposure concentrations to the compounds.« less

  6. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging.

    PubMed

    Mahdi, Elrashid Saleh; Noor, Azmin Mohd; Sakeena, Mohamed Hameem; Abdullah, Ghassan Z; Abdulkarim, Muthanna F; Sattar, Munavvar Abdul

    2011-01-01

    Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging. Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween 80/Span 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively. The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging.

  7. The brain-life theory: towards a consistent biological definition of humanness.

    PubMed Central

    Goldenring, J M

    1985-01-01

    This paper suggests that medically the term a 'human being' should be defined by the presence of an active human brain. The brain is the only unique and irreplaceable organ in the human body, as the orchestrator of all organ systems and the seat of personality. Thus, the presence or absence of brain life truly defines the presence or absence of human life in the medical sense. When viewed in this way, human life may be seen as a continuous spectrum between the onset of brain life in utero (eight weeks gestation), until the occurrence of brain death. At any point human tissue or organ systems may be present, but without the presence of a functional human brain, these do not constitute a 'human being', at least in a medical sense. The implications of this theory for various ethical concerns such as in vitro fertilisation and abortion are discussed. This theory is the most consistent possible for the definition of a human being with no contradictions inherent. However, having a good theory of definition of a 'human being' does not necessarily solve the ethical problems discussed herein. PMID:4078859

  8. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy.

    PubMed

    Sun, Yang; Park, Jesung; Stephens, Douglas N; Jo, Javier A; Sun, Lei; Cannata, Jonathan M; Saroufeem, Ramez M G; Shung, K Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 microm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  9. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    PubMed Central

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-01-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque. PMID:19566223

  10. Development of a dual-modal tissue diagnostic system combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Park, Jesung; Stephens, Douglas N.; Jo, Javier A.; Sun, Lei; Cannata, Jonathan M.; Saroufeem, Ramez M. G.; Shung, K. Kirk; Marcu, Laura

    2009-06-01

    We report a tissue diagnostic system which combines two complementary techniques of time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) and ultrasonic backscatter microscopy (UBM). TR-LIFS evaluates the biochemical composition of tissue, while UBM provides tissue microanatomy and enables localization of the region of diagnostic interest. The TR-LIFS component consists of an optical fiber-based time-domain apparatus including a spectrometer, gated multichannel plate photomultiplier, and fast digitizer. It records the fluorescence with high sensitivity (nM concentration range) and time resolution as low as 300 ps. The UBM system consists of a transducer, pulser, receiving circuit, and positioning stage. The transducer used here is 45 MHz, unfocused, with axial and lateral resolutions 38 and 200 μm. Validation of the hybrid system and ultrasonic and spectroscopic data coregistration were conducted both in vitro (tissue phantom) and ex vivo (atherosclerotic tissue specimens of human aorta). Standard histopathological analysis of tissue samples was used to validate the UBM-TRLIFS data. Current results have demonstrated that spatially correlated UBM and TR-LIFS data provide complementary characterization of both morphology (necrotic core and calcium deposits) and biochemistry (collagen, elastin, and lipid features) of the atherosclerotic plaques at the same location. Thus, a combination of fluorescence spectroscopy with ultrasound imaging would allow for better identification of features associated with tissue pathologies. Current design and performance of the hybrid system suggests potential applications in clinical diagnosis of atherosclerotic plaque.

  11. Radiofrequency-Based Identification Medical Device: An Evaluable Solution for Surgical Sponge Retrieval?

    PubMed

    Lazzaro, Alessandra; Corona, Arianna; Iezzi, Luca; Quaresima, Silvia; Armisi, Luca; Piccolo, Ilaria; Medaglia, Carlo Maria; Sbrenni, Sergio; Sileri, Pierpaolo; Rosato, Nicola; Gaspari, Achille Lucio; Di Lorenzo, Nicola

    2017-06-01

    A retained surgical item in patients (gossypiboma) is a persisting problem, despite consistent improvements and existing guidelines in counting instruments and sponges. Previous experiences with radiofrequency identification technology (RFID) tracking sponges show that it could represent an innovation, in order to reduce the criticism and increase the effectiveness during surgical procedures. We present an automated system that allows reduction of errors and improves safety in the operating room. The system consists of 3 antennas, surgical sponges containing RFID tags, and dedicated software applications, with Wi-Fi real-time communication between devices. The first antenna provides the initial count of gauzes; the second a real-time counting during surgery, including the sponges thrown into the kick-bucket; and the third can be used in the event of uneven sponge count. The software allows management at all stages of the process. In vitro and in vivo tests were performed: the system provided excellent results in detecting sponges in patients' body. Hundred percent retained sponges were detected correctly, even when they were overlapped. No false positive or false negative was recorded. The counting procedure turned out to be more streamlined and efficient and it could save time in a standard procedure. The RFID system for sponge tracking was shown to be experimentally a reliable and feasible method to track sponges with a full detection accuracy in the operating room. The results indicate the system to be safe and effective with acceptable cost-effective parameters.

  12. Hyperhydricity in in vitro eggplant regenerated plants: structural characteristics and involvement of BiP (Binding Protein).

    PubMed

    Picoli, E A.T.; Otoni, W C.; Figueira, M L.; Carolino, S M.B.; Almeida, R S.; Silva, E A.M.; Carvalho, C R.; Fontes, E P.B.

    2001-04-01

    The hyperhydricity in eggplant (Solanum melongena L.) plants was monitored by the induction of the ER-luminal resident protein BiP. Although tissue culture conditions may induce BiP synthesis, the accumulation of BiP in hyperhydric shoots was consistently higher than in non-hyperhydric shoots. The leaf and stem anatomy in non-hyperhydric and hyperhydric eggplant was investigated aiming to identify structural changes associated with this phenomenon. In non-hyperhydric organs there were smaller and more organized cells, besides a more differentiated vascular system when compared with its hyperhydric counterpart. Scanning electron microscopy of leaves showed that leaf surface and stomata differentiation were also affected in hyperhydric plants.

  13. Multi-Frequency Harmonics Technique for HIFU Tissue Treatment

    NASA Astrophysics Data System (ADS)

    Rybyanets, Andrey N.; Lugovaya, Maria A.; Rybyanets, Anastasia A.

    2010-03-01

    New technique for enhancing of tissue lysis and enlarging treatment volume during one HIFU sonification is proposed. The technique consists in simultaneous or alternative (at optimal repetition frequency) excitation of single element HIFU transducer on a frequencies corresponding to odd natural harmonics of piezoceramic element at ultrasound energy levels sufficient for producing cavitational, thermal or mechanical damage of fat cells at each of aforementioned frequencies. Calculation and FEM modeling of transducer vibrations and acoustic field patterns for different frequencies sets were performed. Acoustic pressure in focal plane was measured in water using calibrated hydrophone and 3D acoustic scanning system. In vitro experiments on different tissues and phantoms confirming the advantages of multifrequency harmonic method were performed.

  14. Approaches for characterizing threshold dose-response relationships for DNA-damage pathways involved in carcinogenicity in vivo and micronuclei formation in vitro.

    PubMed

    Clewell, Rebecca A; Andersen, Melvin E

    2016-05-01

    Assessing the shape of dose-response curves for DNA-damage in cellular systems and for the consequences of DNA damage in intact animals remains a controversial topic. This overview looks at aspects of the pharmacokinetics (PK) and pharmacodynamics (PD) of cellular DNA-damage/repair and their role in defining the shape of dose-response curves using an in vivo example with formaldehyde and in vitro examples for micronuclei (MN) formation with several test compounds. Formaldehyde is both strongly mutagenic and an endogenous metabolite in cells. With increasing inhaled concentrations, there were transitions in gene changes, from activation of selective stress pathway genes at low concentrations, to activation of pathways for cell-cycle control, p53-DNA damage, and stem cell niche pathways at higher exposures. These gene expression changes were more consistent with dose-dependent transitions in the PD responses to formaldehyde in epithelial cells in the intact rat rather than the low-dose linear extrapolation methods currently used for carcinogens. However, more complete PD explanations of non-linear dose response for creation of fixed damage in cells require detailed examination of cellular responses in vitro using measures of DNA damage and repair that are not easily accessible in the intact animal. In the second section of the article, we illustrate an approach from our laboratory that develops fit-for-purpose, in vitro assays and evaluates the PD of DNA damage and repair through studies using prototypical DNA-damaging agents. Examination of a broad range of responses in these cells showed that transcriptional upregulation of cell cycle control and DNA repair pathways only occurred at doses higher than those causing overt damage fixed damage-measured as MN formation. Lower levels of damage appear to be handled by post-translational repair process using pre-existing proteins. In depth evaluation of the PD properties of one such post-translational process (formation of DNA repair centers; DRCs) has indicated that the formation of DRCs and their ability to complete repair before replication are consistent with threshold behaviours for mutagenesis and, by extension, with chemical carcinogenesis. © The Author 2016. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. An in vitro methodology for forecasting luminal concentrations and precipitation of highly permeable lipophilic weak bases in the fasted upper small intestine.

    PubMed

    Psachoulias, Dimitrios; Vertzoni, Maria; Butler, James; Busby, David; Symillides, Moira; Dressman, Jennifer; Reppas, Christos

    2012-12-01

    To develop an in vitro methodology for prediction of concentrations and potential precipitation of highly permeable, lipophilic weak bases in fasted upper small intestine based on ketoconazole and dipyridamole luminal data. Evaluate usefulness of methodology in predicting luminal precipitation of AZD0865 and SB705498 based on plasma data. A three-compartment in vitro setup was used. Depending on the dosage form administered in in vivo studies, a solution or a suspension was placed in the gastric compartment. A medium simulating the luminal environment (FaSSIF-V2plus) was initially placed in the duodenal compartment. Concentrated FaSSIF-V2plus was placed in the reservoir compartment. In vitro ketoconazole and dipyridamole concentrations and precipitated fractions adequately reflected luminal data. Unlike luminal precipitates, in vitro ketoconazole precipitates were crystalline. In vitro AZD0865 data confirmed previously published human pharmacokinetic data suggesting that absorption rates are not affected by luminal precipitation. In vitro SB705498 data predicted that significant luminal precipitation occurs after a 100 mg or 400 mg but not after a 10 mg dose, consistent with human pharmacokinetic data. An in vitro methodology for predicting concentrations and potential precipitation in fasted upper small intestine, after administration of highly permeable, lipophilic weak bases in fasted upper small intestine was developed and evaluated for its predictability in regard to luminal precipitation.

  16. The current limitations of in vitro genotoxicity testing and their relevance to the in vivo situation.

    PubMed

    Nesslany, Fabrice

    2017-08-01

    The standard regulatory core battery of genotoxicity tests generally includes 2 or 3 validated tests with at least one in vitro test in bacteria and one in vitro test on cell cultures. However, limitations in in vitro genotoxicity testing may exist at many levels. The knowledge of the underlying mechanisms of genotoxicity is particularly useful to assess the level of relevance for the in vivo situation. In order to avoid wrong conclusions regarding the actual genotoxicity status of any test substance, it appears very important to be aware of the various origins of related bias leading to 'false positives and negatives' by using in vitro methods. Among these, mention may be made on the metabolic activation system, experimental (extreme) conditions, specificities of the test systems implemented, cell type used etc. The knowledge of the actual 'limits' of the in vitro test systems used is clearly an advantage and may contribute to avoid some pitfalls in order to better assess the level of relevance for the in vivo situation. Copyright © 2016. Published by Elsevier Ltd.

  17. Expert consensus on an in vitro approach to assess ...

    EPA Pesticide Factsheets

    Report from an international workshop with the goal of reviewing the state-of-the-science and determine the technical needs to develop an in vitro system that will reduce and eventually replace the use of animals for evaluating the potential inhalation toxicity of nanomaterials (NMs) in a regulatory setting. Workshop was co-organized in February 2015 by the PETA International Science Consortium Ltd. with the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods an international workshop that was attended by representatives from industry, government, academia, and non-governmental organizations with expertise in in vivo and in vitro lung systems, respiratory toxicology, inhalation particle dosimetry, nanotoxicology, and hazard and human health risk analysis. This report provides an overview of the presentations, discussions, and recommendations of the participants on the design of an in vitro system for the prediction of pulmonary fibrosis. The workshop participants identified multi-walled carbon nanotubes (MWCNTs), which have been shown to induce fibrosis in animal experiments and represent an important commercial nanomaterial class, as representative pro-fibrogenic NMs to use for the development of an in vitro test system. Recommendations were made for designing a system using lung relevant cells co-cultured at the air-liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while consider

  18. In vitro-in vivo correlation for nevirapine extended release tablets.

    PubMed

    Macha, Sreeraj; Yong, Chan-Loi; Darrington, Todd; Davis, Mark S; MacGregor, Thomas R; Castles, Mark; Krill, Steven L

    2009-12-01

    An in vitro-in vivo correlation (IVIVC) for four nevirapine extended release tablets with varying polymer contents was developed. The pharmacokinetics of extended release formulations were assessed in a parallel group study with healthy volunteers and compared with corresponding in vitro dissolution data obtained using a USP apparatus type 1. In vitro samples were analysed using HPLC with UV detection and in vivo samples were analysed using a HPLC-MS/MS assay; the IVIVC analyses comparing the two results were performed using WinNonlin. A Double Weibull model optimally fits the in vitro data. A unit impulse response (UIR) was assessed using the fastest ER formulation as a reference. The deconvolution of the in vivo concentration time data was performed using the UIR to estimate an in vivo drug release profile. A linear model with a time-scaling factor clarified the relationship between in vitro and in vivo data. The predictability of the final model was consistent based on internal validation. Average percent prediction errors for pharmacokinetic parameters were <10% and individual values for all formulations were <15%. Therefore, a Level A IVIVC was developed and validated for nevirapine extended release formulations providing robust predictions of in vivo profiles based on in vitro dissolution profiles. Copyright 2009 John Wiley & Sons, Ltd.

  19. Monitoring the quality consistency of Fufang Danshen Pills using micellar electrokinetic chromatography fingerprint coupled with prediction of antioxidant activity and chemometrics.

    PubMed

    Ji, Zhengchao; Sun, Wanyang; Sun, Guoxiang; Zhang, Jin

    2016-08-01

    A fast micellar electrokinetic chromatography fingerprint method combined with quantification was developed and validated to evaluate the quality of Fufang Danshen Pills, a traditional Chinese Medicine, which has been used in the treatment of cardiovascular system diseases, in which the tetrahedron optimization method was first used to optimize the background electrolyte solution. Subsequently, the index of the fingerprint information amount of I was performed as an excellent objective indictor to investigate the experimental conditions. In addition, a systematical quantified fingerprint method was constructed for evaluating the quality consistency of 20 batches of test samples obtained from the same drug manufacturer. The fingerprint analysis combined with quantitative determination of two components showed that the quality consistency of the test samples was quite good within the same commercial brand. Furthermore, the partial least squares model analysis was used to explore the fingerprint-efficacy relationship between active components and antioxidant activity in vitro, which can be applied for the assessment of anti-oxidant activity of Fufang Danshen pills and provide valuable medicinal information for quality control. The result illustrated that the present study provided a reliable and reasonable method for monitoring the quality consistency of Fufang Danshen pills. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cryopreservation of in vitro grown shoot tips of Diospyros kaki thunb. using different methods.

    PubMed

    Niu, Y L; Luo, Z R; Zhang, Y F; Zhang, Q L

    2012-01-01

    The objective of this study was to compare the potential of different cryopreservation strategies for in vitro shoot tips of Diospyros kaki Thunb. The treatments consisted of three different cryopreservation methods: vitrification, droplet-vitrification and modified droplet-vitrification. The following variables were assessed: cold acclimation, sucrose concentration in the preculture medium and PVS2 treatment time. A higher average survival level was obtained using the modified droplet-vitrification method compared to the other two methods.

  1. Damage Thresholds for Exposure to NIR and Blue Lasers in an In Vitro RPE Cell System

    DTIC Science & Technology

    2006-07-01

    damage , and to identify antioxidants capable of protecting these cells from laser-in- duced cell death. MATERIALS AND METHODS The human RPE cell...melanosomes in blue laser-induced damage in vitro, which confirms the view that melanin plays an important role in photochemical damage mechanisms in...community has only a validating role in the animal ED50 damage threshold data used by safety committees. Systems of in vitro analysis must be

  2. Assessment of wastewater and recycled water quality: a comparison of lines of evidence from in vitro, in vivo and chemical analyses.

    PubMed

    Leusch, Frederic D L; Khan, Stuart J; Gagnon, M Monique; Quayle, Pam; Trinh, Trang; Coleman, Heather; Rawson, Christopher; Chapman, Heather F; Blair, Palenque; Nice, Helen; Reitsema, Tarren

    2014-03-01

    We investigated water quality at an advanced water reclamation plant and three conventional wastewater treatment plants using an "ecotoxicity toolbox" consisting of three complementary analyses (chemical analysis, in vitro bioanalysis and in situ biological monitoring), with a focus on endocrine disruption. The in vitro bioassays were chosen to provide an appropriately wide coverage of biological effects relevant to managed aquifer recharge and environmental discharge of treated wastewater, and included bioassays for bacterial toxicity (Microtox), genotoxicity (umuC), photosynthesis inhibition (Max-I-PAM) and endocrine effects (E-SCREEN and AR-CALUX). Chemical analysis of hormones and pesticides using LCMSMS was performed in parallel to correlate standard analytical methods with the in vitro assessment. For two plants with surface water discharge into open drains, further field work was carried out to examine in situ effects using mosquitofish (Gambusia holbrooki) as a bioindicator species for possible endocrine effects. The results show considerable cytotoxicity, phytotoxicity, estrogenicity and androgenicity in raw sewage, all of which were significantly reduced by conventional wastewater treatment. No biological response was detected to RO water, suggesting that reverse osmosis is a significant barrier to biologically active compounds. Chemical analysis and in situ monitoring revealed trends consistent with the in vitro results: chemical analysis confirmed the removal trends observed by the bioanalytical tools, and in situ sampling did not reveal any evidence of endocrine disruption specifically due to discharge of treated wastewater (although other sources may be present). Biomarkers of exposure (in vitro) and effect (in vivo or in situ) are complementary and together provide information with a high level of ecological relevance. This study illustrates the utility of combining multiple lines of evidence in the assessment of water quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. N-terminally truncated GADD34 proteins are convenient translation enhancers in a human cell-derived in vitro protein synthesis system.

    PubMed

    Mikami, Satoshi; Kobayashi, Tominari; Machida, Kodai; Masutani, Mamiko; Yokoyama, Shigeyuki; Imataka, Hiroaki

    2010-07-01

    Human cell-derived in vitro protein synthesis systems are useful for the production of recombinant proteins. Productivity can be increased by supplementation with GADD34, a protein that is difficult to express in and purify from E. coli. Deletion of the N-terminal 120 or 240 amino acids of GADD34 improves recovery of this protein from E. coli without compromising its ability to boost protein synthesis in an in vitro protein synthesis system. The use of N-terminally truncated GADD34 proteins in place of full-length GADD34 should improve the utility of human cell-based cell-free protein synthesis systems.

  4. In vitro techniques for the assessment of neurotoxicity.

    PubMed Central

    Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A

    1998-01-01

    Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected through specific mechanisms of neurotoxicity. For example, in vitro systems may be useful for certain structurally defined compounds and mechanisms of toxicity, such as organophosphorus compounds and delayed neuropathy, for which target cells and the biochemical processes involved in the neurotoxicity are well known. For other compounds and the different types of neurotoxicity, a mechanism of toxicity needs to be identified first. Once identified, by either in vivo or in vitro methods, a system can be developed to detect and to evaluate predictive ability for the type of in vivo neurotoxicity produced. Therefore, in vitro tests have their greatest potential in providing information on basic mechanistic processes in order to refine specific experimental questions to be addressed in the whole animal. Images Figure 1 PMID:9539010

  5. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less

  6. Mammalian oocyte growth and development in vitro.

    PubMed

    Eppig, J J; O'Brien, M; Wigglesworth, K

    1996-06-01

    This paper is a review of the current status of technology for mammalian oocyte growth and development in vitro. It compares and contrasts the characteristics of the various culture systems that have been devised for the culture of either isolated preantral follicles or the oocyte-granulosa cell complexes form preantral follicles. The advantages and disadvantages of these various systems are discussed. Endpoints for the evaluation of oocyte development in vitro, including oocyte maturation and embryogenesis, are described. Considerations for the improvement of the culture systems are also presented. These include discussions of the possible effects of apoptosis and inappropriate differentiation of oocyte-associated granulosa cells on oocyte development. Finally, the potential applications of the technology for oocyte growth and development in vitro are discussed. For example, studies of oocyte development in vitro could help to identify specific molecules produced during oocyte development that are essential for normal early embryogenesis and perhaps recognize defects leading to infertility or abnormalities in embryonic development. Moreover, the culture systems may provide the methods necessary to enlarge the populations of valuable agricultural, pharmaceutical product-producing, and endangered animals, and to rescue the oocytes of women about to undergo clinical procedures that place oocytes at risk.

  7. Organs-on-a-chip: Current applications and consideration points for in vitro ADME-Tox studies.

    PubMed

    Ishida, Seiichi

    2018-02-01

    Assay systems using in vitro cultured cells are increasingly applied for evaluation of the efficacy, safety, and toxicity of drug candidates. In vitro cell-based assays have two main applications in the drug discovery process: searching for a compound that is effective against the target disease (seed investigation) and confirmation of safety during use of the identified compounds (safety assessment). Currently available in vitro cell-based assays have been designed to evaluate the efficacy and toxicity in single organs, but the in vivo pharmacokinetics and pharmacodynamics of the administered drug candidates have not been considered. Thus, an evaluation system that interconnects cell culture units, one of which has appropriate drug metabolism activities and the other assesses the efficacy and toxicity of compounds, is needed. Accordingly, the in vitro ADME-Tox culture system known as organs-on-a-chip has been proposed. In this review, after introducing the organs-on-a-chip system, the evaluation of enterohepatic circulation and the gut-liver axis relationship will be presented as an example of the application of the organs-on-a-chip system for ADME studies based on inter-organ network. Additionally, the functions required for the organs-on-a-chip system and the necessity of standardization of cells mounted on the chip system will be discussed. Copyright © 2018 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  8. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, N.; Kuhn, R.J.; Yang, C.F.

    1986-10-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T/sub 1/-resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized /sup 32/P-RNA. Incubation ofmore » preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor.« less

  9. Establishment and quantitative imaging of a 3D lung organotypic model of mammary tumor outgrowth.

    PubMed

    Martin, Michelle D; Fingleton, Barbara; Lynch, Conor C; Wells, Sam; McIntyre, J Oliver; Piston, David W; Matrisian, Lynn M

    2008-01-01

    The lung is the second most common site of metastatic spread in breast cancer and experimental evidence has been provided in many systems for the importance of an organ-specific microenvironment in the development of metastasis. To better understand the interaction between tumor and host cells in this important secondary site, we have developed a 3D in vitro organotypic model of breast tumor metastatic growth in the lung. In our model, cells isolated from mouse lungs are placed in a collagen sponge to serve as a scaffold and co-cultured with a green fluorescent protein-labeled polyoma virus middle T antigen (PyVT) mammary tumor cell line. Analysis of the co-culture system was performed using flow cytometry to determine the relative constitution of the co-cultures over time. This analysis determined that the cultures consisted of viable lung and breast cancer cells over a 5-day period. Confocal microscopy was then used to perform live cell imaging of the co-cultures over time. Our studies determined that host lung cells influence the ability of tumor cells to grow, as the presence of lung parenchyma positively affected the proliferation of the mammary tumor cells in culture. In summary, we have developed a novel in vitro model of breast tumor cells in a common metastatic site that can be used to study tumor/host interactions in an important microenvironment.

  10. A liposomal hydrogel for the prevention of bacterial adhesion to catheters.

    PubMed

    DiTizio, V; Ferguson, G W; Mittelman, M W; Khoury, A E; Bruce, A W; DiCosmo, F

    1998-10-01

    The adhesion of bacteria to medical implants and the subsequent development of a biofilm frequently results in the infection of surrounding tissue and may require removal of the device. We have developed a liposomal hydrogel system that significantly reduces bacterial adhesion to silicone catheter material. The system consists of a poly (ethylene glycol)-gelatin hydrogel in which liposomes containing the antibiotic ciprofloxacin are sequestered. A poly (ethylene glycol)-gelatin-liposome mixture was applied to a silicone surface that had been pre-treated with phenylazido-modified gelatin. Hydrogel cross-linking and attachment to surface-immobilized gelatin was accomplished through the formation of urethane bonds between gelatin and nitrophenyl carbonate-activated poly (ethylene glycol). Liposomal hydrogel-coated catheters were shown to have an initial ciprofloxacin content of 185+/-16 microg cm(-2). Ciprofloxacin was released over seven days with an average release rate of 1.9+/-0.2 microg cm(-2) h(-1) for the first 94 h. In vitro assays using a clinical isolate of Pseudomonas aeruginosa established the antimicrobial efficacy of the liposomal hydrogel. A modified Kirby-Bauer assay produced growth-inhibition zone diameters of 39+/-1 mm, while bacterial adhesion was completely inhibited on catheter surfaces throughout a seven-day in vitro adhesion assay. This new antimicrobial coating shows promise as a prophylactic and/or treatment for catheter-related infection.

  11. Design and In Vitro Evaluation of Compression-coated Pulsatile Release Tablets of Losartan Potassium

    PubMed Central

    Bajpai, M.; Singh, D. C. P.; Bhattacharya, A.; Singh, A.

    2012-01-01

    In majority of individuals blood pressure rises in the early morning hours, which lead to serious cardiovascular complications. Formulation of pulsatile system makes it possible to deliver drug at definite period of time when symptoms of the disease condition are most critical. The purpose of the present work was to develop pulsatile release tablet of losartan potassium for chronotherapy in hypertension. The prepared system consisted of a core tablet coated with versatile and safe hydrophilic cellulosic ethers such as, hydroxypropyl methylcellulose, hydroxypropyl cellulose and sodium carboxy methylcellulose to produce burst release after predetermined lag time. Various formulation factors were studied through series of test and in vitro dissolution study. It was found that core tablets containing superdisintegrant failed to produce burst drug release pattern while effervescent agent was able to do so. Results also reveal that coating composition and coating level affects lag time. Formulation containing effervescent agent in core and coated with 200 mg hydroxypropyl cellulose provide lag time of 4.5 h with 73% drug release in 6 h that followed a sigmoidal release pattern. These values were close to the desired objective of producing lag time of 5-6 h followed by fast drug release. This approach can thus provide a useful means for timed release of losartan and is helpful for patients with morning surge. PMID:23325989

  12. Bioavailability Of Arsenic In Arsenical Pesticide-Amended Soils: Preliminary Greenhouse Study

    NASA Astrophysics Data System (ADS)

    Quazi, S.; Sarkar, D.; Khairom, A.; Datta, R.; Sharma, S.

    2005-05-01

    Long-term application of arsenical pesticides in agricultural lands has resulted in high levels of arsenic (As). Conversion of former agricultural lands to residential areas has resulted in increased human contact with soil As. Soil ingestion from incidental hand-to-mouth activity by children is now a very important issue in assessing human health risk associated with exposure to arsenical pesticide-applied former agricultural soils. Human health risk from direct exposure to soil As via hand to mouth action is restricted only to those fractions of As in the soil that are available to the human gastrointestinal system. Thus this study aimed at addressing the issue of soil variability on As bioavailability as a function of soil physiochemical properties in a dynamic interaction between soils, water and plants and pesticides. In the current greenhouse study two soils with drastically different chemical characteristics w.r.t As reactivity (Immokalee-low As retention potential and Millhopper-high As retention potential) and one pesticide (sodium arsenate) were used. Soils were amended with sodium arsenate at two rates representing the high and low ends of As contamination, generally representative of Superfunds site conditions: 675 and 1500 mg/kg As. Rice (Oryza sativa) was used as the test crop. Sequential digestion to estimate in-vitro As in the stomach phase and the intestinal phase was employed on soils sampled at 4 times: 0-time, after 3 mo, 6 mo and 9 mo of soil-pesticide equilibration. In-vitro bioavailability experiments were also performed with the same soils in order to obtain an estimate of the amount of As that would be absorbed to the intestinal linings in simulated systems. Following the greenhouse study, selective in-vivo bioavailability studies using As-contaminated soils will be conducted on male and female mice to correlate in-vitro results with the in-vivo data. Treatments will consist of a soil group (As in soil), a positive control group (only As) and a negative control group (no soil, no As). Results from the in-vitro and in-vivo studies will help understand the effects of soil properties on As bioavailability. Keywords: Bioavailability, pesticide, soil, arsenic, greenhouse.

  13. Rates of in vivo (arterial) and in vitro biocorrosion for pure magnesium.

    PubMed

    Bowen, Patrick K; Drelich, Adam; Drelich, Jaroslaw; Goldman, Jeremy

    2015-01-01

    The development of magnesium-based materials for bioabsorbable stents relies heavily on corrosion testing by immersion in pseudophysiological solutions, where magnesium degrades faster than it does in vivo. The quantitative difference in corrosion kinetics in vitro and in vivo is largely unknown, but, if determined, would help reduce dependence on animal models. In order to create a quantitative in vitro-in vivo correlation based on an accepted measure of corrosion (penetration rate), commercially pure magnesium wires were corroded in vivo in the abdominal aortas of rats for 5-32 days, and in vitro for up to 14 days using Dulbecco's modified eagle medium. Cross-sectioning, scanning electron microscopy, image analysis, a modified penetration rate tailored to degraded wires, and empirical modeling were used to analyze the corroded specimens. In vitro penetration rates were consistently higher than comparable in vivo rates by a factor of 1.2-1.9× (±0.2×). For a sample <20% corroded, an approximate in vitro-in vivo multiplier of 1.3 ± 0.2× was applied, whereas a multiplier of 1.8 ± 0.2× became appropriate when the magnesium specimen was 25-35% degraded. © 2014 Wiley Periodicals, Inc.

  14. Novel biocatalytic systems for maintaining the nucleotide balance based on adenylate kinase immobilized on carbon nanostructures.

    PubMed

    Hetmann, Anna; Wujak, Magdalena; Bolibok, Paulina; Zięba, Wojciech; Wiśniewski, Marek; Roszek, Katarzyna

    2018-07-01

    In this study graphene oxide (GO), carbon quantum dots (CQD) and carbon nanoonions (CNO) have been characterized and applied for the first time as a matrix for recombinant adenylate kinase (AK, EC 2.7.4.3) immobilization. AK is an enzyme fulfilling a key role in metabolic processes. This phosphotransferase catalyzes the interconversion of adenine nucleotides (ATP, ADP and AMP) and thereby participates in nucleotide homeostasis, monitors a cellular energy charge as well as acts as a component of purinergic signaling system. The AK activity in all obtained biocatalytic systems was higher as compared to the free enzyme. We have found that the immobilization on carbon nanostructures increased both activity and stability of AK. Moreover, the biocatalytic systems consisting of AK immobilized on carbon nanostructures can be easily and efficiently lyophilized without risk of desorption or decrease in the catalytic activity of the investigated enzyme. The positive action of AK-GO biocatalytic system in maintaining the nucleotide balance in in vitro cell culture was proved. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. The fertilization ability and developmental competence of bovine oocytes grown in vitro

    PubMed Central

    MAKITA, Miho; UEDA, Mayuko; MIYANO, Takashi

    2016-01-01

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4−0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts. PMID:27151093

  16. The fertilization ability and developmental competence of bovine oocytes grown in vitro.

    PubMed

    Makita, Miho; Ueda, Mayuko; Miyano, Takashi

    2016-08-25

    In vitro growth culture systems for oocytes are being developed in several mammalian species. In these growth culture systems, in vitro grown oocytes usually have lower blastocyst formation than in vivo grown oocytes after in vitro fertilization. Furthermore, there have been a few reports that investigated the fertilization ability of in vitro grown oocytes in large animals. The purpose of this study was to investigate the fertilization process and developmental competence of bovine oocytes grown in vitro. Oocyte-granulosa cell complexes collected from bovine early antral follicles (0.4-0.7 mm in diameter) were cultured for growth with 17β-estradiol and androstenedione for 14 days and matured in vitro. These oocytes were then inseminated for 6 or 12 h, and further cultured for development up to 8 days in vitro. After growth culture, oocytes grew from 95 µm to around 120 µm and acquired maturation competence (79%). Although fertilization rates of in vitro grown oocytes were low after 6 h of insemination, 34% of in vitro grown oocytes fertilized normally after 12 h of insemination, having two polar bodies and two pronuclei with a sperm tail, and 22% of these oocytes developed into blastocysts after 8 days of culture. The fertilization and blastocyst formation rates were similar to those of in vivo grown oocytes. In addition, blastocyst cell numbers were also similar between in vitro and in vivo grown oocytes. In conclusion, in vitro grown bovine oocytes are similar to in vivo grown oocytes in fertilization ability and can develop into blastocysts.

  17. Group I Paks support muscle regeneration and counteract cancer-associated muscle atrophy.

    PubMed

    Cerquone Perpetuini, Andrea; Re Cecconi, Andrea David; Chiappa, Michela; Martinelli, Giulia Benedetta; Fuoco, Claudia; Desiderio, Giovanni; Castagnoli, Luisa; Gargioli, Cesare; Piccirillo, Rosanna; Cesareni, Gianni

    2018-05-21

    Skeletal muscle is characterized by an efficient regeneration potential that is often impaired during myopathies. Understanding the molecular players involved in muscle homeostasis and regeneration could help to find new therapies against muscle degenerative disorders. Previous studies revealed that the Ser/Thr kinase p21 protein-activated kinase 1 (Pak1) was specifically down-regulated in the atrophying gastrocnemius of Yoshida hepatoma-bearing rats. In this study, we evaluated the role of group I Paks during cancer-related atrophy and muscle regeneration. We examined Pak1 expression levels in the mouse Tibialis Anterior muscles during cancer cachexia induced by grafting colon adenocarcinoma C26 cells and in vitro by dexamethasone treatment. We investigated whether the overexpression of Pak1 counteracts muscle wasting in C26-bearing mice and in vitro also during interleukin-6 (IL6)-induced or dexamethasone-induced C2C12 atrophy. Moreover, we analysed the involvement of group I Paks on myogenic differentiation in vivo and in vitro using the group I chemical inhibitor IPA-3. We found that Pak1 expression levels are reduced during cancer-induced cachexia in the Tibialis Anterior muscles of colon adenocarcinoma C26-bearing mice and in vitro during dexamethasone-induced myotube atrophy. Electroporation of muscles of C26-bearing mice with plasmids directing the synthesis of PAK1 preserves fiber size in cachectic muscles by restraining the expression of atrogin-1 and MuRF1 and possibly by inducing myogenin expression. Consistently, the overexpression of PAK1 reduces the dexamethasone-induced expression of MuRF1 in myotubes and increases the phospho-FOXO3/FOXO3 ratio. Interestingly, the ectopic expression of PAK1 counteracts atrophy in vitro by restraining the IL6-Stat3 signalling pathway measured in luciferase-based assays and by reducing rates of protein degradation in atrophying myotubes exposed to IL6. On the other hand, we observed that the inhibition of group I Paks has no effect on myotube atrophy in vitro and is associated with impaired muscle regeneration in vivo and in vitro. In fact, we found that mice treated with the group I inhibitor IPA-3 display a delayed recovery from cardiotoxin-induced muscle injury. This is consistent with in vitro experiments showing that IPA-3 impairs myogenin expression and myotube formation in vessel-associated myogenic progenitors, C2C12 myoblasts, and satellite cells. Finally, we observed that IPA-3 reduces p38α/β phosphorylation that is required to proceed through various stages of satellite cells differentiation: activation, asymmetric division, and ultimately myotube formation. Our data provide novel evidence that is consistent with group I Paks playing a central role in the regulation of muscle homeostasis, atrophy and myogenesis. © 2018 The Authors. Journal of Cachexia, Sarcopenia and Muscle published by John Wiley & Sons Ltd on behalf of the Society on Sarcopenia, Cachexia and Wasting Disorders.

  18. An investigation into the placement of force delivery systems and the initial forces applied by clinicians during space closure.

    PubMed

    Nattrass, C; Ireland, A J; Sherriff, M

    1997-05-01

    This in vitro investigation was designed to establish not only how clinicians apply forces for space closure when using the straight wire appliance and sliding mechanics, but also to quantify the initial force levels produced. A single typodont, with residual extraction space in each quadrant, was set up to simulate space closure using sliding mechanics. On two occasions, at least 2 months apart, 18 clinicians were asked to apply three force delivery systems to the typodont, in the manner in which they would apply it in a clinical situation. The three types of force delivery system investigated were elastomeric chain, an elastomeric module on a steel ligature, and a nickel-titanium closed coil spring. A choice of spaced or unspaced elastomeric chain produced by a single manufacturer was provided. The amount of stretch which was placed on each type of system was measured and, using an Instron Universal Testing Machine, the initial force which would be generated by each force delivery system was established. Clinicians were assessed to examine their consistency in the amount of stretch which each placed on the force delivery systems, their initial force application and their ability to apply equivalent forces with the different types of force delivery system. The clinicians were found to be consistent in their method of application of the force delivery systems and, therefore, their force application, as individuals, but there was a wide range of forces applied as a group. However, most clinicians applied very different forces when using different force delivery systems. When using the module on a ligature the greatest force was applied, whilst the nickel titanium coil springs provided the least force.

  19. In-vitro Cell Exposure Studies for the Assessment of Nanoparticle Toxicity in the Lung - A Dialogue between Aerosol Science and Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.

    The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerningmore » inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.« less

  20. Timing Actions to Avoid Refractoriness: A Simple Solution for Streaming Sensory Signals

    PubMed Central

    Nogueira, Javier; Caputi, Ángel Ariel

    2011-01-01

    Segmenting self- from allo-generated signals is crucial for active sensory processing. We report a dynamic filter used by South American pulse electric fish to distinguish active electro-sensory signals carried by their own electric discharges from other concomitant electrical stimuli (i.e. communication signals). The filter has a sensory component, consisting of an onset type central electro-sensory neuron, and a motor component, consisting of a change in the fish's discharge rate when allo-generated electrical events occur in temporal proximity to the fish's own discharge. We investigated the sensory component of the filter by in vitro mimicking synaptic inputs occurring during behavioral responses to allo-generated interfering signals. We found that active control of the discharge enhances self-generated over allo-generated responses by forcing allo-generated signals into a central refractory period. This hypothesis was confirmed by field potential recordings in freely discharging fish. Similar sensory-motor mechanisms may also contribute to signal segmentation in other sensory systems. PMID:21789228

  1. Production of Pharmaceuticals from Papaver Cultivars In Vitro

    USDA-ARS?s Scientific Manuscript database

    A methodology to clonally proliferate Iranian poppy (Papaver bracteatum Lindl.) and opium poppy (P. somniferum L.) shoots is presented employing an in vitro hydroponics system (i.e., automated plant culture system (APCS)). Temperature had a profound effect on growth and alkaloid production after 8-...

  2. 40 CFR 798.5375 - In vitro mammalian cytogenetics.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... mammalian cytogenetics. (a) Purpose. The in vitro cytogenetics test is a mutagenicity test system for the... first post-treatment mitosis and numerical aberrations require at least one cell division to be... chromatids. (c) Reference substances. Not applicable. (d) Test method—(1) Principle. In vitro cytogenetics...

  3. Applying fiber optical methods for toxicological testing in vitro

    NASA Astrophysics Data System (ADS)

    Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe

    1999-04-01

    The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.

  4. Progesterone improves porcine in vitro fertilisation system.

    PubMed

    Malo, Clara; Gil, Lydia; Cano, Rafael; Martinez, Felisa; Gonzalez, Noelia

    2014-03-01

    In an effort to improve the quality of in vitro produced porcine embryos, the effect of progestagens - progesterone analogues - on the in vitro developmental competence of porcine oocytes was studied. A total of 1421 in vitro matured oocytes, from 4 replicates, were inseminated with frozen-thawed spermatozoa. Progestagens were added to late maturation and embryo cultures (10 IU/ml). Fertilisation success (pre-maturation, penetration, monospermy and efficiency) and nuclear maturation were evaluated. There were no differences among prematuration rates between groups (P = 0.221). Penetration rates were higher (P < 0.001) in the presence of progestagens (75.0%) as compared to the control (51.7%). However, no differences were observed in monospermy percentages (P = 0.246). The results indicated that supplementation with progestagens increased the efficiency of the in vitro fertilisation system (P < 0.001). An additional beneficial effect was observed in nuclear maturation with progestagens (P = 0.035). In summary, progestagen supplementation is an important factor to improve the in vitro fertilisation procedure.

  5. Kidney Organoids: A Translational Journey

    PubMed Central

    Morizane, Ryuji; Bonventre, Joseph V.

    2017-01-01

    Human pluripotent stem cells (hPSCs) are attractive sources for regenerative medicine and disease modeling in vitro. Directed hPSC differentiation approaches have derived from knowledge of cell development in vivo rather than from stochastic cell differentiation. Moreover, there has been great success in the generation of 3-dimensional organ-buds termed “organoids” from hPSCs; these consist of a variety of cell types in vitro to mimic organs in vivo. The organoid bears great potential in the study of human diseases in vitro especially when combined with CRISPR/Cas9-based genome editing approaches. We summarize the current literature describing organoid studies with a special focus on kidney organoids, and discuss goals and future opportunities for organoid-based studies. PMID:28188103

  6. The immunoglobulin class of anti-hapten antibody secreted during secondary responses in vitro and in vivo.

    PubMed Central

    North, J R; Dresser, D W

    1977-01-01

    A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells. PMID:863475

  7. The immunoglobulin class of anti-hapten antibody secreted during secondary responses in vitro and in vivo.

    PubMed

    North, J R; Dresser, D W

    1977-05-01

    A comparison has been made of the in vitro and in vivo response of primed mouse spleen cells to the hapten DNP. The responses were analysed in terms of six classes (sub-classes) of humoral antibody directed against the cross-reacting hapten TNP. By comparison with the response in intact mice the adoptive secondary response is delayed by 3 days in addition to being somewhat lesser in magnitude. The timing of the response in vitro is similar to that observed in intact mice. The preponderant class in all three responses was gammaG1 with gammaA and gammaG3 secreting cells consistently comprising the smallest proportion of the total of antibody-secreting cells.

  8. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review.

    PubMed

    Anderson, Devon E; Johnstone, Brian

    2017-01-01

    Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ , dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.

  9. Flow induced protein nucleation: Insulin oligomerization under shear.

    NASA Astrophysics Data System (ADS)

    Dexter, Andrew; Azadani, Ali; Sorci, Mirco; Belfort, Georges; Hirsa, Amir

    2007-11-01

    A large number of diseases are associated with protein aggregation and misfolding, such as Alzheimer's, Parkinson's and human prion diseases such as Creutzveld-Jakob disease. Characteristic of these diseases is the presence of amyloid fibrils and their precursors, oligomers and protofibrils. Considerable evidence exists that a shearing flow strongly influences amyloid formation both in vitro and in vivo. Furthermore, the stability of protein-based pharmaceuticals is essential for conventional therapeutic preparations and drug delivery systems. By studying the nucleation and growth of insulin fibrils in a well-defined flow system, we expect to identify the flow conditions that impact protein aggregation kinetics and which lead to protein destabilization. The present flow system consists of an annular region bounded by stationary inner and outer cylinders and is driven by rotation of the floor. Preliminary results indicate that a continuous shearing flow can accelerate the aggregation process. The interfacial shear viscosity was found to drastically increase during aggregation and appears to be a useful parameter to probe protein oligomerization and the effects of flow.

  10. Adipose tissue-organotypic culture system as a promising model for studying adipose tissue biology and regeneration

    PubMed Central

    Uchihashi, Kazuyoshi; Aoki, Shigehisa; Sonoda, Emiko; Yamasaki, Fumio; Piao, Meihua; Ootani, Akifumi; Yonemitsu, Nobuhisa; Sugihara, Hajime

    2009-01-01

    Adipose tissue consists of mature adipocytes, preadipocytes and mesenchymal stem cells (MSCs), but a culture system for analyzing their cell types within the tissue has not been established. We have recently developed “adipose tissue-organotypic culture system” that maintains unilocular structure, proliferative ability and functions of mature adipocytes for a long term, using three-dimensional collagen gel culture of the tissue fragments. In this system, both preadipocytes and MSCs regenerate actively at the peripheral zone of the fragments. Our method will open up a new way for studying both multiple cell types within adipose tissue and the cell-based mechanisms of obesity and metabolic syndrome. Thus, it seems to be a promising model for investigating adipose tissue biology and regeneration. In this article, we introduce adipose tissue-organotypic culture, and propose two theories regarding the mechanism of tissue regeneration that occurs specifically at peripheral zone of tissue fragments in vitro. PMID:19794899

  11. Effects of protein kinase inhibitors on in vitro protein phosphorylation and cellular differentiation of Streptomyces griseus.

    PubMed

    Hong, S K; Matsumoto, A; Horinouchi, S; Beppu, T

    1993-01-01

    In vitro phosphorylation reactions using extracts of Streptomyces griseus cells and gamma-[32P]ATP revealed the presence of multiple phosphorylated proteins. Most of the phosphorylations were distinctly inhibited by staurosporine and K-252a which are known to be eukaryotic protein kinase inhibitors. The in vitro experiments also showed that phosphorylation was greatly enhanced by manganese and inhibition of phosphorylation by staurosporine and K-252a was partially circumvented by 10 mM manganese. A calcium-activated protein kinase(s) was little affected by these inhibitors. Herbimycin and radicicol, known to be tyrosine kinase inhibitors, completely inhibited the phosphorylation of one protein. Consistent with their in vitro effects the protein kinase inhibitors inhibited aerial mycelium formation and pigment production by S. griseus. All these data suggest that S. griseus possesses several protein kinases of eukaryotic type which are essential for morphogenesis and secondary metabolism. In vitro phosphorylation of some proteins in a staurosporine-producing Streptomyces sp. was also inhibited by staurosporine, K-252a and herbimycin, which suggests the presence of a mechanism for self-protection in this microorganism.

  12. Human Gut-On-A-Chip Supports Polarized Infection of Coxsackie B1 Virus In Vitro

    PubMed Central

    Papafragkou, Efstathia; Weaver, James C.; Ferrante, Thomas C.; Bahinski, Anthony; Elkins, Christopher A.; Kulka, Michael; Ingber, Donald E.

    2017-01-01

    Analysis of enterovirus infection is difficult in animals because they express different virus receptors than humans, and static cell culture systems do not reproduce the physical complexity of the human intestinal epithelium. Here, using coxsackievirus B1 (CVB1) as a prototype enterovirus strain, we demonstrate that human enterovirus infection, replication and infectious virus production can be analyzed in vitro in a human Gut-on-a-Chip microfluidic device that supports culture of highly differentiated human villus intestinal epithelium under conditions of fluid flow and peristalsis-like motions. When CVB1 was introduced into the epithelium-lined intestinal lumen of the device, virions entered the epithelium, replicated inside the cells producing detectable cytopathic effects (CPEs), and both infectious virions and inflammatory cytokines were released in a polarized manner from the cell apex, as they could be detected in the effluent from the epithelial microchannel. When the virus was introduced via a basal route of infection (by inoculating virus into fluid flowing through a parallel lower ‘vascular’ channel separated from the epithelial channel by a porous membrane), significantly lower viral titers, decreased CPEs, and delayed caspase-3 activation were observed; however, cytokines continued to be secreted apically. The presence of continuous fluid flow through the epithelial lumen also resulted in production of a gradient of CPEs consistent with the flow direction. Thus, the human Gut-on-a-Chip may provide a suitable in vitro model for enteric virus infection and for investigating mechanisms of enterovirus pathogenesis. PMID:28146569

  13. Ciprofloxacin as ocular liposomal hydrogel.

    PubMed

    Hosny, Khaled Mohamed

    2010-03-01

    The purpose of this study was to prepare and characterize an ocular effective prolonged-release liposomal hydrogel formulation containing ciprofloxacin. Reverse-phase evaporation was used for preparation of liposomes consisting of soybean phosphatidylcholine (PC) and cholesterol (CH). The effect of PC/CH molar ratio on the percentage drug encapsulation was investigated. The effect of additives such as stearylamine (SA) or dicetyl phosphate (DP) as positive and negative charge inducers, respectively, were studied. Morphology, mean size, encapsulation efficiency, and in vitro release of ciprofloxacin from liposomes were evaluated. For hydrogel preparation, Carbopol 940 was applied. In vitro transcorneal permeation through excised albino rabbit cornea was also determined. Optimal encapsulation efficiency of 73.04 +/- 3.06% was obtained from liposomes formulated with PC/CH at molar ratio of 5:3 and by increasing CH content above this limit, the encapsulation decreased. Positively charged liposomes showed superior entrapment efficiency (82.01 +/- 0.52) over the negatively charged and the neutral liposomes. Hydrogel containing liposomes with lipid content PC, CH, and SA in molar ratio 5:3:1, respectively, showed the best release and transcorneal permeation with the percentage permeation of 30.6%. These results suggest that the degree of encapsulation of ciprofloxacin into liposomes and prolonged in vitro release depend on composition of the vesicles. In addition, the polymer hydrogel used in preparation ensure steady and prolonged transcorneal permeation. In conclusion, ciprofloxacin liposomal hydrogel is a suitable delivery system for improving the ocular bioavailability of ciprofloxacin.

  14. Amiodarone biokinetics, the formation of its major oxidative metabolite and neurotoxicity after acute and repeated exposure of brain cell cultures.

    PubMed

    Pomponio, Giuliana; Zurich, Marie-Gabrielle; Schultz, Luise; Weiss, Dieter G; Romanelli, Luca; Gramowski-Voss, Alexandra; Di Consiglio, Emma; Testai, Emanuela

    2015-12-25

    The difficulty in mimicking nervous system complexity and cell-cell interactions as well as the lack of kinetics information has limited the use of in vitro neurotoxicity data. Here, we assessed the biokinetic profile as well as the neurotoxicity of Amiodarone after acute and repeated exposure in two advanced rodent brain cell culture models, consisting of both neurons and glial cells organized in 2 or 3 dimensions to mimic the brain histiotypic structure and function. A strategy was applied to evidence the abiotic processes possibly affecting Amiodarone in vitro bioavailability, showing its ability to adsorb to the plastic devices. At clinically relevant Amiodarone concentrations, known to induce neurotoxicity in some patients during therapeutic treatment, a complete uptake was observed in both models in 24 h, after single exposure. After repeated treatments, bioaccumulation was observed, especially in the 3D cell model, together with a greater alteration of neurotoxicity markers. After 14 days, Amiodarone major oxidative metabolite (mono-N-desethylamiodarone) was detected at limited levels, indicating the presence of active drug metabolism enzymes (i.e. cytochrome P450) in both models. The assessment of biokinetics provides useful information on the relevance of in vitro toxicity data and should be considered in the design of an Integrated Testing Strategy aimed to identify specific neurotoxic alerts, and to improve the neurotoxicity assay predictivity for human acute and repeated exposure. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Strategies to optimize the biocompatibility of iron oxide nanoparticles - ;SPIONs safe by design;

    NASA Astrophysics Data System (ADS)

    Janko, Christina; Zaloga, Jan; Pöttler, Marina; Dürr, Stephan; Eberbeck, Dietmar; Tietze, Rainer; Lyer, Stefan; Alexiou, Christoph

    2017-06-01

    Various nanoparticle systems have been developed for medical applications in recent years. For constant improvement of efficacy and safety of nanoparticles, a close interdisciplinary interplay between synthesis, physicochemical characterizations and toxicological investigations is urgently needed. Based on combined toxicological data, we follow a ;safe-by design; strategy for our superparamagnetic iron oxide nanoparticles (SPION). Using complementary interference-free toxicological assay systems, we initially identified agglomeration tendencies in physiological fluids, strong uptake by cells and improvable biocompatibility of lauric acid (LA)-coated SPIONs (SPIONLA). Thus, we decided to further stabilize those particles by an artificial protein corona consisting of serum albumin. This approach finally lead to increased colloidal stability, augmented drug loading capacity and improved biocompatibility in previous in vitro assays. Here, we show in whole blood ex vivo and on isolated red blood cells (RBC) that a protein corona protects RBCs from hemolysis by SPIONs.

  16. Systemic drug-related intertriginous and flexural exanthema (SDRIFE).

    PubMed

    Elmariah, Sarina B; Cheung, Wang; Wang, Nadia; Kamino, Hideko; Pomeranz, Miriam K

    2009-08-15

    A 72-year-old man with a history of metastatic melanoma presented with a two-day history of erythematous and edematous plaques, with scattered bullae on the neck, chest, axillae, and inguinal and gluteal folds, which began five days after infusion of an experimental drug. The clinical and histopathologic findings were consistent with systemic drug-related intertriginous and flexural exanthema (SDRIFE), which is an uncommon drug reaction that results in symmetric erythema that affects the buttocks, groin, and/or thighs as well other flexural folds. The clinical manifestations of SDRIFE are highly characteristic and include distinctive primary cutaneous lesions with a specific distribution and course; however, heterogeneity exists with respect to histopathologic features, skin test results, and in vitro investigations. The exact mechanism of SDRIFE remains unknown but is thought to result from a type IV delayed hypersensitivity immune response. Treatment is symptomatic and includes topical or oral glucocorticoids.

  17. In situ forming implants for the delivery of metronidazole to periodontal pockets: formulation and drug release studies.

    PubMed

    Kilicarslan, Muge; Koerber, Martin; Bodmeier, Roland

    2014-05-01

    This study was performed to obtain prolonged drug release with biodegradable in situ forming implants for the local delivery of metronidazole to periodontal pockets. The effect of polymer type (capped and uncapped PLGA), solvent type (water-miscible and water-immiscible) and the polymer/drug ratio on in vitro drug release studies were investigated. In situ implants with sustained metronidazole release and low initial burst consisted of capped PLGA and N-methyl-2-pyrolidone as solvent. Mucoadhesive polymers were incorporated into the in situ implants in order to modify the properties of the delivery systems towards longer residence times in vivo. Addition of the polymers changed the adhesiveness and increased the viscosity and drug release of the formulations. However, sustained drug release over 10 days was achievable. Biodegradable in situ forming implants are therefore an attractive delivery system to achieve prolonged release of metronidazole at periodontal therapy.

  18. Design of a surgical robot with dynamic vision field control for Single Port Endoscopic Surgery.

    PubMed

    Kobayashi, Yo; Sekiguchi, Yuta; Tomono, Yu; Watanabe, Hiroki; Toyoda, Kazutaka; Konishi, Kozo; Tomikawa, Morimasa; Ieiri, Satoshi; Tanoue, Kazuo; Hashizume, Makoto; Fujie, Masaktsu G

    2010-01-01

    Recently, a robotic system was developed to assist Single Port Endoscopic Surgery (SPS). However, the existing system required a manual change of vision field, hindering the surgical task and increasing the degrees of freedom (DOFs) of the manipulator. We proposed a surgical robot for SPS with dynamic vision field control, the endoscope view being manipulated by a master controller. The prototype robot consisted of a positioning and sheath manipulator (6 DOF) for vision field control, and dual tool tissue manipulators (gripping: 5DOF, cautery: 3DOF). Feasibility of the robot was demonstrated in vitro. The "cut and vision field control" (using tool manipulators) is suitable for precise cutting tasks in risky areas while a "cut by vision field control" (using a vision field control manipulator) is effective for rapid macro cutting of tissues. A resection task was accomplished using a combination of both methods.

  19. Interactions between benzylamiloride and fura-2: studies in vitro and in cardiac myocytes.

    PubMed

    Hudson, C A; Rojas, J D; Sarvazyan, N; Wesson, D E; Martínez-Zaguilán, R

    1998-08-01

    Amiloride derivatives are commonly used inhibitors of Na+/H+- and Na+/Ca2+-exchange. Because they are fluorescent molecules the use of benzylamiloride (BZA), an inhibitor of Na+/Ca2+ exchange, in conjunction with Fura-2, a commonly used fluorescent Ca2+ indicator, might complicate interpretation of fluorescence data obtained. In vitro data show that BZA decreases the Fura-2 fluorescence at all useful wavelengths in a concentration-dependent manner. The Fura-2 ratio 340/380 (used to estimate intracellular Ca2+ ([Ca2+]in)) also decreased with increasing BZA concentrations. The Stern-Volmer relation suggests that this phenomenon is due to either static or dynamic quenching. Varying temperatures from 4 to 37 degreesC did not alter Stern-Volmer constants, consistent instead with fluorescence resonance energy transfer (FRET). The in situ relevance of these interactions was evaluated in adult rat cardiac myocytes which exhibit Na+/Ca2+ exchange reflected by rapid [Ca2+]in increase following Na+ removal. Pretreatment with BZA >/= 25 microM decreased the magnitude of Fura-2 changes induced by Na+ removal. Analysis of the individual Fura-2 useful wavelengths indicated that >/= 25 microM BZA altered the Fura-2 signal in a manner consistent with the quenching effects noted in vitro. Together, these data show that BZA interacts with Fura-2 in vitro and in situ and suggest caution when interpreting Fura-2 fluorescence data derived in conjunction with BZA. Copyright 1998 Academic Press.

  20. Toward the establishment of standardized in vitro tests for lipid-based formulations, part 3: understanding supersaturation versus precipitation potential during the in vitro digestion of type I, II, IIIA, IIIB and IV lipid-based formulations.

    PubMed

    Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Calderone, Marilyn; Igonin, Annabel; Jule, Eduardo; Vertommen, Jan; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Pouton, Colin W; Porter, Christopher J H

    2013-12-01

    Recent studies have shown that digestion of lipid-based formulations (LBFs) can stimulate both supersaturation and precipitation. The current study has evaluated the drug, formulation and dose-dependence of the supersaturation - precipitation balance for a range of LBFs. Type I, II, IIIA/B LBFs containing medium-chain (MC) or long-chain (LC) lipids, and lipid-free Type IV LBF incorporating different doses of fenofibrate or tolfenamic acid were digested in vitro in a simulated intestinal medium. The degree of supersaturation was assessed through comparison of drug concentrations in aqueous digestion phases (APDIGEST) during LBF digestion and the equilibrium drug solubility in the same phases. Increasing fenofibrate or tolfenamic acid drug loads (i.e., dose) had negligible effects on LC LBF performance during digestion, but promoted drug crystallization (confirmed by XRPD) from MC and Type IV LBF. Drug crystallization was only evident in instances when the calculated maximum supersaturation ratio (SR(M)) was >3. This threshold SR(M) value was remarkably consistent across all LBF and was also consistent with previous studies with danazol. The maximum supersaturation ratio (SR(M)) provides an indication of the supersaturation 'pressure' exerted by formulation digestion and is strongly predictive of the likelihood of drug precipitation in vitro. This may also prove effective in discriminating the in vivo performance of LBFs.

  1. Gene Overexpression/Suppression Analysis of Candidate Virulence Factors of Candida albicans▿

    PubMed Central

    Fu, Yue; Luo, Guanpingsheng; Spellberg, Brad J.; Edwards, John E.; Ibrahim, Ashraf S.

    2008-01-01

    We developed a conditional overexpression/suppression genetic strategy in Candida albicans to enable simultaneous testing of gain or loss of function in order to identify new virulence factors. The strategy involved insertion of a strong, tetracycline-regulated promoter in front of the gene of interest. To validate the strategy, a library of genes encoding glycosylphosphatidylinositol (GPI)-anchored surface proteins was screened for virulence phenotypes in vitro. During the screening, overexpression of IFF4 was found to increase the adherence of C. albicans to plastic and to human epithelial cells, but not endothelial cells. Consistent with the in vitro results, IFF4 overexpression modestly increased the tissue fungal burden during murine vaginal candidiasis. In addition to the in vitro screening tests, IFF4 overexpression was found to increase C. albicans susceptibility to neutrophil-mediated killing. Furthermore, IFF4 overexpression decreased the severity of hematogenously disseminated candidiasis in normal mice, but not in neutropenic mice, again consistent with the in vitro phenotype. Overexpression of 12 other GPI proteins did not affect normal GPI protein cell surface accumulation, demonstrating that the overexpression strategy did not affect the cell capacity for making such proteins. These data indicate that the same gene can increase or decrease candidal virulence in distinct models of infection, emphasizing the importance of studying virulence genes in different anatomical contexts. Finally, these data validate the use of a conditional overexpression/suppression genetic strategy to identify candidal virulence factors. PMID:18178776

  2. Cytochrome P450-mediated warfarin metabolic ability is not a critical determinant of warfarin sensitivity in avian species: In vitro assays in several birds and in vivo assays in chicken.

    PubMed

    Watanabe, Kensuke P; Kawata, Minami; Ikenaka, Yoshinori; Nakayama, Shouta M M; Ishii, Chihiro; Darwish, Wageh Sobhi; Saengtienchai, Aksorn; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-10-01

    Coumarin-derivative anticoagulant rodenticides used for rodent control are posing a serious risk to wild bird populations. For warfarin, a classic coumarin derivative, chickens have a high median lethal dose (LD50), whereas mammalian species generally have much lower LD50. Large interspecies differences in sensitivity to warfarin are to be expected. The authors previously reported substantial differences in warfarin metabolism among avian species; however, the actual in vivo pharmacokinetics have yet to be elucidated, even in the chicken. In the present study, the authors sought to provide an in-depth characterization of warfarin metabolism in birds using in vivo and in vitro approaches. A kinetic analysis of warfarin metabolism was performed using liver microsomes of 4 avian species, and the metabolic abilities of the chicken and crow were much higher in comparison with those of the mallard and ostrich. Analysis of in vivo metabolites from chickens showed that excretions predominantly consisted of 4'-hydroxywarfarin, which was consistent with the in vitro results. Pharmacokinetic analysis suggested that chickens have an unexpectedly long half-life despite showing high metabolic ability in vitro. The results suggest that the half-life of warfarin in other bird species could be longer than that in the chicken and that warfarin metabolism may not be a critical determinant of species differences with respect to warfarin sensitivity. © 2015 SETAC.

  3. Controlled porosity osmotic pump-based controlled release systems of pseudoephedrine. I. Cellulose acetate as a semipermeable membrane.

    PubMed

    Makhija, Sapna N; Vavia, Pradeep R

    2003-04-14

    A controlled porosity osmotic pump-based drug delivery system has been described in this study. Unlike the elementary osmotic pump (EOP) which consists of an osmotic core with the drug surrounded by a semipermeable membrane drilled with a delivery orifice, controlled porosity of the membrane is accomplished by the use of different channeling agents in the coating. The usual dose of pseudoephedrine is 60 mg to be taken three or four times daily. It has a short plasma half life of 5-8 h. Hence, pseudoephedrine was chosen as a model drug with an aim to develop a controlled release system for a period of 12 h. Sodium bicarbonate was used as the osmogent. The effect of different ratios of drug:osmogent on the in-vitro release was studied. Cellulose acetate (CA) was used as the semipermeable membrane. Different channeling agents tried were diethylphthalate (DEP), dibutylphthalate (DBP), dibutylsebacate (DBS) and polyethyleneglycol 400 (PEG 400). The effect of polymer loading on in-vitro drug release was studied. It was found that drug release rate increased with the amount of osmogent due to the increased water uptake, and hence increased driving force for drug release. This could be retarded by the proper choice of channeling agent in order to achieve the desired zero order release profile. Also the lag time seen with tablets coated using diethylphthalate as channeling agent was reduced by using a hydrophilic plasticizer like polyethyleneglycol 400 in combination with diethylphthalate. This system was found to deliver pseudoephedrine at a zero order rate for 12 h. The effect of pH on drug release was also studied. The optimized formulations were subjected to stability studies as per ICH guidelines at different temperature and humidity conditions.

  4. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis.

    PubMed

    Salmazi, Rafael; Calixto, Giovana; Bernegossi, Jéssica; Ramos, Matheus Aparecido dos Santos; Bauab, Taís Maria; Chorilli, Marlus

    2015-01-01

    Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis.

  5. Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy.

    PubMed

    Jeyamohan, Prashanti; Hasumura, Takashi; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi

    2013-01-01

    The photothermal effect of single-walled carbon nanotubes (SWCNTs) in combination with the anticancer drug doxorubicin (DOX) for targeting and accelerated destruction of breast cancer cells is demonstrated in this paper. A targeted drug-delivery system was developed for selective killing of breast cancer cells with polyethylene glycol biofunctionalized and DOX-loaded SWCNTs conjugated with folic acid. In our work, in vitro drug-release studies showed that the drug (DOX) binds at physiological pH (pH 7.4) and is released only at a lower pH, ie, lysosomal pH (pH 4.0), which is the characteristic pH of the tumor environment. A sustained release of DOX from the SWCNTs was observed for a period of 3 days. SWCNTs have strong optical absorbance in the near-infrared (NIR) region. In this special spectral window, biological systems are highly transparent. Our study reports that under laser irradiation at 800 nm, SWCNTs exhibited strong light-heat transfer characteristics. These optical properties of SWCNTs open the way for selective photothermal ablation in cancer therapy. It was also observed that internalization and uptake of folate-conjugated NTs into cancer cells was achieved by a receptor-mediated endocytosis mechanism. Results of the in vitro experiments show that laser was effective in destroying the cancer cells, while sparing the normal cells. When the above laser effect was combined with DOX-conjugated SWCNTs, we found enhanced and accelerated killing of breast cancer cells. Thus, this nanodrug-delivery system, consisting of laser, drug, and SWCNTs, looks to be a promising selective modality with high treatment efficacy and low side effects for cancer therapy.

  6. Establishment of a long-term three-dimensional primary culture of mouse glandular stomach epithelial cells within the stem cell niche

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katano, Takahito; Ootani, Akifumi; Department of Internal Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501

    2013-03-22

    Highlights: ► We established a 3D culture system to allow long-term culture of stomach cells. ► In this culture system, gastric epithelial cells grew for about 3 months. ► The cultured cells differentiated into multi-units of the stomach. ► This culture method should be useful for elucidating the cause of gastric diseases. -- Abstract: Compared to the small intestine and colon, little is known about stem cells in the stomach because of a lack of specific stem cell markers and an in vitro system that allows long-term culture. Here we describe a long-term three-dimensional (3D) primary gastric culture system withinmore » the stem cell niche. Glandular stomach cells from neonatal mice cultured in collagen gel yielded expanding sphere-like structures for 3 months. The wall of the gastrospheres consisted of a highly polarized epithelial monolayer with an outer lining of myofibroblasts. The epithelial cells showed a tall columnar cell shape, basal round nuclei, and mucus-filled cytoplasm as well as expression of MUC5AC, indicating differentiation into gastric surface mucous cells. These cells demonstrated the features of fully differentiated gastric surface mucous cells such as microvilli, junctional complexes, and glycogen and secretory granules. Fewer than 1% of cultured epithelial cells differentiated into enteroendocrine cells. Active proliferation of the epithelial cells and many apoptotic cells in the inner lumen revealed the rapid cell turnover in gastrospheres in vitro. This method enables us to investigate the role of signaling between cell–cell and epithelial–mesenchymal interactions in an environment that is extremely similar to the in vivo environment.« less

  7. Genome-wide allelotyping of a new in vitro model system reveals early events in breast cancer progression.

    PubMed

    Li, Zheng; Meng, Zhen Hang; Sayeed, Aejaz; Shalaby, Refaat; Ljung, Britt-Marie; Dairkee, Shanaz H

    2002-10-15

    Toward the goal of identifying early genetic losses, which mediate the release of human breast epithelium from replicative suppression leading to cellular immortalization, we have used a newly developed in vitro model system. This system consists of epithelial cultures derived from noncancerous breast tissue, treated with the chemical carcinogen N-ethyl-N-nitrosourea, and continuously passaged to yield cell populations culminating in the immortal phenotype. Genome-wide allelotyping of early passage N-ethyl-N-nitrosourea-exposed cell populations revealed aberrations at >10% (18 of 169) loci examined. Allelic losses encompassing chromosomes 6q24-6q27, implicating immortalization-associated candidate genes, hZAC and SEN6, occurred in two independently derived cell lines before the Hayflick limit. Additional LOH sites were present in one cell line at 3p11-3p26, 11p15, and 20p12-13. Allelic losses reported in this cell line preceded detectable levels of telomerase activity and the occurrence of p53-related aberrations. Information gained from the search for early immortalization-associated genetic deletions in cultured cells was applied in a novel approach toward the analysis of morphologically normal terminal ductal lobular units microdissected from 20 cases of ductal carcinoma in situ. Notably, clonal allelic losses at chromosome 3p24 and 6q24 were an early occurrence in adjoining terminal ductal lobular units of a proportion of primary tumors, which displayed loss of heterozygosity (3 of 11 and 3 of 6, respectively). The biological insights provided by the new model system reported here strongly suggest that early allelic losses delineated in immortalized cultures and validated in vivo could serve as surrogate endpoints to assist in the identification and intervention of high-risk benign breast tissue, which sustains the potential for continuous proliferation.

  8. A curcumin-loaded liquid crystal precursor mucoadhesive system for the treatment of vaginal candidiasis

    PubMed Central

    Salmazi, Rafael; Calixto, Giovana; Bernegossi, Jéssica; Ramos, Matheus Aparecido dos Santos; Bauab, Taís Maria; Chorilli, Marlus

    2015-01-01

    Women often develop vaginal infections that are caused primarily by organisms of the genus Candida. The current treatments of vaginal candidiasis usually involve azole-based antifungals, though fungal resistance to these compounds has become prevalent. Therefore, much attention has been given to molecules with antifungal properties from natural sources, such as curcumin (CUR). However, CUR has poor solubility in aqueous solvents and poor oral bioavailability. This study attempted to overcome this problem by developing, characterizing, and evaluating the in vitro antifungal action of a CUR-loaded liquid crystal precursor mucoadhesive system (LCPM) for vaginal administration. A low-viscosity LCPM (F) consisting of 40% wt/wt polyoxpropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, 50% wt/wt oleic acid, and 10% wt/wt chitosan dispersion at 0.5% with the addition of 16% poloxamer 407 was developed to take advantage of the lyotropic phase behavior of this formulation. Notably, F could transform into liquid crystal systems when diluted with artificial vaginal mucus at ratios of 1:3 and 1:1 (wt/wt), resulting in the formation of F30 and F100, respectively. Polarized light microscopy and rheological studies revealed that F behaved like an isotropic formulation, whereas F30 and F100 behaved like an anisotropic liquid crystalline system (LCS). Moreover, F30 and F100 presented higher mucoadhesion to porcine vaginal mucosa than F. The analysis of the in vitro activity against Candida albicans revealed that CUR-loaded F was more potent against standard and clinical strains compared with a CUR solution. Therefore, the vaginal administration of CUR-loaded LCPMs represents a promising platform for the treatment of vaginal candidiasis. PMID:26257519

  9. The influence of simulated transversus abdominis muscle force on sacroiliac joint flexibility during asymmetric moment application to the pelvis.

    PubMed

    Gnat, Rafael; Spoor, Kees; Pool-Goudzwaard, Annelies

    2015-10-01

    The role of so-called local muscle system in motor control of the lower back and pelvis is a subject of ongoing debate. Prevailing beliefs in stabilizing function of this system were recently challenged. This study investigated the impact of in vitro simulated force of transversely oriented fibres of the transversus abdominis muscle (a part of the local system) on flexibility of the sacroiliac joint during asymmetric moment application to the pelvis. In 8 embalmed specimens an incremental moment was applied in the sagittal plane to one innominate with respect to the fixed contralateral innominate. Ranges of motion of the sacroiliac joint were recorded using the Vicon Motion Capture System. Load-deformation curves were plotted and flexibility of the sacroiliac joint was calculated separately for anterior and posterior rotations of the innominate, with and without simulated muscle force. Flexibility of the sacroiliac joint was significantly bigger during anterior rotation of the innominate, as compared to posterior rotation (Anova P<0.05). After application of simulated force of transversus abdominis, flexibility of the joint did not change both during anterior and posterior rotations of the innominate. A lack of a stiffening effect of simulated transversus abdominis force on the sacroiliac joint was demonstrated. Earlier hypotheses suggesting a stiffening influence of this muscle on the pelvis cannot be confirmed. Consistent with previous findings smaller flexibility of the joint recorded during posterior rotation of the innominate may be of clinical importance for physio- and manual therapists. However, major limitations of the study should be acknowledged: in vitro conditions and simulation of only solitary muscle force. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Development of an integrated semi-automated system for in vitro pharmacodynamic modelling.

    PubMed

    Wang, Liangsu; Wismer, Michael K; Racine, Fred; Conway, Donald; Giacobbe, Robert A; Berejnaia, Olga; Kath, Gary S

    2008-11-01

    The aim of this study was to develop an integrated system for in vitro pharmacodynamic modelling of antimicrobials with greater flexibility, easier control and better accuracy than existing in vitro models. Custom-made bottle caps, fittings, valve controllers and a modified bench-top shaking incubator were used. A temperature-controlled automated sample collector was built. Computer software was developed to manage experiments and to control the entire system including solenoid pinch valves, peristaltic pumps and the sample collector. The system was validated by pharmacokinetic simulations of linezolid 600 mg infusion. The antibacterial effect of linezolid against multiple Staphylococcus aureus strains was also studied in this system. An integrated semi-automated bench-top system was built and validated. The temperature-controlled automated sample collector allowed unattended collection and temporary storage of samples. The system software reduced the labour necessary for many tasks and also improved the timing accuracy for performing simultaneous actions in multiple parallel experiments. The system was able to simulate human pharmacokinetics of linezolid 600 mg intravenous infusion accurately. A pharmacodynamic study of linezolid against multiple S. aureus strains with a range of MICs showed that the required 24 h free drug AUC/MIC ratio was approximately 30 in order to keep the organism counts at the same level as their initial inoculum and was about > or = 68 in order to achieve > 2 log(10) cfu/mL reduction in the in vitro model. The integrated semi-automated bench-top system provided the ability to overcome many of the drawbacks of existing in vitro models. It can be used for various simple or complicated pharmacokinetic/pharmacodynamic studies efficiently and conveniently.

  11. Buffer-regulated biocorrosion of pure magnesium.

    PubMed

    Kirkland, Nicholas T; Waterman, Jay; Birbilis, Nick; Dias, George; Woodfield, Tim B F; Hartshorn, Richard M; Staiger, Mark P

    2012-02-01

    Magnesium (Mg) alloys are being actively investigated as potential load-bearing orthopaedic implant materials due to their biodegradability in vivo. With Mg biomaterials at an early stage in their development, the screening of alloy compositions for their biodegradation rate, and hence biocompatibility, is reliant on cost-effective in vitro methods. The use of a buffer to control pH during in vitro biodegradation is recognised as critically important as this seeks to mimic pH control as it occurs naturally in vivo. The two different types of in vitro buffer system available are based on either (i) zwitterionic organic compounds or (ii) carbonate buffers within a partial-CO(2) atmosphere. This study investigated the influence of the buffering system itself on the in vitro corrosion of Mg. It was found that the less realistic zwitterion-based buffer did not form the same corrosion layers as the carbonate buffer, and was potentially affecting the behaviour of the hydrated oxide layer that forms on Mg in all aqueous environments. Consequently it was recommended that Mg in vitro experiments use the more biorealistic carbonate buffering system when possible.

  12. Liquid Crystalline Nanoparticles as an Ophthalmic Delivery System for Tetrandrine: Development, Characterization, and In Vitro and In Vivo Evaluation

    NASA Astrophysics Data System (ADS)

    Liu, Rui; Wang, Shuangshuang; Fang, Shiming; Wang, Jialu; Chen, Jingjing; Huang, Xingguo; He, Xin; Liu, Changxiao

    2016-05-01

    The purpose of this study was to develop novel liquid crystalline nanoparticles (LCNPs) that display improved pre-ocular residence time and ocular bioavailability and that can be used as an ophthalmic delivery system for tetrandrine (TET). The delivery system consisted of three primary components, including glyceryl monoolein, poloxamer 407, and water, and two secondary components, including Gelucire 44/14 and amphipathic octadecyl-quaternized carboxymethyl chitosan. The amount of TET, the amount of glyceryl monoolein, and the ratio of poloxamer 407 to glyceryl monoolein were selected as the factors that were used to optimize the dependent variables, which included encapsulation efficiency and drug loading. A three-factor, five-level central composite design was constructed to optimize the formulation. TET-loaded LCNPs (TET-LCNPs) were characterized to determine their particle size, zeta potential, entrapment efficiency, drug loading capacity, particle morphology, inner crystalline structure, and in vitro drug release profile. Corneal permeation in excised rabbit corneas was evaluated. Pre-ocular retention was determined using a noninvasive fluorescence imaging system. Finally, pharmacokinetic study in the aqueous humor was performed by microdialysis technique. The optimal formulation had a mean particle size of 170.0 ± 13.34 nm, a homogeneous distribution with polydispersity index of 0.166 ± 0.02, a positive surface charge with a zeta potential of 29.3 ± 1.25 mV, a high entrapment efficiency of 95.46 ± 4.13 %, and a drug loading rate of 1.63 ± 0.07 %. Transmission electron microscopy showed spherical particles that had smooth surfaces. Small-angle X-ray scattering profiles revealed an inverted hexagonal phase. The in vitro release assays showed a sustained drug release profile. A corneal permeation study showed that the apparent permeability coefficient of the optimal formulation was 2.03-fold higher than that of the TET solution. Pre-ocular retention capacity study indicated that the retention of LCNPs was significantly longer than that of the solution ( p < 0.01). In addition, a pharmacokinetic study of rabbit aqueous humors demonstrated that the TET-LCNPs showed 2.65-fold higher ocular bioavailability than that of TET solution. In conclusion, a LCNP system could be a promising method for increasing the ocular bioavailability of TET by enhancing its retention time and permeation into the cornea.

  13. In vitro DNA SCRaMbLE.

    PubMed

    Wu, Yi; Zhu, Rui-Ying; Mitchell, Leslie A; Ma, Lu; Liu, Rui; Zhao, Meng; Jia, Bin; Xu, Hui; Li, Yun-Xiang; Yang, Zu-Ming; Ma, Yuan; Li, Xia; Liu, Hong; Liu, Duo; Xiao, Wen-Hai; Zhou, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin; Boeke, Jef D

    2018-05-22

    The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The "in vitro SCRaMbLE system" uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a β-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.

  14. In vitro resistance to fracture of roots obturated with Resilon or gutta-percha.

    PubMed

    Monteiro, Jeanne; de Ataide, Ida de Noronha; Chalakkal, Paul; Chandra, Pavan Kumar

    2011-06-01

    There have been varied results from studies comparing postendodontic fracture resistance between teeth obturated with Resilon or gutta-percha. This study was performed to evaluate the fracture resistance of roots obturated by using Resilon (RealSeal system) or gutta-percha (with AH Plus sealer). Eighty extracted human mandibular single-rooted premolars stored in 10% formalin were used in the study. They were prepared by using a crown-down technique, debrided with NaOCl, ethylenediaminetetraacetic acid, and sterile water and divided into 4 groups. Obturation was performed by using the lateral condensation method. The negative control group consisted of unfilled specimens, and the positive control group consisted of those obturated with flowable, dual-cure composite resin. All root specimens were stored for 2 weeks in 100% humidity to allow complete setting of the sealer. Each specimen was mounted in acrylic in a polyvinyl ring and tested for fracture resistance with the Universal testing machine. The loading fixture of the machine was mounted with its spherical tip aligned with the center of the canal opening of each root. A vertical loading force was applied until it fractured the root. The force values were subjected to statistical analysis including analysis of variance and Fisher least significant difference testing. Teeth obturated with Resilon were more resistant to fracture than those obturated with gutta-percha. The difference was found to be highly significant (P=.00001). Resilon increased the resistance to fracture of single-rooted teeth in vitro. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of in vitro macrophage differentiation during space flight

    NASA Astrophysics Data System (ADS)

    Ortega, M. Teresa; Lu, Nanyan; Chapes, Stephen K.

    2012-05-01

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  16. CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder.

    PubMed

    Wortmann, Saskia B; Ziętkiewicz, Szymon; Kousi, Maria; Szklarczyk, Radek; Haack, Tobias B; Gersting, Søren W; Muntau, Ania C; Rakovic, Aleksandar; Renkema, G Herma; Rodenburg, Richard J; Strom, Tim M; Meitinger, Thomas; Rubio-Gozalbo, M Estela; Chrusciel, Elzbieta; Distelmaier, Felix; Golzio, Christelle; Jansen, Joop H; van Karnebeek, Clara; Lillquist, Yolanda; Lücke, Thomas; Õunap, Katrin; Zordania, Riina; Yaplito-Lee, Joy; van Bokhoven, Hans; Spelbrink, Johannes N; Vaz, Frédéric M; Pras-Raves, Mia; Ploski, Rafal; Pronicka, Ewa; Klein, Christine; Willemsen, Michel A A P; de Brouwer, Arjan P M; Prokisch, Holger; Katsanis, Nicholas; Wevers, Ron A

    2015-02-05

    We studied a group of individuals with elevated urinary excretion of 3-methylglutaconic acid, neutropenia that can develop into leukemia, a neurological phenotype ranging from nonprogressive intellectual disability to a prenatal encephalopathy with progressive brain atrophy, movement disorder, cataracts, and early death. Exome sequencing of two unrelated individuals and subsequent Sanger sequencing of 16 individuals with an overlapping phenotype identified a total of 14 rare, predicted deleterious alleles in CLPB in 14 individuals from 9 unrelated families. CLPB encodes caseinolytic peptidase B homolog ClpB, a member of the AAA+ protein family. To evaluate the relevance of CLPB in the pathogenesis of this syndrome, we developed a zebrafish model and an in vitro assay to measure ATPase activity. Suppression of clpb in zebrafish embryos induced a central nervous system phenotype that was consistent with cerebellar and cerebral atrophy that could be rescued by wild-type, but not mutant, human CLPB mRNA. Consistent with these data, the loss-of-function effect of one of the identified variants (c.1222A>G [p.Arg408Gly]) was supported further by in vitro evidence with the mutant peptides abolishing ATPase function. Additionally, we show that CLPB interacts biochemically with ATP2A2, known to be involved in apoptotic processes in severe congenital neutropenia (SCN) 3 (Kostmann disease [caused by HAX1 mutations]). Taken together, mutations in CLPB define a syndrome with intellectual disability, congenital neutropenia, progressive brain atrophy, movement disorder, cataracts, and 3-methylglutaconic aciduria. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  17. Evaluation of in vitro macrophage differentiation during space flight.

    PubMed

    Ortega, M Teresa; Lu, Nanyan; Chapes, Stephen K

    2012-05-15

    We differentiated mouse bone marrow cells in the presence of recombinant macrophage colony stimulating (rM-CSF) factor for 14 days during the flight of space shuttle Space Transportation System (STS)-126. We tested the hypothesis that the receptor expression for M-CSF, c-Fms was reduced. We used flow cytometry to assess molecules on cells that were preserved during flight to define the differentiation state of the developing bone marrow macrophages; including CD11b, CD31, CD44, Ly6C, Ly6G, F4/80, Mac2, c-Fos as well as c-Fms. In addition, RNA was preserved during the flight and was used to perform a gene microarray. We found that there were significant differences in the number of macrophages that developed in space compared to controls maintained on Earth. We found that there were significant changes in the distribution of cells that expressed CD11b, CD31, F4/80, Mac2, Ly6C and c-Fos. However, there were no changes in c-Fms expression and no consistent pattern of advanced or retarded differentiation during space flight. We also found a pattern of transcript levels that would be consistent with a relatively normal differentiation outcome but increased proliferation by the bone marrow macrophages that were assayed after 14 days of space flight. There also was a surprising pattern of space flight influence on genes of the coagulation pathway. These data confirm that a space flight can have an impact on the in vitro development of macrophages from mouse bone marrow cells.

  18. Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.

    PubMed

    Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine

    2011-02-01

    Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro.

    PubMed

    Peters, Erica B; Liu, Betty; Christoforou, Nicolas; West, Jennifer L; Truskey, George A

    2015-10-01

    Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p < 0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications.

  20. Umbilical Cord Blood-Derived Mononuclear Cells Exhibit Pericyte-Like Phenotype and Support Network Formation of Endothelial Progenitor Cells In Vitro

    PubMed Central

    Peters, Erica B.; Liu, Betty; Christoforou, Nicolas; West, Jennifer L.; Truskey, George A.

    2015-01-01

    Umbilical cord blood represents a promising cell source for pro-angiogenic therapies. The present study examined the potential of mononuclear cells (MNCs) from umbilical cord blood to support endothelial progenitor cell (EPC) microvessel formation. MNCs were isolated from the cord blood of 20 separate donors and selected for further characterization based upon their proliferation potential and morphological resemblance to human vascular pericytes (HVPs). MNCs were screened for their ability to support EPC network formation using an in vitro assay (Matrigel™) as well as a reductionist, coculture system consisting of no additional angiogenic cytokines beyond those present in serum. In less than 15% of the isolations, we identified a population of highly proliferative MNCs that phenotypically resembled HVPs as assessed by expression of PDGFR-β, NG2, α-SMA, and ephrin-B2. Within a Matrigel™ system, MNCs demonstrated pericyte-like function through colocalization to EPC networks and similar effects as HVPs upon total EPC tubule length (p = 0.95) and number of branch points (p = 0.93). In a reductionist coculture system, MNCs served as pro-angiogenic mural cells by supporting EPC network formation to a significantly greater extent than HVP cocultures, by day 14 of coculture, as evidenced through EPC total tubule length (p <0.0001) and number of branch points (p < 0.0001). Our findings are significant as we demonstrate mural cell progenitors can be isolated from umbilical cord blood and develop culture conditions to support their use in microvascular tissue engineering applications. PMID:25777295

  1. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    PubMed

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-03-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition.

  2. Development of a high-throughput in vitro assay using a novel Caco-2/rat hepatocyte system for the prediction of oral plasma area under the concentration versus time curve (AUC) in rats.

    PubMed

    Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E

    2006-01-01

    Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.

  3. A set of ligation-independent in vitro translation vectors for eukaryotic protein production.

    PubMed

    Bardóczy, Viola; Géczi, Viktória; Sawasaki, Tatsuya; Endo, Yaeta; Mészáros, Tamás

    2008-03-27

    The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. We designed four ligation independent cloning (LIC) vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Four newly designed in vitro translation vectors have been constructed which allow fast and parallel cloning and protein purification, thus representing useful molecular tools for high-throughput production of eukaryotic proteins.

  4. Comparison of the uptake of methacrylate-based nanoparticles in static and dynamic in vitro systems as well as in vivo.

    PubMed

    Rinkenauer, Alexandra C; Press, Adrian T; Raasch, Martin; Pietsch, Christian; Schweizer, Simon; Schwörer, Simon; Rudolph, Karl L; Mosig, Alexander; Bauer, Michael; Traeger, Anja; Schubert, Ulrich S

    2015-10-28

    Polymer-based nanoparticles are promising drug delivery systems allowing the development of new drug and treatment strategies with reduced side effects. However, it remains a challenge to screen for new and effective nanoparticle-based systems in vitro. Important factors influencing the behavior of nanoparticles in vivo cannot be simulated in screening assays in vitro, which still represent the main tools in academic research and pharmaceutical industry. These systems have serious drawbacks in the development of nanoparticle-based drug delivery systems, since they do not consider the highly complex processes influencing nanoparticle clearance, distribution, and uptake in vivo. In particular, the transfer of in vitro nanoparticle performance to in vivo models often fails, demonstrating the urgent need for novel in vitro tools that can imitate aspects of the in vivo situation more accurate. Dynamic cell culture, where cells are cultured and incubated in the presence of shear stress has the potential to bridge this gap by mimicking key-features of organs and vessels. Our approach implements and compares a chip-based dynamic cell culture model to the common static cell culture and mouse model to assess its capability to predict the in vivo success more accurately, by using a well-defined poly((methyl methacrylate)-co-(methacrylic acid)) and poly((methyl methacrylate)-co-(2-dimethylamino ethylmethacrylate)) based nanoparticle library. After characterization in static and dynamic in vitro cell culture we were able to show that physiological conditions such as cell-cell communication of co-cultured endothelial cells and macrophages as well as mechanotransductive signaling through shear stress significantly alter cellular nanoparticle uptake. In addition, it could be demonstrated by using dynamic cell cultures that the in vivo situation is simulated more accurately and thereby can be applied as a novel system to investigate the performance of nanoparticle systems in vivo more reliable. Copyright © 2015. Published by Elsevier B.V.

  5. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  6. A comprehensive assessment of repaglinide metabolic pathways: impact of choice of in vitro system and relative enzyme contribution to in vitro clearance.

    PubMed

    Säll, Carolina; Houston, J Brian; Galetin, Aleksandra

    2012-07-01

    Repaglinide is presently recommended by the U.S. Food and Drug Administration as a clinical CYP2C8 probe, yet current in vitro and clinical data are inconsistent concerning the role of this enzyme in repaglinide elimination. The aim of the current study was to perform a comprehensive investigation of repaglinide metabolic pathways and assess their contribution to the overall clearance. Formation of four repaglinide metabolites was characterized using in vitro systems with differential complexity. Full kinetic profiles for the formation of M1, M2, M4, and repaglinide glucuronide were obtained in pooled cryopreserved human hepatocytes, human liver microsomes, human S9 fractions, and recombinant cytochrome P450 enzymes. Distinct differences in clearance ratios were observed between CYP3A4 and CYP2C8 for M1 and M4 formation, resulting in a 60-fold M1/M4 ratio in recombinant (r) CYP3A4, in contrast to 0.05 in rCYP2C8. Unbound K(m) values were within 2-fold for each metabolite across all in vitro systems investigated. A major system difference was seen in clearances for the formation of M2, which is suggested to be a main metabolite of repaglinide in vivo. An approximately 7-fold higher unbound intrinsic clearance was observed in hepatocytes and S9 fractions in comparison to microsomes; the involvement of aldehyde dehydrogenase in M2 formation was shown for the first time. This systematic analysis revealed a comparable in vitro contribution from CYP2C8 and CYP3A4 to the metabolism of repaglinide (<50%), whereas the contribution of glucuronidation ranged from 2 to 20%, depending on the in vitro system used. The repaglinide M4 metabolic pathway is proposed as a specific CYP2C8 probe for the assessment of drug-drug interactions.

  7. Operating Procedures to Improve Efficiencies of In vitro Exposure Systems at the Air-Liquid Interface

    EPA Science Inventory

    The expanding use of in vitro exposure systems for toxicity assessments has created regulatory concerns. Many of these same concerns surround the proper conduct of in vivo inhalation toxicology studies that are addressed in guidelines and Good Laboratory Practice (GLPs) regulatio...

  8. In vitro Alternative Methodologies for Central Nervous System Assessment: A Critique using Nanoscale Materials as an Example.

    EPA Science Inventory

    Identifying the potential health hazards to the central nervous system of a new family of materials presents many challenges. Whole-animal toxicity testing has been the tradition, but in vitro methods have been steadily gaining popularity. There are numerous challenges in testing...

  9. Design of experiments (DOE) - history, concepts, and relevance to in vitro culture

    USDA-ARS?s Scientific Manuscript database

    Design of experiments (DOE) is a large and well-developed field for understanding and improving the performance of complex systems. Because in vitro culture systems are complex, but easily manipulated in controlled conditions, they are particularly well-suited for the application of DOE principle...

  10. IN VITRO SCREENING OF DEVELOPMENTAL NEUROTOXICANTS IN RAT PRIMARY CORTICAL NEURONS USING HIGH CONTENT IMAGE

    EPA Science Inventory

    There is a need for more efficient and cost-effective methods for identifying, characterizing and prioritizing chemicals which may result in developmental neurotoxicity. One approach is to utilize in vitro test systems which recapitulate the critical processes of nervous system d...

  11. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Multipurpose system for in vitro coagulation studies. 864.5425 Section 864.5425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated...

  12. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Multipurpose system for in vitro coagulation studies. 864.5425 Section 864.5425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated...

  13. 21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Multipurpose system for in vitro coagulation studies. 864.5425 Section 864.5425 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Automated and Semi-Automated...

  14. Use of a novel continuous culture fermentor system for in vitro determination of enteric methane output from ruminants

    USDA-ARS?s Scientific Manuscript database

    Continuous culture fermentor systems (CCFS) serve to evaluate the effect of diet on in vitro nutrient digestibility, fermentation, and microbial protein synthesis. Limitations of CCFS are: maintaining protozoa populations, and avoiding accumulation of undigested material in the vessels. Therefore, a...

  15. Towards a disposable in vivo miniature implantable fluorescence detector

    NASA Astrophysics Data System (ADS)

    Bellis, Stephen; Jackson, J. Carlton; Mathewson, Alan

    2006-02-01

    In the field of fluorescent microscopy, neuronal activity, diabetes and drug treatment are a few of the wide ranging biomedical applications that can be monitored with the use of dye markers. Historically, in-vivo fluorescent detectors consist of implantable probes coupled by optical fibre to sophisticated bench-top instrumentation. These systems typically use laser light to excite the fluorescent marker dies and using sensors, such as the photo-multiplier tube (PMT) or charge coupled devices (CCD), detect the fluorescent light that is filtered from the total excitation. Such systems are large and expensive. In this paper we highlight the first steps toward a fully implantable in-vivo fluorescence detection system. The aim is to make the detector system small, low cost and disposable. The current prototype is a hybrid platform consisting of a vertical cavity surface emitting laser (VCSEL) to provide the excitation and a filtered solid state Geiger mode avalanche photo-diode (APD) to detect the emitted fluorescence. Fluorescence detection requires measurement of extremely low levels of light so the proposed APD detectors combine the ability to count individual photons with the added advantage of being small in size. At present the exciter and sensor are mounted on a hybrid PCB inside a 3mm diameter glass tube.This is wired to external electronics, which provide quenching, photon counting and a PC interface. In this configuration, the set-up can be used for in-vitro experimentation and in-vivo analysis conducted on animals such as mice.

  16. Co-expression of interleukin 12 enhances antitumor effects of a novel chimeric promoter-mediated suicide gene therapy in an immunocompetent mouse model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yu, E-mail: xuyu1001@gmail.com; Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, 169 Donghu Road, Wuhan 430071; Liu, Zhengchun, E-mail: l135027@126.com

    Highlights: {yields} A novel chimeric promoter consisting of CArG element and hTERT promoter was developed. {yields} The promoter was characterized with radiation-inducibility and tumor-specificity. {yields} Suicide gene system driven by the promoter showed remarkable cytotoxicity in vitro. {yields} Co-expression of IL12 enhanced the promoter mediated suicide gene therapy in vivo. -- Abstract: The human telomerase reverse transcriptase (hTERT) promoter has been widely used in target gene therapy of cancer. However, low transcriptional activity limited its clinical application. Here, we designed a novel dual radiation-inducible and tumor-specific promoter system consisting of CArG elements and the hTERT promoter, resulting in increased expressionmore » of reporter genes after gamma-irradiation. Therapeutic and side effects of adenovirus-mediated horseradish peroxidase (HRP)/indole-3-acetic (IAA) system downstream of the chimeric promoter were evaluated in mice bearing Lewis lung carcinoma, combining with or without adenovirus-mediated interleukin 12 (IL12) gene driven by the cytomegalovirus promoter. The combination treatment showed more effective suppression of tumor growth than those with single agent alone, being associated with pronounced intratumoral T-lymphocyte infiltration and minor side effects. Our results suggest that the combination treatment with HRP/IAA system driven by the novel chimeric promoter and the co-expression of IL12 might be an effective and safe target gene therapy strategy of cancer.« less

  17. Aseptic Culture Systems of Radopholus similis for In Vitro Assays on Musa spp. and Arabidopsis thaliana

    PubMed Central

    Elsen, A.; Lens, K.; Nguyet, D. T. M.; Broos, S.; Stoffelen, R.; De Waele, D.

    2001-01-01

    Radopholus similis is one of the most damaging nematodes in bananas. Chemical control is currently the most-used method, but nematode control through genetic improvement is widely encouraged. The objective of this study was to establish an aseptic culture system for R. similis and determine whether R. similis can infect and reproduce on in vitro banana plantlets and in vitro Arabidopsis thaliana. In the study's first part, a suitable aseptic culture system was developed using alfalfa callus. Radopholus similis could penetrate and reproduce in the callus. Six weeks after inoculation with 25 females, the reproduction ratio was 26.3 and all vermiform stages were present. The reproduction ratio increased to 223.2 after 12 weeks. Results of a greenhouse test showed that R. similis did not lose its pathogenicity after culturing on alfalfa callus. In the study's second part, the infection and reproduction of the nematodes cultured on the callus were studied on both in vitro banana plantlets and A. thaliana. Radopholus similis infected and reproduced on both banana and A. thaliana. Furthermore, nematode damage was observed in the root systems of both hosts. These successful infections open new perspectives for rapid in vitro screening for resistance in banana cultivars and anti-nematode proteins expressed in A. thaliana. PMID:19266012

  18. In vitro blood-brain barrier models: current and perspective technologies.

    PubMed

    Naik, Pooja; Cucullo, Luca

    2012-04-01

    Even in the 21st century, studies aimed at characterizing the pathological paradigms associated with the development and progression of central nervous system diseases are primarily performed in laboratory animals. However, limited translational significance, high cost, and labor to develop the appropriate model (e.g., transgenic or inbred strains) have favored parallel in vitro approaches. In vitro models are of particular interest for cerebrovascular studies of the blood-brain barrier (BBB), which plays a critical role in maintaining the brain homeostasis and neuronal functions. Because the BBB dynamically responds to many events associated with rheological and systemic impairments (e.g., hypoperfusion), including the exposure of potentially harmful xenobiotics, the development of more sophisticated artificial systems capable of replicating the vascular properties of the brain microcapillaries are becoming a major focus in basic, translational, and pharmaceutical research. In vitro BBB models are valuable and easy to use supporting tools that can precede and complement animal and human studies. In this article, we provide a detailed review and analysis of currently available in vitro BBB models ranging from static culture systems to the most advanced flow-based and three-dimensional coculture apparatus. We also discuss recent and perspective developments in this ever expanding research field. Copyright © 2011 Wiley Periodicals, Inc.

  19. Validation of an in vitro digestive system for studying macronutrient decomposition in humans.

    PubMed

    Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti

    2012-02-01

    The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.

  20. Electrochemical properties of titanium nitride nerve stimulation electrodes: an in vitro and in vivo study

    PubMed Central

    Meijs, Suzan; Fjorback, Morten; Jensen, Carina; Sørensen, Søren; Rechendorff, Kristian; Rijkhoff, Nico J. M.

    2015-01-01

    The in vivo electrochemical behavior of titanium nitride (TiN) nerve stimulation electrodes was compared to their in vitro behavior for a period of 90 days. Ten electrodes were implanted in two Göttingen minipigs. Four of these were used for electrical stimulation and electrochemical measurements. Five electrodes were kept in Ringer's solution at 37.5°C, of which four were used for electrical stimulation and electrochemical measurements. The voltage transients measured in vivo were 13 times greater than in vitro at implantation and they continued to increase with time. The electrochemical properties in vivo and the tissue resistance (Rtissue) followed a similar trend with time. There was no consistent significant difference between the electrochemical properties of the in vivo and in vitro electrodes after the implanted period. The differences between the in vivo and in vitro electrodes during the implanted period show that the evaluation of electrochemical performance of implantable stimulation electrodes cannot be substituted with in vitro measurements. After the implanted period, however, the performance of the in vivo and in vitro electrodes in saline was similar. In addition, the changes observed over time during the post-implantation period regarding the electrochemical properties of the in vivo electrodes and Rtissue were similar, which indicates that these changes are due to the foreign body response to implantation. PMID:26300717

  1. An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.

    PubMed

    Jug, Mario; Hafner, Anita; Lovrić, Jasmina; Kregar, Maja Lusina; Pepić, Ivan; Vanić, Željka; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena

    2018-01-05

    In vitro dissolution/release tests are an important tool in the drug product development phase as well as in its quality control and the regulatory approval process. Mucosal drug delivery systems are aimed to provide both local and systemic drug action via mucosal surfaces of the body and exhibit significant differences in formulation design, as well as in their physicochemical and release characteristics. Therefore it is not possible to devise a single test system which would be suitable for release testing of such complex dosage forms. This article is aimed to provide a comprehensive review of both compendial and noncompendial methods used for in vitro dissolution/release testing of novel mucosal drug delivery systems aimed for ocular, nasal, oromucosal, vaginal and rectal administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. In vitro exposure systems and dosimetry assessment tools for inhaled tobacco products: Workshop proceedings, conclusions and paths forward for in vitro model use.

    PubMed

    Behrsing, Holger; Hill, Erin; Raabe, Hans; Tice, Raymond; Fitzpatrick, Suzanne; Devlin, Robert; Pinkerton, Kent; Oberdörster, Günter; Wright, Chris; Wieczorek, Roman; Aufderheide, Michaela; Steiner, Sandro; Krebs, Tobias; Asgharian, Bahman; Corley, Richard; Oldham, Michael; Adamson, Jason; Li, Xiang; Rahman, Irfan; Grego, Sonia; Chu, Pei-Hsuan; McCullough, Shaun; Curren, Rodger

    2017-07-01

    In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide. 2017 FRAME.

  3. Performance evaluation of a dental handpiece in simulation of clinical finishing using a novel 2DOF in vitro apparatus.

    PubMed

    Yin, L; Song, X F; Qu, S F; Huang, T; Mei, J P; Yang, Z Y; Li, J

    2006-11-01

    This paper reports on the performance evaluation of a dental handpiece in simulation of clinical finishing using a novel two-degrees-of-freedom (2DOF) in vitro apparatus. The instrumented apparatus consisted of a two-dimensional computer-controlled coordinate worktable carrying a dental handpiece, a piezoelectric force dynamometer, and a high-speed data acquisition and signal conditioning system for simulating the clinical operations and monitoring the dental finishing processes. The performance of the dental handpiece was experimentally evaluated with respect to rotational speed, torque, and specific finishing energy under the applied clinical finishing conditions. The results show that the rotational speeds of the dental handpiece decreased by increasing either the depth of cut or the feed rate at a constant clinically applied air pressure and water flowrate. They also decreased when increasing both the tangential and normal finishing forces. The specific finishing energy decreased with an increase in either depth of cut or feed rate, while the finishing torque increased as either the depth of cut or the feed rate was increased. Implications of these results were to provide guidance for proper applications of dental handpieces in clinical practice.

  4. The hallmarks of fibroblast ageing.

    PubMed

    Tigges, Julia; Krutmann, Jean; Fritsche, Ellen; Haendeler, Judith; Schaal, Heiner; Fischer, Jens W; Kalfalah, Faiza; Reinke, Hans; Reifenberger, Guido; Stühler, Kai; Ventura, Natascia; Gundermann, Sabrina; Boukamp, Petra; Boege, Fritz

    2014-06-01

    Ageing is influenced by the intrinsic disposition delineating what is maximally possible and extrinsic factors determining how that frame is individually exploited. Intrinsic and extrinsic ageing processes act on the dermis, a post-mitotic skin compartment mainly consisting of extracellular matrix and fibroblasts. Dermal fibroblasts are long-lived cells constantly undergoing damage accumulation and (mal-)adaptation, thus constituting a powerful indicator system for human ageing. Here, we use the systematic of ubiquitous hallmarks of ageing (Lopez-Otin et al., 2013, Cell 153) to categorise the available knowledge regarding dermal fibroblast ageing. We discriminate processes inducible in culture from phenomena apparent in skin biopsies or primary cells from old donors, coming to the following conclusions: (i) Fibroblasts aged in culture exhibit most of the established, ubiquitous hallmarks of ageing. (ii) Not all of these hallmarks have been detected or investigated in fibroblasts aged in situ (in the skin). (iii) Dermal fibroblasts aged in vitro and in vivo exhibit additional features currently not considered ubiquitous hallmarks of ageing. (iv) The ageing process of dermal fibroblasts in their physiological tissue environment has only been partially elucidated, although these cells have been a preferred model of cell ageing in vitro for decades. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Fission neutron source in Rome

    NASA Astrophysics Data System (ADS)

    Coppola, Mario; Di Majo, V.; Ingrao, G.; Rebessi, S.; Testa, A.

    1997-02-01

    A fission neutron source is operating in Rome at the ENEA Casaccia Research Center since 1971, consisting of a low power fast reactor named RSV-Tapiro. it is employed for a variety of experiments, including dosimetry, material testing, radiation protection and biology. In particular, application to experimental radiobiology includes studies of the biological action of neutrons in the whole-body irradiated animal, or in specialized systems in vivo or in vitro. For his purpose a vertical irradiation facility was originally constructed. Recently, a new horizontal irradiation facility has been designed to allow the exposure of larger samples or larger sample batches at one time. Dosimetry at the sample irradiation positions is routinely carried out by the conventional method of using two ion chambers. This physical dosimetry has recently been compared with the results of biological dosimetry based on the detection of chromosomal aberrations in peripheral blood human lymphocytes irradiated in vitro. A characterization of the radiation quality in the two configurations has been carried out by tissue equivalent proportional counter microdosimetry measurements. Information about the main characteristics of the reactor and the two irradiation facilities is provided and relevant results of the various measurements are summarized. Radiobiological results obtained using this neutron source are also briefly outlined.

  6. Putative histidine kinase inhibitors with antibacterial effect against multi-drug resistant clinical isolates identified by in vitro and in silico screens

    NASA Astrophysics Data System (ADS)

    Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto

    2016-05-01

    Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.

  7. A Hermetic Wireless Subretinal Neurostimulator for Vision Prostheses

    PubMed Central

    Shire, Douglas B.; Chen, Jinghua; Doyle, Patrick; Gingerich, Marcus D.; Cogan, Stuart F.; Drohan, William A.; Behan, Sonny; Theogarajan, Luke; Wyatt, John L.; Rizzo, Joseph F.

    2016-01-01

    A miniaturized, hermetically encased, wirelessly operated retinal prosthesis has been developed for preclinical studies in the Yucatan minipig, and includes several design improvements over our previously reported device. The prosthesis attaches conformally to the outside of the eye and electrically drives a microfabricated thin-film polyimide array of sputtered iridium oxide film electrodes. This array is implanted into the subretinal space using a customized ab externo surgical technique. The implanted device includes a hermetic titanium case containing a 15-channel stimulator chip and discrete circuit components. Feedthroughs in the case connect the stimulator chip to secondary power and data receiving coils on the eye and to the electrode array under the retina. Long-term in vitro pulse testing of the electrodes projected a lifetime consistent with typical devices in industry. The final assembly was tested in vitro to verify wireless operation of the system in physiological saline using a custom RF transmitter and primary coils. Stimulation pulse strength, duration, and frequency were programmed wirelessly from a Peripheral Component Interconnect eXtensions for Instrumentation (PXI) computer. Operation of the retinal implant has been verified in two pigs for up to five and a half months by detecting stimulus artifacts generated by the implanted device. PMID:21859595

  8. In vitro studies with renal proximal tubule cells show direct cytotoxicity of Androctonus australis hector scorpion venom triggered by oxidative stress, caspase activation and apoptosis

    PubMed Central

    Saidani, Chanez; Hammoudi-Triki, Djelila; Laraba-Djebari, Fatima; Taub, Mary

    2016-01-01

    Scorpion envenomation injures a number of organs, including the kidney. Mechanisms proposed to explain the renal tubule injury include direct effects of venom on tubule epithelial cells, as well as indirect effects of the autonomic nervous system, and inflammation. Here, we report direct effects of Androctonus australis hector (Aah) scorpion venom on the viability of Renal Proximal Tubule (RPT) cells in vitro, unlike distal tubule and collecting duct cells. Extensive NucGreen nuclear staining was observed in immortalized rabbit RPT cells following treatment with Aah venom, consistent with cytotoxicity. The involvement of oxidative stress is supported by the observations that 1) anti-oxidants mitigated the Aah venom-induced decrease in the number of viable RPT cells, and 2) Aah venom-treated RPT cells were intensively stained with the CellROX® Deep Red reagent, an indicator of Reactive Oxygen Species (ROS). Relevance to normal RPT cells is supported by the red fluorescence observed in Aah venom treated primary rabbit RPT cell cultures following their incubation with the Flica reagent (indicative of caspase activation and apoptosis), and the green fluorescence of Sytox Green (indicative of dead cells). PMID:27470530

  9. Carcinogenicity of chromium and chemoprevention: a brief update

    PubMed Central

    Gu, Yuanliang; Song, Xin; Zhao, Jinshun

    2017-01-01

    Chromium has two main valence states: hexavalent chromium (Cr[VI]) and trivalent chromium (Cr[III]). Cr(VI), a well-established human carcinogen, can enter cells by way of a sulfate/phosphate anion-transport system, and then be reduced to lower-valence intermediates consisting of pentavalent chromium (Cr[V]), tetravalent chromium (Cr[IV]) or Cr(III) via cellular reductants. These intermediates may directly or indirectly result in DNA damage or DNA–protein cross-links. Although Cr(III) complexes cannot pass easily through cell membranes, they have the ability to accumulate around cells to induce cell-surface morphological alteration and result in cell-membrane lipid injuries via disruption of cellular functions and integrity, and finally to cause DNA damage. In recent years, more research, including in vitro, in vivo, and epidemiological studies, has been conducted to evaluate the genotoxicity/carcinogenicity induced by Cr(VI) and/or Cr(III) compounds. At the same time, various therapeutic agents, especially antioxidants, have been explored through in vitro and in vivo studies for preventing chromium-induced genotoxicity/carcinogenesis. This review aims to provide a brief update on the carcinogenicity of Cr(VI) and Cr(III) and chemoprevention with different antioxidants. PMID:28860815

  10. Ferulic acid exerts antitumor activity and inhibits metastasis in breast cancer cells by regulating epithelial to mesenchymal transition.

    PubMed

    Zhang, Xiang; Lin, Dan; Jiang, Rong; Li, Hongzhong; Wan, Jingyuan; Li, Hongyuan

    2016-07-01

    Metastasis, which frequently occurs in breast cancer, is the major cause of mortality; therefore, new treatment strategies are urgently needed. Ferulic acid, isolated from Ferula foetida, a perennial herb, has shown antineoplastic activity in various types of cancers, such as colon and lung cancer, and central nervous system tumors. However, its potential role in suppressing breast cancer metastasis has not been fully understood. In the present study, we evaluated the antitumor activity of ferulic acid in breast cancer cell line-based in vitro and in vivo models. We first showed that ferulic acid treatment resulted in decreased viability, increased apoptosis and suppression of metastatic potential in breast cancer cell line MDA-MB-231. Furthermore, it was demonstrated that the antitumor activity of ferulic acid and its role in suppressing metastasis were regulated by the reversal of epithelial-mesenchymal transition (EMT). Consistent with our findings in vitro, the antitumor potential of ferulic acid was also verified in an MDA-MB-231 xenograft mouse model where significantly decreased tumor volume, weight and increased apoptosis were observed. Taken together, these results indicate that ferulic acid may be used as an effective therapeutic agent against breast cancer.

  11. Modeling tuberculosis pathogenesis through ex vivo lung tissue infection.

    PubMed

    Carranza-Rosales, Pilar; Carranza-Torres, Irma Edith; Guzmán-Delgado, Nancy Elena; Lozano-Garza, Gerardo; Villarreal-Treviño, Licet; Molina-Torres, Carmen; Villarreal, Javier Vargas; Vera-Cabrera, Lucio; Castro-Garza, Jorge

    2017-12-01

    Tuberculosis (TB) is one of the top 10 causes of death worldwide. Several in vitro and in vivo experimental models have been used to study TB pathogenesis and induction of immune response during Mycobacterium tuberculosis infection. Precision cut lung tissue slices (PCLTS) is an experimental model, in which all the usual cell types of the organ are found, the tissue architecture and the interactions amongst the different cells are maintained. PCLTS in good physiological conditions, monitored by MTT assay and histology, were infected with either virulent Mycobacterium tuberculosis strain H37Rv or the TB vaccine strain Mycobacterium bovis BCG. Histological analysis showed that bacilli infecting lung tissue slices were observed in the alveolar septa, alveolar light spaces, near to type II pneumocytes, and inside macrophages. Mycobacterial infection of PCLTS induced TNF-α production, which is consistent with previous M. tuberculosis in vitro and in vivo studies. This is the first report of using PCLTS as a system to study M. tuberculosis infection. The PCLTS model provides a useful tool to evaluate the innate immune responses and other aspects during the early stages of mycobacterial infection. Copyright © 2017. Published by Elsevier Ltd.

  12. Characterization of field isolates of Trichoderma antagonistic against Rhizoctonia solani.

    PubMed

    Anees, Muhammad; Tronsmo, Arne; Edel-Hermann, Véronique; Hjeljord, Linda Gordon; Héraud, Cécile; Steinberg, Christian

    2010-09-01

    The aim of the present study was to characterize sixteen isolates of Trichoderma originating from a field of sugar beet where disease patches caused by Rhizoctonia solani were observed. Use of both molecular and morphological characteristics gave consistent identification of the isolates. Production of water-soluble and volatile inhibitors, mycoparasitism and induced systemic resistance in plant host were investigated using in vitro and in vivo tests in both sterilized and natural soils. This functional approach revealed the intra-specific diversity as well as biocontrol potential of the different isolates. Different antagonistic mechanisms were evident for different strains. The most antagonistic strain, T30 was identified as Trichoderma gamsii. This is the first report of an efficient antagonistic strain of T. gamsii being able to reduce the disease in different conditions. The ability to produce water-soluble inhibitors or coil around the hyphae of the pathogen in vitro was not related to the disease reduction in vivo. Additionally, the strains collected from the high disease areas in the field were better antagonists. The antagonistic activity was not characteristic of a species but that of a population. Copyright © 2010 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  13. Limits of neutral drift: lessons from the in vitro evolution of two ribozymes.

    PubMed

    Petrie, Katherine L; Joyce, Gerald F

    2014-10-01

    The relative contributions of adaptive selection and neutral drift to genetic change are unknown but likely depend on the inherent abundance of functional genotypes in sequence space and how accessible those genotypes are to one another. To better understand the relative roles of selection and drift in evolution, local fitness landscapes for two different RNA ligase ribozymes were examined using a continuous in vitro evolution system under conditions that foster the capacity for neutral drift to mediate genetic change. The exploration of sequence space was accelerated by increasing the mutation rate using mutagenic nucleotide analogs. Drift was encouraged by carrying out evolution within millions of separate compartments to exploit the founder effect. Deep sequencing of individuals from the evolved populations revealed that the distribution of genotypes did not escape the starting local fitness peak, remaining clustered around the sequence used to initiate evolution. This is consistent with a fitness landscape where high-fitness genotypes are sparse and well isolated, and suggests, at least in this context, that neutral drift alone is not a primary driver of genetic change. Neutral drift does, however, provide a repository of genetic variation upon which adaptive selection can act.

  14. Establishment and culture optimization of a new type of pituitary immortalized cell line.

    PubMed

    Kokubu, Yuko; Asashima, Makoto; Kurisaki, Akira

    2015-08-07

    The pituitary gland is a center of the endocrine system that controls homeostasis in an organism by secreting various hormones. The glandular anterior pituitary consists of five different cell types, each expressing specific hormones. However, their regulation and the appropriate conditions for their in vitro culture are not well defined. Here, we report the immortalization of mouse pituitary cells by introducing TERT, E6, and E7 transgenes. The immortalized cell lines mainly expressed a thyrotroph-specific thyroid stimulating hormone beta (Tshb). After optimization of the culture conditions, these immortalized cells proliferated and maintained morphological characteristics similar to those of primary pituitary cells under sphere culture conditions in DMEM/F12 medium supplemented with N2, B27, basic FGF, and EGF. These cell lines responded to PKA or PKC pathway activators and induced the expression of Tshb mRNA. Moreover, transplantation of the immortalized cell line into subcutaneous regions and kidney capsules of mice further increased Tshb expression. These results suggest that immortalization of pituitary cells with TERT, E6, and E7 transgenes is a useful method for generating proliferating cells for the in vitro analysis of pituitary regulatory mechanisms. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Monoamine oxidase A gene promoter methylation and transcriptional downregulation in an offender population with antisocial personality disorder.

    PubMed

    Checknita, D; Maussion, G; Labonté, B; Comai, S; Tremblay, R E; Vitaro, F; Turecki, N; Bertazzo, A; Gobbi, G; Côté, G; Turecki, G

    2015-03-01

    Antisocial personality disorder (ASPD) is characterised by elevated impulsive aggression and increased risk for criminal behaviour and incarceration. Deficient activity of the monoamine oxidase A (MAOA) gene is suggested to contribute to serotonergic system dysregulation strongly associated with impulsive aggression and antisocial criminality. To elucidate the role of epigenetic processes in altered MAOA expression and serotonin regulation in a population of incarcerated offenders with ASPD compared with a healthy non-incarcerated control population. Participants were 86 incarcerated participants with ASPD and 73 healthy controls. MAOA promoter methylation was compared between case and control groups. We explored the functional impact of MAOA promoter methylation on gene expression in vitro and blood 5-HT levels in a subset of the case group. Results suggest that MAOA promoter hypermethylation is associated with ASPD and may contribute to downregulation of MAOA gene expression, as indicated by functional assays in vitro, and regression analysis with whole-blood serotonin levels in offenders with ASPD. These results are consistent with prior literature suggesting MAOA and serotonergic dysregulation in antisocial populations. Our results offer the first evidence suggesting epigenetic mechanisms may contribute to MAOA dysregulation in antisocial offenders. Royal College of Psychiatrists.

  16. Use of ferrets for electrophysiologic monitoring of ion transport

    PubMed Central

    Kaza, Niroop; Raju, S. Vamsee; Cadillac, Joan M.; Trombley, John A.; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S.

    2017-01-01

    Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases. PMID:29077751

  17. Use of ferrets for electrophysiologic monitoring of ion transport.

    PubMed

    Kaza, Niroop; Raju, S Vamsee; Cadillac, Joan M; Trombley, John A; Rasmussen, Lawrence; Tang, Liping; Dohm, Erik; Harrod, Kevin S; Rowe, Steven M

    2017-01-01

    Limited success achieved in translating basic science discoveries into clinical applications for chronic airway diseases is attributed to differences in respiratory anatomy and physiology, poor approximation of pathologic processes, and lack of correlative clinical endpoints between humans and laboratory animal models. Here, we discuss advantages of using ferrets (Mustela putorus furo) as a model for improved understanding of human airway physiology and demonstrate assays for quantifying airway epithelial ion transport in vivo and ex vivo, and establish air-liquid interface cultures of ferret airway epithelial cells as a complementary in vitro model for mechanistic studies. We present data here that establishes the feasibility of measuring these human disease endpoints in ferrets. Briefly, potential difference across the nasal and the lower airway epithelium in ferrets could be consistently assessed, were highly reproducible, and responsive to experimental interventions. Additionally, ferret airway epithelial cells were amenable to primary cell culture methods for in vitro experiments as was the use of ferret tracheal explants as an ex vivo system for assessing ion transport. The feasibility of conducting multiple assessments of disease outcomes supports the adoption of ferrets as a highly relevant model for research in obstructive airway diseases.

  18. Functional properties of hepatocytes in vitro are correlated with cell polarity maintenance.

    PubMed

    Zeigerer, Anja; Wuttke, Anne; Marsico, Giovanni; Seifert, Sarah; Kalaidzidis, Yannis; Zerial, Marino

    2017-01-01

    Exploring the cell biology of hepatocytes in vitro could be a powerful strategy to dissect the molecular mechanisms underlying the structure and function of the liver in vivo. However, this approach relies on appropriate in vitro cell culture systems that can recapitulate the cell biological and metabolic features of the hepatocytes in the liver whilst being accessible to experimental manipulations. Here, we adapted protocols for high-resolution fluorescence microscopy and quantitative image analysis to compare two primary hepatocyte culture systems, monolayer and collagen sandwich, with respect to the distribution of two distinct populations of early endosomes (APPL1 and EEA1-positive), endocytic capacity, metabolic and signaling activities. In addition to the re-acquisition of hepatocellular polarity, primary hepatocytes grown in collagen sandwich but not in monolayer culture recapitulated the apico-basal distribution of EEA1 endosomes observed in liver tissue. We found that such distribution correlated with the organization of the actin cytoskeleton in vitro and, surprisingly, was dependent on the nutritional state in vivo. Hepatocytes in collagen sandwich also exhibited faster kinetics of low-density lipoprotein (LDL) and epidermal growth factor (EGF) internalization, showed improved insulin sensitivity and preserved their ability for glucose production, compared to hepatocytes in monolayer cultures. Although no in vitro culture system can reproduce the exquisite structural features of liver tissue, our data nevertheless highlight the ability of the collagen sandwich system to recapitulate key structural and functional properties of the hepatocytes in the liver and, therefore, support the usage of this system to study aspects of hepatocellular biology in vitro. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Backscattering measuring system for optimization of intravenous laser irradiation dose

    NASA Astrophysics Data System (ADS)

    Rusina, Tatyana V.; Popov, V. D.; Melnik, Ivan S.; Dets, Sergiy M.

    1996-11-01

    Intravenous laser blood irradiation as an effective method of biostimulation and physiotherapy becomes a more popular procedure. Optimal irradiation conditions for each patient are needed to be established individually. A fiber optics feedback system combined with conventional intravenous laser irradiation system was developed to control of irradiation process. The system consists of He-Ne laser, fiber optics probe and signal analyzer. Intravenous blood irradiation was performed in 7 healthy volunteers and 19 patients with different diseases. Measurements in vivo were related to in vitro blood irradiation which was performed in the same conditions with force-circulated venous blood. Comparison of temporal variations of backscattered light during all irradiation procedures has shown a strong discrepancy on optical properties of blood in patients with various health disorders since second procedure. The best cure effect was achieved when intensity of backscattered light was constant during at least five minutes. As a result, the optical irradiation does was considered to be equal 20 minutes' exposure of 3 mW He-Ne laser light at the end of fourth procedure.

  20. Mock Circulatory System of the Fontan Circulation to Study Respiration Effects on Venous Flow Behavior

    PubMed Central

    Vukicevic, M.; Chiulli, J.A.; Conover, T.; Pennati, G.; Hsia, T.Y.; Figliola, R.S.

    2013-01-01

    We describe an in vitro model of the Fontan circulation with respiration to study subdiaphragmatic venous flow behavior. The venous and arterial connections of a total cavopulmonary connection (TCPC) test section were coupled with a physical lumped parameter (LP) model of the circulation. Intrathoracic and subdiaphragmatic pressure changes associated with normal breathing were applied. This system was tuned for two patients (5 years, 0.67 m2; 10 years, 1.2 m2) to physiological values. System function was verified by comparison to the analytical model on which it was based and by consistency with published clinical measurements. Overall, subdiaphragmatic venous flow was influenced by respiration. Flow within the arteries and veins increased during inspiration but decreased during expiration with retrograde flow in the inferior venous territories. System pressures and flows showed close agreement with the analytical LP model (p < 0.05). The ratio of the flow rates occurring during inspiration to expiration were within the clinical range of values reported elsewhere. The approach used to setup and control the model was effective and provided reasonable comparisons with clinical data. PMID:23644612

  1. Prediction of Chemical Respiratory and Contact Sensitizers by OX40L Expression in Dendritic Cells Using a Novel 3D Coculture System.

    PubMed

    Mizoguchi, Izuru; Ohashi, Mio; Chiba, Yukino; Hasegawa, Hideaki; Xu, Mingli; Owaki, Toshiyuki; Yoshimoto, Takayuki

    2017-01-01

    The use of animal models in chemical safety testing will be significantly limited due to the recent introduction of the 3Rs principle of animal experimentation in research. Although several in vitro assays to predict the sensitizing potential of chemicals have been developed, these methods cannot distinguish chemical respiratory sensitizers and skin sensitizers. In the present study, we describe a novel in vitro assay that can discriminate respiratory sensitizers from chemical skin sensitizers by taking advantage of the fundamental difference between their modes of action, namely the development of the T helper 2 immune response, which is critically important for respiratory sensitization. First, we established a novel three-dimensional (3D) coculture system of human upper airway epithelium using a commercially available scaffold. It consists of human airway epithelial cell line BEAS-2B, immature dendritic cells (DCs) derived from human peripheral blood CD14 + monocytes, and human lung fibroblast cell line MRC-5. Respective cells were first cultured in individual scaffolds and subsequently assembled into a 3D multi-cell tissue model to more closely mimic the in vivo situation. Then, three typical chemicals that are known respiratory sensitizers (ortho-phthaldialdehyde, hexamethylene diisocyanate, and trimellitic anhydride) and skin sensitizers (oxazolone, formaldehyde, and dinitrochlorobenzene) were added individually to the 3D coculture system. Immunohistochemical analysis revealed that DCs do not migrate into other scaffolds under the experimental conditions. Therefore, the 3D structure was disassembled and real-time reverse transcriptase-PCR analysis was performed in individual scaffolds to analyze the expression levels of molecules critical for Th2 differentiation such as OX40 ligand (OX40L), interleukin (IL)-4, IL-10, IL-33, and thymic stromal lymphopoietin. Both sensitizers showed similarly augmented expression of DC maturation markers (e.g., CD86), but among these molecules, OX40L expression in DCs was most consistently and significantly enhanced by respiratory sensitizers as compared to that by skin sensitizers. Thus, we have established a 3D coculture system mimicking the airway upper epithelium that may be successfully applied to discriminate chemical respiratory sensitizers from skin sensitizers by measuring the critical molecule for Th2 differentiation, OX40L, in DCs.

  2. AUTOSENSITIZATION REACTION IN VITRO

    PubMed Central

    Koprowski, Hilary; Fernandes, Mario V.

    1962-01-01

    Lymph node cells were obtained from an inbred strain of Lewis rats injected with guinea pig cord tissue in Freund's adjuvant. These cells, when added to tissue culture monolayers of puppy brain, aggregated on or around the glial elements. This reaction, called contactual agglutination, was followed by the specific destruction of glial cells, leaving cultures consisting only of fibroblasts. No such reaction was noted when lymph node cells obtained either from normal rats or those injected with adjuvant alone were used. Absorption of serum obtained from rats injected with guinea pig cord tissue by non-sensitized lymph node cells made them reactive in brain tissue culture. The contactual agglutination test seems to provide an opportunity for investigation of sensitization reaction in tissue culture systems. PMID:14034719

  3. Wireless energy transfer platform for medical sensors and implantable devices.

    PubMed

    Zhang, Fei; Hackworth, Steven A; Liu, Xiaoyu; Chen, Haiyan; Sclabassi, Robert J; Sun, Mingui

    2009-01-01

    Witricity is a newly developed technique for wireless energy transfer. This paper presents a frequency adjustable witricity system to power medical sensors and implantable devices. New witricity resonators are designed for both energy transmission and reception. A prototype platform is described, including an RF power source, two resonators with new structures, and inductively coupled input and output stages. In vitro experiments, both in open air and using a human head phantom consisting of simulated tissues, are employed to verify the feasibility of this platform. An animal model is utilized to evaluate in vivo energy transfer within the body of a laboratory pig. Our experiments indicate that witricity is an effective new tool for providing a variety of medical sensors and devices with power.

  4. In vitro maturation and fertilization of oocytes from unstimulated ovaries in infertile women with polycystic ovary syndrome.

    PubMed

    Zhao, Jun-Zhao; Zhou, Wei; Zhang, Wei; Ge, Hong-Shan; Huang, Xue-Feng; Lin, Jin-Ju

    2009-06-01

    To evaluate the effects of in vitro maturation and fertilization of oocytes from unstimulated ovaries in infertile women with polycystic ovary syndrome (PCOS). Retrospective study. Reproductive Medicine Center, First Affiliated Hospital of Wenzhou Medical College, People's Republic of China. One hundred eighteen women with PCOS undergoing 152 cycles of in vitro maturation treatment. Oocyte retrieval was carried out by ultrasound-guided puncture on days 9-14 of the cycle. The oocytes were cultured in vitro using maturation culture medium, which consisted of M-199 + 20% fetal bovine serum (FBS) + 75 mIU/mL recombinant FSH +/- 0.5 IU/mL hCG. After the oocytes had matured in vitro, fertilization and embryo transfer were performed. Rates of clinical pregnancy, multiple pregnancies, and live birth. Relatively optimal laboratory results were obtained in this study. Embryo transfer was performed in 140 cycles, with a clinical pregnancy rate (PR) of 40.0% per transfer. Fifty-six babies have been born and there are 10 ongoing pregnancies. The overall multiple PR was 33.93%. Our results show that using in vitro matured oocytes from unstimulated ovaries could be offered as an alternative to conventional IVF in women with PCOS, and future work should address ways to decrease the incidence of multiple pregnancies.

  5. Experimental Interactions of Components of Hemodialysis Units with Human Blood

    PubMed Central

    Zucker, W. H.; Shinoda, B. A.; Mason, R. G.

    1974-01-01

    An in vitro model test system for estimation of the blood compatibility of hemodialysis membranes and tubing is described. The model test system consists of a modified hemodialysis unit and blood pump through which fresh citrated human blood is circulated. The effects of the use of different pump and tubing types upon hematologic and blood coagulation parameters are described. Preexposure of test surfaces to albumin appeared to enhance blood compatibility characteristics of the model test system, whereas preexposure to a high density lipoprotein preparation or a proteinpolysaccharide preparation was without appreciable benefit. Use of blood from subjects receiving aspirin resulted in enhanced blood compatibility in the test system as did use of heparin. Use of Warfarin or dextran did not appear to enhance blood compatibility of test surfaces under the conditions of this test system. Dialysis membranes and tubing which formed parts of the test system were examined by scanning and transmission electron microscopy in control tests and in tests for effects of proteins and antithrombotic agents. ImagesFig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 12Fig 13Fig 14Fig 1Fig 2Fig 3Fig 4 PMID:4825611

  6. In vitro meat: A future animal-free harvest.

    PubMed

    Bhat, Zuhaib Fayaz; Kumar, Sunil; Bhat, Hina Fayaz

    2017-03-04

    In vitro meat production is a novel idea of producing meat without involving animals with the help of tissue engineering techniques. This biofabrication of complex living products by using various bioengineering techniques is a potential solution to reduce the ill effects of current meat production systems and can dramatically transform traditional animal-based agriculture by inventing "animal-free" meat and meat products. Nutrition-related diseases, food-borne illnesses, resource use and pollution, and use of farm animals are some serious consequences associated with conventional meat production methods. This new way of animal-free meat production may offer health and environmental advantages by reducing environmental pollution and resource use associated with current meat production systems and will also ensure sustainable production of designer, chemically safe, and disease-free meat as the conditions in an in vitro meat production system are controllable and manipulatable. Theoretically, this system is believed to be efficient enough to supply the global demand for meat; however, establishment of a sustainable in vitro meat production would face considerably greater technical challenges and a great deal of research is still needed to establish this animal-free meat culturing system on an industrial scale.

  7. A tiered approach for integrating exposure and dosimetry with in vitro dose-response data in the modern risk assessment paradigm

    EPA Science Inventory

    High-throughput (HT) risk screening approaches apply in vitro dose-response data to estimate potential health risks that arise from exposure to chemicals. However, much uncertainty is inherent in relating bioactivities observed in an in vitro system to the perturbations of biolog...

  8. COMPARISON OF MEDIUM CONCENTRATION VS. ACTUAL TISSUE DOSE IN IN VITRO NEUROTOXICANT MODELS.

    EPA Science Inventory

    In vitro methods have long been used to model the effects of toxicants on the nervous system. Generally, it is assumed that concentrations of toxicant present in the medium surrounding cells in in vitro models are an adequate biomarker of cell or tissue levels. However, this assu...

  9. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    PubMed Central

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  10. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  11. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    NASA Astrophysics Data System (ADS)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  12. A new in vitro bioassay system for discovery and quantitative evaluation of mosquito repellents

    USDA-ARS?s Scientific Manuscript database

    Mosquitoes are vectors of many pathogens that cause human diseases. Although prevention and control of immature stages is the best method to control mosquitoes, repellents play a significant role in reducing the risk of these diseases by preventing mosquito bites. The In vitro K & D bioassay system ...

  13. Protein breakdown and release of β-casomorphins during in vitro gastro-intestinal digestion of sterilised model systems of liquid infant formula.

    PubMed

    Cattaneo, Stefano; Stuknytė, Milda; Masotti, Fabio; De Noni, Ivano

    2017-02-15

    Protein modifications occurring during sterilisation of infant formulas can affect protein digestibility and release of bioactive peptides. The effect of glycation and cross-linking on protein breakdown and release of β-casomorphins was evaluated during in vitro gastro-intestinal digestion (GID) of six sterilised model systems of infant formula. Protein degradation during in vitro GID was evaluated by SDS-PAGE and by measuring the nitrogen content of ultrafiltration (3kDa) permeates before and after in vitro GID of model IFs. Glycation strongly hindered protein breakdown, whereas cross-linking resulting from β-elimination reactions had a negligible effect. Only β-casomorphin 7 (β-CM7) was detected (0.187-0.858mgL(-1)) at the end of the intestinal digestion in all untreated IF model systems. The level of β-CM7 in the sterilised model systems prepared without addition of sugars ranged from 0.256 to 0.655mgL(-1). The release of this peptide during GID was hindered by protein glycation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp

    PubMed Central

    2012-01-01

    Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors) modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX) transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M) and temporary immersion in modular Bioreactors (B). No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP) to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition, A. fourcroydes and A. angustifolia clones displayed differential expression of the KNOX1 gene during in vitro conditions, which is epigenetically regulated by the H3K4me3 and H3K9me2 marks. The finding of an epigenetic regulation in key developmental genes will make it important in future studies to identify factors that help to find climate-resistant micropropagated plants. PMID:23126409

  15. Incremental improvements to the trout S9 biotransformation assay

    EPA Science Inventory

    In vitro substrate depletion methods have been used in conjunction with computational models to predict biotransformation impacts on chemical accumulation by fish. There is a consistent trend, however, toward overestimation of measured chemical residues resulting from controlled...

  16. INACTIVATION OF CRYPTOSPORIDIUM PARVUM OOCYSTS WITH OZONE

    EPA Science Inventory

    Ozone inactivation rates for Cryptosporidium parvum (C. parvum) oocysts were determined with an in-vitro excystation method based on excysted sporozoite counts. Results were consistent with published animal infectivity data for the same C. parvum strain. The inactivation kinetics...

  17. Optimizing Culture Medium Composition to Improve Oligodendrocyte Progenitor Cell Yields In Vitro from Subventricular Zone-Derived Neural Progenitor Cell Neurospheres

    PubMed Central

    Franco, Paula G.; Pasquini, Juana M.; Silvestroff, Lucas

    2015-01-01

    Neural Stem and Progenitor Cells (NSC/NPC) are gathering tangible recognition for their uses in cell therapy and cell replacement therapies for human disease, as well as a model system to continue research on overall neural developmental processes in vitro. The Subventricular Zone is one of the largest NSC/NPC niches in the developing mammalian Central Nervous System, and persists through to adulthood. Oligodendrocyte progenitor cell (OPC) enriched cultures are usefull tools for in vitro studies as well as for cell replacement therapies for treating demyelination diseases. We used Subventricular Zone-derived NSC/NPC primary cultures from newborn mice and compared the effects of different growth factor combinations on cell proliferation and OPC yield. The Platelet Derived Growth Factor-AA and BB homodimers had a positive and significant impact on OPC generation. Furthermore, heparin addition to the culture media contributed to further increase overall culture yields. The OPC generated by this protocol were able to mature into Myelin Basic Protein-expressing cells and to interact with neurons in an in vitro co-culture system. As a whole, we describe an optimized in vitro method for increasing OPC. PMID:25837625

  18. Thyroid endocrine system disruption by pentachlorophenol: an in vitro and in vivo assay.

    PubMed

    Guo, Yongyong; Zhou, Bingsheng

    2013-10-15

    The present study aimed to evaluate the disruption caused to the thyroid endocrine system by pentachlorophenol (PCP) using in vitro and in vivo assays. In the in vitro assay, rat pituitary GH3 cells were exposed to 0, 0.1, 0.3, and 1.0 μM PCP. PCP exposure significantly downregulated basal and triiodothyronine (T3)-induced Dio 1 transcription, indicating the antagonistic activity of PCP in vitro. In the in vivo assay, zebrafish embryos were exposed to 0, 1, 3, and 10 μg/L of PCP until 14 days post-fertilization. PCP exposure resulted in decreased thyroxine (T4) levels, but elevated contents of whole-body T3. PCP exposure significantly upregulated the mRNA expression of genes along hypothalamic-pituitary-thyroid (HPT) axis, including those encoding thyroid-stimulating hormone, sodium/iodide symporter, thyroglobulin, Dio 1 and Dio 2, alpha and beta thyroid hormone receptor, and uridinediphosphate-glucuronosyl-transferase. PCP exposure did not influence the transcription of the transthyretin (TTR) gene. The results indicate that PCP potentially disrupts the thyroid endocrine system both in vitro and in vivo. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. In vitro binding of anthrax protective antigen on bacteriophage T4 capsid surface through Hoc-capsid interactions: A strategy for efficient display of large full-length proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shivachandra, Sathish B.; Rao, Mangala; Janosi, Laszlo

    2006-02-05

    An in vitro binding system is described to display large full-length proteins on bacteriophage T4 capsid surface at high density. The phage T4 icosahedral capsid features 155 copies of a nonessential highly antigenic outer capsid protein, Hoc, at the center of each major capsid protein hexon. Gene fusions were engineered to express the 83-kDa protective antigen (PA) from Bacillus anthracis fused to the N-terminus of Hoc and the 130-kDa PA-Hoc protein was expressed in Escherichia coli and purified. The purified PA-Hoc was assembled in vitro on hoc {sup -} phage particles. Binding was specific, stable, and of high affinity. Thismore » defined in vitro system allowed manipulation of the copy number of displayed PA and imposed no significant limitation on the size of the displayed antigen. In contrast to in vivo display systems, the in vitro approach allows all the capsid binding sites to be occupied by the 130-kDa PA-Hoc fusion protein. The PA-T4 particles were immunogenic in mice in the absence of an adjuvant, eliciting strong PA-specific antibodies and anthrax lethal toxin neutralizing antibodies. The in vitro display on phage T4 offers a novel platform for potential construction of customized vaccines against anthrax and other infectious diseases.« less

  20. A level A in vitro/in vivo correlation in fasted and fed states using different methods: applied to solid immediate release oral dosage form.

    PubMed

    Souliman, Sabah; Blanquet, Stéphanie; Beyssac, Eric; Cardot, Jean-Michel

    2006-01-01

    The first purpose of this study was to simulate the impact of food intake on drug release and absorption in vivo using a novel in vitro system which mimics the gastro-intestinal (GI) tract in man. The drug studied was acetaminophen in the form of immediate release (IR) tablets. The second purpose was to establish a level A in vitro/in vivo correlation that could predict the bioavailability of a drug instead of using difficult, time-consuming and expensive in vivo bioequivalence studies. The artificial digestive system was used to estimate the availability of acetaminophen IR tablets for absorption in fasted and fed states. The same study was performed in vivo under similar conditions. A comparison study was carried out between the classical and the novel methods to estimate the efficacy of the new in vitro system to simulate the influence of food on drug release and absorption in vivo. A level A in vitro/in vivo correlation was established with a correlation coefficient of 0.9128 and 0.9984 in the fasted and fed states, respectively. Compared to USP II method, the novel in vitro model demonstrated a high level of efficacy in mimicking the behaviour of acetaminophen IR tablets in vivo in fasted and fed states.

  1. Methodological uncertainty in quantitative prediction of human hepatic clearance from in vitro experimental systems.

    PubMed

    Hallifax, D; Houston, J B

    2009-03-01

    Mechanistic prediction of unbound drug clearance from human hepatic microsomes and hepatocytes correlates with in vivo clearance but is both systematically low (10 - 20 % of in vivo clearance) and highly variable, based on detailed assessments of published studies. Metabolic capacity (Vmax) of commercially available human hepatic microsomes and cryopreserved hepatocytes is log-normally distributed within wide (30 - 150-fold) ranges; Km is also log-normally distributed and effectively independent of Vmax, implying considerable variability in intrinsic clearance. Despite wide overlap, average capacity is 2 - 20-fold (dependent on P450 enzyme) greater in microsomes than hepatocytes, when both are normalised (scaled to whole liver). The in vitro ranges contrast with relatively narrow ranges of clearance among clinical studies. The high in vitro variation probably reflects unresolved phenotypical variability among liver donors and practicalities in processing of human liver into in vitro systems. A significant contribution from the latter is supported by evidence of low reproducibility (several fold) of activity in cryopreserved hepatocytes and microsomes prepared from the same cells, between separate occasions of thawing of cells from the same liver. The large uncertainty which exists in human hepatic in vitro systems appears to dominate the overall uncertainty of in vitro-in vivo extrapolation, including uncertainties within scaling, modelling and drug dependent effects. As such, any notion of quantitative prediction of clearance appears severely challenged.

  2. A polymeric nanoparticle consisting of mPEG-PLA-Toco and PLMA-COONa as a drug carrier: improvements in cellular uptake and biodistribution.

    PubMed

    Yi, Yilwoong; Kim, Jae Hong; Kang, Hye-Won; Oh, Hun Seung; Kim, Sung Wan; Seo, Min Hyo

    2005-02-01

    To evaluate a new polymeric nanoparticulate drug delivery formulation that consists of two components: i) an amphiphilic diblock copolymer having tocopherol moiety at the end of the hydrophobic block in which the hydrophobic tocopherol moiety increases stability of hydrophobic core of the nanoparticle in aqueous medium; and ii) a biodegradable copolyester having carboxylate end group that is capable of forming ionic complex with positively charged compounds such as doxorubicin. A doxourubicin-loaded polymeric nanoparticle (Dox-PNP) was prepared by solvent evaporation method. The entrapment efficiency, size distribution, and in vitro release profile at various pH conditions were characterized. In vitro cellular uptake was investigated by confocal microscopy, flow cytometry, and MTT assay using drug-sensitive and drug-resistant cell lines. Pharmacokinetics and biodistribution were evaluated in rats and tumor-bearing mice. Doxorubicin (Dox) was efficiently loaded into the PNP (higher than 95% of entrapment efficiency), and the diameter of Dox-PNP was in the range 20-25 nm with a narrow size distribution. In Vitro study showed that Dox-PNP exhibited higher cellular uptake into both human breast cancer cell (MCF-7) and human uterine cancer cell (MES-SA) than free doxorubicin solution (Free-Dox), especially into drug-resistant cells (MCF-7/ADR and MES-SA/Dx-5). In pharmacokinetics and tissue distribution study, the bioavailability of Dox-PNP calculated from the area under the blood concentration-time curve (AUC) was 69.8 times higher than that of Free-Dox in rats, and Dox-PNP exhibited 2 times higher bioavailability in tumor tissue of tumor-bearing mice. Dox-PNP exhibited enhanced cellular uptake of the drug. In the cytotoxic activity study, this improved cellular uptake was proved to be more advantageous in drug-resistant cell. Dox-PNP exhibited much higher bioavailability in blood plasma and more drug accumulation in tumor tissue than conventional doxorubicin formulation. The results of this study suggest that the PNP system is an advantageous carrier for drug delivery.

  3. Electrochemistry-mass spectrometry for in-vitro determination of selected chemotherapeutics and their electrochemical products in comparison to in-vivo approach.

    PubMed

    Szultka-Mlynska, Malgorzata; Buszewski, Boguslaw

    2016-11-01

    Chemotherapeutics are among the most frequently prescribed medications in modern medicine. They are widely prescribed; however, problems with organisms developing resistance to these drugs means that their efficacy may be lost, so care should be taken to avoid unnecessary prescription. It is therefore of great interest to study the detailed metabolism of these biologically active compounds. This study aimed at developing an efficient analytical protocol for the determination of in-vitro electrochemical products of selected antibiotic drugs (amoxicillin, cefotaxime, fluconazole, linezolid, metronidazole and moxifloxacin). Combination of electrochemistry (EC) and mass spectrometry (MS) was applied for the in-vitro determination of the studied antibiotics and their electrochemical products. To identify the structure of the detected electrochemical products, MS/MS experiments were performed. This was one of the first applications of the EC system for generation of electrochemical products produced from antibiotic drugs. Adjustment of appropriate conditions and such parameters as the potential value, mobile phase (pH), working electrode and temperature had significant influence on electrochemical simulations and the creation of selected derivatives. Consequently, several working electrodes were evaluated for this purpose. In most of the studied cases, mainly two types of products were observed. One corresponded to an increase in mass by 14Da, which can be explained by a process consisting of oxidation (+16 m/z) and dehydrogenation (-2 m/z); The second in turn showed mass reduction by 14Da, which can be attributed to the loss of -CH2 as a result of N-demethylation. The performed experiments consisted of two stages: electrochemical oxidation of the analyzed samples (phase I of metabolic transformation), and addition of glutathione (GSH) for follow-up reactions (phase II conjunction). The electrochemical results were compared to in-vivo experiments by analyzing urine samples from patients after antibiotic drugs have been administered.. Overall, the comparison of electrochemistry to in-vivo experiments shows the high potential of EC-MS as a fast analytical tool in the prediction of electrochemical conversion that could be applied to therapeutic drug monitoring and pharmacokinetic studies as well. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus.

    PubMed

    Karakostis, Konstantinos; Zanella-Cléon, Isabelle; Immel, Françoise; Guichard, Nathalie; Dru, Philippe; Lepage, Thierry; Plasseraud, Laurent; Matranga, Valeria; Marin, Frédéric

    2016-03-16

    The sea urchin endoskeleton consists of a magnesium-rich biocalcite comprising a small amount of occluded organic macromolecules. This structure constitutes a key-model for understanding the mineral--organics interplay, and for conceiving in vitro bio-inspired materials with tailored properties. Here we employed a deep-clean technique to purify the occluded proteins from adult Paracentrotus lividus tests. We characterized them by 1- and 2D-electrophoreses, ELISA and immunoblotting, and using liquid chromatography coupled with Mass Spectrometry (nanoLC-MS/MS), we identified two metalloenzymes (carbonic anhydrase and MMP), a set of MSP130 family members, several C-type lectins (SM29, SM41, PM27) and cytoskeletal proteins. We demonstrate the effect of the protein extract on the crystals, with an in vitro crystallization assay. We suggest that this small set of biomineralization proteins may represent a 'minimal molecular crystallization toolkit'. Biominerals often exhibit superior chemical properties, when compared to their inorganic counterparts. This is due pro parte to the proteins that are occluded in the mineral. However, the limited available studies on biomineralization have not yet succeeded in identifying a minimal set of proteins directly involved in the formation of the biomineral in vivo and sufficiently required for in vitro precipitation. Indeed, the high number of proteins identified by high-throughput screening in the recent years does not encourage the possibility of recreating or tailoring the mineral in vitro. Thus, the identification of biomineralization proteins involved in protein-mineral interactions is highly awaited. In the present study, we used the sea urchin, Paracentrotus lividus (P. lividus), to identify the native proteins directly taking part in protein-mineral interactions. We employed an improved deep-clean technique to extract and purify the native occluded skeletal matrix proteins from the test and identified them by the highly sensitive technique of nanoLC-MS/MS. We show that this minimal set of proteins has a shaping effect on the formation of biocalcite in vitro. This work gives insights on the biomineralization of the sea urchin, while it paves the way for the identification of biomineralization proteins in other biomineralizing systems. Understanding the 'biologically controlled mineralization' will facilitate the in vitro formation and tailoring of biominerals in mild conditions for applications in medicine and materials science. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Pre-Clinical Study of Panobinostat in Xenograft and Genetically Engineered Murine Diffuse Intrinsic Pontine Glioma Models.

    PubMed

    Hennika, Tammy; Hu, Guo; Olaciregui, Nagore G; Barton, Kelly L; Ehteda, Anahid; Chitranjan, Arjanna; Chang, Cecilia; Gifford, Andrew J; Tsoli, Maria; Ziegler, David S; Carcaboso, Angel M; Becher, Oren J

    2017-01-01

    Diffuse intrinsic pontine glioma (DIPG), or high-grade brainstem glioma (BSG), is one of the major causes of brain tumor-related deaths in children. Its prognosis has remained poor despite numerous efforts to improve survival. Panobinostat, a histone deacetylase inhibitor, is a targeted agent that has recently shown pre-clinical efficacy and entered a phase I clinical trial for the treatment of children with recurrent or progressive DIPG. A collaborative pre-clinical study was conducted using both a genetic BSG mouse model driven by PDGF-B signaling, p53 loss, and ectopic H3.3-K27M or H3.3-WT expression and an H3.3-K27M orthotopic DIPG xenograft model to confirm and extend previously published findings regarding the efficacy of panobinostat in vitro and in vivo. In vitro, panobinostat potently inhibited cell proliferation, viability, and clonogenicity and induced apoptosis of human and murine DIPG cells. In vivo analyses of tissue after short-term systemic administration of panobinostat to genetically engineered tumor-bearing mice indicated that the drug reached brainstem tumor tissue to a greater extent than normal brain tissue, reduced proliferation of tumor cells and increased levels of H3 acetylation, demonstrating target inhibition. Extended consecutive daily treatment of both genetic and orthotopic xenograft models with 10 or 20 mg/kg panobinostat consistently led to significant toxicity. Reduced, well-tolerated doses of panobinostat, however, did not prolong overall survival compared to vehicle-treated mice. Our collaborative pre-clinical study confirms that panobinostat is an effective targeted agent against DIPG human and murine tumor cells in vitro and in short-term in vivo efficacy studies in mice but does not significantly impact survival of mice bearing H3.3-K27M-mutant tumors. We suggest this may be due to toxicity associated with systemic administration of panobinostat that necessitated dose de-escalation.

  6. Secoisolariciresinol diglucoside is a blood-brain barrier protective and anti-inflammatory agent: implications for neuroinflammation.

    PubMed

    Rom, Slava; Zuluaga-Ramirez, Viviana; Reichenbach, Nancy L; Erickson, Michelle A; Winfield, Malika; Gajghate, Sachin; Christofidou-Solomidou, Melpo; Jordan-Sciutto, Kelly L; Persidsky, Yuri

    2018-01-27

    Secoisolariciresinol diglucoside (SDG), the main lignan in flaxseed, is known for its beneficial effects in inflammation, oxidative stress, heart disease, tumor progression, atherosclerosis, and diabetes. SDG might be an attractive natural compound that protects against neuroinflammation. Yet, there are no comprehensive studies to date investigating the effects of SDG on brain endothelium using relevant in vivo and in vitro models. We evaluated the effects of orally administered SDG on neuroinflammatory responses using in vivo imaging of the brain microvasculature during systemic inflammation and aseptic encephalitis. In parallel, the anti-inflammatory actions of SDG on brain endothelium and monocytes were evaluated in vitro blood-brain barrier (BBB) model. Multiple group comparisons were performed by one-way analysis of variance with Dunnet's post hoc tests. We found that SDG diminished leukocyte adhesion to and migration across the BBB in vivo in the setting of aseptic encephalitis (intracerebral TNFα injection) and prevented enhanced BBB permeability during systemic inflammatory response (LPS injection). In vitro SDG pretreatment of primary human brain microvascular endothelial cells (BMVEC) or human monocytes diminished adhesion and migration of monocytes across brain endothelial monolayers in conditions mimicking CNS inflammatory responses. Consistent with our in vivo observations, SDG decreased expression of the adhesion molecule, VCAM1, induced by TNFα, or IL-1β in BMVEC. SDG diminished expression of the active form of VLA-4 integrin (promoting leukocyte adhesion and migration) and prevented the cytoskeleton changes in primary human monocytes activated by relevant inflammatory stimuli. This study indicates that SDG directly inhibits BBB interactions with inflammatory cells and reduces the inflammatory state of leukocytes. Though more work is needed to determine the mechanism by which SDG mediates these effects, the ability of SDG to exert a multi-functional response reducing oxidative stress, inflammation, and BBB permeability makes it an exciting potential therapeutic for neuroinflammatory diseases. SDG can serve as an anti-inflammatory and barrier-protective agent in neuroinflammation.

  7. An In Vitro Expansion System for Generation of Human iPS Cell-Derived Hepatic Progenitor-Like Cells Exhibiting a Bipotent Differentiation Potential

    PubMed Central

    Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide

    2013-01-01

    Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13highCD133+ cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development. PMID:23935837

  8. An in vitro expansion system for generation of human iPS cell-derived hepatic progenitor-like cells exhibiting a bipotent differentiation potential.

    PubMed

    Yanagida, Ayaka; Ito, Keiichi; Chikada, Hiromi; Nakauchi, Hiromitsu; Kamiya, Akihide

    2013-01-01

    Hepatoblasts, hepatic stem/progenitor cells in liver development, have a high proliferative potential and the ability to differentiate into both hepatocytes and cholangiocytes. In regenerative medicine and drug screening for the treatment of severe liver diseases, human induced pluripotent stem (iPS) cell-derived mature functional hepatocytes are considered to be a potentially good cell source. However, induction of proliferation of these cells is difficult ex vivo. To circumvent this problem, we generated hepatic progenitor-like cells from human iPS cells using serial cytokine treatments in vitro. Highly proliferative hepatic progenitor-like cells were purified by fluorescence-activated cell sorting using antibodies against CD13 and CD133 that are known cell surface markers of hepatic stem/progenitor cells in fetal and adult mouse livers. When the purified CD13(high)CD133(+) cells were cultured at a low density with feeder cells in the presence of suitable growth factors and signaling inhibitors (ALK inhibitor A-83-01 and ROCK inhibitor Y-27632), individual cells gave rise to relatively large colonies. These colonies consisted of two types of cells expressing hepatocytic marker genes (hepatocyte nuclear factor 4α and α-fetoprotein) and a cholangiocytic marker gene (cytokeratin 7), and continued to proliferate over long periods of time. In a spheroid formation assay, these cells were found to express genes required for mature liver function, such as cytochrome P450 enzymes, and secrete albumin. When these cells were cultured in a suitable extracellular matrix gel, they eventually formed a cholangiocytic cyst-like structure with epithelial polarity, suggesting that human iPS cell-derived hepatic progenitor-like cells have a bipotent differentiation ability. Collectively these data indicate that this novel procedure using an in vitro expansion system is useful for not only liver regeneration but also for the determination of molecular mechanisms that regulate liver development.

  9. Hematoma-inspired alginate/platelet releasate/CaPO4 composite: initiation of the inflammatory-mediated response associated with fracture repair in vitro and ex vivo injection delivery.

    PubMed

    McCanless, Jonathan D; Jennings, Lisa K; Bumgardner, Joel D; Cole, Judith A; Haggard, Warren O

    2012-08-01

    A clinical need continues for consistent bone remodeling within problematic sites such as those of fracture nonunion, avascular necrosis, or irregular bone formations. In attempt to address such needs, a biomaterial system is proposed to induce early inflammatory responses after implantation and to provide later osteoconductive scaffolding for bone regeneration. Biomaterial-induced inflammation would parallel the early stage of hematoma-induced fracture repair and allow scaffold-promoted remodeling of osseous tissue to a healthy state. Initiation of the wound healing cascade by two human concentrated platelet releasate-containing alginate/β-tricalcium phosphate biocomposites has been studied in vitro using the TIB-71™ RAW264.7 mouse monocyte cell line. Inflammatory responses inherent to the base material were found and could be modulated through incorporation of platelet releasate. Differences in hydrogel wt% (2 vs. 8 %) and/or calcium phosphate granule vol.% (20 vs. 10 %) allowed for tuning the response associated with platelet releasate-associated growth factor elution. Tunability from completely suppressing the inflammatory response to augmenting the response was observed through varied elution profiles of both releasate-derived bioagents and impurities inherent to alginate. A 2.5-fold upregulation of inducible-nitric oxide synthase gene expression followed by a tenfold increase in nitrite media levels was induced by inclusion of releasate within the 8 wt%/10 vol.% formulation and was comparable to an endotoxin positive control. Whereas, near complete elimination of inflammation was seen when releasate was included within the 2 wt%/20 vol.% formulation. These in vitro results suggested tunable interactions between the multiple platelet releasate-derived bioagents and the biocomposites for enhancing hematoma-like fracture repair. Additionally, minimally invasive delivery for in situ curing of the implant system via injection was demonstrated in rat tail vertebrae using microcomputed tomography.

  10. Premature preterm rupture of the membrane diagnosis in early pregnancy: PAMG-1 and IGFBP-1 detection in amniotic fluid with biochemical tests.

    PubMed

    Doret, Muriel; Cartier, Régine; Miribel, Juliette; Massardier, Jérome; Massoud, Mona; Bordes, Agnès; Moret, Stéphanie; Gaucherand, Pascal

    2013-12-01

    Previable premature rupture of the membranes (pPROM), occurring before 24WG, is associated with a 25% neonatal survival rate. This terrible prognosis may lead to elective pregnancy termination on parents' request. Therefore, certain diagnosis is essential but remains difficult in about 10% of patients. Bed-side biochemical tests developed to help in diagnosis had never been evaluated in early pregnancies. This study aimed to evaluate and compare the in vitro sensitivity, detection limit, reaction time and consistency of AmniSure detecting placental alpha microglobulin-1 (PAMG-1) and actim PROM detecting Insulin Growth Factor Binding Protein-1 (IGFBP-1) in amniotic fluid between 15 and 20weeks of gestation (WG). Samples of amniotic fluid were collected by amniocentesis performed between 15 and 20 completed WG in 55 patients. Dilution series were prepared and both tests were performed twice at each dilution. In vitro sensitivity, detection limit, and reaction time were evaluated and compared in serial dilution. A total of 460 AmniSure and 476 actim PROM tests were performed. Both tests' in vitro sensitivity was 100% at dilution 1:20 and remained up to 90% until dilution 1:80. In vitro sensitivities were not different at any dilution. Detection limit and consistency were similar for both tests at all dilution. Actim PROM reaction time was shorter than AmniSure at all dilutions, except 1:320 (p<0.05). PAMG-1 and IGFBP-1 can be detected in amniotic fluid between 15 and 20 completed WG, using respectively AmniSure and actim PROM. © 2013.

  11. Reprogramming Microbes for the Remote Detection of Environmental Threats

    DTIC Science & Technology

    2013-10-15

    Riboswitches consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in...vitro selection, it is possible to screen large (~10^13 member) libraries of RNA sequences to discover new aptamers . However, limitations in...consist of an aptamer that recognizes the ligand and an expression platform that couples ligand binding to a change in gene expression. Using in

  12. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    PubMed

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  13. RNA polymerase II components and Rrn7 form a preinitiation complex on the HomolD box to promote ribosomal protein gene expression in Schizosaccharomyces pombe.

    PubMed

    Montes, Matías; Moreira-Ramos, Sandra; Rojas, Diego A; Urbina, Fabiola; Käufer, Norbert F; Maldonado, Edio

    2017-02-01

    In Schizosaccharomyces pombe, ribosomal protein gene (RPG) promoters contain a TATA box analog, the HomolD box, which is bound by the Rrn7 protein. Despite the importance of ribosome biogenesis for cell survival, the mechanisms underlying RPG transcription remain unknown. In this study, we found that components of the RNA polymerase II (RNAPII) system, consisting of the initiation or general transcription factors (GTFs) TFIIA, IIB, IIE, TATA-binding protein (TBP) and the RNAPII holoenzyme, interacted directly with Rrn7 in vitro, and were able to form a preinitiation complex (PIC) on the HomolD box. PIC complex formation follows an ordered pathway on these promoters. The GTFs and RNAPII can also be cross-linked to HomolD-containing promoters in vivo. In an in vitro reconstituted transcription system, RNAPII components and Rrn7 were necessary for HomolD-directed transcription. The Mediator complex was required for basal transcription from those promoters in whole cell extract (WCE). The Med17 subunit of Mediator also can be cross-linked to the promoter region of HomolD-containing promoters in vivo, suggesting the presence of the Mediator complex on HomolD box-containing promoters. Together, these data show that components of the RNAPII machinery and Rrn7 participate in the PIC assembly on the HomolD box, thereby directing RPG transcription. © 2017 Federation of European Biochemical Societies.

  14. Loxosceles gaucho Venom-Induced Acute Kidney Injury – In Vivo and In Vitro Studies

    PubMed Central

    Lucato, Rui V.; Abdulkader, Regina C. R. M.; Barbaro, Katia C.; Mendes, Glória E.; Castro, Isac; Baptista, Maria A. S. F.; Cury, Patrícia M.; Malheiros, Denise M. C.; Schor, Nestor; Yu, Luis; Burdmann, Emmanuel A.

    2011-01-01

    Background Accidents caused by Loxosceles spider may cause severe systemic reactions, including acute kidney injury (AKI). There are few experimental studies assessing Loxosceles venom effects on kidney function in vivo. Methodology/Principal Findings In order to test Loxosceles gaucho venom (LV) nephrotoxicity and to assess some of the possible mechanisms of renal injury, rats were studied up to 60 minutes after LV 0.24 mg/kg or saline IV injection (control). LV caused a sharp and significant drop in glomerular filtration rate, renal blood flow and urinary output and increased renal vascular resistance, without changing blood pressure. Venom infusion increased significantly serum creatine kinase and aspartate aminotransferase. In the LV group renal histology analysis found acute epithelial tubular cells degenerative changes, presence of cell debris and detached epithelial cells in tubular lumen without glomerular or vascular changes. Immunohistochemistry disclosed renal deposition of myoglobin and hemoglobin. LV did not cause injury to a suspension of fresh proximal tubules isolated from rats. Conclusions/Significance Loxosceles gaucho venom injection caused early AKI, which occurred without blood pressure variation. Changes in glomerular function occurred likely due to renal vasoconstriction and rhabdomyolysis. Direct nephrotoxicity could not be demonstrated in vitro. The development of a consistent model of Loxosceles venom-induced AKI and a better understanding of the mechanisms involved in the renal injury may allow more efficient ways to prevent or attenuate the systemic injury after Loxosceles bite. PMID:21655312

  15. Design, development, and first in vivo results of an implantable ventricular assist device, MicroVad.

    PubMed

    Kerkhoffs, Wolfgang; Schumacher, Oliver; Meyns, Bart; Verbeken, Erik; Leunens, Veerle; Bollen, Hilde; Reul, Helmut

    2004-10-01

    The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications.

  16. In Vivo and In Vitro Characterization of a Plasmodium Liver Stage-Specific Promoter

    PubMed Central

    Horstmann, Sebastian; Annoura, Takeshi; del Portillo, Hernando A.; Khan, Shahid M.; Heussler, Volker T.

    2015-01-01

    Little is known about stage-specific gene regulation in Plasmodium parasites, in particular the liver stage of development. We have previously described in the Plasmodium berghei rodent model, a liver stage-specific (lisp2) gene promoter region, in vitro. Using a dual luminescence system, we now confirm the stage specificity of this promoter region also in vivo. Furthermore, by substitution and deletion analyses we have extended our in vitro characterization of important elements within the promoter region. Importantly, the dual luminescence system allows analyzing promoter constructs avoiding mouse-consuming cloning procedures of transgenic parasites. This makes extensive mutation and deletion studies a reasonable approach also in the malaria mouse model. Stage-specific expression constructs and parasite lines are extremely valuable tools for research on Plasmodium liver stage biology. Such reporter lines offer a promising opportunity for assessment of liver stage drugs, characterization of genetically attenuated parasites and liver stage-specific vaccines both in vivo and in vitro, and may be key for the generation of inducible systems. PMID:25874388

  17. In vitro synthesis and processing of herpes simplex virus type 2 gG-2, using cell-free transcription and translation systems.

    PubMed Central

    Weldon, S K; Su, H K; Fetherston, J D; Courtney, R J

    1990-01-01

    Translation of in vitro-synthesized herpes simplex virus type 2 (HSV-2) gG-2 mRNA in a reticulocyte lysate system was used to study the processing of HSV-2 gG-2. In the presence of canine pancreatic microsomal membranes, a single species that is protected from trypsin digestion was detected. This product comigrates with the 104,000-Mr (104K) high mannose intermediate seen in HSV-2-infected-cell lysates. Endo-beta-N-acetylglucosaminidase H treatment of the in vitro-synthesized 104K protein yielded a single product migrating at 100 K. The 72K and 31K cleavage products of gG-2 were not observed in the in vitro system. These data show that the molecular weight of the nonglycosylated form of the gG-2 protein is 100,000 and that the cotranslational processing of this protein in the endoplasmic reticulum yields the 104K high-mannose intermediate. Images PMID:2154614

  18. Comparisons of in vitro root caries models.

    PubMed

    Wefel, J S; Heilman, J R; Jordan, T H

    1995-01-01

    The purpose of this article is to compare various model systems for the production of in vitro root caries and to assess their ability to simulate the naturally occurring root caries process. Partially saturated buffer models and gel models were evaluated using polarized light microscopy and both qualitative and quantitative microradiography. All model systems showed very similar lesion formation when examined under polarized light. When microradiographs were compared, the systems which contained fluoride, showed clear radiopaque bands within the lesion. The bands, which occurred only in the presence of fluoride, appeared to be due to remineralization. When using an in vitro system that simulates the natural root caries process, it is imperative to understand the components of the particular model, as well as its limitations, and to be aware of the need for more than one evaluative technique.

  19. Effect of quantifying peptide release on ruminal protein degradation determined using the inhibitor in vitro system

    USDA-ARS?s Scientific Manuscript database

    The aim of this work was to compare use of an o-phthaldialdehyde (OPA) colorimetric assay (OPA-C), which responds to both free AA and peptides, with an OPA fluorimetric assay (OPA-F), which is insensitive to peptides, to quantify rates of ruminal protein degradation in the inhibitor in vitro system ...

  20. Continuous "in vitro" Evolution of a Ribozyme Ligase: A Model Experiment for the Evolution of a Biomolecule

    ERIC Educational Resources Information Center

    Ledbetter, Michael P.; Hwang, Tony W.; Stovall, Gwendolyn M.; Ellington, Andrew D.

    2013-01-01

    Evolution is a defining criterion of life and is central to understanding biological systems. However, the timescale of evolutionary shifts in phenotype limits most classroom evolution experiments to simple probability simulations. "In vitro" directed evolution (IVDE) frequently serves as a model system for the study of Darwinian…

  1. Predicting In Vivo Anti-Hepatofibrotic Drug Efficacy Based on In Vitro High-Content Analysis

    PubMed Central

    Zheng, Baixue; Tan, Looling; Mo, Xuejun; Yu, Weimiao; Wang, Yan; Tucker-Kellogg, Lisa; Welsch, Roy E.; So, Peter T. C.; Yu, Hanry

    2011-01-01

    Background/Aims Many anti-fibrotic drugs with high in vitro efficacies fail to produce significant effects in vivo. The aim of this work is to use a statistical approach to design a numerical predictor that correlates better with in vivo outcomes. Methods High-content analysis (HCA) was performed with 49 drugs on hepatic stellate cells (HSCs) LX-2 stained with 10 fibrotic markers. ∼0.3 billion feature values from all cells in >150,000 images were quantified to reflect the drug effects. A systematic literature search on the in vivo effects of all 49 drugs on hepatofibrotic rats yields 28 papers with histological scores. The in vivo and in vitro datasets were used to compute a single efficacy predictor (Epredict). Results We used in vivo data from one context (CCl4 rats with drug treatments) to optimize the computation of Epredict. This optimized relationship was independently validated using in vivo data from two different contexts (treatment of DMN rats and prevention of CCl4 induction). A linear in vitro-in vivo correlation was consistently observed in all the three contexts. We used Epredict values to cluster drugs according to efficacy; and found that high-efficacy drugs tended to target proliferation, apoptosis and contractility of HSCs. Conclusions The Epredict statistic, based on a prioritized combination of in vitro features, provides a better correlation between in vitro and in vivo drug response than any of the traditional in vitro markers considered. PMID:22073152

  2. Effects of various fiber additions on lipid digestion during in vitro digestion of beef patties.

    PubMed

    Hur, S J; Lim, B O; Park, G B; Joo, S T

    2009-01-01

    The purpose of this study was to examine the effect of various fiber additions on lipid digestion during the in vitro digestion of beef patties. The control patties were prepared with 90.5% lean meat and 9.5% tallow. Treatments consisted of 90% lean meat with 9.5% tallow and either 0.5% cellulose, 0.5% chitosan, or 0.5% pectin. The beef patties were then passed through an in vitro digestion model that simulated the composition of the mouth, stomach, and small intestine juices. The change in structure and properties of the lipid droplets was monitored by laser scanning confocal fluorescence microscopy. In general, there was a decrease in lipid droplet diameter as the droplets moved from mouth to stomach to small intestine. The amount of free fatty acid dramatically increased after in vitro digestion in all beef patties. The amount of free fatty acid was, however, lower in beef patties containing chitosan and pectin than other beef patties after in vitro digestion. Beef patties containing various fibers had lower thiobarbituric acid-reactive substances (TBARS) values than samples with no fibers. Among the samples to which fibers were added, chitosan and pectin had lower TBARS than beef patties with cellulose. The cholesterol content decreased after in vitro digestion in all beef patties but was not different among the beef patties before and after in vitro digestion. These results enhance our understanding of the physicochemical and structural changes that occur to ground beef within the gastrointestinal tract.

  3. Reduction of polyspermic penetration using biomimetic microfluidic technology during in vitro fertilization.

    PubMed

    Clark, Sherrie G; Haubert, Kathyrn; Beebe, David J; Ferguson, C Edward; Wheeler, Matthew B

    2005-11-01

    Efforts to improve the in vitro embryo production process in pigs have included modifying culture medium and number of spermatozoa inseminated in order to reduce the incidence of polyspermy. Polyspermy is a pathological condition which results in aberrant embryonic development. The microchannels are designed to more closely mimic the function of the oviduct and create a flow pattern of spermatozoa past the oocytes similar to the pattern in the oviduct. In vitro fertilization of porcine oocytes in the microchannels has produced a higher incidence of monospermic penetration (p<0.05) as compared to the oocytes fertilized in the traditional microdrop system with comparable penetration and male pronucleus formation rates. Additionally, cleavage rates of the embryos as well as development to the blastocyst stage are similar. Here we demonstrate that the biomimetic microchannel in vitro fertilization system can reduce polyspermy and, therefore, increase the number of potentially viable embryos without reducing the overall in vitro production efficiency.

  4. Formulation and in vitro release evaluation of newly synthesized palm kernel oil esters-based nanoemulsion delivery system for 30% ethanolic dried extract derived from local Phyllanthus urinaria for skin antiaging

    PubMed Central

    Mahdi, Elrashid Saleh; Noor, Azmin Mohd; Sakeena, Mohamed Hameem; Abdullah, Ghassan Z; Abdulkarim, Muthanna F; Sattar, Munavvar Abdul

    2011-01-01

    Background Recently there has been a remarkable surge of interest about natural products and their applications in the cosmetic industry. Topical delivery of antioxidants from natural sources is one of the approaches used to reverse signs of skin aging. The aim of this research was to develop a nanoemulsion cream for topical delivery of 30% ethanolic extract derived from local Phyllanthus urinaria (P. urinaria) for skin antiaging. Methods Palm kernel oil esters (PKOEs)-based nanoemulsions were loaded with P. urinaria extract using a spontaneous method and characterized with respect to particle size, zeta potential, and rheological properties. The release profile of the extract was evaluated using in vitro Franz diffusion cells from an artificial membrane and the antioxidant activity of the extract released was evaluated using the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) method. Results Formulation F12 consisted of wt/wt, 0.05% P. urinaria extract, 1% cetyl alcohol, 0.5% glyceryl monostearate, 12% PKOEs, and 27% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and a 59.5% phosphate buffer system at pH 7.4. Formulation F36 was comprised of 0.05% P. urinaria extract, 1% cetyl alcohol, 1% glyceryl monostearate, 14% PKOEs, 28% Tween® 80/Span® 80 (9/1) with a hydrophilic lipophilic balance of 13.9, and 56% phosphate buffer system at pH 7.4 with shear thinning and thixotropy. The droplet size of F12 and F36 was 30.74 nm and 35.71 nm, respectively, and their nanosizes were confirmed by transmission electron microscopy images. Thereafter, 51.30% and 51.02% of the loaded extract was released from F12 and F36 through an artificial cellulose membrane, scavenging 29.89% and 30.05% of DPPH radical activity, respectively. Conclusion The P. urinaria extract was successfully incorporated into a PKOEs-based nanoemulsion delivery system. In vitro release of the extract from the formulations showed DPPH radical scavenging activity. These formulations can neutralize reactive oxygen species and counteract oxidative injury induced by ultraviolet radiation and thereby ameliorate skin aging. PMID:22072884

  5. Fibronectin gene expression, synthesis and accumulation during in vitro differentiation of chicken osteoblasts

    NASA Technical Reports Server (NTRS)

    Winnard, R. G.; Gerstenfeld, L. C.; Toma, C. D.; Franceschi, R. T.; Landis, W. J. (Principal Investigator)

    1995-01-01

    A well-defined chicken osteoblast culture system(18) has been used to examine fibronectin (FN) mRNA levels, synthesis, and accumulation during in vitro differentiation and matrix mineralization. Immunofluorescent staining of cells after 6 or 18 days in culture revealed that FN was initially associated with the cell surface and in partial coalignment with cytoskeletal elements while at the latter time most FN was associated with the extracellular matrix as a ubiquitous fibrillar network. Western blot analysis of total cell-associated proteins also detected FN at all culture times. However, when results were normalized to cellular DNA, FN levels increased until 12-16 and remained relatively constant thereafter. Similarly, FN synthesis as measured by [35S]-methionine labeling, and immunoprecipitation was greatest in early cultures (culture day 3) and then declined such that synthesis decreased 60% at day 18 and 94% after 24-31 days. FN mRNA levels as measured by Northern blot analysis were well correlated with FN synthesis. These results clearly show that FN is made by primary osteoblasts during their in vitro maturation. In contrast to other osteoblast markers such as alkaline phosphatase, osteocalcin, and osteopontin, whose expression increases as cells differentiate, FN accumulates in the matrix during periods of early cell growth and attachment and then remains proportional to cell number. Results with FN differ from those obtained with collagen which continues to accumulate in the extracellular matrix during osteoblast maturation. These results are consistent with FN being important for the initial attachment of early osteoblasts or osteoblast precursors to the pericellular matrix.

  6. Heterogeneous Nuclear Ribonucleoprotein (hnRNP) E1 Binds to hnRNP A2 and Inhibits Translation of A2 Response Element mRNAs

    PubMed Central

    Kosturko, Linda D.; Maggipinto, Michael J.; Korza, George; Lee, Joo Won; Carson, John H.

    2006-01-01

    Heterogeneous nuclear ribonucleoprotein (hnRNP) A2 is a trans-acting RNA-binding protein that mediates trafficking of RNAs containing the cis-acting A2 response element (A2RE). Previous work has shown that A2RE RNAs are transported to myelin in oligodendrocytes and to dendrites in neurons. hnRNP E1 is an RNA-binding protein that regulates translation of specific mRNAs. Here, we show by yeast two-hybrid analysis, in vivo and in vitro coimmunoprecipitation, in vitro cross-linking, and fluorescence correlation spectroscopy that hnRNP E1 binds to hnRNP A2 and is recruited to A2RE RNA in an hnRNP A2-dependent manner. hnRNP E1 is colocalized with hnRNP A2 and A2RE mRNA in granules in dendrites of oligodendrocytes. Overexpression of hnRNP E1 or microinjection of exogenous hnRNP E1 in neural cells inhibits translation of A2RE mRNA, but not of non-A2RE RNA. Excess hnRNP E1 added to an in vitro translation system reduces translation efficiency of A2RE mRNA, but not of nonA2RE RNA, in an hnRNP A2-dependent manner. These results are consistent with a model where hnRNP E1 recruited to A2RE RNA granules by binding to hnRNP A2 inhibits translation of A2RE RNA during granule transport. PMID:16775011

  7. Impact of data base structure in a successful in vitro-in vivo correlation for pharmaceutical products.

    PubMed

    Roudier, B; Davit, B; Schütz, H; Cardot, J-M

    2015-01-01

    The in vitro-in vivo correlation (IVIVC) (Food and Drug Administration 1997) aims to predict performances in vivo of a pharmaceutical formulation based on its in vitro characteristics. It is a complex process that (i) incorporates in a gradual and incremental way a large amount of information and (ii) requires information from different properties (formulation, analytical, clinical) and associated dedicated treatments (statistics, modeling, simulation). These results in many studies that are initiated and integrated into the specifications (quality target product profile, QTPP). This latter defines the appropriate experimental designs (quality by design, QbD) (Food and Drug Administration 2011, 2012) whose main objectives are determination (i) of key factors of development and manufacturing (critical process parameters, CPPs) and (ii) of critical points of physicochemical nature relating to active ingredients (API) and critical quality attribute (CQA) which may have implications in terms of efficiency, safety, and inoffensiveness for the patient, due to their non-inclusion. These processes generate a very large amount of data that is necessary to structure. In this context, the storage of information in a database (DB) and the management of this database (database management system, DBMS) become an important issue for the management of projects and IVIVC and more generally for development of new pharmaceutical forms. This article describes the implementation of a prototype object-oriented database (OODB) considered as a tool, which is helpful for decision taking, responding in a structured and consistent way to the issues of project management of IVIVC (including bioequivalence and bioavailability) (Food and Drug Administration 2003) necessary for the implementation of QTPP.

  8. Engineering human cell spheroids to model embryonic tissue fusion in vitro

    PubMed Central

    Wolf, Cynthia J.; Wood, Carmen; Ren, Hongzu; Grindstaff, Rachel; Padgett, William; Swank, Adam; MacMillan, Denise; Fisher, Anna; Winnik, Witold; Abbott, Barbara D.

    2017-01-01

    Epithelial-mesenchymal interactions drive embryonic fusion events during development, and perturbations of these interactions can result in birth defects. Cleft palate and neural tube defects can result from genetic defects or environmental exposures during development, yet very little is known about the effect of chemical exposures on fusion events during human development because of a lack of relevant and robust human in vitro assays of developmental fusion behavior. Given the etiology and prevalence of cleft palate and the relatively simple architecture and composition of the embryonic palate, we sought to develop a three-dimensional culture system that mimics the embryonic palate and could be used to study fusion behavior in vitro using human cells. We engineered size-controlled human Wharton’s Jelly stromal cell (HWJSC) spheroids and established that 7 days of culture in osteogenesis differentiation medium was sufficient to promote an osteogenic phenotype consistent with embryonic palatal mesenchyme. HWJSC spheroids supported the attachment of human epidermal keratinocyte progenitor cells (HPEKp) on the outer spheroid surface likely through deposition of collagens I and IV, fibronectin, and laminin by mesenchymal spheroids. HWJSC spheroids coated in HPEKp cells exhibited fusion behavior in culture, as indicated by the removal of epithelial cells from the seams between spheroids, that was dependent on epidermal growth factor signaling and fibroblast growth factor signaling in agreement with palate fusion literature. The method described here may broadly apply to the generation of three-dimensional epithelial-mesenchymal co-cultures to study developmental fusion events in a format that is amenable to predictive toxicology applications. PMID:28898253

  9. In vitro action of antiparasitic drugs, especially artesunate, against Toxoplasma gondii.

    PubMed

    Gomes, Thaís Cobellis; de Andrade Júnior, Heitor Franco; Lescano, Susana Angélica Zevallos; Amato-Neto, Vicente

    2012-01-01

    Toxoplasmosis is usually a benign infection, except in the event of ocular, central nervous system (CNS), or congenital disease and particularly when the patient is immunocompromised. Treatment consists of drugs that frequently cause adverse effects; thus, newer, more effective drugs are needed. In this study, the possible activity of artesunate, a drug successfully being used for the treatment of malaria, on Toxoplasma gondii growth in cell culture is evaluated and compared with the action of drugs that are already being used against this parasite. LLC-MK2 cells were cultivated in RPMI medium, kept in disposable plastic bottles, and incubated at 36ºC with 5% CO2. Tachyzoites of the RH strain were used. The following drugs were tested: artesunate, cotrimoxazole, pentamidine, pyrimethamine, quinine, and trimethoprim. The effects of these drugs on tachyzoites and LLC-MK2 cells were analyzed using nonlinear regression analysis with Prism 3.0 software. Artesunate showed a mean tachyzoite inhibitory concentration (IC50) of 0.075µM and an LLC MK2 toxicity of 2.003µM. Pyrimethamine was effective at an IC50 of 0.482µM and a toxicity of 11.178µM. Trimethoprim alone was effective against the in vitro parasite. Cotrimoxazole also was effective against the parasite but at higher concentrations than those observed for artesunate and pyrimethamine. Pentamidine and quinine had no inhibitory effect over tachyzoites. Artesunate is proven in vitro to be a useful alternative for the treatment of toxoplasmosis, implying a subsequent in vivo effect and suggesting the mechanism of this drug against the parasite.

  10. Contact forces during hybrid atrial fibrillation ablation: an in vitro evaluation.

    PubMed

    Lozekoot, Pieter W J; de Jong, Monique M J; Gelsomino, Sandro; Parise, Orlando; Matteucci, Francesco; Lucà, Fabiana; Kumar, N; Nijs, Jan; Czapla, Jens; Kwant, Paul; Bani, Daniele; Gensini, Gian Franco; Pison, Laurent; Crijns, Harry J G M; Maessen, Jos G; La Meir, Mark

    2016-03-01

    Data on epicardial contact force efficacy in dual epicardial-endocardial atrial fibrillation ablation procedures are lacking. We present an in vitro study on the importance of epicardial and endocardial contact forces during this procedure. The in vitro setup consists of two separate chambers, mimicking the endocardial and epicardial sides of the heart. A circuit, including a pump and a heat exchanger, circulates porcine blood through the endocardial chamber. A septum, with a cut out, allows the placement of a magnetically fixed tissue holder, securing porcine atrial tissue, in the middle of both chambers. Two trocars provide access to the epicardium and endocardium. Force transducers mounted on both catheter holders allow real-time contact force monitoring, while a railing system allows controlled contact force adjustment. We histologically assessed different combinations of epi-endocardial radiofrequency ablation contact forces using porcine atria, evaluating the ablation's diameters, area, and volume. An epicardial ablation with forces of 100 or 300 g, followed by an endocardial ablation with a force of 20 g did not achieve transmurality. Increasing endocardial forces to 30 and 40 g combined with an epicardial force ranging from 100 to 300 and 500 g led to transmurality with significant increases in lesion's diameters, area, and volumes. Increased endocardial contact forces led to larger ablation lesions regardless of standard epicardial pressure forces. In order to gain transmurality in a model of a combined epicardial-endocardial procedure, a minimal endocardial force of 30 g combined with an epicardial force of 100 g is necessary.

  11. Antacid effects of Chinese herbal prescriptions assessed by a modified artificial stomach model

    PubMed Central

    Wu, Tsung-Hsiu; Chen, I-Chin; Chen, Lih-Chi

    2010-01-01

    AIM: To assess the antacid effects of the tonic Chinese herbal prescriptions, Si-Jun-Zi-Tang (SJZT) and Shen-Ling-Bai-Zhu-San (SLBZS). METHODS: Decoctions of the tonic Chinese herbal prescriptions, SJZT and SLBZS, were prepared according to Chinese original documents. The pH of the prescription decoctions and their neutralizing effects on artificial gastric acids were determined and compared with water and the active controls, sodium bicarbonate and colloidal aluminum phosphate. A modified model of Vatier’s artificial stomach was used to determine the duration of consistent neutralization effect on artificial gastric acids. The neutralization capacity in vitro was determined with the titration method of Fordtran’s model. RESULTS: The results showed that both SJZT and SLBZS have antacid effects in vitro. Compared with the water group, SJZT and SLBZS were found to possess significant gastric acid neutralizing effects. The duration for consistent neutralization of SLBZS was significantly longer than that of water. Also, SLBZS and SJZT exhibited significant antacid capacities compared to water. CONCLUSION: SJZT and SLBZS were consistently active in the artificial stomach model and are suggested to have antacid effects similar to the active control drugs. PMID:20845514

  12. Development of a multilayered association polymer system for sequential drug delivery

    NASA Astrophysics Data System (ADS)

    Chinnakavanam Sundararaj, Sharath kumar

    As all the physiological processes in our body are controlled by multiple biomolecules, comprehensive treatment of certain disease conditions may be more effectively achieved by administration of more than one type of drug. Thus, the primary objective of this research was to develop a multilayered, polymer-based system for sequential delivery of multiple drugs. This particular device was designed aimed at the treatment of periodontitis, a highly prevalent oral inflammatory disease that affects 90% of the world population. This condition is caused by bacterial biofilm on the teeth, resulting in a chronic inflammatory response that leads to loss of alveolar bone and, ultimately, the tooth. Current treatment methods for periodontitis address specific parts of the disease, with no individual treatment serving as a complete therapy. The polymers used for the fabrication of this multilayered device consists of cellulose acetate phthalate (CAP) complexed with Pluronic F-127 (P). After evaluating morphology of the resulting CAPP system, in vitro release of small molecule drugs and a model protein was studied from both single and multilayered devices. Drug release from single-layered CAPP films followed zero-order kinetics related to surface erosion property of the association polymer. Release studies from multilayered CAPP devices showed the possibility of achieving intermittent release of one type of drug as well as sequential release of more than one type of drug. Mathematical modeling accurately predicted the release profiles for both single layer and multilayered devices. After the initial characterization of the CAPP system, the device was specifically modified to achieve sequential release of drugs aimed at the treatment of periodontitis. The four types of drugs used were metronidazole, ketoprofen, doxycycline, and simvastatin to eliminate infection, inhibit inflammation, prevent tissue destruction, and aid bone regeneration, respectively. To obtain different erosion times and achieve appropriate release profiles specific to the disease condition, the device was modified by increasing the number of layers or by inclusion of a slower eroding polymer layer. In all the cases, the device was able to release the four different drugs in the designed temporal sequence. Analysis of antibiotic and antiinflammatory bioactivity showed that drugs released from the devices retained 100% bioactivity. Following extensive studies on the in vitro sequential drug release from these devices, the in vivo drug release profiles were investigated. The CAPP devices with different release rates and dosage formulations were implanted in a rat calvarial onlay model, and the in vivo drug release and erosion was compared with in vitro results. In vivo studies showed sequential release of drugs comparable to those measured in vitro, with some difference in drug release rates observed. The present CAPP association polymer-based multilayer devices can be used for localized, sequential delivery of multiple drugs for the possible treatment of complex disease conditions, and perhaps for tissue engineering applications, that require delivery of more than one type of biomolecule. KEYWORDS: Multiple drug delivery, Periodontitis, Cellulose acetate phthalate, Pluronic F-127, Sequential drug release, in vitro drug release, in vivo drug release.

  13. Biodegradable injectable in situ implants and microparticles for sustained release of montelukast: in vitro release, pharmacokinetics, and stability.

    PubMed

    Ahmed, Tarek A; Ibrahim, Hany M; Samy, Ahmed M; Kaseem, Alaa; Nutan, Mohammad T H; Hussain, Muhammad Delwar

    2014-06-01

    The objective of this study was to investigate the sustained release of a hydrophilic drug, montelukast (MK), from two biodegradable polymeric drug delivery systems, in situ implant (ISI) and in situ microparticles (ISM). N-Methyl pyrrolidone (NMP), dimethyl sulfoxide (DMSO), triacetin, and ethyl acetate were selected as solvents. The release of 10% (w/v) MK from both systems containing poly-lactic-co-glycolic acid (PLGA) as the biodegradable polymer was compared. Upon contact with the aqueous medium, the PLGA in ISI and ISM systems solidified resulting in implants and microparticles, respectively. The in vitro drug release from the ISI system showed marked difference from miscible solvents (NMP and DMSO) than the partially miscible ones (triacetin and ethyl acetate), and the drug release decreased with increased PLGA concentration. In the ISM system, the initial in vitro drug release decreased with decreased ratio of polymer phase to external oil phase. In vivo studies in rats showed that ISM had slower drug release than the drug release from ISI. Also, the ISM system when compared to ISI system had significantly reduced initial burst effect. In vitro as well as the in vivo studies for both ISI and ISM systems showed sustained release of MK. The ISM system is suitable for sustained release of MK over 4-week period with a lower initial burst compared to the ISI system. Stability studies of the ISI and ISM formulations showed that MK is stable in the formulations stored at 4°C for more than 2 years.

  14. Antibacterial, anti-inflammatory, and bone-regenerative dual-drug-loaded calcium phosphate nanocarriers-in vitro and in vivo studies.

    PubMed

    Madhumathi, K; Rubaiya, Y; Doble, Mukesh; Venkateswari, R; Sampath Kumar, T S

    2018-05-01

    A dual local drug delivery system (DDS) composed of calcium phosphate bioceramic nanocarriers aimed at treating the antibacterial, anti-inflammatory, and bone-regenerative aspects of periodontitis has been developed. Calcium-deficient hydroxyapatite (CDHA, Ca/P = 1.61) and tricalcium phosphate (β-TCP) were prepared by microwave-accelerated wet chemical synthesis method. The phase purity of the nanocarriers was confirmed by x-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR), while the transmission electron microscopy (TEM) confirmed their nanosized morphology. CDHA was selected as carrier for the antibiotic (tetracycline) while TCP was chosen as the anti-inflammatory drug (ibuprofen) carrier. Combined drug release profile was studied in vitro from CDHA/TCP (CTP) system and compared with a HA/TCP (BCP) biphasic system. The tetracycline and ibuprofen release rate was 71 and 23% from CTP system as compared to 63 and 20% from BCP system. CTP system also showed a more controlled drug release profile compared to BCP system. Modeling of drug release kinetics from CTP system indicated that the release follows Higuchi model with a non-typical Fickian diffusion profile. In vitro biological studies showed the CTP system to be biocompatible with significant antibacterial and anti-inflammatory activity. In vivo implantation studies on rat cranial defects showed greater bone healing and new bone formation in the drug-loaded CTP system compared to control (no carrier) at the end of 12 weeks. The in vitro and in vivo results suggest that the combined drug delivery platform can provide a comprehensive management for all bone infections requiring multi-drug therapy.

  15. Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.

    PubMed

    Salerno, Simona; Bartolo, Loredana De

    2017-01-01

    In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Two-wave propagation in in vitro swine distal ulna

    NASA Astrophysics Data System (ADS)

    Mano, Isao; Horii, Kaoru; Matsukawa, Mami; Otani, Takahiko

    2015-07-01

    Ultrasonic transmitted waves were obtained in an in vitro swine distal ulna specimen, which mimics a human distal radius, that consists of interconnected cortical bone and cancellous bone. The transmitted waveforms appeared similar to the fast waves, slow waves, and overlapping fast and slow waves measured in the specimen after removing the surface cortical bone (only cancellous bone). In addition, the circumferential waves in the cortical bone and water did not affect the fast and slow waves. This suggests that the fast-and-slow-wave phenomenon can be observed in an in vivo human distal radius.

  17. Rheological study of in-situ crosslinkable hydrogels based on hyaluronanic acid, collagen and sericin.

    PubMed

    Vulpe, Raluca; Le Cerf, Didier; Dulong, Virginie; Popa, Marcel; Peptu, Catalina; Verestiuc, Liliana; Picton, Luc

    2016-12-01

    The elaboration of chemically crosslinked hydrogels based on collagen (C), hyaluronanic acid (HA) and sericin (S) with different polymer ratios was investigated by in-situ rheology. This reaction was performed via amide or ester bond reaction activated by carbodiimide, in pure water. Prior to molecule crosslinking, the rheological behaviour of the biopolymers (alone or in mixture) was characterized in a semi-dilute concentration regime. Both flow and dynamic measurements showed that uncrosslinked collagen alone appears to be rather elastic with yield stress properties, whereas uncrosslinked HA alone appears to be rather shear thinning and viscoelastic in agreement with entangled polymer behaviour. Sericin exhibited Newtonian low viscosity behaviour according to its very low molar mass. Before crosslinking, HA exhibited viscoelastic behaviour at concentrations above the critical entangled concentration (C*) in the mixtures, thus HA shows promise as a matrix for future crosslinked networks, whereas sericin did not significantly modify the rheology. During the reaction, followed by rheology, the kinetics were slower for pure HA systems compared with the mixtures (i.e., with added collagen and/or to a lesser extent sericin). At the same time, the final network of hydrogels (i.e., the elastic modulus) was more structured in the mixture based systems. This result is explained by ester bonds (the only possibility for pure HA systems), which are less favourable and reactive than amide bonds (possible with sericin and collagen). The presence of collagen in the HA matrix reinforced the hydrogel network. SEM studies confirmed the structure of the hydrogels, and in vitro degradability was globally consistent with the effect of the selected enzyme according to the hydrogel composition. All the elaborated hydrogels were non-cytotoxic in vitro. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Cocaine and sigma-1 receptors modulate HIV infection, chemokine receptors, and the HPA axis in the huPBL-SCID model.

    PubMed

    Roth, Michael D; Whittaker, Katherine M; Choi, Ruth; Tashkin, Donald P; Baldwin, Gayle Cocita

    2005-12-01

    Cocaine is associated with an increased risk for, and progression of, clinical disease associated with human immunodeficiency virus (HIV) infection. A human xenograft model, in which human peripheral blood mononuclear cells were implanted into severe combined immunodeficiency mice (huPBL-SCID) and infected with a HIV reporter virus, was used to investigate the biological interactions between cocaine and HIV infection. Systemic administration of cocaine (5 mg/kg/d) significantly increased the percentage of HIV-infected PBL (two- to threefold) and viral load (100- to 300-fold) in huPBL-SCID mice. Despite the capacity for cocaine to increase corticosterone and adrenocorticotropic hormone levels in control mice, the hypothalamic-pituitary-adrenal axis was suppressed in HIV-infected animals, and corticosterone levels were further decreased when animals were exposed to HIV and cocaine. Activating huPBL in vitro in the presence of 10(-8) M cocaine increased expression of CC chemokine receptor 5 (CCR5) and CXC chemokine receptor 4 (CXCR4) coreceptors. Expression of CCR5 was also increased at early time-points in the huPBL-SCID model following systemic exposure to cocaine (54.1+/-9.4% increase over control, P<0.01). This effect preceded the boost in viral infection and waned as HIV infection progressed. Cocaine has been shown to mediate immunosuppressive effects by activating sigma-1 receptors in immune cells in vitro and in vivo. Consistent with these reports, a selective sigma-1 antagonist, BD1047, blocked the effects of cocaine on HIV replication in the huPBL-SCID mouse. Our results suggest that systemic exposure to cocaine can enhance HIV infection in vivo by activating sigma-1 receptors and by modulating the expression of HIV coreceptors.

  19. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed Central

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-01-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables. Images PMID:2236007

  20. Steady-state force-velocity relation in the ATP-dependent sliding movement of myosin-coated beads on actin cables in vitro studied with a centrifuge microscope.

    PubMed

    Oiwa, K; Chaen, S; Kamitsubo, E; Shimmen, T; Sugi, H

    1990-10-01

    To eliminate the gap between the biochemistry of actomyosin in solution and the physiology of contracting muscle, we developed an in vitro force-movement assay system in which the steady-state force-velocity relation in the actin-myosin interaction can be studied. The assay system consists of the internodal cells of an alga, Nitellopsis obtusa, containing well-organized actin filament arrays (actin cables); tosyl-activated polystyrene beads (diameter, 2.8 microns; specific gravity, 1.3) coated with skeletal muscle myosin; and a centrifuge microscope equipped with a stroboscopic light source and a video system. The internodal cell preparation was mounted on the rotor of the centrifuge microscope, so that centrifugal forces were applied to the myosin-coated beads moving along the actin cables in the presence of ATP. Under constant centrifugal forces directed opposite to the bead movement ("positive" loads), the beads continued to move with constant velocities, which decreased with increasing centrifugal forces. The steady-state force-velocity curve thus obtained was analogous to the double-hyperbolic force-velocity curve of single muscle fibers. The unloaded velocity of bead movement was 1.6-3.6 microns/s (20-23 degrees C), while the maximum "isometric" force generated by the myosin molecules on the bead was 1.9-39 pN. If, on the other hand, the beads were subjected to constant centrifugal forces in the direction of bead movement ("negative" loads), the bead also moved with constant velocities. Unexpectedly, the velocity of bead movement did not increase with increasing negative loads but first decreased by 20-60% and then increased towards the initial unloaded velocity until the beads were eventually detached from the actin cables.

  1. Simultaneous recordings of force and sliding movement between a myosin-coated glass microneedle and actin cables in vitro.

    PubMed Central

    Chaen, S; Oiwa, K; Shimmen, T; Iwamoto, H; Sugi, H

    1989-01-01

    To elucidate the molecular mechanism of muscle contraction resulting from the ATP-dependent actin-myosin interaction, we constructed an assay system with which both the force and the movement produced by the actin-myosin interaction in vitro can be simultaneously recorded and analyzed. The assay system consisted of the giant internodal cells of an alga, Nitellopsis obtusa, which contain well-organized arrays of actin filaments (actin cables) running along the cell long axis, and a glass microneedle (tip diameter, approximately 7 microns; elastic coefficient, approximately 40 pN/microns), which was coated with skeletal muscle myosin at the tip and extended from a micromanipulator at right angles with the actin cables. When the myosin-coated tip of the microneedle was brought into contact with the exposed surface of the actin cables, it exhibited ATP-dependent movement along the actin cables over a distance of 20-150 microns in 20-200 s (20-23 degrees C) and eventually stopped due to a balance between forces generated by the actin-myosin interaction (800-6000 pN) and by the bent microneedle. Since the load on the force-generating myosin molecules increased with the bending displacement of the microneedle (auxotonic condition), the relation between the load and the sliding velocity of the myosin heads past the actin cables was determined from the time course of the microneedle movement recorded with a video system. The shape of the force-velocity curve thus obtained was convex upwards, similar to that of the force-velocity curve of intact frog muscle fibers obtained under the auxotonic condition. Images PMID:2922395

  2. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors.

    PubMed

    Lv, Qing; Nair, Lakshmi; Laurencin, Cato T

    2009-12-01

    Dynamic flow culture bioreactor systems have been shown to enhance in vitro bone tissue formation by facilitating mass transfer and providing mechanical stimulation. Our laboratory has developed a biodegradable poly (lactic acid glycolic acid) (PLAGA) mixed scaffold consisting of lighter-than-water (LTW) and heavier-than-water (HTW) microspheres as potential matrices for engineering tissue using a high aspect ratio vessel (HARV) rotating bioreactor system. We have demonstrated enhanced osteoblast differentiation and mineralization on PLAGA scaffolds in the HARV rotating bioreactor system when compared with static culture. The objective of the present study is to improve the mechanical properties and bioactivity of polymeric scaffolds by designing LTW polymer/ceramic composite scaffolds suitable for dynamic culture using a HARV bioreactor. We employed a microsphere sintering method to fabricate three-dimensional PLAGA/nano-hydroxyapatite (n-HA) mixed scaffolds composed of LTW and HTW composite microspheres. The mechanical properties, pore size and porosity of the composite scaffolds were controlled by varying parameters, such as sintering temperature, sintering time, and PLAGA/n-HA ratio. The PLAGA/n-HA (4:1) scaffold sintered at 90 degrees C for 3 h demonstrated the highest mechanical properties and an appropriate pore structure for bone tissue engineering applications. Furthermore, evaluation human mesenchymal stem cells (HMSCs) response to PLAGA/n-HA scaffolds was performed. HMSCs on PLAGA/n-HA scaffolds demonstrated enhanced proliferation, differentiation, and mineralization when compared with those on PLAGA scaffolds. Therefore, PLAGA/n-HA mixed scaffolds are promising candidates for HARV bioreactor-based bone tissue engineering applications. Copyright 2008 Wiley Periodicals, Inc.

  3. Chronomodulated drug delivery system of urapidil for the treatment of hypertension

    PubMed Central

    Chaudhary, Sona S.; Patel, Hetal K.; Parejiya, Punit B.; Shelat, Pragna K.

    2015-01-01

    Introduction: Hypertension is a disease which shows circadian rhythm in the pattern of two peaks, one in the evening at about 7pm and other in the early morning between 4 am to 8 am. Conventional therapies are incapable to target those time points when actually the symptoms get worsened. To achieve drug release at two time points, chronomodulated delivery system may offer greater benefits. Materials and methods: The chronomodulated system comprised of dual approach; immediate release granules (IRG) and pulsatile release mini-tablets (PRM) filled in the hard gelatin capsule. The mini-tablets were coated using Eudragit S-100 which provided the lag time. To achieve the desired release, various parameters like coating duration and coat thickness were studied. The immediate release granules were evaluated for micromeritical properties and drug release, while mini-tablets were evaluated for various parameters such as hardness, thickness, friability, weight variation, drug content, and disintegration time and in-vitro drug release. Compatibility of drug-excipient was checked by fourier transform infrared spectroscopy and Differential scanning calorimetry studies and pellets morphology was done by Scanning electron microscopy studies. Results: The in-vitro release profile suggested that immediate release granules gives drug release within 20 min at the time of evening attack while the programmed pulsatile release was achieved from coated mini-tablets after a lag time of 9hrs, which was consistent with the demand of drug during early morning hour attack. Pellets found to be spherical in shape with smooth surface. Moreover compatibility studies illustrated no deleterious reaction between drug and polymers used in the study. Conclusions: The dual approach of developed chronomodulated formulation found to be satisfactory in the treatment of hypertension. PMID:25838996

  4. Development of a central nervous system axonal myelination assay for high throughput screening.

    PubMed

    Lariosa-Willingham, Karen D; Rosler, Elen S; Tung, Jay S; Dugas, Jason C; Collins, Tassie L; Leonoudakis, Dmitri

    2016-04-22

    Regeneration of new myelin is impaired in persistent multiple sclerosis (MS) lesions, leaving neurons unable to function properly and subject to further degeneration. Current MS therapies attempt to ameliorate autoimmune-mediated demyelination, but none directly promote the regeneration of lost and damaged myelin of the central nervous system (CNS). Development of new drugs that stimulate remyelination has been hampered by the inability to evaluate axonal myelination in a rapid CNS culture system. We established a high throughput cell-based assay to identify compounds that promote myelination. Culture methods were developed for initiating myelination in vitro using primary embryonic rat cortical cells. We developed an immunofluorescent phenotypic image analysis method to quantify the morphological alignment of myelin characteristic of the initiation of myelination. Using γ-secretase inhibitors as promoters of myelination, the optimal growth, time course and compound treatment conditions were established in a 96 well plate format. We have characterized the cortical myelination assay by evaluating the cellular composition of the cultures and expression of markers of differentiation over the time course of the assay. We have validated the assay scalability and consistency by screening the NIH clinical collection library of 727 compounds and identified ten compounds that promote myelination. Half maximal effective concentration (EC50) values for these compounds were determined to rank them according to potency. We have designed the first high capacity in vitro assay that assesses myelination of live axons. This assay will be ideal for screening large compound libraries to identify new drugs that stimulate myelination. Identification of agents capable of promoting the myelination of axons will likely lead to the development of new therapeutics for MS patients.

  5. SW43-DOX ± loading onto drug-eluting bead, a potential new targeted drug delivery platform for systemic and locoregional cancer treatment - An in vitro evaluation.

    PubMed

    Ludwig, Johannes M; Gai, Yongkang; Sun, Lingyi; Xiang, Guangya; Zeng, Dexing; Kim, Hyun S

    2016-08-01

    Treatment of unresectable primary cancer and their distant metastases, with the liver representing one of the most frequent location, is still plagued by insufficient treatment success and poor survival rates. The Sigma-2 receptor is preferentially expressed on many tumor cells making it an appealing target for therapy. Thus, we developed a potential targeted drug conjugate consisting of the Sigma-2 receptor ligand SW43 and Doxorubicin (SW43-DOX) for systemic cancer therapy and for locoregional treatment of primary and secondary liver malignancies when loaded onto drug-eluting bead (DEB) which was compared in vitro to the treatment with Doxorubicin alone. SW43-DOX binds specifically to the Sigma-2 receptor expressed on hepatocellular (Hep G2, Hep 3B), pancreatic (Panc-1) and colorectal (HT-29) carcinoma cell lines with high affinity and subsequent early specific internalization. Free SW43-DOX showed superior concentration and time depended cancer toxicity than treatment with Doxorubicin alone. Action mechanisms analysis revealed an apoptotic cell death with increased caspase 3/7 activation and reactive oxygen species (ROS) production. Only ROS scavenging with α-Tocopherol, but not the caspase inhibition (Z-VAD-FMK), partly reverted the effect. SW43-DOX could successfully be loaded onto DEB and showed prolonged eluting kinetics compared to Doxorubicin. SW43-DOX loaded DEB vs. Doxorubicin loaded DEB showed a significantly greater time dependent toxicity in all cell lines. In conclusion, the novel conjugate SW43-DOX ± loading onto DEB is a promising drug delivery platform for targeted systemic and locoregional cancer therapy. Copyright © 2016. Published by Elsevier B.V.

  6. Deriving fractional rate of degradation of logistic-exponential (LE) model to evaluate early in vitro fermentation.

    PubMed

    Wang, M; Sun, X Z; Tang, S X; Tan, Z L; Pacheco, D

    2013-06-01

    Water-soluble components of feedstuffs are mainly utilized during the early phase of microbial fermentation, which could be deemed an important determinant of gas production behavior in vitro. Many studies proposed that the fractional rate of degradation (FRD) estimated by fitting gas production curves to mathematical models might be used to characterize the early incubation for in vitro systems. In this study, the mathematical concept of FRD was developed on the basis of the Logistic-Exponential (LE) model, with initial gas volume being zero (LE0). The FRD of the LE0 model exhibits a continuous increase from initial (FRD 0) toward final asymptotic value (FRD F) with longer incubation time. The relationships between the FRD and gas production at incubation times 2, 4, 6, 8, 12 and 24 h were compared for four models, in addition to LE0, Generalization of the Mitscherlich (GM), c th order Michaelis-Menten (MM) and Exponential with a discrete LAG (EXPLAG). A total of 94 in vitro gas curves from four subsets with a wide range of feedstuffs from different laboratories and incubation periods were used for model testing. Results indicated that compared with the GM, MM and EXPLAG models, the FRD of LE0 model consistently had stronger correlations with gas production across the four subsets, especially at incubation times 2, 4, 6, 8 and 12 h. Thus, the LE0 model was deemed to provide a better representation of the early fermentation rates. Furthermore, the FRD 0 also exhibited strong correlations (P < 0.05) with gas production at early incubation times 2, 4, 6 and 8 h across all four subsets. In summary, the FRD of LE0 model provides an alternative to quantify the rate of early stage incubation, and its initial value could be an important starting parameter of rate.

  7. Evaluation of a Novel Renewable Hepatic Cell Model for Prediction of Clinical CYP3A4 Induction Using a Correlation-Based Relative Induction Score Approach.

    PubMed

    Zuo, Rongjun; Li, Feng; Parikh, Sweta; Cao, Li; Cooper, Kirsten L; Hong, Yulong; Liu, Jin; Faris, Ronald A; Li, Daochuan; Wang, Hongbing

    2017-02-01

    Metabolism enzyme induction-mediated drug-drug interactions need to be carefully characterized in vitro for drug candidates to predict in vivo safety risk and therapeutic efficiency. Currently, both the Food and Drug Administration and European Medicines Agency recommend using primary human hepatocytes as the gold standard in vitro test system for studying the induction potential of candidate drugs on cytochrome P450 (CYP), CYP3A4, CYP1A2, and CYP2B6. However, primary human hepatocytes are known to bear inherent limitations such as limited supply and large lot-to-lot variations, which result in an experimental burden to qualify new lots. To overcome these shortcomings, a renewable source of human hepatocytes (i.e., Corning HepatoCells) was developed from primary human hepatocytes and was evaluated for in vitro CYP3A4 induction using methods well established by the pharmaceutical industry. HepatoCells have shown mature hepatocyte-like morphology and demonstrated primary hepatocyte-like response to prototypical inducers of all three CYP enzymes with excellent consistency. Importantly, HepatoCells retain a phenobarbital-responsive nuclear translocation of human constitutive androstane receptor from the cytoplasm, characteristic to primary hepatocytes. To validate HepatoCells as a useful tool to predict potential clinical relevant CYP3A4 induction, we tested three different lots of HepatoCells with a group of clinical strong, moderate/weak CYP3A4 inducers, and noninducers. A relative induction score calibration curve-based approach was used for prediction. HepatoCells showed accurate prediction comparable to primary human hepatocytes. Together, these results demonstrate that Corning HepatoCells is a reliable in vitro model for drug-drug interaction studies during the early phase of drug testing. Copyright © 2017 by The Author(s).

  8. Study on the main components interaction from Flos Lonicerae and Fructus Forsythiae and their dissolution in vitro and intestinal absorption in rats.

    PubMed

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations.

  9. Study on the Main Components Interaction from Flos Lonicerae and Fructus Forsythiae and Their Dissolution In Vitro and Intestinal Absorption in Rats

    PubMed Central

    Zhou, Wei; Tan, Xiaobin; Shan, Jinjun; Wang, Shouchuan; Yin, Ailing; Cai, Baochang; Di, Liuqing

    2014-01-01

    The Flos Lonicerae-Fructus Forsythiae herb couple is the basic components of Chinese herbal preparations (Shuang-Huang-Lian tablet, Yin-Qiao-Jie-Du tablet and Fufang Qin-Lan oral liquid), and its pharmacological effects were significantly higher than that in Flos Lonicerae or Fructus Forsythiae, but the reasons remained unknown. In the present study, pattern recognition analysis (hierarchical cluster analysis (HCA) and principal component analysis (PCA)) combined with UHPLC-ESI/LTQ-Orbitrap MS system were performed to study the chemical constitution difference between co-decoction and mixed decoction in the term of chemistry. Besides, the pharmacokinetics in vivo and intestinal absorption in vitro combined with pattern recognition analysis were used to reveal the discrepancy between herb couple and single herbs in the view of biology. The observation from the chemical view in vitro showed that there was significant difference in quantity between co-decoction and mixed decoction by HCA, and the exposure level of isoforsythoside and 3, 5-dicaffeoylquinic acid in co-decoction, higher than that in mixed decoction, directly resulted in the discrepancy between co-decoction and mixed decoction using both PCA and HCA. The observation from the pharmacokinetics displayed that the exposure level in vivo of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A, higher than that in single herbs, was the main factor contributing to the difference by both PCA and HCA, interestingly consistent with the results obtained from Caco-2 cells in vitro, which indicated that it was because of intestinal absorption improvement of neochlorogenic acid, 3, 4-dicaffeoylquinic acid, isoforsythoside and forsythoside A that resulted in a better efficacy of herb couple than that of single herbs from the perspective of biology. The results above illustrated that caffeic acid derivatives in Flos Lonicerae-Fructus Forsythiae herb couple could be considered as chemical markers for quality control of its preparations. PMID:25275510

  10. Rapid, sensitive, and validated UPLC/Q-TOF-MS method for quantitative determination of vasicine in Adhatoda vasica and its in vitro culture

    PubMed Central

    Madhukar, Garg; Tamboli, Ennus Tajuddin; Rabea, Parveen; Ansari, S. H.; Abdin, M. Z.; Sayeed, Ahmad

    2014-01-01

    Background: Adhatoda vasica a perennial herb has been used in Ayurvedic and Unani system of medicines since last 2000 years and has been employed for the treatment of respiratory tract ailments. Objective: To develop and validate new, rapid, and highly sensitive high throughput ultra-performance liquid chromatography/quadrupole-time-of-flight mass-spectrometry (UPLC/Q-TOF-MS) method for the quantitative estimation of vasicine in the leaves and to establish in vitro cultures of Adhatoda vasica for production of vasicine. Materials and Methods: The chromatographic separation was achieved on a Waters ACQUITY UPLC™ BEH C8 (100.0 × 2.1 mm; 1.7 μm) column packing using isocratic mobile phase consisting of acetonitrile: 20 mM ammonium acetate (90:10; v/v) in a multiple reactions monitoring mode using the transitions m/z 189.09 → 171.08 for vasicine. Results: The vasicine was eluted at 2.58 ± 0.05 min and established a dynamic range of linearity over the concentration range of 1-1000 ng/ml (r2 = 0.999 ± 0.0005). The lower limit of detection and quantification was 0.68 and 1.0 ng/ml, respectively. There was no significant difference observed in the content of vasicine (0.92-1.04%w/w) among the eleven samples collected from different locations of India. The in vitro cultures developed showed that addition of extra 28 mM KNO3 and 100 mM NaCl in MS medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) + benzyladenine (BA) + indole acetic acid (IAA) (1 ppm each) produces faster biomass and higher amount of quinazoline alkaloids. Conclusion: Rapid, efficient, and sensitive UPLC/Q-TOF-MS method was developed for the estimation of vasicine and an efficient protocol for development of in vitro cultures was proposed, which can be used at large scale for industrial production of vasicine using bioreactors. PMID:24914304

  11. Phosphinothricin Acetyltransferases Identified Using In Vivo, In Vitro, and Bioinformatic Analyses

    PubMed Central

    VanDrisse, Chelsey M.; Hentchel, Kristy L.

    2016-01-01

    ABSTRACT Acetylation of small molecules is widespread in nature, and in some cases, cells use this process to detoxify harmful chemicals. Streptomyces species utilize a Gcn5 N-acetyltransferase (GNAT), known as Bar, to acetylate and detoxify a self-produced toxin, phosphinothricin (PPT), a glutamate analogue. Bar homologues, such as MddA from Salmonella enterica, acetylate methionine analogues such as methionine sulfoximine (MSX) and methionine sulfone (MSO), but not PPT, even though Bar homologues are annotated as PPT acetyltransferases. S. enterica was used as a heterologous host to determine whether or not putative PPT acetyltransferases from various sources could acetylate PPT, MSX, and MSO. In vitro and in vivo analyses identified substrates acetylated by putative PPT acetyltransferases from Deinococcus radiodurans (DR_1057 and DR_1182) and Geobacillus kaustophilus (GK0593 and GK2920). In vivo, synthesis of DR_1182, GK0593, and GK2920 blocked the inhibitory effects of PPT, MSX, and MSO. In contrast, DR_1057 did not detoxify any of the above substrates. Results of in vitro studies were consistent with the in vivo results. In addition, phylogenetic analyses were used to predict the functionality of annotated PPT acetyltransferases in Burkholderia xenovorans, Bacillus subtilis, Staphylococcus aureus, Acinetobacter baylyi, and Escherichia coli. IMPORTANCE The work reported here provides an example of the use of a heterologous system for the identification of enzyme function. Many members of this superfamily of proteins do not have a known function, or it has been annotated solely on the basis of sequence homology to previously characterized enzymes. The critical role of Gcn5 N-acetyltransferases (GNATs) in the modulation of central metabolic processes, and in controlling metabolic stress, necessitates approaches that can reveal their physiological role. The combination of in vivo, in vitro, and bioinformatics approaches reported here identified GNATs that can acetylate and detoxify phosphinothricin. PMID:27694229

  12. alpha7 and non-alpha7 nicotinic acetylcholine receptors modulate dopamine release in vitro and in vivo in the rat prefrontal cortex.

    PubMed

    Livingstone, Phil D; Srinivasan, Jayaraman; Kew, James N C; Dawson, Lee A; Gotti, Cecilia; Moretti, Milena; Shoaib, Mohammed; Wonnacott, Susan

    2009-02-01

    Nicotine enhances attentional and working memory aspects of executive function in the prefrontal cortex (PFC) where dopamine plays a major role. Here, we have determined the nicotinic acetylcholine receptor (nAChR) subtypes that can modulate dopamine release in rat PFC using subtype-selective drugs. Nicotine and 5-Iodo-A-85380 (beta2* selective) elicited [(3)H]dopamine release from both PFC and striatal prisms in vitro and dopamine overflow from medial PFC in vivo. Blockade by dihydro-beta-erythroidine supports the participation of beta2* nAChRs. However, insensitivity of nicotine-evoked [(3)H]dopamine release to alpha-conotoxin-MII in PFC prisms suggests no involvement of alpha6beta2* nAChRs, in contrast to the striatum, and this distinction is supported by immunoprecipitation of nAChR subunits from these tissues. The alpha7 nAChR-selective agonists choline and Compound A also promoted dopamine release from PFC in vitro and in vivo, and their effects were enhanced by the alpha7 nAChR-selective allosteric potentiator PNU-120596 and blocked by specific antagonists. DNQX and MK801 inhibited [(3)H]dopamine release evoked by choline and PNU-120596, suggesting crosstalk between alpha7 nAChRs, glutamate and dopamine in the PFC. In vivo, systemic (but not local) administration of PNU-120596, in the absence of agonist, facilitated dopamine overflow in the medial PFC, consistent with the activation of extracortical alpha7 nAChRs by endogenous acetylcholine or choline. These data establish that both beta2* and alpha7 nAChRs can modulate dopamine release in the PFC in vitro and in vivo. Through their distinct actions on dopamine release, these nAChR subtypes could contribute to executive function, making them specific therapeutic targets for conditions such as schizophrenia and attention deficit hyperactivity disorder.

  13. Local Optogenetic Induction of Fast (20-40 Hz) Pyramidal-Interneuron Network Oscillations in the In Vitro and In Vivo CA1 Hippocampus: Modulation by CRF and Enforcement of Perirhinal Theta Activity.

    PubMed

    Dine, Julien; Genewsky, Andreas; Hladky, Florian; Wotjak, Carsten T; Deussing, Jan M; Zieglgänsberger, Walter; Chen, Alon; Eder, Matthias

    2016-01-01

    The neurophysiological processes that can cause theta-to-gamma frequency range (4-80 Hz) network oscillations in the rhinal cortical-hippocampal system and the potential connectivity-based interactions of such forebrain rhythms are a topic of intensive investigation. Here, using selective Channelrhodopsin-2 (ChR2) expression in mouse forebrain glutamatergic cells, we were able to locally, temporally precisely, and reliably induce fast (20-40 Hz) field potential oscillations in hippocampal area CA1 in vitro (at 25°C) and in vivo (i.e., slightly anesthetized NEX-Cre-ChR2 mice). As revealed by pharmacological analyses and patch-clamp recordings from pyramidal cells and GABAergic interneurons in vitro, these light-triggered oscillations can exclusively arise from sustained suprathreshold depolarization (~200 ms or longer) and feedback inhibition of CA1 pyramidal neurons, as being mandatory for prototypic pyramidal-interneuron network (P-I) oscillations. Consistently, the oscillations comprised rhythmically occurring population spikes (generated by pyramidal cells) and their frequency increased with increasing spectral power. We further demonstrate that the optogenetically driven CA1 oscillations, which remain stable over repeated evocations, are impaired by the stress hormone corticotropin-releasing factor (CRF, 125 nM) in vitro and, even more remarkably, found that they are accompanied by concurrent states of enforced theta activity in the memory-associated perirhinal cortex (PrC) in vivo. The latter phenomenon most likely derives from neurotransmission via a known, but poorly studied excitatory CA1→PrC pathway. Collectively, our data provide evidence for the existence of a prototypic (CRF-sensitive) P-I gamma rhythm generator in area CA1 and suggest that CA1 P-I oscillations can rapidly up-regulate theta activity strength in hippocampus-innervated rhinal networks, at least in the PrC.

  14. Influence of cortical synaptic input on striatal neuronal dendritic arborization and sensitivity to excitotoxicity in corticostriatal coculture.

    PubMed

    Buren, Caodu; Tu, Gaqi; Parsons, Matthew P; Sepers, Marja D; Raymond, Lynn A

    2016-08-01

    Corticostriatal cocultures are utilized to recapitulate the cortex-striatum connection in vitro as a convenient model to investigate the development, function, and regulation of synapses formed between cortical and striatal neurons. However, optimization of this dissociated neuronal system to more closely reproduce in vivo circuits has not yet been explored. We studied the effect of varying the plating ratio of cortical to striatal neurons on striatal spiny projection neuron (SPN) characteristics in primary neuronal cocultures. Despite the large difference in cortical-striatal neuron ratio (1:1 vs. 1:3) at day of plating, by 18 days in vitro the difference became modest (∼25% lower cortical-striatal neuron ratio in 1:3 cocultures) and the neuronal density was lower in the 1:3 cocultures, indicating enhanced loss of striatal SPNs. Comparing SPNs in cocultures plated at a 1:1 vs. 1:3 ratio, we found that resting membrane potential, input resistance, current injection-induced action potential firing rates, and input-output curves were similar in the two conditions. However, SPNs in the cocultures plated at the lower cortical ratio exhibited reduced membrane capacitance along with significantly shorter total dendritic length, decreased dendritic complexity, and fewer excitatory synapses, consistent with their trend toward reduced miniature excitatory postsynaptic current frequency. Strikingly, the proportion of NMDA receptors found extrasynaptically in recordings from SPNs was significantly higher in the less cortical coculture. Consistently, SPNs in cocultures with reduced cortical input showed decreased basal pro-survival signaling through cAMP response element binding protein and enhanced sensitivity to NMDA-induced apoptosis. Altogether, our study indicates that abundance of cortical input regulates SPN dendritic arborization and survival/death signaling. Copyright © 2016 the American Physiological Society.

  15. Development of in vitro models to demonstrate the ability of PecSys®, an in situ nasal gelling technology, to reduce nasal run-off and drip

    PubMed Central

    2013-01-01

    Many of the increasing number of intranasal products available for either local or systemic action can be considered sub-optimal, most notably where nasal drip or run-off give rise to discomfort/tolerability issues or reduced/variable efficacy. PecSys, an in situ gelling technology, contains low methoxy (LM) pectin which gels due to interaction with calcium ions present in nasal fluid. PecSys is designed to spray readily, only forming a gel on contact with the mucosal surface. The present study employed two in vitro models to confirm that gelling translates into a reduced potential for drip/run-off: (i) Using an inclined TLC plate treated with a simulated nasal electrolyte solution (SNES), mean drip length [±SD, n = 10] was consistently much shorter for PecSys (1.5 ± 0.4 cm) than non-gelling control (5.8 ± 1.6 cm); (ii) When PecSys was sprayed into a human nasal cavity cast model coated with a substrate containing a physiologically relevant concentration of calcium, PecSys solution was retained at the site of initial deposition with minimal redistribution, and no evidence of run-off/drip anteriorly or down the throat. In contrast, non-gelling control was significantly more mobile and consistently redistributed with run-off towards the throat. Conclusion In both models PecSys significantly reduced the potential for run-off/drip ensuring that more solution remained at the deposition site. In vivo, this enhancement of retention will provide optimum patient acceptability, modulate drug absorption and maximize the ability of drugs to be absorbed across the nasal mucosa and thus reduce variability in drug delivery. PMID:22803832

  16. Translating neurobehavioural endpoints of developmental neurotoxicity tests into in vitro assays and readouts

    PubMed Central

    van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel

    2011-01-01

    The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243

  17. Controlled delivery of basal insulin from phase-sensitive polymeric systems after subcutaneous administration: in vitro release, stability, biocompatibility, in vivo absorption, and bioactivity of insulin.

    PubMed

    Al-Tahami, Khaled; Oak, Mayura; Singh, Jagdish

    2011-06-01

    The purpose of this study was to investigate the phase-sensitive delivery systems (D,L-polylactide in triacetin) for controlled delivery of insulin at basal level. The effect of varying concentration of zinc, polymer, and insulin on the in vitro release of insulin was evaluated. Stability of released insulin was investigated by differential scanning calorimetry, circular dichroism, and matrix-assisted laser desorption/ionization time of flight mass spectrometry. In Vivo insulin absorption and bioactivity were studied in diabetic rats. In vitro and In Vivo biocompatibility of delivery systems were evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay and skin histology, respectively. Extended release profiles of insulin for 2, 4, and 8 weeks from delivery systems containing 20%, 30%, and 40% (w/v) polymer concentration was observed. A ratio of 1:5 insulin hexamer to zinc was shown to be optimum. Physical and chemical stability of released insulin was greatly conserved. In Vivo studies demonstrated controlled release of insulin with reduction in blood glucose for approximately 1 month. In vitro and In Vivo studies demonstrated that the delivery system was biocompatible and controlled the delivery of insulin for longer durations after single subcutaneous injection. Copyright © 2010 Wiley-Liss, Inc.

  18. Validation of an in vitro exposure system for toxicity assessment of air-delivered nanomaterials

    PubMed Central

    Kim, Jong Sung; Peters, Thomas M.; O’Shaughnessy, Patrick T.; Adamcakova-Dodd, Andrea; Thorne, Peter S.

    2013-01-01

    To overcome the limitations of in vitro exposure of submerged lung cells to nanoparticles (NPs), we validated an integrated low flow system capable of generating and depositing airborne NPs directly onto cells at an air–liquid interface (ALI). The in vitro exposure system was shown to provide uniform and controlled dosing of particles with 70.3% efficiency to epithelial cells grown on transwells. This system delivered a continuous airborne exposure of NPs to lung cells without loss of cell viability in repeated 4 h exposure periods. We sequentially exposed cells to air-delivered copper (Cu) NPs in vitro to compare toxicity results to our prior in vivo inhalation studies. The evaluation of cellular dosimetry indicated that a large amount of Cu was taken up, dissolved and released into the basolateral medium (62% of total mass). Exposure to Cu NPs decreased cell viability to 73% (p < 0.01) and significantly (p < 0.05) elevated levels of lactate dehydrogenase, intracellular reactive oxygen species and interleukin-8 that mirrored our findings from subacute in vivo inhalation studies in mice. Our results show that this exposure system is useful for screening of NP toxicity in a manner that represents cellular responses of the pulmonary epithelium in vivo. PMID:22981796

  19. The ability of in vitro antioxidant assays to predict the efficiency of a cod protein hydrolysate and brown seaweed extract to prevent oxidation in marine food model systems.

    PubMed

    Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid

    2016-04-01

    The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.

  20. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System

    PubMed Central

    Guo, Xiufang; Greene, Keshel; Akanda, Nesar; Smith, Alec; Stancescu, Maria; Lambert, Stephen; Vandenburgh, Herman; Hickman, James

    2013-01-01

    In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy. PMID:24516722

Top