Nesslany, Fabrice
2017-08-01
The standard regulatory core battery of genotoxicity tests generally includes 2 or 3 validated tests with at least one in vitro test in bacteria and one in vitro test on cell cultures. However, limitations in in vitro genotoxicity testing may exist at many levels. The knowledge of the underlying mechanisms of genotoxicity is particularly useful to assess the level of relevance for the in vivo situation. In order to avoid wrong conclusions regarding the actual genotoxicity status of any test substance, it appears very important to be aware of the various origins of related bias leading to 'false positives and negatives' by using in vitro methods. Among these, mention may be made on the metabolic activation system, experimental (extreme) conditions, specificities of the test systems implemented, cell type used etc. The knowledge of the actual 'limits' of the in vitro test systems used is clearly an advantage and may contribute to avoid some pitfalls in order to better assess the level of relevance for the in vivo situation. Copyright © 2016. Published by Elsevier Ltd.
Accelerated in-vitro release testing methods for extended-release parenteral dosage forms.
Shen, Jie; Burgess, Diane J
2012-07-01
This review highlights current methods and strategies for accelerated in-vitro drug release testing of extended-release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in-situ depot-forming systems and implants. Extended-release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, 'real-time' in-vitro release tests for these dosage forms are often run over a long time period. Accelerated in-vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in-vitro release methods using United States Pharmacopeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended-release parenteral dosage forms, along with the accelerated in-vitro release testing methods currently employed are discussed. Accelerated in-vitro release testing methods with good discriminatory ability are critical for quality control of extended-release parenteral products. Methods that can be used in the development of in-vitro-in-vivo correlation (IVIVC) are desirable; however, for complex parenteral products this may not always be achievable. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Accelerated in vitro release testing methods for extended release parenteral dosage forms
Shen, Jie; Burgess, Diane J.
2012-01-01
Objectives This review highlights current methods and strategies for accelerated in vitro drug release testing of extended release parenteral dosage forms such as polymeric microparticulate systems, lipid microparticulate systems, in situ depot-forming systems, and implants. Key findings Extended release parenteral dosage forms are typically designed to maintain the effective drug concentration over periods of weeks, months or even years. Consequently, “real-time” in vitro release tests for these dosage forms are often run over a long time period. Accelerated in vitro release methods can provide rapid evaluation and therefore are desirable for quality control purposes. To this end, different accelerated in vitro release methods using United States Pharmacopoeia (USP) apparatus have been developed. Different mechanisms of accelerating drug release from extended release parenteral dosage forms, along with the accelerated in vitro release testing methods currently employed are discussed. Conclusions Accelerated in vitro release testing methods with good discriminatory ability are critical for quality control of extended release parenteral products. Methods that can be used in the development of in vitro-in vivo correlation (IVIVC) are desirable, however for complex parenteral products this may not always be achievable. PMID:22686344
40 CFR 798.5375 - In vitro mammalian cytogenetics.
Code of Federal Regulations, 2014 CFR
2014-07-01
... mammalian cytogenetics. (a) Purpose. The in vitro cytogenetics test is a mutagenicity test system for the... first post-treatment mitosis and numerical aberrations require at least one cell division to be... chromatids. (c) Reference substances. Not applicable. (d) Test method—(1) Principle. In vitro cytogenetics...
Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taxvig, Camilla, E-mail: camta@food.dtu.dk; Olesen, Pelle Thonning; Nellemann, Christine
2011-02-01
Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenousmore » metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects.« less
Applying fiber optical methods for toxicological testing in vitro
NASA Astrophysics Data System (ADS)
Maerz, Holger K.; Buchholz, Rainer; Emmrich, Frank; Fink, Frank; Geddes, Clive L.; Pfeifer, Lutz; Raabe, Ferdinand; Scheper, Thomas-Helmut; Ulrich, Elizabeth; Marx, Uwe
1999-04-01
The new medical developments, e.g. immune therapy, patient oriented chemotherapy or even gene therapy, create a questionable doubt to the further requirement of animal test. Instead the call for humanitarian reproductive in vitro models becomes increasingly louder. Pharmaceutical usage of in vitro has a long proven history. In cancer research and therapy, the effect of chemostatica in vitro in the so-called oncobiogram is being tested; but the assays do not always correlate with in vivo-like drug resistance and sensitivity. We developed a drug test system in vitro, feasible for therapeutic drug monitoring by the combination of tissue cultivation in hollow fiber bioreactors and fiber optic sensors for monitoring the pharmaceutical effect. Using two fiber optic sensors - an optical oxygen sensor and a metabolism detecting Laserfluoroscope, we were able to successfully monitor the biological status of tissue culture and the drug or toxic effects of in vitro pharmaceutical testing. Furthermore, we developed and patented a system for monitoring the effect of minor toxic compounds which can induce Sick Building Syndrome.
Use of external metabolizing systems when testing for endocrine disruption in the T-screen assay.
Taxvig, Camilla; Olesen, Pelle Thonning; Nellemann, Christine
2011-02-01
Although, it is well-established that information on the metabolism of a substance is important in the evaluation of its toxic potential, there is limited experience with incorporating metabolic aspects into in vitro tests for endocrine disrupters. The aim of the current study was a) to study different in vitro systems for biotransformation of ten known endocrine disrupting chemicals (EDs): five azole fungicides, three parabens and 2 phthalates, b) to determine possible changes in the ability of the EDs to bind and activate the thyroid receptor (TR) in the in vitro T-screen assay after biotransformation and c) to investigate the endogenous metabolic capacity of the GH3 cells, the cell line used in the T-screen assay, which is a proliferation assay used for the in vitro detection of agonistic and antagonistic properties of compounds at the level of the TR. The two in vitro metabolizing systems tested the human liver S9 mix and the PCB-induced rat microsomes gave an almost complete metabolic transformation of the tested parabens and phthalates. No marked difference the effects in the T-screen assay was observed between the parent compounds and the effects of the tested metabolic extracts. The GH3 cells themselves significantly metabolized the two tested phthalates dimethyl phthalate (DMP) and diethyl phthalate (DEP). Overall the results and qualitative data from the current study show that an in vitro metabolizing system using liver S9 or microsomes could be a convenient method for the incorporation of metabolic and toxicokinetic aspects into in vitro testing for endocrine disrupting effects. Copyright © 2010 Elsevier Inc. All rights reserved.
An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.
Jug, Mario; Hafner, Anita; Lovrić, Jasmina; Kregar, Maja Lusina; Pepić, Ivan; Vanić, Željka; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena
2018-01-05
In vitro dissolution/release tests are an important tool in the drug product development phase as well as in its quality control and the regulatory approval process. Mucosal drug delivery systems are aimed to provide both local and systemic drug action via mucosal surfaces of the body and exhibit significant differences in formulation design, as well as in their physicochemical and release characteristics. Therefore it is not possible to devise a single test system which would be suitable for release testing of such complex dosage forms. This article is aimed to provide a comprehensive review of both compendial and noncompendial methods used for in vitro dissolution/release testing of novel mucosal drug delivery systems aimed for ocular, nasal, oromucosal, vaginal and rectal administration. Copyright © 2017 Elsevier B.V. All rights reserved.
21 CFR 866.5180 - Fecal calprotectin immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... immunological test system is an in vitro diagnostic device that consists of reagents used to quantitatively measure, by immunochemical techniques, fecal calprotectin in human stool specimens. The device is intended forin vitro diagnostic use as an aid in the diagnosis of inflammatory bowel diseases (IBD), specifically...
Identifying the potential health hazards to the central nervous system of a new family of materials presents many challenges. Whole-animal toxicity testing has been the tradition, but in vitro methods have been steadily gaining popularity. There are numerous challenges in testing...
40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.
Code of Federal Regulations, 2013 CFR
2013-07-01
... demonstrates the sensitivity of the test system. Positive control concentrations should be chosen so that the.... et al. Report from Working Group on In Vitro Tests for Chromosomal Aberrations. Mutation Research 312... aberration test. 799.9537 Section 799.9537 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model
Jackson, George R.; Maione, Anna G.; Klausner, Mitchell
2018-01-01
Abstract Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal (in vitro) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1–2 and EPA Acute Inhalation Toxicity Category I–II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity. PMID:29904643
Prevalidation of an Acute Inhalation Toxicity Test Using the EpiAirway In Vitro Human Airway Model.
Jackson, George R; Maione, Anna G; Klausner, Mitchell; Hayden, Patrick J
2018-06-01
Introduction: Knowledge of acute inhalation toxicity potential is important for establishing safe use of chemicals and consumer products. Inhalation toxicity testing and classification procedures currently accepted within worldwide government regulatory systems rely primarily on tests conducted in animals. The goal of the current work was to develop and prevalidate a nonanimal ( in vitro ) test for determining acute inhalation toxicity using the EpiAirway™ in vitro human airway model as a potential alternative for currently accepted animal tests. Materials and Methods: The in vitro test method exposes EpiAirway tissues to test chemicals for 3 hours, followed by measurement of tissue viability as the test endpoint. Fifty-nine chemicals covering a broad range of toxicity classes, chemical structures, and physical properties were evaluated. The in vitro toxicity data were utilized to establish a prediction model to classify the chemicals into categories corresponding to the currently accepted Globally Harmonized System (GHS) and the Environmental Protection Agency (EPA) system. Results: The EpiAirway prediction model identified in vivo rat-based GHS Acute Inhalation Toxicity Category 1-2 and EPA Acute Inhalation Toxicity Category I-II chemicals with 100% sensitivity and specificity of 43.1% and 50.0%, for GHS and EPA acute inhalation toxicity systems, respectively. The sensitivity and specificity of the EpiAirway prediction model for identifying GHS specific target organ toxicity-single exposure (STOT-SE) Category 1 human toxicants were 75.0% and 56.5%, respectively. Corrosivity and electrophilic and oxidative reactivity appear to be the predominant mechanisms of toxicity for the most highly toxic chemicals. Conclusions: These results indicate that the EpiAirway test is a promising alternative to the currently accepted animal tests for acute inhalation toxicity.
Nakagawa, Yukari; Maeda, Hideko; Murai, Toshimi
2002-01-01
The reliability of an in vitro pyrogen test system based on proinflammatory cytokine release from human monocytic cells was assessed by comparison with a test system based on a human whole blood culture as well as with the conventional rabbit pyrogen test. The human cells used as the pyrogen indicator cells were newly selected by subcloning of a human monocytic cell line, Mono-Mac-6. The selected cells, named MM6-CA8, responded to various pyrogens, including endotoxin, peptidoglycan (PG), Staphylococcus aureus Cowan 1 (SAC), and poly(I · C), with a high sensitivity and produced proinflammatory cytokines, such as interleukin 1 (IL-1), IL-6, and tumor necrosis factor alpha. Among these cytokines, IL-6 was produced most sensitively in response to traces of the pyrogens and detected in the largest quantities in the culture medium. The cytokine-producing responses of MM6-CA8 cells correlated significantly with the responses of cultured human whole blood, which represents an ex vivo culture test system reproducing pyrogen-induced cytokine production in the human body. In terms of cytokine inducibility, the pyrogens were ranked in the order endotoxin > PG > poly (I · C) > SAC in both culture systems, a ranking which almost agreed with the ranking of their pyrogenicity as assessed by the rabbit pyrogen test. These results suggest that the in vitro responsiveness of MM6-CA8 cells to various pyrogens is highly relevant for human pyrogenic reactions. Therefore, the in vitro test system is useful and reliable for detecting the presence of materials that are pyrogenic for humans. PMID:11986265
Legislation and prospective legislative proposals internationally (may) require that chemicals are tested for their ability to disrupt the hormonal systems of animals. Chemicals found to test positive in vitro are considered to be endocrine active substances (EAS) and may be puta...
Legistation and prospective legislative proposals internationally (may) require that chemicals be tested for their ability to disrupt the hormonal systems of mammals. Chemicals found to test positive in vitro are considered to be endocrine active substances (EAS) and may be puta...
In vitro assessment of biodurability: acellular systems.
de Meringo, A; Morscheidt, C; Thélohan, S; Tiesler, H
1994-01-01
The assessment of biodurability of man-made vitreous fibers is essential to the limitation of health hazards associated with human exposure to environments in which respirable fibers are present. In vitro acellular systems provide effective test methods of measuring fiber solubility provided care is taken to select the most suitable solvent and test conditions for the specific fiber type and dimension. PMID:7882955
Varadarajan, Kartik M; Harry, Rubash E; Johnson, Todd; Li, Guoan
2009-10-01
In vitro systems provide a powerful means to evaluate the efficacy of total knee arthroplasty (TKA) in restoring normal knee kinematics. The Oxford knee rig (OKR) and the robotic knee testing system (RKTS) represent two systems that have been extensively used to study TKA biomechanics. Nonetheless, a frequently asked question is whether in vitro simulations can capture the in vivo behavior of the knee. Here, we compared the flexion-extension kinematics of intact knees and knees after TKA tested on the OKR and RKTS, to results of representative in vivo studies. The goal was to determine if the in vitro systems could capture the key kinematic features of knees in healthy subjects and TKA patients. Results showed that the RKTS and the OKR can replicate the femoral rollback and 'screw home' tibial rotation between 0 degrees and 30 degrees flexion seen in healthy subjects, and the reduced femoral rollback and absence of 'screw home' motion in TKA patients. The RKTS also replicated the overall internally rotated position of the tibia beyond 30 degrees flexion. However, ability of the OKR to replicate the internally rotated position of the knee beyond 30 degrees flexion was inconsistent. These data could aid in validation of new in vitro systems and physiologic interpretations of in vitro results.
Weaver, Richard J; Betts, Catherine; Blomme, Eric A G; Gerets, Helga H J; Gjervig Jensen, Klaus; Hewitt, Philip G; Juhila, Satu; Labbe, Gilles; Liguori, Michael J; Mesens, Natalie; Ogese, Monday O; Persson, Mikael; Snoeys, Jan; Stevens, James L; Walker, Tracy; Park, B Kevin
2017-07-01
The liver is an important target for drug-induced toxicities. Early detection of hepatotoxic drugs requires use of well-characterized test systems, yet current knowledge, gaps and limitations of tests employed remains an important issue for drug development. Areas Covered: The current state of the science, understanding and application of test systems in use for the detection of drug-induced cytotoxicity, mitochondrial toxicity, cholestasis and inflammation is summarized. The test systems highlighted herein cover mostly in vitro and some in vivo models and endpoint measurements used in the assessment of small molecule toxic liabilities. Opportunities for research efforts in areas necessitating the development of specific tests and improved mechanistic understanding are highlighted. Expert Opinion: Use of in vitro test systems for safety optimization will remain a core activity in drug discovery. Substantial inroads have been made with a number of assays established for human Drug-induced Liver Injury. There nevertheless remain significant gaps with a need for improved in vitro tools and novel tests to address specific mechanisms of human Drug-Induced Liver Injury. Progress in these areas will necessitate not only models fit for application, but also mechanistic understanding of how chemical insult on the liver occurs in order to identify translational and quantifiable readouts for decision-making.
We compared various in vitro exposure systems for their ability to expose cells to particles and gases. The systems tested use different mechanisms to deliver multi-pollutants to the cells: diffusion, sedimentation, thermophoresis (THP) and electrostatic precipitation (ESP). Vari...
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-05-07
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ∼21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.
Schmidt, Béla Z; Lehmann, Martin; Gutbier, Simon; Nembo, Erastus; Noel, Sabrina; Smirnova, Lena; Forsby, Anna; Hescheler, Jürgen; Avci, Hasan X; Hartung, Thomas; Leist, Marcel; Kobolák, Julianna; Dinnyés, András
2017-01-01
Neurotoxicity and developmental neurotoxicity are important issues of chemical hazard assessment. Since the interpretation of animal data and their extrapolation to man is challenging, and the amount of substances with information gaps exceeds present animal testing capacities, there is a big demand for in vitro tests to provide initial information and to prioritize for further evaluation. During the last decade, many in vitro tests emerged. These are based on animal cells, human tumour cell lines, primary cells, immortalized cell lines, embryonic stem cells, or induced pluripotent stem cells. They differ in their read-outs and range from simple viability assays to complex functional endpoints such as neural crest cell migration. Monitoring of toxicological effects on differentiation often requires multiomics approaches, while the acute disturbance of neuronal functions may be analysed by assessing electrophysiological features. Extrapolation from in vitro data to humans requires a deep understanding of the test system biology, of the endpoints used, and of the applicability domains of the tests. Moreover, it is important that these be combined in the right way to assess toxicity. Therefore, knowledge on the advantages and disadvantages of all cellular platforms, endpoints, and analytical methods is essential when establishing in vitro test systems for different aspects of neurotoxicity. The elements of a test, and their evaluation, are discussed here in the context of comprehensive prediction of potential hazardous effects of a compound. We summarize the main cellular characteristics underlying neurotoxicity, present an overview of cellular platforms and read-out combinations assessing distinct parts of acute and developmental neurotoxicology, and highlight especially the use of stem cell-based test systems to close gaps in the available battery of tests.
Organotypic liver culture models: Meeting current challenges in toxicity testing
LeCluyse, Edward L.; Witek, Rafal P.; Andersen, Melvin E.; Powers, Mark J.
2012-01-01
Prediction of chemical-induced hepatotoxicity in humans from in vitro data continues to be a significant challenge for the pharmaceutical and chemical industries. Generally, conventional in vitro hepatic model systems (i.e. 2-D static monocultures of primary or immortalized hepatocytes) are limited by their inability to maintain histotypic and phenotypic characteristics over time in culture, including stable expression of clearance and bioactivation pathways, as well as complex adaptive responses to chemical exposure. These systems are less than ideal for longer-term toxicity evaluations and elucidation of key cellular and molecular events involved in primary and secondary adaptation to chemical exposure, or for identification of important mediators of inflammation, proliferation and apoptosis. Progress in implementing a more effective strategy for in vitro-in vivo extrapolation and human risk assessment depends on significant advances in tissue culture technology and increasing their level of biological complexity. This article describes the current and ongoing need for more relevant, organotypic in vitro surrogate systems of human liver and recent efforts to recreate the multicellular architecture and hemodynamic properties of the liver using novel culture platforms. As these systems become more widely used for chemical and drug toxicity testing, there will be a corresponding need to establish standardized testing conditions, endpoint analyses and acceptance criteria. In the future, a balanced approach between sample throughput and biological relevance should provide better in vitro tools that are complementary with animal testing and assist in conducting more predictive human risk assessment. PMID:22582993
Testing ocular irritancy in vitro with the silicon microphysiometer.
Bruner, L H; Miller, K R; Owicki, J C; Parce, J W; Muir, V C
1991-01-01
The silicon microphysiometer, an instrument based on the light-addressable potentiometric sensor, was evaluated as an in vitro alternative for assessing ocular irritancy potential. It indirectly and non-invasively measures cell metabolism by determining the rate of acid metabolite production from cells, in this case human epidermal keratinocytes, placed inside the microphysiometer chamber. The 17 materials used for the evaluation included bar soaps, a liquid hand soap, shampoos, dishwashing liquids, laundry detergents, a fabric softener and several single chemicals. All materials tested were in liquid form. The in vivo irritancy potential of the materials was obtained from historical data using the rabbit low-volume eye test. There was a positive correlation between the in vivo irritancy potential of the test materials and the concentration of test material that decreased the acidification rate of cells by 50% (MRD(50); r = 0.86, P < 0.0001). Preliminary studies suggest other endpoints obtainable from the system may also provide useful information for making ocular safety assessments. Because the method is non-invasive, it is possible to determine whether cells recover from a treatment with the test material. The metabolic rate of the cells also increases at sub-inhibitory concentrations of some of the test materials. Because of the good correlation between the in vivo and in vitro data, the ease with which test materials can be applied to the system, and the multiple endpoints available from the system, it holds great potential as a useful in vitro alternative for ocular safety testing.
NASA Astrophysics Data System (ADS)
Li, Mengmeng; Wang, Shiwen; Jiang, Jia; Sun, Jiashu; Li, Yuzhuo; Huang, Deyong; Long, Yun-Ze; Zheng, Wenfu; Chen, Shiyi; Jiang, Xingyu
2015-04-01
The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction.The Ligament Advanced Reinforcement System (LARS) has been considered as a promising graft for ligament reconstruction. To improve its biocompatibility and effectiveness on new bone formation, we modified the surface of a polyethylene terephthalate (PET) ligament with nanoscale silica using atom transfer radical polymerization (ATRP) and silica polymerization. The modified ligament is tested by both in vitro and in vivo experiments. Human osteoblast testing in vitro exhibits an ~21% higher value in cell viability for silica-modified grafts compared with original grafts. Animal testing in vivo shows that there is new formed bone in the case of a nanoscale silica-coated ligament. These results demonstrate that our approach for nanoscale silica surface modification on LARS could be potentially applied for ligament reconstruction. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr01439e
Testing of Safety-Critical Software Embedded in an Artificial Heart
NASA Astrophysics Data System (ADS)
Cha, Sungdeok; Jeong, Sehun; Yoo, Junbeom; Kim, Young-Gab
Software is being used more frequently to control medical devices such as artificial heart or robotic surgery system. While much of software safety issues in such systems are similar to other safety-critical systems (e.g., nuclear power plants), domain-specific properties may warrant development of customized techniques to demonstrate fitness of the system on patients. In this paper, we report results of a preliminary analysis done on software controlling a Hybrid Ventricular Assist Device (H-VAD) developed by Korea Artificial Organ Centre (KAOC). It is a state-of-the-art artificial heart which completed animal testing phase. We performed software testing in in-vitro experiments and animal experiments. An abnormal behaviour, never detected during extensive in-vitro analysis and animal testing, was found.
Wang, Juan; Smith, Christopher E.; Sankar, Jagannathan; Yun, Yeoheung; Huang, Nan
2015-01-01
Absorbable metals have been widely tested in various in vitro settings using cells to evaluate their possible suitability as an implant material. However, there exists a gap between in vivo and in vitro test results for absorbable materials. A lot of traditional in vitro assessments for permanent materials are no longer applicable to absorbable metallic implants. A key step is to identify and test the relevant microenvironment and parameters in test systems, which should be adapted according to the specific application. New test methods are necessary to reduce the difference between in vivo and in vitro test results and provide more accurate information to better understand absorbable metallic implants. In this investigative review, we strive to summarize the latest test methods for characterizing absorbable magnesium-based stent for bioabsorption/biodegradation behavior in the mimicking vascular environments. Also, this article comprehensively discusses the direction of test standardization for absorbable stents to paint a more accurate picture of the in vivo condition around implants to determine the most important parameters and their dynamic interactions. PMID:26816631
Alépée, N; Hibatallah, J; Klaric, M; Mewes, K R; Pfannenbecker, U; McNamee, P
2016-06-01
Cosmetics Europe recently established HPLC/UPLC-spectrophotometry as a suitable alternative endpoint detection system for measurement of formazan in the MTT-reduction assay of reconstructed human tissue test methods irrespective of the test system involved. This addressed a known limitation for such test methods that use optical density for measurement of formazan and may be incompatible for evaluation of strong MTT reducer and/or coloured chemicals. To build on the original project, Cosmetics Europe has undertaken a second study that focuses on evaluation of chemicals with functionalities relevant to cosmetic products. Such chemicals were primarily identified from the Scientific Committee on Consumer Safety (SCCS) 2010 memorandum (addendum) on the in vitro test EpiSkin™ for skin irritation testing. Fifty test items were evaluated in which both standard photometry and HPLC/UPLC-spectrophotometry were used for endpoint detection. The results obtained in this study: 1) provide further support for Within Laboratory Reproducibility of HPLC-UPLC-spectrophotometry for measurement of formazan; 2) demonstrate, through use a case study with Basazol C Blue pr. 8056, that HPLC/UPLC-spectrophotometry enables determination of an in vitro classification even when this is not possible using standard photometry and 3) addresses the question raised by SCCS in their 2010 memorandum (addendum) to consider an endpoint detection system not involving optical density quantification in in vitro reconstructed human epidermis skin irritation test methods. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lan, Shih-Feng; Starly, Binil
2011-10-01
Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10(5)-10(8) cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT(50)) using commercially available drugs which further correlated well with published in vivo LD(50) values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
Comparison of in vitro activity of undecylenic acid and tolnaftate against athlete's foot fungi.
Amsel, L P; Cravitz, L; VanderWyk, R; Zahry, S
1979-03-01
Undecylenic acid and tolnaftate were tested in an in vitro test system to evaluate their relative "killing time" efficacy against Trichophyton mentagrophytes, Trichophyton rubrum, and Epidermophyton floccosum. Commercial products containing these active agents were tested similarly. The pure active agents were equivalent in activity. The commercial product containing undecylenic acid appeared to be more effective against the test organisms than did the product containing tolnaftate.
There is a need for more efficient and cost-effective methods for identifying, characterizing and prioritizing chemicals which may result in developmental neurotoxicity. One approach is to utilize in vitro test systems which recapitulate the critical processes of nervous system d...
Validation of artificial skin equivalents as in vitro testing systems
NASA Astrophysics Data System (ADS)
Schmitt, Robert; Marx, Ulrich; Walles, Heike; Schober, Lena
2011-03-01
With the increasing complexity of the chemical composition of pharmaceuticals, cosmetics and everyday substances, the awareness of potential health issues and long term damages for humanoid organs is shifting into focus. Artificial in vitro testing systems play an important role in providing reliable test conditions and replacing precarious animal testing. Especially artificial skin equivalents ASEs are used for a broad spectrum of studies like penetration, irritation and corrosion of substances. One major challenge in tissue engineering is the qualification of each individual ASE as in vitro testing system. Due to biological fluctuations, the stratum corneum hornified layer of some ASEs may not fully develop or other defects might occur. For monitoring these effects we developed an fully automated Optical Coherence Tomography device. Here, we present different methods to characterize and evaluate the quality of the ASEs based on image and data processing of OCT B-scans. By analysing the surface structure, defects, like cuts or tears, are detectable. A further indicator for the quality of the ASE is the morphology of the tissue. This allows to determine if the skin model has reached the final growth state. We found, that OCT is a well suited technology for automatically characterizing artificial skin equivalents and validating the application as testing system.
Spielmann, Horst; Grune, Barbara; Liebsch, Manfred; Seiler, Andrea; Vogel, Richard
2008-06-01
A short description of the history of the 3Rs concept is given, which was developed as the scientific concept to refine, reduce and replace animal experiments by Russel and Burch more than 40 years ago. In addition, the legal framework in Europe for developing alternatives to animal experiments is given and the current status of in vitro systems in pharmacology and toxicology is described including an update on metabolising systems. The decrease in experimental animal numbers during the past decade in Europe is illustrated by the situation in Germany and the contribution of international harmonisation of test guidelines on reducing animal numbers in regulatory testing is described. A review of the development of the principles of experimental validation is given and the 3T3 NRU in vitro phototoxicity test is used as an example for a successful validation study, which led to the acceptance of the first in vitro toxicity test for regulatory purposes by the OECD. Finally, the currently accepted alternative methods for standardisation and safety testing of drugs, biologicals and medical devices are summarised.
Blanca, M; Mayorga, C; Torres, M J; Reche, M; Moya, M C; Rodriguez, J L; Romano, A; Juarez, C
2001-09-01
The diagnosis of IgE-mediated immediate reactions to penicillins can be supported by in vivo or in vitro tests using classical benzylpenicillin determinants. The wide variety of beta-lactams and the description of new specificities requires a re-evaluation of the different tests available. The objective was to evaluate the diagnostic capacity of Pharmacia CAP System RAST FEIA amoxicilloyl c6 (AXO) and benzylpenicilloyl c1 (BPO) in patients with a documented IgE-mediated penicillin allergy. We studied 129 patients in five groups. Groups 1, 2, and 3 had developed an immediate reaction after penicillin treatment. Group 1 (n=19) were skin test positive to amoxicillin (AX) and/or BPO and/or minor determinant mixture (MDM); group 2 (n=29) were skin test positive to AX but negative to BPO and MDM; and group 3 (n=26) were skin test negative to all determinants, the diagnosis being confirmed by a previous repetitive history or controlled administration. Two control groups, one with nonimmediate reactions -- group 4 (n=25) -- and one with good tolerance to penicillin -- group 5 (n=30) -- were included. All samples were analyzed in vitro for AXO and BPO, and the results compared to the in vivo diagnosis. AX was the drug most often involved. In group 1, 53% were in vitro positive for AXO and 68% for BPO, but 74% had at least one positive test result. In group 2, only 10% had a positive in vitro test to BPO compared to 41% to AXO. In group 3, 42% had positive BPO and/or AXO in vitro tests. In the control groups 4 and 5, the negative in vitro results for AXO were 96% and 100%, and for BPO 100% and 97%, respectively. A positive correlation between specific IgE levels and the time interval from the reaction to the evaluation was found only for group 3. This in vitro assay is beneficial for evaluating subjects allergic to beta-lactams. It is necessary to test for specific IgE to AXO in addition to BPO in patients with immediate allergic reactions after AX. The combination of in vivo and in vitro tests for estimating IgE antibodies to penicillins is important because of the existence of patients with a positive history but negative skin test.
Trends in the development of microfluidic cell biochips for in vitro hepatotoxicity.
Baudoin, Régis; Corlu, Anne; Griscom, Laurent; Legallais, Cécile; Leclerc, Eric
2007-06-01
Current developments in the technological fields of liver tissue engineering, bioengineering, biomechanics, microfabrication and microfluidics have lead to highly complex and pertinent new tools called "cell biochips" for in vitro toxicology. The purpose of "cell biochips" is to mimic organ tissues in vitro in order to partially reduce the amount of in vivo testing. These "cell biochips" consist of microchambers containing engineered tissue and living cell cultures interconnected by a microfluidic network, which allows the control of microfluidic flows for dynamic cultures, by continuous feeding of nutrients to cultured cells and waste removal. Cell biochips also allow the control of physiological contact times of diluted molecules with the tissues and cells, for rapid testing of sample preparations or specific addressing. Cell biochips can be situated between in vitro and in vivo testing. These types of systems can enhance functionality of cells by mimicking the tissue architecture complexities when compared to in vitro analysis but at the same time present a more rapid and simple process when compared to in vivo testing procedures. In this paper, we first introduce the concepts of microfluidic and biochip systems based on recent progress in microfabrication techniques used to mimic liver tissue in vitro. This includes progress and understanding in biomaterials science (cell culture substrate), biomechanics (dynamic cultures conditions) and biology (tissue engineering). The development of new "cell biochips" for chronic toxicology analysis of engineered tissues can be achieved through the combination of these research domains. Combining these advanced research domains, we then present "cell biochips" that allow liver chronic toxicity analysis in vitro on engineered tissues. An extension of the "cell biochip" idea has also allowed "organ interactions on chip", which can be considered as a first step towards the replacement of animal testing using a combined liver/lung organ model.
Alépée, N; Barroso, J; De Smedt, A; De Wever, B; Hibatallah, J; Klaric, M; Mewes, K R; Millet, M; Pfannenbecker, U; Tailhardat, M; Templier, M; McNamee, P
2015-06-01
A number of in vitro test methods using Reconstructed human Tissues (RhT) are regulatory accepted for evaluation of skin corrosion/irritation. In such methods, test chemical corrosion/irritation potential is determined by measuring tissue viability using the photometric MTT-reduction assay. A known limitation of this assay is possible interference of strongly coloured test chemicals with measurement of formazan by absorbance (OD). To address this, Cosmetics Europe evaluated use of HPLC/UPLC-spectrophotometry as an alternative formazan measurement system. Using the approach recommended by the FDA guidance for validation of bio-analytical methods, three independent laboratories established and qualified their HPLC/UPLC-spectrophotometry systems to reproducibly measure formazan from tissue extracts. Up to 26 chemicals were then tested in RhT test systems for eye/skin irritation and skin corrosion. Results support that: (1) HPLC/UPLC-spectrophotometry formazan measurement is highly reproducible; (2) formazan measurement by HPLC/UPLC-spectrophotometry and OD gave almost identical tissue viabilities for test chemicals not exhibiting colour interference nor direct MTT reduction; (3) independent of the test system used, HPLC/UPLC-spectrophotometry can measure formazan for strongly coloured test chemicals when this is not possible by absorbance only. It is therefore recommended that HPLC/UPLC-spectrophotometry to measure formazan be included in the procedures of in vitro RhT-based test methods, irrespective of the test system used and the toxicity endpoint evaluated to extend the applicability of these test methods to strongly coloured chemicals. Copyright © 2015 Elsevier Ltd. All rights reserved.
21 CFR 866.6030 - AFP-L3% immunological test system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... system is an in vitro device that consists of reagents and an automated instrument used to quantitatively measure, by immunochemical techniques, AFP and AFP-L3 subfraction in human serum. The device is intended for in vitro diagnostic use as an aid in the risk assessment of patients with chronic liver disease...
Protein Binding: Do We Ever Learn?▿
Zeitlinger, Markus A.; Derendorf, Hartmut; Mouton, Johan W.; Cars, Otto; Craig, William A.; Andes, David; Theuretzbacher, Ursula
2011-01-01
Although the influence of protein binding (PB) on antibacterial activity has been reported for many antibiotics and over many years, there is currently no standardization for pharmacodynamic models that account for the impact of protein binding of antimicrobial agents in vitro. This might explain the somewhat contradictory results obtained from different studies. Simple in vitro models which compare the MIC obtained in protein-free standard medium versus a protein-rich medium are prone to methodological pitfalls and may lead to flawed conclusions. Within in vitro test systems, a range of test conditions, including source of protein, concentration of the tested antibiotic, temperature, pH, electrolytes, and supplements may influence the impact of protein binding. As new antibiotics with a high degree of protein binding are in clinical development, attention and action directed toward the optimization and standardization of testing the impact of protein binding on the activity of antibiotics in vitro become even more urgent. In addition, the quantitative relationship between the effects of protein binding in vitro and in vivo needs to be established, since the physiological conditions differ. General recommendations for testing the impact of protein binding in vitro are suggested. PMID:21537013
Kirkland, David; Reeve, Lesley; Gatehouse, David; Vanparys, Philippe
2011-03-18
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit. Copyright © 2011 Elsevier B.V. All rights reserved.
Press, Barry
2011-01-01
In vitro permeability assays are a valuable tool for scientists during lead compound optimization. As a majority of discovery projects are focused on the development of orally bioavailable drugs, correlation of in vitro permeability data to in vivo absorption results is critical for understanding the structural-physicochemical relationship (SPR) of drugs exhibiting low levels of absorption. For more than a decade, the Caco-2 screening assay has remained a popular, in vitro system to test compounds for both intestinal permeability and efflux liability. Despite advances in artificial membrane technology and in silico modeling systems, drug compounds still benefit from testing in cell-based epithelial monolayer assays for lead optimization. This chapter provides technical information for performing and optimizing the Caco-2 assay. In addition, techniques are discussed for dealing with some of the most pressing issues surrounding in vitro permeability assays (i.e., low aqueous solubility of test compounds and low postassay recovery). Insights are offered to help researchers avoid common pitfalls in the interpretation of in vitro permeability data, which can often lead to the perception of misleading results for correlation to in vivo data.
Biohybrid Membrane Systems and Bioreactors as Tools for In Vitro Drug Testing.
Salerno, Simona; Bartolo, Loredana De
2017-01-01
In drug development, in vitro human model systems are absolutely essential prior to the clinical trials, considering the increasing number of chemical compounds in need of testing, and, keeping in mind that animals cannot predict all the adverse human health effects and reactions, due to the species-specific differences in metabolic pathways. The liver plays a central role in the clearance and biotransformation of chemicals and xenobiotics. In vitro liver model systems by using highly differentiated human cells could have a great impact in preclinical trials. Membrane biohybrid systems constituted of human hepatocytes and micro- and nano-structured membranes, represent valuable tools for studying drug metabolism and toxicity. Membranes act as an extracellular matrix for the adhesion of hepatocytes, and compartmentalise them in a well-defined physical and chemical microenvironment with high selectivity. Advanced 3-D tissue cultures are furthermore achieved by using membrane bioreactors (MBR), which ensure the continuous perfusion of cells protecting them from shear stress. MBRs with different configurations allow the culturing of cells at high density and under closely monitored high perfusion, similarly to the natural liver. These devices that promote the long-term maintenance and differentiation of primary human hepatocytes with preserved liver specific functions can be employed in drug testing for prolonged exposure to chemical compounds and for assessing repeated-dose toxicity. The use of primary human hepatocytes in MBRs is the only system providing a faster and more cost-effective method of analysis for the prediction of in vitro human drug metabolism and enzyme induction alternative and/or complementary to the animal experimentation. In this paper, in vitro models for studying drug metabolism and toxicity as advanced biohybrid membrane systems and MBRs will be reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
van Thriel, Christoph; Westerink, Remco; Beste, Christian; Bale, Ambuja S.; Lein, Pamela J.; Leist, Marcel
2011-01-01
The developing nervous system is particularly vulnerable to chemical insults. Exposure to chemicals can results in neurobehavioural alterations, and these have been be used as sensitive readouts to assess neurotoxicity in animals and man. Deconstructing neurobehaviour into relevant cellular and molecular components may allow for detection of specific neurotoxic effects in cell-based systems, which in turn may allow an easier examination of neurotoxic pathways and modes of actions and eventually inform the regulatory assessment of chemicals with potential developmental neurotoxicity. Here, current developments towards these goals are reviewed. Imaging genetics (CB) provides new insights into the neurobiological correlates of cognitive function that are being used to delineate neurotoxic mechanisms. The gaps between in vivo neurobehaviour and real-time in vitro measurements of neuronal function are being bridged by ex vivo measurements of synaptic plasticity (RW). An example of solvent neurotoxicity demonstrates how an in vivo neurological defect can be linked via the N-methyl-D-aspartate (NMDA)-glutamate receptor as a common target to in vitro readouts (AB). Axonal and dendritic morphology in vitro proved to be good correlates of neuronal connectivity and neurobehaviour in animals exposed to polychlorinated biphenyls and organophosphorus pesticides (PJL). Similarly, chemically-induced changes in neuronal morphology affected the formation of neuronal networks on structured surfaces. Such network formation may become an important readout for developmental neurotoxicity in vitro (CvT), especially when combined with human neurons derived from embryonic stem cells (ML). We envision that future in vitro test systems for developmental neurotoxicity will combine the above approaches with exposure information, and we suggest a strategy for test system development and cell-based risk assessment. PMID:22008243
Chapman, K E; Thomas, A D; Wills, J W; Pfuhler, S; Doak, S H; Jenkins, G J S
2014-05-01
Recent restrictions on the testing of cosmetic ingredients in animals have resulted in the need to test the genotoxic potential of chemicals exclusively in vitro prior to licensing. However, as current in vitro tests produce some misleading positive results, sole reliance on such tests could prevent some chemicals with safe or beneficial exposure levels from being marketed. The 3D human reconstructed skin micronucleus (RSMN) assay is a promising new in vitro approach designed to assess genotoxicity of dermally applied compounds. The assay utilises a highly differentiated in vitro model of the human epidermis. For the first time, we have applied automated micronucleus detection to this assay using MetaSystems Metafer Slide Scanning Platform (Metafer), demonstrating concordance with manual scoring. The RSMN assay's fixation protocol was found to be compatible with the Metafer, providing a considerably shorter alternative to the recommended Metafer protocol. Lowest observed genotoxic effect levels (LOGELs) were observed for mitomycin-C at 4.8 µg/ml and methyl methanesulfonate (MMS) at 1750 µg/ml when applied topically to the skin surface. In-medium dosing with MMS produced a LOGEL of 20 µg/ml, which was very similar to the topical LOGEL when considering the total mass of MMS added. Comparisons between 3D medium and 2D LOGELs resulted in a 7-fold difference in total mass of MMS applied to each system, suggesting a protective function of the 3D microarchitecture. Interestingly, hydrogen peroxide (H2O2), a positive clastogen in 2D systems, tested negative in this assay. A non-genotoxic carcinogen, methyl carbamate, produced negative results, as expected. We also demonstrated expression of the DNA repair protein N-methylpurine-DNA glycosylase in EpiDerm™. Our preliminary validation here demonstrates that the RSMN assay may be a valuable follow-up to the current in vitro test battery, and together with its automation, could contribute to minimising unnecessary in vivo tests by reducing in vitro misleading positives.
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
Stem cell-derived systems in toxicology assessment.
Suter-Dick, Laura; Alves, Paula M; Blaauboer, Bas J; Bremm, Klaus-Dieter; Brito, Catarina; Coecke, Sandra; Flick, Burkhard; Fowler, Paul; Hescheler, Jürgen; Ingelman-Sundberg, Magnus; Jennings, Paul; Kelm, Jens M; Manou, Irene; Mistry, Pratibha; Moretto, Angelo; Roth, Adrian; Stedman, Donald; van de Water, Bob; Beilmann, Mario
2015-06-01
Industrial sectors perform toxicological assessments of their potential products to ensure human safety and to fulfill regulatory requirements. These assessments often involve animal testing, but ethical, cost, and time concerns, together with a ban on it in specific sectors, make appropriate in vitro systems indispensable in toxicology. In this study, we summarize the outcome of an EPAA (European Partnership of Alternatives to Animal Testing)-organized workshop on the use of stem cell-derived (SCD) systems in toxicology, with a focus on industrial applications. SCD systems, in particular, induced pluripotent stem cell-derived, provide physiological cell culture systems of easy access and amenable to a variety of assays. They also present the opportunity to apply the vast repository of existing nonclinical data for the understanding of in vitro to in vivo translation. SCD systems from several toxicologically relevant tissues exist; they generally recapitulate many aspects of physiology and respond to toxicological and pharmacological interventions. However, focused research is necessary to accelerate implementation of SCD systems in an industrial setting and subsequent use of such systems by regulatory authorities. Research is required into the phenotypic characterization of the systems, since methods and protocols for generating terminally differentiated SCD cells are still lacking. Organotypical 3D culture systems in bioreactors and microscale tissue engineering technologies should be fostered, as they promote and maintain differentiation and support coculture systems. They need further development and validation for their successful implementation in toxicity testing in industry. Analytical measures also need to be implemented to enable compound exposure and metabolism measurements for in vitro to in vivo extrapolation. The future of SCD toxicological tests will combine advanced cell culture technologies and biokinetic measurements to support regulatory and research applications. However, scientific and technical hurdles must be overcome before SCD in vitro methods undergo appropriate validation and become accepted in the regulatory arena.
Evaluation of in vitro and in vivo genotoxicity of single-walled carbon nanotubes.
Kim, Jin Sik; Song, Kyung Seuk; Yu, Il Je
2015-08-01
Single-walled carbon nanotubes (SWCNTs) have extensive potential industrial applications due to their unique physical and chemical properties; yet this also increases the chance of human and environment exposure to SWCNTs. Due to the current lack of hazardous effect information on SWNCTs, a standardized genotoxicity battery test was conducted to clarify the genetic toxicity potential of SWCNTs (diameter: 1-1.2 nm, length: ∼20 μm) according to Organization for Economic Cooperation and Development test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. The test results showed that the SWCNTs did not induce significant bacterial reverse mutations at 31.3-500 μg/plate in Salmonella typhimurium strains TA98, TA100, TA1535, and TA1537 or in Escherichia coli strain WP2uvrA, with and without a metabolic activation system. Furthermore, the in vitro chromosome aberration test showed no significant increase in structural or numerical chromosome aberration frequencies at SWCNT dose levels of 12.5-50 μg/ml in the presence and absence of metabolic activation. However, dose-dependent cell growth inhibition was found at all the SWCNT dose levels and statistically significant cytotoxic effects observed at certain concentrations in the presence and absence of metabolic activation. Finally, the SWCNTs did not evoke significant in vivo micronuclei frequencies in the polychromatic erythrocytes of an imprinting control region mice at 25-100 mg/kg. Thus, according to the results of the present study, the SWCNTs were not found to have a genotoxic effect on the in vitro and in vivo test systems. © The Author(s) 2013.
Kollár, Tímea; Kása, Eszter; Ferincz, Árpád; Urbányi, Béla; Csenki-Bakos, Zsolt; Horváth, Ákos
2018-05-01
The effect of seven heavy metals on the motility parameter of zebrafish sperm was tested in order to develop an in vitro toxicological test system as an alternative to live animal testing. In vitro test systems are currently preferred in ecotoxicology due to their practical and ethical advantages and fish sperm can be a suitable model. A number of studies had been carried out previously on this topic, but the described methods had not been standardized in numerous aspects (donor species, measured endpoint, etc.). In this study, heavy metals (mercury, arsenic, chromium, zinc, nickel, copper, cadmium) were used as reference toxicants with known toxicity to develop a standardized fish sperm in vitro assay. The tested concentrations were determined based on preliminary range finding tests. The endpoints were progressive motility (PMOT, %), curvilinear velocity (VCL, μm/s), and linearity (LIN, %) measured by a computer-assisted sperm analysis (CASA) system. According to our results, PMOT was the most sensitive of the three investigated parameters: dose-response curves were observed for each metal at relatively low concentrations. VCL values were less sensitive: higher concentrations were needed to observe changes. Of the three parameters, LIN was the least affected: dose-response relationship was observed only in the case of mercury (e.g., lowest observed effect concentration (LOEC) of Hg at 120 min: 1 mg/L for PMOT, 2.5 mg/L for VCL, 5 mg/L for LIN; LOEC of Cu at 120 min: 1 mg/L for PMOT, 5 mg/L for VCL, any for LIN). The order of toxicity as determined by PMOT was as follows: Hg 2+ > As 3+ > Cd 2+ > Cu 2+ > Zn 2+ > Cr 3+ > Ni 2+ . In conclusion, we found that PMOT of zebrafish sperm was an accurate and fast bioindicator of heavy metal load. Sperm analysis can be adopted to estimate the possible toxic effects of various chemicals in vitro. Future investigations should concentrate on the applicability of this assay to other contaminants (e.g., organic pollutants).
The Use of Metabolising Systems for In Vitro Testing of Endocrine Disruptors
Legislation and prospective proposals in for instance the USA, Europe, and Japan require, or may require that chemicals are tested for their ability to disrupt the hormonal systems of mammals. Chemicals found to test positive are considered to be endocrine active substances (EAS...
Novel in vitro and mathematical models for the prediction of chemical toxicity.
Williams, Dominic P; Shipley, Rebecca; Ellis, Marianne J; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart
2013-01-01
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science.
Novel in vitro and mathematical models for the prediction of chemical toxicity
Shipley, Rebecca; Ellis, Marianne J.; Webb, Steve; Ward, John; Gardner, Iain; Creton, Stuart
2013-01-01
The focus of much scientific and medical research is directed towards understanding the disease process and defining therapeutic intervention strategies. The scientific basis of drug safety is very complex and currently remains poorly understood, despite the fact that adverse drug reactions (ADRs) are a major health concern and a serious impediment to development of new medicines. Toxicity issues account for ∼21% drug attrition during drug development and safety testing strategies require considerable animal use. Mechanistic relationships between drug plasma levels and molecular/cellular events that culminate in whole organ toxicity underpins development of novel safety assessment strategies. Current in vitro test systems are poorly predictive of toxicity of chemicals entering the systemic circulation, particularly to the liver. Such systems fall short because of (1) the physiological gap between cells currently used and human hepatocytes existing in their native state, (2) the lack of physiological integration with other cells/systems within organs, required to amplify the initial toxicological lesion into overt toxicity, (3) the inability to assess how low level cell damage induced by chemicals may develop into overt organ toxicity in a minority of patients, (4) lack of consideration of systemic effects. Reproduction of centrilobular and periportal hepatocyte phenotypes in in vitro culture is crucial for sensitive detection of cellular stress. Hepatocyte metabolism/phenotype is dependent on cell position along the liver lobule, with corresponding differences in exposure to substrate, oxygen and hormone gradients. Application of bioartificial liver (BAL) technology can encompass in vitro predictive toxicity testing with enhanced sensitivity and improved mechanistic understanding. Combining this technology with mechanistic mathematical models describing intracellular metabolism, fluid-flow, substrate, hormone and nutrient distribution provides the opportunity to design the BAL specifically to mimic the in vivo scenario. Such mathematical models enable theoretical hypothesis testing, will inform the design of in vitro experiments, and will enable both refinement and reduction of in vivo animal trials. In this way, development of novel mathematical modelling tools will help to focus and direct in vitro and in vivo research, and can be used as a framework for other areas of drug safety science. PMID:26966512
In vitro techniques for the assessment of neurotoxicity.
Harry, G J; Billingsley, M; Bruinink, A; Campbell, I L; Classen, W; Dorman, D C; Galli, C; Ray, D; Smith, R A; Tilson, H A
1998-01-01
Risk assessment is a process often divided into the following steps: a) hazard identification, b) dose-response assessment, c) exposure assessment, and d) risk characterization. Regulatory toxicity studies usually are aimed at providing data for the first two steps. Human case reports, environmental research, and in vitro studies may also be used to identify or to further characterize a toxic hazard. In this report the strengths and limitations of in vitro techniques are discussed in light of their usefulness to identify neurotoxic hazards, as well as for the subsequent dose-response assessment. Because of the complexity of the nervous system, multiple functions of individual cells, and our limited knowledge of biochemical processes involved in neurotoxicity, it is not known how well any in vitro system would recapitulate the in vivo system. Thus, it would be difficult to design an in vitro test battery to replace in vivo test systems. In vitro systems are well suited to the study of biological processes in a more isolated context and have been most successfully used to elucidate mechanisms of toxicity, identify target cells of neurotoxicity, and delineate the development and intricate cellular changes induced by neurotoxicants. Both biochemical and morphological end points can be used, but many of the end points used can be altered by pharmacological actions as well as toxicity. Therefore, for many of these end points it is difficult or impossible to set a criterion that allows one to differentiate between a pharmacological and a neurotoxic effect. For the process of risk assessment such a discrimination is central. Therefore, end points used to determine potential neurotoxicity of a compound have to be carefully selected and evaluated with respect to their potential to discriminate between an adverse neurotoxic effect and a pharmacologic effect. It is obvious that for in vitro neurotoxicity studies the primary end points that can be used are those affected through specific mechanisms of neurotoxicity. For example, in vitro systems may be useful for certain structurally defined compounds and mechanisms of toxicity, such as organophosphorus compounds and delayed neuropathy, for which target cells and the biochemical processes involved in the neurotoxicity are well known. For other compounds and the different types of neurotoxicity, a mechanism of toxicity needs to be identified first. Once identified, by either in vivo or in vitro methods, a system can be developed to detect and to evaluate predictive ability for the type of in vivo neurotoxicity produced. Therefore, in vitro tests have their greatest potential in providing information on basic mechanistic processes in order to refine specific experimental questions to be addressed in the whole animal. Images Figure 1 PMID:9539010
Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland
2017-07-15
The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.
System theory in medical diagnostic devices: an overview.
Baura, Gail D
2006-01-01
Medical diagnostics refers to testing conducted either in vitro or in vivo to provide critical health care information for risk assessment, early diagnosis, treatment, or disease management. Typical in vivo diagnostic tests include the computed tomography scan, magnetic resonance imaging, and blood pressure screening. Typical in vitro diagnostic tests include cholesterol, Papanicolaou smear, and conventional glucose monitoring tests. Historically, devices associated with both types of diagnostics have used heuristic curve fitting during signal analysis. However, since the early 1990s, a few enterprising engineers and physicians have used system theory to improve their core processing for feature detection and system identification. Current applications include automated Pap smear screening for detection of cervical cancer and diagnosis of Alzheimer's disease. Future applications, such as disease prediction before symptom onset and drug treatment customization, have been catalyzed by the Human Genome Project.
Shi, Yi; Gao, Ping; Gong, Yuchuan; Ping, Haili
2010-10-04
A biphasic in vitro test method was used to examine release profiles of a poorly soluble model drug, celecoxib (CEB), from its immediate release formulations. Three formulations of CEB were investigated in this study, including a commercial Celebrex capsule, a solution formulation (containing cosolvent and surfactant) and a supersaturatable self-emulsifying drug delivery system (S-SEDDS). The biphasic test system consisted of an aqueous buffer and a water-immiscible organic solvent (e.g., octanol) with the use of both USP II and IV apparatuses. The aqueous phase provided a nonsink dissolution medium for CEB, while the octanol phase acted as a sink for CEB partitioning. For comparison, CEB concentration-time profiles of these formulations in the aqueous medium under either a sink condition or a nonsink condition were also explored. CEB release profiles of these formulations observed in the aqueous medium from either the sink condition test, the nonsink condition test, or the biphasic test have little relevance to the pharmacokinetic observations (e.g., AUC, C(max)) in human subjects. In contrast, a rank order correlation among the three CEB formulations is obtained between the in vitro AUC values of CEB from the octanol phase up to t = 2 h and the in vivo mean AUC (or C(max)) values. As the biphasic test permits a rapid removal of drug from the aqueous phase by partitioning into the organic phase, the amount of drug in the organic phase represents the amount of drug accumulated in systemic circulation in vivo. This hypothesis provides the scientific rationale for the rank order relationship among these CEB formulations between their CEB concentrations in the organic phase and the relative AUC or C(max). In addition, the biphasic test method permits differentiation and discrimination of key attributes among the three different CEB formulations. This work demonstrates that the biphasic in vitro test method appears to be useful as a tool in evaluating performance of formulations of poorly water-soluble drugs and to provide potential for establishing an in vitro-in vivo relationship.
20170312 - Computer Simulation of Developmental ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Computer Simulation of Developmental Processes and ...
Rationale: Recent progress in systems toxicology and synthetic biology have paved the way to new thinking about in vitro/in silico modeling of developmental processes and toxicities, both for embryological and reproductive impacts. Novel in vitro platforms such as 3D organotypic culture models, engineered microscale tissues and complex microphysiological systems (MPS), together with computational models and computer simulation of tissue dynamics, lend themselves to a integrated testing strategies for predictive toxicology. As these emergent methodologies continue to evolve, they must be integrally tied to maternal/fetal physiology and toxicity of the developing individual across early lifestage transitions, from fertilization to birth, through puberty and beyond. Scope: This symposium will focus on how the novel technology platforms can help now and in the future, with in vitro/in silico modeling of complex biological systems for developmental and reproductive toxicity issues, and translating systems models into integrative testing strategies. The symposium is based on three main organizing principles: (1) that novel in vitro platforms with human cells configured in nascent tissue architectures with a native microphysiological environments yield mechanistic understanding of developmental and reproductive impacts of drug/chemical exposures; (2) that novel in silico platforms with high-throughput screening (HTS) data, biologically-inspired computational models of
Stein, Sandra; Auel, Tobias; Kempin, Wiebke; Bogdahn, Malte; Weitschies, Werner; Seidlitz, Anne
2018-06-01
Sustained intravitreal dexamethasone (DX) administration with the FDA and EMA approved Ozurdex® implant is indicated for the treatment of macular edema and non-infectious uveitis. Since drug release after intravitreal application cannot be determined in vivo in human eyes, the characterization of drug release in vitro in addition to animal models is of great importance. The aim of this study was to provide information about the influence of the test method on the in vitro drug release from intravitreal model implants. The following test methods were used: a shaking incubator experiment in reagent tubes, the small volume USP apparatus 7, the Vitreous Model (VM) and a system simulating the impact of movement on the VM (Eye Movement System, EyeMoS). Cylindrical model implants composed of DX and PLGA (poly (d,l-lactide-co-glycolide)) and additional polycaprolactone (PCL) implants containing fluorescein sodium (FS) as a model substance were produced by hot melt extrusion and were cut to a length of approximately 6 mm. Drug release was studied in ringer buffer pH 7.4 and in a modified polyacrylamide gel (PAAG) as vitreous substitute. In combination with the VM, the shape, the gel structure and a partial liquefaction (50%) were simulated in vitro. Swelling, disintegration, fragmentation, surface enlargement and changes in shape of the PLGA model implants were observed during the drug release study. We experienced that not each of the test methods and media were suitable for drug release studies of the PLGA implants. Marked differences in the release profiles were observed depending on the employed test method. These results emphasize the necessity to understand the underlying in vivo processes and to transfer the knowledge about the release determining factors into reliable in vitro test systems. Copyright © 2018 Elsevier B.V. All rights reserved.
Clothier, Richard; Starzec, Gemma; Pradel, Lionel; Baxter, Victoria; Jones, Melanie; Cox, Helen; Noble, Linda
2002-01-01
A range of cosmetics formulations with human patch-test data were supplied in a coded form, for the examination of the use of a combined in vitro permeability barrier assay and cell viability assay to generate, and then test, a prediction model for assessing potential human skin patch-test results. The target cells employed were of the Madin Darby canine kidney cell line, which establish tight junctions and adherens junctions able to restrict the permeability of sodium fluorescein across the barrier of the confluent cell layer. The prediction model for interpretation of the in vitro assay results included initial effects and the recovery profile over 72 hours. A set of the hand-wash, surfactant-based formulations were tested to generate the prediction model, and then six others were evaluated. The model system was then also evaluated with powder laundry detergents and hand moisturisers: their effects were predicted by the in vitro test system. The model was under-predictive for two of the ten hand-wash products. It was over-predictive for the moisturisers, (two out of six) and eight out of ten laundry powders. However, the in vivo human patch test data were variable, and 19 of the 26 predictions were correct or within 0.5 on the 0-4.0 scale used for the in vivo scores, i.e. within the same variable range reported for the repeat-test hand-wash in vivo data.
Mattern, Kai; Beißner, Nicole; Reichl, Stephan; Dietzel, Andreas
2018-05-01
Conventional safety and efficacy test models, such as animal experiments or static in vitro cell culture models, can often not reliably predict the most promising drug candidates. Therefore, a novel microfluidic cell culture platform, called Dynamic Micro Tissue Engineering System (DynaMiTES), was designed to allow online analysis of drugs permeating through barrier forming tissues under dynamic conditions combined with monitoring of the transepithelial electrical resistance (TEER) by electrodes optimized for homogeneous current distribution. A variety of pre-cultivated cell culture inserts can be integrated and exposed to well controlled dynamic micro flow conditions, resulting in a tightly regulated exposure of the cells to tested drugs, drug formulations and shear forces. With these qualities, the new system can provide more relevant information compared to static measurements. As a first in vitro model, a three-dimensional hemicornea construct consisting of human keratocytes (HCK-Ca) and epithelial cells (HCE-T) was successfully tested in the DynaMiTES. Thereby, we were able to demonstrate the functionality and cell compatibility of this new organ on chip test platform. The modular design of the DynaMiTES allows fast adaptation suitable for the investigation of drug permeation through other important cellular barriers. Copyright © 2017. Published by Elsevier B.V.
Endocrine disrupters--testing strategies to assess human hazard.
Baker, V A
2001-01-01
During the last decade an hypothesis has been developed linking certain chemicals (natural and synthetic) to observed and suspected adverse effects on reproduction in both wildlife and humans. The issue of 'endocrine disruption' originally focused on chemicals that mimic the action of the natural hormone oestrogen. However, the concern is now encompassing effects on the whole endocrine system. In response to public awareness, regulatory agencies (including the US EPA) and the OECD are formulating potential testing strategies and have begun the process of validating defined tests to systematically assess chemicals for their endocrine-disrupting activities. In order to investigate chemicals that have the potential to cause endocrine disruption, a large number of in vitro and in vivo assays have been identified. In vitro test systems (particularly when used in combination) offer the possibility of providing an early screen for large numbers of chemicals and can be useful in characterising the mechanism of action and potency. In vitro assays in widespread use for the screening/characterisation of endocrine disrupting potential include hormone receptor ligand binding assays (determination of the ability of a chemical to bind to the hormone receptor), cell proliferation assays (analysis of the ability of a chemical to stimulate growth of oestrogen sensitive cells), reporter gene assays in yeast or mammalian cells (analysis of the ability of a chemical to stimulate the transcription of a reporter gene construct in cell culture), and the analysis of the regulation of endogenous oestrogen sensitive genes in cell lines. However, in vitro assays do not always reliably predict the outcome in vivo due to differences in metabolic capabilities of the test systems used and the diverse range of mechanisms by which endocrine disrupting chemicals may act. Therefore a complementary battery of short- and long-term in vitro and in vivo assays (that assess both receptor and non-receptor mediated mechanisms of action) seems the most appropriate way at present of assessing the potential endocrine disrupting activities of chemicals. At Unilever we have used a combination of in vitro assays (receptor binding, reporter gene and cell proliferation assays) together with short-term in vivo tests (uterotrophic assay in immature rodents) to examine the oestrogenic potential of a large number of chemicals. An evaluation of the advantages and limitations of these methods is provided. Finally, any potential test system needs to be validated and standardized before the information generated can be for the identification of hazard, and possibly for risk assessment purposes.
Walters, Russel M; Gandolfi, Lisa; Mack, M Catherine; Fevola, Michael; Martin, Katharine; Hamilton, Mathew T; Hilberer, Allison; Barnes, Nicole; Wilt, Nathan; Nash, Jennifer R; Raabe, Hans A; Costin, Gertrude-Emilia
2016-12-01
The personal care industry is focused on developing safe, more efficacious, and increasingly milder products, that are routinely undergoing preclinical and clinical testing before becoming available for consumer use on skin. In vitro systems based on skin reconstructed equivalents are now established for the preclinical assessment of product irritation potential and as alternative testing methods to the classic Draize rabbit skin irritation test. We have used the 3-D EpiDerm™ model system to evaluate tissue viability and primary cytokine interleukin-1α release as a way to evaluate the potential dermal irritation of 224 non-ionic, amphoteric and/or anionic surfactant-containing formulations, or individual raw materials. As part of our testing programme, two representative benchmark materials with known clinical skin irritation potential were qualified through repeated testing, for use as references for the skin irritation evaluation of formulations containing new surfactant ingredients. We have established a correlation between the in vitro screening approach and clinical testing, and are continually expanding our database to enhance this correlation. This testing programme integrates the efforts of global manufacturers of personal care products that focus on the development of increasingly milder formulations to be applied to the skin, without the use of animal testing. 2016 FRAME.
This study presents the development and bench-testing of a versatile aerosol concentration enrichment system (VACES) capable of simultaneously concentrating ambient particles of the coarse, fine and ultrafine size fractions for conducting in vivo and in vitro studies. The VACE...
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System@@
In 2007, the National Research Council envisioned the need for inexpensive, rapid, cell-based toxicity testing methods relevant to human health. in vitro screening approaches have largely addressed these problems by using robotics and automation. However, the challenge is that ma...
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System#
In 2007 the National Research Council envisioned the need for inexpensive, high throughput, cell based toxicity testing methods relevant to human health. High Throughput Screening (HTS) in vitro screening approaches have addressed these problems by using robotics. However the cha...
Inhibition of rat and human steroidogenesis by triazole antifungals.
Goetz, Amber K; Rockett, John C; Ren, Hongzu; Thillainadarajah, Inthirany; Dix, David J
2009-12-01
Environmental chemicals that alter steroid production could interfere with male reproductive development and function. Three agricultural antifungal triazoles that are known to modulate expression of cytochrome P450 (CYP) genes and enzymatic activities were tested for effects on steroidogenesis using rat in vivo (triadimefon), rat in vitro (myclobutanil and triadimefon), and human in vitro (myclobutanil, propiconazole, and triadimefon) model systems. Hormone production was measured in testis organ cultures from untreated adult and neonatal rats, following in vitro exposure to 1, 10, or 100 muM of myclobutanil or triadimefon. Myclobutanil and triadimefon reduced media levels of testosterone by 40-68% in the adult and neonatal testis culture, and altered steroid production in a manner that indicated CYP17-hydroxylase/17,20 lyase (CYP17A1) inhibition at the highest concentration tested. Rat to human comparison was explored using the H295R (human adrenal adenocarcinoma) cell line. Following 48 h exposure to myclobutanil, propiconazole, or triadimefon at 1, 3, 10, 30, or 100 muM, there was an overall decrease in estradiol, progesterone, and testosterone by all three triazoles. These data indicate that myclobutanil, propiconazole, and triadimefon are weak inhibitors of testosterone production in vitro. However, in vivo exposure of rats to triazoles resulted in increased serum and intra-testicular testosterone levels. This discordance could be due to higher concentrations of triazoles tested in vitro, and differences within an in vitro model system lacking hepatic metabolism and neuroendocrine control.
An immunologic model for rapid vaccine assessment -- a clinical trial in a test tube.
Higbee, Russell G; Byers, Anthony M; Dhir, Vipra; Drake, Donald; Fahlenkamp, Heather G; Gangur, Jyoti; Kachurin, Anatoly; Kachurina, Olga; Leistritz, Del; Ma, Yifan; Mehta, Riyaz; Mishkin, Eric; Moser, Janice; Mosquera, Luis; Nguyen, Mike; Parkhill, Robert; Pawar, Santosh; Poisson, Louis; Sanchez-Schmitz, Guzman; Schanen, Brian; Singh, Inderpal; Song, Haifeng; Tapia, Tenekua; Warren, William; Wittman, Vaughan
2009-09-01
While the duration and size of human clinical trials may be difficult to reduce, there are several parameters in pre-clinical vaccine development that may be possible to further optimise. By increasing the accuracy of the models used for pre-clinical vaccine testing, it should be possible to increase the probability that any particular vaccine candidate will be successful in human trials. In addition, an improved model will allow the collection of increasingly more-informative data in pre-clinical tests, thus aiding the rational design and formulation of candidates entered into clinical evaluation. An acceleration and increase in sophistication of pre-clinical vaccine development will thus require the advent of more physiologically-accurate models of the human immune system, coupled with substantial advances in the mechanistic understanding of vaccine efficacy, achieved by using this model. We believe the best viable option available is to use human cells and/or tissues in a functional in vitro model of human physiology. Not only will this more accurately model human diseases, it will also eliminate any ethical, moral and scientific issues involved with use of live humans and animals. An in vitro model, termed "MIMIC" (Modular IMmune In vitro Construct), was designed and developed to reflect the human immune system in a well-based format. The MIMIC System is a laboratory-based methodology that replicates the human immune system response. It is highly automated, and can be used to simulate a clinical trial for a diverse population, without putting human subjects at risk. The MIMIC System uses the circulating immune cells of individual donors to recapitulate each individual human immune response by maintaining the autonomy of the donor. Thus, an in vitro test system has been created that is functionally equivalent to the donor's own immune system and is designed to respond in a similar manner to the in vivo response. 2009 FRAME.
Potential countersample materials for in vitro simulation wear testing.
Shortall, Adrian C; Hu, Xiao Q; Marquis, Peter M
2002-05-01
Any laboratory investigation of the wear resistance of dental materials needs to consider oral conditions so that in vitro wear results can be correlated with in vivo findings. The choice of the countersample is a critical factor in establishing the pattern of tribological wear and in achieving an efficient in vitro wear testing system. This research investigated the wear behavior and surface characteristics associated with three candidate countersample materials used for in vitro wear testing in order to identify a possible suitable substitute for human dental enamel. Three candidate materials, stainless steel, steatite and dental porcelain were evaluated and compared to human enamel. A variety of factors including hardness, wear surface evolution and frictional coefficients were considered, relative to the tribology of the in vivo situation. The results suggested that the dental porcelain investigated bore the closest similarity to human enamel of the materials investigated. Assessment of potential countersample materials should be based on the essential tribological simulation supported by investigations of mechanical, chemical and structural properties. The selected dental porcelain had the best simulating ability among the three selected countersample materials and this class of material may be considered as a possible countersample material for in vitro wear test purposes. Further studies are required, employing a wider range of dental ceramics, in order to optimise the choice of countersample material for standardized in vitro wear testing.
Five natural, pharmaceutical, or xenobiotic chemicals (17b-estradiol, ethynylestradiol, diethystilbestrol, nonylphenol, methoxychlor) were tested in two in vitro (MCF-7 breast tumor cell proliferation [E-screen], yeast estrogen system [YES]), and one in vivo (male sheepshead min...
Evaluation of seven in vitro alternatives for ocular safety testing.
Bruner, L H; Kain, D J; Roberts, D A; Parker, R D
1991-07-01
Seven in vitro assays were evaluated to determine if any were useful as screening procedures in ocular safety assessment. Seventeen test materials (chemicals, household cleaners, hand soaps, dishwashing liquids, shampoos, and liquid laundry detergents) were tested in each assay. In vivo ocular irritation scores for the materials were obtained from existing rabbit low volume eye test (LVET) data. The seven assays evaluated included the silicon microphysiometer (SM), luminescent bacteria toxicity test (LBT), neutral red assay (NR), total protein assay (TP), Tetrahymena thermophila motility assay (TTMA), bovine eye/chorioallantoic membrane assay (BE/CAM), and the EYTEX system (ETS). For the seventeen materials used in this study there was a significant correlation between the in vivo irritant potential and in vitro data for all the tests except the EYTEX System (SM, r = -0.87; LBT, r = -0.91; NR, r = -0.85; TTMA, r = 0.78; TP, r = -0.86; ETS, r = 0.29). The irritation classifications provided by the BE/CAM also did not correspond with the actual in vivo irritancy potential of the test materials. The result of this study suggested it may be possible to classify materials into broad irritancy categories with some of the assays. This would allow their use as screens prior to limited in vivo confirmation in the ocular safety assessment process.
Diagnostic efficacy of in vitro methods vs. skin testing in patients with inhalant allergies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corey, J.P.; Liudahl, J.J.; Young, S.A.
1991-03-01
The purpose of our study was to investigate the diagnostic efficacy of two selected methods of in vitro allergy testing. Specifically, the PRIST/modified RAST I125 isotope systems and the Quantizyme/modified EAST alkaline phosphatase method were compared. The time, expense, convenience, and diagnostic efficacy of the two procedures are discussed. Special attention is given to the practicality of each method for the practicing physician.
Recent advances in testing of microsphere drug delivery systems.
Andhariya, Janki V; Burgess, Diane J
2016-01-01
This review discusses advances in the field of microsphere testing. In vitro release-testing methods such as sample and separate, dialysis membrane sacs and USP apparatus IV have been used for microspheres. Based on comparisons of these methods, USP apparatus IV is currently the method of choice. Accelerated in vitro release tests have been developed to shorten the testing time for quality control purposes. In vitro-in vivo correlations using real-time and accelerated release data have been developed, to minimize the need to conduct in vivo performance evaluation. Storage stability studies have been conducted to investigate the influence of various environmental factors on microsphere quality throughout the product shelf life. New tests such as the floating test and the in vitro wash-off test have been developed along with advancement in characterization techniques for other physico-chemical parameters such as particle size, drug content, and thermal properties. Although significant developments have been made in microsphere release testing, there is still a lack of guidance in this area. Microsphere storage stability studies should be extended to include microspheres containing large molecules. An agreement needs to be reached on the use of particle sizing techniques to avoid inconsistent data. An approach needs to be developed to determine total moisture content of microspheres.
Ueck, Christopher; Volksdorf, Thomas; Houdek, Pia; Vidal-y-Sy, Sabine; Sehner, Susanne; Ellinger, Bernhard; Lobmann, Ralf; Larena-Avellaneda, Axel; Reinshagen, Konrad; Ridderbusch, Ina; Kohrmeyer, Klaas; Moll, Ingrid; Daniels, Rolf; Werner, Philipp; Merfort, Irmgard; Brandner, Johanna M.
2017-01-01
Diabetes mellitus is a frequent cause for chronic, difficult-to-treat wounds. New therapies for diabetic wounds are urgently needed and in-vitro or ex-vivo test systems are essential for the initial identification of new active molecules. The aim of this study is to compare in-vitro and ex-vivo test systems for their usability for early drug screening and to investigate the efficacy of a birch bark triterpene extract (TE) that has been proven ex-vivo and clinically to accelerate non-diabetic wound healing (WH), in a diabetic context. We investigated in-vitro models for diabetic WH, i.e. scratch assays with human keratinocytes from diabetic donors or cultured under hyperglycaemic conditions and a newly developed porcine ex-vivo hyperglycaemic WH model for their potential to mimic delayed diabetic WH and for the influence of TE in these test systems. We show that keratinocytes from diabetic donors often fail to exhibit significantly delayed WH. For cells under hyperglycaemic conditions significant decrease is observed but is influenced by choice of medium and presence of supplements. Also, donor age plays a role. Interestingly, hyperglycaemic effects are mainly hyperosmolaric effects in scratch assays. Ex-vivo models under hyperglycaemic conditions show a clear and substantial decrease of WH, and here both glucose and hyperosmolarity effects are involved. Finally, we provide evidence that TE is also beneficial for ex-vivo hyperglycaemic WH, resulting in significantly increased length of regenerated epidermis to 188±16% and 183±11% (SEM; p<0.05) compared to controls when using two different TE formulations. In conclusion, our results suggest that microenvironmental influences are important in WH test systems and that therefore the more complex hyperglycaemic ex-vivo model is more suitable for early drug screening. Limitations of the in-vitro and ex-vivo models are discussed. Furthermore our data recommend TE as a promising candidate for in-vivo testings in diabetic wounds. PMID:28046026
Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Calderone, Marilyn; Igonin, Annabel; Jule, Eduardo; Vertommen, Jan; Blundell, Ross; Benameur, Hassan; Müllertz, Anette; Porter, Christopher J H; Pouton, Colin W
2014-08-01
The Lipid Formulation Classification System Consortium looks to develop standardized in vitro tests and to generate much-needed performance criteria for lipid-based formulations (LBFs). This article highlights the value of performing a second, more stressful digestion test to identify LBFs near a performance threshold and to facilitate lead formulation selection in instances where several LBF prototypes perform adequately under standard digestion conditions (but where further discrimination is necessary). Stressed digestion tests can be designed based on an understanding of the factors that affect LBF performance, including the degree of supersaturation generated on dispersion/digestion. Stresses evaluated included decreasing LBF concentration (↓LBF), increasing bile salt, and decreasing pH. Their capacity to stress LBFs was dependent on LBF composition and drug type: ↓LBF was a stressor to medium-chain glyceride-rich LBFs, but not more hydrophilic surfactant-rich LBFs, whereas decreasing pH stressed tolfenamic acid LBFs, but not fenofibrate LBFs. Lastly, a new Performance Classification System, that is, LBF composition independent, is proposed to promote standardized LBF comparisons, encourage robust LBF development, and facilitate dialogue with the regulatory authorities. This classification system is based on the concept that performance evaluations across three in vitro tests, designed to subject a LBF to progressively more challenging conditions, will enable effective LBF discrimination and performance grading. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kang, Min H.; Smith, Malcolm A.; Morton, Christopher L.; Keshelava, Nino; Houghton, Peter J.; Reynolds, C. Patrick
2010-01-01
Background The National Cancer Institute (NCI) has established the Pediatric Preclinical Testing Program (PPTP) for testing drugs against in vitro and in vivo childhood cancer models to aid in the prioritization of drugs considered for early phase pediatric clinical trials. Procedures In vitro cytotoxicity testing employs a semi-automated fluorescence-based digital imaging cytotoxicity assay (DIMSCAN) that has a 4-log dynamic range of detection. Curve fitting of the fractional survival data of the cell lines in response to various concentrations of the agents was used to calculate relative IC50, absolute IC50, and Ymin values The panel of 23 pediatric cancer cell lines included leukemia (n=6), lymphoma (n=2), rhabdomyosarcoma (n=4), brain tumors (n=3), Ewing family of tumors (EFT, n=4), and neuroblastoma (n=4). The doubling times obtained using DIMSCAN were incorporated into data analyses to estimate the relationship between input cell numbers and final cell number. Results We report in vitro activity data for three drugs (vincristine, melphalan, and etoposide) that are commonly used for pediatric cancer and for the mTOR inhibitor rapamycin, an agent that is currently under preclinical investigation for cancer. To date, the PPTP has completed in vitro testing of 39 investigational and approved agents for single drug activity and two investigational agents in combination with various “standard” chemotherapy drugs. Conclusions This robust in vitro cytotoxicity testing system for pediatric cancers will enable comparisons to response data for novel agents obtained from xenograft studies and from clinical trials. PMID:20922763
Bakand, S; Winder, C; Khalil, C; Hayes, A
2005-12-01
Exposure to occupational and environmental contaminants is a major contributor to human health problems. Inhalation of gases, vapors, aerosols, and mixtures of these can cause a wide range of adverse health effects, ranging from simple irritation to systemic diseases. Despite significant achievements in the risk assessment of chemicals, the toxicological database, particularly for industrial chemicals, remains limited. Considering there are approximately 80,000 chemicals in commerce, and an extremely large number of chemical mixtures, in vivo testing of this large number is unachievable from both economical and practical perspectives. While in vitro methods are capable of rapidly providing toxicity information, regulatory agencies in general are still cautious about the replacement of whole-animal methods with new in vitro techniques. Although studying the toxic effects of inhaled chemicals is a complex subject, recent studies demonstrate that in vitro methods may have significant potential for assessing the toxicity of airborne contaminants. In this review, current toxicity test methods for risk evaluation of industrial chemicals and airborne contaminants are presented. To evaluate the potential applications of in vitro methods for studying respiratory toxicity, more recent models developed for toxicity testing of airborne contaminants are discussed.
NASA Astrophysics Data System (ADS)
Abbasi Pour, Sajjad; Shaterian, Hamid Reza; Afradi, Mojgan; Yazdani-Elah-Abadi, Afshin
2017-09-01
We synthesized Co0.25Cu0.25Mn0.5Fe2O4@CMC (CCMFe2O4@CMC) nanorods as a new dual-modal simultaneous for magnetic resonance imaging contrast agent and nanocarrier for drug delivery system. Impact of CCMFe2O4@CMC nanorods were investigated on the longitudinal (T1), transverse (T2) and transverse (T2∗) relaxation times for in vitro MRI contrast agent in water and also for drug delivery system, L-dopa was coated on CCMFe2O4@CMC nanorods and then in vitro drug release test was carried out at three PHs values and different temperatures. In vitro MR imaging demonstrated that r2 value of CCMFe2O4@CMC nanorods is 138.33 mM-1 s-1, CCMFe2O4@CMC is useful as T2 contrast agent relative to other T2 contrast agants. In vitro drug release test shows the amount of released L-dopa from CCMFe2O4@CMC nanorods at medium with pH = 1.2 is more than pH = 5.3 and 7.4.
Initial Technology Assessment for the Environmental Sentinel Biomonitor (ESB) System
2006-08-01
McFarlane-Abdulla E, Andersson M, Barile FA, et al. 1996. MEIC evaluation of acute systemic toxicity Part II. In vitro results from 68 toxicity assays used...to test the first 30 reference chemicals and a comparative cytotoxicity analysis. A TLA 24:273-311. Clemedson C, Andersson M, Aoki Y, Barile FA, et al...Clemedson C, McFarlane-Abdulla E, Andersson M, Barile FA, et al. 1996. MEIC evaluation of acute systemic toxicity Part I. Methodology of 68 in vitro
Terminalia catappa: chemical composition, in vitro and in vivo effects on Haemonchus contortus
USDA-ARS?s Scientific Manuscript database
Haemonchus contortus is the most important nematode in small ruminant systems, and has developed tolerance to all commercial anthelmintics in several countries. In vitro (egg hatch assay) and in vivo tests were performed with a multidrug strain of Haemonchus contortus using Terminalia catappa leaf, ...
Pestieau, Aude; Krier, Fabrice; Brouwers, Adeline; Streel, Bruno; Evrard, Brigitte
2016-09-20
Fenofibrate, a BCS class II compound, has a low bioavailability especially when taken orally on an empty stomach. The challenge to find a new formulation for providing bioavailability, independent of food, is still ongoing. If the development of a suitable oral delivery formulation of BCS class II compounds is a frequent and great challenge to formulation scientists, the in vitro evaluation of these new formulations is also a great challenge. The purpose of this study was therefore to select an in vitro dissolution test that would be useful and as biorelevant as possible for the development of fenofibrate self-emulsifying lipid-based formulations. In this context, three different fenofibrate formulations, for which in vivo data are available in the literature, were tested using different dissolution tests until we found the one that was the most suitable. As part of this approach, we started with the simplest in vitro dissolution tests and progressed to tests that were increasingly more complex. The first tests were different single phase dissolution tests: a test under sink conditions based on the USP monograph, and different tests under non-sink conditions in non-biorelevant and biorelevant media. Given the inconclusive results obtained with these tests, biphasic dissolution systems were then tested: one with USP apparatus type II alone and another which combined USP apparatus types II and IV. This last combined test seemed the most suitable in vitro dissolution test for the development of the future fenofibrate lipid-based formulations we intend to develop in our own laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-21
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich's flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
NASA Astrophysics Data System (ADS)
Hikage, Takashi; Nojima, Toshio; Fujimoto, Hiroshi
2016-06-01
The electromagnetic interference (EMI) imposed on active implantable medical devices by wireless power transfer systems (WPTSs) is discussed based upon results of in vitro experiments. The purpose of this study is to present comprehensive EMI test results gathered from implantable-cardiac pacemakers and implantable cardioverter defibrillators exposed to the electromagnetic field generated by several WPTSs operating in low-frequency (70 kHz-460 kHz) and high-frequency (6.78 MHz) bands. The constructed in vitro experimental test system based upon an Irnich’s flat torso phantom was applied. EMI test experiments are conducted on 14 types of WPTSs including Qi-compliant system and EV-charging WPT system mounted on current production EVs. In addition, a numerical simulation model for active implantable medical device (AIMD) EMI estimation based on the experimental test system is newly proposed. The experimental results demonstrate the risk of WPTSs emitting intermittent signal to affect the correct behavior of AIMDs when operating at very short distances. The proposed numerical simulation model is applicable to obtain basically the EMI characteristics of various types of WPTSs.
Marze, Sébastien
2013-01-01
Many food systems are dispersed systems, that is, they possess at least two immiscible phases. This is generally due to the coexistence of domains with different physicochemical properties separated by many interfaces which control the apparent thermodynamic equilibrium. This feature was and is still largely studied to design pharmaceutical delivery systems. In food science, the recent intensification of in vitro digestion tests to complement the in vivo ones holds promises in the identification of the key parameters controlling the bioaccessibility of nutrients and micronutrients. In this review, we present the developments of in vitro digestion tests for dispersed food systems (mainly emulsions, dispersions and gels). We especially highlight the evidences detailing the roles of the constituting multiscale structures. In a perspective section, we show the potential of structured interfaces to allow controlled bioaccessibility.
Zhang, Cindy; Ball, Jonathan; Panzica-Kelly, Julie; Augustine-Rauch, Karen
2016-04-18
There has been increasing focus on generation and assessment of in vitro developmental toxicology models for assessing teratogenic liability of chemicals. The driver for this focus has been to find reliable in vitro assays that will reduce or replace the use of in vivo tests for assessing teratogenicity. Such efforts may be eventually applied in testing pharmaceutical agents where a developmental toxicology assay or battery of assays may be incorporated into regulatory testing to replace one of the two species currently used in teratogenic assessment. Such assays may be eventually applied in testing a broader spectrum of chemicals, supporting efforts aligned with Tox21 strategies and responding to REACH legislation. This review describes the developmental toxicology assays that are of focus in these assessments: rodent whole embryo culture, zebrafish embryo assays, and embryonic stem cell assays. Progress on assay development as well as future directions of how these assays are envisioned to be applied for broader safety testing of chemicals are discussed. Altogether, the developmental model systems described in this review provide rich biological systems that can be utilized in better understanding teratogenic mechanisms of action of chemotypes and are promising in providing proactive safety assessment related to developmental toxicity. Continual advancements in refining/optimizing these in vitro assays are anticipated to provide a robust data set to provide thoughtful assessment of how whole animal teratogenicity evaluations can be reduced/refined in the future.
Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland
2017-06-10
The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Malipeddi, Venkata Ramana; Awasthi, Rajendra; Ghisleni, Daniela Dal Molim; de Souza Braga, Marina; Kikuchi, Irene Satiko; de Jesus Andreoli Pinto, Terezinha; Dua, Kamal
2017-02-01
The present study aimed to develop matrix-type transdermal drug delivery system (TDDS) of metoprolol tartrate using polyvinyl pyrrolidone (PVP) and polyvinyl alcohol (PVA). The transdermal films were evaluated for physical parameters, Fourier transform infrared spectroscopy analysis (FTIR), differential scanning calorimetry (DSC), in vitro drug release, in vitro skin permeability, skin irritation test and stability studies. The films were found to be tough, non-sticky, easily moldable and possess good tensile strength. As the concentration of PVA was increased, the tensile strength of the films was also increased. Results of FTIR spectroscopy and DSC revealed the absence of any drug-polymer interactions. In vitro release of metoprolol followed zero-order kinetics and the mechanism of release was found to be diffusion rate controlled. In vitro release studies of metoprolol using Keshary-Chein (vertical diffusion cell) indicated 65.5 % drug was released in 24 h. In vitro skin permeation of metoprolol transdermal films showed 58.13 % of the drug was released after 24 h. In vitro skin permeation of metoprolol followed zero-order kinetics in selected formulations. The mechanism of release was found to be diffusion rate controlled. In a 22-day skin irritation test, tested formulation of transdermal films did not exhibit any allergic reactions, inflammation, or contact dermatitis. The transdermal films showed good stability in the 180-day stability study. It can be concluded that the TDDS of MPT can help in bypassing the first-pass effect and will provide patient improved compliance, without sacrificing the therapeutic advantages of the drugs.
40 CFR 790.62 - Submission of study plans and conduct of testing.
Code of Federal Regulations, 2014 CFR
2014-07-01
... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its... affecting the progress of testing. [51 FR 23715, June 30, 1986, as amended at 54 FR 36314, Sept. 1, 1989; 60...
Behrsing, Holger; Hill, Erin; Raabe, Hans; Tice, Raymond; Fitzpatrick, Suzanne; Devlin, Robert; Pinkerton, Kent; Oberdörster, Günter; Wright, Chris; Wieczorek, Roman; Aufderheide, Michaela; Steiner, Sandro; Krebs, Tobias; Asgharian, Bahman; Corley, Richard; Oldham, Michael; Adamson, Jason; Li, Xiang; Rahman, Irfan; Grego, Sonia; Chu, Pei-Hsuan; McCullough, Shaun; Curren, Rodger
2017-07-01
In 2009, the passing of the Family Smoking Prevention and Tobacco Control Act facilitated the establishment of the FDA Center for Tobacco Products (CTP), and gave it regulatory authority over the marketing, manufacture and distribution of tobacco products, including those termed 'modified risk'. On 4-6 April 2016, the Institute for In Vitro Sciences, Inc. (IIVS) convened a workshop conference entitled, In Vitro Exposure Systems and Dosimetry Assessment Tools for Inhaled Tobacco Products, to bring together stakeholders representing regulatory agencies, academia and industry to address the research priorities articulated by the FDA CTP. Specific topics were covered to assess the status of current in vitro smoke and aerosol/vapour exposure systems, as well as the various approaches and challenges to quantifying the complex exposures in in vitro pulmonary models developed for evaluating adverse pulmonary events resulting from tobacco product exposures. The four core topics covered were: a) Tobacco Smoke and E-Cigarette Aerosols; b) Air-Liquid Interface-In Vitro Exposure Systems; c) Dosimetry Approaches for Particles and Vapours/In Vitro Dosimetry Determinations; and d) Exposure Microenvironment/Physiology of Cells. The 2.5-day workshop included presentations from 20 expert speakers, poster sessions, networking discussions, and breakout sessions which identified key findings and provided recommendations to advance these technologies. Here, we will report on the proceedings, recommendations, and outcome of the April 2016 technical workshop, including paths forward for developing and validating non-animal test methods for tobacco product smoke and next generation tobacco product aerosol/vapour exposures. With the recent FDA publication of the final deeming rule for the governance of tobacco products, there is an unprecedented necessity to evaluate a very large number of tobacco-based products and ingredients. The questionable relevance, high cost, and ethical considerations for the use of in vivo testing methods highlight the necessity of robust in vitro approaches to elucidate tobacco-based exposures and how they may lead to pulmonary diseases that contribute to lung exposure-induced mortality worldwide. 2017 FRAME.
40 CFR 790.62 - Submission of study plans and conduct of testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its..., and communicating with the Agency about laboratory inspections and other matters affecting the...
40 CFR 790.62 - Submission of study plans and conduct of testing.
Code of Federal Regulations, 2013 CFR
2013-07-01
... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its..., and communicating with the Agency about laboratory inspections and other matters affecting the...
40 CFR 790.62 - Submission of study plans and conduct of testing.
Code of Federal Regulations, 2012 CFR
2012-07-01
... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its..., and communicating with the Agency about laboratory inspections and other matters affecting the...
Toxcast and the Use of Human Relevant In Vitro Exposures ...
The path for incorporating new approach methods and technologies into quantitative chemical risk assessment poses a diverse set of scientific challenges. These challenges include sufficient coverage of toxicological mechanisms to meaningfully interpret negative test results, development of increasingly relevant test systems, computational modeling to integrate experimental data, putting results in a dose and exposure context, characterizing uncertainty, and efficient validation of the test systems and computational models. The presentation will cover progress at the U.S. EPA in systematically addressing each of these challenges and delivering more human-relevant risk-based assessments. This abstract does not necessarily reflect U.S. EPA policy. Presentation at the British Toxicological Society Annual Congress on ToxCast and the Use of Human Relevant In Vitro Exposures: Incorporating high-throughput exposure and toxicity testing data for 21st century risk assessments .
Heat exchangers for cardioplegia systems: in vitro study of four different concepts.
Drummond, Mário; Novello, Waldyr Parorali; de Arruda, Antonio Celso Fonseca; Braile, Domingo Marcolino
2003-05-01
The aim of this work is the evaluation of four different heat exchangers used for myocardium during cardioplegic system in cardiac surgeries. Four types of shell and tube heat exchangers made of different exchange elements were constructed, as follows: stainless steel tubes, aluminium tubes, polypropylene hollow fiber, and bellows type. The evaluation was performed by in vitro tests of parameters such as heat transfer, pressure drop, and hemolysis tendency. The result has shown that all four systems tested were able to achieve the heat performance, and to offer low resistance to flow, and safety, as well as have low tendency to hemolysis. However, we can emphasize that the bellows type heat exchanger has a significant difference with regard to the other three types.
[In vitro cell culture technology in cosmetology research].
Gojniczek, Katarzyna; Garncarczyk, Agnieszka; Pytel, Agata
2005-01-01
For ages the humanity has been looking for all kind of active substances, which could be used in improving the health and the appearance of our skin. People try to find out how to protect the skin from harmful, environmental factors. Every year a lot of new natural and synthetic, chemical substances are discovered. All of them potentially could be used as a cosmetic ingredient. In cosmetology research most of new xenobiotics were tested in vivo on animals. Alternative methods to in vivo tests are in vitro tests with skin cell culture system. The aim of this work was to describe two-dimensional and tree-dimensional skin cell cultures. Additionally, in this work we wanted to prove the usefulness of in vitro skin cell cultures in cosmetology research.
[Spheroids: A reference model for in vitro culture of solid tumors?
Larsen, Christian-Jacques
2018-01-01
The recognition that solid tumors are complex entities composed of the tumor cell mass itself and a stromal micro-environnement providing a variety of cells from the host (fibroblasts, endothelial cells, immune cells) led to recognize that this heterogeneity could not be recapitulated in vitro by conventional bidimensional (2-D) cultures. This justified numerous attempts to develop tridimensional (3-D) cultures that provided better tools for approaching tumor complexity and more convincing drug testing systems. Among various 3-D technologies, tumor spheroids are more likely suited to provide in vitro platforms for apprehending specific aspects of different processes specifically defining each tumor category as well as testing drug delivery systems. This review summarizes current features of multicellular tumor spheroids and their suitability for studying different aspects of cancer cell biology, patient-specific therapies and drug treatment. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.
An In vitro Model for Bacterial Growth on Human Stratum Corneum.
van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M
2016-11-02
The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.
Wu, Yi; Zhu, Rui-Ying; Mitchell, Leslie A; Ma, Lu; Liu, Rui; Zhao, Meng; Jia, Bin; Xu, Hui; Li, Yun-Xiang; Yang, Zu-Ming; Ma, Yuan; Li, Xia; Liu, Hong; Liu, Duo; Xiao, Wen-Hai; Zhou, Xiao; Li, Bing-Zhi; Yuan, Ying-Jin; Boeke, Jef D
2018-05-22
The power of synthetic biology has enabled the expression of heterologous pathways in cells, as well as genome-scale synthesis projects. The complexity of biological networks makes rational de novo design a grand challenge. Introducing features that confer genetic flexibility is a powerful strategy for downstream engineering. Here we develop an in vitro method of DNA library construction based on structural variation to accomplish this goal. The "in vitro SCRaMbLE system" uses Cre recombinase mixed in a test tube with purified DNA encoding multiple loxPsym sites. Using a β-carotene pathway designed for expression in yeast as an example, we demonstrate top-down and bottom-up in vitro SCRaMbLE, enabling optimization of biosynthetic pathway flux via the rearrangement of relevant transcription units. We show that our system provides a straightforward way to correlate phenotype and genotype and is potentially amenable to biochemical optimization in ways that the in vivo system cannot achieve.
Current limitations and recommendations to improve testing ...
In this paper existing regulatory frameworks and test systems for assessing potential endocrine-active chemicals are described, and associated challenges discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across organizations, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or the environment. Current test systems include in silico, in vitro and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormonal pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1)adequately sensitive species and life-stages, 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern, and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive in regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to, and guidance for existing test methods, and to reduce uncertainty. For example, in vitro high throughput
Mammalian receptors and assay systems are generally used for in vitro analysis of endocrine disrupting chemicals (EDC) with the assumption that minor differences in amino acid sequences among species do not translate into significant differences in receptor function. We have fou...
Rechmann, Henrik; Friedrich, Andrea; Forouzan, Dara; Barth, Stefan; Schnabl, Heide; Biselli, Manfred; Boehm, Robert
2007-06-01
The feasibility of oxygen transfer rate (OTR) measurement to non-destructively monitor plant propagation and vitality of photosynthetically active plant in vitro culture of duckweed (Wolffia australiana, Lemnaceae) was tested using Respiration Activity Monitoring System (RAMOS). As a result, OTR proofed to be a sensitive indicator for plant vitality. The culture characterization under day/night light conditions, however, revealed a complex interaction between oxygen production and consumption, rendering OTR measurement an unsuitable tool to track plant propagation. However, RAMOS was found to be a useful tool in preliminary studies for process development of photosynthetically active plant in vitro cultures.
40 CFR 790.62 - Submission of study plans and conduct of testing.
Code of Federal Regulations, 2010 CFR
2010-07-01
... contaminants and their concentrations; for in vitro test systems, a description of culture medium and its source; and a summary of expected spontaneous chronic diseases (including tumors), genealogy, and life...
An in vitro test bench reproducing coronary blood flow signals.
Chodzyński, Kamil Jerzy; Boudjeltia, Karim Zouaoui; Lalmand, Jacques; Aminian, Adel; Vanhamme, Luc; de Sousa, Daniel Ribeiro; Gremmo, Simone; Bricteux, Laurent; Renotte, Christine; Courbebaisse, Guy; Coussement, Grégory
2015-08-07
It is a known fact that blood flow pattern and more specifically the pulsatile time variation of shear stress on the vascular wall play a key role in atherogenesis. The paper presents the conception, the building and the control of a new in vitro test bench that mimics the pulsatile flows behavior based on in vivo measurements. An in vitro cardiovascular simulator is alimented with in vivo constraints upstream and provided with further post-processing analysis downstream in order to mimic the pulsatile in vivo blood flow quantities. This real-time controlled system is designed to perform real pulsatile in vivo blood flow signals to study endothelial cells' behavior under near physiological environment. The system is based on an internal model controller and a proportional-integral controller that controls a linear motor with customized piston pump, two proportional-integral controllers that control the mean flow rate and temperature of the medium. This configuration enables to mimic any resulting blood flow rate patterns between 40 and 700 ml/min. In order to feed the system with reliable periodic flow quantities in vivo measurements were performed. Data from five patients (1 female, 4 males; ages 44-63) were filtered and post-processed using the Newtonian Womersley's solution. These resulting flow signals were compared with 2D axisymmetric, numerical simulation using a Carreau non-Newtonian model to validate the approximation of a Newtonian behavior. This in vitro test bench reproduces the measured flow rate time evolution and the complexity of in vivo hemodynamic signals within the accuracy of the relative error below 5%. This post-processing method is compatible with any real complex in vivo signal and demonstrates the heterogeneity of pulsatile patterns in coronary arteries among of different patients. The comparison between analytical and numerical solution demonstrate the fair quality of the Newtonian Womersley's approximation. Therefore, Womersley's solution was used to calculate input flow rate for the in vitro test bench.
Lee, Yung-Shan; Otton, S Victoria; Campbell, David A; Moore, Margo M; Kennedy, Chris J; Gobas, Frank A P C
2012-01-03
Methods for rapid and cost-effective assessment of the biotransformation potential of very hydrophobic and potentially bioaccumulative chemicals in mammals are urgently needed for the ongoing global evaluation of the environmental behavior of commercial chemicals. We developed and tested a novel solvent-free, thin-film sorbent-phase in vitro dosing system to measure the in vitro biotransformation rates of very hydrophobic chemicals in male Sprague-Dawley rat liver S9 homogenates and compared the rates to those measured by conventional solvent-delivery dosing. The thin-film sorbent-phase dosing system using ethylene vinyl acetate coated vials was developed to eliminate the incomplete dissolution of very hydrophobic substances in largely aqueous liver homogenates, to determine biotransformation rates at low substrate concentrations, to measure the unbound fraction of substrate in solution, and to simplify chemical analysis by avoiding the difficult extraction of test chemicals from complex biological matrices. Biotransformation rates using sorbent-phase dosing were 2-fold greater than those measured using solvent-delivery dosing. Unbound concentrations of very hydrophobic test chemicals were found to decline with increasing S9 and protein concentrations, causing measured biotransformation rates to be independent of S9 or protein concentrations. The results emphasize the importance of specifying both protein content and unbound substrate fraction in the measurement and reporting of in vitro biotransformation rates of very hydrophobic substances, which can be achieved in a thin-film sorbent-phase dosing system.
Hakkim, F Lukmanul; Shankar, C Gowri; Girija, S
2007-10-31
In this study, the chemical constituents and antioxidant property of holy basil (Ocimum sanctum Linn.) field-grown plant parts (leaves, stems, and inflorescence) were compared with those of respective callus cultures induced from each explant in in vitro. The callus cultures were successfully initiated on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxy acetic acid (2,4-D) (1 mg/L) combined with different concentrations (0.1-0.5 mg/L) of kinetin as plant growth regulators. The distribution of phenolic compounds in these extracts was analyzed using reverse phase high-performance liquid chromatography with reference standards. Interestingly, rosmarinic acid (RA) was found to be the predominant phenolic acid in all callus extracts in comparison with field-grown plant parts. In this study, the antioxidant activity of the extracts was evaluated with six different in vitro antioxidant-testing systems. Their activities of scavenging superoxide anion radicals, 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH), hydroxyl radicals, hydrogen peroxide, chelating ferrous iron, and ferric ion reducing potential were assessed. The antioxidant activity was increased in all testing systems with increasing amounts of extract. However, at the same concentration, the callus extracts exhibited higher antioxidant activity in all of the testing systems than the extract obtained from field-grown plant parts. The data obtained from this study suggested the possibility of the isolation of a high content of RA from in vitro callus cultures rather than field-grown plant organs of holy basil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, W.M.; Arnett, G.; Brazier, A.D.
1991-03-01
The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly Fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virusmore » (VE), Japanese Encephalitis Virus and Vaccinia Virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (Ribavirin, Selenazofurin, Carbocyclic-3-deaza-adenosine, Adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.« less
A new alternative method for testing skin irritation using a human skin model: a pilot study.
Miles, A; Berthet, A; Hopf, N B; Gilliet, M; Raffoul, W; Vernez, D; Spring, P
2014-03-01
Studies assessing skin irritation to chemicals have traditionally used laboratory animals; however, such methods are questionable regarding their relevance for humans. New in vitro methods have been validated, such as the reconstructed human epidermis (RHE) model (Episkin®, Epiderm®). The comparison (accuracy) with in vivo results such as the 4-h human patch test (HPT) is 76% at best (Epiderm®). There is a need to develop an in vitro method that better simulates the anatomo-pathological changes encountered in vivo. To develop an in vitro method to determine skin irritation using human viable skin through histopathology, and compare the results of 4 tested substances to the main in vitro methods and in vivo animal method (Draize test). Human skin removed during surgery was dermatomed and mounted on an in vitro flow-through diffusion cell system. Ten chemicals with known non-irritant (heptylbutyrate, hexylsalicylate, butylmethacrylate, isoproturon, bentazon, DEHP and methylisothiazolinone (MI)) and irritant properties (folpet, 1-bromohexane and methylchloroisothiazolinone (MCI/MI)), a negative control (sodiumchloride) and a positive control (sodiumlaurylsulphate) were applied. The skin was exposed at least for 4h. Histopathology was performed to investigate irritation signs (spongiosis, necrosis, vacuolization). We obtained 100% accuracy with the HPT model; 75% with the RHE models and 50% with the Draize test for 4 tested substances. The coefficients of variation (CV) between our three test batches were <0.1, showing good reproducibility. Furthermore, we reported objectively histopathological irritation signs (irritation scale): strong (folpet), significant (1-bromohexane), slight (MCI/MI at 750/250ppm) and none (isoproturon, bentazon, DEHP and MI). This new in vitro test method presented effective results for the tested chemicals. It should be further validated using a greater number of substances; and tested in different laboratories in order to suitably evaluate reproducibility. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.
Code of Federal Regulations, 2012 CFR
2012-07-01
... demonstrates the sensitivity of the test system. Positive control concentrations should be chosen so that the... aberration test. 799.9537 Section 799.9537 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND...
40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.
Code of Federal Regulations, 2011 CFR
2011-07-01
... demonstrates the sensitivity of the test system. Positive control concentrations should be chosen so that the... aberration test. 799.9537 Section 799.9537 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) IDENTIFICATION OF SPECIFIC CHEMICAL SUBSTANCE AND...
Bal-Price, Anna K; Suñol, Cristina; Weiss, Dieter G; van Vliet, Erwin; Westerink, Remco H S; Costa, Lucio G
2008-05-01
Prediction of neurotoxic effects is a key feature in the toxicological profile of many compounds and therefore is required by regulatory testing schemes. Nowadays neurotoxicity assessment required by the OECD and EC test guidelines is based solely on in vivo testing, evaluating mainly effects on neurobehavior and neuropathology, which is expensive, time consuming and unsuitable for screening large number of chemicals. Additionally, such in vivo tests are not always sensitive enough to predict human neurotoxicity and often do not provide information that facilitates regulatory decision-making processes. Incorporation of alternative tests (in vitro testing, computational modelling, QSARs, grouping, read-across, etc.) in screening strategies would speed up the rate at which compound knowledge and mechanistic data are available and the information obtained could be used in the refinement of future in vivo studies to facilitate predictions of neurotoxicity. On 1st June 2007, the European Commission legislation concerning registration, evaluation and authorisation of chemicals (REACH) has entered into force. REACH addresses one of the key issues for chemicals in Europe, the lack of publicly available safety data sheets. It outlines a plan to test approximately 30,000 existing substances. These chemicals are currently produced in volumes greater than 1ton/year and the essential data on the human health and ecotoxicological effects are lacking. It is estimated that approximately 3.9 million test animals (including 2.6 million vertebrates) (Hartung T, Bremer S, Casati S, Coecke S, Corvi R, Fortnaer S, et al. ECVAM's response to the changing political environment for alternatives: consequences of the European Union chemicals and cosmetics policies. ATLA 2003;31:473-81) would be necessary to fulfill the requirements of REACH if the development and establishment of alternative methods is not accepted by regulatory authorities. In an effort to reduce animal use and testing costs within this tonnage band, the European Commission has advocated the use of alternative approaches. Neurotoxicity testing is not directly addressed within REACH, however when alerts are observed based on organ specific toxicity studies then neurotoxicity assessment has to be performed. This session at the 11th International Neurotoxicology Association Meeting provided a forum to openly discuss and debate the potential of in vitro testing strategies that could be relevant for neurotoxicity evaluation in the context of regulatory requirements. The EU FP6 project A-Cute-Tox was presented as an example of a possible in vitro testing strategy for prediction of human acute systemic toxicity. Other presentations focused on the characterization of the available in vitro models (cell lines and primary culture) and neuronal specific endpoints, with a special emphasis on electrical activity, metabonomics and modulation of vesicular neurotransmitter release as possible neuronal endpoints relevant for in vitro neurotoxicity testing. Finally, it was underlined that in vitro systems (strategies) that have the potential to be applied for neurotoxicity assessment have to be formally validated under standardised conditions that have been recognised by national and international validation bodies.
Non-Animal Testing Approach to EPA Labeling for Eye Irritation
This document is an update to EPA’s 2013 published alternative testing approach (using in vitro/ex vivo assays) for determination of eye irritation potential in the pesticide program under EPA's classification and labeling system.
The regulatory acceptance of alternatives in the European Union.
Warbrick, E Vicky; Evans, Peter F
2004-06-01
Recently, progress has been made toward the regulatory acceptance of replacements in the European Union (EU), particularly with the introduction of in vitro methods for the prediction of skin corrosivity, dermal penetration, phototoxicity and embryotoxicity. In vitro genotoxicity tests are well established, and testing for this endpoint can be completed without animals, provided that clear negative outcomes are obtained. Tiered approaches including in vitro tests can also be used to address skin and eye irritation endpoints. Reductions and/or refinements in animal use are being achieved following the replacement of the oral LD50 test with alternative methods and the adoption of reduced test packages for materials, such as closed-system intermediates and certain polymers. Furthermore, the use of a "read-across" approach has reduced animal testing. Substantial gains in refinement will also be made with the recent acceptance of the local lymph node assay for skin sensitisation and the development of an acute inhalation toxicity method that avoids lethality as the endpoint. For the future, under the proposed EU Registration, Evaluation and Authorisation of Chemicals (REACH) scheme, it is envisaged that, where suitable in vitro methods exist, these should be used to support registration of substances produced at up to ten tonnes per annum. This proposal can only accelerate the further development, validation and regulatory acceptance of such alternative methods.
Promotion of research on in vitro immunotoxicology.
Balls, M; Sabbioni, E
2001-04-10
ECVAM was established to play a leading role at the European level in the independent evaluation of the reliability and relevance of test methods and testing strategies for specific purposes through research on advanced methods and new test development and validation, so that chemicals and products of various kinds, including medicines, vaccines, medical devices, cosmetics, household products and agricultural products, can be manufactured, transported and used more economically and more safely, whilst the current relevance on animal test procedures is progressively reduced. Nowhere is this activity more necessary than in the field of immunotoxicology, where we know that chemicals and products of many kinds have the potential to stimulate, modulate or suppress the induction or expression of various types of immune responses. The problem is to effectively evaluate the potency of these effectors, and, since the available information is currently based on rather qualitative animal tests, to evaluate the true relevance of this knowledge and apply it intelligently in risk assessment processes which will protect human beings without unnecessarily limiting the development and use of materials which otherwise have economic, health and social benefits. The way forward must depend on the following: (a) a better understanding of immunotoxicological processes, based on a sounder understanding of the immune system itself (and of its network of control systems and interrelationships with other body systems); (b) The use of in vitro (not in vivo) systems based on human (not animal) cells and tissues; (c) integrated and tiered testing strategies, incorporating QSAR, as well as in vitro approaches; (d) taking advantage of the use of cells or factors from humans who have been exposed to potential immunotoxins, be this voluntarily, occupationally, environmentally or by accident; and (e) the recognition that virtually everything will effect one or more aspects of the immune system at some dose level and, in some circumstances, deciding when such effects are relevant, is the key to immunotoxicity testing. Some current ECVAM-sponsored work and activities at ECVAM are described.
In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.
Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo
2013-09-01
The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shannon, W.M.; Arnett, G.; Brazier, A.D.
1991-03-01
The purpose of this program is to evaluate the efficacy of candidate antiviral compounds against a spectrum of viruses of military importance. This program involves (a) primary testing of chemical compounds and natural products for antiviral efficacy in vitro using standard CPE-inhibition assays, (b) primary testing of compounds for antiviral efficacy in vivo in animal model systems, and (c) secondary evaluation of the active candidate antiviral compounds. The target viruses for in vitro testing are Vaccinia Virus (VV), Adenovirus (AD2), Vesicular Stomatitis Virus (VSV), Punta Toro Virus (PT), Sandfly fever Virus (SF), Yellow Fever Virus (YF), Venezuelan Equine Encephalomyelitis Virusmore » (VE), Japanese Encephalitis Virus, Pichinde Virus (PIC), Hantaan Virus (HTN), and Human Immunodeficiency Virus (HIV). The in vivo systems are Pichinde Virus infection of hamsters, Venezuelan Equine Encephalomyelitis Virus, Japanese Encephalitis Virus and Vaccinia virus infections of mice. Approximately 10,000 compounds have been received for in vitro evaluation and over 66,000 assays have been performed on this contract. Compounds have been identified in nearly all virus systems that have confirmed antiviral activity equal or exceeding that of the various positive control compounds (ribavirin, selenazofurin, carbocyclic-3-aza-adenosine, adenosine dialdehyde, Ara-A, ddC and AZT). Many of these compounds represent potent and selective new antiviral agents.« less
In vitro antibody-enzyme conjugates with specific bactericidal activity.
Knowles, D M; Sulivan, T J; Parker, C W; Williams, R C
1973-06-01
IgG with antibacterial antibody opsonic activity was isolated from rabbit antisera produced by intravenous hyperimmunization with several test strains of pneumococci, Group A beta-hemolytic streptococci, Staphylococcus aureus, Proteus mirabilis, Pseudomonas aeruginosa, and Escherichia coli. Antibody-enzyme conjugates were prepared, using diethylmalonimidate to couple glucose oxidase to IgG antibacterial antibody preparations. Opsonic human IgG obtained from serum of patients with subacute bacterial endocarditis was also conjugated to glucose oxidase. Antibody-enzyme conjugates retained combining specificity for test bacteria as demonstrated by indirect immunofluorescence. In vitro test for bactericidal activity of antibody-enzyme conjugates utilized potassium iodide, lactoperoxidase, and glucose as cofactors. Under these conditions glucose oxidase conjugated to antibody generates hydrogen peroxide, and lactoperoxidase enzyme catalyzes the reduction of hydrogen peroxide with simultaneous oxidation of I(-) and halogenation and killing of test bacteria. Potent in vitro bactericidal activity of this system was repeatedly demonstrated for antibody-enzyme conjugates against pneumococci, streptococci, S. aureus, P. mirabilis, and E. coli. However, no bactericidal effect was demonstrable with antibody-enzyme conjugates and two test strains of P. aeruginosa. Bactericidal activity of antibody-enzyme conjugates appeared to parallel original opsonic potency of unconjugated IgG preparations. Antibody-enzyme conjugates at concentrations as low as 0.01 mg/ml were capable of intense bactericidal activity producing substantial drops in surviving bacterial counts within 30-60 min after initiation of assay. These in vitro bactericidal systems indicate that the concept of antibacterial antibody-enzyme conjugates may possibly be adaptable as a mechanism for treatment of patients with leukocyte dysfunction or fulminant bacteremia.
Mariné, Marçal; Pastor, F. Javier; Sahand, Ismail H.; Pontón, José; Quindós, Guillermo; Guarro, Josep
2009-01-01
Candida dubliniensis commonly shows paradoxical or trailing growth effects in vitro in the presence of echinocandins. We tested the in vitro activities of anidulafungin, caspofungin, and micafungin against clinical isolates of C. dubliniensis and evaluated the efficacy of these drugs in two murine models of systemic infection. The three echinocandins were similarly effective in the treatment of experimental disseminated infections with C. dubliniensis strains showing or not showing abnormal growth in vitro. PMID:19786599
Stadnicka-Michalak, Julita; Tanneberger, Katrin; Schirmer, Kristin; Ashauer, Roman
2014-01-01
Effect concentrations in the toxicity assessment of chemicals with fish and fish cells are generally based on external exposure concentrations. External concentrations as dose metrics, may, however, hamper interpretation and extrapolation of toxicological effects because it is the internal concentration that gives rise to the biological effective dose. Thus, we need to understand the relationship between the external and internal concentrations of chemicals. The objectives of this study were to: (i) elucidate the time-course of the concentration of chemicals with a wide range of physicochemical properties in the compartments of an in vitro test system, (ii) derive a predictive model for toxicokinetics in the in vitro test system, (iii) test the hypothesis that internal effect concentrations in fish (in vivo) and fish cell lines (in vitro) correlate, and (iv) develop a quantitative in vitro to in vivo toxicity extrapolation method for fish acute toxicity. To achieve these goals, time-dependent amounts of organic chemicals were measured in medium, cells (RTgill-W1) and the plastic of exposure wells. Then, the relation between uptake, elimination rate constants, and log KOW was investigated for cells in order to develop a toxicokinetic model. This model was used to predict internal effect concentrations in cells, which were compared with internal effect concentrations in fish gills predicted by a Physiologically Based Toxicokinetic model. Our model could predict concentrations of non-volatile organic chemicals with log KOW between 0.5 and 7 in cells. The correlation of the log ratio of internal effect concentrations in fish gills and the fish gill cell line with the log KOW was significant (r>0.85, p = 0.0008, F-test). This ratio can be predicted from the log KOW of the chemical (77% of variance explained), comprising a promising model to predict lethal effects on fish based on in vitro data. PMID:24647349
Mandenius, Carl-Fredrik; Andersson, Tommy B; Alves, Paula M; Batzl-Hartmann, Christine; Björquist, Petter; Carrondo, Manuel J T; Chesne, Christophe; Coecke, Sandra; Edsbagge, Josefina; Fredriksson, J Magnus; Gerlach, Jörg C; Heinzle, Elmar; Ingelman-Sundberg, Magnus; Johansson, Inger; Küppers-Munther, Barbara; Müller-Vieira, Ursula; Noor, Fozia; Zeilinger, Katrin
2011-05-01
Drug-induced liver injury is a common reason for drug attrition in late clinical phases, and even for post-launch withdrawals. As a consequence, there is a broad consensus in the pharmaceutical industry, and within regulatory authorities, that a significant improvement of the current in vitro test methodologies for accurate assessment and prediction of such adverse effects is needed. For this purpose, appropriate in vivo-like hepatic in vitro models are necessary, in addition to novel sources of human hepatocytes. In this report, we describe recent and ongoing research toward the use of human embryonic stem cell (hESC)-derived hepatic cells, in conjunction with new and improved test methods, for evaluating drug metabolism and hepatotoxicity. Recent progress on the directed differentiation of human embryonic stem cells to the functional hepatic phenotype is reported, as well as the development and adaptation of bioreactors and toxicity assay technologies for the testing of hepatic cells. The aim of achieving a testing platform for metabolism and hepatotoxicity assessment, based on hESC-derived hepatic cells, has advanced markedly in the last 2-3 years. However, great challenges still remain, before such new test systems could be routinely used by the industry. In particular, we give an overview of results from the Vitrocellomics project (EU Framework 6) and discuss these in relation to the current state-of-the-art and the remaining difficulties, with suggestions on how to proceed before such in vitro systems can be implemented in industrial discovery and development settings and in regulatory acceptance. 2011 FRAME.
In vitro susceptibility of Pseudomonas species to carbenicillin and trimethoprim-sulfamethoxazole.
Hill, S F; Haldane, D J; Ngui-Yen, J H; Smith, J A
1985-01-01
We compared susceptibility tests of 47 Pseudomonas aeruginosa isolates and 40 Pseudomonas species to carbenicillin and trimethoprim-sulfamethoxazole by the MS-2 and Sceptor systems and agar dilution. The major and very major errors encountered in these tests in the MS-2 and Sceptor systems raise doubts about the accuracy of these methods for testing P. aeruginosa and confirm that they should not be used for testing the susceptibility of Pseudomonas species to the two drugs tested. PMID:3930567
Development of an in-vitro circulatory system with known resistance and capacitance
NASA Technical Reports Server (NTRS)
Offerdahl, C. D.; Schaub, J. D.; Koenig, S. C.; Swope, R. D.; Ewert, D. L.; Convertino, V. A. (Principal Investigator)
1996-01-01
An in-vitro (hydrodynamic) model of the circulatory system was developed. The model consisted of a pump, compliant tubing, and valves for resistance. The model is used to simulate aortic pressure and flow. These parameters were measured using a Konigsburg Pressure transducer and a Triton ART2 flow probe. In addition, venous pressure and flow were measured on the downstream side of the resistance. The system has a known compliance and resistance. Steady and pulsatile flow tests were conducted to determine the resistance of the model. A static compliance test was used to determine the compliance of the system. The aortic pressure and flow obtained from the hydrodynamic model will be used to test the accuracy of parameter estimation models such as the 2-element and 4-element Windkessel models and the 3-element Westkessel model. Verifying analytical models used in determining total peripheral resistance (TPR) and systemic arterial compliance (SAC) is important because it provides insight into hemodynamic parameters that indicate baroreceptor responsiveness to situations such as changes in gravitational acceleration.
Expert consensus on an in vitro approach to assess ...
Report from an international workshop with the goal of reviewing the state-of-the-science and determine the technical needs to develop an in vitro system that will reduce and eventually replace the use of animals for evaluating the potential inhalation toxicity of nanomaterials (NMs) in a regulatory setting. Workshop was co-organized in February 2015 by the PETA International Science Consortium Ltd. with the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods an international workshop that was attended by representatives from industry, government, academia, and non-governmental organizations with expertise in in vivo and in vitro lung systems, respiratory toxicology, inhalation particle dosimetry, nanotoxicology, and hazard and human health risk analysis. This report provides an overview of the presentations, discussions, and recommendations of the participants on the design of an in vitro system for the prediction of pulmonary fibrosis. The workshop participants identified multi-walled carbon nanotubes (MWCNTs), which have been shown to induce fibrosis in animal experiments and represent an important commercial nanomaterial class, as representative pro-fibrogenic NMs to use for the development of an in vitro test system. Recommendations were made for designing a system using lung relevant cells co-cultured at the air-liquid interface to assess the pro-fibrogenic potential of aerosolized MWCNTs, while consider
Landsiedel, Robert; Ma-Hock, Lan; Van Ravenzwaay, Ben; Schulz, Markus; Wiench, Karin; Champ, Samantha; Schulte, Stefan; Wohlleben, Wendel; Oesch, Franz
2010-12-01
Titanium dioxide and zinc oxide nanomaterials, used as UV protecting agents in sunscreens, were investigated for their potential genotoxicity in in vitro and in vivo test systems. Since standard OECD test methods are designed for soluble materials and genotoxicity testing for nanomaterials is still under revision, a battery of standard tests was used, covering different endpoints. Additionally, a procedure to disperse the nanomaterials in the test media and careful characterization of the dispersed test item was added to the testing methods. No genotoxicity was observed in vitro (Ames' Salmonella gene mutation test and V79 micronucleus chromosome mutation test) or in vivo (mouse bone marrow micronucleus test and Comet DNA damage assay in lung cells from rats exposed by inhalation). These results add to the still limited data base on genotoxicity test results with nanomaterials and provide congruent results of a battery of standard OECD test methods applied to nanomaterials.
Assessment of anti-oxidant activity of plant extracts using microbial test systems.
Oktyabrsky, O; Vysochina, G; Muzyka, N; Samoilova, Z; Kukushkina, T; Smirnova, G
2009-04-01
To evaluate the anti-oxidant properties of extracts from 20 medicinal herbs growing in western Siberia using microbial test systems and different in vitro methods. In vivo anti-oxidant activity of extracts was evaluated for their capacity to protect bacteria, Escherichia coli, against bacteriostatic and bactericidal effects of H(2)O(2) and menadione, and action on anti-oxidant gene expression. In vitro anti-oxidant activity has been examined by a number of methods including: the 1,1-diphenyl-2-picrylhydrazyl radical (DPPH(*))-scavenging assay, chelating activity and capacity to protect plasmid DNA against oxidative damage. In addition, total polyphenol content was determined. The extracts of Fragaria vesca, Rosa majalis, Pentaphylloides fruticosa, Alchemilla vulgaris and Pulmonaria mollis possessed the highest levels of anti-oxidant activity in vivo and in vitro. The protective properties were more closely related to the DPPH(*) radical-scavenging activity, tannin content and action on anti-oxidant gene expression than to other parameters. The extracts of medicinal plants may have anti-oxidant effects on bacteria simultaneously through several different pathways, including direct inhibition of reactive oxygen species, iron chelation and anti-oxidant genes induction. Using microbial test systems, we revealed herbs that may be used as potential sources of natural anti-oxidants.
The role of in vitro methods as alternatives to animals in toxicity testing.
Anadón, Arturo; Martínez, María Aranzazu; Castellano, Victor; Martínez-Larrañaga, María Rosa
2014-01-01
It is accepted that animal testing should be reduced, refined or replaced as far as it is practicably possible. There are also a wide variety of in vitro models, which are used as screening studies and mechanistic investigations. The ability of an in vitro assay to be reliable, biomedically, is essential in pharmaceutical development. Furthermore, it is necessary that cells used in in vitro testing mimic the phenotype of cells within the human target tissue. The focus of this review article is to identify the key points of in vitro assays. In doing so, the authors take into account the chemical agents that are assessed and the integrated in vitro testing strategies. There is a transfer of toxicological data from primary in vivo animal studies to in vitro assays. The key element for designing an integrated in vitro testing strategy is summarized as follows: exposure modeling of chemical agents for in vitro testing; data gathering, sharing and read-across for testing a class of chemical; a battery of tests to assemble a broad spectrum of data on different mechanisms of action to predict toxic effects; and applicability of the test and the integrated in vitro testing strategies and flexibility to adjust the integrated in vitro testing strategies to test substance. While these methods will be invaluable if effective, more studies must be done to ensure reliability and suitability of these tests for humans.
Huynh, Bao K; Traini, Daniela; Farkas, Dale R; Longest, P Worth; Hindle, Michael; Young, Paul M
2018-04-01
Current in vitro approaches to assess lung deposition, dissolution, and cellular transport behavior of orally inhaled products (OIPs) have relied on compendial impactors to collect drug particles that are likely to deposit in the airway; however, the main drawback with this approach is that these impactors do not reflect the airway and may not necessarily represent drug deposition behavior in vivo. The aim of this article is to describe the development and method validation of a novel hybrid in vitro approach to assess drug deposition and permeation behavior in a more representative airway model. The medium-sized Virginia Commonwealth University (VCU) mouth-throat (MT) and tracheal-bronchial (TB) realistic upper airway models were used in this study as representative models of the upper airway. The TB model was modified to accommodate two Snapwell ® inserts above the first TB airway bifurcation region to collect deposited nebulized ciprofloxacin-hydrochloride (CIP-HCL) droplets as a model drug aerosol system. Permeation characteristics of deposited nebulized CIP-HCL droplets were assessed across different synthetic membranes using the Snapwell test system. The Snapwell test system demonstrated reproducible and discriminatory drug permeation profiles for already dissolved and nebulized CIP-HCL droplets through a range of synthetic permeable membranes under different test conditions. The rate and extent of drug permeation depended on the permeable membrane material used, presence of a stirrer in the receptor compartment, and, most importantly, the drug collection method. This novel hybrid in vitro approach, which incorporates a modified version of a realistic upper airway model, coupled with the Snapwell test system holds great potential to evaluate postairway deposition characteristics, such as drug permeation and particle dissolution behavior of OIPs. Future studies will expand this approach using a cell culture-based setup instead of synthetic membranes, within a humidified chamber, to assess airway epithelia transport behavior in a more representative manner.
Farcal, Lucian; Torres Andón, Fernando; Di Cristo, Luisana; Rotoli, Bianca Maria; Bussolati, Ovidio; Bergamaschi, Enrico; Mech, Agnieszka; Hartmann, Nanna B.; Rasmussen, Kirsten; Riego-Sintes, Juan; Ponti, Jessica; Kinsner-Ovaskainen, Agnieszka; Rossi, François; Oomen, Agnes; Bos, Peter; Chen, Rui; Bai, Ru; Chen, Chunying; Rocks, Louise; Fulton, Norma; Ross, Bryony; Hutchison, Gary; Tran, Lang; Mues, Sarah; Ossig, Rainer; Schnekenburger, Jürgen; Campagnolo, Luisa; Vecchione, Lucia; Pietroiusti, Antonio; Fadeel, Bengt
2015-01-01
Nanomaterials (NMs) display many unique and useful physico-chemical properties. However, reliable approaches are needed for risk assessment of NMs. The present study was performed in the FP7-MARINA project, with the objective to identify and evaluate in vitro test methods for toxicity assessment in order to facilitate the development of an intelligent testing strategy (ITS). Six representative oxide NMs provided by the EC-JRC Nanomaterials Repository were tested in nine laboratories. The in vitro toxicity of NMs was evaluated in 12 cellular models representing 6 different target organs/systems (immune system, respiratory system, gastrointestinal system, reproductive organs, kidney and embryonic tissues). The toxicity assessment was conducted using 10 different assays for cytotoxicity, embryotoxicity, epithelial integrity, cytokine secretion and oxidative stress. Thorough physico-chemical characterization was performed for all tested NMs. Commercially relevant NMs with different physico-chemical properties were selected: two TiO2 NMs with different surface chemistry – hydrophilic (NM-103) and hydrophobic (NM-104), two forms of ZnO – uncoated (NM-110) and coated with triethoxycapryl silane (NM-111) and two SiO2 NMs produced by two different manufacturing techniques – precipitated (NM-200) and pyrogenic (NM-203). Cell specific toxicity effects of all NMs were observed; macrophages were the most sensitive cell type after short-term exposures (24-72h) (ZnO>SiO2>TiO2). Longer term exposure (7 to 21 days) significantly affected the cell barrier integrity in the presence of ZnO, but not TiO2 and SiO2, while the embryonic stem cell test (EST) classified the TiO2 NMs as potentially ‘weak-embryotoxic’ and ZnO and SiO2 NMs as ‘non-embryotoxic’. A hazard ranking could be established for the representative NMs tested (ZnO NM-110 > ZnO NM-111 > SiO2 NM-203 > SiO2 NM-200 > TiO2 NM-104 > TiO2 NM-103). This ranking was different in the case of embryonic tissues, for which TiO2 displayed higher toxicity compared with ZnO and SiO2. Importantly, the in vitro methodology applied could identify cell- and NM-specific responses, with a low variability observed between different test assays. Overall, this testing approach, based on a battery of cellular systems and test assays, complemented by an exhaustive physico-chemical characterization of NMs, could be deployed for the development of an ITS suitable for risk assessment of NMs. This study also provides a rich source of data for modeling of NM effects. PMID:25996496
Cytotoxicity assessment of antibiofouling compounds and by-products in marine bivalve cell cultures.
Domart-Coulon, I; Auzoux-Bordenave, S; Doumenc, D; Khalanski, M
2000-06-01
Short-term primary cell cultures were derived from adult marine bivalve tissues: the heart of oyster Crassostrea gigas and the gill of clam Ruditapes decussatus. These cultures were used as experimental in vitro models to assess the acute cytotoxicity of an organic molluscicide, Mexel-432, used in antibiofouling treatments in industrial cooling water systems. A microplate cell viability assay, based on the enzymatic reduction of tetrazolium dye (MTT) in living bivalve cells, was adapted to test the cytotoxicity of this compound: in both in vitro models, toxicity thresholds of Mexel-432 were compared to those determined in vivo with classic acute toxicity tests. The clam gill cell model was also used to assess the cytotoxicity of by-products of chlorination, a major strategy of biofouling control in the marine environment. The applications and limits of these new in vitro models for monitoring aquatic pollutants were discussed, in reference with the standardized Microtox test.
Silva, Carlos; Nunes, Bruno; Nogueira, António Ja; Gonçalves, Fernando; Pereira, Joana L
2016-11-01
Using the bivalve macrofouler Corbicula fluminea, the suitability of in vitro testing as a stepping stone towards the improvement of control methods based on chemical mixtures was addressed in this study. In vitro cholinesterase (ChE) activity inhibition following single exposure of C. fluminea tissue to four model chemicals (the organophosphates dimethoate and dichlorvos, copper and sodium dodecyl phosphate [SDS]) was first assessed. Consequently, mixtures of dimethoate with copper and dichlorvos with SDS were tested and modelled; mixtures with ChE revealed synergistic interactions for both chemical pairs. These synergic combinations were subsequently validated in vivo and the increased control potential of these selected combinations was verified, with gains of up to 50% in C. fluminea mortality relative to corresponding single chemical treatments. Such consistency supports the suitability of using time- and cost-effective surrogate testing platforms to assist the development of biofouling control strategies incorporating mixtures.
Screening for eye irritancy using cultured HeLa cells.
Selling, J; Ekwall, B
1985-01-01
To investigate whether toxicity tests on HeLa cells were predictive of eye irritancy, 18 compounds of known eye irritancy and in vitro cytotoxicity were tested on HeLa cells in the MIT-24 system. The results correlated well with eye irritancy as determined by the Draize test in rabbits for 16 of the test substances, but failed to detect the high eye irritancy of 1-heptanol and allyl alcohol, both of which were cytotoxic in other cellular systems.
Fisher, K; Phillips, C A
2006-12-01
To investigate the effectiveness of oils and vapours of lemon (Citrus limon), sweet orange (Citrus sinensis) and bergamot (Citrus bergamia) and their components against a number of common foodborne pathogens. The disc diffusion method was used to screen the oils and vapours against Listeria monocytogenes, Staphylococcus aureus, Bacillus cereus, Escherichia coli O157 and Campylobacter jejuni. The survival of each species, demonstrated to be susceptible in the in vitro studies, was tested on cabbage leaf for 60 s by direct contact and on chicken skin for 10 min by direct contact and 24 h by vapour. The results indicate that bergamot was the most inhibitory essential oil (EO) and citral and linalool mimicked its effect (P > 0.001). Citral and linalool vapours produced 6 log reductions in L. monocytogenes, Staph. aureus and B. cereus populations on cabbage leaf after 8-10 h exposure but bergamot vapour exposure, while producing a similar reduction in L. monocytogenes and B. cereus populations, had no effect on Staph. aureus. Bergamot was the most effective of the oils tested and linalool the most effective anti-bacterial component. Gram-positive bacteria were more susceptible than Gram-negative bacteria in vitro, although Camp. jejuni and E. coli O157 were inhibited by bergamot and linalool oils and by linalool vapour. All bacteria tested were less susceptible in food systems than in vitro. Of the Gram-positive bacteria tested Staph. aureus was the least susceptible to both the oils and the components tested. Results suggest the possibility that citrus EOs, particularly bergamot, could be used as a way of combating the growth of common causes of food poisoning.
Haron, Didi Erwandi Mohamad; Chik, Zamri; Noordin, Mohamed Ibrahm; Mohamed, Zahurin
2015-01-01
Objective (s): Transdermal preparations for testosterone are becoming popular because of their unique advantages such as avoidance of first-pass effect, convenience, improved bioavailability, and reduction of systemic side effects. A novel testosterone transdermal delivery system (TDDS) was developed using a palm oil base called HAMIN™ (a commercial product) and tested using in vitro and in vivo skin permeability test methods. Materials and Methods: The physical characteristics of the formulation such as particle size and viscosity were determined by using Franz diffusion cell and Brookfield viscometer, respectively. In vivo skin permeability test was performed on healthy rabbits through the skin. Testosterone in serum was analyzed using the validated Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) technique. Results: In vitro study showed that the cumulative amount of testosterone diffused was between 40 to 1400 ngcm-² over a period of five hr after application of TDDS through the artificial Strat-M™ membrane. In the in vivo rabbit skin permeability test, the results indicated that testosterone was well absorbed with a mean Cmax and Tmax of 60.94 ngml-1 and 2.29 hr after application of TDDS while no increase was observed in placebo treatment. Particle size analysis ranged from 79.4 nm to 630.0 nm for placebo and 97 to 774.0 nm for TDDS. Conclusion: The formulation was successfully prepared using HAMIN™, which has demonstrated great potential for topical delivery of testosterone. PMID:26877845
Xu, Zhen; Hsu, Wenchi; von Hollen, Dirk; Viswanath, Ashwin; Nikander, Kurt; Dalby, Richard
2014-08-01
In vitro performance studies of valved holding chamber (VHC)-facemask systems are a cost-effective means of circumventing potentially confounding clinical variables. This article reports results of an in vitro investigation into VHC-facemask performance, using three age-specific soft anatomical model (SAM) faces, under clinically relevant conditions. A potentially standardized method was developed to assess VHC-facemask seal leakage, and evaluate the in vitro delivery efficiency of conventional and antistatic VHC-facemask systems. A custom-built test rig and VHC cradles were used to position the VHC-facemask systems against the SAM faces, with a constant, reproducible force. A standardized simulated pediatric breathing pattern (tidal volume = 155 mL; inhalation:exhalation ratio = 40:60; 25 breaths/min) was utilized. Percent facemask seal leakage, percent delivered dose, and the effect of different numbers of simulated breaths (2 to 8) were investigated. Of the VHC-facemask systems tested, the OptiChamber Diamond VHC with LiteTouch facemask (Diamond) system had the lowest percent seal leakage with each SAM face. Percent seal leakage from the other VHC-facemask systems was similar with SAM0 and SAM2 faces; the AeroChamber Plus Z-Stat VHC with ComfortSeal facemask (AC Z-Stat) system had a substantially greater percent seal leakage with the SAM1 face. Regardless of the number of simulated breaths, the Diamond system delivered the greatest mean percent delivered dose, with the lowest coefficient of variation, with each SAM face. Percent delivered dose did not correlate well with seal leakage, particularly for VHC-facemask systems with high seal leakage. The electrostatic properties of the VHCs appeared to influence drug delivery. This study describes a potentially standardized method for the evaluation of VHC-facemask systems. Use of this method enabled a comprehensive investigation into the influence of clinically relevant variables, including age-specific facial anatomy, number of simulated breaths, and seal leakage, on the delivery efficiency of several commercially available VHC-facemask systems.
Al Durdunji, Amal; AlKhatib, Hatim S; Al-Ghazawi, Mutasim
2016-05-01
In a biphasic dissolution medium, the integration of the in vitro dissolution of a drug in an aqueous phase and its subsequent partitioning into an organic phase is hypothesized to simulate the in vivo drug absorption. Such a methodology is expected to improve the probability of achieving a successful in vitro-in vivo correlation. Dissolution of Dispersible tablets of Deferasirox, a biopharmaceutics classification system type II compound, was studied in a biphasic dissolution medium using a flow-through dissolution apparatus coupled to a paddle apparatus. The experimental parameters associated with dissolution were optimized to discriminate between Deferasirox dispersible tablets of different formulations. The dissolution profiles obtained from this system were subsequently used to construct a level A in vitro-in vivo correlation. Copyright © 2016 Elsevier B.V. All rights reserved.
Within the field of chemical safety assessment, there is a desire to replace costly whole organism testing with more efficient and cost-effective alternatives based on in vitro test systems. Disruption of thyroid hormone signaling via inhibition of enzymes called deiodinases is o...
Diagnostic methods for insect sting allergy.
Hamilton, Robert G
2004-08-01
This review overviews advances from mid-2002 to the present in the validation and performance methods used in the diagnosis of Hymenoptera venom-induced immediate-type hypersensitivity. The general diagnostic algorithm for insect sting allergy is initially discussed with an examination of the AAAAI's 2003 revised practice parameter guidelines. Changes as a result of a greater recognition of skin test negative systemic reactors include repeat analysis of all testing and acceptance of serology as a complementary diagnostic test to the skin test. Original data examining concordance of venom-specific IgE results produced by the second-generation Pharmacia CAP System with the Johns Hopkins University radioallergosorbent test are presented. Diagnostic performance of honeybee venom-specific IgE assays used in clinical laboratories in North America is discussed using data from the Diagnostic Allergy Proficiency Survey conducted by the College of American Pathologists. Validity of venom-specific IgE antibody in postmortem blood specimens is demonstrated. The utility of alternative in-vivo (provocation) and in-vitro (basophil-based) diagnostic testing methods is critiqued. This overview supports the following conclusions. Improved practice parameter guidelines include serology and skin test as complementary in supporting a positive clinical history during the diagnostic process. Data are provided which support the analytical performance of commercially available venom-specific IgE antibody serology-based assays. Intentional sting challenge in-vivo provocation, in-vitro basophil flow cytometry (CD63, CD203c) based assays, and in-vitro basophil histamine and sulfidoleukotriene release assays have their utility in the study of difficult diagnostic cases, but their use will remain as supplementary, secondary diagnostic tests.
Toxicity of polymeric nanoparticles in vivo and in vitro
NASA Astrophysics Data System (ADS)
Voigt, Nadine; Henrich-Noack, Petra; Kockentiedt, Sarah; Hintz, Werner; Tomas, Jürgen; Sabel, Bernhard A.
2014-06-01
Polybutylcyanoacrylate nanoparticles (PBCA NPs) are candidates for a drug delivery system, which can cross the blood-brain barrier (BBB). Because little is known about their toxicity, we exposed cells to PBCA NPs in vitro and in vivo and monitored their life and death assays. PBCA NPs were fabricated with different surfactants according to the mini-emulsion technique. Viabilities of HeLa and HEK293 cells after NP incubation were quantified by analysing cellular metabolic activity (MTT-test). We then repetitively injected i.v. rhodamine-labelled PBCA NP variations into rats and monitored the survival and morphology of retrogradely labelled neurons by in vivo confocal neuroimaging (ICON) for five weeks. To test for carrier-efficacy and safety, PBCA NPs loaded with Kyotorphin were injected in rats, and a hot plate test was used to quantify analgesic effects. In vitro, we found dose-dependent cell death which was, however, only detectable at very high doses and mainly seen in the cultures incubated with NPs fabricated with the tensids SDS and Tween. However, the in vivo experiments did not show any NP-induced neuronal death, even with particles which were toxic at high dose in vitro, i.e. NPs with Tween and SDS. The increased pain threshold at the hot plate test demonstrated that PBCA NPs are able to cross the BBB and thus comprise a useful tool for drug delivery into the central nervous system (CNS). Our findings showing that different nanoparticle formulations are non-toxic have important implications for the value of NP engineering approaches in medicine.
Toward toxicity testing of nanomaterials in the 21st century: a paradigm for moving forward.
Lai, David Y
2012-01-01
A challenge-facing hazard identification and safety evaluation of engineered nanomaterials being introduced to market is the diversity and complexity of the types of materials with varying physicochemical properties, many of which can affect their toxicity by different mechanisms. In general, in vitro test systems have limited usefulness for hazard identification of nanoparticles due to various issues. Meanwhile, conducting chronic toxicity/carcinogenicity studies in rodents for every new nanomaterial introduced into the commerce is impractical if not impossible. New toxicity testing systems which rely on predictive, high-throughput technologies may be the ultimate goal of evaluating the potential hazard of nanomaterials. However, at present, this approach alone is unlikely to succeed in evaluating the toxicity of the wide array of nanomaterials and requires validation from in vivo studies. This article proposes a paradigm for toxicity testing and elucidation of the molecular mechanisms of reference materials for specific nanomaterial classes/subclasses using short-term in vivo animal studies in conjunction with high-throughput screenings and mechanism-based short-term in vitro assays. The hazard potential of a particular nanomaterial can be evaluated by conducting only in vitro high-throughput assays and mechanistic studies and comparing the data with those of the reference materials in the specific class/subclass-an approach in line with the vision for 'Toxicity Testing in the 21st Century' of chemicals. With well-designed experiments, testing nanomaterials of varying/selected physicochemical parameters may be able to identify the physicochemical parameters contributing to toxicity. The data so derived could be used for the development of computer model systems to predict the hazard potential of specific nanoparticles based on property-activity relationships. Copyright © 2011 John Wiley & Sons, Inc.
Elsen, A.; Lens, K.; Nguyet, D. T. M.; Broos, S.; Stoffelen, R.; De Waele, D.
2001-01-01
Radopholus similis is one of the most damaging nematodes in bananas. Chemical control is currently the most-used method, but nematode control through genetic improvement is widely encouraged. The objective of this study was to establish an aseptic culture system for R. similis and determine whether R. similis can infect and reproduce on in vitro banana plantlets and in vitro Arabidopsis thaliana. In the study's first part, a suitable aseptic culture system was developed using alfalfa callus. Radopholus similis could penetrate and reproduce in the callus. Six weeks after inoculation with 25 females, the reproduction ratio was 26.3 and all vermiform stages were present. The reproduction ratio increased to 223.2 after 12 weeks. Results of a greenhouse test showed that R. similis did not lose its pathogenicity after culturing on alfalfa callus. In the study's second part, the infection and reproduction of the nematodes cultured on the callus were studied on both in vitro banana plantlets and A. thaliana. Radopholus similis infected and reproduced on both banana and A. thaliana. Furthermore, nematode damage was observed in the root systems of both hosts. These successful infections open new perspectives for rapid in vitro screening for resistance in banana cultivars and anti-nematode proteins expressed in A. thaliana. PMID:19266012
Resende, C F; Braga, V F; Pereira, P F; Silva, C J; Vale, V F; Bianchetti, R E; Forzza, R C; Ribeiro, C; Peixoto, P H P
2016-02-01
This study aimed to evaluate the variation in the levels of proline, oxidative metabolism and photosynthetic pigments in plants of Pitcairnia encholirioides grown in vitro under different conditions and after acclimatization. The analyses were performed after 150 days of in vitro cultivation in MS media supplemented with 10 µM GA3 or 0.2 µM NAA, sucrose at 15 or 30 g L-1, in test tubes which allowed gas exchange or in a hermetically sealed system, and 180 days after acclimatization. The in vitro maintenance in hermetically sealed flasks, with GA3 and 15 g L-1 sucrose had adverse metabolic effects, which was demonstrated by the lower proline and photosynthetic pigments accumulation and by the increase in antioxidant enzymes activities. After acclimatization, differences for proline and photosynthetic pigments were no longer found and the enzymatic activities ranged unevenly. The results suggest that the in vitro cultivation in media with 0.2 µM NAA and 30 g L-1 sucrose, in test tubes capped with closures which allowed gas exchange, is more suitable for micropropagation of P. encholirioides, providing a prolonged maintenance of in vitro cultures and plantlets with superior quality for ex vitro development.
el-Arini, Silvia Kocova; Clas, Sophie-Dorothée
2002-01-01
The in vitro disintegration behavior of fast dissolving systems manufactured by the main commercialized technologies was studied using the texture analyzer (TA) instrument. Quantitative parameters were employed to characterize the effect of the major test variables on the disintegration profiles. The average disintegration profiles of the products were compared using the test conditions that minimized these effects and at the same time mimicked the in vivo situation in the patient's mouth. The differences in the disintegration mechanisms of the fast dissolving systems were reflected in the shape of their disintegration profiles and in the parameters derived from the profiles. The differences were explained in relation to the technology and/or formulation characteristics involved in the manufacture of each product. The in vitro disintegration times obtained under the simulated in vivo conditions were correlated with the reported in vivo disintegration times.
Sex in a test tube: testing the benefits of in vitro recombination.
Pesce, Diego; Lehman, Niles; de Visser, J Arjan G M
2016-10-19
The origin and evolution of sex, and the associated role of recombination, present a major problem in biology. Sex typically involves recombination of closely related DNA or RNA sequences, which is fundamentally a random process that creates but also breaks up beneficial allele combinations. Directed evolution experiments, which combine in vitro mutation and recombination protocols with in vitro or in vivo selection, have proved to be an effective approach for improving functionality of nucleic acids and enzymes. As this approach allows extreme control over evolutionary conditions and parameters, it also facilitates the detection of small or position-specific recombination benefits and benefits associated with recombination between highly divergent genotypes. Yet, in vitro approaches have been largely exploratory and motivated by obtaining improved end products rather than testing hypotheses of recombination benefits. Here, we review the various experimental systems and approaches used by in vitro studies of recombination, discuss what they say about the evolutionary role of recombination, and sketch their potential for addressing extant questions about the evolutionary role of sex and recombination, in particular on complex fitness landscapes. We also review recent insights into the role of 'extracellular recombination' during the origin of life.This article is part of the themed issue 'Weird sex: the underappreciated diversity of sexual reproduction'. © 2016 The Author(s).
Li, H C; Wang, D G; Hu, J H; Chen, C Z
2014-02-01
Two series of Na2O-CaO-SiO2-P2O5 glass-ceramics doped with NH4HF2 (G-NH4HF2) or CaF2 (G-CaF2) have been prepared by sol-gel method. The glass-ceramic phase composition and morphology were characterized by X-ray diffraction (XRD) and scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS). The mechanical properties and thermal expansion coefficient were measured by a microhardness tester, an electronic tensile machine and a thermal expansion coefficient tester. The structure difference between these two glass-ceramics was investigated by Fourier transform infrared spectroscopy (FTIR), and the in vitro bioactivity of the glass-ceramics was determined by in vitro simulated body fluid (SBF) immersion test. The hemolysis test, in vitro cytotoxicity test, systemic toxicity test and the implanted experiment in animals were used to evaluate the biocompatibility of the glass-ceramics. The mechanical properties of sample G-NH4HF2 are lower than that of sample G-CaF2, and the bioactivity of sample G-NH4HF2 is better than that of sample G-CaF2. The thermal expansion coefficients of these two glass-ceramics are all closer to that of Ti6Al4V. After 7 days of SBF immersion, apatites were induced on glass-ceramic surface, indicating that the glass-ceramics have bioactivity. The hemolysis test, in vitro cytotoxicity test and systemic toxicity test demonstrate that the glass-ceramics do not cause hemolysis reaction, and have no toxicity to cell and living animal. The implanted experiment in animals shows that bone tissue can form a good osseointegration with the implant after implantation for two months, indicating that the glass-ceramics are safe to serve as implants. Copyright © 2013 Elsevier B.V. All rights reserved.
Hamza, Tamer A; Sherif, Rana M
2017-06-01
Dental laboratories use different computer-aided design and computer-aided manufacturing (CAD-CAM) systems to fabricate fixed prostheses; however, limited evidence is available concerning which system provides the best marginal discrepancy. The purpose of this in vitro study was to evaluate the marginal fit of 5 different monolithic zirconia restorations milled with different CAD-CAM systems. Thirty monolithic zirconia crowns were fabricated on a custom-designed stainless steel die and were divided into 5 groups according to the type of monolithic zirconia crown and the CAD-CAM system used: group TZ, milled with an MCXL milling machine; group CZ, translucent zirconia milled with a motion milling machine; group ZZ, zirconia milled with a dental milling unit; group PZ, translucent zirconia milled with a zirconia milling unit; and group BZ, solid zirconia milled using an S1 VHF milling machine. The marginal fit was measured with a binocular microscope at an original magnification of ×100. The results were tabulated and statistically analyzed with 1-way ANOVA and post hoc surface range test, and pairwise multiple comparisons were made using Bonferroni correction (α=.05). The type of CAD-CAM used affected the marginal fit of the monolithic restoration. The mean (±SD) highest marginal discrepancy was recorded in group TZI at 39.3 ±2.3 μm, while the least mean marginal discrepancy was recorded in group IZ (22.8 ±8.9 μm). The Bonferroni post hoc test showed that group TZI was significantly different from all other groups tested (P<.05). Within the limitation of this in vitro study, all tested CAD-CAM systems produced monolithic zirconia restorations with clinically acceptable marginal discrepancies; however, the CAD-CAM system with the 5-axis milling unit produced the best marginal fit. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Results of the performance verification of the CoaguChek XS system.
Plesch, W; Wolf, T; Breitenbeck, N; Dikkeschei, L D; Cervero, A; Perez, P L; van den Besselaar, A M H P
2008-01-01
This is the first paper reporting a performance verification study of a point-of-care (POC) monitor for prothrombin time (PT) testing according to the requirements given in chapter 8 of the International Organization for Standardization (ISO) 17593:2007 standard "Clinical laboratory testing and in vitro medical devices - Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy". The monitor under investigation was the new CoaguChek XS system which is designed for use in patient self testing. Its detection principle is based on the amperometric measurement of the thrombin activity generated by starting the coagulation cascade using a recombinant human thromboplastin. The system performance verification study was performed at four study centers using venous and capillary blood samples on two test strip lots. Laboratory testing was performed from corresponding frozen plasma samples with six commercial thromboplastins. Samples from 73 normal donors and 297 patients on oral anticoagulation therapy were collected. Results were assessed using a refined data set of 260 subjects according to the ISO 17593:2007 standard. Each of the two test strip lots met the acceptance criteria of ISO 17593:2007 versus all thromboplastins (bias -0.19 to 0.18 INR; >97% of data within accuracy limits). The coefficient of variation for imprecision of the PT determinations in INR ranged from 2.0% to 3.2% in venous, and from 2.9% to 4.0% in capillary blood testing. Capillary versus venous INR data showed agreement of results with regression lines equal to the line of identity. The new system demonstrated a high level of trueness and accuracy, and low imprecision in INR testing. It can be concluded that the CoaguChek XS system complies with the requirements in chapter 8 of the ISO standard 17593:2007.
Microengineering methods for cell-based microarrays and high-throughput drug-screening applications.
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-09-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.
Microengineering Methods for Cell Based Microarrays and High-Throughput Drug Screening Applications
Xu, Feng; Wu, JinHui; Wang, ShuQi; Durmus, Naside Gozde; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
Screening for effective therapeutic agents from millions of drug candidates is costly, time-consuming and often face ethical concerns due to extensive use of animals. To improve cost-effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems have facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell based drug-screening models, which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell based drug screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds a great potential to provide repeatable 3D cell based constructs with high temporal, spatial control and versatility. PMID:21725152
In vitro toxicities of experimental jet fuel system ice-inhibiting agents.
Geiss, K T; Frazier, J M
2001-07-02
One research emphasis within the Department of Defense has been to seek the replacement of operational compounds with alternatives that pose less potential risk to human and ecological systems. Alternatives to glycol ethers, such as diethylene glycol monomethyl ether (M-DE), were investigated for use as jet fuel system ice-inhibiting agents (FSIIs). This group of chemicals includes three derivatives of 1,3-dioxolane-4-methanol (M-1, M-2, and M-3) and a 1,3-dioxane (M-27). In addition, M-DE was evaluated as a reference compound. Our approach was to implement an in vitro test battery based on primary rat hepatocyte cultures to perform initial toxicity evaluations. Hepatocytes were exposed to experimental chemicals (0, 0.001, 0.01, 0.1, 1, 10 mM dosages) for periods up to 24 h. Samples were assayed for lactate dehydrogenase (LDH) release, MTT dye reduction activity, glutathione level, and rate of protein synthesis as indicators of toxicity. Of the compounds tested, M-1, especially at the 10-mM dose, appeared to be more potent than the other chemicals, as measured by these toxicity assays. M-DE, the current FSII, elicited little response in the toxicity assays. Although some variations in toxicity were observed at the 10-mM dose, the in vitro toxicities of the chemicals tested (except for M-1) were not considerably greater than that of M-DE.
In Vitro Microfluidic Models for Neurodegenerative Disorders.
Osaki, Tatsuya; Shin, Yoojin; Sivathanu, Vivek; Campisi, Marco; Kamm, Roger D
2018-01-01
Microfluidic devices enable novel means of emulating neurodegenerative disease pathophysiology in vitro. These organ-on-a-chip systems can potentially reduce animal testing and substitute (or augment) simple 2D culture systems. Reconstituting critical features of neurodegenerative diseases in a biomimetic system using microfluidics can thereby accelerate drug discovery and improve our understanding of the mechanisms of several currently incurable diseases. This review describes latest advances in modeling neurodegenerative diseases in the central nervous system and the peripheral nervous system. First, this study summarizes fundamental advantages of microfluidic devices in the creation of compartmentalized cell culture microenvironments for the co-culture of neurons, glial cells, endothelial cells, and skeletal muscle cells and in their recapitulation of spatiotemporal chemical gradients and mechanical microenvironments. Then, this reviews neurodegenerative-disease-on-a-chip models focusing on Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Finally, this study discusses about current drawbacks of these models and strategies that may overcome them. These organ-on-chip technologies can be useful to be the first line of testing line in drug development and toxicology studies, which can contribute significantly to minimize the phase of animal testing steps. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A novel dynamic mechanical testing technique for reverse shoulder replacements.
Dabirrahmani, Danè; Bokor, Desmond; Appleyard, Richard
2014-04-01
In vitro mechanical testing of orthopedic implants provides information regarding their mechanical performance under simulated biomechanical conditions. Current in vitro component stability testing methods for reverse shoulder implants are based on anatomical shoulder designs, which do not capture the dynamic nature of these loads. With glenoid component loosening as one of the most prevalent modes of failure in reverse shoulder replacements, it is important to establish a testing protocol with a more realistic loading regime. This paper introduces a novel method of mechanically testing reverse shoulder implants, using more realistic load magnitudes and vectors, than is currently practiced. Using a custom made jig setup within an Instron mechanical testing system, it is possible to simulate the change in magnitude and direction of the joint load during arm abduction. This method is a step towards a more realistic testing protocol for measuring reverse shoulder implant stability.
2011-01-01
Background Vaginal candidiasis is a frequent and common distressing disease affecting up to 75% of the women of fertile age; most of these women have recurrent episodes. Essential oils from aromatic plants have been shown to have antimicrobial and antifungal activities. This study was aimed at assessing the anti-fungal activity of essential oil from Mentha suaveolens (EOMS) in an experimental infection of vaginal candidiasis. Methods The in vitro and in vivo activity of EOMS was assessed. The in vitro activity was evaluated under standard CLSI methods, and the in vivo analysis was carried out by exploiting a novel, non-invasive model of vaginal candidiasis in mice based on an in vivo imaging technique. Differences between essential oil treated and saline treated mice were evaluated by the non-parametric Mann-Whitney U-test. Viable count data from a time kill assay and yeast and hyphae survival test were compared using the Student's t-test (two-tailed). Results Our main findings were: i) EOMS shows potent candidastatic and candidacidal activity in an in vitro experimental system; ii) EOMS gives a degree of protection against vaginal candidiasis in an in vivo experimental system. Conclusions This study shows for the first time that the essential oil of a Moroccan plant Mentha suaveolens is candidastatic and candidacidal in vitro, and has a degree of anticandidal activity in a model of vaginal infection, as demonstrated in an in vivo monitoring imaging system. We conclude that our findings lay the ground for further, more extensive investigations to identify the active EOMS component(s), promising in the therapeutically problematic setting of chronic vaginal candidiasis in humans. PMID:21356078
The biological effects and possible modes of action of nanosilver.
Völker, Carolin; Oetken, Matthias; Oehlmann, Jörg
2013-01-01
Novel physicochemical and biological properties have led to a versatile spectrum of applications for nanosized silver particles. Silver nanoparticles are applied primarily for their antimicrobial effects, and may variety of commercially available products have emerged. To better predict and prevent possible environmental impacts from silver nanoparticles that are derived from increasing production volumes and environmental release, more data on the biological effects are needed on appropriate model organisms. We examined the literature that addressed the adverse effects of silver nanoparticles on different levels of biological integration, including in vitro and in vivo test systems. Results of in vitro studies indicate a dose-dependent programmed cell death included by oxidative stress as main possible pathway of toxicity. Furthermore, silver nanoparticles may affect cellular enzymes by interference with free thiol groups and mimicry of endogenous ions. Similar mechanisms may apply for antibacterial effects produced by nonasilver. These effects are primary from the interference nanosilver has with bacterial cell membranes. Few in vivo studies have been performed to evaluated the toxic mode of action of nanosilver or to provide evidence for oxidative stress as an important mechanism of nanosilver toxicity. Organisms that are most acutely sensitive to nanosilver toxicity are the freshwater filter-freeding organisms. Both in vitro and in vivo studies have demonstrated tha silver ions released from nanoparticle surface contribute to the toxicity, and, indeed, some findings indicated a unique nanoparticles effect. For an adequate evaluation of the environmental impact of nanosilver, greater emphasis should be placed on combining mechanistic investigations that are performed in vitro, with results obtained in in vivo test systems. Future in vivo test system studies should emphasize long-term exposure scenarios. Moreover, the dietary uptake of silver nanoparticles and the potential to bioaccumulate through the food web should be examined in detail.
Ruiz, Christian; Kustermann, Stefan; Pietilae, Elina; Vlajnic, Tatjana; Baschiera, Betty; Arabi, Leila; Lorber, Thomas; Oeggerli, Martin; Savic, Spasenija; Obermann, Ellen; Singer, Thomas; Rothschild, Sacha I; Zippelius, Alfred; Roth, Adrian B; Bubendorf, Lukas
2016-01-01
The use of patients' own cancer cells for in vitro selection of the most promising treatment is an attractive concept in personalized medicine. Human carcinoma cells from malignant pleural effusions (MPEs) are suited for this purpose since they have already adapted to the liquid environment in the patient and do not depend on a stromal cell compartment. Aim of this study was to develop a systematic approach for the in-vitro culture of MPEs to analyze the effect of chemotherapeutic as well as targeted drugs. MPEs from patients with solid tumors were selected for this study. After morphological and molecular characterization, they were cultured in medium supplemented with patient-derived sterile-filtered effusion supernatant. Growth characteristics were monitored in real-time using the xCELLigence system. MPEs were treated with a targeted therapeutic (erlotinib) according to the mutational status or chemotherapeutics based on the recommendation of the oncologists. We have established a robust system for the ex-vivo culture of MPEs and the application of drug tests in-vitro. The use of an antibody based magnetic cell separation system for epithelial cells before culture allowed treatment of effusions with only moderate tumor cell proportion. Experiments using drugs and drug-combinations revealed dose-dependent and specific growth inhibitory effects of targeted drugs. We developed a new approach for the ex-vivo culture of MPEs and the application of drug tests in-vitro using real-time measuring of cell growth, which precisely reproduced the effect of clinically established treatments by standard chemotherapy and targeted drugs. This sets the stage for future studies testing agents against specific targets from genomic profiling of metastatic tumor cells and multiple drug-combinations in a personalized manner.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-09-17
... for the Evaluation of Alternative Toxicological Methods (NICEATM); Availability of Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) Test Method Evaluation Reports: In Vitro Ocular Safety Testing Methods and Strategies, and Routine Use of Topical Anesthetics, Systemic...
Code of Federal Regulations, 2011 CFR
2011-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IN VITRO DIAGNOSTIC PRODUCTS FOR HUMAN USE Requirements for Manufacturers and Producers § 809.40... set forth in this section. (b) Sample testing shall be performed in a laboratory using screening tests...
Code of Federal Regulations, 2010 CFR
2010-04-01
... FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IN VITRO DIAGNOSTIC PRODUCTS FOR HUMAN USE Requirements for Manufacturers and Producers § 809.40... set forth in this section. (b) Sample testing shall be performed in a laboratory using screening tests...
Within the field of chemical safety assessment, there is a desire to replace costly whole organism testing with more efficient and cost-effective alternatives based on in vitro test systems. Disruption of thyroid hormone signaling via inhibition of enzymes called deiodinases is o...
The proposed paradigm for “Toxicity Testing in the 21st Century” supports the development of mechanistically-based, high-throughput in vitro assays as a potential cost effective and scientifically-sound alternative to some whole animal hazard testing. To accomplish this long-term...
Frati, F; Incorvaia, C; Cavaliere, C; Di Cara, G; Marcucci, F; Esposito, S; Masieri, S
2018-01-01
The skin prick test (SPT) is the most common test for the diagnosis of allergy. SPT is performed by pricking the skin, usually in the volar surface of the forearm, with a lancet through a drop of an allergen extract and is usually the first choice test in the diagnostic workup for allergic diseases because of its reliability, safety, convenience and low cost. SPT is minimally invasive and has the advantage of testing multiple allergens in 15 to 20 min. In children, SPT is far less disturbing than venipuncture and is used to obtain a sample of serum to measure specific IgE through in vitro tests. There is a good correlation (about 85-95%) between SPT and in vitro tests. Globally, SPT is an excellent diagnostic tool, with a positive predictive value ranging from 95-100%. SPTs can identify sensitivity to inhalants, foods, some drugs, occupational allergens, hymenoptera venom and latex. However, the relevance of such sensitivity to allergens should always be carefully interpreted in the light of the clinical history, because sensitization and clinical allergy may not coincide. In regards to safety, though the reports of systemic reactions, and particularly anaphylaxis, are very rare, in vitro IgE tests should be preferred if previous severe reactions emerge from the patients clinical history.
de Araujo, Daniele Ribeiro; Padula, Cristina; Cereda, Cíntia Maria Saia; Tófoli, Giovana Radomille; Brito, Rui Barbosa; de Paula, Eneida; Nicoli, Sara; Santi, Patrizia
2010-08-01
The aim of this work was to develop anesthetic bioadhesive films containing benzocaine and study their in vitro skin permeation and in vivo performance, in comparison with commercial formulations. Films containing 3% and 5% w/w of benzocaine were prepared and characterized by weight, drug content, thickness and morphology. In vitro permeation assays were performed in vertical diffusion cells using full-thickness pig ear skin as barrier. Intensity and duration of analgesia were evaluated in rats by tail-flick test, and skin histological analysis was carried out. Tail-flick test showed that the duration of benzocaine-induced analgesia was significantly prolonged with the films compared to commercial creams, in agreement with the higher in vitro permeation. Histological analysis of the rat tail skin did not reveal morphological tissue changes nor cell infiltration signs after application of the commercial creams or films. Results from our study indicate that the films developed in this work can be considered as innovative dermal/transdermal therapeutic systems for benzocaine local delivery.
Abadie, J; Faure, A; Chaillet, N; Rougeot, P; Beaufort, D; Goldstein, J P; Finlay, P A; Bogaerts, G
2006-06-01
The paper presents a new robotic system for beating heart surgery. The final goal of this project is to develop a tele-operated system for the thoracoscopic treatment of patients with atrial fibrillation. The system consists of a robot that moves an innovative end-effector used to perform lines as in the Cox-Maze technique. The device is an electrode mesh that is introduced in the thorax through a trocar and is deployed inside the left atrium, where it can create selective ablation lines at any atrial region, using radio frequency. The current version of the umbrella has 22 electrodes. Using visual feedback from an ultrasound based navigation system, the surgeon can choose which electrodes on the mesh to activate. Once the umbrella is in contact with the endocardium of the left atrium, at the expected position, the surgeon activates the chosen electrodes sequentially. The umbrella can then be moved to another position. In vitro and in vivo animal tests have been carried out in order to test and improve the instrument, the robotic system and the operative procedure. The performed trials proved the ability of the system to treat atrial fibrillation. More in vivo tests are currently being performed to make the robot and its device ready for clinical use. Copyright 2006 John Wiley & Sons, Ltd.
Faye, T; Tamburello, A; Vegarud, G E; Skeie, S
2012-02-01
In the present study, the survival of 9 lactic acid bacteria (5 Lactococcus strains, 3 Lactobacillus strains, and 1 strain of Enterococcus hirae), was investigated in vitro under conditions similar to human digestion using human gastric and duodenal juices. The tolerance of the bacteria was also tested with traditional methods using acidic conditions and bile salts. The strains were subjected to a model digestive system comprising sequential incubation in human gastric and duodenal juices, in a 2-step digestion assay at 37°C, simulating the human upper gastrointestinal tract with human gastric juices at pH 2.5 and human duodenal juices at pH 7. The bacterial strains were tested either as washed cells from culture media or in fermented milk. The initial in vitro testing in acid and bile salts showed that Lactobacillus strains and the E. hirae strain displayed a significantly higher acid tolerance than the lactococci. The lactobacilli and the Enterococcus numbers increased, whereas the lactococci decreased at least 1 log during the bile salt treatment. The Lactobacillus strains showed the highest survival rate in the model digestive system when washed bacterial cultures were used with a minor log reduction, whereas the lactococci numbers were reduced by at least log 4. However, when using fermented milks in the model digestion system it was demonstrated that the Enterococcus strain and 2 strains of Lactococcus lactis ssp. cremoris benefited significantly from the presence of the fermented milk as food matrix, with log numbers >log 7 and 5, respectively, after digestion of the fermented milk. The analyses reported comprise a comprehensive in vitro testing regimen suitable for evaluation of the survival of candidate probiotic bacteria in human digestion as an initial prescreen to clinical trials. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Wu, Tong; Yu, Gui-Yuan; Xiao, Jia; Yan, Chang; Kurihara, Hiroshi; Li, Yi-Fang; So, Kwok-Fai; He, Rong-Rong
2018-04-19
Efficacy and safety assessments are essential thresholds for drug candidates from preclinical to clinical research. Conventional mammalian in vivo models cannot offer rapid pharmacological and toxicological screening, whereas cell-based or cell-free in vitro systems often lead to inaccurate results because of the lack of physiological environment. Within the avian species, gallus gallus is the first bird to have its genome sequencing. Meantime, chick embryo is an easily operating, relatively transparent and extensively accessible model, whose physiological and pathological alterations can be visualized by egg candler, staining and image technologies. These features facilitate chick embryo as a high-throughput screening platform bridging in vivo and in vitro gaps in the pharmaceutical research. Due to the complicated ingredients and multiple-targets natures of traditional Chinese medicine (TCM), testing the efficacy and safety of TCM by in vitro methods are laborious and inaccurate, while testing in mammalian models consume massive cost and time. As such, the productive living organism chick embryo serves as an ideal biological system for pharmacodynamics studies of TCM. Herein, we comprehensively update recent progresses on the specialty of chick embryo in evaluation of efficacy and toxicity of drugs, with special concerns of TCM. Copyright © 2018 Elsevier Ltd. All rights reserved.
Tabll, Ashraf A; Atef, Khaled; Bader El Din, Noha G; El Abd, Yasmine S; Salem, Ahmed; Sayed, Ahmed A; Dawood, Reham M; Omran, Moataza H; El-Awady, Mostafa K
2014-01-01
This article aims at testing several in vitro systems with various viral sources and cell lines for propagation of HCV to evaluate goat antibodies raised against three E2 epitopes in viral neutralization experiments. Four human cell lines (Huh-7, Huh-7.5, HepG2, and CaCo2) were tested using two different HCV viral sources; Genotype 4 infected sera and J6/JFH HCV cc particles. Neutralization capacity of goat Abs against conserved E2 epitopes; p412 (a.a 412-419), p517 (a.a 517-531), and p430 (a.a 430-447) were examined in the above mentioned in vitro systems. Although infection with patients' sera seems to mimic the in vitro situation, it has limited replication rates as compared with HCV cc particularly in Huh7.5 cells. Non-HCV adapted Huh-7 cells were also found susceptible for transfection with J6/JFH virus but at much slower kinetics. The results of the neutralization assay showed that anti p412 and anti p517 were highly neutralizing to HCVcc. Our data demonstrate that antibodies directed against the viral surface glycoprotein E2 reduced the infectivity of the J6/JFH virus and are promising agents for immunotherapy and HCV vaccine development.
Engineered cell and tissue models of pulmonary fibrosis.
Sundarakrishnan, Aswin; Chen, Ying; Black, Lauren D; Aldridge, Bree B; Kaplan, David L
2018-04-01
Pulmonary fibrosis includes several lung disorders characterized by scar formation and Idiopathic Pulmonary Fibrosis (IPF) is a particularly severe form of pulmonary fibrosis of unknown etiology with a mean life expectancy of 3years' post-diagnosis. Treatments for IPF are limited to two FDA approved drugs, pirfenidone and nintedanib. Most lead candidate drugs that are identified in pre-clinical animal studies fail in human clinical trials. Thus, there is a need for advanced humanized in vitro models of the lung to improve candidate treatments prior to moving to human clinical trials. The development of 3D tissue models has created systems capable of emulating human lung structure, function, and cell and matrix interactions. The specific models accomplish these features and preliminary studies conducted using some of these systems have shown potential for in vitro anti-fibrotic drug testing. Further characterization and improvements will enable these tissue models to extend their utility for in vitro drug testing, to help identify signaling pathways and mechanisms for new drug targets, and potentially reduce animal models as standard pre-clinical models of study. In the current review, we contrast different in vitro models based on increasing dimensionality (2D, 2.5D and 3D), with added focus on contemporary 3D pulmonary models of fibrosis. Copyright © 2017. Published by Elsevier B.V.
Devraj, Ravi; Williams, Hywel D; Warren, Dallas B; Mullertz, Anette; Porter, Christopher J H; Pouton, Colin W
2013-01-30
In vitro digestion testing is of practical importance to predict the fate of drugs administered in lipid-based delivery systems. Calcium ions are often added to digestion media to increase the extent of digestion of long-chain triglycerides (LCTs), but the effects they have on phase behaviour of the products of digestion, and consequent drug solubilization, are not well understood. This study investigates the effect of calcium and bile salt concentrations on the rate and extent of in vitro digestion of soybean oil, as well as the solubilizing capacity of the digestion products for two poorly water-soluble drugs, fenofibrate and danazol. In the presence of higher concentrations of calcium ions, the solubilization capacities of the digests were reduced for both drugs. This effect is attributed to the formation of insoluble calcium soaps, visible as precipitates during the digestions. This reduces the availability of liberated fatty acids to form mixed micelles and vesicles, thereby reducing drug solubilization. The use of high calcium concentrations does indeed force in vitro digestion of LCTs but may overestimate the extent of drug precipitation that occurs within the intestinal lumen. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanns-Rudolf, Paur; Cassee, Flemming R.; Teeguarden, Justin G.
The rapid introduction of engineered nanostructured materials into numerous industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of consumer products. The dynamic development of new nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety. In this consensus document from a workshop on in-vitro cell systems for nanotoxicity testing an overview is given of the main issues concerningmore » inhalation exposure to nanoparticles, lung physiology, nanoparticle-related biological mechanisms, in-vitro cell exposure systems for nanoparticles and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanotoxicity. For the investigation of pulmonary nanotoxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.« less
Approach for extrapolating in vitro metabolism data to refine bioconcentration factor estimates.
Cowan-Ellsberry, Christina E; Dyer, Scott D; Erhardt, Susan; Bernhard, Mary Jo; Roe, Amy L; Dowty, Martin E; Weisbrod, Annie V
2008-02-01
National and international chemical management programs are assessing thousands of chemicals for their persistence, bioaccumulative and environmental toxic properties; however, data for evaluating the bioaccumulation potential for fish are limited. Computer based models that account for the uptake and elimination processes that contribute to bioaccumulation may help to meet the need for reliable estimates. One critical elimination process of chemicals is metabolic transformation. It has been suggested that in vitro metabolic transformation tests using fish liver hepatocytes or S9 fractions can provide rapid and cost-effective measurements of fish metabolic potential, which could be used to refine bioconcentration factor (BCF) computer model estimates. Therefore, recent activity has focused on developing in vitro methods to measure metabolic transformation in cellular and subcellular fish liver fractions. A method to extrapolate in vitro test data to the whole body metabolic transformation rates is presented that could be used to refine BCF computer model estimates. This extrapolation approach is based on concepts used to determine the fate and distribution of drugs within the human body which have successfully supported the development of new pharmaceuticals for years. In addition, this approach has already been applied in physiologically-based toxicokinetic models for fish. The validity of the in vitro to in vivo extrapolation is illustrated using the rate of loss of parent chemical measured in two independent in vitro test systems: (1) subcellular enzymatic test using the trout liver S9 fraction, and (2) primary hepatocytes isolated from the common carp. The test chemicals evaluated have high quality in vivo BCF values and a range of logK(ow) from 3.5 to 6.7. The results show very good agreement between the measured BCF and estimated BCF values when the extrapolated whole body metabolism rates are included, thus suggesting that in vitro biotransformation data could effectively be used to reduce in vivo BCF testing and refine BCF model estimates. However, additional fish physiological data for parameterization and validation for a wider range of chemicals are needed.
Pestieau, Aude; Evrard, Brigitte
2017-05-01
For many decades, one of the most critical issues in the pharmaceutical industry has been the poor solubility of some drugs. Indeed, a prerequisite for drug absorption is the presence of dissolved drug at the absorption site and this can be challenging for compounds with low aqueous solubility such as BCS class II (low solubility, high permeability) and IV (low solubility, low permeability) compounds. If the development of oral delivery formulations of these compounds is frequently challenging to formulation scientists in the pharmaceutical industry, the in vitro evaluation of these new formulations is also a great challenge. One alternative approach to overcome the problems encountered with conventional dissolution methods is the use of biphasic dissolution systems. This review provides an overview of the origin and the evolution over time of the biphasic systems and the growing interest among scientists regarding their suitability for establishing in vitro-in vivo correlations. The evolution of these systems and their applications from the 1960s to the present day, such as in system variants and improvements, analysis of complex formulations, discriminatory power, bio-relevance, precipitation and supersaturation visualization, etc. will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Environmental Sentinel Biomonitor (ESB) System Technology Assessment
2007-02-01
Andersson M, Barile FA, et al. 1996. MEIC evaluation of acute systemic toxicity Part I. Methodology of 68 in vitro toxicity assays used to test the first...30 reference chemicals. ATLA 24:251-272. Clemedson C, Andersson M, Aoki Y, Barile FA, et al. 1998. MEIC evaluation of acute systemic toxicity Part IV
Animal use in the chemical and product manufacturing sectors - can the downtrend continue?
Curren, Rodger
2009-12-01
During the 1990s and early 2000s, a number of manufacturing companies in the cosmetic, personal care and household product industries were able to substantially reduce their use of animals for testing (or to not use animals in the first place). These reductions were almost always the result of significant financial contributions to either direct, in-house alternatives research, or to support personnel whose duties were to understand and apply the current state-of-the-art for in vitro testing. They occurred almost exclusively in non-regulatory areas, and primarily involved acute topical toxicities. Over the last few years, the reduction in animal use has been much less dramatic, because some companies are still reluctant to change from the traditional animal studies, because systemic, repeat-dose toxicity is more difficult to model in vitro, and because many products still require animal testing for regulatory approval. Encouragingly, we are now observing an increased acceptance of non-animal methods by regulatory agencies. This is due to mounting scientific evidence from larger databases, agreement by companies to share data and testing strategies with regulatory agencies, and a focus on smaller domains of applicability. These changes, along with new emphasis and financial support for addressing systemic toxicities, promise to provide additional possibilities for industry to replace animals with in vitro methods, alone or in combination with in silico methods. However, the largest advance will not occur until more companies commit to using the non-animal test strategies that are currently available. 2009 FRAME.
Williams, Hywel D; Sassene, Philip; Kleberg, Karen; Bakala-N'Goma, Jean-Claude; Calderone, Marilyn; Jannin, Vincent; Igonin, Annabel; Partheil, Anette; Marchaud, Delphine; Jule, Eduardo; Vertommen, Jan; Maio, Mario; Blundell, Ross; Benameur, Hassan; Carrière, Frédéric; Müllertz, Anette; Porter, Christopher J H; Pouton, Colin W
2012-09-01
The Lipid Formulation Classification System Consortium is an industry-academia collaboration, established to develop standardized in vitro methods for the assessment of lipid-based formulations (LBFs). In this first publication, baseline conditions for the conduct of digestion tests are suggested and a series of eight model LBFs are described to probe test performance across different formulation types. Digestion experiments were performed in vitro using a pH-stat apparatus and danazol employed as a model poorly water-soluble drug. LBF digestion (rate and extent) and drug solubilization patterns on digestion were examined. To evaluate cross-site reproducibility, experiments were conducted at two sites and highly consistent results were obtained. In a further refinement, bench-top centrifugation was explored as a higher throughput approach to separation of the products of digestion (and compared with ultracentrifugation), and conditions under which this method was acceptable were defined. Drug solubilization was highly dependent on LBF composition, but poorly correlated with simple performance indicators such as dispersion efficiency, confirming the utility of the digestion model as a means of formulation differentiation. Copyright © 2012 Wiley Periodicals, Inc.
Bredael, Gerard M; Bowers, Niya; Boulineau, Fabien; Hahn, David
2014-07-01
The ability to predict in vivo response of an oral dosage form based on an in vitro technique has been a sought after goal of the pharmaceutical scientist. Dissolution testing that demonstrates discrimination to various critical formulations or process attributes provides a sensitive quality check that may be representative or may be overpredictive of potential in vivo changes. Dissolution methodology with an established in vitro-in vivo relationship or correlation may provide the desired in vivo predictability. To establish this in vitro-in vivo link, a clinical study must be performed. In this article, recommendations are given in the selection of batches for the clinical study followed by potential outcome scenarios. The investigation of a Level C in vitro-in vivo correlation (IVIVC), which is the most common correlation for immediate-release oral dosage forms, is presented. Lastly, an IVIVC case study involving a biopharmaceutical classification system class IV compound is presented encompassing this strategy and techniques. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Cheng, K-C; Li, Cheng; Hsieh, Yunsheng; Montgomery, Diana; Liu, Tongtong; White, Ronald E
2006-01-01
Previously, we have shown that a novel Caco-2/human hepatocyte system is a useful model for the prediction of oral bioavailability in humans. In this study, we attempted to use a similar system in a high-throughput screening mode for the selection of new compound entities (NCE) in drug discovery. A total of 72 compounds randomly selected from three different chemotypes were dosed orally in rats. In vivo plasma area under the concentration versus time curve (AUC) from 0-6 h of the parent compound was determined. The same compounds were also tested in the Caco-2/rat hepatocyte system. In vitro AUC from 0-3 h in the Caco-2 rat hepatocyte system was determined. The predictive usefulness of the Caco-2/rat hepatocyte system was evaluated by comparing the in vivo plasma AUC and the in vitro AUC. Linear regression analysis showed a reasonable correlation (R2 = 0.5) between the in vivo AUC and the in vitro AUC. Using 0.4 microM h in vivo AUC as a cut-off, compounds were categorized as either low or high AUC. The in vitro AUC successfully matched the corresponding in vivo category for sixty-three out of seventy-two compounds. The results presented in this study suggest that the Caco-2/rat hepatocyte system may be used as a high-throughput screen in drug discovery for pharmacokinetic behaviors of compounds in rats.
Computational Systems Biology and Dose Response Modeling Workshop, September 22-26, 2008
The recently published National Academy of Sciences (NAS) report “Toxicity Testing in the 21st Century” recommends a new approach to toxicity testing, based on evaluating cellular responses in a suite of toxicity pathway assays in human cells or cells lines in vitro. Such a parad...
[Efficacy of HSV-tk/GCV system on human laryngeal squamous cell cancer in vitro].
Ding, Xiu-yong; Qin, Yong; Li, Fu-ying; Cong, Tie-chuan
2006-05-01
Efficacy of HSV-tk/GCV system antitumor effects was assessed on human laryngeal cancer cell line Hep-2 in vitro. To assess the HSV-tk/CGV system whether has an antitumour effect on human laryngeal squamous cell cancer Hep-2 in vitro. The mechanisms of cytotoxity were also assessed. Hep-2 cells were transfected with HSV-tk gene by lipofection. Reverse transcription polymerase chain reaction (RT-PCR) was used to detect the HSV-tk gene expression. MTT was utilized to test for the cytotoxicity of this system. The cell-circle arrest and apoptosis were analyzed by flowcytometry assay. HSV-tk gene transfected cells demonstrated obvious cytoreductivity followed by ganciclovir (GCV) administration and this cytoreductivity showed partial GCV dose-independent. HSV-tk gene transfected cells demonstrated obvious s-phase arrest, no apoptosis and necrosis occurred. The HSV-tk/GCV system can inhabit the growth of Hep-2 cells effectively. S-phase arrest perhaps is the main reason that leads to the cell inhibition in our study. HSV-tk/GCV system has potential antitumor effects for the future clinical practice.
Genotoxicity assessment of nanomaterials: recommendations on best practices, assays and methods.
Elespuru, Rosalie; Pfuhler, Stefan; Aardema, Marilyn; Chen, Tao; Doak, Shareen H; Doherty, Ann; Farabaugh, Christopher S; Kenny, Julia; Manjanatha, Mugimane; Mahadevan, Brinda; Moore, Martha M; Ouédraogo, Gladys; Stankowski, Leon F; Tanir, Jennifer Y
2018-04-26
Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.
Zörcher, T; Hochberger, J; Schrott, K M; Kühn, R; Schafhauser, W
1999-01-01
In a preclinical study we have tested both in vitro and in vivo, a new type of pulsed solid-state laser system that has not been applied in urology so far and has been developed for optimized intracorporal lithotripsy of biliary, salivary, and urinary calculi. Sixty one calculi from the human urinary tract were split in vitro into fragments with a remaining particle size of = 2 mm using the prototype of a short-pulsed passively Q-switched and frequency-doubled double-pulse Neodymium:YAG laser. In a supplementary animal test, the bladder mucosa of five rabbits was directly exposed to a highly rated laser beam to be able to assess the tissue lesion potential of the system. All the 61 urinary calculi with different composition were successfully split in vitro within a short period of time (2.5 +/- 4.6 minutes). During histopathologic examination of the exposed bladder walls of the rabbits only a small tissue lesion potential with urothelium changes exclusively at the surface was ascertained. The high degree of fragmentation efficiency, the purchase and maintenance costs, which due to its design are substantially lower in comparison to other laser lithotriptors, and the high degree of safety during application make this new laser a real alternative not only to the present laser lithotripsy systems but also to common ballistic lithotriptors. Copyright 1999 Wiley-Liss, Inc.
Study of Parameters Affecting the Level of Ultrasound Exposure with In Vitro Set-Ups
NASA Astrophysics Data System (ADS)
Leskinen, Jarkko J.; Hynynen, Kullervo
2010-03-01
Ultrasound (US) exposures are widely used with in vitro cell systems e.g. in stem cell and tissue engineering research. However, without the knowledge of factors affecting the level of US exposure, the outcome of the biological result may vary from test to test or even be misinterpreted. Thereby, some of the factors affecting in vitro US exposures were studied. The level of US exposure was characterized in standard commercial cell culturing plates. The temperature distributions were measured inside the wells using infrared camera and fine wire thermocouples, and pressure and intensity distributions using a laser vibrometer and a schlieren system. The measurements were made at operating frequency of around 1 MHz with varying temporal parameters and powers (up to 2 W of acoustic power). Heat accumulation between the wells varied up to 40-50% depending on the location of the well on the plate. This well-to-well variation was be linked to the activity of reporter plasmid on osteoblastic cells. Similar temperature variations within the wells were also measured. Small sub-wavelength change in the exposure distance or, respectively, liquid volume inside the well was found to alter the acoustic field in both magnitude and shape due the standing waves. The gathered data reveals the complexity of the acoustic field in a typical in vitro set-up and gives new information about the environment of the in vitro cells during US exposures. This data may be especially useful when US set-ups are designed or characterized.
Ishido, Masami; Suzuki, Junko
2014-02-01
Exposure to environmental neurotoxic chemicals both in utero and during the early postnatal period can cause neurodevelopmental disorders. To evaluate the disruption of neurodevelopmental programming, we previously established an in vitro neurosphere assay system using rat mesencephalic neural stem cells that can be used to evaluate. Here, we extended the assay system to examine the neurodevelopmental toxicity of the endocrine disruptors butyl benzyl phthalate, di-n-butyl phthalate, dicyclohexyl phthalate, diethyl phthalate, di(2-ethyl hexyl) phthalate, di-n-pentyl phthalate, and dihexyl phthalate at a range of concentrations (0-100 μM). All phthalates tested inhibited cell migration with a linear or non-linear range of concentrations when comparing migration distance to the logarithm of the phthalate concentrations. On the other hand, some, but not all, phthalates decreased the number of proliferating cells. Apoptotic cells were not observed upon phthalate exposure under any of the conditions tested, whereas the dopaminergic toxin rotenone induced significant apoptosis. Thus, we were able to classify phthalate toxicity based on cell migration and cell proliferation using the in vitro neurosphere assay.
Peri-Implant Strain in an In Vitro Model.
Hussaini, Souheil; Vaidyanathan, Tritala K; Wadkar, Abhinav P; Quran, Firas A Al; Ehrenberg, David; Weiner, Saul
2015-10-01
An in vitro experimental model was designed and tested to determine the influence that peri-implant strain may have on the overall crestal bone. Strain gages were attached to polymethylmethacrylate (PMMA) models containing a screw-type root form implant at sites 1 mm from the resin-implant interface. Three different types of crown superstructures (cemented, 1-screw [UCLA] and 2-screw abutment types) were tested. Loading (1 Hz, 200 N load) was performed using a MTS Mechanical Test System. The strain gage data were stored and organized in a computer for statistical treatment. Strains for all abutment types did not exceed the physiological range for modeling and remodeling of cancellous bone, 200-2500 με (microstrain). For approximately one-quarter of the trials, the strain values were less than 200 με the zone for bone atrophy. The mean microstrain obtained was 517.7 με. In conclusion, the peri-implant strain in this in vitro model did not exceed the physiologic range of bone remodeling under axial occlusal loading.
The micronucleus test-most widely used in vivo genotoxicity test.
Hayashi, Makoto
2016-01-01
Genotoxicity is commonly evaluated during the chemical safety assessment together with other toxicological endpoints. The micronucleus test is always included in many genotoxic test guidelines for long time in many classes of chemicals, e.g., pharmaceutical chemicals, agricultural chemicals, food additives. Although the trend of the safety assessment of chemicals faces to animal welfare and in vitro systems are more welcome than the in vivo systems, the in vivo test systems are paid more attention in the field of genotoxicity because of its weight of evidence. In this review, I will summarize the following points: 1) historical consideration of the test development, 2) characteristics of the test including advantages and limitations, 3) new approaches considering to the animal welfare.
Biodriven microsystem for treatment of hydrocephalus
NASA Astrophysics Data System (ADS)
Joswig, Jurgen; Oswald, Jens; Seifert, Steffen
1995-09-01
A microvalve system made of silicon for use in hydrocephalus therapy is presented, which will provide an excellent intracranial pressure stabilization. Design and processing are described. Testing results (in vitro) are presented.
In vivo study of flow-rate accuracy of the MedStream Programmable Infusion System.
Venugopalan, Ramakrishna; Ginggen, Alec; Bork, Toralf; Anderson, William; Buffen, Elaine
2011-01-01
Flow-rate accuracy and precision are important parameters to optimizing the efficacy of programmable intrathecal (IT) infusion pump delivery systems. Current programmable IT pumps are accurate within ±14.5% of their programmed infusion rate when assessed under ideal environmental conditions and specific flow-rate settings in vitro. We assessed the flow-rate accuracy of a novel programmable pump system across its entire flow-rate range under typical conditions in sheep (in vivo) and nominal conditions in vitro. The flow-rate accuracy of the MedStream Programmable Pump was assessed in both the in vivo and in vitro settings. In vivo flow-rate accuracy was assessed in 16 sheep at various flow-rates (producing 90 flow intervals) more than 90 ± 3 days. Pumps were then explanted, re-sterilized and in vitro flow-rate accuracy was assessed at 37°C and 1013 mBar (80 flow intervals). In vivo (sheep body temperatures 38.1°C-39.8°C), mean ± SD flow-rate error was 9.32% ± 9.27% and mean ± SD leak-rate was 0.028 ± 0.08 mL/day. Following explantation, mean in vitro flow-rate error and leak-rate were -1.05% ± 2.55% and 0.003 ± 0.004 mL/day (37°C, 1013 mBar), respectively. The MedStream Programmable Pump demonstrated high flow-rate accuracy when tested in vivo and in vitro at normal body temperature and environmental pressure as well as when tested in vivo at variable sheep body temperature. The flow-rate accuracy of the MedStream Programmable Pump across its flow-rate range, compares favorably to the accuracy of current clinically utilized programmable IT infusion pumps reported at specific flow-rate settings and conditions. © 2011 International Neuromodulation Society.
Anticonvulsant hypersensitivity syndrome. In vitro assessment of risk.
Shear, N H; Spielberg, S P
1988-01-01
Arene oxide metabolites of aromatic anticonvulsants (phenytoin, phenobarbital, and carbamazepine) may be involved in the pathogenesis of hypersensitivity reactions. We investigated 53 patients with clinical sensitivity to anticonvulsants by exposing their lymphocytes in vitro to drug metabolites generated by a murine hepatic microsomal system. The diagnosis of a hypersensitivity reaction was corroborated by in vitro rechallenge for each drug (phenytoin, n = 34; phenobarbital, n = 22; carbamazepine, n = 25) when cytotoxicity (% dead cells) exceeded 3 SD above the mean result for controls. Cross-reactivity among the drugs was noted. 7 out of 10 patients who had received all three anticonvulsants had adverse reactions to each. 40 out of 50 patients tested to all three drugs in vitro were positive to each. Adverse reactions were indistinguishable among anti-convulsants. Skin rash (87%), fever (94%), hepatitis (51%), and hematologic abnormalities (51%) were common clinical features of each drug. 62% of reactions involved more than two organs. Cells from patients' parents exhibited in vitro toxicity that was intermediate between values for controls and patients. In vitro testing can help diagnose hypersensitivity to anticonvulsants. Cells from patients may also be used for prospective individualization of therapy to decrease risk of adverse reaction. Cross-reactivity among the major anticonvulsants is common and should be considered before deciding on alternative therapy. Images PMID:3198757
Jónsdóttir, Rósa; Geirsdóttir, Margrét; Hamaguchi, Patricia Y; Jamnik, Polona; Kristinsson, Hordur G; Undeland, Ingrid
2016-04-01
The ability of different in vitro antioxidant assays to predict the efficiency of cod protein hydrolysate (CPH) and Fucus vesiculosus ethyl acetate extract (EA) towards lipid oxidation in haemoglobin-fortified washed cod mince and iron-containing cod liver oil emulsion was evaluated. The progression of oxidation was followed by sensory analysis, lipid hydroperoxides and thiobarbituric acid-reactive substances (TBARS) in both systems, as well as loss of redness and protein carbonyls in the cod system. The in vitro tests revealed high reducing capacity, high DPPH radical scavenging properties and a high oxygen radical absorbance capacity (ORAC) value of the EA which also inhibited lipid and protein oxidation in the cod model system. The CPH had a high metal chelating capacity and was efficient against oxidation in the cod liver oil emulsion. The results indicate that the F. vesiculosus extract has a potential as an excellent natural antioxidant against lipid oxidation in fish muscle foods while protein hydrolysates are more promising for fish oil emulsions. The usefulness of in vitro assays to predict the antioxidative properties of new natural ingredients in foods thus depends on the knowledge about the food systems, particularly the main pro-oxidants present. © 2015 Society of Chemical Industry.
21 CFR 320.35 - Requirements for in vitro testing of each batch.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 5 2011-04-01 2011-04-01 false Requirements for in vitro testing of each batch... Determining the Bioavailability or Bioequivalence of Drug Products § 320.35 Requirements for in vitro testing of each batch. If a bioequivalence requirement specifies a currently available in vitro test or an in...
21 CFR 320.35 - Requirements for in vitro testing of each batch.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Requirements for in vitro testing of each batch... Determining the Bioavailability or Bioequivalence of Drug Products § 320.35 Requirements for in vitro testing of each batch. If a bioequivalence requirement specifies a currently available in vitro test or an in...
77 FR 68773 - FIFRA Scientific Advisory Panel; Notice of Public Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-16
... for physical chemical properties that cannot be easily tested in in vitro systems or stable enough for.... Quantitative structural-activity relationship (QSAR) models and estrogen receptor (ER) expert systems development. High-throughput data generation and analysis (expertise focused on how this methodology can be...
Disinfection of water in recirculating aquaculture systems with peracetic acid (PAA)
USDA-ARS?s Scientific Manuscript database
The disinfection behaviour of peracetic acid (PAA) in recirculating aquaculture systems (RAS) was investigated. Peracetic acid is a strong oxidizing agent found in various concentrations in different products. Three Wofasteril PAA products (E400 (c), Lspecical; AC 150) were tested in vitro for the...
Hernández-Alvarez, E; Blanco-Navarro, I; Pérez-Sacristán, B; Sánchez-Siles, L M; Granado-Lorencio, F
2016-10-01
Bioavailability of carotenoids is low and significant amounts reach the colon where they may be biologically active. We aimed to optimize a previously developed beverage designed to improve cardiovascular and bone remodelling markers in post-menopausal women. By assessing different lipid emulsions (soy lecithin, milkfat globule membrane (MFGM) and olive oil) on the in vitro bioaccessibility of β-Cryptoxanthin and phytosterols, a MFGM containing beverage was selected and resulted stable over time (recovery >95%) under in vitro digestion and simulated anaerobic conditions. This beverage was tested in a randomized human trial (n=38) by evaluating systemic response and the colonic availability of β-Cryptoxanthin. Consumption for six weeks provoked an increment in serum β-Cryptoxanthin of 38.9μg/dl (CI 95%; 31.0, 46.8; p<0.001). In faeces, free β-Cryptoxanthin, tentatively identified β-Cryptoxanthin esters and the ratio cis-/trans-β-carotene approached the profile in the beverage and after in vitro digestion but it was different from serum. In conclusion, in vitro digestion-assisted approach appears adequate to develop functional foods although in vivo validation should consider both systemic response and the availability at the colon. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liebsch, Christian; Zimmermann, Julia; Graf, Nicolas; Schilling, Christoph; Wilke, Hans-Joachim; Kienle, Annette
2018-01-01
Biomechanical in vitro tests analysing screw loosening often include high standard deviations caused by high variabilities in bone mineral density and pedicle geometry, whereas standardized mechanical models made of PU foam often do not integrate anatomical or physiological boundary conditions. The purpose of this study was to develop a most realistic mechanical model for the standardized and reproducible testing of pedicle screws regarding the resistance against screw loosening and the holding force as well as to validate this model by in vitro experiments. The novel mechanical testing model represents all anatomical structures of a human vertebra and is consisting of PU foam to simulate cancellous bone, as well as a novel pedicle model made of short carbon fibre filled epoxy. Six monoaxial cannulated pedicle screws (Ø6.5 × 45mm) were tested using the mechanical testing model as well as human vertebra specimens by applying complex physiological cyclic loading (shear, tension, and bending; 5Hz testing frequency; sinusoidal pulsating forces) in a dynamic materials testing machine with stepwise increasing load after each 50.000 cycles (100.0N shear force + 20.0N per step, 51.0N tension force + 10.2N per step, 4.2Nm bending moment + 0.8Nm per step) until screw loosening was detected. The pedicle screw head was fixed on a firmly clamped rod while the load was applied in the vertebral body. For the in vitro experiments, six human lumbar vertebrae (L1-3, BMD 75.4 ± 4.0mg/cc HA, pedicle width 9.8 ± 0.6mm) were tested after implanting pedicle screws under X-ray control. Relative motions of pedicle screw, specimen fixture, and rod fixture were detected using an optical motion tracking system. Translational motions of the mechanical testing model experiments in the point of load introduction (0.9-2.2mm at 240N shear force) were reproducible within the variation range of the in vitro experiments (0.6-3.5mm at 240N shear force). Screw loosening occurred continuously in each case between 140N and 280N, while abrupt failures of the specimen were observed only in vitro. In the mechanical testing model, no translational motion was detected in the screw entry point, while in vitro, translational motions of up to 2.5mm in inferior direction were found, leading to a slight shift of the centre of rotation towards the screw tip. Translational motions of the screw tip of about 5mm in superior direction were observed both in vitro and in the mechanical testing model, while they were continuous in the mechanical testing model and rapidly increasing after screw loosening initiation in vitro. The overall pedicle screw loosening characteristics were qualitatively and quantitatively similar between the mechanical testing model and the human vertebral specimens as long as there was no translation of the screw at the screw entrance point. Therefore, the novel mechanical testing model represents a promising method for the standardized testing of pedicle screws regarding screw loosening for cases where the screw rotates around a point close to the screw entry point. Copyright © 2017 Elsevier Ltd. All rights reserved.
Creating a Tiny Human Body on a Chip
Hunsberger, Maren; Soscia, Dave; Moya, Monica
2018-06-21
LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a better system for testing pharmaceutical drugs."
Surface Enhanced Raman Spectroscopy for Monitoring Lactate and Glucose
2005-07-01
lasers. We have successfully developed and tested these SERS active substances in vitro and in vivo in the subcutaneous space of a rat. Work continues in...using this system for detection in vitro and in vivo as specified in the original proposal. The specific aims, as proposed in the original "statement...assess performance. a. Control experiments. b. Use indwelling probes to quantitatively measure glucose levels in vivo . c. Use indwelling probes to
Evaluation of the in vitro antioxidant activity of Mangifera indica L. extract (Vimang).
Martínez, G; Delgado, R; Pérez, G; Garrido, G; Núñez Sellés, A J; León, O S
2000-09-01
An extract of Mangifera indica L. (Vimang) was tested in vitro for its antioxidant activity using commonly accepted assays. It showed a powerful scavenger activity of hydroxyl radicals and hypochlorous acid and acted as an iron chelator. The extract also showed a significant inhibitory effect on the peroxidation of rat-brain phospholipid and inhibited DNA damage by bleomycin or copper-phenanthroline systems. Copyright 2000 John Wiley & Sons, Ltd.
In-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation
NASA Technical Reports Server (NTRS)
Koenig, S. C.; Schaub, J. D.; Ewert, D. L.; Swope, R. D.; Convertino, V. A. (Principal Investigator)
1997-01-01
An in-line pressure-flow module for in vitro modelling of haemodynamics and biosensor validation has been developed. Studies show that good accuracy can be achieved in the measurement of pressure and of flow, in steady and pulstile flow systems. The model can be used for development, testing and evaluation of cardiovascular-mechanical-electrical anlogue models, cardiovascular prosthetics (i.e. valves, vascular grafts) and pressure and flow biosensors.
Nichols, John; Fay, Kellie; Bernhard, Mary Jo; Bischof, Ina; Davis, John; Halder, Marlies; Hu, Jing; Johanning, Karla; Laue, Heike; Nabb, Diane; Schlechtriem, Christian; Segner, Helmut; Swintek, Joe; Weeks, John; Embry, Michelle
2018-05-14
In vitro assays are widely employed to obtain intrinsic clearance estimates used in toxicokinetic modeling efforts. However, the reliability of these methods is seldom reported. Here we describe the results of an international ring trial designed to evaluate two in vitro assays used to measure intrinsic clearance in rainbow trout. An important application of these assays is to predict the effect of biotransformation on chemical bioaccumulation. Six laboratories performed substrate depletion experiments with cyclohexyl salicylate, fenthion, 4-n-nonylphenol, deltamethrin, methoxychlor, and pyrene using cryopreserved hepatocytes and liver S9 fractions from trout. Variability within and among laboratories was characterized as the percent coefficient of variation (CV) in measured in vitro intrinsic clearance rates (CLIN VITRO, INT; ml/h/mg protein or 106 cells) for each chemical and test system. Mean intra-laboratory CVs for each test chemical averaged 18.9% for hepatocytes and 14.1% for S9 fractions, while inter-laboratory CVs (all chemicals and all tests) averaged 30.1% for hepatocytes and 22.4% for S9 fractions. When CLIN VITRO, INT values were extrapolated to in vivo intrinsic clearance estimates (CLIN VIVO,INT; L/d/kg fish), both assays yielded similar levels of activity (< 4-fold difference for all chemicals). Hepatic clearance rates (CLH; L/d/kg fish) calculated using data from both assays exhibited even better agreement. These findings show that both assays are highly reliable and suggest that either may be used to inform chemical bioaccumulation assessments for fish. This study highlights several issues related to the demonstration of assay reliability and may provide a template for evaluating other in vitro biotransformation assays.
21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.
Code of Federal Regulations, 2010 CFR
2010-04-01
... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...
21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.
Code of Federal Regulations, 2013 CFR
2013-04-01
... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...
21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.
Code of Federal Regulations, 2014 CFR
2014-04-01
... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...
21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.
Code of Federal Regulations, 2012 CFR
2012-04-01
... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...
21 CFR 312.160 - Drugs for investigational use in laboratory research animals or in vitro tests.
Code of Federal Regulations, 2011 CFR
2011-04-01
... research animals or in vitro tests. 312.160 Section 312.160 Food and Drugs FOOD AND DRUG ADMINISTRATION... Drugs for Investigational Use in Laboratory Research Animals or In Vitro Tests § 312.160 Drugs for investigational use in laboratory research animals or in vitro tests. (a) Authorization to ship. (1)(i) A person...
Kirkland, D J; Henderson, L; Marzin, D; Müller, L; Parry, J M; Speit, G; Tweats, D J; Williams, G M
2005-12-30
The European Scientific Committee on Cosmetics and Non-Food Products (SCCNFP) guideline for testing of hair dyes for genotoxic/mutagenic/carcinogenic potential has been reviewed. The battery of six in vitro tests recommended therein differs substantially from the batteries of two or three in vitro tests recommended in other guidelines. Our evaluation of the chemical types used in hair dyes and comparison with other guidelines for testing a wide range of chemical substances, lead to the conclusion that potential genotoxic activity may effectively be determined by the application of a limited number of well-validated test systems that are capable of detecting induced gene mutations and structural and numerical chromosomal changes. We conclude that highly effective screening for genotoxicity of hair dyes can be achieved by the use of three assays, namely the bacterial gene mutation assay, the mammalian cell gene mutation assay (mouse lymphoma tk assay preferred) and the in vitro micronucleus assay. These need to be combined with metabolic activation systems optimised for the individual chemical types. Recent published evidence [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggests that our recommended three tests will detect all known genotoxic carcinogens, and that increasing the number of in vitro assays further would merely reduce specificity (increase false positives). Of course there may be occasions when standard tests need to be modified to take account of special situations such as a specific pathway of biotransformation, but this should be considered as part of routine testing. It is clear that individual dyes and any other novel ingredients should be tested in this three-test battery. However, new products are formed on the scalp by reaction between the chemicals present in hair-dye formulations. Ideally, these should also be tested for genotoxicity, but at present such experiences are very limited. There is also the possibility that one component could mask the genotoxicity of another (e.g. by being more toxic), and so it is not practical at this time to recommend routine testing of complete hair-dye formulations as well. The most sensible approach would be to establish whether any reaction products within the hair-dye formulation penetrate the skin under normal conditions of use and test only those that penetrate at toxicologically relevant levels in the three-test in vitro battery. Recently published data [D. Kirkland, M. Aardema, L. Henderson, L. Müller, Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I. Sensitivity, specificity and relative predictivity, Mutat. Res. 584 (2005) 1-256] suggest the three-test battery will produce a significant number of false as well as real positives. Whilst we are aware of the desire to reduce animal experiments, determining the relevance of positive results in any of the three recommended in vitro assays will most likely have to be determined by use of in vivo assays. The bone marrow micronucleus test using routes of administration such as oral or intraperitoneal may be used where the objective is extended hazard identification. If negative results are obtained in this test, then a second in vivo test should be conducted. This could be an in vivo UDS in rat liver or a Comet assay in a relevant tissue. However, for hazard characterisation, tests using topical application with measurement of genotoxicity in the skin would be more appropriate. Such specific site-of-contact in vivo tests would minimise animal toxicity burden and invasiveness, and, especially for hair dyes, be more relevant to human routes of exposure, but there are not sufficient scientific data available to allow recommendations to be made. The generation of such data is encouraged.
21 CFR 866.5180 - Fecal calprotectin immunological test system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... forin vitro diagnostic use as an aid in the diagnosis of inflammatory bowel diseases (IBD), specifically Crohn's disease and ulcerative colitis, and as an aid in differentiation of IBD from irritable bowel...
21 CFR 866.5180 - Fecal calprotectin immunological test system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... forin vitro diagnostic use as an aid in the diagnosis of inflammatory bowel diseases (IBD), specifically Crohn's disease and ulcerative colitis, and as an aid in differentiation of IBD from irritable bowel...
21 CFR 866.5180 - Fecal calprotectin immunological test system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... forin vitro diagnostic use as an aid in the diagnosis of inflammatory bowel diseases (IBD), specifically Crohn's disease and ulcerative colitis, and as an aid in differentiation of IBD from irritable bowel...
Effects of Pro-Gly-Pro tripeptide on the dopamine system.
Meshavkin, V K; Batishcheva, E Yu; Kost, N V; Sokolov, O Yu; Trufanova, A V; Samonina, G E
2011-08-01
Tripeptide Pro-Gly-Pro interacted with dopamine receptors in vitro and reduced behavioral manifestations of apomorphine-induced hyperfunction of the dopamine system in verticalization, stereotypy, and yawning tests. Presumably, the behavioral effects of Pro-Gly-Pro tripeptide were mediated through post- and presynaptic D(2)and D(3)receptors.
Coady, Katherine K.; Biever, Ronald C.; Denslow, Nancy D.; Gross, Melanie; Guiney, Patrick D.; Holbech, Henrik; Karouna-Renier, Natalie K.; Katsiadaki, Ioanna; Krueger, Hank; Levine, Steven L.; Maack, Gerd; Williams, Mike; Wolf, Jeffrey C.; Ankley, Gerald T.
2017-01-01
In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling.
Strategy for the hemocompatibility testing of microparticles.
Braune, S; Basu, S; Kratz, K; Johansson, J Bäckemo; Reinthaler, M; Lendlein, A; Jung, F
2016-01-01
Polymer-based microparticles are applied as non-thrombogenic or thrombogenic materials in a wide variety of intra- or extra-corporeal medical devices. As demanded by the regulatory agencies, the hemocompatibility of these blood contacting biomaterials has to be evaluated in vitro to ensure that the particle systems appropriately fulfill the envisioned function without causing undesired events such as thrombosis or inflammation. Currently described in vitro assays for hemocompatibility testing of particles comprise tests with different single cell types (e.g. erythrocytes or leukocytes), varying concentrations/dilutions of the used blood cells or whole blood, which are not standardized.Here, we report about an in vitro dynamic test system for studying the hemocompatibility of polymeric microparticles utilizing fresh human whole blood from apparently healthy subjects, collected and processed under standardized conditions. Spherical poly(ether imide) microparticles with an average diameter of 140±30 μm were utilized as model systems. Reported as candidate materials for the removal of uremic toxins, these microparticles are anticipated to facilitate optimal flow conditions in a dialyzer with minimal backflow and blood cell damage. Pristine (PEI) and potassium hydroxide (PEI-KOH) functionalized microparticles exhibited similarly nanoporous surfaces (PEI: ØExternal pore = 90±60 nm; PEI-KOH ØExternal pore = 150±130 nm) but varying water wettabilities (PEI: θadv = 112±10° PEI-KOH θadv = 60±2°). The nanoporosity of the microparticle surfaces allows the exchange of toxic solutes from blood towards the interconnective pores in the particle core, while an immigration of the substantially larger blood cells is inhibited.Sterilized PEI microparticles were incorporated -air-free -in a syringe-based test system and exposed to whole blood for 60 minutes under gentle agitation. Thereafter, thrombi formation on the particles surfaces were analyzed microscopically. In the collected whole blood the non-adherent/circulating single blood cells were quantified via a differentiated complete blood cell count and the activation of platelets (P-Selectin expression, secretion and release), platelet function (PFA100 closure time) as well as thrombin formation (thrombin-antithrombin-complex) was analyzed. Free hemoglobin (HGB) levels were quantified as a measure of hemolysis.Microscopic evaluation revealed thrombi formation and particle aggregates for all tested microparticles. Reduction of circulating blood cells differed significantly between the particle types. Particularly, platelet and monocyte counts decreased up to 50% compared to the control (syringe filled with whole blood but without microparticles). In accordance, platelet activation, thrombin levels and degrees of hemolysis were clearly elevated in the particle loaded test systems and allowed a differentiation between the particle types. Increased PFA100 closure times (as activating agent a combination of collagen/ADP was used) indicated a similarly reduced ability of platelets to adhere and form stable aggregates independent from the particle type tested. This observation is most probably a consequence of the strong thrombus formation in the test system, which is associated with a reduction of the circulating blood cells.The reported in vitro dynamic whole blood test system allowed the sensitive analysis of the hemocompatibility of polymer-based microparticles and was successfully validated for porous PEI microparticles with different water wettabilities. Beyond the qualitative and quantitative analysis of cell-material interactions, the test also allowed the functional evaluation of platelets in whole blood.
Good cell culture practices &in vitro toxicology.
Eskes, Chantra; Boström, Ann-Charlotte; Bowe, Gerhard; Coecke, Sandra; Hartung, Thomas; Hendriks, Giel; Pamies, David; Piton, Alain; Rovida, Costanza
2017-12-01
Good Cell Culture Practices (GCCP) is of high relevance to in vitro toxicology. The European Society of Toxicology In Vitro (ESTIV), the Center for Alternatives for Animal Testing (CAAT) and the In Vitro Toxicology Industrial Platform (IVTIP) joined forces to address by means of an ESTIV 2016 pre-congress session the different aspects and applications of GCCP. The covered aspects comprised the current status of the OECD guidance document on Good In Vitro Method Practices, the importance of quality assurance for new technological advances in in vitro toxicology including stem cells, and the optimized implementation of Good Manufacturing Practices and Good Laboratory Practices for regulatory testing purposes. General discussions raised the duality related to the difficulties in implementing GCCP in an academic innovative research framework on one hand, and on the other hand, the need for such GCCP principles in order to ensure reproducibility and robustness of in vitro test methods for toxicity testing. Indeed, if good cell culture principles are critical to take into consideration for all uses of in vitro test methods for toxicity testing, the level of application of such principles may depend on the stage of development of the test method as well as on the applications of the test methods, i.e., academic innovative research vs. regulatory standardized test method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro
2016-04-01
The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
Nakajima, Kohei; Kimura, Toshihiro; Takakura, Hideo; Yoshikawa, Yasuo; Kameda, Atsushi; Shindo, Takayuki; Sato, Kazuhide; Kobayashi, Hisataka; Ogawa, Mikako
2018-04-13
The aim of this study was to develop and assess a novel implantable, wireless-powered, light-emitting diode (LED) for near-infrared photoimmunotherapy (NIR-PIT). NIR-PIT is a recently developed cancer therapy that uses NIR light and antibody-photosensitizer conjugates and is able to induce cancer-specific cell death. Due to limited light penetration depth it is currently unable to treat tumors in deep tissues. Use of implanted LED might potentially overcome this limitation. The wireless LED system was able to emit NIR light up to a distance of 20 cm from the transmitter coil by using low magnetic fields as compliant with limits for use in humans. Results indicated that the LED system was able to kill tumor cells in vitro and to suppress tumor growth in implanted tumor-bearing mice. Results indicated that the proposed implantable wireless LED system was able to suppress tumor growth in vivo . These results are encouraging as wireless LED systems such as the one here developed might be a possible solution to treat tumors in deep regions in humans. Further research in this area would be important. An implantable LED system was developed. It consisted of a LED capsule including two LED sources and a receiver coil coupled with an external coil and power source. Wireless power transmission was guaranteed by using electromagnetic induction. The system was tested in vitro by using EGFR-expressing cells and HER2-expressing cells. The system was also tested in vivo in tumor-bearing mice.
Further Development and Validation of the Frog Embryo Teratogenesis Assay - Xenopus (Fetax)
1989-05-12
other in vitro teratogenesis assays such as cell culture, planarian , fruitfly, and Hydra systems. The costs of performing the above mentioned tests are...Utilization of alternative species for toxicity testing: an overview. J. Appl. Toxicol. 5:193-219, 1985. 3. Best, J. B., and M. Morita. Planarians as a
The particulate fraction of cigarette smoke, cigarette smoke condensate (CSC), is genotoxic in many short-term in vitro tests and carcinogenic in rodents. However, no study has evaluatedd a set of CSCs prepared from a diverse set of cigarettes in a variety of short-term genotoxic...
Huang, Dong; Dong, Zhi-Feng; Chen, Yan; Wang, Fa-Bin; Wei, Zhi; Zhao, Wen-Bin; Li, Shuai; Liu, Ming-Ya; Zhu, Wei; Wei, Meng; Li, Jing-Bo
2015-07-01
To investigate interference, and how to avoid it, by high-frequency electromagnetic fields (EMFs) of Global System for Mobile Communications (GSM) mobile phone with communication between cardiac rhythm management devices (CRMs) and programmers, a combined in vivo and in vitro testing was conducted. During in vivo testing, GSM mobile phones interfered with CRM-programmer communication in 33 of 65 subjects tested (50.8%). Losing ventricle sensing was representative in this study. In terms of clinical symptoms, only 4 subjects (0.6%) felt dizzy during testing. CRM-programmer communication recovered upon termination of mobile phone communication. During in vitro testing, electromagnetic interference by high-frequency (700-950 MHz) EMFs reproducibly occurred in duplicate testing in 18 of 20 CRMs (90%). During each interference, the pacing pulse signal on the programmer would suddenly disappear while the synchronous signal was normal on the amplifier-oscilloscope. Simulation analysis showed that interference by radiofrequency emitting devices with CRM-programmer communication may be attributed to factors including materials, excitation source distance, and implant depth. Results suggested that patients implanted with CRMs should not be restricted from using GSM mobile phones; however, CRMs should be kept away from high-frequency EMFs of GSM mobile phone during programming. © 2015 Wiley Periodicals, Inc.
Moche, Hélène; Chevalier, Dany; Barois, Nicolas; Lorge, Elisabeth; Claude, Nancy; Nesslany, Fabrice
2014-01-01
With the increasing human exposure to nanoparticles (NP), the evaluation of their genotoxic potential is of significant importance. However, relevance for NP of the routinely used in vitro genotoxicity assays is often questioned, and a nanoparticulate reference positive control would therefore constitute an important step to a better testing of NP, ensuring that test systems are really appropriate. In this study, we investigated the possibility of using tungsten carbide-cobalt (WC-Co) NP as reference positive control in in vitro genotoxicity assays, including 2 regulatory assays, the mouse lymphoma assay and the micronucleus assay, and in the Comet assay, recommended for the toxicological evaluation of nanomedicines by the French Agency of Human Health Products (Afssaps). Through these assays, we were able to study different genetic endpoints in 2 cell types commonly used in regulatory genotoxicity assays: the L5178Y mouse lymphoma cell line and primary cultures of human lymphocytes. Our results showed that the use of WC-Co NP as positive control in in vitro genotoxicity assays was conceivable, but that different parameters have to be considered, such as cell type and treatment schedule. L5178Y mouse lymphoma cells did not provide satisfactory results in the 3 performed tests. However, human lymphocytes were more sensitive to genotoxic effects induced by WC-Co NP, particularly after a 24-h treatment in the in vitro micronucleus assay and after a 4-h treatment in the in vitro Comet assay. Under such conditions, WC-Co could be used as a nanoparticulate reference positive control in these assays.
Models and methods for in vitro testing of hepatic gap junctional communication.
Maes, Michaël; Yanguas, Sara Crespo; Willebrords, Joost; Vinken, Mathieu
2015-12-25
Inherent to their pivotal roles in controlling all aspects of the liver cell life cycle, hepatocellular gap junctions are frequently disrupted upon impairment of the homeostatic balance, as occurs during liver toxicity. Hepatic gap junctions, which are mainly built up by connexin32, are specifically targeted by tumor promoters and epigenetic carcinogens. This renders inhibition of gap junction functionality a suitable indicator for the in vitro detection of nongenotoxic hepatocarcinogenicity. The establishment of a reliable liver gap junction inhibition assay for routine in vitro testing purposes requires a cellular system in which gap junctions are expressed at an in vivo-like level as well as an appropriate technique to probe gap junction activity. Both these models and methods are discussed in the current paper, thereby focusing on connexin32-based gap junctions. Copyright © 2015 Elsevier B.V. All rights reserved.
Systems Toxicology: Real World Applications and Opportunities.
Hartung, Thomas; FitzGerald, Rex E; Jennings, Paul; Mirams, Gary R; Peitsch, Manuel C; Rostami-Hodjegan, Amin; Shah, Imran; Wilks, Martin F; Sturla, Shana J
2017-04-17
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams ("big data"), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity.
Systems Toxicology: Real World Applications and Opportunities
2017-01-01
Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized from empirical end points to describing modes of action as adverse outcome pathways and perturbed networks. Toward this aim, Systems Toxicology entails the integration of in vitro and in vivo toxicity data with computational modeling. This evolving approach depends critically on data reliability and relevance, which in turn depends on the quality of experimental models and bioanalysis techniques used to generate toxicological data. Systems Toxicology involves the use of large-scale data streams (“big data”), such as those derived from omics measurements that require computational means for obtaining informative results. Thus, integrative analysis of multiple molecular measurements, particularly acquired by omics strategies, is a key approach in Systems Toxicology. In recent years, there have been significant advances centered on in vitro test systems and bioanalytical strategies, yet a frontier challenge concerns linking observed network perturbations to phenotypes, which will require understanding pathways and networks that give rise to adverse responses. This summary perspective from a 2016 Systems Toxicology meeting, an international conference held in the Alps of Switzerland, describes the limitations and opportunities of selected emerging applications in this rapidly advancing field. Systems Toxicology aims to change the basis of how adverse biological effects of xenobiotics are characterized, from empirical end points to pathways of toxicity. This requires the integration of in vitro and in vivo data with computational modeling. Test systems and bioanalytical technologies have made significant advances, but ensuring data reliability and relevance is an ongoing concern. The major challenge facing the new pathway approach is determining how to link observed network perturbations to phenotypic toxicity. PMID:28362102
Media formulation influences chemical effects on neuronal growth and morphology
Abstract Screening for developmental neurotoxicity (DNT) using in vitro, cell-based test systems has been proposed as an efficient and cost-effective alternative to performing in vivo DNT studies. One of the pri...
NASA Astrophysics Data System (ADS)
Cacciotti, Ilaria; Chronopoulou, Laura; Palocci, Cleofe; Amalfitano, Adriana; Cantiani, Monica; Cordaro, Massimo; Lajolo, Carlo; Callà, Cinzia; Boninsegna, Alma; Lucchetti, Donatella; Gallenzi, Patrizia; Sgambato, Alessandro; Nocca, Giuseppina; Arcovito, Alessandro
2018-07-01
The topical treatment for oral mucosal diseases is often based on products optimized for dermatologic applications; consequently, a lower therapeutic effect may be present. 18-β-glycyrrhetic acid (GA) is extracted from Glycirrhiza glabra. The first aim of this study was to test the cytotoxicity of GA on PE/CA-PJ15 cells. The second aim was to propose and test two different delivery systems, i.e. nanoparticles and fibers, to guarantee a controlled release of GA in vitro. We used chitosan and poly(lactic-co-glycolic) acid based nanoparticles and polylactic acid fibers. We tested both delivery systems in vitro on PE/CA-PJ15 cells and on normal human gingival fibroblasts (HGFs). The morphology of GA-loaded nanoparticles (GA-NPs) and fibers (GA-FBs) was investigated by electron microscopy and dynamic light scattering; GA release kinetics was studied spectrophotometrically. MTT test was used to assess GA cytotoxicity on both cancer and normal cells. Cells were exposed to different concentrations of GA (20–500 μmol l‑1) administered as free GA (GA-f), and to GA-NPs or GA-FBs. ROS production was evaluated using dichlorodihydrofluorescein as a fluorescent probe. Regarding the cytotoxic effect of GA on PE/CA-PJ15 cells, the lowest TC50 value was 200 μmol l‑1 when GA was added as GA-NPs. No cytotoxic effects were observed when GA was administered to HGFs. N-acetyl Cysteine reduced mortality induced by GA-f in PE/CA-PJ15 cells. The specific effect of GA on PE/CA-PJ15 cells is mainly due to the different sensitivity of cancer cells to ROS over-production; GA-NPs and GA-FBs formulations increase, in vitro, this toxic effect on oral cancer cells.
Ricci-Junior, Eduardo; de Oliveira de Siqueira, Luciana Betzler; Rodrigues, Raphaela Aparecida Schuenck; Sancenón, Félix; Martínez-Máñez, Ramón; de Moraes, João Alfredo; Santos-Oliveira, Ralph
2018-03-01
The use of nanosystems as diagnosing and therapy systems is increasing each year. There are several nanosystems available and the most prominent ones are: mesoporous silica, nanoemulsion and polymeric nanoparticles. With characteristics like low toxicology, and easy-producing process they have advantages when compared with the traditional system used, as they show specific targeting, controlled release, and higher penetration. In this study we tested three different nanocarriers (polymeric nanoparticles, nanoemulsion and mesoporous silica) containing phthalocyanineas possible PDT drugs (nanodrugs). They were tested in vitro and in vivo: cells and healthy mice, respectively, in order to understand the biological behavior and reach the initial conclusions. The results in cells showed that a dose response was observed with different concentrations of the three nanocarriers. The results in animal showed that all nanosystems have potential for application in PDT, since they were able to produce a visible effect in healthy animals. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Yaowen; Wei, Jiaojun; Lu, Jinfu; Lei, Dongmei; Yan, Shili; Li, Xiaohong
2016-06-01
The liver is the major organ of importance to determine drug dispositions in the body, thus the development of hepatocyte culture systems is of great scientific and practical interests to provide reliable and predictable models for in vitro drug screening. In the current study, to address the challenges of a rapid function loss of primary hepatocytes, the coculture of hepatocytes with fibroblasts and endothelial cells (Hep-Fib-EC) was established on micropatterned fibrous scaffolds. Liver-specific functions, such as the albumin secretion and urea synthesis, were well maintained in the coculture system, accompanied by a rapid formation of multicellular hepatocyte spheroids. The activities of phase I (CYP3A11 and CYP2C9) and phase II enzymes indicated a gradual increase for cocultured hepatocytes, and a maximum level was achieved after 5 days and maintained throughout 15 days of culture. The metabolism testing on model drugs indicated that the scaled clearance rates for hepatocytes in the Hep-Fib-EC coculture system were significantly higher than those of other culture methods, and a linear regression analysis indicated good correlations between the observed data of rats and in vitro predicted values during 15 days of culture. In addition, the enzyme activities and drug clearance rates of hepatocytes in the Hep-Fib-EC coculture model experienced sensitive responsiveness to the inducers and inhibitors of metabolizing enzymes. These results demonstrated the feasibility of micropatterned coculture of hepatocytes as a potential in vitro testing model for the prediction of in vivo drug metabolism. Copyright © 2016 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Evaluation of In Vitro Tests for Identifying Eye Injury...-animal testing strategies proposed for identifying eye injury hazard potential of chemicals and products... Panel and submission of data from substances tested in in vitro tests for identifying eye injury hazard...
Liu, Kuo-Sheng; Liu, Shih-Jung; Chen, Hsiao-Yun; Huang, Yao-Kuang; Peng, Yi-Jie; Wu, Ren-Chin; Ueng, Steve Wen-Neng
2012-05-01
Inadequate localized drug concentrations and systemic adverse effects are among the concerns when regional infections are treated with systemic antibiotics. We designed and fabricated a poly(D,L)-lactide-co-glycolide (PLGA)-based biodegradable drug delivery system and evaluated the release of antibiotics both in vitro and in vivo. PLGA copolymer and penicillin G sodium were mixed, compressed, and sintered to fabricate biodegradable antibiotic beads. The beads were placed in phosphate-buffered saline to test the characteristics of in vitro drug release. The beads then were introduced into the pleural cavities through chest tubes of six New Zealand white rabbits. Daily pleural effusion was collected to measure the antibiotic concentration and bacterial inhibitory characteristics. Forty percent of the penicillin was released in the first day in the in vitro study. The rest of the antibiotic was then gradually released in the following 30 days. All six animals survived the experiment. The initial surge of drug release was less significant in the pleural cavity than in the phosphate-buffered saline. The drug concentrations were well above the minimum inhibitory concentration breakpoint for penicillin susceptibility throughout the study period in both in vitro (30 days) and in vivo (14 days) studies. These preliminary findings demonstrated that the biodegradable PLGA antibiotic beads could achieve a fairly steady antibiotic release in the pleural cavity for at least 2 weeks. This drug delivery system may have the potential to serve as an adjuvant treatment of pleural cavity infection.
Xenoestrogenic chemicals effectively alter sperm functional behavior in mice.
Park, Yoo-Jin; Mohamed, El-Sayed A; Kwon, Woo-Sung; You, Young-Ah; Ryu, Buom-Yong; Pang, Myung-Geol
2011-12-01
Xenoestrogenic compounds (XCs) can disrupt endogenous hormone function and affect sperm function by binding to receptors on sperm membrane. Albeit spermatozoa are potentially a useful model for screening estrogenic activities of endocrine disruptors, high-quality in vitro test system that examination of the XCs effects on sperm function is required. The objective of this study was to compare the effects of XCs (genistein and 4-tert-octylphenol) to those of steroids (estrogen and progesterone) and heparin on in vitro capacitation and acrosome reaction (AR) in mouse spermatozoa. Mouse spermatozoa were incubated with various concentrations (0.001-100 μM) of each chemical for 15 or 30 min, and then capacitation and AR were assessed using chlortetracycline. All chemicals studied effectively alter capacitation and/or AR in mouse spermatozoa with different manner. Therefore, we believed that our system will provide a good in vitro model system to characterize the physiological effect of XCs especially when compared with steroids. Copyright © 2011 Elsevier Inc. All rights reserved.
Craparo, Emanuela Fabiola; Pitarresi, Giovanna; Bondì, Maria Luisa; Casaletto, Maria Pia; Licciardi, Mariano; Giammona, Gaetano
2008-03-10
The preparation and characterization of surface-PEGylated polymeric nanoparticles are described. These systems were obtained by UV irradiation of PHM and PHM-PEG(2000) as an inverse microemulsion, using an aqueous solution of the PHM/PHM-PEG(2000) copolymer mixture as the internal phase and triacetin saturated with water as the external phase, and characterized by dimensional analysis, zeta-potential measurements and XPS. in vitro biological tests demonstrated their cell compatibility and their ability to escape from phagocytosis. Rivastigmine was encapsulated into the nanoparticle structure and drug-release profiles from loaded samples were investigated in PBS at pH = 7.4 and human plasma.
Optimal moving angle of pusher plate in occlusive-type pulsatile blood pump.
Choi, Hyuk; Lee, Hwansung; Choi, Jaesoon; Lee, Jung Joo; Nam, Kyoung Won; Park, Jun Woo; Park, Yongdoo; Sun, Kyung; Lee, Heung-Man
2010-07-01
Since the occlusive-type pulsatile extracorporeal blood pump (Twin-Pulse Life Support System; Seoul National University, Seoul, Korea) received the CE mark of the European Directives and Korea Food and Drug Administration approval (2004) for short-term applications as an extracorporeal life support system, the pump system has been tested for hemolysis. This pump system was recently upgraded with an ameliorated pusher plate to reduce hemolysis. In this study, numerical analysis and in vitro tests were performed to determine the optimal conditions for increasing the durability of the blood sac and pump output. During the simulation, the minimum sliding interface force (SIF) for the angle of the pusher plate movement (PPM) was calculated (40-70 degrees ). In the in vitro durability test, the angle of the PPM was increased gradually from 40 to 70 degrees in 10 degrees increments, and the mean time to failure (MTTF) of the blood sac was calculated. Fifteen tests were conducted for each case: 40, 50, 60, and 70 degrees (n = 15 each). The MTTF of the blood sac was defined as the time when a crack of the blood sac occurred. The longer lifetime of the blood sac at 60 degrees of the PPM (297.0 h) than that at 50 degrees (197.6 h) was attributed to the lower SIF value (-0.13, normalized value) at 60 degrees of the PPM.
Creating a Tiny Human Body on a Chip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunsberger, Maren; Soscia, Dave; Moya, Monica
LLNL science communicator Maren Hunsberger takes us "Inside the Lab" to learn about the iChip (In-vitro Chip-based Human Investigational Platform) project at Lawrence Livermore National Laboratory. "One application of the iChip system would be to develop new pharmaceutical drugs," explains Dave Soscia, LLNL postdoc. "When you test in a mouse for example, it's not as close to the human system as you can get. If we can take human cells and put them on devices and actually mimic the structure and function of the organ systems in the human, we can actually replace animal testing and even make a bettermore » system for testing pharmaceutical drugs."« less
The development of alternative methods for toxicity testing is driven by the need for scientifically valid data that can be obtained in a rapid and cost-efficient manner. In vitro systems provide a model in which chemical effects on cellular events can be examined using technique...
Cross-species extrapolation of toxicity information using the ...
In the United States, the Endocrine Disruptor Screening Program (EDSP) was established to identify chemicals that may lead to adverse effects via perturbation of the endocrine system (i.e., estrogen, androgen, and thyroid hormone systems). In the mid-1990s the EDSP adopted a two tiered approach for screening chemicals that applied standardized in vitro and in vivo toxicity tests. The Tier 1 screening assays were designed to identify substances that have the potential of interacting with the endocrine system and Tier 2 testing was developed to identify adverse effects caused by the chemical, with documentation of dose-response relationships. While this tiered approach was effective in identifying possible endocrine disrupting chemicals, the cost and time to screen a single chemical was significant. Therefore, in 2012 the EDSP proposed a transition to make greater use of computational approaches (in silico) and high-throughput screening (HTS; in vitro) assays to more rapidly and cost-efficiently screen chemicals for endocrine activity. This transition from resource intensive, primarily in vivo, screening methods to more pathway-based approaches aligns with the simultaneously occurring transformation in toxicity testing termed “Toxicity Testing in the 21st Century” which shifts the focus to the disturbance of the biological pathway predictive of the observable toxic effects. An example of such screening tools include the US Environmental Protection Agency’s
Identification and assessment of endocrine disruptors: limitations of in vivo and in vitro assays.
Zacharewski, T
1998-01-01
It has been suggested that chemicals and complex mixtures capable of modulating the endocrine system may contribute to adverse health, reproduction, and developmental effects in humans and wildlife. These effects include increased incidence of hormone-dependent cancers, compromised reproductive fitness, and abnormal reproductive system development. In response to public concern, regulatory agencies in North America and Europe are formulating potential strategies to systematically test chemicals and complex mixtures for their endocrine-disrupting activities. Because of the complexity of the endocrine system and the number of potential endocrine disruptor targets, a tiered approach involving a complementary battery of short- and long-term in vivo and in vitro assays that assesses both receptor and nonreceptor-mediated mechanisms of action is being considered. However, the available established assays use a limited number of end points, and significant information gaps exist for other potential targets in the endocrine system. In addition to discussing the merits and limitations of the assays that may be adopted, this paper also highlights potential problems associated with the use of a tiered testing strategy. PMID:9599705
Porous zirconia ceramic as an alternative to dentin for in vitro dentin barriers cytotoxicity test.
Hu, Meng-Long; Lin, Hong; Jiang, Ruo-Dan; Dong, Li-Min; Huang, Lin; Zheng, Gang
2018-06-01
This study assessed the potential of porous zirconia ceramic as an alternative to dentin via an in vitro dentin barrier cytotoxicity test. The permeability of dentin and porous zirconia ceramic was measured using a hydraulic-conductance system, and their permeability was divided into two groups: high and low. Using an in vitro dentin barrier test, the cytotoxicity of dental materials by dentin and porous zirconia ceramic was compared within the same permeability group. The L-929 cell viability was assessed by MTT assay. The mean (SD) permeability of the high and low group for dentin was 0.334 (0.0873) and 0.147 (0.0377) μl min -1 cm -2 cm H 2 O -1 and for zirconia porous ceramic was 0.336 (0.0609) and 0.146 (0.0340) μl min -1 cm -2 cm H 2 O -1 . The cell viability of experimental groups which are the low permeability group was higher than that of the high permeability group for both dentin and porous zirconia ceramic as a barrier except for Maxcem Elite ™ by porous zirconia ceramic. There was no significant difference between dentin and porous zirconia ceramic in cell viability, within either the high or low permeability group for all materials. The SD for cell viability of the porous zirconia ceramic was less than that of the dentin, across all materials within each permeability group, except for Maxcem Elite ™ in the high permeability group. Porous zirconia ceramic, having similar permeability to dentin at the same thickness, can be used as an alternative to dentin for in vitro dentin barrier cytotoxicity tests. In vitro dentin barrier cytotoxicity tests when a standardized porous zirconia ceramic was used as a barrier could be useful for assessing the potential toxicity of new dental materials applied to dentin before applying in clinical and may resolve the issue of procuring human teeth when testing proceeds.
Mehta, Mohina; Ram, Raja; Bhattacharya, Amita
2014-07-01
The two commercially important apple rootstocks i.e., MM106 and B9 were micropropagated using a liquid culture system. Three different strengths of 0.8% agar solidified PGR free basal MS medium were first tested to optimize the culture media for both the rootstocks. Full strength medium (MS0) supported maximum in vitro growth, multiplication, rooting and survival under field conditions as opposed to quarter and half strength media. When three different volumes of liquid MS0 were tested, highest in vitro growth, multiplication, rooting and also survival under field conditions were achieved in 20 mL liquid MS0. The cost of one litre of liquid medium was also reduced by 8 times to Rs. 6.29 as compared to solid medium. The cost of 20 mL medium was further reduced to Rs. 0.125.
Chromatic dispersive confocal technology for intra-oral scanning: first in-vitro results
NASA Astrophysics Data System (ADS)
Ertl, T.; Zint, M.; Konz, A.; Brauer, E.; Hörhold, H.; Hibst, R.
2015-02-01
Various test objects, plaster models, partially equipped with extracted teeth and pig jaws representing various clinical situations of tooth preparations were used for in-vitro scanning tests with an experimental intra-oral scanning system based on chromatic-dispersive confocal technology. Scanning results were compared against data sets of the same object captured by an industrial μCT measuring system. Compared to μCT data an average error of 18 - 30 μm was achieved for a single tooth scan area and less than 40 to 60 μm error measured over the restoration + the neighbor teeth and pontic areas up to 7 units. Mean error for a full jaw is within 100 - 140 μm. The length error for a 3 - 4 unit bridge situation form contact point to contact point is below 100 μm and excellent interproximal surface coverage and prep margin clarity was achieved.
Time-controlled release pseudoephedrine tablets: bioavailability and in vitro/in vivo correlations.
Halsas, M; Penttinen, T; Veski, P; Jürjenson, H; Marvola, M
2001-09-01
In chronopharmacotherapy, circadian changes in disease symptoms are taken into account. Press-coated, time-controlled release tablets containing pseudoephedrine hydrochloride as a model drug have been formulated and the suitability of this highly soluble drug in relation to the new drug delivery system was evaluated. Hydroxypropylmethylcellulose was used in the coat of the tablet to adjust drug release. If such a formulation was administered in the evening it would have maximal effect in the early morning, and would be useful for the treatment of nocturnal symptoms. Two cross-over, single-dose bioavailability studies were carried out on eight healthy volunteers. A dissolution test method was developed to establish level A and level C in vitro/in vivo correlation for four formulations. With a low viscosity grade of polymer, peak concentrations were achieved after five hours. The drug was absorbed much more slowly from tablets containing a high viscosity grade polymer, with a plasma peak at ten hours. For further development of the drug delivery system described, a dissolution test method at pH 7.2 at a rotation speed of 150 min-1 is recommended on the basis of level A in vitro/in vivo correlation.
Appeltant, Ruth; Somfai, Tamás; Kikuchi, Kazuhiro; Maes, Dominiek; Van Soom, Ann
2016-04-01
Co-culture of cumulus-oocyte complexes (COCs) with denuded oocytes (DOs) during in vitro maturation (IVM) was reported to improve the developmental competence of oocytes via oocyte-secreted factors in cattle. The aim of the present study was to investigate if addition of DOs during IVM can improve in vitro fertilization (IVF) and in vitro culture (IVC) results for oocytes in a defined in vitro production system in pigs. The maturation medium was porcine oocyte medium supplemented with gonadotropins, dbcAMP and β-mercaptoethanol. Cumulus-oocyte complexes were matured without DOs or with DOs in different ratios (9 COC, 9 COC+16 DO and 9 COC+36 DO). Consequently; oocytes were subjected to IVF as intact COCs or after denudation to examine if DO addition during IVM would affect cumulus or oocyte properties. After fertilization, penetration and normal fertilization rates of zygotes were not different between all tested groups irrespective of denudation before IVF. When zygotes were cultured for 6 days, no difference could be observed between all treatment groups in cleavage rate, blastocyst rate and cell number per blastocyst. In conclusion, irrespective of the ratio, co-culture with DOs during IVM did not improve fertilization parameters and embryo development of cumulus-enclosed porcine oocytes in a defined system. © 2015 Japanese Society of Animal Science.
Use of chick embryo in screening for teratogenicity.
Kotwani, A
1998-04-01
A teratology screening system would detect agents hazardous to the conceptus before they can perturb embryonic development in humans. The back log of untested chemicals and the rate at which new substances enter the market exceed the developmental effects testing by standard in vivo method. Thus, cheaper, quicker in vitro systems afford a unique opportunity for investigating the direct interaction of substances with developing morphogenetic system (MGSs), since maternal influences are excluded. As a carrier of a complete set of MGSs, the chick embryo in ovo manifests an advantage over those in vitro systems that employ isolated embryos or embryonic tissues that have only limited survival. Under controlled experimental conditions including standardization of subjects, administration technique and mode of evaluation, according to the basic principles of teratology, the chick embryo test is demonstrated to be reliable and to afford quantifiable end points for evaluation. Individual compounds, mixtures of compounds and against and antagonist can easily be administered and tested. The chick embryo possesses its own basic enzyme-catalyzed drug-transformation capacity and moreover, it can be used for screening specific human metabolites. Different newer techniques e.g. chick embryotoxicity screening test (CHEST), Chick embryo blastoderm model etc are described in detail. Chick embryo fulfills all the criteria which a test should have at a lower level of tier system in teratological studies i.e. modest laboratory equipment, moderate skill, minimal expenditure of time and money, ease of accessibility of embryo, known embryological development, possibility of experimenting on a large scale for statistically valid results and whole animals are also not required.
Biorelevant in vitro performance testing of orally administered dosage forms-workshop report.
Reppas, Christos; Friedel, Horst-Dieter; Barker, Amy R; Buhse, Lucinda F; Cecil, Todd L; Keitel, Susanne; Kraemer, Johannes; Morris, J Michael; Shah, Vinod P; Stickelmeyer, Mary P; Yomota, Chikako; Brown, Cynthia K
2014-07-01
Biorelevant in vitro performance testing of orally administered dosage forms has become an important tool for the assessment of drug product in vivo behavior. An in vitro performance test which mimics the intraluminal performance of an oral dosage form is termed biorelevant. Biorelevant tests have been utilized to decrease the number of in vivo studies required during the drug development process and to mitigate the risk related to in vivo bioequivalence studies. This report reviews the ability of current in vitro performance tests to predict in vivo performance and generate successful in vitro and in vivo correlations for oral dosage forms. It also summarizes efforts to improve the predictability of biorelevant tests. The report is based on the presentations at the 2013 workshop, Biorelevant In Vitro Performance Testing of Orally Administered Dosage Forms, in Washington, DC, sponsored by the FIP Dissolution/Drug Release Focus Group in partnership with the American Association of Pharmaceutical Scientists (AAPS) and a symposium at the AAPS 2012 Annual meeting on the same topic.
Kedzierska, Ewa; Orzelska, Jolanta; Perković, Ivana; Knežević, Danijel; Fidecka, Sylwia; Kaiser, Marcel; Zorc, Branka
2016-02-01
New primaquine (PQ) urea and semicarbazide derivatives 1-4 were screened for the first time for central nervous system (CNS) and antimalarial activity. Behavioural tests were performed on mice. In vitro cytotoxicity on L-6 cells and activity against erythrocytic stages of Plasmodium falciparum was determined. Compound 4 inhibited 'head-twitch' responses and decreased body temperature of mice, which suggests some involvement of the serotonergic system. Compound 4 protected mice against clonic seizures and was superior in the antimalarial test. A hybrid of two PQ urea 2 showed a strong antimalarial activity, confirming the previous findings of the high activity of bis(8-aminoquinolines) and other bisantimalarial drugs. All the compounds decreased the locomotor activity of mice, what suggests their weak depressive effects on the CNS, while PQ derivatives 1 and 2 increased amphetamine-induced hyperactivity. None of the compounds impaired coordination, what suggests a lack of their neurotoxicity. All the tested compounds presented an antinociceptive activity in the 'writhing' test. Compounds 3 and 4 were active in nociceptive tests, and those effects were reversed by naloxone. Compound 4 could be a useful lead compound in the development of CNS active agents and antimalarials, whereas compound 3 may be considered as the most promising lead for new antinociceptive agents. © 2015 Société Française de Pharmacologie et de Thérapeutique.
Macromolecular assemblies in reduced gravity environments
NASA Technical Reports Server (NTRS)
Moos, Philip J.; Hayes, James W.; Stodieck, Louis S.; Luttges, Marvin W.
1990-01-01
The assembly of protein macro molecules into structures commonly produced within biological systems was achieved using in vitro techniques carried out in nominal as well as reduced gravity environments. Appropriate hardware was designed and fabricated to support such studies. Experimental protocols were matched to the available reduced gravity test opportunities. In evaluations of tubulin, fibrin and collagen assembly products the influence of differing gravity test conditions are apparent. Product homogeneity and organization were characteristic enhancements documented in reduced gravity samples. These differences can be related to the fluid flow conditions that exist during in vitro product formation. Reduced gravity environments may provide a robust opportunity for directing the products formed in a variety of bioprocessing applications.
Eastmond, David A; Macgregor, James T; Slesinski, Ronald S
2008-01-01
Trivalent chromium [Cr(III)] is recognized as an essential nutrient, and is widely used as a nutritional supplement for humans and animals. Recent reports of the induction of genetic damage in cultured cells exposed to Cr(III) compounds in vitro have heightened the concern that Cr(III) compounds may exert genotoxic effects under certain conditions, raising the question of the relative benefit versus risk of dietary and feed supplementation practices. We have reviewed the literature since 1990 on genotoxic effects of Cr(III) compounds to determine whether recent findings provide a sufficient weight of evidence to modify the conclusions about the safety of this dietary supplement reached in the several comprehensive reviews conducted during the period 1990-2004. The extensive literature on genotoxic effects of Cr(III) compounds includes many instances of conflicting information, with both negative and positive findings often reported in similar test systems. Outcomes of in vitro tests conducted with Cr(III) in cultured cells are quite variable regardless of the chemical form of the chromium compound tested. The in vitro data show that Cr(III) has the potential to react with DNA and to cause DNA damage in cell culture systems, but under normal circumstances, restricted access of Cr(III) to cells in vivo limits or prevents genotoxicity in biological systems. The available in vivo evidence suggests that genotoxic effects are very unlikely to occur in humans or animals exposed to nutritional or to moderate recommended supplemental levels of Cr(III). However, excessive intake of Cr(III) supplements does not appear to be warranted at this time. Thus, like other nutrients that have exhibited genotoxic effects in vitro under high exposure conditions, nutritional benefits appear to outweigh the theoretical risk of genotoxic effects in vivo at normal or modestly elevated physiological intake levels.
In vitro evaluation of marginal adaptation in five ceramic restoration fabricating techniques.
Ural, Cağri; Burgaz, Yavuz; Saraç, Duygu
2010-01-01
To compare in vitro the marginal adaptation of crowns manufactured using ceramic restoration fabricating techniques. Fifty standardized master steel dies simulating molars were produced and divided into five groups, each containing 10 specimens. Test specimens were fabricated with CAD/CAM, heat-press, glass-infiltration, and conventional lost-wax techniques according to manufacturer instructions. Marginal adaptation of the test specimens was measured vertically before and after cementation using SEM. Data were statistically analyzed by one-way ANOVA with Tukey HSD tests (a = .05). Marginal adaptation of ceramic crowns was affected by fabrication technique and cementation process (P < .001). The lowest marginal opening values were obtained with Cerec-3 crowns before and after cementation (P < .001). The highest marginal discrepancy values were obtained with PFM crowns before and after cementation. Marginal adaptation values obtained in the compared systems were within clinically acceptable limits. Cementation causes a significant increase in the vertical marginal discrepancies of the test specimens.
Toxicological perspectives of inhaled therapeutics and nanoparticles.
Hayes, Amanda J; Bakand, Shahnaz
2014-07-01
The human respiratory system is an important route for the entry of inhaled therapeutics into the body to treat diseases. Inhaled materials may consist of gases, vapours, aerosols and particulates. In all cases, assessing the toxicological effect of inhaled therapeutics has many challenges. This article provides an overview of in vivo and in vitro models for testing the toxicity of inhaled therapeutics and nanoparticles implemented in drug delivery. Traditionally, inhalation toxicity has been performed on test animals to identify the median lethal concentration of airborne materials. Later maximum tolerable concentration denoted by LC0 has been introduced as a more ethically acceptable end point. More recently, in vitro methods have been developed, allowing the direct exposure of airborne material to cultured human target cells on permeable porous membranes at the air-liquid interface. Modifications of current inhalation therapies, new pulmonary medications for respiratory diseases and implementation of the respiratory tract for systemic drug delivery are providing new challenges when conducting well-designed inhalation toxicology studies. In particular, the area of nanoparticles and nanocarriers is of critical toxicological concern. There is a need to develop toxicological test models, which characterise the toxic response and cellular interaction between inhaled particles and the respiratory system.
2010-01-01
As part of our effort to increase survival of drug candidates and to move our medicinal chemistry design to higher probability space for success in the Neuroscience therapeutic area, we embarked on a detailed study of the property space for a collection of central nervous system (CNS) molecules. We carried out a thorough analysis of properties for 119 marketed CNS drugs and a set of 108 Pfizer CNS candidates. In particular, we focused on understanding the relationships between physicochemical properties, in vitro ADME (absorption, distribution, metabolism, and elimination) attributes, primary pharmacology binding efficiencies, and in vitro safety data for these two sets of compounds. This scholarship provides guidance for the design of CNS molecules in a property space with increased probability of success and may lead to the identification of druglike candidates with favorable safety profiles that can successfully test hypotheses in the clinic. PMID:22778836
Liu, Hongzhuo; Feng, Liang; Tolia, Gaurav; Liddell, Mark R.; Hao, Jinsong; Li, S. Kevin
2013-01-01
A convenient and efficient in vitro diffusion cell method to evaluate formulations for inner ear delivery via the intratympanic route is currently not available. The existing in vitro diffusion cell systems commonly used to evaluate drug formulations do not resemble the physical dimensions of the middle ear and round window membrane. The objectives of this study were to examine a modified in vitro diffusion cell system of a small diffusion area for studying sustained release formulations in inner ear drug delivery and to identify a formulation for sustained drug delivery to the inner ear. Four formulations and a control were examined in this study using cidofovir as the model drug. Drug release from the formulations in the modified diffusion cell system was slower than that in the conventional diffusion cell system due to the decrease in the diffusion surface area of the modified diffusion cell system. The modified diffusion cell system was able to show different drug release behaviors among the formulations and allowed formulation evaluation better than the conventional diffusion cell system. Among the formulations investigated, poly(lactic-co-glycolic acid)–poly(ethylene glycol)–poly(lactic-co-glycolic acid) triblock copolymer systems provided the longest sustained drug delivery, probably due to their rigid gel structures and/or polymer-to-cidofovir interactions. PMID:23631539
Jabran, Ali; Peach, Chris; Ren, Lei
2018-04-27
Proximal humerus fractures are the third most common in the human body but their management remains controversial. Open reduction and internal fixation with plates is one of the leading modes of operative treatment for these fractures. The development of technologies and techniques for these plates, during the recent decades, promise a bright future for their clinical use. A comprehensive review of in vitro biomechanical studies is needed for the comparison of plates' mechanical performance and the testing methodologies. This will not only guide clinicians with plate selection but also with the design of future in vitro biomechanical studies. This review was aimed to systematically categorise and review the in vitro biomechanical studies of these plates based on their protocols and discuss their results. The technologies and techniques investigated in these studies were categorised and compared to reach a census where possible. Web of Science and Scopus database search yielded 62 studies. Out of these, 51 performed axial loading, torsion, bending and/or combined bending and axial loading while 11 simulated complex glenohumeral movements by using tendons. Loading conditions and set-up, failure criteria and performance parameters, as well as results for each study, were reviewed. Only two studies tested four-part fracture model while the rest investigated two- and three-part fractures. In ten studies, synthetic humeri were tested instead of cadaveric ones. In addition to load-displacement data, three-dimensional motion analysis systems, digital image correlation and acoustic emission testing have been used for measurement. Overall, PHILOS was the most tested plate and locking plates demonstrated better mechanical performance than non-locking ones. Conflicting results have been published for their comparison with non-locking blade plates and polyaxial locking screws. Augmentation with cement [calcium phosphate or poly(methyl methacrylate)] or allografts (fibular and femoral head) was found to improve bone-plate constructs' mechanical performance. Controversy still lies over the use of rigid and semi-rigid implants and the insertion of inferomedial screws for calcar region support. This review will guide the design of in vitro and in silico biomechanical tests and also supplement the study of clinical literature.
Löbenberg, Raimar; Chacra, Nadia B; Stippler, Erika S; Shah, Vinod P; DeStefano, Anthony J; Hauck, Walter W; Williams, Roger L
2012-09-01
This study compared in vitro dissolution characteristics and other quality measures of different amoxicillin, metronidazole, and zidovudine products purchased in the Americas to a comparator pharmaceutical product (CPP). These three drugs are classified as Biopharmaceutics Classification System Class I drugs with the possibility that dissolution findings might be used to document bioequivalence. All investigated zidovudine products were found to be in vitro equivalent to the CPP. Only 3 of 12 tested amoxicillin products were found to be in vitro equivalent to the CPP. None of the tested metronidazole products were in vitro equivalent to the CPP. These findings suggest but do not confirm bioinequivalence where in vitro comparisons failed, given that an in vivo blood level study might have confirmed bioequivalence. At times, identifying a CPP in one of the selected markets proved difficult. The study demonstrates that products sold across national markets may not be bioequivalent. When coupled with the challenge of identifying a CPP in different countries, the results of this study suggest the value of an international CPP as well as increased use of BCS approaches as means of either documenting bioequivalence or signaling the need for further in vivo studies. Because of increased movement of medicines across national borders, practitioners and patients would benefit from these approaches.
76 FR 4113 - Independent Scientific Peer Review Panel Meeting on an In Vitro
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-24
... Vitro Estrogen Receptor Transcriptional Activation Test Method for Endocrine Disruptor Chemical... Vitro Estrogen Receptor Transcriptional Activation Test Method for Endocrine Disruptor Chemical... the information included in the BRD supports ICCVAM's draft test method recommendations. NICEATM...
Toxicity hazard of organophosphate insecticide malathion identified by in vitro methods.
Jira, David; Janousek, Stanislav; Pikula, Jiri; Vitula, Frantisek; Kejlova, Kristina
2012-01-01
Malathion is generally not classified as toxic. However, the toxicity seems to be species-dependent. Local and systemic toxicity data for birds are rare, but a decrease of wild bird densities in areas where malathion was applied was reported. Aim of the study was to extend knowledge on malathion toxicity on cellular and organ level and to evaluate embryotoxicity and genotoxicity for birds using the chick embryo model HET-CAM. Skin and eye irritation was determined using reconstructed skin and eye cornea tissues and the chorioallantoic membrane of chick embryo to simulate conjunctiva. Cytotoxicity in 3T3 Balb/c fibroblast culture was determined to estimate acute systemic toxicity. Chick embryo model was further employed to evaluate acute embryotoxicity for birds (mortality and genotoxicity). Data were analysed by means of general linear models. Malathion is not a skin and eye irritant. Cytotoxicity in vitro test provided LD50 value of 616 mg/kg suggesting higher toxic potential than is generally published based on in vivo tests on laboratory rodents. Embryotoxicity studies revealed dose and age dependent mortality of chick embryos. Genotoxicity was identified by means of micronucleus test in erythroid cells isolated from chorioallantois vascular system of chick embryos. Using in vitro alternative toxicological methods, a higher toxic potential of malathion was demonstrated than is generally declared. An increased health and environmental hazard may occur in areas with intensive agricultural production. The environmental consequences of delayed effects and embryotoxicity for bird populations in areas exposed to organophosphate insecticides, such as malathion, are obvious.
49 CFR 173.137 - Class 8-Assignment of packing group.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the Testing of Chemicals, Number 435, “In Vitro Membrane Barrier Test Method for Skin Corrosion” (IBR... Guideline for the Testing of Chemicals, Number 430, “In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test (TER)” (IBR, see § 171.7 of this subchapter) or Number 431, “In Vitro Skin Corrosion: Human...
49 CFR 173.137 - Class 8-Assignment of packing group.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the Testing of Chemicals, Number 435, “In Vitro Membrane Barrier Test Method for Skin Corrosion” (IBR... Guideline for the Testing of Chemicals, Number 430, “In Vitro Skin Corrosion: Transcutaneous Electrical Resistance Test (TER)” (IBR, see § 171.7 of this subchapter) or Number 431, “In Vitro Skin Corrosion: Human...
1989-12-15
conditions of these experiments. In order to provide reliable quantitative data on exposure, a system with automated dosimetry was developed, and tested...exposure system and dosimetry, and (2) studies on lymphocyte cultures, and (3) conclusions. EXPOSURE SYSTEM AND DOSIMETRY Description of the Exposure... System The experiments planned in this project necessitated the design and assembly of an exposure system that would meet several engineering
Microbial ingrowth around single- and multi-component adhesives studied in vitro.
Preussker, S; Klimm, W; Pöschmann, M; Koch, R
2003-01-01
The aim of this study was to compare the in vitro microbial leakage in 4 micro-hybrid composites in combination with 4 single-component dental adhesives (Scotchbond 1/Z100 MP = group 1; Syntac Single-Component/Tetric Flow = group 3; OptiBond Solo/XRV Herculite = group 5; Solobond M/Arabesk Top = group 7) and 4 multi-component dental adhesives (Scotchbond Multi-Purpose/Z100 MP = group 2; Syntac/Tetric Flow = group 4; OptiBond FL/XRV Herculite = group 6; Solobond Plus/Arabesk Top = group 8). Ninety-four mixed standardized Class V cavities of human caries-free extracted premolars were filled with eight different composite adhesive systems using a one-layer (groups 1-4) or a two-layer technique (groups 5-8). After thermocycling and incubation in a broth culture of Streptococcus mutans and Lactobacillus acidophilus, followed by decalcification and staining, the extent and the type of microbial leakage were measured histologically. The extent of microbial leakage in the composite restorations was very low in all groups and there were no significant differences between adhesives. Z100 MP in combination with single- and multi-component adhesives showed a significantly higher microbial leakage than Tetric Flow systems (U test: p=0.037). XRV Herculite adhesive systems showed significantly less extensive microbial leakage than Arabesk Top adhesive systems (U test: p<0.001). The single-component dental adhesives achieved a marginal adaptation of composites comparable to that of multi-component adhesives in vitro. Copyright 2003 S. Karger AG, Basel
Sirc-cvs cytotoxicity test: an alternative for predicting rodent acute systemic toxicity.
Kitagaki, Masato; Wakuri, Shinobu; Hirota, Morihiko; Tanaka, Noriho; Itagaki, Hiroshi
2006-10-01
An in vitro crystal violet staining method using the rabbit cornea-derived cell line (SIRC-CVS) has been developed as an alternative to predict acute systemic toxicity in rodents. Seventy-nine chemicals, the in vitro cytotoxicity of which was already reported by the Multicenter Evaluation of In vitro Toxicity (MEIC) and ICCVAM/ECVAM, were selected as test compounds. The cells were incubated with the chemicals for 72 hrs and the IC(50) and IC(35) values (microg/mL) were obtained. The results were compared to the in vivo (rat or mouse) "most toxic" oral, intraperitoneal, subcutaneous and intravenous LD(50) values (mg/kg) taken from the RTECS database for each of the chemicals by using Pearson's correlation statistics. The following parameters were calculated: accuracy, sensitivity, specificity, prevalence, positive predictability, and negative predictability. Good linear correlations (Pearson's coefficient; r>0.6) were observed between either the IC(50) or the IC(35) values and all the LD(50) values. Among them, a statistically significant high correlation (r=0.8102, p<0.001) required for acute systemic toxicity prediction was obtained between the IC(50) values and the oral LD(50) values. By using the cut-off concentrations of 2,000 mg/kg (LD(50)) and 4,225 microg/mL (IC(50)), no false negatives were observed, and the accuracy was 84.8%. From this, it is concluded that this method could be used to predict the acute systemic toxicity potential of chemicals in rodents.
Henneberg, Anja; Bender, Katrin; Blaha, Ludek; Giebner, Sabrina; Kuch, Bertram; Köhler, Heinz-R.; Maier, Diana; Oehlmann, Jörg; Richter, Doreen; Scheurer, Marco; Schulte-Oehlmann, Ulrike; Sieratowicz, Agnes; Ziebart, Simone; Triebskorn, Rita
2014-01-01
Many studies about endocrine pollution in the aquatic environment reveal changes in the reproduction system of biota. We analysed endocrine activities in two rivers in Southern Germany using three approaches: (1) chemical analyses, (2) in vitro bioassays, and (3) in vivo investigations in fish and snails. Chemical analyses were based on gas chromatography coupled with mass spectrometry. For in vitro analyses of endocrine potentials in water, sediment, and waste water samples, we used the E-screen assay (human breast cancer cells MCF-7) and reporter gene assays (human cell line HeLa-9903 and MDA-kb2). In addition, we performed reproduction tests with the freshwater mudsnail Potamopyrgus antipodarum to analyse water and sediment samples. We exposed juvenile brown trout (Salmo trutta f. fario) to water downstream of a wastewater outfall (Schussen River) or to water from a reference site (Argen River) to investigate the vitellogenin production. Furthermore, two feral fish species, chub (Leuciscus cephalus) and spirlin (Alburnoides bipunctatus), were caught in both rivers to determine their gonadal maturity and the gonadosomatic index. Chemical analyses provided only little information about endocrine active substances, whereas the in vitro assays revealed endocrine potentials in most of the samples. In addition to endocrine potentials, we also observed toxic potentials (E-screen/reproduction test) in waste water samples, which could interfere with and camouflage endocrine effects. The results of our in vivo tests were mostly in line with the results of the in vitro assays and revealed a consistent reproduction-disrupting (reproduction tests) and an occasional endocrine action (vitellogenin levels) in both investigated rivers, with more pronounced effects for the Schussen river (e.g. a lower gonadosomatic index). We were able to show that biological in vitro assays for endocrine potentials in natural stream water reasonably reflect reproduction and endocrine disruption observed in snails and field-exposed fish, respectively. PMID:24901835
REGULATION OF THE THYROID AXIS IN DEVELOPING XENOPUS LAEVIS
The focus of the research presented here is the development of an in vitro pituitary gland culture system to test the effect of chemicals directly on the gland without influence of other parts of the HPT axis.
Culture of domestic cat ovarian tissue in vitro and in the chick embryo chorioallantoic membrane.
Vilela, J M V; Leonel, E C R; D'Oliveira, L; Paiva, R E G; Miranda-Vilela, A L; Amorim, C A; Pic-Taylor, A; Lucci, C M
2016-10-15
In vitro culture and transplantation procedures are essential protocols employed in the evaluation of ovarian follicle survival and development. Culture in the chorioallantoic membrane (CAM) of chick embryos is an intermediate method that provides important follicle development information and has not been tested for cat ovaries to date. The aim of this study was to investigate if in vitro and CAM culture could be used as short-term systems to study cat ovarian tissue development. The ovaries of eight cats were dissected into 3-mm(3) cubes, cultured in vitro and in CAM for up to 5 days, and stained with hematoxylin-eosin and Gomori trichrome. Cell proliferation was analyzed using anti-Ki67. Possible differences among groups were investigated by analysis of variance or the Kruskal-Wallis test followed by Bonferroni correction. The T-test or Wilcoxon test was used to verify differences between the CAM and IVC. Results revealed that 87.5% of all follicles were primordial during culture. The percentage of primordial follicles in the morphologically normal follicles (MNF) pool was always higher than 80%, with the exception of Day 3 of CAM culture, but the number of MNF reduced significantly from Day 0 (600 out of 777 follicles) to Day 5 in the CAM (91 out of 171) and IVC (296 out of 686). The number of primordial follicles in 1 mm(3) in Days 2, 3, and 5 in the CAM was significantly lower than that in the control (Day 0). No cellular proliferation was observed in culture. Vascularization occurred in the CAM culture, but with no association to follicular viability. In addition, both methods showed an increase in connective tissue during culture. Although no significant differences were observed in the percentage of MNF, there was a reduction in the total number of follicles, both for IVC and CAM-cultured ovarian tissue. Furthermore, anti-Ki67 did not stain any follicle after Day 0 in IVC or in CAM culture. Neither system was capable of promoting follicle growth and/or development. The results show that the CAM is not a suitable system for feline ovarian tissue and highlight the necessity to improve IVC systems in cats. Copyright © 2016 Elsevier Inc. All rights reserved.
Yamaguchi, Satoshi; Yamanishi, Yasufumi; Machado, Lucas S; Matsumoto, Shuji; Tovar, Nick; Coelho, Paulo G; Thompson, Van P; Imazato, Satoshi
2018-01-01
The aim of this study was to evaluate fatigue resistance of dental fixtures with two different fixture-abutment connections by in vitro fatigue testing and in silico three-dimensional finite element analysis (3D FEA) using original computer-aided design (CAD) models. Dental implant fixtures with external connection (EX) or internal connection (IN) abutments were fabricated from original CAD models using grade IV titanium and step-stress accelerated life testing was performed. Fatigue cycles and loads were assessed by Weibull analysis, and fatigue cracking was observed by micro-computed tomography and a stereomicroscope with high dynamic range software. Using the same CAD models, displacement vectors of implant components were also analyzed by 3D FEA. Angles of the fractured line occurring at fixture platforms in vitro and of displacement vectors corresponding to the fractured line in silico were compared by two-way ANOVA. Fatigue testing showed significantly greater reliability for IN than EX (p<0.001). Fatigue crack initiation was primarily observed at implant fixture platforms. FEA demonstrated that crack lines of both implant systems in vitro were observed in the same direction as displacement vectors of the implant fixtures in silico. In silico displacement vectors in the implant fixture are insightful for geometric development of dental implants to reduce complex interactions leading to fatigue failure. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Dauner, Allison; Agrawal, Pankaj; Salvatico, Jose; Tapia, Tenekua; Dhir, Vipra; Shaik, S Farzana; Drake, Donald R; Byers, Anthony M
2017-10-04
Increasing research and development costs coupled with growing concerns over healthcare expenditures necessitate the generation of pre-clinical testing models better able to predict the efficacy of vaccines, drugs and biologics. An ideal system for evaluating vaccine immunogenicity will not only be reliable but also physiologically relevant, able to be influenced by immunomodulatory characteristics such as age or previous exposure to pathogens. We have previously described a fully autologous human cell-based MIMIC® (Modular IMmune In vitro Construct) platform which enables the evaluation of innate and adaptive immunity in vitro, including naïve and recall responses. Here, we establish the ability of this module to display reduced antibody production and T cell activation upon in vitro influenza vaccination of cells from elderly adults. In the MIMIC® system, we observe a 2.7-4.2-fold reduction in strain-specific IgG production to seasonal trivalent influenza vaccine (TIV) in the elderly when compared to adults, as well as an age-dependent decline in the generation of functional antibodies. A parallel decline in IgG production with increasing age was detected via short-term ex vivo stimulation of B cells after in vivo TIV vaccination in the same cohort. Using MIMIC®, we also detect a reduction in the number but not proportion of TIV-specific multifunctional CD154 + IFNγ + IL-2 + TNFα + CD4 + T cells in elderly adults. Inefficient induction of multifunctional helper T cells with TIV stimulation in MIMIC® despite a normalized number of initial CD4 + T cells suggests a possible mechanism for an impaired anti-TIV IgG response in elderly adults. The ability of the MIMIC® system to recapitulate differential age-associated responses in vitro provides a dynamic platform for the testing of vaccine candidates and vaccine enhancement strategies in a fully human model including the ability to interrogate specific populations, such as elderly adults. Copyright © 2017 Elsevier Ltd. All rights reserved.
Marx, Uwe; Andersson, Tommy B.; Bahinski, Anthony; Beilmann, Mario; Beken, Sonja; Cassee, Flemming R.; Cirit, Murat; Daneshian, Mardas; Fitzpatrick, Susan; Frey, Olivier; Gaertner, Claudia; Giese, Christoph; Griffith, Linda; Hartung, Thomas; Heringa, Minne B.; Hoeng, Julia; de Jong, Wim H.; Kojima, Hajime; Kuehnl, Jochen; Luch, Andreas; Maschmeyer, Ilka; Sakharov, Dmitry; Sips, Adrienne J. A. M.; Steger-Hartmann, Thomas; Tagle, Danilo A.; Tonevitsky, Alexander; Tralau, Tewes; Tsyb, Sergej; van de Stolpe, Anja; Vandebriel, Rob; Vulto, Paul; Wang, Jufeng; Wiest, Joachim; Rodenburg, Marleen; Roth, Adrian
2017-01-01
Summary The recent advent of microphysiological systems – microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro – is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-five experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale. PMID:27180100
Engl, Tobias; Boost, Kim A; Leckel, Kerstin; Beecken, Wolf-Dietrich; Jonas, Dietger; Oppermann, Elsie; Auth, Marcus K H; Schaudt, André; Bechstein, Wolf-Otto; Blaheta, Roman A
2004-08-01
In vitro culture models that employ human liver cells could be potent tools for predictive studies on drug toxicity and metabolism in the pharmaceutical industry. However, an adequate receptor responsiveness is necessary to allow intracellular signalling and metabolic activity. We tested the ability of three-dimensionally arranged human hepatocytes to respond to the growth factors hepatocyte growth factor (HGF) or epidermal growth factor (EGF). Isolated adult human hepatocytes were cultivated within a three-dimensional collagen gel (sandwich) or on a two-dimensional collagen matrix. Cells were treated with HGF or EGF and expression and phosphorylative activity of HGF receptors (HGFr, c-met) or EGF receptors (EGFr) were measured by flow cytometry and Western blot. Increasing HGFr and EGFr levels were detected in hepatocytes growing two-dimensionally. However, both receptors were not activated in presence of growth factors. In contrast, when hepatocytes were plated within a three-dimensional matrix, HGFr and EGFr levels remained constantly low. However, both receptors became strongly phosphorylated by soluble HGF or EGF. We conclude that cultivation of human hepatocytes in a three-dimensionally arranged in vitro system allows the maintenance of specific functional activities. The necessity of cell dimensionality for HGFr and EGFr function should be considered when an adequate in vitro system has to be introduced for drug testing.
Animation of in vitro biomechanical tests.
Cripton, P A; Sati, M; Orr, T E; Bourquin, Y; Dumas, G A; Nolte, L P
2001-08-01
Interdisciplinary communication of three-dimensional kinematic data arising from in vitro biomechanical tests is challenging. Complex kinematic representations such as the helical axes of motion (HAM) add to the challenge. The difficulty increases further when other quantities (i.e. load or tissue strain data) are combined with the kinematic data. The objectives of this study were to develop a method to graphically replay and animate in vitro biomechanical tests including HAM data. This will allow intuitive interpretation of kinematic and other data independent of the viewer's area of expertise. The value of this method was verified with a biomechanical test investigating load-sharing of the cervical spine. Three 3.0 mm aluminium spheres were glued to each of the two vertebrae from a C2-3 segment of a human cervical spine. Before the biomechanical tests, CT scans were made of the specimen (slice thickness=1.0 mm and slice spacing=1.5 mm). The specimens were subjected to right axial torsion moments (2.0 Nm). Strain rosettes mounted to the anterior surface of the C3 vertebral body and bilaterally beneath the facet joints on C3 were used to estimate the force flow through the specimen. The locations of the aluminium spheres were digitised using a space pointer and the motion analysis system. Kinematics were measured using an optoelectronic motion analysis system. HAMs were calculated to describe the specimen kinematics. The digitised aluminium sphere locations were used to match the CT and biomechanical test data (RMS errors between the CT and experimental points were less than 1.0 mm). The biomechanical tests were "replayed" by animating reconstructed CT models in accordance with the recorded experimental kinematics, using custom software. The animated test replays allowed intuitive analysis of the kinematic data in relation to the strain data. This technique improves the ability of experts from disparate backgrounds to interpret and discuss this type of biomechanical data.
Chatterjee, Nivedita; Yang, Ji Su; Park, Kwangsik; Oh, Seung Min; Park, Jeonggue; Choi, Jinhee
2015-01-01
The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nananomaterials (GFNs) in alternative in vitro and in vivo toxicity testing models. The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [NH2]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine>NH2>COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.
NASA Astrophysics Data System (ADS)
Robbins, Hannah; Hu, Sijung; Liu, Changqing
2015-03-01
The demand for rapid screening technologies, to be used outside of a traditional healthcare setting, has been vastly expanding. This is requiring a new engineering platform for faster and cost effective techniques to be easily adopted through forward-thinking manufacturing procedures, i.e., advanced miniaturisation and heterogeneous integration of high performance microfluidics based point-of-care testing (POCT) systems. Although there has been a considerable amount of research into POCT systems, there exist tremendous challenges and bottlenecks in the design and manufacturing in order to reach a clinical acceptability of sensitivity and selectivity, as well as smart microsystems for healthcare. The project aims to research how to enable scalable production of such complex systems through 1) advanced miniaturisation of a physical layout and opto-electronic component allocation through an optimal design; and 2) heterogeneous integration of multiplexed fluorescence detection (MFD) for in vitro POCT. Verification is being arranged through experimental testing with a series of dilutions of commonly used fluorescence dye, i.e. Cy5. Iterative procedures will be engaged until satisfaction of the detection limit, of Cy5 dye, 1.209x10-10 M. The research creates a new avenue of rapid screening POCT manufacturing solutions with a particular view on high performance and multifunctional detection systems not only in POCT, but also life sciences and environmental applications.
Osorio, Veronica; Grininger, Angelika; Richter, Alexander; Bergmair, Johannes; Pyerin, Michael; Washüttl, Michael; Tacker, Manfred
2014-01-01
Endocrine active substances (EAS) show structural similarities to natural hormones and are suspected to affect the human endocrine system by inducing hormone dependent effects. Recent studies with in vitro tests suggest that EAS can leach from packaging into food and may therefore pose a risk to human health. Sample migrates from food contact materials were tested for estrogen and androgen agonists and antagonists with different commonly used in vitro tests. Additionally, chemical trace analysis by GC-MS and HPLC-MS was used to identify potential hormone active substances in sample migrates. A GC-MS method to screen migrates for 29 known or potential endocrine active substances was established and validated. Samples were migrated according to EC 10/2011, concentrated by solid phase extraction and tested with estrogen and androgen responsive reporter gene assays based on yeast cells (YES and YAS) or human osteoblast cells (ERα and AR CALUX). A high level of agreement between the different bioassays could be observed by screening for estrogen agonists. Four out of 18 samples tested showed an estrogen activity in a similar range in both, YES and ERα CALUX. Two more samples tested positive in ERα CALUX due to the lower limits of detection in this assay. Androgen agonists could not be detected in any of the tested samples, neither with YAS nor with AR CALUX. When testing for antagonists, significant differences between yeast and human cell-based bioassays were noticed. Using YES and YAS many samples showed a strong antagonistic activity which was not observed using human cell-based CALUX assays. By GC-MS, some known or supposed EAS were identified in sample migrates that showed a biological activity in the in vitro tests. However, no firm conclusions about the sources of the observed hormone activity could be obtained from the chemical results. PMID:25000404
In vitro and in vivo evaluation of latex condoms using a two-phase nonoxynol 9 system.
Rodgers-Neame, N; Duncan, S F; Bradley, E L; Blackwell, R E
1985-06-01
In vitro studies were carried out that indicated that a lubricant system consisting of 0.45 +/- 0.1 ml of silicon fluid containing 6.6% +/- 0.5% by volume of nonoxynol 9 and a spermicidal cream consisting of 0.45 +/- 0.1 ml made up of 63.4% polyethylene glycol 400 and 30.0% polyethylene glycol 3350 containing 6.6% +/- 0.5% nonoxynol 9 was effective in reducing sperm motility and viability. This system was tested in vivo with the use of simulated rupture techniques and was found to be equally as effective. Double-blind preference studies were carried out in vivo which showed that the condom system is convenient and comfortable to use, nonirritating to the vagina or urethral mucosa, and esthetically pleasing to the young, reproductive-age population.
Nicolas, M; Malvé, M; Peña, E; Martínez, M A; Leask, R
2015-02-05
In this study, the trapping ability of the Günther Tulip and Celect inferior vena cava filters was evaluated. Thrombus capture rates of the filters were tested in vitro in horizontal position with thrombus diameters of 3 and 6mm and tube diameter of 19mm. The filters were tested in centered and tilted positions. Sets of 30 clots were injected into the model and the same process was repeated 20 times for each different condition simulated. Pressure drop experienced along the system was also measured and the percentage of clots captured was recorded. The Günther Tulip filter showed superiority in all cases, trapping almost 100% of 6mm clots both in an eccentric and tilted position and trapping 81.7% of the 3mm clots in a centered position and 69.3% in a maximum tilted position. The efficiency of all filters tested decreased as the size of the embolus decreased and as the filter was tilted. The injection of 6 clots raised the pressure drop to 4.1mmHg, which is a reasonable value that does not cause the obstruction of blood flow through the system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ruby, P K; Pathak, Shriram M; Aggarwal, Deepika
2014-11-01
Bioequivalence testing of transdermal drug delivery systems (TDDS) has always been a subject of high concern for generic companies due to the formulation complexity and the fact that they are subtle to even minor manufacturing differences and hence should be clearly qualified in terms of quality, safety and efficacy. In recent times bioequivalence testing of transdermal patches has gained a global attention and many regulatory authorities worldwide have issued recommendations to set specific framework for demonstrating equivalence between two products. These current regulatory procedures demand a complete characterization of the generic formulation in terms of its physicochemical sameness, pharmacokinetics disposition, residual content and/or skin irritation/sensitization testing with respect to the reference formulation. This paper intends to highlight critical in vitro tests in assessing the therapeutic equivalence of products and also outlines their valuable applications in generic product success. Understanding these critical in vitro parameters can probably help to decode the complex bioequivalence outcomes, directing the generic companies to optimize the formulation design in reduced time intervals. It is difficult to summarize a common platform which covers all possible transdermal products; hence few case studies based on this approach has been presented in this review.
NASA Astrophysics Data System (ADS)
Gong, Changyang; Yang, Tao; Yang, Xiaoyan; Liu, Yuanyuan; Ang, Wei; Tang, Jianying; Pi, Weiyi; Xiong, Li; Chang, Ying; Ye, Weiwei; Wang, Zhenling; Luo, Youfu; Zhao, Xia; Wei, Yuquan
2012-12-01
In this work, a novel oxazolidinone compound FYL-67 was synthesized, and the obtained FYL-67 could form nanoassemblies in aqueous solution by a self-assembly method without using any carrier, organic solvent, or surfactant. The prepared FYL-67 nanoassemblies had a particle size of 264.6 +/- 4.3 nm. The FYL-67 nanoassemblies can be lyophilized into a powder form without any cryoprotector or excipient, and the re-dissolved FYL-67 nanoassemblies are stable and homogeneous. The in vitro release profile showed a significant difference between rapid release of free FYL-67 and much slower and sustained release of FYL-67 nanoassemblies. In vitro susceptibility tests were conducted in three strains of methicillin-susceptible Staphylococcus aureus (MSSA) and three strains of methicillin-resistant Staphylococcus aureus (MRSA), using linezolid as a positive control. FYL-67 nanoassemblies exhibited excellent in vitro activity, with a minimum inhibitory concentration (MIC) value of 0.5 μg mL-1 against MRSA. In the in vitro post-antibiotic effect (PAE) evaluation, FYL-67 nanoassemblies showed a more powerful effect than linezolid. Besides, in vitro cytotoxicity tests indicated that FYL-67 nanoassemblies had a very low cytotoxicity on HEK293 cells and L02 cells. Furthermore, in both MSSA and MRSA systemic infection mouse models, FYL-67 nanoassemblies showed a lower ED50 than linezolid. In a murine model of MRSA systemic infection, FYL-67 nanoassemblies displayed an ED50 of less than 4.0 mg kg-1, which is 2.3-fold better than that of linezolid. Our findings suggested that the FYL-67 nanoassemblies may be a potential drug candidate in MRSA therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.
The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less
Daly, Amanda R; Sobajima, Hideo; Olia, Salim E; Takatani, Setsuo; Kameneva, Marina V
2010-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood.
Daly, Amanda R.; Sobajima, Hideo; Olia, Salim E.; Takatani, Setsuo; Kameneva, Marina V.
2011-01-01
In vitro evaluation of the potential of a circulatory-assist device to damage blood cells has generally been performed using blood from various species. Problems with this approach include the variability of blood sensitivity to mechanical stress in different species, preparation of blood including the adjustment of hematocrit to a standard value, changes in the mechanical properties of blood that occur during storage, and necessity to pool blood samples to obtain an adequate amount of blood for in vitro circulating systems. We investigated whether the mechanical degradation of a drag-reducing polymer (DRP) solution resulting in the loss of drag-reducing ability can indicate the degree of shear-induced blood damage within blood pumps. DRP solution (polyethylene oxide, 4,500 kDa, 1,000 ppm) or porcine blood were driven through a turbulent flow system by a centrifugal pump, either the Bio-Pump BPX-80 (Medtronic, Inc.) or CentriMag (Levitronix LLC) at a constant pressure gradient of 300 mm Hg for 120 minutes. DRP mechanical degradation was evaluated by reduction of flow rate and solution viscosity. A proposed index of DRP mechanical degradation (PDI) is similar to the normalized index of hemolysis (NIH) typically used to quantify the results of in vitro testing of blood pumps. Results indicate that the mechanical degradation of DRP solutions may provide a sensitive standard method for the evaluation of potential blood trauma produced by blood pumps without the use of blood. PMID:20019596
Generation of a Close-to-Native In Vitro System to Study Lung Cells-Extracellular Matrix Crosstalk.
Garlíková, Zuzana; Silva, Ana Catarina; Rabata, Anas; Potěšil, David; Ihnatová, Ivana; Dumková, Jana; Koledová, Zuzana; Zdráhal, Zbyněk; Vinarský, Vladimír; Hampl, Aleš; Pinto-do-Ó, Perpétua; Nascimento, Diana Santos
2018-01-01
Extracellular matrix (ECM) is an essential component of the tissue microenvironment, actively shaping cellular behavior. In vitro culture systems are often poor in ECM constituents, thus not allowing for naturally occurring cell-ECM interactions. This study reports on a straightforward and efficient method for the generation of ECM scaffolds from lung tissue and its subsequent in vitro application using primary lung cells. Mouse lung tissue was subjected to decellularization with 0.2% sodium dodecyl sulfate, hypotonic solutions, and DNase. Resultant ECM scaffolds were devoid of cells and DNA, whereas lung ECM architecture of alveolar region and blood and airway networks were preserved. Scaffolds were predominantly composed of core ECM and ECM-associated proteins such as collagens I-IV, nephronectin, heparan sulfate proteoglycan core protein, and lysyl oxidase homolog 1, among others. When homogenized and applied as coating substrate, ECM supported the attachment of lung fibroblasts (LFs) in a dose-dependent manner. After ECM characterization and biocompatibility tests, a novel in vitro platform for three-dimensional (3D) matrix repopulation that permits live imaging of cell-ECM interactions was established. Using this system, LFs colonized the ECM scaffolds, displaying a close-to-native morphology in intimate interaction with the ECM fibers, and showed nuclear translocation of the mechanosensor yes-associated protein (YAP), when compared with cells cultured in two dimensions. In conclusion, we developed a 3D-like culture system, by combining an efficient decellularization method with a live-imaging culture platform, to replicate in vitro native lung cell-ECM crosstalk. This is a valuable system that can be easily applied to other organs for ECM-related drug screening, disease modeling, and basic mechanistic studies.
Luna-Záizar, Hilda; Virgen-Montelongo, María; Cortez-Álvarez, Cesar R; Ruiz-Quezada, Sandra L; Escutia-Gutiérrez, Raymundo; García-Lemus, Cuauhtémoc R; Mendizabal-Ruiz, Adriana P
2015-05-01
Here we aimed to investigate the in vitro effects of three analgesic-antipyretic drugs frequently used in clinical practice in Mexico - acetaminophen (AAP), aspirin (ASA) and metamizole (MMZ) - on serum measurements of glucose, urea, and creatinine. Each analyte was measured in a base-serum pool spiked with the drugs at subtherapeutic, therapeutic, and toxic doses. Serum glucose and urea were measured using the hexokinase/G-6PDH and urease/GLDH kinetic assays, respectively. Serum creatinine (SCr) was measured with a Jaffe procedure based on the alkaline-picrate reaction and with an enzymatic dry-chemistry system. Measurements were carried out in IL-Monarch and Vitros DT60-II analyzers, respectively. Data were analyzed by the difference-paired interference test and by ANOVA. By the kinetic Jaffe/Monarch procedure, we found positive interference by the drugs on the SCr measurements and by only ASA for urea measurement. For creatinine measurements, the total errors (TEs) were 22-51%, 18-105%, and 15-26% for AAP, ASA, and MMZ respectively, while for urea measurement the TE was 16-21% for ASA. A negative interference by MMZ on SCr (TE=-47%), but no-interference for AAP or ASA, were found via the enzymatic/DT60-II system. In vitro positive interference induced by AAP, ASA, and MMZ (via the alkaline-picrate reaction), or negative interference by MMZ (via a dry-chemistry system), on the SCr measurements highlights the importance of investigating all possible sources of variation that may alter the accuracy of the laboratory tests, in order to provide useful results for making medical decisions for optimal patient care. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Priyanka; Singh, Hina; Castro-Aceituno, Verónica; Ahn, Sungeun; Kim, Yeon Ju; Farh, Mohamed El-Agamy; Yang, Deok Chun
2017-07-01
The current study highlights the fabrication of drug delivery system by utilizing 200 nm mesoporous silica nanoparticles (MSNPs) with 4-nm pore size, as a carrier system for delivery ginsenoside compound K (CK) and Rh2 to enhance their efficacy. The two pharmacologically imperative ginsenosides, CK and Rh2, were loaded to the MSNPs to prepare MSNPs-CK and MSNPs-Rh2, respectively. A fluorescein isothiocyanate (FITC) fluorescent dye was combined in the MSNPs carrier system, in order to trace the cellular uptake of ginsenoside-loaded nanoparticles for in vitro studies. Following purification, the so-prepared MSNPs-CK-FITC and MSNPs-Rh2-FITC were characterized by several analytical techniques, which includes, high-pressure liquid chromatography (HPLC), 1H NMR, field emission transmission electron microscopy (FE-TEM), Fourier transform infrared spectroscopy (FT-IR), x-ray diffraction (XRD), thermogravimetric analysis (TGA), and dynamic light scattering (DLS). In vitro cytotoxicity assay in HaCaT skin cells, A549 lung cancer cells, HepG2 liver carcinoma cells, and HT-29 colon cancer cell lines were tested for MSNPs-CK-FITC and MSNPs-Rh2-FITC. The results demonstrate the excellent biocompatibility of nanoparticles in normal cell lines (HaCaT skin cells) and anticancer efficacy in all the tested cancer cell lines at 10-μM concentration. Additionally, the in vitro anti-inflammatory behavior of MSNPs-CK-FITC and MSNPs-Rh2-FITC were checked in RAW264.7 (murine macrophage) cell lines. The outcomes showed higher anti-inflammatory efficacy of MSNPs-CK-FITC and MSNPs-Rh2-FITC as compared to standard ginsenosides CK and Rh2 in RAW264.7 cell lines. Thus, with 200 nm MSNPs carrier system for the delivery ginsenosides CK and Rh2, a high amount of loading and increasing in vitro pharmacological efficacies of ginsenosides were realized. This study may provide useful insights for designing and improving the applicability of MSNPs for ginsenoside delivery.
Guilmette, Raymond A; Cheng, Yung Sung
2009-03-01
As part of the Capstone Depleted Uranium (DU) Aerosol Study, the solubility of selected aerosol samples was measured using an accepted in vitro dissolution test system. This static system was employed along with a SUF (synthetic ultrafiltrate) solvent, which is designed to mimic the physiological chemistry of extracellular fluid. Using sequentially obtained solvent samples, the dissolution behavior over a 46-d test period was evaluated by fitting the measurement data to two- or three-component negative exponential functions. These functions were then compared with Type M and S absorption taken from the International Commission on Radiological Protection Publication 66 Human Respiratory Tract Model. The results indicated that there was a substantial variability in solubility of the aerosols, which in part depended on the type of armor being impacted by the DU penetrator and the particle size fraction being tested. Although some trends were suggested, the variability noted leads to uncertainties in predicting the solubility of other DU-based aerosols. Nevertheless, these data provide a useful experimental basis for modeling the intake-dose relationships for inhaled DU aerosols arising from penetrator impact on armored vehicles.
Pedersen, Jenny M.; Shim, Yoo-Sik; Hans, Vaibhav; Phillips, Martin B.; Macdonald, Jeffrey M.; Walker, Glenn; Andersen, Melvin E.; Clewell, Harvey J.; Yoon, Miyoung
2016-01-01
Accurate prediction of metabolism is a significant outstanding challenge in toxicology. The best predictions are based on experimental data from in vitro systems using primary hepatocytes. The predictivity of the primary hepatocyte-based culture systems, however, is still limited due to well-known phenotypic instability and rapid decline of metabolic competence within a few hours. Dynamic flow bioreactors for three-dimensional cell cultures are thought to be better at recapitulating tissue microenvironments and show potential to improve in vivo extrapolations of chemical or drug toxicity based on in vitro test results. These more physiologically relevant culture systems hold potential for extending metabolic competence of primary hepatocyte cultures as well. In this investigation, we used computational fluid dynamics to determine the optimal design of a flow-based hepatocyte culture system for evaluating chemical metabolism in vitro. The main design goals were (1) minimization of shear stress experienced by the cells to maximize viability, (2) rapid establishment of a uniform distribution of test compound in the chamber, and (3) delivery of sufficient oxygen to cells to support aerobic respiration. Two commercially available flow devices – RealBio® and QuasiVivo® (QV) – and a custom developed fluidized bed bioreactor were simulated, and turbulence, flow characteristics, test compound distribution, oxygen distribution, and cellular oxygen consumption were analyzed. Experimental results from the bioreactors were used to validate the simulation results. Our results indicate that maintaining adequate oxygen supply is the most important factor to the long-term viability of liver bioreactor cultures. Cell density and system flow patterns were the major determinants of local oxygen concentrations. The experimental results closely corresponded to the in silico predictions. Of the three bioreactors examined in this study, we were able to optimize the experimental conditions for long-term hepatocyte cell culture using the QV bioreactor. This system facilitated the use of low system volumes coupled with higher flow rates. This design supports cellular respiration by increasing oxygen concentrations in the vicinity of the cells and facilitates long-term kinetic studies of low clearance test compounds. These two goals were achieved while simultaneously keeping the shear stress experienced by the cells within acceptable limits. PMID:27747210
Manohar, Vijaya; Echard, Bobby; Perricone, Nicholas; Ingram, Cass; Enig, Mary; Bagchi, Debasis; Preuss, Harry G
2013-06-01
Since monolaurin, a monoglyceride formed in the human body in small quantities, has proven effective both in vitro and in vivo against certain strains of Staphylococcus aureus, an important question arises whether consuming a substance high in lauric acid content, such as coconut oil could increase intrinsic monolaurin production to levels that would be successful in overcoming staphylococcal and other microbial invaders. Both a cup plate method and a microdilution broth culture system were employed to test bacteriostatic and bactericidal effects of the test agents in vitro. To test effectiveness in vivo, female C3H/he mice (10-12 per group) were orally administered sterile saline (regular control), vancomycin (positive control), aqueous monolaurin, or two varieties of coconut oil (refined, bleached, deodorized coconut oil and virgin coconut oil) for 1 week before bacterial challenge and 30 days after. A final group received both monolaurin and vancomycin. In contrast to monolaurin, the coconut oils did not show bactericidal activity in vitro. In vivo, the groups receiving vancomycin, monolaurin, or the combination showed some protection--50-70% survival, whereas the protection from the coconut oils were virtually the same as control--0-16% survival. Although we did not find that the two coconut oils are helpful to overcome S. aureus infections, we corroborated earlier studies showing the ability of monolaurin to do such.
Menne, Matthias F; Schrickel, Jan W; Nickenig, Georg; Al-Kassou, Baravan; Nelles, Dominik; Schmitz-Rode, Thomas; Steinseifer, Ulrich; Sedaghat, Alexander
2018-05-24
The aim of this study was to establish in vitro bench-tests of left atrial appendage occlusion (LAAo) devices regarding tug force, radial force and sealing capacity. Two LAAo devices, namely the WATCHMAN™ and the Occlutech ® , of three different sizes underwent testing in novel dedicated in vitro setups. Radial force was assessed in a commercial radial force tester. At baseline, tug force of the WATCHMAN™ was significantly higher when compared to Occlutech ® for all devices. Repeated resheathing resulted in a reduction of device-diameter in the WATCHMAN™ devices of max. 7.9%, whereas diameters of Occlutech ® occluders remained unchanged. Tug force was not significantly impacted by resheathing in both devices. At baseline, sealing capacity in a bench-test using silicone LAA-models did not differ between the devices. Resheathing lead to an in vitro loss of sealing capacity of the WATCHMAN™ devices, increasing with resheathing and resulting in a max. peridevice leak of 91.1 ± 7.9%. Radial force was higher for the Occlutech ® devices and decreased for WATCHMAN™ occluders after resheathing. The WATCHMAN™ occluder series showed progressive deformation, increased peridevice leakage and decreased radial force after resheathing, presumably as a result of diameter reduction. Tug force of the WATCHMAN™ was not impaired by resheathing and was significantly higher than that of the Occlutech ® device.
An in vitro approach for comparative interspecies metabolism of agrochemicals.
Whalley, Paul M; Bartels, Michael; Bentley, Karin S; Corvaro, Marco; Funk, Dorothee; Himmelstein, Matthew W; Neumann, Birgit; Strupp, Christian; Zhang, Fagen; Mehta, Jyotigna
2017-08-01
The metabolism and elimination of a xenobiotic has a direct bearing on its potential to cause toxicity in an organism. The confidence with which data from safety studies can be extrapolated to humans depends, among other factors, upon knowing whether humans are systemically exposed to the same chemical entities (i.e. a parent compound and its metabolites) as the laboratory animals used to study toxicity. Ideally, to understand a metabolite in terms of safety, both the chemical structure and the systemic exposure would need to be determined. However, as systemic exposure data (i.e. blood concentration/time data of test material or metabolites) in humans will not be available for agrochemicals, an in vitro approach must be taken. This paper outlines an in vitro experimental approach for evaluating interspecies metabolic comparisons between humans and animal species used in safety studies. The aim is to ensure, where possible, that all potential human metabolites are also present in the species used in the safety studies. If a metabolite is only observed in human in vitro samples and is not present in a metabolic pathway defined in the toxicological species already, the toxicological relevance of this metabolite must be evaluated. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Ding, Dongqin; Liu, Yongfei; Xu, Yiran; Zheng, Ping; Li, Haixing; Zhang, Dawei; Sun, Jibin
2016-01-01
L-Phenylalanine (L-Phe) is an important amino acid used in both food and medicinal applications. We developed an in vitro system that allowed a direct, quantitative investigation of phenylalanine biosynthesis in E. coli. Here, the absolute concentrations of six enzymes (AroK, AroL, AroA, AroC, PheA and TyrB) involved in the shikimate (SHIK) pathway were determined by a quantitative proteomics approach and in vitro enzyme titration experiments. The reconstitution of an in vitro reaction system for these six enzymes was established and their effects on the phenylalanine production were tested. The results showed that the yield of phenylalanine increased 3.0 and 2.1 times when the concentrations of shikimate kinase (AroL) and 5-enolpyruvoyl shikimate 3-phosphate (EPSP) synthase (AroA) were increased 2.5 times. Consistent results were obtained from in vivo via the overexpression of AroA in a phenylalanine-producing strain, and the titer of phenylalanine reached 62.47 g/l after 48 h cultivation in a 5-liter jar fermentor. Our quantitative findings provide a practical method to detect the potential bottleneck in a specific metabolic pathway to determine which gene products should be targeted to improve the yield of the desired product. PMID:27558633
Xu, Na; Cheng, Hao; Xu, Jiangwen; Li, Feng; Gao, Biao; Li, Zi; Gao, Chenghao; Huo, Kaifu; Fu, Jijiang; Xiong, Wei
2017-01-01
Antibiotic-resistant bacteria have become a major issue due to the long-term use and abuse of antibiotics in treatments in clinics. The combination therapy of antibiotics and silver (Ag) nanoparticles is an effective way of both enhancing the antibacterial effect and decreasing the usage of antibiotics. Although the method has been proved to be effective in vitro, no in vivo tests have been carried out at present. Herein, we described a combination therapy of local delivery of Ag and systemic antibiotics treatment in vitro in an infection model of rat. Ag nanoparticle-loaded TiO 2 nanotube (NT) arrays (Ag-NTs) were fabricated on titanium implants for a customized release of Ag ion. The antibacterial properties of silver combined with antibiotics vancomycin, rifampin, gentamicin, and levofloxacin, respectively, were tested in vitro by minimum inhibitory concentration (MIC) assay, disk diffusion assay, and antibiofilm formation test. Enhanced antibacterial activity of combination therapy was observed for all the chosen bacterial strains, including gram-negative Escherichia coli (ATCC 25922), gram-positive Staphylococcus aureus (ATCC 25923), and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300). Moreover, after a relative short (3 weeks) combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection.
Development of an in vitro test system measuring transcriptional downregulatory activities on IL-13.
Choi, Jeong June; Park, Bo-Kyung; Park, Sunyoung; Yun, Chi-Young; Kim, Dong Hee; Kim, Jin Sook; Hwang, Eun Sook; Jin, Mirim
2009-03-01
Interleukin-13 (IL-13) has been proposed as a therapeutic target for bronchial asthma as it plays crucial roles in the pathogenesis of the disease. We developed an in vitro test system measuring transcriptional downregulatory activities on IL-13 as a primary screening method to select drug candidates from natural products. The promoter region of IL-13 (-2,048 to +1) was cloned into the upstream of a luciferase gene in the plasmid pGL4.14 containing the hygromycin resistance gene as a selection marker, generating pGL4.14-IL-13. The EL-4 thymoma and RBL-2H3 mast cells transiently expressing this plasmid highly produced the luciferase activities by responding to PI (PMA and ionomycin) stimulation up to 8-fold and 13-fold compared with the control, respectively, whereas cyclosporin A, a wellknown antiasthmatic agent, significantly downregulated the activities. The BF1 clone of RBL-2H3 cells constitutively expressing pGL4.14-IL-13 was established by selecting surviving cells under a constant lethal dose of hygromycin treatment. The feasibility of this system was evaluated by measuring the downregulatory activities of 354 natural products on the IL-13 promoter using the BF1 clone. An extract from Morus bombycis (named TBRC 156) significantly inhibited PI-induced luciferase activities and IL-13 mRNA expression, but not the protein expression. Fisetin (named TBRC 353) inhibited not only PI-induced luciferase activities and mRNA expression, but also the IL-13 protein secretion, whereas myricetin (named TBRC 354) could not suppress the IL-13 expression at all. Our data indicated that this in vitro test system is able to discriminate the effects on IL-13 expression, and furthermore, that it might be suitable as a simple and time-saving primary screening system to select antiasthmatic agents by measuring transcriptional activities of the IL-13 promoter.
KNOX1 is expressed and epigenetically regulated during in vitro conditions in Agave spp
2012-01-01
Background The micropropagation is a powerful tool to scale up plants of economical and agronomical importance, enhancing crop productivity. However, a small but growing body of evidence suggests that epigenetic mechanisms, such as DNA methylation and histone modifications, can be affected under the in vitro conditions characteristic of micropropagation. Here, we tested whether the adaptation to different in vitro systems (Magenta boxes and Bioreactors) modified epigenetically different clones of Agave fourcroydes and A. angustifolia. Furthermore, we assessed whether these epigenetic changes affect the regulatory expression of KNOTTED1-like HOMEOBOX (KNOX) transcription factors. Results To gain a better understanding of epigenetic changes during in vitro and ex vitro conditions in Agave fourcroydes and A. angustifolia, we analyzed global DNA methylation, as well as different histone modification marks, in two different systems: semisolid in Magenta boxes (M) and temporary immersion in modular Bioreactors (B). No significant difference was found in DNA methylation in A. fourcroydes grown in either M or B. However, when A. fourcroydes was compared with A. angustifolia, there was a two-fold difference in DNA methylation between the species, independent of the in vitro system used. Furthermore, we detected an absence or a low amount of the repressive mark H3K9me2 in ex vitro conditions in plants that were cultured earlier either in M or B. Moreover, the expression of AtqKNOX1 and AtqKNOX2, on A. fourcroydes and A. angustifolia clones, is affected during in vitro conditions. Therefore, we used Chromatin ImmunoPrecipitation (ChIP) to know whether these genes were epigenetically regulated. In the case of AtqKNOX1, the H3K4me3 and H3K9me2 were affected during in vitro conditions in comparison with AtqKNOX2. Conclusions Agave clones plants with higher DNA methylation during in vitro conditions were better adapted to ex vitro conditions. In addition, A. fourcroydes and A. angustifolia clones displayed differential expression of the KNOX1 gene during in vitro conditions, which is epigenetically regulated by the H3K4me3 and H3K9me2 marks. The finding of an epigenetic regulation in key developmental genes will make it important in future studies to identify factors that help to find climate-resistant micropropagated plants. PMID:23126409
Harmonisation of animal testing alternatives in China.
Cheng, Shujun; Qu, Xiaoting; Qin, Yao
2017-12-01
More and more countries are lining up to follow the EU's approach and implement a full ban on the sale of cosmetics that have been tested on animals, which has been the case in the EU since 2013. Besides animal welfare considerations, the need for mutual acceptance of data (MAD) and harmonisation of the global market have made the move toward non-animal testing a desirable general trend for countries worldwide. Over the last 10 years, the concept of alternative methods has been gradually developing in China. This has seen the harmonisation of relevant legislation, the organisation of various theoretical and hands-on training sessions, the exploration of method validation, the adoption of internationally recognised methods, the propagation of alternative testing standards, and an in-depth investigation into the potential use of in vitro methods in the biosciences. There are barriers to this progress, including the demand for a completely new infrastructure, the need to build technology capability, the requirement for a national standardisation system formed through international co-operation, and the lack of technical assistance to facilitate self-innovation. China is now increasing speed in harmonising its approach to the use of non-animal alternatives, accelerating technological development and attempting to incorporate non-animal, in vitro, testing methods into the national regulatory system.
Tessaro, Irene; Modina, Silvia C; Crotti, Gabriella; Franciosi, Federica; Colleoni, Silvia; Lodde, Valentina; Galli, Cesare; Lazzari, Giovanna; Luciano, Alberto M
2015-01-01
The dramatic increase in the number of animals required for reproductive toxicity testing imposes the validation of alternative methods to reduce the use of laboratory animals. As we previously demonstrated for in vitro maturation test of bovine oocytes, the present study describes the transferability assessment and the inter-laboratory variability of an in vitro test able to identify chemical effects during the process of bovine oocyte fertilization. Eight chemicals with well-known toxic properties (benzo[a]pyrene, busulfan, cadmium chloride, cycloheximide, diethylstilbestrol, ketoconazole, methylacetoacetate, mifepristone/RU-486) were tested in two well-trained laboratories. The statistical analysis demonstrated no differences in the EC50 values for each chemical in within (inter-runs) and in between-laboratory variability of the proposed test. We therefore conclude that the bovine in vitro fertilization test could advance toward the validation process as alternative in vitro method and become part of an integrated testing strategy in order to predict chemical hazards on mammalian fertility. Copyright © 2015 Elsevier Inc. All rights reserved.
Radiolabeled cholesteryl ethers: A need to analyze for biological stability before use.
Manual Kollareth, Denny Joseph; Chang, Chuchun L; Hansen, Inge H; Deckelbaum, Richard J
2018-03-01
Radiolabeled cholesteryl ethers are widely used as non-metabolizable tracers for lipoproteins and lipid emulsions in a variety of in vitro and in vivo experiments. Since cholesteryl ethers do not leave cells after uptake and are not hydrolyzed by mammalian cellular enzymes, these compounds can act as markers for cumulative cell uptakes of labeled particles. We have employed [ 3 H]cholesteryl oleoyl ether to study the uptake and distribution of triglyceride-rich emulsion particles on animal models. However, questionable unexpected results compelled us to analyze the stability of these ethers. We tested the stability of two commercially available radiolabeled cholesteryl ethers - [ 3 H]cholesteryl oleoyl ether and [ 3 H]cholesteryl hexadecyl ether from different suppliers, employing in vitro , in vivo and chemical model systems. Our results show that, among the two cholesteryl ethers tested, one ether was hydrolyzed to free cholesterol in vitro , in vivo and chemically under alkaline hydrolyzing agent. Free cholesterol, unlike cholesteryl ether, can then re-enter the circulation leading to confounding results. The other ether was not hydrolyzed to free cholesterol and remained as a stable ether. Hence, radiolabeled cholesteryl ethers should be analyzed for biological stability before utilizing them for in vitro or in vivo experiments.
Griesinger, Claudius; Desprez, Bertrand; Coecke, Sandra; Casey, Warren; Zuang, Valérie
This chapter explores the concepts, processes, tools and challenges relating to the validation of alternative methods for toxicity and safety testing. In general terms, validation is the process of assessing the appropriateness and usefulness of a tool for its intended purpose. Validation is routinely used in various contexts in science, technology, the manufacturing and services sectors. It serves to assess the fitness-for-purpose of devices, systems, software up to entire methodologies. In the area of toxicity testing, validation plays an indispensable role: "alternative approaches" are increasingly replacing animal models as predictive tools and it needs to be demonstrated that these novel methods are fit for purpose. Alternative approaches include in vitro test methods, non-testing approaches such as predictive computer models up to entire testing and assessment strategies composed of method suites, data sources and decision-aiding tools. Data generated with alternative approaches are ultimately used for decision-making on public health and the protection of the environment. It is therefore essential that the underlying methods and methodologies are thoroughly characterised, assessed and transparently documented through validation studies involving impartial actors. Importantly, validation serves as a filter to ensure that only test methods able to produce data that help to address legislative requirements (e.g. EU's REACH legislation) are accepted as official testing tools and, owing to the globalisation of markets, recognised on international level (e.g. through inclusion in OECD test guidelines). Since validation creates a credible and transparent evidence base on test methods, it provides a quality stamp, supporting companies developing and marketing alternative methods and creating considerable business opportunities. Validation of alternative methods is conducted through scientific studies assessing two key hypotheses, reliability and relevance of the test method for a given purpose. Relevance encapsulates the scientific basis of the test method, its capacity to predict adverse effects in the "target system" (i.e. human health or the environment) as well as its applicability for the intended purpose. In this chapter we focus on the validation of non-animal in vitro alternative testing methods and review the concepts, challenges, processes and tools fundamental to the validation of in vitro methods intended for hazard testing of chemicals. We explore major challenges and peculiarities of validation in this area. Based on the notion that validation per se is a scientific endeavour that needs to adhere to key scientific principles, namely objectivity and appropriate choice of methodology, we examine basic aspects of study design and management, and provide illustrations of statistical approaches to describe predictive performance of validated test methods as well as their reliability.
Synthesized multi-station tribo-test system for bio-tribological evaluation in vitro
NASA Astrophysics Data System (ADS)
Wu, Tonghai; Du, Ying; Li, Yang; Wang, Shuo; Zhang, Zhinan
2016-07-01
Tribological tests play an important role on the evaluation of long-term bio-tribological performances of prosthetic materials for commercial fabrication. Those tests focus on the motion simulation of a real joint in vitro with only normal loads and constant velocities, which are far from the real friction behavior of human joints characterized with variable loads and multiple directions. In order to accurately obtain the bio-tribological performances of artificial joint materials, a tribological tester with a miniature four-station tribological system is proposed with four distinctive features. Firstly, comparability and repeatability of a test are ensured by four equal stations of the tester. Secondly, cross-linked scratch between tribo-pairs of human joints can be simulated by using a gear-rack meshing mechanism to produce composite motions. With this mechanism, the friction tracks can be designed by varying reciprocating and rotating speeds. Thirdly, variable loading system is realized by using a ball-screw mechanism driven by a stepper motor, by which loads under different gaits during walking are simulated. Fourthly, dynamic friction force and normal load can be measured simultaneously. The verifications of the performances of the developed tester show that the variable frictional tracks can produce different wear debris compared with one-directional tracks, and the accuracy of loading and friction force is within ±5%. Thus the high consistency among different stations can be obtained. Practically, the proposed tester system could provide more comprehensive and accurate bio-tribological evaluations for prosthetic materials.
Jahnke, Heinz-Georg; Steel, Daniella; Fleischer, Stephan; Seidel, Diana; Kurz, Randy; Vinz, Silvia; Dahlenborg, Kerstin; Sartipy, Peter; Robitzki, Andrea A.
2013-01-01
Unexpected adverse effects on the cardiovascular system remain a major challenge in the development of novel active pharmaceutical ingredients (API). To overcome the current limitations of animal-based in vitro and in vivo test systems, stem cell derived human cardiomyocyte clusters (hCMC) offer the opportunity for highly predictable pre-clinical testing. The three-dimensional structure of hCMC appears more representative of tissue milieu than traditional monolayer cell culture. However, there is a lack of long-term, real time monitoring systems for tissue-like cardiac material. To address this issue, we have developed a microcavity array (MCA)-based label-free monitoring system that eliminates the need for critical hCMC adhesion and outgrowth steps. In contrast, feasible field potential derived action potential recording is possible immediately after positioning within the microcavity. Moreover, this approach allows extended observation of adverse effects on hCMC. For the first time, we describe herein the monitoring of hCMC over 35 days while preserving the hCMC structure and electrophysiological characteristics. Furthermore, we demonstrated the sensitive detection and quantification of adverse API effects using E4031, doxorubicin, and noradrenaline directly on unaltered 3D cultures. The MCA system provides multi-parameter analysis capabilities incorporating field potential recording, impedance spectroscopy, and optical read-outs on individual clusters giving a comprehensive insight into induced cellular alterations within a complex cardiac culture over days or even weeks. PMID:23861955
In vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure: A review.
Li, Xiang
2016-10-01
Cigarette smoke is a complex aerosol comprising particulate phase and gaseous vapour phase. The air-liquid interface exposure provides a possible technical means to implement whole smoke exposure for the assessment of tobacco products. In this review, the research progress in the in vitro toxicity testing of cigarette smoke based on the air-liquid interface exposure is summarized. The contents presented involve mainly cytotoxicity, genotoxicity, oxidative stress, inflammation, systems toxicology, 3D culture and cigarette smoke dosimetry related to cigarette smoke, as well as the assessment of electronic cigarette aerosol. Prospect of the application of the air-liquid interface exposure method in assessing the biological effects of tobacco smoke is discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Falk, Markus; Donaldsson, Snorri; Jonsson, Baldvin; Drevhammar, Thomas
2017-11-01
Medijet nasal continuous positive airway pressure (CPAP) generators are a family of devices developed from the Benveniste valve. Previous studies have shown that the in vitro performance of the Medijet disposable generator was similar to the Neopuff resistor system. We hypothesised that resistance would be the main mechanism of CPAP generation in the Medijet disposable generator. The in vitro performance of the Medijet reusable and disposable systems, the Neopuff resistor system and the Benveniste and Infant Flow nonresistor systems were investigated using static and dynamic bench tests. Large differences in performance were found between the different systems. The disposable Medijet demonstrated high resistance, low pressure stability and high imposed work of breathing. The results also showed that encapsulating the Benveniste valve changed it into a resistor system. The main mechanism of CPAP generation for the disposable Medijet generator was resistance. The Medijet device family showed increasing resistance with each design generation. The high resistance of the Medijet disposable generator could be of great value when examining the clinical importance of pressure stability. Our results suggest that this device should be used cautiously in patients where pressure-stable CPAP is believed to be clinically important. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.
Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman; Hickman, James
2011-01-01
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time lapse recordings and their subsequent quenching by D-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. PMID:21944471
Guo, Xiufang; Gonzalez, Mercedes; Stancescu, Maria; Vandenburgh, Herman H; Hickman, James J
2011-12-01
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair. Copyright © 2011 Elsevier Ltd. All rights reserved.
Cross-reacting carbohydrate determinants and hymenoptera venom allergy.
Brehler, Randolf; Grundmann, Sonja; Stöcker, Benedikt
2013-08-01
Insect venom allergy is an important cause of anaphylaxis. Venom immunotherapy assume the clear identification of the culprit insect, but this is impeded by Immunoglobulin E (IgE) antibodies to cross reactive carbohydrate determinant (CCD) epitopes of common glycoproteins. Here we give an overview about inducers, importance, and relevance of anti-N-Glycan CCD IgE antibodies. Pollen exposure and insect stings induce anti-CCD IgE antibodies interfering with in-vitro tests for allergy diagnosis due to extensive IgE cross-reactivity. Instead of being biologically active these antibodies are irrelevant for allergic reactions due to hymenoptera stings. The general response of the immune system to the ubiquitous exposure to N-glycan containing glycoproteins is still a matter of debate. CCD specific IgG antibodies in sera of bee keepers suggest tolerance induction due to high-dose exposure. Tolerance induction by pollen and food glycoproteins has not been proved. Hymenoptera stings and pollen exposure induce anti-CCD IgE. In regard to anaphylaxis due to Hymenoptera stings these antibodies are not clinically relevant, but they are important for the specificity of in-vitro tests proving insect venom allergy. The introduction of component based diagnostic IgE testing improves the specificity of in-vitro tests if proteins devoid of CCD epitopes are used.
In vitro culture of coconut (Cocos nucifera L.) zygotic embryos.
Engelmann, Florent; Malaurie, Bernard; N'Nan, Oulo
2011-01-01
Coconut is a very important crop for millions of people in tropical countries. With coconut, in vitro culture protocols have been developed with two main objectives, viz. the large scale production of particular types of coconuts and the international exchange and conservation of coconut germplasm. The methods described in this chapter have been developed in the framework of collaborative activities between research institutes in Côte d'Ivoire and France. Two coconut embryo in vitro collecting protocols have been established, one consisting of storing the disinfected embryos in a KCl solution until they are brought back to the laboratory, where they are re-disinfected and inoculated in vitro under sterile conditions, and the other including in vitro inoculation of the embryos in the field. For international germplasm exchange, zygotic embryos inoculated in vitro in plastic test tubes or endosperm cylinders containing embryos in plastic bags are used. For in vitro culture, embryos are inoculated on semi-solid medium supplemented with sucrose and activated charcoal and placed in the dark, and then transferred to light conditions with the same (solid or liquid) medium once the first true leaf is visible and the root system has started developing.
Potentiodynamic Corrosion Testing.
Munir, Selin; Pelletier, Matthew H; Walsh, William R
2016-09-04
Different metallic materials have different polarization characteristics as dictated by the open circuit potential, breakdown potential, and passivation potential of the material. The detection of these electrochemical parameters identifies the corrosion factors of a material. A reliable and well-functioning corrosion system is required to achieve this. Corrosion of the samples was achieved via a potentiodynamic polarization technique employing a three-electrode configuration, consisting of reference, counter, and working electrodes. Prior to commencement a baseline potential is obtained. Following the stabilization of the corrosion potential (Ecorr), the applied potential is ramped at a slow rate in the positive direction relative to the reference electrode. The working electrode was a stainless steel screw. The reference electrode was a standard Ag/AgCl. The counter electrode used was a platinum mesh. Having a reliable and well-functioning in vitro corrosion system to test biomaterials provides an in-expensive technique that allows for the systematic characterization of the material by determining the breakdown potential, to further understand the material's response to corrosion. The goal of the protocol is to set up and run an in vitro potentiodynamic corrosion system to analyze pitting corrosion for small metallic medical devices.
Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary
2017-01-01
The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal-Wallis test and Mann-Whitney U-test were used to compare the data. Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly ( P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system.
Marafie, Yousef; Looney, Stephen; Nelson, Steven; Chan, Daniel; Browning, William; Rueggeberg, Frederick
2008-12-01
A new self-stick adhesive system has been purported to eliminate the need to use chemical adhesives with plastic impression trays; however, no testing has confirmed the claim. The purpose of this study was to compare the in vitro retentive strength of impression materials to plastic substrates having conventional adhesive (CA) or the self-stick adhesive system, with and without mechanical retention. Three types of impression materials (irreversible hydrocolloid (IH), vinyl polysiloxane (VPS), and polyether (PE)) were applied to polystyrene disc-shaped surfaces (33.68 cm(2)) that were held on the arms of a universal testing machine. The appropriate CA or the self-stick adhesive system (Self-Stick Dots) (SSD) was applied to the plates, which had either no mechanical retention, or equally spaced mechanical perforations (n=4). An in vivo pilot test determined the appropriate rate of plate separation. Plates with impression material were lowered to provide 4 mm of space, the material set, and plates were separated using the appropriate speed. Force at first separation was divided by plate area (peak stress). Five replications per test condition were made, and results were analyzed using ANOVA and Bonferroni-adjusted t tests (alpha=.05). Within each impression material/test combination, stress using SSD was significantly lower than CA (P<.05). Mechanical retention did not always provide significantly greater strength. The combination of mechanical retention and CA yielded the highest strength within each material type, except for PE, for which nonmechanical and CA strength did not differ from that of mechanical and CA. Use of the self-stick adhesive system provided significantly lower retentive strength to plastic tray material than chemical adhesives for irreversible hydrocolloid, vinyl polysiloxane, and polyether.
21 CFR 864.1860 - Immunohistochemistry reagents and kits.
Code of Federal Regulations, 2011 CFR
2011-04-01
... Immunohistochemistry reagents and kits. (a) Identification. Immunohistochemistry test systems (IHC's) are in vitro... performance claims, which may be packaged with ancillary reagents in kits. Their intended use is to identify, by immunological techniques, antigens in tissues or cytologic specimens. Similar devices intended for...
21 CFR 864.1860 - Immunohistochemistry reagents and kits.
Code of Federal Regulations, 2010 CFR
2010-04-01
... Immunohistochemistry reagents and kits. (a) Identification. Immunohistochemistry test systems (IHC's) are in vitro... performance claims, which may be packaged with ancillary reagents in kits. Their intended use is to identify, by immunological techniques, antigens in tissues or cytologic specimens. Similar devices intended for...
Watterson, Jeannette M; Stallcup, Paulina; Escamilla, David; Chernay, Patrick; Reyes, Alfred; Trevino, Sylvia C
2007-01-01
After observing a high incidence of low positive hepatitis C virus (HCV) antibody screens by the Ortho-Clinical Vitros ECi test (Orthoclinical Diagnostics, Raritan, NJ), we compared results against those obtained using another chemiluminescent analyzer, as well as two U.S. Food and Drug Administration (FDA)-approved confirmatory methodologies. To ascertain the true anti-HCV status of samples deemed low-positive by the Ortho-Clinical Vitros ECi test, we tested samples using the ADVIA Centaur HCV screen test (Siemens Medical Solutions Diagnostics), the Chiron recombinant immunoblot assay (RIBA) test (Chiron Corp., Emeryville, CA), and the Roche COBAS Amplicor HCV qualitative test (Roche Diagnostics, Indianapolis, IN) in a series of studies. Of 94 specimens positive by Vitros ECi, 19% were observed to be negative by Centaur. A separate study of 91 samples with signal-to-cutoff (s/co) values less than 8.0 showed that all but one was negative for HCV ribonucleic acid (RNA). In comparison with RIBA, 100% (77) samples positive by the Vitros ECi test with s/co values less than 12.0 were negative or indeterminate by RIBA. A final study comparing all four methods side-by-side showed 63% disagreement by Centaur for Vitros ECi low-positive samples, 75% disagreement by RIBA, and 97% disagreement by polymerase chain reaction (PCR). In conclusion, the Ortho-Clinical Vitros ECi Anti-HCV test yields a high rate of false-positive results in the low s/co range in our patient population. (c) 2007 Wiley-Liss, Inc.
Picón-Camacho, Sara M; Marcos-Lopez, Mar; Beljean, Alexandre; Debeaume, Sylvain; Shinn, Andrew P
2012-02-01
Traditionally, malachite green administrated as in-bath treatment was the most effective and common strategy used in freshwater aquaculture systems to control infections of the ciliate protozoan parasite Ichthyophthirius multifiliis Fouquet, 1876. After the ban of malachite green in the USA and Europe to be used in fish for human consumption, there has been extensive research destined to find efficacious replacements. Recently, peracetic acid-based compounds have demonstrated a strong cytotoxic effect in vitro and in vivo against I. multifiliis. In the present study, we tested the efficacy of a hydrogen peroxide, peracetic, acetic and peroctanoic acid-based formulation (HPPAPA) to eliminate the free-living stages of I. multifiliis (tomonts, cysts and theronts). The results obtained showed that the administration of low doses (8, 12 or 15 mg/l) of a specific HPPAPA-based product during a short window of exposure (60 min) kills nearly all free-living stages of I. multifiliis (theronts, tomonts and cysts) within the window of treatment (∼100% mortality for all the stages; one-way ANOVA, P ≤ 0.001). Of note, even the lowest concentration of HPPAPA tested (8 mg/l) was able to disrupt normal cyst development and therefore theront release. The demonstrated in vitro efficacy of the peracetic acid-based product tested on the present study suggests its great potential to control I. multifiliis infections in commercial aquacultural systems.
Gettings, S D; Lordo, R A; Hintze, K L; Bagley, D M; Casterton, P L; Chudkowski, M; Curren, R D; Demetrulias, J L; Dipasquale, L C; Earl, L K; Feder, P I; Galli, C L; Glaza, S M; Gordon, V C; Janus, J; Kurtz, P J; Marenus, K D; Moral, J; Pape, W J; Renskers, K J; Rheins, L A; Roddy, M T; Rozen, M G; Tedeschi, J P; Zyracki, J
1996-01-01
The CTFA Evaluation of Alternatives Program is an evaluation of the relationship between data from the Draize primary eye irritation test and comparable data from a selection of promising in vitro eye irritation tests. In Phase III, data from the Draize test and 41 in vitro endpoints on 25 representative surfactant-based personal care formulations were compared. As in Phase I and Phase II, regression modelling of the relationship between maximum average Draize score (MAS) and in vitro endpoint was the primary approach adopted for evaluating in vitro assay performance. The degree of confidence in prediction of MAS for a given in vitro endpoint is quantified in terms of the relative widths of prediction intervals constructed about the fitted regression curve. Prediction intervals reflect not only the error attributed to the model but also the material-specific components of variation in both the Draize and the in vitro assays. Among the in vitro assays selected for regression modeling in Phase III, the relationship between MAS and in vitro score was relatively well defined. The prediction bounds on MAS were most narrow for materials at the lower or upper end of the effective irritation range (MAS = 0-45), where variability in MAS was smallest. This, the confidence with which the MAS of surfactant-based formulations is predicted is greatest when MAS approaches zero or when MAS approaches 45 (no comment is made on prediction of MAS > 45 since extrapolation beyond the range of observed data is not possible). No single in vitro endpoint was found to exhibit relative superiority with regard to prediction of MAS. Variability associated with Draize test outcome (e.g. in MAS values) must be considered in any future comparisons of in vivo and in vitro test results if the purpose is to predict in vivo response using in vitro data.
EFFECTS OF TREATMENTS ON SOIL-LEAD BIOAVAILABILITY: IMPLICATIONS OF IN-VITRO EXTRACTION TESTING
A field-scale study on the use of phosphate amendments to reduce lead bioavailabity from soil is being conducted at the Joplin site. One of the tools used to evaluate whether lead bioavailability is being reduced is an in vitro extraction test. The in vitro test simulates the gas...
In vitro testing of biological control agents on A1 and A2 isolates of Phytophthora ramorum
Marianne Elliott; Simon Shamoun
2008-01-01
Biological control products were tested in vitro with six isolates of Phytophthora ramorum. These isolates were geographically diverse and were selected based on their pathogenicity to detached Rhododendron leaves. In addition to five commercially available biocontrol products, nine species of Trichoderma were tested. The in vitro...
Thurman, G. B.; Strong, D. M.; Ahmed, A.; Green, S. S.; Sell, K. W.; Hartzman, R. J.; Bach, F. H.
1973-01-01
Use of lymphocyte cultures for in vitro studies such as pretransplant histocompatibility testing has established the need for standardization of this technique. A microculture technique has been developed that has facilitated the culturing of lymphocytes and increased the quantity of cultures feasible, while lowering the variation between replicate samples. Cultures were prepared for determination of tritiated thymidine incorporation using a Multiple Automated Sample Harvester (MASH). Using this system, the parameters that influence the in vitro responsiveness of human lymphocytes to allogeneic lymphocytes have been investigated. PMID:4271568
Experimental Interactions of Components of Hemodialysis Units with Human Blood
Zucker, W. H.; Shinoda, B. A.; Mason, R. G.
1974-01-01
An in vitro model test system for estimation of the blood compatibility of hemodialysis membranes and tubing is described. The model test system consists of a modified hemodialysis unit and blood pump through which fresh citrated human blood is circulated. The effects of the use of different pump and tubing types upon hematologic and blood coagulation parameters are described. Preexposure of test surfaces to albumin appeared to enhance blood compatibility characteristics of the model test system, whereas preexposure to a high density lipoprotein preparation or a proteinpolysaccharide preparation was without appreciable benefit. Use of blood from subjects receiving aspirin resulted in enhanced blood compatibility in the test system as did use of heparin. Use of Warfarin or dextran did not appear to enhance blood compatibility of test surfaces under the conditions of this test system. Dialysis membranes and tubing which formed parts of the test system were examined by scanning and transmission electron microscopy in control tests and in tests for effects of proteins and antithrombotic agents. ImagesFig 5Fig 6Fig 7Fig 8Fig 9Fig 10Fig 11Fig 12Fig 13Fig 14Fig 1Fig 2Fig 3Fig 4 PMID:4825611
How to assess the mutagenic potential of cosmetic products without animal tests?
Speit, Günter
2009-08-01
Animal experiments (in vivo tests) currently play a key role in genotoxicity testing. Results from in vivo tests are, in many cases, decisive for the assessment of a mutagenic potential of a test compound. The Seventh Amendment to the European Cosmetics Directive will, however, ban the European marketing of cosmetic/personal care products that contain ingredients that have been tested in animal experiments. If genotoxicity testing is solely based on the currently established in vitro tests, the attrition rate for chemicals used in cosmetic products will greatly increase due to irrelevant positive in vitro test results. There is urgent need for new and/or improved in vitro genotoxicity tests and for modified test strategies. Test strategies should consider all available information on chemistry of the test substance/the chemical class (e.g. SAR, metabolic activation and dermal adsorption). Test protocols for in vitro genotoxicity tests should be sensitive and robust enough to ensure that negative results can be accepted with confidence. It should be excluded that positive in vitro test results are due to high cytotoxicity or secondary genotoxic effects which may be thresholded and/or only occur under in vitro test conditions. Consequently, further research is needed to establish the nature of thresholds in in vitro assays and to determine the potential for incorporation of mode of action data into future risk assessments. New/improved tests have to be established and validated, considering the use of (metabolically competent) primary (skin) cells, 3D skin models and cells with defined capacity for metabolic activation (e.g. genetically engineered cell lines). The sensitivity and specificity of new and improved genotoxicity tests has to be determined by testing a battery of genotoxic and non-genotoxic chemicals. New or adapted international guidelines will be needed for these tests. The establishment of such a new genotoxicity testing strategy will take time and the new in vitro genotoxicity testing will become much more complex and will require greater mechanistic understanding to build a weight of evidence decision, which will be demanding and time-consuming. At present, no validated alternative methods for the follow-up of positive results from the standard genotoxicity battery are available and an appropriate evaluation of the mutagenic potential of cosmetic ingredients without animal experiments is therefore not possible in many cases.
Puente Reyna, Ana Laura; Jäger, Marcus; Floerkemeier, Thilo; Frecher, Sven; Delank, Karl-Stefan; Schilling, Christoph; Grupp, Thomas M
2016-01-01
Backside wear due to micromotion and poor conformity between the liner and its titanium alloy shell may contribute to the high rates of retroacetabular osteolysis and consequent aseptic loosening. The purpose of our study was to understand the wear process on the backside of polyethylene liners from two acetabular cup systems, whose locking mechanism is based on a press-fit cone in combination with a rough titanium conical inner surface on the fixation area. A direct comparison between in vitro wear simulator tests (equivalent to 3 years of use) and retrieved liners (average 13.1 months in situ) was done in order to evaluate the backside wear characteristics and behavior of these systems. Similar wear scores between in vitro tested and retrieved liners were observed. The results showed that this locking mechanism did not significantly produce wear marks at the backside of the polyethylene liners due to micromotion. In all the analyzed liners, the most common wear modes observed were small scratches at the cranial fixation zone directly below the rough titanium inner surface of the shell. It was concluded that most of the wear marks were produced during the insertion and removal of the liner, rather than during its time in situ.
Balter, Max L; Chen, Alvin I; Fromholtz, Alex; Gorshkov, Alex; Maguire, Tim J; Yarmush, Martin L
2016-10-01
Diagnostic blood testing is the most prevalent medical procedure performed in the world and forms the cornerstone of modern health care delivery. Yet blood tests are still predominantly carried out in centralized labs using large-volume samples acquired by manual venipuncture, and no end-to-end solution from blood draw to sample analysis exists today. Our group is developing a platform device that merges robotic phlebotomy with automated diagnostics to rapidly deliver patient information at the site of the blood draw. The system couples an image-guided venipuncture robot, designed to address the challenges of routine venous access, with a centrifuge-based blood analyzer to obtain quantitative measurements of hematology. In this paper, we first present the system design and architecture of the integrated device. We then perform a series of in vitro experiments to evaluate the cannulation accuracy of the system on blood vessel phantoms. Next, we assess the effects of vessel diameter, needle gauge, flow rate, and viscosity on the rate of sample collection. Finally, we demonstrate proof-of-concept of a white cell assay on the blood analyzer using in vitro human samples spiked with fluorescently labeled microbeads.
Single-element ultrasound transducer for combined vessel localization and ablation.
Chen, Wen-Shiang; Shen, Che-Chou; Wang, Jen-Chieh; Ko, Chung-Ting; Liu, Hao-Li; Ho, Ming-Chih; Chen, Chiung-Nien; Yeh, Chih-Kuang
2011-04-01
This report describes a system that utilizes a single high-intensity focused ultrasound (HIFU) transducer for both the localization and ablation of arteries with internal diameters of 0.5 and 1.3 mm. In vitro and in vivo tests were performed to demonstrate both the imaging and ablation functionalities of this system. For imaging mode, pulsed acoustic waves (3 cycles for in vitro and 10 cycles for in vivo tests, 2 MPa peak pressure) were emitted from the 2-MHz HIFU transducer, and the backscattered ultrasonic signal was collected by the same transducer to calculate Doppler shifts in the target region. The maximum signal amplitude of the Doppler shift was used to determine the location of the target vessel. The operation mode was then switched to the therapeutic mode and vessel occlusion was successfully produced by high-intensity continuous HIFU waves (12 MPa) for 60 s. The system was then switched back to imaging mode for residual flow to determine the need for a second ablation treatment. The new system might be used to target and occlude unwanted vessels such as vasculature around tumors, and to help with tumor destruction. © 2011 IEEE
Guidance on Nanomaterial Hazards and Risks
2015-05-21
and at room temperature and 37 C°– solid separation by centrifugation, filtration , or chemical techniques (more experimental techniques combining...members in this potency sequence using bolus in vivo testing, verify the bolus results with selective inhalation testing. The potency of members of...measures in in vitro and limited in vivo experimental systems would facilitate the characterization of dose-response relationships across a set of ENMs
Aptamer redesigned tRNA is nonfunctional and degraded in cells
LEE, DENNIS; MCCLAIN, WILLIAM H.
2004-01-01
An RNA aptamer derived from tRNAGln isolated in vitro and a rationally redesigned tRNAGln were used to address the relationship between structure and function of tRNAGln aminoacylation in Escherichia coli. Two mutant tRNAGln sequences were studied: an aptamer that binds 26-fold tighter to glutaminyl-tRNA synthetase than wild-type tRNAGln in vitro, redesigned in the variable loop, and a mutant with near-normal aminoacylation kinetics for glutamine, redesigned to contain a long variable arm. Both mutants were tested in a tRNAGln knockout strain of E. coli, but neither supported knockout cell growth. It was later found that both mutant tRNAs were present in very low amounts in the cell. These results reveal the difference between in vitro and in vivo studies, demonstrating the complexities of in vivo systems that have not been replicated in vitro. PMID:14681579
Validation of an In Vitro Sun Protection Factor (SPF) method in blinded ring-testing.
Pissavini, M; Tricaud, C; Wiener, G; Lauer, A; Contier, M; Kolbe, L; Trullás Cabanas, C; Boyer, F; Nollent, V; Meredith, E; Dietrich, E; Matts, P J
2018-04-20
The objective of this work was to investigate the utility of a new in vitro SPF test method in blinded ring-testing, against new ISO acceptance criteria. 24 blinded, commercial, emulsion-type, primary sunscreen products, covering the full range of labelled SPF in Europe (SPF6 - 50+), were tested by 3 test institutes using the current ISO24444:2010 In Vivo SPF Test Method and simultaneously by 3 separate test laboratories using a new candidate in vitro SPF test method, developed under the leadership of Cosmetics Europe (CE). The resulting relationship between in vitro SPF and in vivo SPF values was then compared with acceptance criteria developed recently by the International Standards (ISO) TC217 / WG7 Sun Protection Test Methods Working Group. Analysis of the mean inter-laboratory in vitro and mean inter-institute in vivo SPF values revealed a strong correlation between in vitro and in vivo values, with a Pearson correlation coefficient of r 2 =0.88 (p<0.0001), a slope of 1.01 and a non-significant intercept (-1.48; p=0.62). When these data were compared to the new ISO WG7 acceptance criteria, method bias was found to be extremely low and over 95% of the coupled data lay within the model "funnel" (defined by upper and lower confidence intervals). In conclusion, the results of blinded ring testing and comparison to new ISO WG7 acceptance criteria indicate that a new in vitro SPF test method meets (and exceeds) these minimum criteria and is an interesting candidate for possible deployment as an industry test methodology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Fisher, K; Rowe, C; Phillips, C A
2007-05-01
To test the effect of oils and vapours of lemon, sweet orange and bergamot and their components against three Arcobacter butzleri strains. The disc diffusion method was used to screen the oils and vapours against three strains of A. butzleri. In vitro bergamot was the most inhibitory essential oil (EO) and both citral and linalool were effective. On cabbage leaf, the water isolate was the least susceptible to bergamot EO, citral and linalool (1-2 log reduction), with the chicken isolate being the most susceptible (6-8 log reduction). However, the latter appeared not to be susceptible to vapours over 24 h although type strain and water isolate populations reduced by 8 logs. On chicken skin, the effectiveness of the oils was reduced compared with that on cabbage leaf. Bergamot was the most effective of the oils tested and linalool the most effective component. All strains tested were less susceptible in food systems than in vitro. Arcobacter isolates vary in their response to EO suggesting that the results of type strain studies should be interpreted with caution. Bergamot EO has the potential for the inhibition of this 'emerging' pathogen.
NASA Astrophysics Data System (ADS)
Du, Ya-Wei; Zhang, Li-Nan; Ye, Xin; Nie, He-Min; Hou, Zeng-Tao; Zeng, Teng-Hui; Yan, Guo-Ping; Shang, Peng
2015-03-01
Polyetheretherketone (PEEK) is regarded as one of the most potential candidates of biomaterials in spinal implant applications. However, as a bioinert material, PEEK plays a limited role in osteoconduction and osseointegration. In this study, recombinant human bone morphogenetic protein-2 (rhBMP-2) was immobilized onto the surface of collagen-coated PEEK in order to prepare a multi-functional material. After adsorbed onto the PEEK surface by hydrophobic interaction, collagen was cross-linked with N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS). EDC/NHS system also contributed to the immobilization of rhBMP-2. Water contact angle tests, XPS and SEM clearly demonstrated the surface changes. ELISA tests quantified the amount of rhBMP-2 immobilized and the release over a period of 30 d. In vitro evaluation proved that the osteogenesis differentiation rate was higher when cells were cultured on modified PEEK discs than on regular ones. In vivo tests were conducted and positive changes of major parameters were presented. This report demonstrates that the rhBMP-2 immobilized method for PEEK modification increase bioactivity in vitro and in vivo, suggesting its practicability in orthopedic and spinal clinical applications.
Methods for Analysis of Nanoparticle Immunosuppressive Properties In Vitro and In Vivo.
Potter, Timothy M; Neun, Barry W; Dobrovolskaia, Marina A
2018-01-01
Adverse drug effects on the immune system function represent a significant concern in the pharmaceutical industry, because 10-20% of the drug withdrawal from the market is accounted to immunotoxicity. Immunosuppression is one such adverse effect. The traditional immune function test used to estimate materials' immunosuppression is a T-cell-dependent antibody response (TDAR). This method involves a 28 day in vivo study evaluating the animal's antibody titer to a known antigen (KLH) with and without challenge. Due to the limited quantities of novel drug candidates, an in vitro method called human leukocyte activation (HuLa) assay has been developed to substitute the traditional TDAR assay during early preclinical development. In this test, leukocytes isolated from healthy donors vaccinated with the current year's flu vaccine are incubated with Fluzone in the presence or absence of a test material. The antigen-specific leukocyte proliferation is then measured by ELISA analyzing incorporation of BrdU into DNA of the proliferating cells. Here, we describe the experimental procedures for investigating immunosuppressive properties of nanoparticles by both TDAR and HuLa assays, discuss the in vitro-in vivo correlation of these methods, and show a case study using the iron oxide nanoparticle formulation, Feraheme.
A wave dynamics criterion for optimization of mammalian cardiovascular system.
Pahlevan, Niema M; Gharib, Morteza
2014-05-07
The cardiovascular system in mammals follows various optimization criteria covering the heart, the vascular network, and the coupling of the two. Through a simple dimensional analysis we arrived at a non-dimensional number (wave condition number) that can predict the optimum wave state in which the left ventricular (LV) pulsatile power (LV workload) is minimized in a mammalian cardiovascular system. This number is also universal among all mammals independent of animal size maintaining a value of around 0.1. By utilizing a unique in vitro model of human aorta, we tested our hypothesis against a wide range of aortic compliance (pulse wave velocity). We concluded that the optimum value of the wave condition number remains to be around 0.1 for a wide range of aorta compliance that we could simulate in our in-vitro system. Copyright © 2014 Elsevier Ltd. All rights reserved.
Thermoelectric technique to precisely control hyperthermic exposures of human whole blood.
DuBose, D A; Langevin, R C; Morehouse, D H
1996-12-01
The need in military research to avoid exposing humans to harsh environments and reduce animal use requires the development of in vitro models for the study of hyperthermic injury. A thermoelectric module (TEM) system was employed to heat human whole blood (HWB) in a manner similar to that experienced by heat-stroked rats. This system precisely and accurately replicated mild, moderate, and extreme heat-stress exposures. Temperature changes could be monitored without the introduction of a test sample thermistor, which reduced contamination problems. HWB with hematocrits of 45 or 50% had similar heating curves, indicating that the system compensated for differences in sample character. The unit's size permitted its containment within a standard carbon dioxide incubator to further control sample environment. These results indicate that the TEM system can precisely control temperature change in this heat stress in vitro model employing HWB. Information obtained from such a model could contribute to military preparedness.
Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li
2016-09-01
Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.
In vitro testing of thiolated poly(aspartic acid) from ophthalmic formulation aspects.
Budai-Szű Cs, Mária; Horvát, Gabriella; Gyarmati, Benjámin; Szilágyi, Barnabás Áron; Szilágyi, András; Csihi, Tímea; Berkó, Szilvia; Szabó-Révész, Piroska; Mori, Michela; Sandri, Giuseppina; Bonferoni, Maria Cristina; Caramella, Carla; Csányi, Erzsébet
2016-08-01
Ocular drug delivery formulations must meet anatomical, biopharmaceutical, patient-driven and regulatory requirements. Mucoadhesive polymers can serve as a better alternative to currently available ophthalmic formulations by providing improved bioavailability. If all requirements are addressed, a polymeric formulation resembling the tear film of the eye might be the best solution. The optimum formulation must not have high osmotic activity, should provide appropriate surface tension, pH and refractive index, must be non-toxic and should be transparent and mucoadhesive. We would like to highlight the importance of in vitro polymer testing from a pharmaceutical aspect. We, therefore, carried out physical-chemical investigations to verify the suitability of certain systems for ophthalmic formulations. In this work, in situ gelling, mucoadhesive thiolated poly(aspartic acid)s were tested from ophthalmic formulation aspects. The results of preformulation measurements indicate that these polymers can be used as potential carriers in ophthalmic drug delivery.
Importance of supply integrity for in vitro fertilization and embryo culture.
Morbeck, Dean E
2012-06-01
The quality of in vitro culture conditions is a key component of a successful clinical embryology laboratory. Many, but not all, supplies used in the embryology laboratory are screened by the supplier with a bioassay. Embryology laboratories use a variety of approaches to verify the quality of mineral oil, protein, and disposables before clinical use; however, a best practice has not been determined. Some laboratories test every supply, even those already screened by the supplier, whereas other laboratories perform as little testing as possible. Despite screening by the supplier, recent reports of embryo toxicity, specifically with mineral oil, highlight that the integrity of the supply system has gaps. This review describes current bioassay quality control testing and discusses how it applies to screening of products with documented lot-to-lot variation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Integration of microfluidics in animal in vitro embryo production.
Wheeler, M B; Rubessa, M
2017-04-01
The in vitro production of livestock embryos is central to several areas of animal biotechnology. Further, the use of in vitro embryo manipulation is expanding as new applications emerge. ARTs find direct applications in increasing genetic quality of livestock, producing transgenic animals, cloning, artificial insemination, reducing disease transmission, preserving endangered germplasm, producing chimeric animals for disease research, and treating infertility. Whereas new techniques such as nuclear transfer and intracytoplasmic sperm injection are now commonly used, basic embryo culture procedures remain the limiting step to the development of these techniques. Research over the past 2 decades focusing on improving the culture medium has greatly improved in vitro development of embryos. However, cleavage rates and viability of these embryos is reduced compared with in vivo indicating that present in vitro systems are still not optimal. Furthermore, the methods of handling mammalian oocytes and embryos have changed little in recent decades. While pipetting techniques have served embryology well in the past, advanced handling and manipulation technologies will be required to efficiently implement and commercialize the basic biological advances made in recent years. Microfluidic systems can be used to handle gametes, mature oocytes, culture embryos, and perform other basic procedures in a microenvironment that more closely mimic in vivo conditions. The use of microfluidic technologies to fabricate microscale devices has being investigated to overcome this obstacle. In this review, we summarize the development and testing of microfabricated fluidic systems with feature sizes similar to the diameter of an embryo for in vitro production of pre-implantation mammalian embryos. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
[Laboratory accreditation and proficiency testing].
Kuwa, Katsuhiko
2003-05-01
ISO/TC 212 covering clinical laboratory testing and in vitro diagnostic test systems will issue the international standard for medical laboratory quality and competence requirements, ISO 15189. This standard is based on the ISO/IEC 17025, general requirements for competence of testing and calibration laboratories and ISO 9001, quality management systems-requirements. Clinical laboratory services are essential to patient care and therefore should be available to meet the needs of all patients and clinical personnel responsible for human health care. If a laboratory seeks accreditation, it should select an accreditation body that operates according to this international standard and in a manner which takes into account the particular requirements of clinical laboratories. Proficiency testing should be available to evaluate the calibration laboratories and reference measurement laboratories in clinical medicine. Reference measurement procedures should be of precise and the analytical principle of measurement applied should ensure reliability. We should be prepared to establish a quality management system and proficiency testing in clinical laboratories.
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System
In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address these problems. However, one challenge is that ma...
40 CFR 798.5375 - In vitro mammalian cytogenetics.
Code of Federal Regulations, 2012 CFR
2012-07-01
... metabolic activation system. (5) Control groups. Positive and negative (untreated and/or vehicle) controls... activation is used, the positive control substance shall be known to require such activation. (6) Test... be listed with their numbers and frequencies for experimental and control groups. Data should be...
40 CFR 798.5375 - In vitro mammalian cytogenetics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... metabolic activation system. (5) Control groups. Positive and negative (untreated and/or vehicle) controls... activation is used, the positive control substance shall be known to require such activation. (6) Test... be listed with their numbers and frequencies for experimental and control groups. Data should be...
40 CFR 798.5375 - In vitro mammalian cytogenetics.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metabolic activation system. (5) Control groups. Positive and negative (untreated and/or vehicle) controls... activation is used, the positive control substance shall be known to require such activation. (6) Test... be listed with their numbers and frequencies for experimental and control groups. Data should be...
40 CFR 798.5375 - In vitro mammalian cytogenetics.
Code of Federal Regulations, 2013 CFR
2013-07-01
... metabolic activation system. (5) Control groups. Positive and negative (untreated and/or vehicle) controls... activation is used, the positive control substance shall be known to require such activation. (6) Test... be listed with their numbers and frequencies for experimental and control groups. Data should be...
The thyroid hormone (TH) system is involved in several important physiological processes, including regulation of energy metabolism, growth and differentiation, development and maintenance of brain function, thermo-regulation, osmo-regulation, and axis of regulation of other endo...
In Vitro Toxicity Screening Technique for Volatile Substances Using Flow-Through System##
In 2007 the National Research Council envisioned the need for inexpensive, rapid, cell based toxicity testing methods relevant to human health. Recent advances in robotics, automation, and miniaturization have been used to address this challenge. However, one drawback to currentl...
Code of Federal Regulations, 2010 CFR
2010-01-01
... in vitro clinical or laboratory testing. 31.11 Section 31.11 Energy NUCLEAR REGULATORY COMMISSION... certain in vitro clinical or laboratory testing. (a) A general license is hereby issued to any physician, veterinarian in the practice of veterinary medicine, clinical laboratory or hospital to receive, acquire...
9 CFR 113.8 - In vitro tests for serial release.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false In vitro tests for serial release. 113... REQUIREMENTS Applicability § 113.8 In vitro tests for serial release. (a) Master Seed which has been established as pure, safe, and immunogenic shall be used for preparing seed for production as specified in the...
Navas, José M; Segner, Helmut
2006-10-25
Concern over possible adverse effects of endocrine-disrupting compounds on fish has caused the development of appropriate testing methods. In vitro screening assays may provide initial information on endocrine activities of a test compound and thereby may direct and optimize subsequent testing. Induction of vitellogenin (VTG) is used as a biomarker of exposure of fish to estrogen-active substances. Since VTG induction can be measured not only in vivo but also in fish hepatocytes in vitro, the use of VTG induction response in isolated fish liver cells has been suggested as in vitro screen for identifying estrogenic-active substances. The main advantages of the hepatocyte VTG assay are considered its ability to detect effects of estrogenic metabolites, since hepatocytes in vitro remain metabolically competent, and its ability to detect both estrogenic and anti-estrogenic effects. In this article, we critically review the current knowledge on the VTG response of cultured fish hepatocytes to (anti)estrogenic substances. In particular, we discuss the sensitivity, specificity, and variability of the VTG hepatocyte assay. In addition, we review the available data on culture factors influencing basal and induced VTG production, the response to natural and synthetic estrogens as well as to xenoestrogens, the detection of indirect estrogens, and the sources of assay variability. The VTG induction in cultured fish hepatocytes is clearly influenced by culture conditions (medium composition, temperature, etc.) and culture system (hepatocyte monolayers, aggregates, liver slices, etc.). The currently available database on estrogen-mediated VTG induction in cultured teleost hepatocytes is too small to support conclusive statements on whether there exist systematic differences of the VTG response between in vitro culture systems, VTG analytical methods or fish species. The VTG hepatocyte assay detects sensitively natural and synthetic estrogens, whereas the response to xenoestrogens appears to be more variable. The detection of weak estrogens can be critical due to the overshadow with cytotoxic concentrations. Moreover, the VTG hepatocyte assay is able to detect antiestrogens as well as indirect estrogens, i.e substances which require metabolic activation to induce an estrogenic response. Nevertheless, more chemicals need to be analysed to corroborate this statement. It will be necessary to establish standardized protocols to minimize assay variability, and to develop a set of pass-fail criteria as well as cut-offs for designating positive and negative responses.
Aspect ratio has no effect on genotoxicity of multi-wall carbon nanotubes.
Kim, Jin Sik; Lee, Kyu; Lee, Young Hee; Cho, Hyun Sun; Kim, Ki Heon; Choi, Kyung Hee; Lee, Sang Hee; Song, Kyung Seuk; Kang, Chang Soo; Yu, Il Je
2011-07-01
Carbon nanotubes (CNTs) have specific physico-chemical and electrical properties that are useful for telecommunications, medicine, materials, manufacturing processes and the environmental and energy sectors. Yet, despite their many advantages, it is also important to determine whether CNTs may represent a hazard to the environment and human health. Like asbestos, the aspect ratio (length:diameter) and metal components of CNTs are known to have an effect on the toxicity of carbon nanotubes. Thus, to evaluate the toxic potential of CNTs in relation to their aspect ratio and metal contamination, in vivo and in vitro genotoxicity tests were conducted using high-aspect-ratio (diameter: 10-15 nm, length: ~10 μm) and low-aspect-ratio multi-wall carbon nanotubes (MWCNTs, diameter: 10-15 nm, length: ~150 nm) according to OECD test guidelines 471 (bacterial reverse mutation test), 473 (in vitro chromosome aberration test), and 474 (in vivo micronuclei test) with a good laboratory practice system. To determine the treatment concentration for all the tests, a solubility and dispersive test was performed, and a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) solution found to be more suitable than distilled water. Neither the high- nor the low-aspect-ratio MWCNTs induced any genotoxicity in a bacterial reverse mutation test (~1,000 μg/plate), in vitro chromosome aberration test (without S9: ~6.25 μg/ml, with S9: ~50 μg/ml), or in vivo micronuclei test (~50 mg/kg). However, the high-aspect-ratio MWCNTs were found to be more toxic than the low-aspect-ratio MWCNTs. Thus, while high-aspect-ratio MWCNTs do not induce direct genotoxicity or metabolic activation-mediated genotoxicity, genotoxicity could still be induced indirectly through oxidative stress or inflammation.
Sjögren, Erik; Bredberg, Ulf; Lennernäs, Hans
2012-04-02
The predictive power of using in vitro systems in combination with physiologically based pharmacokinetic (PBPK) modeling to elucidate the relative importance of metabolism and carrier-mediated transport for the pharmacokinetics was evaluated using repaglinide as a model compound and pig as the test system. Repaglinide was chosen as model drug as previous studies in humans have shown that repaglinide is subject to both carrier-mediated influx to the liver cells and extensive hepatic metabolism. A multiple sampling site model in pig was chosen since it provides detailed in vivo information about the liver disposition. The underlying assumption was that both metabolism and carrier-mediated transport are also important for the hepatic disposition of repaglinide in pigs. Microsomes and primary hepatocytes were used for in vitro evaluation of enzyme kinetics and cellular disposition, respectively. In vitro data were generated both with and without metabolism inhibitors (ketoconazole, bezafibrate and trimethoprim) and transport inhibitors (diclofenac and quinine) providing input into a semi-PBPK model. In vivo data were also generated with and without the same enzyme and transporter inhibitors, alone and in combination. The pigs were given repaglinide as intravenous infusions with and without inhibitors in a sequential manner, i.e., a control phase and a test phase. Parameters describing the passive and carrier-mediated flux as well as metabolism were estimated in the control phase. The result from test phase was used to gain further knowledge of the findings from the control phase. The in vivo pig model enabled simultaneous sampling from plasma (pre- and postliver and peripheral) as well as from bile and urine. A semi-PBPK model consisting of 11 compartments (6 tissues + 5 sampling sites) was constructed for the mechanistic elucidation of the liver disposition, in vitro based in vivo predictions, sensitivity analyses and estimations of individual pharmacokinetic parameters. Both in vitro and in vivo results showed that carrier-mediated influx was important for the liver disposition. The in vivo findings were supported by the result from the test phase where hepatic clearance (4.3 mL min⁻¹ kg⁻¹) was decreased by 29% (metabolism inhibition), 43% (transport inhibition) and 57% (metabolism + transport inhibition). These effects were in good agreement with predicted levels. This study suggests that both metabolism and carrier-mediated uptake are of significant importance for the liver disposition of repaglinide in pigs.
Nerve cell-mimicking liposomes as biosensor for botulinum neurotoxin complete physiological activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weingart, Oliver G., E-mail: Oliver.Weingart@hest.
Botulinum neurotoxins (BoNT) are the most toxic substances known, and their neurotoxic properties and paralysing effects are exploited for medical treatment of a wide spectrum of disorders. To accurately quantify the potency of a pharmaceutical BoNT preparation, its physiological key activities (binding to membrane receptor, translocation, and proteolytic degradation of SNARE proteins) need to be determined. To date, this was only possible using animal models, or, to a limited extent, cell-based assays. We here report a novel in vitro system for BoNT/B analysis, based on nerve-cell mimicking liposomes presenting motoneuronal membrane receptors required for BoNT binding. Following triggered membrane translocationmore » of the toxin's Light Chain, the endopeptidase activity can be quantitatively monitored employing a FRET-based reporter assay within the functionalized liposomes. We were able to detect BoNT/B physiological activity at picomolar concentrations in short time, opening the possibility for future replacement of animal experimentation in pharmaceutical BoNT testing. - Highlights: • A cell-free in vitro system was used to measure BoNT/B physiological function. • The system relies on nerve-cell mimicking liposomes as a novel detection system. • A FRET-based reporter assay is used as final readout of the test system. • BoNT/B physiological activity was detected at picogram quantities in short time. • The method opens the possibility to replace animal experimentation in BoNT testing.« less
Proportional assist ventilation system based on proportional solenoid valve control.
Lua, A C; Shi, K C; Chua, L P
2001-07-01
A new proportional assist ventilation (PAV) method using a proportional solenoid valve (PSV) to control air supply to patients suffering from respiratory disabilities, was studied. The outlet flow and pressure from the proportional solenoid valve at various air supply pressures were tested and proven to be suitable for pressure and flow control in a PAV system. In vitro tests using a breathing simulator, which has been proven to possess the general characteristics of human respiratory system in spontaneous breathing tests, were conducted and the results demonstrated the viability of this PAV system in normalizing the breathing patterns of patients with abnormally high resistances and elastances as well as neuromuscular weaknesses. With a back-up safety mechanism incorporated in the control program, pressure "run-away" can be effectively prevented and safe operation of the system can be guaranteed.
Chen, Qiang; Fischer, Joshua R; Benoit, Vivian M; Dufour, Nicholas P; Youderian, Philip; Leong, John M
2008-12-01
Borrelia burgdorferi is the causative agent of Lyme disease, the most common vector-borne illness in the Northern hemisphere. Low-passage-number infectious strains of B. burgdorferi exhibit extremely low transformation efficiencies-so low, in fact, as to hinder the genetic study of putative virulence factors. Two putative restriction-modification (R-M) systems, BBE02 contained on linear plasmid 25 (lp25) and BBQ67 contained on lp56, have been postulated to contribute to this poor transformability. Restriction barriers posed by other bacteria have been overcome by the in vitro methylation of DNA prior to transformation. To test whether a methylation-sensitive restriction system contributes to poor B. burgdorferi transformability, shuttle plasmids were treated with the CpG methylase M.SssI prior to the electroporation of a variety of strains harboring different putative R-M systems. We found that for B. burgdorferi strains that harbor lp56, in vitro methylation increased transformation by at least 1 order of magnitude. These results suggest that in vitro CpG methylation protects exogenous DNA from degradation by an lp56-contained R-M system, presumably BBQ67. The utility of in vitro methylation for the genetic manipulation of B. burgdorferi was exemplified by the ease of plasmid complementation of a B. burgdorferi B31 A3 BBK32 kanamycin-resistant (B31 A3 BBK32::Kan(r)) mutant, deficient in the expression of the fibronectin- and glycosaminoglycan (GAG)-binding adhesin BBK32. Consistent with the observation that several surface proteins may promote GAG binding, the B. burgdorferi B31 A3 BBK32::Kan(r) mutant demonstrated no defect in the ability to bind purified GAGs or GAGs expressed on the surfaces of cultured cells.
NASA Astrophysics Data System (ADS)
Evans, Conor
2015-03-01
Three dimensional, in vitro spheroid cultures offer considerable utility for the development and testing of anticancer photodynamic therapy regimens. More complex than monolayer cultures, three-dimensional spheroid systems replicate many of the important cell-cell and cell-matrix interactions that modulate treatment response in vivo. Simple enough to be grown by the thousands and small enough to be optically interrogated, spheroid cultures lend themselves to high-content and high-throughput imaging approaches. These advantages have enabled studies investigating photosensitizer uptake, spatiotemporal patterns of therapeutic response, alterations in oxygen diffusion and consumption during therapy, and the exploration of mechanisms that underlie therapeutic synergy. The use of quantitative imaging methods, in particular, has accelerated the pace of three-dimensional in vitro photodynamic therapy studies, enabling the rapid compilation of multiple treatment response parameters in a single experiment. Improvements in model cultures, the creation of new molecular probes of cell state and function, and innovations in imaging toolkits will be important for the advancement of spheroid culture systems for future photodynamic therapy studies.
Hammond, Suzan M; McClorey, Graham; Nordin, Joel Z; Godfrey, Caroline; Stenler, Sofia; Lennox, Kim A; Smith, C I Edvard; Jacobi, Ashley M; Varela, Miguel A; Lee, Yi; Behlke, Mark A; Wood, Matthew J A; Andaloussi, Samir E L
2014-11-25
Splice switching oligonucleotides (SSOs) induce alternative splicing of pre-mRNA and typically employ chemical modifications to increase nuclease resistance and binding affinity to target pre-mRNA. Here we describe a new SSO non-base modifier (a naphthyl-azo group, "ZEN™") to direct exon exclusion in mutant dystrophin pre-mRNA to generate functional dystrophin protein. The ZEN modifier is placed near the ends of a 2'-O-methyl (2'OMe) oligonucleotide, increasing melting temperature and potency over unmodified 2'OMe oligonucleotides. In cultured H2K cells, a ZEN-modified 2'OMe phosphorothioate (PS) oligonucleotide delivered by lipid transfection greatly enhanced dystrophin exon skipping over the same 2'OMePS SSO lacking ZEN. However, when tested using free gymnotic uptake in vitro and following systemic delivery in vivo in dystrophin deficient mdx mice, the same ZEN-modified SSO failed to enhance potency. Importantly, we show for the first time that in vivo activity of anionic SSOs is modelled in vitro only when using gymnotic delivery. ZEN is thus a novel modifier that enhances activity of SSOs in vitro but will require improved delivery methods before its in vivo clinical potential can be realized.
Behrens-Baumann, Wolfgang J; Hofmüller, Wolfram; Tammer, Ina; Tintelnot, Kathrin
2018-04-28
To report on a wearer of rigid gas-permeable contact lenses with a keratomycosis due to Tintelnotia-a new genus of Phaeosphaeriaceae-treated with terbinafine and polyhexamethylene biguanide. Chart review of a patient with fungal keratitis treated additionally with systemic and topical terbinafine 0.25% after symptoms increased under conventional antimycotic therapy with voriconazole. Antifungal susceptibility had been tested in vitro. After starting an additional treatment with systemic and topical terbinafine, the severe corneal infection was sufficiently resolved. The drug was well tolerated without any neurological, dermatological or gastroenterological problems. Terbinafine revealed a marked in vitro antifungal activity of 0.12 µg/ml. The fungus was identified as Tintelnotia destructans. Terbinafine might be considered as a therapeutic option in severe cases of fungal keratitis refractory to common antifungal therapy.
de Ridder, L
1999-01-01
Invasiveness is the major cause of death in patients bearing a brain tumour. The invasiveness or infiltrative capacity of a primary brain tumour has a prognostic value for the evaluation of the process in vivo. So a model to imitate invasion might give information on the in vivo behaviour and outcome of the disease for the individual patient. The developed in vitro model represents an assay in which the patients' brain tumour-derived cells are confronted with connective tissue from the patient himself, i.e. an autologous system to evaluate the individual behaviour of the tumour, in contrast to other invasion models. The test can be applied with tumour-derived material collected by a stereotactic biopsy.
Color recovery effect of different bleaching systems on a discolored composite resin.
Gul, P; Harorlı, O T; Ocal, I B; Ergin, Z; Barutcigil, C
2017-10-01
Discoloration of resin-based composites is a commonly encountered problem, and bleaching agents may be used for the therapy of the existing discoloration. The purpose of this study was to investigate in vitro color recovery effect of different bleaching systems on the heavily discolored composite resin. Fifty disk-shaped dental composite specimens were prepared using A2 shade nanohybrid universal composite resin (3M ESPE Filtek Z550, St. Paul, MN, USA). Composite samples were immersed in coffee and turnip juice for 1 week in each. One laser activated bleaching (LB) (Biolase Laserwhite*20) and three conventional bleaching systems (Ultradent Opalescence Boost 40% (OB), Ultradent Opalescence PF 15% home bleaching (HB), Crest 3D White [Whitening Mouthwash]) were tested in this study. Distilled water was used as control group. The color of the samples were measured using a spectrophotometer (VITA Easy shade Compact, VITA Zahnfabrik, Bad Säckingen, Germany). Color changes (ΔE00) were calculated using the CIEDE2000 formula. Statistical analyses were conducted using paired samples test, one-way analysis of variance, and Tukey's multiple comparison tests (α = 0.05). The staining beverages caused perceptible discoloration (ΔE00 > 2.25). The color recovery effect of all bleaching systems was statistically determined to be more effective than the control group (P < 0.05). Although OB group was found as the most effective bleaching system, there was no statistically significant difference among HB, OB, and LB groups (P > 0.05). Within the limitation of this in vitro study, the highest recovery effect was determined in office bleaching system among all bleaching systems. However, home and laser bleaching systems were determined as effective as office bleaching system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cerrato, Laura; Valeri, Antonio; Bueren, Juan A.
The ACuteTox Project (part of the EU 6th Framework Programme) was started up in January 2005. The aim of this project is to develop a simple and robust in vitro strategy for prediction of human acute systemic toxicity, which could replace animal tests used for regulatory purposes. Our group is responsible for the characterization of the effect of the reference chemicals on the hematopoietic tissue. CFU-GM assay based on the culture of human mononuclear cord blood cells has been used to characterize the effects of the selected compounds on the myeloid progenitors. Previous results have shown the relevance of themore » CFU-GM assay for the prediction of human acute neutropenia after treatment of antitumoral compounds, and this assay has been recently approved by the ECVAM's Scientific Advisory Committee. Among the compounds included in the study there were pharmaceuticals, environmental pollutants and industrial chemicals. Eleven out of 55 chemicals did not show any cytotoxic effect at the maximum concentration tested. The correlation coefficients of CFU-GM IC50, IC70 and IC90 values with human LC50 values (50% lethal concentration calculated from time-related sublethal and lethal human blood concentrations) were 0.4965, 0.5106 and 0.5142 respectively. Although this correlation is not improve respect to classical in vitro basal cytotoxicity tests such as 3T3 Neutral Red Uptake, chemicals which deviate substantially in the correlation with these assays (colchicine, digoxin, 5-Fluorouracil and thallium sulfate) fitted very well in the linear regression analysis of the CFU-GM progenitors. The results shown in the present study indicate that the sensitivity of CFU-GM progenitors correlates better than the sensitivity of HL-60 cells with human LC50 values and could help to refine the predictability for human acute systemic toxicity when a given chemical may affect to the hematopoietic myeloid system.« less
40 CFR 799.9537 - TSCA in vitro mammalian chromosome aberration test.
Code of Federal Regulations, 2014 CFR
2014-07-01
... aberration test. 799.9537 Section 799.9537 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... MIXTURE TESTING REQUIREMENTS Health Effects Test Guidelines § 799.9537 TSCA in vitro mammalian chromosome aberration test. (a) Scope—(1) Applicability. This section is intended to meet testing requirements under...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selkirk, J.K.
The National Toxicology Program (NTP) was organized to support national public health programs by initiating research designed to understand the physiological, metabolic, and genetic basis for chemical toxicity. The primary mandated responsibilities of NTP were in vivo and vitro toxicity testing of potentially hazardous chemicals; broadening the spectrum of toxicological information on known hazardous chemicals; validating current toxicological assay systems as well as developing new and innovative toxicity testing technology; and rapidly communicating test results to government agencies with regulatory responsibilities and to the medical and scientific communities. 2 figs.
Testing Experimental Compounds against Leishmaniansis in Laboratory Animal Model Systems
1984-09-01
1Ox more than that tolerated by patients treated for psychiatric illness (39). In vitro phenazine methosulfate (PMS), reversibly inhibits both -DOand...mexicana amazonensis by phenazine methosulfate. Mol. Biochem. Parasitol. 10: 297-303. 41. Henriksen, T.H. and S. Lende. 1983. Treatment of diffuse cutaneous
VIRTUAL EMBRYO: SYSTEMS MODELING IN DEVELOPMENTAL TOXICITY - Symposium: SOT 2012
High-throughput screening (HTS) studies are providing a rich source of data that can be applied to in vitro profiling of chemical compounds for biological activity and potential toxicity. Chemical profiling in ToxCast covered 965 drugs-chemicals in over 500 diverse assays testing...
In Vitro Toxicity Assessment Technique for Volatile Substances Using Flow-Through System
: The U.S. EPA is responsible for evaluating the effects of approximately 80,000 chemicals registered for use. The challenge is that limited toxicity data exists for many of these chemicals; traditional toxicity testing methods are slow, costly, involve animal studies, and canno...
Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres.
Alli, Sk Md Athar
2011-01-01
Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f(1)), the similarity factor (f(2)), and the Rescigno index (ξ(1) and ξ(2)) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations.
Formulation and evaluation of Bacillus coagulans-loaded hypromellose mucoadhesive microspheres
Alli, Sk Md Athar
2011-01-01
Development of a novel delivery system has been attempted to deliver viable probiotic cells into the gut for a prolonged period of time while maintaining high numbers of viable cells within the formulation throughout the shelf-life of the product and during the gastrointestinal transit. Core mucoadhesive microspheres of Bacillus coagulans were developed employing several grades of hypromellose, a mucoadhesive polymer, following coacervation and phase separation technique and were subsequently enteric-coated with hypromellose phthalate. Microspheres were evaluated for percent yield; entrapment efficiency; in vitro swelling; surface morphology; particle size, size distribution, and zeta potential; flow property, mucoadhesion property by the ex vivo mucoadhesive strength test and the in vitro wash off test; in vitro release profile and release kinetic; in vivo probiotic activity; and stability. The values for the kinetic constant and regression coefficient of model-dependent approaches and the difference factor (f1), the similarity factor (f2), and the Rescigno index (ξ1 and ξ2) of model independent approaches were determined for comparing in vitro dissolution profiles. Freeze dried B. coagulans cells were successfully formulated as enteric-coated mucoadhesive microspheres with satisfactory physical structure and yield. The viability of B. coagulans was maintained in the simulated gastric conditions and during processing; in simulated intestinal conditions exhibiting mucoadhesion, and controlling and extending the viable cell release following zero-order; and was satisfactorily stable at room temperature. Test results depict statistically significant effects of the hypromellose grade and their concentration on the performance and release profile of formulations. PMID:21674019
Schierjott, Ronja A; Giurea, Alexander; Neuhaus, Hans-Joachim; Schwiesau, Jens; Pfaff, Andreas M; Utzschneider, Sandra; Tozzi, Gianluca; Grupp, Thomas M
2016-01-01
Carbon fiber reinforced poly-ether-ether-ketone (CFR-PEEK) represents a promising alternative material for bushings in total knee replacements, after early clinical failures of polyethylene in this application. The objective of the present study was to evaluate the damage modes and the extent of damage observed on CFR-PEEK hinge mechanism articulation components after in vivo service in a rotating hinge knee (RHK) system and to compare the results with corresponding components subjected to in vitro wear tests. Key question was if there were any similarities or differences between in vivo and in vitro damage characteristics. Twelve retrieved RHK systems after an average of 34.9 months in vivo underwent wear damage analysis with focus on the four integrated CFR-PEEK components and distinction between different damage modes and classification with a scoring system. The analysis included visual examination, scanning electron microscopy, and energy dispersive X-ray spectroscopy, as well as surface roughness and profile measurements. The main wear damage modes were comparable between retrieved and in vitro specimens ( n = 3), whereby the size of affected area on the retrieved components showed a higher variation. Overall, the retrieved specimens seemed to be slightly heavier damaged which was probably attributable to the more complex loading and kinematic conditions in vivo.
TOXICITY TESTING IN THE 21ST CENTURY: A VISION AND A STRATEGY
Krewski, Daniel; Acosta, Daniel; Andersen, Melvin; Anderson, Henry; Bailar, John C.; Boekelheide, Kim; Brent, Robert; Charnley, Gail; Cheung, Vivian G.; Green, Sidney; Kelsey, Karl T.; Kerkvliet, Nancy I.; Li, Abby A.; McCray, Lawrence; Meyer, Otto; Patterson, Reid D.; Pennie, William; Scala, Robert A.; Solomon, Gina M.; Stephens, Martin; Yager, James; Zeise, Lauren
2015-01-01
With the release of the landmark report Toxicity Testing in the 21st Century: A Vision and a Strategy, the U.S. National Academy of Sciences, in 2007, precipitated a major change in the way toxicity testing is conducted. It envisions increased efficiency in toxicity testing and decreased animal usage by transitioning from current expensive and lengthy in vivo testing with qualitative endpoints to in vitro toxicity pathway assays on human cells or cell lines using robotic high-throughput screening with mechanistic quantitative parameters. Risk assessment in the exposed human population would focus on avoiding significant perturbations in these toxicity pathways. Computational systems biology models would be implemented to determine the dose-response models of perturbations of pathway function. Extrapolation of in vitro results to in vivo human blood and tissue concentrations would be based on pharmacokinetic models for the given exposure condition. This practice would enhance human relevance of test results, and would cover several test agents, compared to traditional toxicological testing strategies. As all the tools that are necessary to implement the vision are currently available or in an advanced stage of development, the key prerequisites to achieving this paradigm shift are a commitment to change in the scientific community, which could be facilitated by a broad discussion of the vision, and obtaining necessary resources to enhance current knowledge of pathway perturbations and pathway assays in humans and to implement computational systems biology models. Implementation of these strategies would result in a new toxicity testing paradigm firmly based on human biology. PMID:20574894
Way forward in case of a false positive in vitro genotoxicity result for a cosmetic substance?
Doktorova, Tatyana Y; Ates, Gamze; Vinken, Mathieu; Vanhaecke, Tamara; Rogiers, Vera
2014-02-01
The currently used regulatory in vitro mutagenicity/genotoxicity test battery has a high sensitivity for detecting genotoxicants, but it suffers from a large number of irrelevant positive results (i.e. low specificity) thereby imposing the need for additional follow-up by in vitro and/or in vivo genotoxicity tests. This could have a major impact on the cosmetic industry in Europe, seen the imposed animal testing and marketing bans on cosmetics and their ingredients. Afflicted, but safe substances could therefore be lost. Using the example of triclosan, a cosmetic preservative, we describe here the potential applicability of a human toxicogenomics-based in vitro assay as a potential mechanistically based follow-up test for positive in vitro genotoxicity results. Triclosan shows a positive in vitro chromosomal aberration test, but is negative during in vivo follow-up tests. Toxicogenomics analysis unequivocally shows that triclosan is identified as a compound acting through non-DNA reactive mechanisms. This proof-of-principle study illustrates the potential of genome-wide transcriptomics data in combination with in vitro experimentation as a possible weight-of-evidence follow-up approach for de-risking a positive outcome in a standard mutagenicity/genotoxicity battery. As such a substantial number of cosmetic compounds wrongly identified as genotoxicants could be saved for the future. Copyright © 2013 Elsevier Ltd. All rights reserved.
In vitro antibacterial activity of adhesive systems on Streptococcus mutans.
Paradella, Thaís Cachuté; Koga-Ito, Cristiane Yumi; Jorge, Antonio Olavo Cardoso
2009-04-01
To evaluate the antibacterial activity of three adhesive systems -- Prime & Bond 2.1 (PB), Clearfil SE Bond (CS) and One Up Bond F (OU) -- on Streptococcus mutans in vitro. Adherence and agar disk-diffusion tests were performed. For the adherence testing, 40 human enamel specimens (4 mm2) were sterilized and the adhesive sytems were applied (n = 10). The control group did not receive the application of any adhesive system. Specimens were immersed in brain heart infusion broth (BHI) inoculated with S. mutans standardized suspension (10(6) cells/ml) for 48 h at 37 degrees C and 5% CO2. The number of S. mutans cells adhered to each specimen was evaluated by the plating method on BHI agar. For agar disk-diffusion testing, adhesive disks and disks soaked in distilled water (negative control) or 0.2% chlorexidine (positive control) were incubated with S. mutans for 48 h. The diameters of the zones of bacterial inhibition were measured. Adherence data were transformed in logarithms of base 10 (log10). Data were submitted to Kruskal-Wallis and Student-Neuman-Keuls tests at the 5% level of significance. The results of the adherence test showed that One Up Bond F (OU) and Clearfil SE Bond (CS) did not differ significantly from one another, but allowed significantly less adherence than Prime & Bond 2.1 (PB) and control [mean log10 (standard deviation) values: PB 6.10 (0.19); CS primer 4.55 (0.98); OU 4.65 (0.54); control group 6.34 (0.27)]. The disk-diffusion test showed no significant difference between OU (diameter in mm: 3.02 +/- 0.13) and CS (3.0 +/- 0.12), but both were significantly more effective in inhibiting bacterial growth than PB (1.0 +/- 0.10). The self-etching systems Clearfil SE Bond and One Up Bond F presented a greater inhibitory effect against S. mutans, also in terms of adherence, than did the conventional system, Prime & Bond 2.1.
Liu, Jingping; Zhang, Lanlan; Yang, Zehong; Zhao, Xiaojun
2011-01-01
Background A nanoscale injectable in situ-forming hydrogel drug delivery system was developed in this study. The system was based on a self-assembling peptide RADA16 solution, which can spontaneously form a hydrogel rapidly under physiological conditions. We used the RADA16 hydrogel for the controlled release of paclitaxel (PTX), a hydrophobic antitumor drug. Methods The RADA16-PTX suspension was prepared simply by magnetic stirring, followed by atomic force microscopy, circular dichroism analysis, dynamic light scattering, rheological analysis, an in vitro release assay, and a cell viability test. Results The results indicated that RADA16 and PTX can interact with each other and that the amphiphilic peptide was able to stabilize hydrophobic drugs in aqueous solution. The particle size of PTX was markedly decreased in the RADA16 solution compared with its size in water. The RADA16-PTX suspension could form a hydrogel in culture medium, and the elasticity of the hydrogel showed a positive correlation with peptide concentration. In vitro release measurements indicated that hydrogels with a higher peptide concentration had a longer half-release time. The RADA16-PTX hydrogel could effectively inhibit the growth of the breast cancer cell line, MDA-MB-435S, in vitro, and hydrogels with higher peptide concentrations were more effective at inhibiting tumor cell proliferation. The RADA16-PTX hydrogel was effective at controlling the release of PTX and inhibiting tumor cell growth in vitro. Conclusion Self-assembling peptide hydrogels may work well as a system for drug delivery. PMID:22114478
Biotransformation of the mycotoxin enniatin B1 in pigs: A comparative in vitro and in vivo approach.
Ivanova, Lada; Uhlig, Silvio; Devreese, Mathias; Croubels, Siska; Fæste, Christiane Kruse
2017-07-01
Enniatins (ENNs) are hexadepsipeptidic mycotoxins produced by Fusarium species. They occur in mg/kg levels in grain from Northern climate areas. Major ENNs such as ENN B and B1 have shown considerable cytotoxicity in different in vitro test systems. To adequately assess exposure and in vivo toxicity the toxicokinetic properties need to be investigated. The present study describes the metabolism of ENN B1 both in vitro and in vivo in pigs, comparing metabolites found in vitro in experiments with liver microsomes from different pig strains to those found in the plasma of pigs after single oral or intravenous application of ENN B1. Metabolites of hepatic biotransformation were tentatively identified and characterised by high performance liquid chromatography coupled to ion trap and high-resolution mass spectrometry, as well as chemical derivatisations. Kinetic parameters of metabolite formation and elimination were determined. Metabolite formation was higher when ENN B1 was absorbed from the gut compared to intravenous administration indicating pre-systemic metabolism of ENN B1 after oral uptake. The in vitro approach resulted in the detection of ten ENN B1 metabolites, while six were detected in in vivo samples. The putative ENN B1 metabolites were products of hydroxylation, carbonylation, carboxylation and oxidative demethylation reactions. Copyright © 2017. Published by Elsevier Ltd.
NASA Technical Reports Server (NTRS)
Torres, J.
1986-01-01
Astronauts can be exposed during spaceflight to organic chemical contaminants in the spacecraft cabin atmosphere. Toxic exposures may cause lesions in the cellular DNA which are subsequently expressed as sister-chromatid exchanges (SCE). Analysis of SCE is a sensitive short-term assay technique to detect and quantitate exposures to DNA-damaging (mutagenic) substances. The increase in SCE incidence over baseline (control) levels is generally proportional to the concentration of the mutagen and to the duration of exposure. Dichloromethane (methylene chloride) was chosen for this study since it occurred as an atmospheric contaminant in ten of the first 12 STS flights, and has been reported to have toxic and mutagenic effects in various test systems. Glutaraldehyde was chosen because relatively few data are available on the toxicity or mutagenicity of this common biological fixative, which is carried on STS flights for use in biological experiments. The BHK-21 baby hamster kidney cell line was the in vitro test system used in this study. Neither dichloromethane (10 ppm to 500 ppm) nor glutaraldehyde (1 ppm to 10 ppm) increased SCE levels following 20-hour exposure of BHK-21 cells to the test chemicals.
Neuronal models for evaluation of proliferation in vitro using high content screening
In vitro test methods can provide a rapid approach for the screening of large numbers of chemicals for their potential to produce toxicity (hazard identification). In order to identify potential developmental neurotoxicants, a battery of in vitro tests for neurodevelopmental proc...
Analysis of Chemical Bioactivity through In Vitro Profiling ...
Safety assessment of drugs and environmental chemicals relies extensively on animal testing. However, the quantity of chemicals needing assessment and challenges of species extrapolation drive the development of alternative approaches. The EPA’s ToxCast and the multiagency Tox21 programs address this through use of an extensive in vitro screening program to generate data on a large library of important environmental chemicals. These in vitro assays encompass both cell-free, biochemical assays targeting proteins that may be potential molecular initiating events and cellular assays that provide coverage of critical signaling pathways and toxicity phenotypes. Effects on model organisms such as the developing zebrafish, are also part of the testing strategy. A variety of computational approaches are used to analyze the resulting complex data sets to gain insight in to inherent biological activity of chemicals and possible mechanisms of toxicity. Several case studies including identification of modulators of estrogen receptor and aromatic hydrocarbon receptor pathways with effects in primary human cell systems will be described. In addition, existing in vivo data from a subset of the chemicals was used to anchor predictive models using in vitro data for a number of adverse endpoints including reproductive and developmental toxicities. The strengths and weaknesses of this approach will be described. This work does not necessarily reflect official Agency policy. Pres
Identifying Metabolically Active Chemicals Using a Consensus ...
Traditional toxicity testing provides insight into the mechanisms underlying toxicological responses but requires a high investment in a large number of resources. The new paradigm of testing approaches involves rapid screening studies able to evaluate thousands of chemicals across hundreds of biological targets through use of in vitro assays. Endocrine disrupting chemicals (EDCs) are of concern due to their ability to alter neurodevelopment, behavior, and reproductive success of humans and other species. A recent integrated computational model examined results across 18 ER-related assays in the ToxCast in vitro screening program to eliminate chemicals that produce a false signal by possibly interfering with the technological attributes of an individual assay. However, in vitro assays can also lead to false negatives when the complex metabolic processes that render a chemical bioactive in a living system might be unable to be replicated in an in vitro environment. In the current study, the influence of metabolism was examined for over 1,400 chemicals considered inactive using the integrated computational model. Over 2,000 first-generation and over 4,000 second-generation metabolites were generated for the inactive chemicals using in silico techniques. Next, a consensus model comprised of individual structure activity relationship (SAR) models was used to predict ER-binding activity for each of the metabolites. Binding activity was predicted for 8-10% of the meta
Sunlight-Dependent Hydrogen Production by Photosensitizer/Hydrogenase Systems.
Adam, David; Bösche, Lisa; Castañeda-Losada, Leonardo; Winkler, Martin; Apfel, Ulf-Peter; Happe, Thomas
2017-03-09
We report a sustainable in vitro system for enzyme-based photohydrogen production. The [FeFe]-hydrogenase HydA1 from Chlamydomonas reinhardtii was tested for photohydrogen production as a proton-reducing catalyst in combination with eight different photosensitizers. Using the organic dye 5-carboxyeosin as a photosensitizer and plant-type ferredoxin PetF as an electron mediator, HydA1 achieves the highest light-driven turnover number (TON HydA1 ) yet reported for an enzyme-based in vitro system (2.9×10 6 mol(H 2 ) mol(cat) -1 ) and a maximum turnover frequency (TOF HydA1 ) of 550 mol(H 2 ) mol(HydA1) -1 s -1 . The system is fueled very effectively by ambient daylight and can be further simplified by using 5-carboxyeosin and HydA1 as a two-component photosensitizer/biocatalyst system without an additional redox mediator. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Delvarani, Abbas; Mohammadzadeh Akhlaghi, Nahid; Aminirad, Raana; Tour Savadkouhi, Sohrab; Vahdati, Seyed Aliakbar
2017-01-01
Introduction: The aim of this in vitro study was to compare the amount of apically extruded debris after root canal preparation using rotary and reciprocating systems in severely curved root canals. Methods and Materials: Thirty six extracted human mandibular first molars with 25-35° curvature in their mesiobuccal (MB) canal (according to Schneider’s method) were cleaned and shaped with ProTaper and WaveOne systems. The extruded debris was collected and their net weight was calculated. To compare the efficiency of the two systems, the operation time was also measured. The data were analyzed with t-test. Results: The amount of extruded debris in WaveOne group was significantly greater in comparison with ProTaper group (26%). The operating time for ProTaper was however, significantly longer than WaveOne. Conclusion: Both root preparation systems caused some degree of debris extrusion through the apical foramen. However, this amount was greater in WaveOne instruments. PMID:28179921
Bhagavaldas, Moushmi Chalakkarayil; Diwan, Abhinav; Kusumvalli, S.; Pasha, Shiraz; Devale, Madhuri; Chava, Deepak Chowdary
2017-01-01
Objectives: The aim of this in vitro study was to compare the efficacy of two retreatment rotary systems in the removal of Gutta-percha (GP) and sealer from the root canal walls with or without solvent. Materials and Methods: Forty-eight extracted human mandibular first premolars were prepared and obturated with GP and AH Plus sealer. Samples were then randomly divided into four groups. Group I was retreated with MtwoR rotary system without solvent, Group II was retreated with MtwoR rotary system with Endosolv R as the solvent, Group III with D-RaCe rotary system without solvent, and Group IV with D-RaCe rotary system and Endosolv R solvent. The cleanliness of canal walls was determined by stereomicroscope (×20) and AutoCAD software. Kruskal–Wallis test and Mann–Whitney U-test were used to compare the data. Results: Results showed that none of the retreatment systems used in this study was able to completely remove the root canal filling material. D-RaCe with or without solvent showed significantly (P > 0.05) less filling material at all levels compared to MtwoR with/without solvent. Conclusion: Within the limitation of the current study, D-RaCe rotary retreatment system is more effective in removing filling material from root canal walls when compared to MtwoR rotary retreatment system. PMID:28761246
Toxicological assessment of adverse health outcomes associated with exposure to complex mixtures provides an integrated response of the organism (or in vitro test system) that accounts for additivity among the components (both dose and response) as well as any greater than or les...
There is a need for rapid, efficient and cost effective alternatives to traditional in vivo developmental neurotoxicity testing. In vitro cell culture models can recapitulate many of the key cellular processes of nervous system development, including neurite outgrowth, and may be...
The focus of the research presented here is the development of an in vitro thyroid gland culture system to test the effect of chemicals directly on the gland without influence of other parts of the HPT axis.
Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G
2018-01-25
The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.
Keele, Bernard B.; Powell, Hubert L.; Navia, Juan M.; McGhee, Jerry
1971-01-01
Actinobolin, a known inhibitor of protein synthesis, has been shown not to interfere selectively with acid production or dextransucrase activity in a cariogenic streptococcus when the antibiotic is added to a concentration of 500 μg/ml. It has also been shown that actinobolin does not alter the total in vivo flora of the oral cavity of the rat when tested in a rat caries model system. A culture of cariogenic streptococci, adapted to in vitro growth in the presence of 1 mg of actinobolin per ml, has also been isolated. PMID:4944810
Kandarova, Helena; Letasiova, Silvia; Adriaens, Els; Guest, Robert; Willoughby, Jamin A; Drzewiecka, Agnieszka; Gruszka, Katarzyna; Alépée, Nathalie; Verstraelen, Sandra; Van Rompay, An R
2018-06-01
Assessment of acute eye irritation potential is part of the international regulatory requirements for testing of chemicals. The objective of the CON4EI (CONsortium for in vitro Eye Irritation testing strategy) project was to develop tiered testing strategies for eye irritation assessment for all drivers of classification. A set of 80 reference chemicals (38 liquids and 42 solids) was tested with eight different alternative methods. Here, the results obtained with reconstructed human cornea-like epithelium (RhCE) EpiOcular™ in the EpiOcular time-to-toxicity Tests (Neat and Dilution ET-50 protocols) are presented. The primary aim of this study was to evaluate whether test methods can discriminate chemicals not requiring classification for serious eye damage/eye irritancy (No Category) from chemicals requiring classification and labelling for Category 1 and Category 2. In addition, the predictive capacity in terms of in vivo drivers of classification was investigated. The chemicals were tested in two independent runs by MatTek In Vitro Life Science Laboratories. Results of this study demonstrate very high specificity of both test protocols. With the existing prediction models described in the SOPs, the specificity of the Neat and Dilution method was 87% and 100%, respectively. The Dilution method was able to correctly predicting 66% of GHS Cat 2 chemicals, however, prediction of GHS Cat 1 chemicals was only 47%-55% using the current protocols. In order to achieve optimal prediction for all three classes, a testing strategy was developed which combines the most predictive time-points of both protocols and for tests liquids and solids separately. Using this new testing strategy, the sensitivity for predicting GHS Cat 1 and GHS Cat 2 chemicals was 73% and 64%, respectively and the very high specificity of 97% was maintained. None of the Cat 1 chemicals was underpredicted as GHS No Category. Further combination of the EpiOcular time-to-toxicity protocols with other validated in vitro systems evaluated in this project, should enable significant reduction and even possible replacement of the animal tests for the final assessment of the irritation potential in all of the GHS classes. Copyright © 2017 Elsevier Ltd. All rights reserved.
21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...
21 CFR 864.5425 - Multipurpose system for in vitro coagulation studies.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Multipurpose system for in vitro coagulation... Hematology Devices § 864.5425 Multipurpose system for in vitro coagulation studies. (a) Identification. A multipurpose system for in vitro coagulation studies is a device consisting of one automated or semiautomated...
Acid-degradable polyurethane particles for protein-based vaccines
Bachelder, Eric M.; Beaudette, Tristan T.; Broaders, Kyle E.; Paramonov, Sergey E.; Dashe, Jesse; Fréchet, Jean M. J.
2009-01-01
Acid-degradable particles containing a model protein antigen, ovalbumin, were prepared from a polyurethane with acetal moieties embedded throughout the polymer, and characterized by dynamic light scattering and transmission electron microscopy. The small molecule degradation by-product of the particles was synthesized and tested in vitro for toxicity indicating an LC50 of 12,500 μg/ml. A new liquid chromatography-mass spectrometry technique was developed to monitor the in vitro degradation of these particles. The degradation by-product inside RAW macrophages was at its highest level after 24 hours of culture and was efficiently exocytosed until it was no longer detectable after four days. When tested in vitro, these particles induced a substantial increase in the presentation of the immunodominant ovalbumin-derived peptide SIINFEKL in both macrophages and dendritic cells. In addition, vaccination with these particles generated a cytotoxic T-lymphocyte response that was superior to both free ovalbumin and particles made from an analogous but slower-degrading acid-labile polyurethane polymer. Overall, we present a fully degradable polymer system with non-toxic by-products, which may find use in various biomedical applications including protein-based vaccines. PMID:18710254
In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice
Yoon, Kyong Sup; Ketzis, Jennifer K.; Andrewes, Samuel W.; Wu, Christopher S.; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J.
2015-01-01
The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. PMID:26336209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teeguarden, Justin G.; Mikheev, Vladimir B.; Minard, Kevin R.
testing the rapidly growing number of nanomaterials requires large scale use of in vitro systems under the presumption that these systems are sufficiently predictive or descriptive of responses in in vivo systems for effective use in hazard ranking. We hypothesized that improved relationships between in vitro and in vivo models of experimental toxicology for nanomaterials would result from placing response data in vitro and in vivo on the same dose scale, the amount of material associated with cells (target cell dose). Methods: Balb/c mice were exposed nose-only to an aerosol of 12.8 nm (68.6 nm CMD, 19.9 mg/m3, 4 hours)more » super paramagnetic iron oxide particles, target cell doses were calculated and biomarkers of response anchored with histological evidence were identified by global transcriptomics. Representative murine epithelial and macrophage cell types were exposed in vitro to the same material in liquid suspension for four hours and levels nanoparticle regulated cytokine transcripts identified in vivo were quantified as a function of measured nanoparticle cellular dose. Results. Target tissue doses of 0.009-0.4 μg SPIO/cm2 lung led to an inflammatory response in the alveolar region characterized by interstitial inflammation and macrophage infiltration. In vitro, higher target tissue doses of ~1.2-4 μg SPIO/ cm2 of cells were required to induce transcriptional regulation of markers of inflammation, CXCL2 CCL3, in C10 lung epithelial cells. Estimated in vivo macrophage SPIO nanoparticle doses ranged from 1-100 pg/cell, and induction of inflammatory markers was observed in vitro in macrophages at doses of 8-35 pg/cell. Conclusions: Application of target tissue dosimetry revealed good correspondence between target cell doses triggering inflammatory processes in vitro and in vivo in the alveolar macrophage population, but not in the epithelial cells of the alveolar region. These findings demonstrate the potential for target tissue dosimetry to enable the more quantitative comparison of in vitro and in vivo systems advance their use for hazard assessment and extrapolation to humans. The mildly inflammogentic cellular doses experienced by mice were similar those calculated for humans exposed to the same at the existing permissible exposure limit of 10 mg/m3 iron oxide (as Fe).« less
Bolognesi, Claudia; Castoldi, Anna F; Crebelli, Riccardo; Barthélémy, Eric; Maurici, Daniela; Wölfle, Detlef; Volk, Katharina; Castle, Laurence
2017-06-01
Food contact materials are all materials and articles intended to come directly or indirectly into contact with food. Before being included in the positive European "Union list" of authorized substances (monomers, other starting substances and additives) for plastic food contact materials, the European Food Safety Authority (EFSA) must assess their safety "in use". If relevant for risk, the safety of the main impurities, reaction and degradation products originating from the manufacturing process is also evaluated. Information on genotoxicity is always required irrespective of the extent of migration and the resulting human exposure, in view of the theoretical lack of threshold for genotoxic events. The 2008 EFSA approach, requiring the testing of food contact materials in three in vitro mutagenicity tests, though still acceptable, is now superseded by the 2011 EFSA Scientific Committee's recommendation for only two complementary tests including a bacterial gene mutation test and an in vitro micronucleus test, to detect two main genetic endpoints (i.e., gene mutations and chromosome aberrations). Follow-up of in vitro positive results depends on the type of genetic effect and on the substance's systemic availability. In this study, we provide an analysis of the data on genotoxicity testing gathered by EFSA on food contact materials for the period 1992-2015. We also illustrate practical examples of the approaches that EFSA took when evaluating "non standard" food contact chemicals (e.g., polymeric additives, oligomer or other reaction mixtures, and nanosubstances). Additionally, EFSA's experience gained from using non testing methods and/or future possibilities in this area are discussed. Environ. Mol. Mutagen. 58:361-374, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
The comet assay: assessment of in vitro and in vivo DNA damage.
Bajpayee, Mahima; Kumar, Ashutosh; Dhawan, Alok
2013-01-01
Rapid industrialization and pursuance of a better life have led to an increase in the amount of chemicals in the environment, which are deleterious to human health. Pesticides, automobile exhausts, and new chemical entities all add to air pollution and have an adverse effect on all living organisms including humans. Sensitive test systems are thus required for accurate hazard identification and risk assessment. The Comet assay has been used widely as a simple, rapid, and sensitive tool for assessment of DNA damage in single cells from both in vitro and in vivo sources as well as in humans. Already, the in vivo comet assay has gained importance as the preferred test for assessing DNA damage in animals for some international regulatory guidelines. The advantages of the in vivo comet assay are its ability to detect DNA damage in any tissue, despite having non-proliferating cells, and its sensitivity to detect genotoxicity. The recommendations from the international workshops held for the comet assay have resulted in establishment of guidelines. The in vitro comet assay conducted in cultured cells and cell lines can be used for screening large number of compounds and at very low concentrations. The in vitro assay has also been automated to provide a high-throughput screening method for new chemical entities, as well as environmental samples. This chapter details the in vitro comet assay using the 96-well plate and in vivo comet assay in multiple organs of the mouse.
NASA Astrophysics Data System (ADS)
dos Reis Júnior, João Alves; de Assis, Patrícia Nascimento; Paraguassú, Gardênia Matos; de Vieira de Castro, Isabele Cardoso; Trindade, Renan Ferreira; Marques, Aparecida Maria Cordeiro; Almeida, Paulo Fernando; Pinheiro, Antônio Luiz Barbosa
2012-09-01
Osteomyelitis it is an acute or chronic inflammation in the marrow spaces in the superficial or cortical bone, and associated to bacterial infection. Chronic osteomyelitis represents a major health problem due to its difficult treatment and increased morbidity. Antimicrobial photodynamic therapy (APT) by laser is a treatment based on a cytotoxic photochemical reaction in which, a bright light produced by a laser system and an active photosensitizer absorbed by cells leads an activation that induces a series of metabolic reactions that culminates a bacterial killing. The aim of this study was to assess, both in vitro and in vivo, the effect of lethal laser photosensitization on osteomyelitis. On the in vitro study a diode laser (λ660nm; 40mW; o/ = 0.4 cm2; 5 or 10 J/cm2) and 5, 10 and 15μg/mL toluidine blue (TB) were tested and the best parameter chosen for the in vivo study. The concentration of 5μg/mL was selected to perform the decontamination of infected by Staphylococcus aureus tibial bone defects in rats. The results were performed by ANOVA test. On the in vitro studies all PDTs groups in the different concentrations reduced significantly (p<0,001) the amount of bacteria. On the in vivo study PDT group presented a bacterial reduction of 97,4% (P<0,001). The photodynamic therapy using toluidine blue was effective in reducing the staphiloccocus aureus in both in vitro and in vivo studies.
Choudhary, M; Clavica, F; van Mastrigt, R; van Asselt, E
2016-06-20
Electrophysiological studies of whole organ systems in vitro often require measurement of nerve activity and/or stimulation of the organ via the associated nerves. Currently two-compartment setups are used for such studies. These setups are complicated and require two fluids in two separate compartments and stretching the nerve across one chamber to the other, which may damage the nerves. We aimed at developing a simple single compartment setup by testing the electrophysiological properties of FC-770 (a perfluorocarbon) for in vitro recording of bladder afferent nerve activity and electrical stimulation of the bladder. Perflurocarbons are especially suitable for such a setup because of their high oxygen carrying capacity and insulating properties. In male Wistar rats, afferent nerve activity was recorded from postganglionic branches of the pelvic nerve in vitro, in situ and in vivo. The bladder was stimulated electrically via the efferent nerves. Organ viability was monitored by recording spontaneous contractions of the bladder. Additionally, histological examinations were done to test the effect of FC-770 on the bladder tissue. Afferent nerve activity was successfully recorded in a total of 11 rats. The bladders were stimulated electrically and high amplitude contractions were evoked. Histological examinations and monitoring of spontaneous contractions showed that FC-770 maintained organ viability and did not cause damage to the tissue. We have shown that FC-770 enables a simple, one compartment in vitro alternative for the generally used two compartment setups for whole organ electrophysiological studies.
Use of perfusion bioreactors and large animal models for long bone tissue engineering.
Gardel, Leandro S; Serra, Luís A; Reis, Rui L; Gomes, Manuela E
2014-04-01
Tissue engineering and regenerative medicine (TERM) strategies for generation of new bone tissue includes the combined use of autologous or heterologous mesenchymal stem cells (MSC) and three-dimensional (3D) scaffold materials serving as structural support for the cells, that develop into tissue-like substitutes under appropriate in vitro culture conditions. This approach is very important due to the limitations and risks associated with autologous, as well as allogenic bone grafiting procedures currently used. However, the cultivation of osteoprogenitor cells in 3D scaffolds presents several challenges, such as the efficient transport of nutrient and oxygen and removal of waste products from the cells in the interior of the scaffold. In this context, perfusion bioreactor systems are key components for bone TERM, as many recent studies have shown that such systems can provide dynamic environments with enhanced diffusion of nutrients and therefore, perfusion can be used to generate grafts of clinically relevant sizes and shapes. Nevertheless, to determine whether a developed tissue-like substitute conforms to the requirements of biocompatibility, mechanical stability and safety, it must undergo rigorous testing both in vitro and in vivo. Results from in vitro studies can be difficult to extrapolate to the in vivo situation, and for this reason, the use of animal models is often an essential step in the testing of orthopedic implants before clinical use in humans. This review provides an overview of the concepts, advantages, and challenges associated with different types of perfusion bioreactor systems, particularly focusing on systems that may enable the generation of critical size tissue engineered constructs. Furthermore, this review discusses some of the most frequently used animal models, such as sheep and goats, to study the in vivo functionality of bone implant materials, in critical size defects.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-13
... certain regulatory testing purposes without the need for animal testing. The Organisation for Economic Co... DEPARTMENT OF HEALTH AND HUMAN SERVICES Recommendations on In Vitro Ocular Safety Testing Methods... Ocular Safety Testing AGENCY: National Institute of Environmental Health Sciences (NIEHS), National...
Kerkhoffs, Wolfgang; Schumacher, Oliver; Meyns, Bart; Verbeken, Erik; Leunens, Veerle; Bollen, Hilde; Reul, Helmut
2004-10-01
The design concept and first in vitro and in vivo results of a long-term implantable ventricular assist device system based on a microaxial blood pump are presented. The blood-immersed parts of the pump consist of a single-stage impeller and a proximally integrated microelectric motor. Both parts are surrounded by a pump housing currently made of polycarbonate to allow visible access to the blood-exposed parts. A titanium inflow cage attached to the tip of the housing is directly implanted into the left ventricular apex. The outflow of the pump is connected to the descending aorta by means of an e-PTFE graft. The overall dimensions of the device are 12 mm in outer diameter and about 50 mm in length. The calculated lifetime of the device is up to 2 years. The system underwent long-term durability tests, hydraulic performance tests, dynamic stability tests, and in vitro hemolysis and thrombogenicity tests. Furthermore, animal tests have been performed in adult Dorset sheep. In a first series, the pump has been placed extracorporeally; in a second series, the pump was completely implanted. Mean duration of the animal experiments of the second series was 31 days (range 8-110 days, n=14); no anticoagulation was administered over the whole test period. Blood data revealed no significant changes in blood cell counts, ionogram, or any other value. No end-organ dysfunction induced by long-term support could be observed, nor did the pathology reveal any evidence of thromboembolic complications.
Factors Affecting the Shear Bond Strength of Orthodontic Brackets - a Review of In Vitro Studies.
Bakhadher, Waleed; Halawany, Hassan; Talic, Nabeel; Abraham, Nimmi; Jacob, Vimal
2015-01-01
The adhesive material used to bond orthodontic brackets to teeth should neither fail during the treatment period, resulting in treatment delays, untoward expenses or patient inconvenience nor should it damage the enamel on debonding at the end of the treatment. Although the effectiveness of a bonding system and any unfavorable effects on the enamel may be studied by conducting in-vivo studies, it is nearly impossible to independently analyze different variables that influence a specific bonding system in the oral environment. In-vitro studies, on the other hand, may utilize more standardized protocols for testing different bonding systems and materials available. Thus, the present review focused attention on in-vitro studies and made an attempt to discuss material-related, teeth-related (fluorotic vs non-fluorotic teeth) and other miscellaneous factors that influences the shear bond strength of orthodontic brackets. Within the limitations of this review, using conventional acid-etch technique, ceramic brackets and bonding to non-fluorotic teeth was reported to have a positive influence on the shear bond strength of orthodontic brackets, but higher shear bond strength found on using ceramic brackets can be dangerous for the enamel.
Root damage induced by intraosseous anesthesia. An in vitro investigation.
Graetz, Christian; Fawzy-El-Sayed, Karim-Mohamed; Graetz, Nicole; Dörfer, Christof-Edmund
2013-01-01
The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this 'worst case scenario' comparing five commercially available IOA systems. Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p ≤ 0.05. All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper, Anesto, Intraflow, Stabident) or 100% (X-Tip) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper), 40% (Anesto), 60% (Intraflow), 90% (Stabident) and 100% (X-Tip) of all perforations. Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems.
2014-01-01
Background Tobacco smoke toxicity has traditionally been assessed using the particulate fraction under submerged culture conditions which omits the vapour phase elements from any subsequent analysis. Therefore, methodologies that assess the full interactions and complexities of tobacco smoke are required. Here we describe the adaption of a modified BALB/c 3T3 neutral red uptake (NRU) cytotoxicity test methodology, which is based on the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM) protocol for in vitro acute toxicity testing. The methodology described takes into account the synergies of both the particulate and vapour phase of tobacco smoke. This is of particular importance as both phases have been independently shown to induce in vitro cellular cytotoxicity. Findings The findings from this study indicate that mainstream tobacco smoke and the gas vapour phase (GVP), generated using the Vitrocell® VC 10 smoke exposure system, have distinct and significantly different toxicity profiles. Within the system tested, mainstream tobacco smoke produced a dilution IC50 (dilution (L/min) at which 50% cytotoxicity is observed) of 6.02 L/min, whereas the GVP produced a dilution IC50 of 3.20 L/min. In addition, we also demonstrated significant dose-for-dose differences between mainstream cigarette smoke and the GVP fraction (P < 0.05). This demonstrates the importance of testing the entire tobacco smoke aerosol and not just the particulate fraction, as has been the historical preference. Conclusions We have adapted the NRU methodology based on the ICCVAM protocol to capture the full interactions and complexities of tobacco smoke. This methodology could also be used to assess the performance of traditional cigarettes, blend and filter technologies, tobacco smoke fractions and individual test aerosols. PMID:24935030
Currently, little justification is provided for nanomaterial testing concentrations in in vitro assays. The in vitro concentrations typically used may be higher than those experienced in exposed humans. Selection of concentration levels for hazard evaluation based on real-world ...
Involvement of DMT1 +IRE in the transport of lead in an in vitro BBB model.
Wang, Qiang; Luo, Wenjing; Zhang, Wenbin; Liu, Mingchao; Song, Haifeng; Chen, Jingyuan
2011-06-01
Homeostasis of the central nervous system (CNS) microenvironment is maintained by the blood-brain barrier (BBB). The BBB is particularly vulnerable to lead (Pb) insults. This study was designed to test the hypothesis that divalent metal transporter 1 (DMT1), which is a divalent cation membrane transporter, was involved in transcellular transport across the BBB. An in vitro BBB model, which was a co-culture system of human umbilical vascular endothelial cells (ECV304) and rat glioma cells (C6), was established. Transendothelial electrical resistance (TEER) and fluoresceinisothiocyanate (FITC)-dextran permeability results showed that Pb exposure at the tested concentrations had no significant effects on intercellular tightness. Pb transport displayed properties that were associated with iron response element (IRE) positive isoform of DMT1. Accordingly, Pb transport was significantly blocked by iron (Fe). Moreover, ECV304 cells that were depleted of Fe with the chelator deferoxamine (DFO) demonstrated increased Pb transport. By transfecting ECV-304 cells with a DMT1 expression vector, overexpression of DMT1 promoted an increase in Pb transport. Treatment of ECV304 cells with DMT1 antisense oligonucleotides (ASONs) MA1 significantly inhibited the transport of Pb. Our results suggest that Pb is transported in the in vitro BBB model by a transporter with biochemical properties similar to those of the DMT1 IRE-positive isoform. Copyright © 2009 Elsevier Ltd. All rights reserved.
Tavakolpour, Yousef; Moosavi-Nasab, Marzieh; Niakousari, Mehrdad; Haghighi-Manesh, Soroush
2016-03-01
The essential oil (EO) from dried ground powder leaves and stems of Thymua danesis was extracted using hydrodistillation (HD), ohmic extraction (OE), ultrasound-assisted HD and ultrasound-assisted OE methods. Then, the antioxidant, antimicrobial, and sensory properties of the EO were investigated both in vitro and in food systems. Thyme EO extracted by ultrasound-assisted HD method had promising antibacterial activities against Escherichia coli and Staphylococcus aureus and had the best antioxidant properties when tested in vitro. In food systems, higher concentrations of the EO were needed to exert similar antibacterial and antioxidant effects. Furthermore, thyme EO added yogurt and drink yogurt revealed better sensory properties than the control and fresh samples. Essential oil from Thymua danesis has a good potential to be used as an antioxidant, antimicrobial, and flavoring agent in food systems and the extraction method effects on the antioxidant and antimicrobial properties of the thyme extract.
Dumont, L; Oblette, A; Rondanino, C; Jumeau, F; Bironneau, A; Liot, D; Duchesne, V; Wils, J; Rives, N
2016-12-01
Does vitamin A (retinol, Rol) prevent round spermatid nuclear damage and increase the production of motile sperm during in vitro maturation of vitrified pre-pubertal mouse testicular tissue? The supplementation of an in vitro culture of ~0.75 mm 3 testicular explants from pre-pubertal mice with Rol enhances spermatogenesis progression during the first spermatogenic wave. The production of functional spermatozoa in vitro has only been achieved in the mouse model and remains a rare event. Establishing an efficient culture medium for vitrified pre-pubertal testicular tissue is now a crucial step to improve the spermatic yield obtained in vitro. The role of Rol in promoting the differentiation of spermatogonia and their entry into meiosis is well established; however, it has been postulated that Rol is also required to support their full development into elongated spermatids. A total of 60 testes from 6.5 days post-partum (dpp) mice were vitrified/warmed, cut into fragments and cultured for 30 days: 20 testes were used for light microscopy and histological analyses, 20 testes for DNA fragmentation assessment in round spermatids and 20 testes for induced sperm motility assessment. Overall, 16 testes of 6.5 dpp were used as in vitro fresh tissue controls and 12 testes of 36.5 dpp mice as in vivo controls. Testes were vitrified with the optimal solid surface vitrification procedure and cultured with an in vitro organ culture system until Day 30 (D30). Histological analysis, cell death, degenerating round spermatids, DNA fragmentation in round spermatids and induced sperm motility were assessed. Testosterone levels were measured in media throughout the culture by radioimmunoassay. At D30, better tissue development together with higher differentiation of spermatogonial stem cells, and higher global cell division ability were observed for vitrified/warmed testicular fragments of ~0.75 mm 3 with a culture medium supplemented with Rol compared to controls. During in vitro culture of vitrified pre-pubertal testicular tissue, Rol enhanced and maintained the entry of spermatogonia into meiosis and promoted a higher spermatic yield. Furthermore, decreased round spermatid nuclear alterations and DNA damage combined with induced sperm motility comparable to in vivo highlight the crucial role of Rol in the progression of spermatogenesis during the first wave. Despite our promising results, the culture media will have to be further improved and adapted within the context of a human application. The results have potential implications for the handling of human pre-pubertal testicular tissues cryopreserved for fertility preservation. However, because some alterations in round spermatids persist after in vitro culture with Rol, the procedure needs to be optimized before human application, bearing in mind that the murine and human spermatogenic processes differ in many respects. None. This study was supported by a Ph.D. grant from the Normandy University and a financial support from 'la Ligue nationale contre le cancer' (both awarded to L.D.), funding from Rouen University Hospital, Institute for Research and Innovation in Biomedicine (IRIB) and Agence de la Biomédecine. The authors declare that there is no conflict of interest. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.For Permissions, please email: journals.permissions@oup.com.
Screening method for inhibitors against formosan subterranean termite beta-glucosidases in vivo.
Zhu, Betty C R; Henderson, Gregg; Laine, Roger A
2005-02-01
Cellulose, a main structural constituent of plants, is the major nutritional component for wood-feeding termites. Enzymatic hydrolysis of cellulose to glucose occurs by the action of cellulases, a mixture of the three major classes of enzymes including endo-1,4-beta-glucanases, exo-1,4-beta-glucanases, and beta-glucosidase. Lower termites, such as the Formosan subterranean termite, Coptotermes formosanus Shiraki, require cellulolytic protozoa to efficiently digest cellulose for survival. Inhibitors developed against any of these cellulase system enzymes would be a potential termite treatment avenue. Our effort was to develop a screening system to determine whether termites could be controlled by administration of cellulase system inhibitors. Some reported compounds such as gluconolactone, conduritol B epoxide, and 1-deoxynojirimycin are potential beta-glucosidase inhibitors, but they have only been tested in vitro. We describe an in vivo method to test the inhibitory ability of the designated chemicals to act on beta-1,4-glucosidases, one member of the cellulase system that is the key step that releases glucose for use as an energy and carbon source for termites. Inhibition in releasing glucose from cellooligosaccharides might be sufficient to starve termites. Fluorescein di-beta-D-glucopyranoside was used as the artificial enzyme substrate and the fluorescent intensity of the reaction product (fluorescein) quantified with an automated fluorescence plate reader. Several known in vitro beta-1,4-glucosidase inhibitors were tested in vivo, and their inhibitory potential was determined. Endogenous and protozoan cellulase activities are both assumed to play a role.
Development of Extraction Tests for Determining the Bioavailability of Metals in Soil
2005-06-01
Liability Information System COV coefficient of variance Cr(III) trivalent chromium Cr(VI) hexavalent chromium DCB dithionite citrate bicarbonate...indicated that bioavailability was a less important issue for chromium than understanding the form of chromium (i.e., trivalent or hexavalent) that is...7.3.3 Chromium 50 7.3.4 Lead 50 7.3.5 Summary of In Vitro Testing for Wildlife Receptors 51 7.4 References 51 Supplemental Materials for
Medical ultrasonic tomographic system
NASA Technical Reports Server (NTRS)
Heyser, R. C.; Lecroissette, D. H.; Nathan, R.; Wilson, R. L.
1977-01-01
An electro-mechanical scanning assembly was designed and fabricated for the purpose of generating an ultrasound tomogram. A low cost modality was demonstrated in which analog instrumentation methods formed a tomogram on photographic film. Successful tomogram reconstructions were obtained on in vitro test objects by using the attenuation of the fist path ultrasound signal as it passed through the test object. The nearly half century tomographic methods of X-ray analysis were verified as being useful for ultrasound imaging.
de Souza de Bustamante Monteiro, Mariana Sato; Ozzetti, Rafael Antonio; Vergnanini, André Luiz; de Brito-Gitirana, Lycia; Volpato, Nadia Maria; de Freitas, Zaida Maria Faria; Ricci-Júnior, Eduardo; dos Santos, Elisabete Pereira
2012-01-01
Purpose Awareness of the harmful effects of ultraviolet radiation has led to the increasing use of sunscreens, thus, the development of safe and effective antisolar preparations is important. The inclusion of sunscreen molecules in different release systems, like liposomes (lipo) and cyclodextrins (CD) is therefore required. Methods The in vivo sun protection factor (SPF), water resistance, and in vitro transdermal penetration test of octyl p-methoxycinnamate (OMC) in different dispersions, such as OMC encapsulated in liposomes (lipo/OMC), OMC encapsulated in β-cyclodextrins (β-CD/OMC), OMC encapsulated in both release systems (lipo/OMC and β-CD/OMC), and an OMC-free formulation were determined. Results Although the formulation containing only the lipo/OMC system revealed high value of in vivo SPF (11.0 ± 1.3) and water resistance (SPF = 10.3 ± 2.2), the formulation containing both release systems (lipo/OMC + β-cyclodextrin/OMC) showed the best result in the in vivo SPF test (11.6 ± 1.6). In the penetration test, the formulation containing the lipo/OMC system had better performance, since a high amount of OMC in the epidermis (18.04 ± 1.17 μg) and a low amount of OMC in the dermis (9.4 ± 2.36 μg) were observed. These results suggest that liposomes interact with the cells of the stratum corneum, promoting retention of OMC in this layer. Conclusion According to our study, the lipo/OMC system is the most advantageous release system, due to its ability to both increase the amount of OMC in the epidermis and decrease the risk of percutaneous absorption. PMID:22787399
[A new methodological approach for leptospira persistence studies in case of mixed leptospirosis].
Samsonova, A P; Petrov, E M; Vyshivkina, N V; Anan'ina, Iu V
2003-01-01
A new methodical approach for Leptospira persistence studies in case of mixed leptospirosis, based on the use of PCR test systems with different taxonomic specificity for the indication and identification of leptospires, was developed. Two PCR test systems (G and B) were used in experiments on BALB/c white mice to study patterns of the development of mixed infection caused by leptospires of serovar poi (genomospecies L. borgpeterseni) and grippotyphosa (genomospecies L. kirschneri). The conclusion was made of good prospects of this method application in studies on symbiotic relationships of leptospires both in vivo and in vitro.
Guillette, L J; Gross, T S; Gross, D A; Rooney, A A; Percival, H F
1995-01-01
The ubiquitous distribution of many contaminants and the nonlethal, multigenerational effects of such contaminants on reproductive, endocrine, and immune systems have led to concerns that wildlife worldwide are affected. Although the causal agents and effects are known for some species, the underlying physiological mechanisms associated with contaminant-induced reproductive modifications are still poorly understood and require extensive research. We describe a study examining the steroidogenic activity of gonads removed from juvenile alligators (Alligator mississippiensis) obtained from contaminated or control lakes in central Florida. Synthesis of estradiol-17 beta (E2) was significantly different when ovaries from the contaminated and control lakes were compared in vitro. Additionally, testes from males obtained from the contaminated lake. Lake Apopka, synthesized significantly higher concentrations of E2 when compared to testes obtained from control males. In contrast, testosterone (T) synthesis from all testes examined in this study displayed a normal pattern and produced concentrations greater than that observed from ovaries obtained from either lake. Interestingly, the pattern of gonadal steroidogenesis differs from previously reported plasma concentrations of these hormones obtained from the same individuals. We suggest that the differences between the in vivo and in vitro patterns are due to modifications in the hepatic degradation of plasma sex steroid hormones. PMID:7556021
Skin-on-a-chip model simulating inflammation, edema and drug-based treatment
Wufuer, Maierdanjiang; Lee, GeonHui; Hur, Woojune; Jeon, Byoungjun; Kim, Byung Jun; Choi, Tae Hyun; Lee, SangHoon
2016-01-01
Recent advances in microfluidic cell cultures enable the construction of in vitro human skin models that can be used for drug toxicity testing, disease study. However, current in vitro skin model have limitations to emulate real human skin due to the simplicity of model. In this paper, we describe the development of ‘skin-on-a-chip’ to mimic the structures and functional responses of the human skin. The proposed model consists of 3 layers, on which epidermal, dermal and endothelial components originated from human, were cultured. The microfluidic device was designed for co-culture of human skin cells and each layer was separated by using porous membranes to allow interlayer communication. Skin inflammation and edema were induced by applying tumor necrosis factor alpha on dermal layer to demonstrate the functionality of the system. The expression levels of proinflammatory cytokines were analyzed to illustrate the feasibility. In addition, we evaluated the efficacy of therapeutic drug testing model using our skin chip. The function of skin barrier was evaluated by staining tight junctions and measuring a permeability of endothelium. Our results suggest that the skin-on-a-chip model can potentially be used for constructing in vitro skin disease models or for testing the toxicity of cosmetics or drugs. PMID:27869150
Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating?
Jin, Chan; Zhao, Chenyao; Shen, Dachao; Dong, Wenxiang; Liu, Hongzhuo; He, Zhonggui
2018-02-01
The aim of the study was to assess the impact of the differences in dissolution profiles of meloxicam tablets on the in-vivo bioavailability parameters after oral administration. Compare in-vitro dissolution testing in the recommended media to evaluate in-vivo bioequivalence outcomes for the Biopharmaceutics Classification System Class II weak acidic drugs. Nine Beagle dogs received a single oral administration of each formulation (7.5 mg) in a three-way crossover design. The dissolution of meloxicam from both test products showed marked differences with that from the reference tablet in pH 1.0, 4.5 and 6.8 media at 50 or 75 rpm. Both formulations exhibiting slow or fast dissolution were then compared with the reference product for in-vivo bioequivalence study. Both products were bioequivalent with the reference tablet in either extent or rate of oral absorption. It indicated that the dissolution profiles which discriminated between the formulations in vitro did not accurately predict the in-vivo bioequivalence outcomes. Comparative dissolution profiles using similarity factor (f 2 ) in the recommended media should be relaxed to fulfil the requirements for the development, scale-up and postapproval changes to immediate release oral solid dosage forms of meloxicam. © 2017 Royal Pharmaceutical Society.
Jírová, Dagmar; Basketter, David; Liebsch, Manfred; Bendová, Hana; Kejlová, Kristina; Marriott, Marie; Kandárová, Helena
2010-02-01
Efforts to replace the rabbit skin irritation test have been underway for many years, encouraged by the EU Cosmetics Directive and REACH. Recently various in vitro tests have been developed, evaluated and validated. A key difficulty in confirming the validity of in vitro methods is that animal data are scarce and of limited utility for prediction of human effects, which adversely impacts their acceptance. This study examines whether in vivo or in vitro data most accurately predicted human effects. Using the 4-hr human patch test (HPT) we examined a number of chemicals whose EU classification of skin irritancy is known to be borderline, or where in vitro methods provided conflicting results. Of the 16 chemicals classified as irritants in the rabbit, only five substances were found to be significantly irritating to human skin. Concordance of the rabbit test with the 4-hr HPT was only 56%, whereas concordance of human epidermis models with human data was 76% (EpiDerm) and 70% (EPISKIN). The results confirm observations that rabbits overpredict skin effects in humans. Therefore, when validating in vitro methods, all available information, including human data, should be taken into account before making conclusions about their predictive capacity.
Verhagen, H; Aruoma, O I; van Delft, J H M; Dragsted, L O; Ferguson, L R; Knasmüller, S; Pool-Zobel, B L; Poulsen, H E; Williamson, G; Yannai, S
2003-05-01
There is increasing evidence that chemicals/test substances cannot only have adverse effects, but that there are many substances that can (also) have a beneficial effect on health. As this journal regularly publishes papers in this area and has every intention in continuing to do so in the near future, it has become essential that studies reported in this journal reflect an adequate level of scientific scrutiny. Therefore a set of essential characteristics of studies has been defined. These basic requirements are default properties rather than non-negotiables: deviations are possible and useful, provided they can be justified on scientific grounds. The 10 basic requirements for a scientific paper reporting antioxidant, antimutagenic or anticarcinogenic potential of test substances in in vitro experiments and animal studies in vivo concern the following areas: (1) Hypothesis-driven study design; (2) The nature of the test substance; (3) Valid and invalid test systems; (4) The selection of dose levels and gender; (5) Reversal of the effects induced by oxidants, carcinogens and mutagens; (6) Route of administration; (7) Number and validity of test variables; (8) Repeatability and reproducibility; (9) Statistics; and (10) Quality Assurance.
Zhu, Zhonglin; Ding, Hui; Shao, Hongyi; Zhou, Yixin; Wang, Guangzhi
2013-04-09
The wire fixation and the cable grip fixation have been developed for the extended trochanteric osteotomy (ETO) in the revision of total hip arthroplasty (THA). Many studies reported the postoperative performance of the patients, but with little quantitative biomechanical comparison of the two fixation systems. An in-vitro testing approach was designed to record the loosening between the femoral bed and the greater trochanter after fixations. Ten cadaveric femurs were chosen in this study. Each femur underwent the THA, revision by ETO and fixations. The tension to the greater trochanter was from 0 to 500N in vertical and lateral direction, respectively. The translation and rotation of the greater trochanter with respect to the bony bed were captured by an optical tracking system. In the vertical tension tests, the overall translation of the greater trochanter was observed 0.4 mm in the cable fixations and 7.0 mm in the wire fixations. In the lateral tension tests, the overall motion of the greater trochanter was 2.0 mm and 1.2° in the cable fixations, while it was 6.2 mm and 5.3° in the wire fixations. The result was significantly different between the two fixation systems. The stability of the proximal femur after ETO using different fixations in the revision THA was investigated. The cable grip fixation was significantly more stable than the wire fixation.
Greenfield, L J; Proctor, M C; Roberts, K R
1997-01-01
The purpose of this study was to develop a reduced profile stainless steel Greenfield filter with an over-the-wire delivery system and to compare its performance with the existing Food and Drug Administration-approved Greenfield filters. In addition, we wanted to standardize a system for evaluating filter prototypes. Percutaneous stainless steel filters with various hook configurations were evaluated for efficacy and safety in four in vitro modules designed to reproduce potential liabilities experimentally. Animal studies to assess thrombus capture and resolution, filter stability, migration, and hemodynamics were completed in 4 dogs and 38 sheep. Mathematical modeling suggested that hook angle was the most relevant factor in improving resistance to migration. Prototypes that varied with respect to hook length and angle were evaluated in both the in vitro testing unit and in sheep. The stainless steel filter with two downward directed hooks provided clot capture comparable with the current Greenfield filter, maintenance of flow, and resistance to fatigue and corrosion while providing significant resistance to migration and penetration (p < 0.05). The percutaneous stainless steel Greenfield filter with the alternating hook design provides a reduced profile device that can be placed over a wire to improve positioning. The use of a standardized testing system reduced both the time and cost of bringing this new device to the market.
Use of the Real Time xCelligence System for Purposes of Medical Microbiology.
Junka, Adam Feliks; Janczura, Adriana; Smutnicka, Danuta; Mączyńska, Beata; Anna, Secewicz; Nowicka, Joanna; Bartoszewicz, Marzenna; Gościniak, Grażyna
2012-09-28
Roche's xCelligence impedance-measuring instrument is one of a few commercially available systems of such type. According to the best knowledge of authors, instrument was tested so far only for eukaryotic cell research. The aim of this work was to estimate xCELLigence suitability for the microbiological tests, including (i) measurement of morphological changes in eukaryotic cells as a result of bacterial toxin activity, (ii) measurement of bacterial biofilm formation and (iii) impact of antiseptics on the biofilm structure. To test the infuence of bacterial LT enterotoxin on eukaryotic cell lines, Chinese Hamster Ovary (CHO) cell line and reference strain Escherichia coli ATTC 35401 were used. To investigate Roche's instrument ability to measure biofilm formation and impact of antiseptics on its development, Staphylococcus aureus ATTC6538 reference strain was used. The data generated during the experiments indicate excellent ability of xCelligence instrument to detect cytopathic effect caused by bacterial LT endotoxin and to detect staphylococcal biofilm formation. However, interpretation of the results obtained during real-time measurement of antiseptic's bactericidal activity against staphylococcal biofilm, caused many difficulties. xCelligence instrument can be used for real-time monitoring of morphological changes in CHO cells treated with bacterial LT enterotoxin and for real-time measurement of staphylococcal biofilm formation in vitro. Further investigation is necessary to confirm suitability of system to analyze antiseptic's antimicrobial activity against biofilm in vitro.
Synthetic thrombus model for in vitro studies of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermes, R.E.; Trajkovska, K.
1998-07-01
Laser thrombolysis is the controlled ablation of a thrombus (blood clot) blockage in a living arterial system. Theoretical modeling of the interaction of laser light with thrombi relies on the ability to perform in vitro experiments with well characterized surrogate materials. A synthetic thrombus formulation may offer more accurate results when compared to in vivo clinical experiments. The authors describe the development of new surrogate materials based on formulations incorporating chick egg, guar gum, modified food starch, and a laser light absorbing dye. The sound speed and physical consistency of the materials were very close to porcine (arterial) and humanmore » (venous) thrombi. Photographic and videotape recordings of pulsed dye laser ablation experiments under various experimental conditions were used to evaluate the new material as compared to in vitro tests with human (venous) thrombus. The characteristics of ablation and mass removal were similar to that of real thrombi, and therefore provide a more realistic model for in vitro laser thrombolysis when compared to gelatin.« less
Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration.
Wissing, S A; Müller, R H
2002-06-17
The aim of this study was the comparison of two different formulations (solid lipid nanoparticles (SLN) and conventional o/w emulsion) as carrier systems for the molecular sunscreen oxybenzone. The influence of the carrier on the rate of release was studied in vitro with a membrane-free model. The release rate could be decreased by up to 50% with the SLN formulation. Further in vitro measurements with static Franz diffusion cells were performed. In vivo, penetration of oxybenzone into stratum corneum on the forearm was investigated by the tape stripping method. It was shown that the rate of release is strongly dependent upon the formulation and could be decreased by 30-60% in SLN formulations. In all test models, oxybenzone was released and penetrated into human skin more quickly and to a greater extent from the emulsions. The rate of release also depends upon the total concentration of oxybenzone in the formulation. In vitro-in vivo correlations could be made qualitatively.
Kim, Jong Nam; Kim, Bong-Soo; Kim, Seong-Jae; Cerniglia, Carl E.
2012-01-01
ABSTRACT The Deepwater Horizon oil spill of 2010 raised concerns that dispersant and dispersed oil, as well as crude oil itself, could contaminate shellfish and seafood habitats with hazardous residues that had potential implications for human health and the ecosystem. However, little is known about the effects of crude oil and dispersant on the human fecal microbiota. The aim of this research was to evaluate the potential effects of Deepwater Horizon crude oil, Corexit 9500 dispersant, and their combination on human fecal microbial communities, using an in vitro culture test system. Fecal specimens from healthy adult volunteers were made into suspensions, which were then treated with oil, dispersant, or oil-dispersant mixtures under anaerobic conditions in an in vitro culture test system. Perturbations of the microbial community, compared to untreated control cultures, were assessed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and pyrosequencing methods. DGGE and pyrosequencing analysis showed that oil-dispersant mixtures reduced the diversity of fecal microbiota from all individuals. Real-time PCR results indicated that the copy numbers of 16S rRNA genes in cultures treated with dispersed oil or oil alone were significantly lower than those in control incubations. The abundance of the Bacteroidetes decreased in crude oil-treated and dispersed-oil-treated cultures, while the Proteobacteria increased in cultures treated with dispersed oil. In conclusion, the human fecal microbiota was affected differently by oil and dispersed oil, and the influence of dispersed oil was significantly greater than that of either oil or dispersant alone compared to control cultures. PMID:23093387
Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis.
Lee, Raymond Teck Ho; Ng, Ashley Shu Mei; Ingham, Philip W
2016-01-01
CRISPR/Cas9 is now regularly used for targeted mutagenesis in a wide variety of systems. Here we report the use of ribozymes for the generation of gRNAs both in vitro and in zebrafish embryos. We show that incorporation of ribozymes increases the types of promoters and number of target sites available for mutagenesis without compromising mutagenesis efficiency. We have tested this by comparing the efficiency of mutagenesis of gRNA constructs with and without ribozymes and also generated a transgenic zebrafish expressing gRNA using a heat shock promoter (RNA polymerase II-dependent promoter) that was able to induce mutagenesis of its target. Our method provides a streamlined approach to test gRNA efficiency as well as increasing the versatility of conditional gene knock out in zebrafish.
Kruse, Dustin E.; Lai, Chun-Yen; Stephens, Douglas N.; Sutcliffe, Patrick; Paoli, Eric E.; Barnes, Stephen H.; Ferrara, Katherine W.
2009-01-01
A new system is presented for generating controlled tissue heating with a clinical ultrasound scanner, and initial in vitro and in vivo results are presented that demonstrate both transient and sustained heating in the mild-hyperthermia range of 37–42ºC. The system consists of a Siemens Antares™ ultrasound scanner, a custom dual-frequency 3-row transducer array and an external temperature feedback control system. The transducer has 2 outer rows that operate at 1.5 MHz for tissue heating and a center row that operates at 5 MHz for B-mode imaging to guide the therapy. We compare the field maps obtained using a hydrophone against calculations of the ultrasound beam based on monochromatic and linear assumptions. Using the finite-difference time-domain (FDTD) method, we compare predicted time-dependent thermal profiles to measured profiles for soy tofu as a tissue-mimicking phantom. In vitro results show differential heating of 6ºC for chicken breast and tofu. In vivo tests of the system were performed on three mice bearing Met-1 tumors, which is a model of aggressive, metastatic and highly vascular breast cancer. In superficially implanted tumors, we demonstrate controlled heating to 42ºC. We show that the system is able to maintain the temperature to within 0.1ºC of the desired temperature both in vitro and in vivo. PMID:20064754
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilmette, R.A.; Hoover, M.D.
1995-12-01
The revised 10 CFR Part 20 has adopted the ICRP Publication 30 method for calculating the committed effective dose equivalent from intakes of radionuclides. This dosimetry scheme requires knowledge or assumptions about the chemical form of the radionuclide, its particle size, and its known or assumed solubility. The solubility is classified as being either D (relatively soluble), W, or Y (relatively insoluble), depending on whether the material dissolves over periods of days, weeks, or years. Although Nuclear Regulatory Commission licensees may wish to take advantage of material-specific knowledge in order to adjust annual limits on intake and derived air concentrations,more » relatively few radioactive materials to which workers and the general population may be exposed have been adequately characterized either in terms of physicochemical form or solubility. Experimental measurement of solubility using some type of in vitro dissolution measurement system is therefore needed. However, there is currently no clear consensus regarding the appropriate design of in vitro dissolution systems, particularly when considering the range of different radionuclides to be studied, and the complexity of the biological mechanisms involved in the retention and clearance of inhaled deposited radioactive particles. The purpose of this study was to evaluate the effect of the several solvents on the dissolution of four test aerosols ({sup 57}Co{sub 3}O{sub 4}, {sup 241}AmO{sub 2}, ammonium diuranate [ADU], and U{sub 3}O{sub 8}) selected to encompass a variety of chemical and biochemical properties in vivo. The results of this study provide some guidance on the usefulness of in vitro dissolution tests for estimating the solubility of unknown radionuclide particles within the context of a simple model such as the class D, W, and Y formulation of ICRP 30.« less
Comparative assessment of three in vitro exposure methods for combustion toxicity.
Lestari, Fatma; Markovic, Boban; Green, Anthony R; Chattopadhyay, Gautam; Hayes, Amanda J
2006-01-01
A comparative assessment of three approaches for the use of human cells in vitro to investigate combustion toxicity was conducted. These included one indirect and two direct (passive and dynamic) exposure methods. The indirect method used an impinger system in which culture medium was used to trap the toxicants, whilst the direct exposure involved the use of a Horizontal Harvard Navicyte Chamber at the air/liquid interface. The cytotoxic effects of thermal decomposition products were assessed using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay (Promega) on a selection of human cells including: HepG2, A549 and skin fibroblasts. A small scale laboratory fire test using a vertical tube furnace was designed for the generation of combustion products. Polymethyl methacrylate (PMMA) was selected as a model polymer to study the cytotoxic effects of combustion products. NOAEC (no observable adverse effect concentration), IC10 (10% inhibitory concentration), IC50 (50% inhibitory concentration) and TLC (total lethal concentration) values were determined from dose response curves. Assessment using the NRU (neutral red uptake) and ATP (adenosine triphosphate) assays on human lung derived cells (A549) was also undertaken. Comparison between in vitro cytotoxicity results against published toxicity data for PMMA combustion and predicted LC50 (50% lethal concentration) values calculated from identified compounds using GCMS (gas chromatography mass spectrometry) was determined. The results suggested that the indirect exposure method did not appear to simulate closely exposure via inhalation, whilst exposure at the air/liquid interface by using the dynamic method proved to be a more representative method of human inhalation. This exposure method may be a potential system for in vitro cytotoxicity testing in combustion toxicity. Copyright 2005 John Wiley & Sons, Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... certain in vitro clinical or laboratory testing under general license. 32.71 Section 32.71 Energy NUCLEAR... certain in vitro clinical or laboratory testing under general license. An application for a specific... only by physicians, veterinarians in the practice of veterinary medicine, clinical laboratories or...
High-throughput, lower-cost, in vitro toxicity testing is currently being evaluated for use in prioritization and eventually for predicting in vivo toxicity. Interpreting in vitro data in the context of in vivo human relevance remains a formidable challenge. A key component in us...
Al-Shamsi, Kholoud Awad; Mudgil, Priti; Hassan, Hassan Mohamed; Maqsood, Sajid
2018-01-01
Camel milk protein hydrolysates (CMPH) were generated using proteolytic enzymes, such as alcalase, bromelain, and papain, to explore the effect on the technofunctional properties and antioxidant potential under in vitro and in real food model systems. Characterization of the CMPH via degree of hydrolysis, sodium dodecyl sulfate-PAGE, and HPLC revealed that different proteins in camel milk underwent degradation at different degrees after enzymatic hydrolysis using 3 different enzymes for 2, 4, and 6 h, with papain displaying the highest degradation. Technofunctional properties, such as emulsifying activity index, surface hydrophobicity, and protein solubility, were higher in CMPH than unhydrolyzed camel milk proteins. However, the water and fat absorption capacity were lower in CMPH compared with unhydrolyzed camel milk proteins. Antioxidant properties as assessed by 2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activities and metal-chelating activity were enhanced after hydrolysis, in contrast to ferric-reducing antioxidant power which showed a decrease after hydrolysis. The CMPH were also tested in real food model systems for their potential to inhibit lipid peroxidation in fish mince and grape seed oil-in-water emulsion, and we found that papain-produced hydrolysate displayed higher inhibition than alcalase- and bromelain-produced hydrolysates. Therefore, the CMPH demonstrated effective antioxidant potential in vitro as well as in real food systems and showed enhanced functional properties, which guarantees their potential applications in functional foods. The present study is one of few reports available on CMPH being explored in vitro as well as in real food model systems. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Rajput, Pallavi; Singh, Deshvir; Pathak, Kamla
2014-01-30
The study was aimed to develop a bifunctional single unit capsular system containing gastroretentive funicular cylindrical system (FCS) for controlled local delivery of clarithromycin and immediate release of ranitidine HCl. A 2(3) full factorial design was used to prepare gastroretentive FCS of clarithromycin using polyacrylamide (PAM), HPMC E15LV and Carbopol 934 P. The FCSs were evaluated for % cumulative drug release, floating time and in vitro detachment stress. Among the eight formulations, FCS5 (containing PAM and Carbopol 934 P at high and HPMC E15LV at low levels) showed % cumulative drug release of 97.09±1.14% in 8 h, floating time of 3 h and detachment stress of 8303.64±0.34 dynes/cm(2). Evaluation of optimized FCS by novel dynamic in vitro test proved superior bioadhesivity than cylindrical system under aggressive simulated peristaltic activity. Magnetic resonance imaging elucidated zero order release via constant swelling and erosion of FCS5. In vitro permeability across gastric mucin ensured its potential for effective eradication of deep seated Helicobactor pylori in gastric linings. The optimized FCS was combined with immediate release granules of rantidine HCl to get a bifunctional capsular dosage form. In vitro simultaneous drug release of clarithromycin and rantidine estimated by Vierordt's method exhibited a controlled drug release of 97.72±0.4% in 8 h for clarithromycin through FCS5 and 98.8±1.2% in 60 min from IR granules of ranitidine HCl. The novel system thus established its capability of simultaneous variable delivery of acid suppression agent and macrolide antibiotic that can be advantageous in clinical setting. Copyright © 2013 Elsevier B.V. All rights reserved.
Polk, William W; Sharma, Monita; Sayes, Christie M; Hotchkiss, Jon A; Clippinger, Amy J
2016-04-23
Aerosol generation and characterization are critical components in the assessment of the inhalation hazards of engineered nanomaterials (NMs). An extensive review was conducted on aerosol generation and exposure apparatus as part of an international expert workshop convened to discuss the design of an in vitro testing strategy to assess pulmonary toxicity following exposure to aerosolized particles. More specifically, this workshop focused on the design of an in vitro method to predict the development of pulmonary fibrosis in humans following exposure to multi-walled carbon nanotubes (MWCNTs). Aerosol generators, for dry or liquid particle suspension aerosolization, and exposure chambers, including both commercially available systems and those developed by independent researchers, were evaluated. Additionally, characterization methods that can be used and the time points at which characterization can be conducted in order to interpret in vitro exposure results were assessed. Summarized below is the information presented and discussed regarding the relevance of various aerosol generation and characterization techniques specific to aerosolized MWCNTs exposed to cells cultured at the air-liquid interface (ALI). The generation of MWCNT aerosols relevant to human exposures and their characterization throughout exposure in an ALI system is critical for extrapolation of in vitro results to toxicological outcomes in humans.
Evaluation of RSA set-up from a clinical biplane fluoroscopy system for 3D joint kinematic analysis.
Bonanzinga, Tommaso; Signorelli, Cecilia; Bontempi, Marco; Russo, Alessandro; Zaffagnini, Stefano; Marcacci, Maurilio; Bragonzoni, Laura
2016-01-01
dinamic roentgen stereophotogrammetric analysis (RSA), a technique currently based only on customized radiographic equipment, has been shown to be a very accurate method for detecting three-dimensional (3D) joint motion. The aim of the present work was to evaluate the applicability of an innovative RSA set-up for in vivo knee kinematic analysis, using a biplane fluoroscopic image system. To this end, the Authors describe the set-up as well as a possible protocol for clinical knee joint evaluation. The accuracy of the kinematic measurements is assessed. the Authors evaluated the accuracy of 3D kinematic analysis of the knee in a new RSA set-up, based on a commercial biplane fluoroscopy system integrated into the clinical environment. The study was organized in three main phases: an in vitro test under static conditions, an in vitro test under dynamic conditions reproducing a flexion-extension range of motion (ROM), and an in vivo analysis of the flexion-extension ROM. For each test, the following were calculated, as an indication of the tracking accuracy: mean, minimum, maximum values and standard deviation of the error of rigid body fitting. in terms of rigid body fitting, in vivo test errors were found to be 0.10±0.05 mm. Phantom tests in static and kinematic conditions showed precision levels, for translations and rotations, of below 0.1 mm/0.2° and below 0.5 mm/0.3° respectively for all directions. the results of this study suggest that kinematic RSA can be successfully performed using a standard clinical biplane fluoroscopy system for the acquisition of slow movements of the lower limb. a kinematic RSA set-up using a clinical biplane fluoroscopy system is potentially applicable and provides a useful method for obtaining better characterization of joint biomechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croom, Edward L.; Shafer, Timothy J.; Evans, Marina V.
Approaches for extrapolating in vitro toxicity testing results for prediction of human in vivo outcomes are needed. The purpose of this case study was to employ in vitro toxicokinetics and PBPK modeling to perform in vitro to in vivo extrapolation (IVIVE) of lindane neurotoxicity. Lindane cell and media concentrations in vitro, together with in vitro concentration-response data for lindane effects on neuronal network firing rates, were compared to in vivo data and model simulations as an exercise in extrapolation for chemical-induced neurotoxicity in rodents and humans. Time- and concentration-dependent lindane dosimetry was determined in primary cultures of rat cortical neuronsmore » in vitro using “faux” (without electrodes) microelectrode arrays (MEAs). In vivo data were derived from literature values, and physiologically based pharmacokinetic (PBPK) modeling was used to extrapolate from rat to human. The previously determined EC{sub 50} for increased firing rates in primary cultures of cortical neurons was 0.6 μg/ml. Media and cell lindane concentrations at the EC{sub 50} were 0.4 μg/ml and 7.1 μg/ml, respectively, and cellular lindane accumulation was time- and concentration-dependent. Rat blood and brain lindane levels during seizures were 1.7–1.9 μg/ml and 5–11 μg/ml, respectively. Brain lindane levels associated with seizures in rats and those predicted for humans (average = 7 μg/ml) by PBPK modeling were very similar to in vitro concentrations detected in cortical cells at the EC{sub 50} dose. PBPK model predictions matched literature data and timing. These findings indicate that in vitro MEA results are predictive of in vivo responses to lindane and demonstrate a successful modeling approach for IVIVE of rat and human neurotoxicity. - Highlights: • In vitro to in vivo extrapolation for lindane neurotoxicity was performed. • Dosimetry of lindane in a micro-electrode array (MEA) test system was assessed. • Cell concentrations at the MEA EC{sub 50} equaled rat brain levels associated with seizure. • PBPK-predicted human brain levels at seizure also equaled EC{sub 50} cell concentrations. • In vitro MEA results are predictive of lindane in vivo dose–response in rats/humans.« less
In Vivo and In Vitro Nitinol Corrosion Properties
NASA Astrophysics Data System (ADS)
Lonn, Melissa K.; Metcalf, Justin M.; Choules, Brian D.
2015-09-01
Regulatory authorities often require in vitro testing on medical devices prior to approval. Current standardized corrosion testing methods (ASTM F2129) require testing in a non-physiologic, de-oxygenated solution for a pre-exposure time of ≤1 h; however, no correlations between the prescribed simulated environment and whole blood conditions have been elucidated. This study compared open circuit potential (OCP), breakdown potentials (Eb), Eb - OCP, and cyclic polarization curves tested in vivo (OCP only) and in vitro in whole blood to those tested in phosphate-buffered saline (PBS). Two oxide thicknesses of Nitinol, two solution oxygen contents (deaerated and aerated solutions), and two pre-exposure durations (acute and chronic) were investigated. The in vitro OCP in whole blood was not significantly different than the in vivo OCP, suggesting that whole blood in vitro can be used to determine baseline corrosion behavior of medical implants. Eb - OCP tested per ASTM F2129 was comparable to acute whole blood and was conservative compared to chronic whole blood for both oxide thicknesses. However, OCP, Eb, and cyclic polarization curves were not always comparable to whole blood. Testing in aerated PBS achieved Eb, Eb - OCP, and cyclic polarization curves that were comparable to or more conservative than whole blood testing, regardless of pre-exposure duration and oxide thickness.
Wang, Lin; Sassi, Alexandra Beumer; Patton, Dorothy; Isaacs, Charles; Moncla, B. J.; Gupta, Phalguni; Rohan, Lisa Cencia
2015-01-01
The feasibility of using a liposome drug delivery system to formulate octylglycerol (OG) as a vaginal microbicide product was explored. A liposome formulation was developed containing 1% OG and phosphatidyl choline in a ratio that demonstrated in vitro activity against Neisseria gonorrhoeae, HSV-1, HSV-2 and HIV-1 while sparing the innate vaginal flora, Lactobacillus. Two conventional gel formulations were prepared for comparison. The OG liposome formulation with the appropriate OG/lipid ratio and dosing level had greater efficacy than either conventional gel formulation and maintained this efficacy for at least 2 months. No toxicity was observed for the liposome formulation in ex vivo testing in a human ectocervical tissue model or in vivo testing in the macaque safety model. Furthermore, minimal toxicity was observed to lactobacilli in vitro or in vivo safety testing. The OG liposome formulation offers a promising microbicide product with efficacy against HSV, HIV and N. gonorrhoeae. PMID:22149387
Ruiz-Aracama, Ainhoa; Peijnenburg, Ad; Kleinjans, Jos; Jennen, Danyel; van Delft, Joost; Hellfrisch, Caroline; Lommen, Arjen
2011-05-20
In vitro cell systems together with omics methods represent promising alternatives to conventional animal models for toxicity testing. Transcriptomic and proteomic approaches have been widely applied in vitro but relatively few studies have used metabolomics. Therefore, the goal of the present study was to develop an untargeted methodology for performing reproducible metabolomics on in vitro systems. The human liver cell line HepG2, and the well-known hepatotoxic and non-genotoxic carcinogen 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), were used as the in vitro model system and model toxicant, respectively. The study focused on the analysis of intracellular metabolites using NMR, LC-MS and GC-MS, with emphasis on the reproducibility and repeatability of the data. State of the art pre-processing and alignment tools and multivariate statistics were used to detect significantly altered levels of metabolites after exposing HepG2 cells to TCDD. Several metabolites identified using databases, literature and LC-nanomate-Orbitrap analysis were affected by the treatment. The observed changes in metabolite levels are discussed in relation to the reported effects of TCDD. Untargeted profiling of the polar and apolar metabolites of in vitro cultured HepG2 cells is a valid approach to studying the effects of TCDD on the cell metabolome. The approach described in this research demonstrates that highly reproducible experiments and correct normalization of the datasets are essential for obtaining reliable results. The effects of TCDD on HepG2 cells reported herein are in agreement with previous studies and serve to validate the procedures used in the present work.
Encapsulated Three-Dimensional Culture Supports Development of Nonhuman Primate Secondary Follicles1
Xu, Min; West-Farrell, Erin R.; Stouffer, Richard L.; Shea, Lonnie D.; Woodruff, Teresa K.; Zelinski, Mary B.
2009-01-01
In vitro ovarian follicle cultures may provide fertility-preserving options to women facing premature infertility due to cancer therapies. An encapsulated three-dimensional (3-D) culture system utilizing biomaterials to maintain cell-cell communication and support follicle development to produce a mature oocyte has been developed for the mouse. We tested whether this encapsulated 3-D system would also support development of nonhuman primate preantral follicles, for which in vitro growth has not been reported. Three questions were investigated: Does the cycle stage at which the follicles are isolated affect follicle development? Does the rigidity of the hydrogel influence follicle survival and growth? Do follicles require luteinizing hormone (LH), in addition to follicle-stimulating hormone (FSH), for steroidogenesis? Secondary follicles were isolated from adult rhesus monkeys, encapsulated within alginate hydrogels, and cultured individually for ≤30 days. Follicles isolated from the follicular phase of the menstrual cycle had a higher survival rate (P < 0.05) than those isolated from the luteal phase; however, this difference may also be attributed to differing sizes of follicles isolated during the different stages. Follicles survived and grew in two hydrogel conditions (0.5% and 0.25% alginate). Follicle diameters increased to a greater extent (P < 0.05) in the presence of FSH alone than in FSH plus LH. Regardless of gonadotropin treatment, follicles produced estradiol, androstenedione, and progesterone by 14–30 days in vitro. Thus, an alginate hydrogel maintains the 3-D structure of individual secondary macaque follicles, permits follicle growth, and supports steroidogenesis for ≤30 days in vitro. This study documents the first use of the alginate system to maintain primate tissue architecture, and findings suggest that encapsulated 3-D culture will be successful in supporting the in vitro development of human follicles. PMID:19474063
Yang, Chao; Sodian, Ralf; Fu, Ping; Lüders, Cora; Lemke, Thees; Du, Jing; Hübler, Michael; Weng, Yuguo; Meyer, Rudolf; Hetzer, Roland
2006-01-01
One approach to tissue engineering has been the development of in vitro conditions for the fabrication of functional cardiovascular structures intended for implantation. In this experiment, we developed a pulsatile flow system that provides biochemical and biomechanical signals in order to regulate autologous, human patch-tissue development in vitro. We constructed a biodegradable patch scaffold from porous poly-4-hydroxy-butyrate (P4HB; pore size 80 to 150 microm). The scaffold was seeded with pediatric aortic cells. The cell-seeded patch constructs were placed in a self-developed bioreactor for 7 days to observe potential tissue formation under dynamic cell culture conditions. As a control, cell-seeded scaffolds were not conditioned in the bioreactor system. After maturation in vitro, the analysis of the tissue engineered constructs included biochemical, biomechanical, morphologic, and immunohistochemical examination. Macroscopically, all tissue engineered constructs were covered by cells. After conditioning in the bioreactor, the cells were mostly viable, had grown into the pores, and had formed tissue on the patch construct. Electron microscopy showed confluent smooth surfaces. Additionally, we demonstrated the capacity to generate collagen and elastin under in vitro pulsatile flow conditions in biochemical examination. Biomechanical testing showed mechanical properties of the tissue engineered human patch tissue without any statistical differences in strength or resistance to stretch between the static controls and the conditioned patches. Immunohistochemical examination stained positive for alpha smooth muscle actin, collagen type I, and fibronectin. There was minor tissue formation in the nonconditioned control samples. Porous P4HB may be used to fabricate a biodegradable patch scaffold. Human vascular cells attached themselves to the polymeric scaffold, and extracellular matrix formation was induced under controlled biomechanical and biodynamic stimuli in a self-developed pulsatile bioreactor system.
Control of live oak decline in Texas with Lignasan and Arbotech
R. Lewis
1978-01-01
Two systemic fungicides, Arbotect 20-S (2-(4-thiazolyl) benzimidazole) and Lignasan (methyl-2-benzimidazole carbamate phosphate), were tested as possible controls for live oak decline in Texas. Both fungicides killed Ceratocystis fagacearum in vitro at 1 μg/ml. Live oaks with incipient and advanced wilt were pressure injected with the...
21 CFR 866.5785 - Anti-Saccharomyces cerevisiae (S. cerevisiae) antibody (ASCA) test systems.
Code of Federal Regulations, 2011 CFR
2011-04-01
... an in vitro diagnostic device that consists of the reagents used to measure, by immunochemical techniques, antibodies to S. cerevisiae (baker's or brewer's yeast) in human serum or plasma. Detection of S. cerevisiae antibodies may aid in the diagnosis of Crohn's disease. (b) Classification. Class II (special...
BACKGROUND: There is a strong need for laboratory in vitro test systems for the toxicity of airborne particulate matter and nanoparticles. The measurement of oxidative stress potential offers a promising way forward. OBJECTIVES: A workshop was convened involving leading workers f...
Taneja, Sonali; Kumari, Manju; Barua, Madhumita; Dudeja, Chetna; Malik, Meeta
2015-01-01
To compare the apical extrusion of Enterococcus faecalis after instrumentation with three different Ni-Ti rotary instruments- An in vitro study. In vitro study Methods and Material: Forty freshly extracted mandibular premolars were mounted in bacteria collection apparatus and root canals were contaminated with a suspension of Enterococcus faecalis. The contaminated teeth were divided into 4 groups of 10 teeth each according to rotary system used for instrumentation: Group1: Hyflex files, Group 2: GTX files, Group 3: Protaper files and Group 4: control group (no instrumentation). Bacteria extruded after preparations were collected into vials and microbiological samples were incubated in BHI broth for 24 hrs. The colony forming units were determined for each sample. Statistical analysis was done using one way ANOVA followed by post hoc independent " t" test. GTX files extruded least amount of bacteria followed by Hyflex files. Maximum extrusion of E. faecalis was seen in rotary Protaper group. Least amount of extrusion was seen with GTX files followed by Hyflex files and then rotary Protaper system.
NASA Astrophysics Data System (ADS)
Wang, Chuan; Ma, Chao; Wu, Zhenkai; Liang, He; Yan, Peng; Song, Jia; Ma, Nan; Zhao, Qinghua
2015-11-01
Nanofibers have attracted increasing attention in drug delivery and other biomedical applications due to their some special properties. The present study aims to prepare a fiber-based nanosolid dispersion system to enhance the bioavailability of curcumin (CUR). CUR-loaded polyvinyl pyrrolidone (CUR@PVP) nanofibers were successfully prepared via electrospinning. Scanning electron microscopy (SEM) was employed to observe the morphology of the nanofibers, and the SEM image showed that the drug-loaded nanofibers were smooth, and no CUR clusters were found on the surface of the nanofibers. The results of X-ray diffraction (XRD) demonstrated that the CUR was evenly distributed in the nanofibers in an amorphous state. Fourier transform infrared (FTIR) spectroscopy analysis indicated that intermolecular hydrogen bonding occurred between the CUR and the polymer matrix. In vitro dissolution profiles showed that CUR@PVP nanofiber could be quickly dissolved in phosphate-buffered saline (PBS) solution, while negligible dissolution was observed in pure CUR sample. Importantly, in vitro cell viability assays and in vivo animal tests revealed that the nanosolid dispersion system dramatically enhanced the bioavailability and showed effective anticancer effect of the CUR.
Sunscreen tests: correspondence between in vitro data and values reported by the manufacturers.
Garoli, Denis; Pelizzo, Maria Guglielmina; Bernardini, Bianca; Nicolosi, Piergiorgio; Alaibac, Mauro
2008-12-01
In vitro sunscreen tests are diffusively used to test both the sun protection factor (SPF) and the photo-stability of filters. Spectrophotometric measurements of the absorbance of ultraviolet radiations through a sunscreen applied on a suitable substrate allow a rapid evaluation of its protection factor both at short and long wavelength ultraviolet radiation (UVB and UVA). The objective of this study has been to demonstrate if Teflon can be adopted as substrate both for SPF evaluation and photo-stability tests. Moreover, we have investigated if there is a correspondence between in vitro SPF measurements and values reported by manufacturers on sunscreens. Teflon has been used to perform several photo-stability tests by irradiating the filters with different wavebands and analyzing the combined effect of UV and infrared (IR) light. Similar analyses have been carried out using PMMA Plates, which is the standard substrate for UVA in vitro test. We have demonstrated that it is possible to establish a good correspondence between in vitro SPF and values reported by manufacturers on sunscreens. We have also verified that the in vitro/label SPF correlation curve depends on the quantity of product applied while this does not seem to be true for other parameters like Critical Wavelength and UVA ratio. With regard to photo-stability studies, our results indicate for the first time that IR irradiation may have a role on photo-degradation. The results show that there is a good correlation between the in vitro SPF determined by the present method and the SPF reported by the manufacturer. The compatibility of the results obtained using Teflon and PMMA Plates demonstrates that Teflon can be utilized for both SPF determination and photo-stability tests.
Beißner, Nicole; Bolea Albero, Antonio; Füller, Jendrik; Kellner, Thomas; Lauterboeck, Lothar; Liang, Jinghu; Böl, Markus; Glasmacher, Birgit; Müller-Goymann, Christel C; Reichl, Stephan
2018-05-01
The present overview deals with current approaches for the improvement of in vitro models for preclinical drug and formulation screening which were elaborated in a joint project at the Center of Pharmaceutical Engineering of the TU Braunschweig. Within this project a special focus was laid on the enhancement of skin and cornea models. For this reason, first, a computation-based approach for in silico modeling of dermal cell proliferation and differentiation was developed. The simulation should for example enhance the understanding of the performed 2D in vitro tests on the antiproliferative effect of hyperforin. A second approach aimed at establishing in vivo-like dynamic conditions in in vitro drug absorption studies in contrast to the commonly used static conditions. The reported Dynamic Micro Tissue Engineering System (DynaMiTES) combines the advantages of in vitro cell culture models and microfluidic systems for the emulation of dynamic drug absorption at different physiological barriers and, later, for the investigation of dynamic culture conditions. Finally, cryopreserved shipping was investigated for a human hemicornea construct. As the implementation of a tissue-engineering laboratory is time-consuming and cost-intensive, commercial availability of advanced 3D human tissue is preferred from a variety of companies. However, for shipping purposes cryopreservation is a challenge to maintain the same quality and performance of the tissue in the laboratory of both, the provider and the customer. Copyright © 2017 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
..., other clinical studies, or in vitro testing. Reports from animal testing are not included. \\3\\ Includes... serious risks from clinical trials within 15 calendar days for findings from in vitro testing that suggest...
Alves, Eloísa Nunes; Presgrave, Rosaura de Farias; Presgrave, Octávio Augusto França; Sabagh, Fernanda Peres; de Freitas, João Carlos Borges Rolim; Corrado, Alexandre P
2008-07-01
We examined the correlation between results obtained from the in vivo Draize test for ocular irritation and in vitro results obtained from the sheep red blood cell (RBC) haemolytic assay, which assesses haemolysis and protein denaturation in erythrocytes, induced by cosmetic products. We sought to validate the haemolytic assay as a preliminary test for identifying highly-irritative products, and also to evaluate the in vitro test as alternative assay for replacement of the in vivo test. In vitro and in vivo analyses were carried out on 19 cosmetic products, in order to correlate the lesions in the ocular structures with three in vitro parameters: (i) the extent of haemolysis (H50); (ii) the protein denaturation index (DI); and (iii) the H50/DI ratio, which reflects the irritation potential (IP). There was significant correlation between maximum average scores (MAS) and the parameters determined in vitro (r = 0.752-0.764). These results indicate that the RBC assay is a useful and rapid test for use as a screening method to assess the IP of cosmetic products, and for predicting the IP value with a high level of concordance (94.7%). The assay showed high sensitivity and specificity rates of 91.6% and 100%, respectively.
Kolle, Susanne N; Van Cott, Andrew; van Ravenzwaay, Bennard; Landsiedel, Robert
2017-04-01
In vitro methods have gained regulatory acceptance for the prediction of serious eye damage (UN GHS Cat 1). However, the majority of in vitro methods do not state whether they are applicable to agrochemical formulations. This manuscript presents a study of up to 27 agrochemical formulations tested in three in vitro assays (three versions of the bovine corneal opacity and permeability test (BCOP, OECD TG 437) assay, the isolated chicken eye test (ICE, OECD TG 438) and the EpiOcular™ ET-50 assay). The results were compared with already-available in vivo data. In the BCOP only one of the four, one of five in the ICE and six of eleven tested formulations in the EpiOcular™ ET-50 Neat Protocol resulted in the correct UN GHS Cat 1 prediction. Overpredictions occurred in all assays. These data indicate a lack of applicability of the three in vitro methods to reliably predict UN GHS Cat 1 of agrochemical formulations. In order to ensure animal-free identification of seriously eye damaging agrochemical formulations testing protocols and/or prediction models need to be modified or classification rules should be tailored to in vitro testing rather than using in vivo Draize data as a standard. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Eguizabal, Johnny; Tufaga, Michael; Scheer, Justin K; Ames, Christopher; Lotz, Jeffrey C; Buckley, Jenni M
2010-05-07
In vitro multi-axial bending testing using pure moment loading conditions has become the standard in evaluating the effects of different types of surgical intervention on spinal kinematics. Simple, cable-driven experimental set-ups have been widely adopted because they require little infrastructure. Traditionally, "fixed ring" cable-driven experimental designs have been used; however, there have been concerns with the validity of this set-up in applying pure moment loading. This study involved directly comparing the loading state induced by a traditional "fixed ring" apparatus versus a novel "sliding ring" approach. Flexion-extension bending was performed on an artificial spine model and a single cadaveric test specimen, and the applied loading conditions to the specimen were measured with an in-line multiaxial load cell. The results showed that the fixed ring system applies flexion-extension moments that are 50-60% less than the intended values. This design also imposes non-trivial anterior-posterior shear forces, and non-uniform loading conditions were induced along the length of the specimen. The results of this study indicate that fixed ring systems have the potential to deviate from a pure moment loading state and that our novel sliding ring modification corrects this error in the original test design. This suggests that the proposed sliding ring design should be used for future in vitro spine biomechanics studies involving a cable-driven pure moment apparatus. Copyright 2010 Elsevier Ltd. All rights reserved.
Agarwal, Aakas; Ingels, Marcel; Kodigudla, Manoj; Momeni, Narjes; Goel, Vijay; Agarwal, Anand K
2016-05-01
Adjacent-level disease is a common iatrogenic complication seen among patients undergoing spinal fusion for low back pain. This is attributed to the postsurgical differences in stiffness between the spinal levels, which result in abnormal forces, stress shielding, and hypermobility at the adjacent levels. In addition, as most patients undergoing these surgeries are osteoporotic, screw loosening at the index level is a complication that commonly accompanies adjacent-level disease. Recent studies indicate that a rod with lower rigidity than that of titanium may help to overcome these detrimental effects at the adjacent level. The present study was conducted in vitro using 12 L1-S1 specimens divided into groups of six, with each group instrumented with either titanium rods or PEEK (polyetheretherketone) rods. The test protocol included subjecting intact specimens to pure moments of 10 Nm in extension and flexion using an FS20 Biomechanical Spine Test System (Applied Test Systems) followed by hybrid moments on the instrumented specimens to achieve the same L1-S1 motion as that of the intact specimens. During the protocol's later phase, the L4-L5 units from each specimen were segmented for cyclic loading followed by postfatigue kinematic analysis to highlight the differences in motion pre- and postfatigue. The objectives included the in vitro comparison of (1) the adjacent-level motion before and after instrumentation with PEEK and titanium rods and (2) the pre- and postfatigue motion at the instrumented level with PEEK and titanium rods. The results showed that the adjacent levels above the instrumentation caused increased flexion and extension with both PEEK and titanium rods. The postfatigue kinematic data showed that the motion at the instrumented level (L4-L5) increased significantly in both flexion and extension compared to prefatigue motion in titanium groups. However, there was no significant difference in motion between the pre- and postfatigue data in the PEEK group.
Crandall, Philip G; Ricke, Steven C; O'Bryan, Corliss A; Parrish, Nicole M
2012-01-01
We evaluated the in vitro activity of citrus oils against Mycobacterium tuberculosis and other non-tuberculous Mycobacterium species. Citrus essential oils were tested against a variety of Mycobacterium species and strains using the BACTEC radiometric growth system. Cold pressed terpeneless Valencia oil (CPT) was further tested using the Wayne model of in vitro latency. Exposure of M. tuberculosis and M. bovis BCG to 0.025 % cold pressed terpeneless Valencia orange oil (CPT) resulted in a 3-log decrease in viable counts versus corresponding controls. Inhibition of various clinical isolates of the M. avium complex and M. abscessus ranged from 2.5 to 5.2-logs. Some species/strains were completely inhibited in the presence of CPT including one isolate each of the following: the M. avium complex, M. chelonae and M. avium subsp. paratuberculosis. CPT also inhibited the growth of BCG more than 99 % in an in vitro model of latency which mimics anaerobic dormancy thought to occur in vivo. The activity of CPT against drug-resistant strains of the M. avium complex and M. abscessus suggest that the mechanism of action for CPT is different than that of currently available drugs. Inhibition of latently adapted bacilli offers promise for treatment of latent infections of MTB. These results suggest that the antimycobacterial properties of CPT warrant further study to elucidate the specific mechanism of action and clarify the spectrum of activity.
In vitro radicular temperatures produced by injectable thermoplasticized gutta-percha.
Weller, R N; Koch, K A
1995-03-01
In vitro temperatures produced in the root canal and on the root surface were measured simultaneously as heated gutta-percha was injected into the prepared canal. The canals were obturated with the Obtura II heated gutta-percha system with temperature settings of 160, 185, and 200 degrees C. The mean intracanal temperatures ranged from 40.21 to 57.24 degrees C, whereas the mean root surface temperatures were recorded from 37.22 to 41.90 degrees C for all three temperatures tested. The rise in temperature on the root surface was below the critical level of 10 degrees C and should not cause damage to the periodontal ligament.
Synthesis and biological activities of fluorinated chalcone derivatives.
Nakamura, Chika; Kawasaki, Nobuhide; Miyataka, Hideki; Jayachandran, Ezhuthachan; Kim, In Ho; Kirk, Kenneth L; Taguchi, Takeo; Takeuchi, Yoshio; Hori, Hitoshi; Satoh, Toshio
2002-03-01
We have designed and synthesized new 5-lipoxygenase inhibitors, fluorinated 3,4-dihydroxychalcones, and evaluated their biological activities with respect to antiperoxidation activity and in vitro antitumor activities. All fluorinated chalcones tested showed 5-lipoxygenase inhibition on rat basophilic leukemia-1 (RBL-1) cells and inhibitory action on Fe(3+)-ADP induced NADPH-dependent lipid peroxidation in rat liver microsomes. The potencies were comparable or better to that of the lead 3,4-dihydroxychalcone. 6-Fluoro-3,4-dihydroxy-2',4'-dimethoxy chalcone (7) was the most effective compound in the in vitro assay using a human cancer cell line panel (HCC panel) consisting of 39 systems.
Mackerer, C R; Angelosanto, F A; Blackburn, G R; Schreiner, C A
1996-09-01
Methyl tertiary-butyl ether (MTBE), which is added to gasoline as an octane enhancer and to reduce automotive emissions, has been evaluated in numerous toxicological tests, including those for genotoxicity. MTBE did not show any mutagenic potential in the Ames bacterial assay or any clastogenicity in cytogenetic tests. However, it has been shown to be mutagenic in an in vitro gene mutation assay using mouse lymphoma cells when tested in the presence, but not in the absence, of a rat liver-derived metabolic activation system (S-9). In the present study, MTBE was tested to determine if formaldehyde, in the presence of the S-9, was responsible for the observed mutagenicity. A modification of the mouse lymphoma assay was employed which permits determination of whether a suspect material is mutagenic because it contains or is metabolized to formaldehyde. In the modified assay, the enzyme formaldehyde dehydrogenase (FDH) and its co-factor, NAD+ are added in large excess during the exposure period so that any formaldehyde produced in the system is rapidly converted to formic acid which is not genotoxic. An MTBE dose-responsive increase in the frequency of mutants and in cytotoxicity occurred without FDH present, and this effect was greatly reduced in the presence of FDH NAD+. The findings clearly demonstrate that formaldehyde derived from MTBE is responsible for mutagenicity of MTBE in the activated mouse lymphoma assay. Furthermore, the results suggest that the lack of mutagenicity/clastogenicity seen with MTBE in other in vitro assays might have resulted from inadequacies in the test systems employed for those assays.
Kirsch-Volders, Micheline; Plas, Gina; Elhajouji, Azeddine; Lukamowicz, Magdalena; Gonzalez, Laetitia; Vande Loock, Kim; Decordier, Ilse
2011-08-01
Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids lagging behind in anaphase and are not included in the daughter nuclei at telophase. The mechanisms of MN formation are well understood; their possible postmitotic fate is less evident. The MN assay allows detection of both aneugens and clastogens, shows simplicity of scoring, is widely applicable in different cell types, is internationally validated, has potential for automation and is predictive for cancer. The cytokinesis-block micronucleus assay (CBMN) allows assessment of nucleoplasmic bridges, nuclear buds, cell division inhibition, necrosis and apoptosis and in combination with FISH using centromeric probes, the mechanistic origin of the MN. Therefore, the CBMN test can be considered as a "cytome" assay covering chromosome instability, mitotic dysfunction, cell proliferation and cell death. The toxicological relevance of the MN test is strong: it covers several endpoints, its sensitivity is high, its predictivity for in vivo genotoxicity requires adequate selection of cell lines, its statistical power is increased by the recently available high throughput methodologies, it might become a possible candidate for replacing in vivo testing, it allows good extrapolation for potential limits of exposure or thresholds and it is traceable in experimental in vitro and in vivo systems. Implementation of in vitro MN assays in the test battery for hazard and risk assessment of potential mutagens/carcinogens is therefore fully justified.
Berthet, Aurélie; Hopf, Nancy B; Miles, Alexandra; Spring, Philipp; Charrière, Nicole; Garrigou, Alain; Baldi, Isabelle; Vernez, David
2014-01-01
Skin exposures to chemicals may lead, through percutaneous permeation, to a significant increase in systemic circulation. Skin is the primary route of entry during some occupational activities, especially in agriculture. To reduce skin exposures, the use of personal protective equipment (PPE) is recommended. PPE efficiency is characterized as the time until products permeate through material (lag time, Tlag). Both skin and PPE permeations are assessed using similar in vitro methods; the diffusion cell system. Flow-through diffusion cells were used in this study to assess the permeation of two herbicides, bentazon and isoproturon, as well as four related commercial formulations (Basagran(®), Basamais(®), Arelon(®) and Matara(®)). Permeation was measured through fresh excised human skin, protective clothing suits (suits) (Microchem(®) 3000, AgriSafe Pro(®), Proshield(®) and Microgard(®) 2000 Plus Green), and a combination of skin and suits. Both herbicides, tested by itself or as an active ingredient in formulations, permeated readily through human skin and tested suits (Tlag < 2 h). High permeation coefficients were obtained regardless of formulations or tested membranes, except for Microchem(®) 3000. Short Tlag, were observed even when skin was covered with suits, except for Microchem(®) 3000. Kp values tended to decrease when suits covered the skin (except when Arelon(®) was applied to skin covered with AgriSafe Pro and Microgard(®) 2000), suggesting that Tlag alone is insufficient in characterizing suits. To better estimate human skin permeations, in vitro experiments should not only use human skin but also consider the intended use of the suit, i.e., the active ingredient concentrations and type of formulations, which significantly affect skin permeation.
Oblette, A; Rives, N; Dumont, L; Rives, A; Verhaeghe, F; Jumeau, F; Rondanino, C
2017-10-01
Is nuclear quality of in vitro generated spermatozoa from fresh or frozen/thawed pre-pubertal mouse testes similar to that of their in vivo counterparts? The production of spermatozoa with aneuploidy, DNA fragmentation or chromatin condensation defects was not significantly increased in organotypic cultures compared to in vivo controls. Although murine spermatozoa have been produced in vitro from pre-pubertal testes, their nuclear DNA integrity has never been investigated. Fresh and frozen/thawed testicular fragments from 6 to 7 days postpartum (dpp) mice were cultured for 30 days. Testicular tissues were frozen by controlled slow freezing (CSF) or solid surface vitrification (SSV). In total, 30 fresh, 30 CSF, 30 SSV testes were used for in vitro maturation and 6 testes from 36 to 37 dpp mice were used as in vivo controls. Murine spermatozoa were extracted from pooled in vitro cultured testicular fragments and from in vivo controls. Sperm aneuploidy was analyzed by fluorescence in situ hybridization (FISH), DNA fragmentation by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling, chromatin condensation by aniline blue staining, telomere length and number by quantitative FISH, DNA oxidation by immunocytochemical detection of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Because of the low spermatogenic yield in cultures, a hundred spermatozoa extracted from pooled tissues were examined and compared to their in vivo counterparts. Most of spermatozoa generated in vitro and in vivo were haploid, contained unfragmented DNA and normally condensed chromatin. A similar proportion of spermatozoa with aneuploidy, DNA fragmentation or chromatin condensation defects was found in cultures and in vivo. No significant difference in telomere length was found within the nuclei of in vitro and in vivo generated spermatozoa. However, the number of telomere spots was lower in gametes obtained from cultures of fresh, CSF and SSV testes than in their natural counterparts (P < 0.01). Moreover, the proportion of spermatozoa containing 8-OHdG was significantly increased in frozen/thawed tissues in comparison to fresh tissues and in vivo controls (P < 0.05). None. Further studies will be needed to enhance the production of spermatozoa in organotypic cultures while preserving their quality, to investigate epigenetic modifications and embryonic development. This is the first study comparing the nuclear quality of in vitro and in vivo generated murine spermatozoa. The organotypic culture system will have to be adapted for human tissue and extensive analyses of human gamete quality will have to be performed before potential clinical applications can be envisaged. This work was supported by Rouen University Hospital, Ligue contre le Cancer, Agence de la Biomédecine, Association Laurette Fugain, France Lymphome Espoir, and co-supported by European Union and Région Normandie. Europe gets involved in Normandie with European Régional Development Fund (ERDF). The authors declare that they have no conflict of interest. © The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email:journals.permissions@oup.com
Aksakal, Bunyamin; Gurger, Murat; Say, Yakup; Yilmaz, Erhan
2014-01-01
Biomechanical comparison of straight DCP and helical plates for fixation of transversal and oblique tibial bone fractures were analyzed and compared to each other by axial compression, bending and torsion tests. An in vitro osteosynthesis of transverse (TF) and oblique bone fracture (OF) fixations have been analysed on fresh sheep tibias by using the DCP and helical compression plates (HP). Statistically significant differences were found for both DCP and helical plate fixations under axial compression, bending and torsional loads. The strength of fixation systems was in favor of DC plating with exception of the TF-HP fixation group under compression loads and torsional moments. The transvers fracture (TF) stability was found to be higher than that found in oblique fracture (OF) fixed by helical plates (HP). However, under torsional testing, compared to conventional plating, the helical plate fixations provided a higher torsional resistance and strength. The maximum stiffness at axial compression loading and maximum torsional strength was achieved in torsional testing for the TF-HP fixations. From in vitro biomechanical analysis, fracture type and plate fixation system groups showed different responses under different loadings. Consequently, current biomechanical analyses may encourage the usage of helical HP fixations in near future during clinical practice for transverse bone fractures.
2011-01-01
Background With the increasing use of nanomaterials, the need for methods and assays to examine their immunosafety is becoming urgent, in particular for nanomaterials that are deliberately administered to human subjects (as in the case of nanomedicines). To obtain reliable results, standardised in vitro immunotoxicological tests should be used to determine the effects of engineered nanoparticles on human immune responses. However, before assays can be standardised, it is important that suitable methods are established and validated. Results In a collaborative work between European laboratories, existing immunological and toxicological in vitro assays were tested and compared for their suitability to test effects of nanoparticles on immune responses. The prototypical nanoparticles used were metal (oxide) particles, either custom-generated by wet synthesis or commercially available as powders. Several problems and challenges were encountered during assay validation, ranging from particle agglomeration in biological media and optical interference with assay systems, to chemical immunotoxicity of solvents and contamination with endotoxin. Conclusion The problems that were encountered in the immunological assay systems used in this study, such as chemical or endotoxin contamination and optical interference caused by the dense material, significantly affected the data obtained. These problems have to be solved to enable the development of reliable assays for the assessment of nano-immunosafety. PMID:21306632
Bioprinting towards Physiologically Relevant Tissue Models for Pharmaceutics.
Peng, Weijie; Unutmaz, Derya; Ozbolat, Ibrahim T
2016-09-01
Improving the ability to predict the efficacy and toxicity of drug candidates earlier in the drug discovery process will speed up the introduction of new drugs into clinics. 3D in vitro systems have significantly advanced the drug screening process as 3D tissue models can closely mimic native tissues and, in some cases, the physiological response to drugs. Among various in vitro systems, bioprinting is a highly promising technology possessing several advantages such as tailored microarchitecture, high-throughput capability, coculture ability, and low risk of cross-contamination. In this opinion article, we discuss the currently available tissue models in pharmaceutics along with their limitations and highlight the possibilities of bioprinting physiologically relevant tissue models, which hold great potential in drug testing, high-throughput screening, and disease modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Thorne, D; Hollings, M; Seymour, A; Adamson, J; Dalrymple, A; Ballantyne, M; Gaca, M
2018-04-01
There is a growing consensus that e-cigarettes hold the potential for reducing the harm associated with cigarette smoking. Recently published studies have reported in vitro testing of e-cigarettes, demonstrating reduced toxicological and biological effects. Few studies however have reported the use of e-cigarettes under extreme testing conditions. To assess the full mutagenic potential of a commercially available electronic-cigarette (Vype ePen), this study investigated the delivery of aerosol under extreme conditions, using a scaled-down 35 mm plate Ames bacterial reverse mutagenicity assay. S. typhimurium strains TA98, TA100, TA97, TA104 and E. coli WP2 uvrA pKM101 with or without metabolic activation (S9), were employed. Using a modified Vitrocell VC 10 exposure system 0, 180, 360, 540, 720 or 900 puffs of undiluted e-cigarette aerosol was generated and delivered to bacterial cultures aligned to reported human consumption data. The results demonstrate that no mutagenic activity was observed in any strain under any test condition even when exposed to 900 puffs of undiluted e-cigarette aerosols +/- S9. Positive control responses were observed in all strains +/- S9. Nicotine assessments demonstrated an increased and consistent aerosol delivery, with calculated maximum doses of ∼1 mg/mL delivery of nicotine. These data demonstrate the validity of this unique testing approach and adds further information to the growing weight of evidence that e-cigarettes offer substantially reduced exposure when compared to conventional cigarette smoke. For future in vitro assessments of next generation tobacco and nicotine products, the generation, delivery and testing of undiluted aerosols can now be considered. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
In vitro pyrogen test for toxic or immunomodulatory drugs.
Daneshian, Mardas; Guenther, Armin; Wendel, Albrecht; Hartung, Thomas; von Aulock, Sonja
2006-06-30
Pyrogenic contaminations of some classes of injectable drugs, e.g. toxic or immunomodulatory as well as false-positive drugs, represent a major risk which cannot yet be excluded due to the limitations of current tests. Here we describe a modification of the In vitro Pyrogen Test termed AWIPT (Adsorb, Wash, In vitro Pyrogen Test), which addresses this problem by introducing a pre-incubation step in which pyrogenic contaminations in the test sample are adsorbed to albumin-coated beads. After rinsing, the beads are incubated with human whole blood and the release of the endogenous pyrogen interleukin-1beta is measured as a marker of pyrogenic activity. Intentional contaminations with lipopolysaccharide were retrieved from the chemotherapeutic agents paclitaxel, cisplatin and liposomal daunorubicin, the antibiotic gentamicin, the antifungal agent liposomal amphotericin B, and the corticosteroid prednisolone at lower dilutions than in the standard in vitro pyrogen test. This represents a promising new approach for the detection of pyrogenic contamination in drugs or in drugs containing interfering additives and should lead to improved safety levels.
Letzen, Brian; Park, Jiheum; Tuzun, Zeynep; Bonde, Pramod
The current left ventricular assist devices (LVADs) are limited by a highly invasive implantation procedure in a severely unstable group of advanced heart failure patients. Additionally, the current transcutaneous power drive line acts as a nidus for infection resulting in significant morbidity and mortality. In an effort to decrease this invasiveness and eliminate drive line complications, we have conceived a wireless miniaturized percutaneous LVAD, capable of being delivered endovascularly with a tether-free operation. The system obviates the need for a transcutaneous fluid purge line required in existing temporary devices by utilizing an incorporated magnetically coupled impeller for a complete seal. The objective of this article was to demonstrate early development and proof-of-concept feasibility testing to serve as the groundwork for future formalized device development. Five early prototypes were designed and constructed to iteratively minimize the pump size and improve fluid dynamic performance. Various magnetic coupling configurations were tested. Using SolidWorks and ANSYS software for modeling and simulation, several geometric parameters were varied. HQ curves were constructed from preliminary in vitro testing to characterize the pump performance. Bench top tests showed no-slip magnetic coupling of the impeller to the driveshaft up to the current limit of the motor. The pump power requirements were tested in vitro and were within the appropriate range for powering via a wireless energy transfer system. Our results demonstrate the proof-of-concept feasibility of a novel endovascular cardiac assist device with the potential to eventually offer patients an untethered, minimally invasive support.
Indans, Ian
2002-02-28
There is currently a drive to eliminate animal testing for cosmetics, toiletries and household products; indeed, the European Union Cosmetics Directive aims to prohibit the use of experimental animals for the testing of finished cosmetic products after 2002. At present, national prohibitions are in place in the UK, Germany, Austria and the Netherlands, for the testing of finished cosmetic products and cosmetic ingredients. In the USA animal testing for certain types of finished products is mandatory. Against this background, the currently available regulatory in vitro tests comprise methods for eye irritation, skin corrosivity, genotoxicity, dermal penetration and photoirritation. The draft updates to the Organisation for Economic Co-operation and Development guidelines for eye and skin irritation advocate the use of in vitro or ex vivo methods prior to the commencement of animal studies. At present, testing for these endpoints cannot be completed in vitro, but potentially corrosive substances and products can be classified without the need for animal studies. Regulatory genotoxicity testing can be completed using only in vitro methods, provided that a clear negative outcome is obtained for each test. Data from dermal penetration studies may be used to refine risk assessments. Current developments in areas such as skin sensitisation and skin irritation promise that in the reasonably near future such information may be generated without the use of animals.
Jänne, J; Morris, D R
1984-01-01
Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine. PMID:6426466
Jänne, J; Morris, D R
1984-03-15
Several congeners of methylglyoxal bis(guanylhydrazone) were tested for their ability to inhibit eukaryotic putrescine-activated S-adenosylmethionine decarboxylase (EC 4.1.1.50) and intestinal diamine oxidase (EC 1.4.3.6). All the compounds tested, namely methylglyoxal bis(guanylhydrazone), ethylglyoxal bis(guanylhydrazone), dimethylglyoxal bis(guanylhydrazone) and the di-N"-methyl derivative of methylglyoxal bis(guanylhydrazone), were strong inhibitors of both yeast and mouse liver adenosylmethionine decarboxylase activity in vitro. The enzyme from both sources was most powerfully inhibited by ethylglyoxal bis(guanylhydrazone). All the diguanidines likewise inhibited diamine oxidase activity in vitro. The maximum intracellular concentrations of the ethyl and dimethylated analogues achieved in activated lymphocytes were only about one-fifth of that of the parent compound. However, both derivatives appeared to utilize the polyamine-carrier system, as indicated by competition experiments with spermidine.
Ates, Gamze; Doktorova, Tatyana Y; Pauwels, Marleen; Rogiers, Vera
2014-03-01
To evaluate the mutagenicity/genotoxicity of cosmetic ingredients at the regulatory level, usually a battery of three in vitro tests is applied. This battery, designed to be very sensitive, produces a high number of positive results, imposing the need for in vivo follow-up testing to clear the substance under study. In Europe, the use of experimental animals has become impossible for cosmetic ingredients due to the implementation of animal testing and marketing bans. Consequently, the possibility to 'de-risk' substances with positive in vitro results disappear and potentially safe cosmetic substances will be lost for the EU market unless currently used in vitro assays can be adapted or new non-animal mutagenicity/genotoxicity studies become available. Described strategies to improve the specificity of existing in vitro assays include optimisation of the used cell type and cytotoxicity assay and lowering of the applied top concentration. A reduction of the number of tests in the battery from three to two also has been suggested. In this study, the performance of the 'standard' in vitro mutagenicity/genotoxicity testing battery is analysed for a number of cosmetic ingredients. We composed a database with toxicological information on 249 cosmetic ingredients, mainly present on the Annexes of the European cosmetic legislation. Results revealed that the in vitro mutagenicity/genotoxicity tests showed a low specificity for the cosmetic ingredients concerned, comparable to the specificity published for chemicals. Non-confirmed or 'misleading' positive results amounted up to 93% for the in vitro test batteries. The cell type and top concentrations did not have a major impact on the specificity. With respect to cytotoxicity determinations, different end points were used, potentially leading to different testing concentrations, suggesting the need for a consensus in this matter. Overall, the results of this retrospective analysis point to an urgent need of better regulatory strategies to assess the potential mutagenicity/genotoxicity of cosmetic ingredients.
Kalra, Pinky; Rao, Arathi; Suman, Ethel; Shenoy, Ramya; Suprabha, Baranya-Shrikrishna
2017-02-01
Endodontic instrumentation carries the risk of over extrusion of debris and bacteria. The technique used and the type of instrumentation influences this risk. The purpose of this study was to evaluate and compare the K-file, ProTaper hand and ProTaper rotary instrumentation systems for the amount of apically extruded debris, irrigant solution and intracanal bacteria. Experimental single blinded randomized type of in vitro study with sample of 30 single rooted teeth. Endodontic access cavities were prepared and the root canals were filled with the suspension of E. faecalis . Myers and Montogomery Model was used to collect apically extruded debris and irrigant. Canals were prepared using K files, Hand protapers and Protaper rotary files. Non Parametric test like Kruskal-Wallis and Mann-Whitney U test were applied to determine the significant differences among the group. Tests revealed statistically significant difference between the amount of debris and number of bacteria extruded by the ProTaper hand and the K-files. No statistically significant difference was observed between the amounts of irrigant extruded by the ProTaper hand and the K-file system. Statistically significant differences were observed between the amounts of bacteria and irrigant extruded by the ProTaper rotary and the Protaper hand. No statistically significant difference was observed between the amounts of debris extruded by the ProTaper hand and the K-file system. Amount of apical extrusion of irrigant solution, bacteria and debris are significantly greater with K File instruments and least with Protaper rotary instruments. Key words: Protaper, rotary, periapical extrusion.
Three-dimensional HepaRG model as an attractive tool for toxicity testing.
Leite, Sofia B; Wilk-Zasadna, Iwona; Zaldivar, Jose M; Airola, Elodie; Reis-Fernandes, Marcos A; Mennecozzi, Milena; Guguen-Guillouzo, Christiane; Chesne, Christopher; Guillou, Claude; Alves, Paula M; Coecke, Sandra
2012-11-01
The culture of HepaRG cells as three dimensional (3D) structures in the spinner-bioreactor may represent added value as a hepatic system for toxicological purposes. The use of a cost-effective commercially available bioreactor, which is compatible with high-throughput cell analysis, constitutes an attractive approach for routine use in the drug testing industry. In order to assess specific aspects of the biotransformation capacity of the bioreactor-based HepaRG system, the induction of CYP450 enzymes (i.e., CYP1A2, 2B6, 2C9, and 3A4) and the activity of the phase II enzyme, uridine diphosphate glucuronoltransferase (UGT), were tested. The long-term functionality of the system was demonstrated by 7-week stable profiles of albumin secretion, CYP3A4 induction, and UGT activities. Immunofluorescence-based staining showed formation of tissue-like arrangements including bile canaliculi-like structures and polar distribution of transporters. The use of in silico models to analyze the in vitro data related to hepatotoxic activity of acetaminophen (APAP) demonstrated the advantage of the integration of kinetic and dynamic aspects for a better understanding of the in vitro cell behavior. The bioactivation of APAP and its related cytotoxicity was assessed in a system compatible to high-throughput screening. The approach also proved to be a good strategy to reduce the time necessary to obtain fully differentiated cell cultures. In conclusion, HepaRG cells cultured in 3D spinner-bioreactors are an attractive tool for toxicological studies, showing a liver-like performance and demonstrating a practical applicability for toxicodynamic approaches.
Villa Nova, Mônica; Ratti, Bianca A; Herculano, Leandro S; Bittencourt, Paulo R S; Novello, Cláudio R; Bazotte, Roberto Barbosa; Lautenschlager, Sueli de Oliveira Silva; Bruschi, Marcos Luciano
2017-12-12
Catabolic conditions like acquired immunodeficiency syndrome, cancer, and burn can cause immunosuppression. Amino acids such as alanine and glutamine are essential for the activity of the immune system. Propolis is immunostimulant and the waste of propolis extraction has been reused with technological and therapeutic purposes. Therefore, this study describes the association of propolis byproduct extract (BPE) with pectin to prepare spray-dried microparticles containing the dipeptide l-alanyl-l-glutamine as stimulant systems of neutrophils. The use of a factorial design allowed selecting the best formulation, which was characterized by morphology, size, and entrapment efficiency analyses. In addition, the systems were characterized by thermal and X-ray diffraction analysis, Fourier-transform infrared spectroscopy, in vitro drug release, and in vitro cytotoxicity and stimulation test of neutrophils. Small well-structured microparticles with good entrapment efficiency values were achieved. Thermal stability of formulation was observed, and it was proved that pectin, BPE and l-alanyl-l-glutamine were dispersed throughout the matrix. The drug was released from the microparticles during 24 h governed by swelling and diffusion. The drug-loaded formulations showed a significant stimulating effect on neutrophils. These structures could increase the activity of immune cells, and other in vitro and in vivo studies should be performed in the future.
Root damage induced by intraosseous anesthesia–An in vitro investigation
Fawzy-El-Sayed, Karim M.; Graetz, Nicole; Dörfer, Christof-Edmund
2013-01-01
Objectives: The principle of the intraosseous anesthesia (IOA) relies on the perforation of the cortical plate of the bone for direct application of the local anesthetic solution into the underlying cancellous structures. During this procedure, IOA needles might accidentally come in contact with the tooth roots. The aim of the current in vitro study was to examine the consequences of this ‘worst case scenario’ comparing five commercially available IOA systems. Material and Methods: Extracted human roots were randomly perforated using five different IOA systems with a drilling time ≤5s. To simulate normal in vivo conditions, the roots were kept humid during the drilling procedure. Data was statistically evaluated using F-test (SPSS16, SPSS Inc., Chicago, USA) and the significance level was set at p≤0.05. Results: All examined systems resulted in root perforation. Drill fractures occurred in either none 0% (Quicksleeper®, Anesto®, Intraflow®, Stabident®) or 100% (X-Tip®) of the applications. Excessive heat generation, as evident by combustion odor as well as metal and tooth discoloration, appeared in 30% (Quicksleeper®), 40% (Anesto®), 60% (Intraflow®), 90% (Stabident®) and 100% (X-Tip®) of all perforations. Conclusion: Within the limits of in-vitro studies, the results show a potential for irreversible root damage that might be inflicted by an improper use of IOA systems. Key words:Intraosseous anesthesia, complication, root damage. PMID:23229260
Nagaveni, S Aspalli; Balakoti, K Reddy; Smita, Karan; Ratnakar, P; Satish, S V; Aravind, T
2013-11-01
The apical extrusion of infected debris may have the potential to disrupt the balance between microbial aggression and host defense, resulting in incidents of acute inflammation. During preparation, irrigants and debris, such as bacteria, dentin filings and necrotic tissue may be extruded into the periradicular region leading to periapical inflammation and postoperative flare ups. Using an instrumentation technique that minimizes apical extrusion would be beneficial to both the practitioner and patient. The purpose of the study was to evaluate the weight of debris and volume of irrigant extruded apically from extracted teeth in vitro after endodontic instrumentation using four different rotary root canal instrumentation systems. Four groups of each 20 extracted mandibular premolars were instrumented using one of the four systems: ProTaper Universal (Dentsply Maillefer, Ballaigues, Switzerland)), Hero-shaper (MicroMega, Besancon, France), RaCe (FKG Dentaire, La-Chaux-de-Fonds, Switzerland) and K3 (SybronEndo, West Collins, CA). Debris and irrigant extruded from the apical foramen during instrumentation were collected in preweighed test tubes. Volume of irrigant extruded was noted. The containers were stored in incubator at 70° for two days to evaporate the moisture. Weight of dry debris was noted. Data was analyzed using Kruskall-Wallis and Mann-Whitney U test at a significance of 0.001. The results indicated that all of the instrumentation systems tested caused measurable apical extrusion of debris and irrigants. Higher extrusion was observed with Protaper system which was statistically significant with Hero-Shaper, RaCe and K3 systems. There were no statistical differences between Hero-shaper, K3 and RaCe systems (p < 0.05). All instrumentation techniques apically extruded debris and irrigant. However, Hero-shaper, K3 and RaCe systems produced less extruded debris and irrigant than the Protaper system.
Campbell, Jonathan J; Husmann, Anke; Hume, Robert D; Watson, Christine J; Cameron, Ruth E
2017-01-01
Cancer is characterized by cell heterogeneity and the development of 3D in vitro assays that can distinguish more invasive or migratory phenotypes could enhance diagnosis or drug discovery. 3D collagen scaffolds have been used to develop analogues of complex tissues in vitro and are suited to routine biochemical and immunological assays. We sought to increase 3D model tractability and modulate the migration rate of seeded cells using an ice-templating technique to create either directional/anisotropic or non-directional/isotropic porous architectures within cross-linked collagen scaffolds. Anisotropic scaffolds supported the enhanced migration of an invasive breast cancer cell line MDA-MB-231 with an altered spatial distribution of proliferative cells in contrast to invasive MDA-MB-468 and non-invasive MCF-7 cells lines. In addition, MDA-MB-468 showed increased migration upon epithelial-to-mesenchymal transition (EMT) in anisotropic scaffolds. The provision of controlled architecture in this system may act both to increase assay robustness and as a tuneable parameter to capture detection of a migrated population within a set time, with consequences for primary tumour migration analysis. The separation of invasive clones from a cancer biomass with in vitro platforms could enhance drug development and diagnosis testing by contributing assay metrics including migration rate, as well as modelling cell-cell and cell-matrix interaction in a system compatible with routine histopathological testing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Analytical challenges for conducting rapid metabolism characterization for QIVIVE.
Tolonen, Ari; Pelkonen, Olavi
2015-06-05
For quantitative in vitro-in vivo extrapolation (QIVIVE) of metabolism for the purposes of toxicokinetics prediction, a precise and robust analytical technique for identifying and measuring a chemical and its metabolites is an absolute prerequisite. Currently, high-resolution mass spectrometry (HR-MS) is a tool of choice for a majority of organic relatively lipophilic molecules, linked with a LC separation tool and simultaneous UV-detection. However, additional techniques such as gas chromatography, radiometric measurements and NMR, are required to cover the whole spectrum of chemical structures. To accumulate enough reliable and robust data for the validation of QIVIVE, there are some partially opposing needs: Detailed delineation of the in vitro test system to produce a reliable toxicokinetic measure for a studied chemical, and a throughput capacity of the in vitro set-up and the analytical tool as high as possible. We discuss current analytical challenges for the identification and quantification of chemicals and their metabolites, both stable and reactive, focusing especially on LC-MS techniques, but simultaneously attempting to pinpoint factors associated with sample preparation, testing conditions and strengths and weaknesses of a particular technique available for a particular task. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Bioaccessibility in vitro of nutraceuticals from bark of selected Salix species.
Gawlik-Dziki, Urszula; Sugier, Danuta; Dziki, Dariusz; Sugier, Piotr
2014-01-01
The aim of this study was to investigate and to compare the extractability, bioaccessibility, and bioavailability in vitro of antioxidative compounds from bark of selected Salix species: S. alba (SA), S. daphnoides (SD), S. purpurea (SP), and S. daphnoides x purpurea (SDP) hybrid willow clones originating from their natural habitats and cultivated on the sandy soil. The highest amount of phenolic glycosides was found in the bark of SDP and SD. The best source of phenolics was bark of SDP. The highest content of flavonoids were found in SD bark samples, whereas the highest concentration of bioaccessible and bioavailable phenolic acids was determined in SDP bark. Bark of all tested Salix species showed significant antiradical activity. This properties are strongly dependent on extraction system and genetic factors. Regardless of Salix genotypes, the lowest chelating power was found for chemically-extractable compounds. Bark of all Salix species contained ethanol-extractable compounds with reducing ability. Besides this, high bioaccessibility and bioavailability in vitro of Salix bark phytochemicals were found. Obtained results indicate that extracts from bark tested Salix genotypes can provide health promoting benefits to the consumers; however, this problem requires further study.
Development of mucoadhesive patches for buccal administration of carvedilol.
Vishnu, Y Vamshi; Chandrasekhar, K; Ramesh, G; Rao, Y Madhusudan
2007-01-01
A buccal patch for systemic administration of carvedilol in the oral cavity has been developed using two different mucoadhesive polymers. The formulations were tested for in vitro drug permeation studies, buccal absorption test, in vitro release studies, moisture absorption studies and in vitro bioadhesion studies. The physicochemical interactions between carvedilol and polymers were investigated by Fourier transform infrared (FTIR) Spectroscopy. According to FTIR the drug did not show any evidence of an interaction with the polymers used and was present in an unchanged state. XRD studies reveal that the drug is in crystalline state in the polymer matrix. The results indicate that suitable bioadhesive buccal patches with desired permeability could be prepared. Bioavailability studies in healthy pigs reveal that carvedilol has got good buccal absorption. The bioavailability of carvedilol from buccal patches has increased 2.29 folds when compared to that of oral solution. The formulation AC5 (HPMC E 15) shows 84.85 + 0.089% release and 38.69 + 6.61% permeated through porcine buccal membrane in 4 hr. The basic pharmacokinetic parameters like the C(max), T(max) and AUC(total) were calculated and showed statistically significant difference (P<0.05) when given by buccal route compared to that of oral solution.
Bioaccessibility In Vitro of Nutraceuticals from Bark of Selected Salix Species
2014-01-01
The aim of this study was to investigate and to compare the extractability, bioaccessibility, and bioavailability in vitro of antioxidative compounds from bark of selected Salix species: S. alba (SA), S. daphnoides (SD), S. purpurea (SP), and S. daphnoides x purpurea (SDP) hybrid willow clones originating from their natural habitats and cultivated on the sandy soil. The highest amount of phenolic glycosides was found in the bark of SDP and SD. The best source of phenolics was bark of SDP. The highest content of flavonoids were found in SD bark samples, whereas the highest concentration of bioaccessible and bioavailable phenolic acids was determined in SDP bark. Bark of all tested Salix species showed significant antiradical activity. This properties are strongly dependent on extraction system and genetic factors. Regardless of Salix genotypes, the lowest chelating power was found for chemically-extractable compounds. Bark of all Salix species contained ethanol-extractable compounds with reducing ability. Besides this, high bioaccessibility and bioavailability in vitro of Salix bark phytochemicals were found. Obtained results indicate that extracts from bark tested Salix genotypes can provide health promoting benefits to the consumers; however, this problem requires further study. PMID:24696660
In Vitro and In Vivo Evaluation of Infestation Deterrents Against Lice.
Yoon, Kyong Sup; Ketzis, Jennifer K; Andrewes, Samuel W; Wu, Christopher S; Honraet, Kris; Staljanssens, Dorien; Rossel, Bart; Marshall Clark, J
2015-09-01
The human head louse is a cosmopolitan ectoparasite and frequently infests many people, particularly school-age children. Due to widespread pyrethroid resistance and the lack of efficient resistance management, there has been a considerable interest in the protection of uninfested people and prevention of reinfestation by disrupting lice transfer. In this study, two nonclinical model systems (in vitro and in vivo) were used to determine the efficacy of the infestation deterrents, Elimax lotion and Elimax shampoo, against human head lice or poultry chewing lice, respectively. With in vitro assessments, female head lice exhibited significantly higher avoidance responses to hair tufts treated with either of the test formulations, which led to significantly higher ovipositional avoidance when compared with female lice on control hair tufts. Additionally, both formulations were determined to be competent infestation deterrents in a competitive avoidance test in the presence of a known attractant (head louse feces extract). In in vivo assessments using a previously validated poultry model, Elimax shampoo was determined to be an efficacious deterrent against poultry chewing lice within Menopon spp. and Menacanthus spp. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maneckjee, R.; Minna, J.D.
Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptidesmore » ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.« less
Engineered in vitro disease models.
Benam, Kambez H; Dauth, Stephanie; Hassell, Bryan; Herland, Anna; Jain, Abhishek; Jang, Kyung-Jin; Karalis, Katia; Kim, Hyun Jung; MacQueen, Luke; Mahmoodian, Roza; Musah, Samira; Torisawa, Yu-suke; van der Meer, Andries D; Villenave, Remi; Yadid, Moran; Parker, Kevin K; Ingber, Donald E
2015-01-01
The ultimate goal of most biomedical research is to gain greater insight into mechanisms of human disease or to develop new and improved therapies or diagnostics. Although great advances have been made in terms of developing disease models in animals, such as transgenic mice, many of these models fail to faithfully recapitulate the human condition. In addition, it is difficult to identify critical cellular and molecular contributors to disease or to vary them independently in whole-animal models. This challenge has attracted the interest of engineers, who have begun to collaborate with biologists to leverage recent advances in tissue engineering and microfabrication to develop novel in vitro models of disease. As these models are synthetic systems, specific molecular factors and individual cell types, including parenchymal cells, vascular cells, and immune cells, can be varied independently while simultaneously measuring system-level responses in real time. In this article, we provide some examples of these efforts, including engineered models of diseases of the heart, lung, intestine, liver, kidney, cartilage, skin and vascular, endocrine, musculoskeletal, and nervous systems, as well as models of infectious diseases and cancer. We also describe how engineered in vitro models can be combined with human inducible pluripotent stem cells to enable new insights into a broad variety of disease mechanisms, as well as provide a test bed for screening new therapies.
In Vitro Comparison of Dynesys, PEEK, and Titanium Constructs in the Lumbar Spine
Yeager, Matthew S.; Cook, Daniel J.; Cheng, Boyle C.
2015-01-01
Introduction. Pedicle based posterior dynamic stabilization systems aim to stabilize the pathologic spine while also allowing sufficient motion to mitigate adjacent level effects. Two flexible constructs that have been proposed to act in such a manner, the Dynesys Dynamic Stabilization System and PEEK rod, have yet to be directly compared in vitro to a rigid Titanium rod. Methods. Human lumbar specimens were tested in flexion extension, lateral bending, and axial torsion to evaluate the following conditions at L4-L5: Intact, Dynesys, PEEK rod, Titanium rod, and Destabilized. Intervertebral range of motion, interpedicular travel, and interpedicular displacement metrics were evaluated from 3rd-cycle data using an optoelectric tracking system. Results. Statistically significant decreases in ROM compared to Intact and Destabilized conditions were detected for the instrumented conditions during flexion extension and lateral bending. AT ROM was significantly less than Destabilized but not the Intact condition. Similar trends were found for interpedicular displacement in all modes of loading; however, interpedicular travel trends were less consistent. More importantly, no metrics under any mode of loading revealed significant differences between Dynesys, PEEK, and Titanium. Conclusion. The results of this study support previous findings that Dynesys and PEEK constructs behave similarly to a Titanium rod in vitro. PMID:26366303
Nie, Jianhui; Wu, Xiaohong; Ma, Jian; Cao, Shouchun; Huang, Weijin; Liu, Qiang; Li, Xuguang; Li, Yuhua; Wang, Youchun
2017-01-01
Pseudoviruses are useful virological tools because of their safety and versatility; however the low titer of these viruses substantially limits their wider applications. We developed a highly efficient pseudovirus production system capable of yielding 100 times more rabies pseudovirus than the traditional method. Employing the high-titer pseudoviruses, we have developed robust in vitro and in vivo neutralization assays for the evaluation of rabies vaccine, which traditionally relies on live-virus based assays. Compared with current rapid fluorescent focus inhibition test (RFFIT), our in vitro pseudovirus-based neutralization assay (PBNA) is much less labor-intensive while demonstrating better reproducibility. Moreover, the in vivo PBNA assay was also found to be superior to the live virus based assay. Following intravenous administration, the pseudovirus effectively infected the mice, with dynamic viral distributions being sequentially observed in spleen, liver and brain. Furthermore, data from in vivo PBNA showed great agreement with those generated from the live virus model but with the experimental time significantly reduced from 2 weeks to 3 days. Taken together, the effective pseudovirus production system facilitated the development of novel PBNA assays which could replace live virus-based traditional assays due to its safety, rapidity, reproducibility and high throughput capacity. PMID:28218278
A head-to-head comparison of hydrogen peroxide vapor and aerosol room decontamination systems.
Holmdahl, T; Lanbeck, P; Wullt, M; Walder, M H
2011-09-01
New technologies have emerged in recent years for the disinfection of hospital rooms and equipment that may not be disinfected adequately using conventional methods. There are several hydrogen peroxide-based area decontamination technologies on the market, but no head-to-head studies have been performed. We conducted a head-to-head in vitro comparison of a hydrogen peroxide vapor (HPV) system (Bioquell) and an aerosolized hydrogen peroxide (aHP) system (Sterinis). The tests were conducted in a purpose-built 136-m(3) test room. One HPV generator and 2 aHP machines were used, following recommendations of the manufacturers. Three repeated tests were performed for each system. The microbiological efficacy of the 2 systems was tested using 6-log Tyvek-pouched Geobacillus stearothermophilus biological indicators (BIs). The indicators were placed at 20 locations in the first test and 14 locations in the subsequent 2 tests for each system. All BIs were inactivated for the 3 HPV tests, compared with only 10% in the first aHP test and 79% in the other 2 aHP tests. The peak hydrogen peroxide concentration was 338 ppm for HPV and 160 ppm for aHP. The total cycle time (including aeration) was 3 and 3.5 hours for the 3 HPV tests and the 3 aHP tests, respectively. Monitoring around the perimeter of the enclosure with a handheld sensor during tests of both systems did not identify leakage. One HPV generator was more effective than 2 aHP machines for the inactivation of G. stearothermophilus BIs, and cycle times were faster for the HPV system.
Inhibition of decay fungi using cotton cellulose hydrolysis as a model for wood decay
Frederick Green
2000-01-01
Environmental pressures to replace chromium and arsenic in fixed waterborne preservatives have been increasing. Potential inhibitors of brown-, white- and soft-rot fungi need to be evaluated as alternative preservatives by screening and testing in, in vitro model systems. This paper reports the inhibition of cellulose depolymerization and weight loss of selected decay...
1991-04-12
these brief recording periods, the fluid level in the bath was restored to full height. Control experiments have demonstrated that, under these...Buchner style (5.5 cm) Spectrum Microfiltration System (47 mm) or Millipore XX 10 047 00 Glass 47 mm filter holder assembly Nylon Mesh
The research presented here is the development of an in vitro thyroid gland culture system to test the effect of chemicals directly on the gland without influence of other parts of the HPT axis. . . This information can then be used to select chemicals for further evaluation in v...
Wanji, Samuel; Amvongo-Adjia, Nathalie; Njouendou, Abdel Jelil; Kengne-Ouafo, Jonas Arnaud; Ndongmo, Winston Patrick Chounna; Fombad, Fanny Fri; Koudou, Benjamin; Enyong, Peter A; Bockarie, Moses
2016-05-05
The immunochromatographic test (ICT) for lymphatic filariasis is a serological test designed for unequivocal detection of circulating Wuchereria bancrofti antigen. It was validated and promoted by WHO as the primary diagnostic tool for mapping and impact monitoring for disease elimination following interventions. The initial tests for specificity and sensitivity were based on samples collected in areas free of loiasis and the results suggested a near 100% specificity for W. bancrofti. The possibility of cross-reactivity with non-Wuchereria bancrofti antigens was not investigated until recently, when false positive results were observed in three independent studies carried out in Central Africa. Associations were demonstrated between ICT positivity and Loa loa microfilaraemia, but it was not clearly established if these false positive results were due to L. loa or can be extended to other filarial nematodes. This study brought further evidences of the cross-reactivity of ICT card with L. loa and Onchocerca ochengi (related to O. volvulus parasite) using in vivo and in vitro systems. Two filarial/host experimental systems (L. loa-baboon and O. ochengi-cattle) and the in vitro maintenance of different stages (microfilariae, infective larvae and adult worm) of the two filariae were used in three experiments per filarial species. First, whole blood and sera samples were prepared from venous blood of patent baboons and cattle, and applied on ICT cards to detect circulating filarial antigens. Secondly, larval stages of L. loa and O. ochengi as well as O. ochengi adult males were maintained in vitro. Culture supernatants were collected and applied on ICT cards after 6, 12 and 24 h of in vitro maintenance. Finally, total worm extracts (TWE) were prepared using L. loa microfilariae (Mf) and O. ochengi microfilariae, infective larvae and adult male worms. TWE were also tested on ICT cards. For each experiment, control assays (whole blood and sera from uninfected babon/cattle, culture medium and extraction buffer) were performed. Positive ICT results were obtained with whole blood and sera of L. loa microfilaremic baboons, culture supernatants of L. loa Mf and infective larvae as well as with L. loa Mf protein extracts. In contrast, negative ICT results were observed with whole blood and sera from the O. ochengi-cattle system. Surprisingly, culture supernatant of O. ochengi adult males and total worm extracts (Mf, infective larvae and adult worm) were positive to the test. This study has provided further evidence of L. loa cross-reactivity for the ICT card. All stages of L. loa seem capable of inducing the cross-reactivity. Onchocerca ochengi. can also induce cross-reactivity in vitro, but this is less likely in vivo due to the location of parasite. The availability of the parasite proteins in the blood stream determines the magnitude of the cross-reactivity. The cross-reactivity of the ICT card to these non-W. bancrofti filariae poses some doubts to the reliability and validity of the current map of LF of Central Africa that was generated using this diagnostic tool.
Ghaisas, S D; Bhide, S V
1994-01-01
Human lymphocytes were used as an assay system to test chemopreventive activity of natural products. Purnark, a mixture of extracts of turmeric, betel leaf and catechu, was tested for its chemoprotective activity against BP induced DNA damage. Sister chromatid exchange and micronuclei were used as markers to assess the protective activity of Purnark. Purnark gave 50-60% protection against BP induced SCEs and micronuclei. Purnark at 100 micrograms dose did not show any genotoxicity.
Misra, Manoj; Leverette, Robert D.; Cooper, Bethany T.; Bennett, Melanee B.; Brown, Steven E.
2014-01-01
The use of electronic cigarettes (e-cigs) continues to increase worldwide in parallel with accumulating information on their potential toxicity and safety. In this study, an in vitro battery of established assays was used to examine the cytotoxicity, mutagenicity, genotoxicity and inflammatory responses of certain commercial e-cigs and compared to tobacco burning cigarettes, smokeless tobacco (SLT) products and a nicotine replacement therapy (NRT) product. The toxicity evaluation was performed on e-liquids and pad-collected aerosols of e-cigs, pad-collected smoke condensates of tobacco cigarettes and extracts of SLT and NRT products. In all assays, exposures with e-cig liquids and collected aerosols, at the doses tested, showed no significant activity when compared to tobacco burning cigarettes. Results for the e-cigs, with and without nicotine in two evaluated flavor variants, were very similar in all assays, indicating that the presence of nicotine and flavors, at the levels tested, did not induce any cytotoxic, genotoxic or inflammatory effects. The present findings indicate that neither the e-cig liquids and collected aerosols, nor the extracts of the SLT and NRT products produce any meaningful toxic effects in four widely-applied in vitro test systems, in which the conventional cigarette smoke preparations, at comparable exposures, are markedly cytotoxic and genotoxic. PMID:25361047
Accelerated in vitro release testing of implantable PLGA microsphere/PVA hydrogel composite coatings
Shen, Jie; Burgess, Diane J.
2011-01-01
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under “real-time” and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to “real-time” conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict “real-time” release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under “real-time” and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. PMID:22016033
Shen, Jie; Burgess, Diane J
2012-01-17
Dexamethasone loaded poly(lactic-co-glycolic acid) (PLGA) microsphere/PVA hydrogel composites have been investigated as an outer drug-eluting coating for implantable devices such as glucose sensors to counter negative tissue responses to implants. The objective of this study was to develop a discriminatory, accelerated in vitro release testing method for this drug-eluting coating using United States Pharmacopeia (USP) apparatus 4. Polymer degradation and drug release kinetics were investigated under "real-time" and accelerated conditions (i.e. extreme pH, hydro-alcoholic solutions and elevated temperatures). Compared to "real-time" conditions, the initial burst and lag phases were similar using hydro-alcoholic solutions and extreme pH conditions, while the secondary apparent zero-order release phase was slightly accelerated. Elevated temperatures resulted in a significant acceleration of dexamethasone release. The accelerated release data were able to predict "real-time" release when applying the Arrhenius equation. Microsphere batches with faster and slower release profiles were investigated under "real-time" and elevated temperature (60°C) conditions to determine the discriminatory ability of the method. The results demonstrated both the feasibility and the discriminatory ability of this USP apparatus 4 method for in vitro release testing of drug loaded PLGA microsphere/PVA hydrogel composites. This method may be appropriate for similar drug/device combination products and drug delivery systems. Copyright © 2011 Elsevier B.V. All rights reserved.
NO Dioxygenase Activity in Hemoglobins Is Ubiquitous In Vitro, but Limited by Reduction In Vivo
Smagghe, Benoit J.; Trent, James T.; Hargrove, Mark S.
2008-01-01
Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to “hexacoordinate” hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s) has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin), animals (neuroglobin and cytoglobin), and bacteria (Synechocystis hemoglobin) for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin) in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O2 binding. PMID:18446211
Alterman, Julia F; Coles, Andrew H; Hall, Lauren M; Aronin, Neil; Khvorova, Anastasia; Didiot, Marie-Cécile
2017-08-20
Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo . We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.
Harris, Mark R; Coote, Peter J
2010-04-01
Administering synergistic combinations of antifungals could be a route to overcome problems with toxicity and the development of resistance. Combination of the echinocandins caspofungin or anidulafungin with a range of structurally diverse antimicrobial peptides resulted in potent synergistic killing of Candida spp. in vitro. Fungicidal synergy was measured by calculating fractional inhibitory concentration indices from checkerboard assays as well as loss of viability. Inhibitory combinations of the antifungals did not induce cytotoxicity in vitro. However, in a murine model of systemic candidiasis, co-administration of caspofungin with one example of the cationic peptides tested, ranalexin, did not show enhanced efficacy compared with the single treatments alone. Further study using alternative peptides will identify whether this combination approach could represent a novel treatment for fungal pathogens. (c) 2009 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
In vitro permeation of levothyroxine across the skin.
Padula, Cristina; Pappani, Alice; Santi, Patrizia
2008-02-12
The aim of this work was to investigate the in vitro transdermal permeation characteristics of sodium levothyroxine, in view of its topical application. Permeation experiments were performed in vitro, using rabbit ear skin as barrier. At the end of the experiments levothyroxine retained in the skin was extracted and quantified by HPLC. The formulations tested were solutions and a commercial cream. The use of dimethyl beta-cyclodextrin as solubilizing agent increased to a significant extent levothyroxine solubility, but reduced its skin accumulation. Skin stripping before drug application produced a considerable increase in the amount retained and levothyroxine was found also in the receptor compartment. The application of the commercial cream in occlusive conditions increased to a significant extent drug retention in the skin. In conclusion, levothyroxine skin administration is promising in view of a localized effect, because it was retained in the skin. On the contrary, transdermal administration in view of systemic effect does not represent a concrete possibility.
Dulude, H; Salvador, R; Gallant, G
1995-01-01
The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.
Sauer, I M; Frank, J; Spiegelberg, A; Bücherl, E S
2000-01-01
A new electromechanical energy converting system has been developed to yield an efficient and durable orthotopic total artificial heart (TAH). The energy converter we developed transforms the unidirectional rotational motion of the motor into a longitudinal forward-reverse movement of an internal geared oval, linked directly to pusher plates on both sides. To ensure a permanent positive connection between the drive gear and the internally geared wheel, a ball bearing runs inside an oval shaped guide track. Motor, gear unit, and conical pusher plates are seated between alternately ejecting and filling ventricles. The unidirectional motion of the brushless DC motor affords easier motor control, reduces energy demand, and ensures longer life of the motor when compared with a bidirectional motion system. In vitro testing has been performed on a mock circulation loop. The overall system efficiency of the TAH Ovalis was 27-39% (mean, 36%) for the pump output range of 2-7 L/min. The maximum output of 7 L/min can be obtained with a pump rate of 130 min(-1) and an afterload pressure of 140 mm Hg. For an average sized human with a mean cardiac output of 6 L/min at a mean aortic pressure of 120 mm Hg, 5 watts of input power would be required. The size of the prototype is 560 cm3, the weight is 950 g. Our first in vitro studies demonstrated the excellent efficiency and pump performance of this new electromechanical energy converter. The results prove the feasibility of this new concept's use as an energy converter for a total artificial heart.
In vitro validation of a new respiratory ultrasonic plethysmograph.
Schramel, Johannes; van den Hoven, René; Moens, Yves
2012-07-01
The in-vitro validation of a novel Respiratory Ultrasonic Plethysmography (RUP) system designed to detect circumference changes of rib cage and abdominal compartments in large and small animals. Experimental in vitro study. The experimental system includes two compliant fluid-filled rubber tubes functioning as ultrasonic waveguides. Each has an ultrasonic transmitter and a detector at the opposing ends. Sensor length can be individually adapted in the range of 0.15-2 m. Data are downloaded to a computer at a sampling rate of 10 or 100 Hz. Measurements have a resolution of 0.3 mm. Baseline stability, linearity and repeatability were investigated with dedicated experiments. The base line drift was tested measuring a fixed distance for 2 hours continuously and then 18 hours later. A hand-operated horse thorax dummy (elliptically shaped, circumference 1.73 m) was used to compare waveforms of RUP with a respiratory inductive plethysmograph (RIP). The electromagnetic interference was tested by approaching metallic objects. Baseline drift and repeatability (10 repeated steps of 1.6% and 6.6% elongations and contractions) were within ± 0.3 mm. The response of the system for tube stretching up to 11% of total length was linear with a coefficient of determination for linearity of 0.998. In contrast to RIP, electromagnetic interference could not be observed with RUP. The low baseline drift and the lack of electromagnetic interference favours the use of RUP compared to an RIP device when studying the breathing pattern and end expiratory lung volume changes in conscious and anaesthetized animals. © 2012 The Authors. Veterinary Anaesthesia and Analgesia. © 2012 Association of Veterinary Anaesthetists and the American College of Veterinary Anesthesiologists.
Subia, Bano; Dey, Tuli; Sharma, Shaily; Kundu, Subhas C
2015-02-04
To avoid the indiscriminating action of anticancer drugs, the cancer cell specific targeting of drug molecule becomes a preferred choice for the treatment. The successful screening of the drug molecules in 2D culture system requires further validation. The failure of target specific drug in animal model raises the issue of creating a platform in between the in vitro (2D) and in vivo animal testing. The metastatic breast cancer cells migrate and settle at different sites such as bone tissue. This work evaluates the in vitro 3D model of the breast cancer and bone cells to understand the cellular interactions in the presence of a targeted anticancer drug delivery system. The silk fibroin based cytocompatible 3D scaffold is used as in vitro 3D distribution model. Human breast adenocarcinoma and osteoblast like cells are cocultured to evaluate the efficiency of doxorubicin loaded folic acid conjugated silk fibroin nanoparticle as drug delivery system. Decreasing population of the cancer cells, which lower the levels of vascular endothelial growth factors, glucose consumption, and lactate production are observed in the drug treated coculture constructs. The drug treated constructs do not show any major impact on bone mineralization. The diminished expression of osteogenic markers such as osteocalcein and alkaline phosphatase are recorded. The result indicates that this type of silk based 3D in vitro coculture model may be utilized as a bridge between the traditional 2D and animal model system to evaluate the new drug molecule (s) or to reassay the known drug molecules or to develop target specific drug in cancer research.
Rosseto, Hélen Cássia; Toledo, Lucas de Alcântara Sica de; Francisco, Lizziane Maria Belloto de; Esposito, Elisabetta; Lim, Yunsook; Valacchi, Giuseppe; Cortesi, Rita; Bruschi, Marcos Luciano
2017-10-01
Propolis, a natural compound that can accelerate the wound healing process, is mainly used as ethanolic extract. The extractive solution may also be obtained from the propolis by-product (BP), transforming this waste material into a pharmaceutical active ingredient. Even if propolis does not show toxicity, when used as an extract over harmed skin or mucosa, the present ethanol content may be harmful to the tissue recovering, besides hindering the drug release. This study describes the development of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) as topical propolis delivery systems and the investigation of their in vitro and in vivo activities. The extracts were evaluated to guarantee their quality, and the lipid dispersions were characterized with respect to morphology (cryo-TEM), size and diffractometry (X-ray) properties. The occlusive capacity of formulations was also evaluated by an in vitro technique, which determines the occlusion factor. The drug entrapment efficiency (EE), as well as the in vitro drug release profile from the nanoparticulate systems was investigated as well. The size analysis performed through 90days was favorable to a topical administration and the polydispersity index, though not ideal in all cases due to the high content of resins and gums from the extracts, were relatively stable for the SLN. The propolis extract contributes to the occlusive potential of the formulations. The human immortalized keratinocytes presented good cell viability when tested with both extracts (propolis and BP) freely or entrapped in the systems. SLN modified with propolis material provided an acceleration of the in vivo wound healing process. Copyright © 2017 Elsevier B.V. All rights reserved.
Abou-ElNaga, Amoura; Mutawa, Ghada; El-Sherbiny, Ibrahim M; Abd-ElGhaffar, Hassan; Allam, Ahmed A; Ajarem, Jamaan; Mousa, Shaker A
2017-04-12
The power of tumorigenesis, chemo-resistance and metastasis in malignant ovarian tumors resides in a tiny population of cancer cells known as ovarian cancer stem cells (OCSCs). Developing nano-therapeutic targeting of OCSCs is considered a great challenge. The potential use of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) was investigated as a drug delivery system for paclitaxel (PTX) against OCSCs in vitro and in vivo. PTX-loaded PLGA NPs were prepared by an emulsion solvent evaporation method, supported by incorporation of folic acid (FA) as the ligand. NPs were characterized for size, surface morphology, drug loading, and encapsulation efficiency. In vitro cytotoxicity of PTX-loaded FA/PLGA NPs was tested against OCSCs with MTT assay. In vivo anti-tumoral efficiency and active targeting potential of prepared NPs against tumors in nude mice were investigated. In vitro results revealed that IC 50 of PTX was significantly reduced after loading on PLGA NPs. On the other hand, in vivo results showed that PLGA NPs enhanced the tumor suppression efficiency of PTX. Investigation with real time quantitative PCR analysis revealed the limiting expression of chemo-resistant genes ( ABCG2 and MDR1 ) after applying PLGA NPs as a drug delivery system for PTX. Histopathological examination of tumors showed the effective biological influence of PTX-loaded FA/PLGA NPs through the appearance of reactive lymphoid follicles. Targeting potential of PTX was activated by FA/PLGA NPs through significant preservation of body weight ( p < 0.0001) and minimizing the systemic toxicity in healthy tissues. Immunohistochemical investigation revealed a high expression of apoptotic markers in tumor tissue, supporting the targeting effect of FA/PLGA NPs. A drug delivery system based on FA/PLGA NPs can enhance PTX's in vitro cytotoxicity and in vivo targeting potential against OCSCs.
Al-Ghabeish, Manar; Xu, Xiaoming; Krishnaiah, Yellela S R; Rahman, Ziyaur; Yang, Yang; Khan, Mansoor A
2015-11-30
The availability of in vitro performance tests such as in vitro drug release testing (IVRT) and in vitro permeation testing (IVPT) are critical to comprehensively assure consistent delivery of the active component(s) from semisolid ophthalmic drug products. The objective was to study the impact of drug loading and type of ointment base on the in vitro performance (IVRT and IVPT) of ophthalmic ointments using acyclovir as a model drug candidate. The in vitro drug release for the ointments was evaluated using a modified USP apparatus 2 with Enhancer cells. The transcorneal permeation was carried out using rabbit cornea on modified vertical Franz cells. The drug retention in cornea (DRC) was also determined at the end of transcorneal drug permeation study. The in vitro drug release, transcorneal drug permeation as well as DRC exhibited a proportional increase with increasing drug loading in the ointment. On comparing the in vitro drug release profile with transcorneal permeation profile, it appears that drug release from the ointment is controlling acyclovir transport through the cornea. Furthermore, enhanced in vitro transcorneal permeation relative to the in vitro drug release underscores the importance of the interplay between the physiology of the ocular tissue and ointment formulation. The results indicated that IVRT and IVPT could be used to discriminate the impact of changes in drug load and formulation composition of ophthalmic ointments. Copyright © 2015. Published by Elsevier B.V.
Immediate systemic allergic reaction in an infant to fish allergen ingested through breast milk
Arima, Takayasu; Campos-Alberto, Eduardo; Funakoshi, Hiraku; Inoue, Yuzaburo; Tomiita, Minako; Kohno, Yoichi
2016-01-01
This is a rare case report of systemic allergic reaction to fish allergen ingested through breast milk. Mother ate raw fish more than 3 times a week. Her consumption of fish was associated with urticaria and wheeze in an infant via breast-feeding. Fish-specific IgE antibodies were detected by skin prick test but not by in vitro IgE test. This case demonstrates that fish protein ingested by mother can cause an immediate systemic allergic reaction in offspring through breast-feeding. Although fish intake is generally recommended for prevention of allergy, one should be aware that frequent intake of fish by a lactating mother may sensitize the baby and induce an allergic reaction through breast-feeding. PMID:27803887
Kwon, Jung-Hwan; Escher, Beate I
2008-03-01
Low cost in vitro tools are needed at the screening stage of assessment of bioaccumulation potential of new and existing chemicals because the number of chemical substances that needs to be tested highly exceeds the capacity of in vivo bioconcentration tests. Thus, the parallel artificial membrane permeability assay (PAMPA) system was modified to predict passive uptake/ elimination rate in fish. To overcome the difficulties associated with low aqueous solubility and high membrane affinity of highly hydrophobic chemicals, we measured the rate of permeation from the donor poly(dimethylsiloxane)(PDMS) disk to the acceptor PDMS disk through aqueous and PDMS membrane boundary layers and term the modified PAMPA system "PDMS-PAMPA". Twenty chemicals were selected for validation of PDMS-PAMPA. The measured permeability is proportional to the passive elimination rate constant in fish and was used to predict the "minimum" in vivo elimination rate constant. The in vivo data were very close to predicted values except for a few polar chemicals and metabolically active chemicals, such as pyrene and benzo[a]pyrene. Thus, PDMS-PAMPA can be an appropriate in vitro system for nonmetabolizable chemicals. Combination with metabolic clearance rates using a battery of metabolic degradation assays would enhance the applicability for metabolizable chemicals.
In vitro developmental neurotoxicity (DNT) testing: relevant models and endpoints.
Bal-Price, Anna K; Hogberg, Helena T; Buzanska, Leonora; Lenas, Petros; van Vliet, Erwin; Hartung, Thomas
2010-09-01
Environmental chemicals have a potential impact on children's health as the developing brain is much more vulnerable to injury caused by different classes of chemicals than the adult brain. This vulnerability is partly due to the fact that very complex processes of cell development and maturation take place within a tightly controlled time frame. So different stages of brain development are susceptible to toxic effects at different time points. Additionally the adult brain is well protected against chemicals by the blood brain barrier (BBB) whereas the placenta only partially protects against harmful chemical exposure. Many metals easily cross the placenta and BBB barrier since even after the birth BBB is not entirely differentiated (until about 6 months after birth). Additionally, the susceptibility of infants and children is due to increased exposure, augmented absorption rates, and less efficient ability of defense mechanism in comparison to adults. The In Vitro Session during the 12th International Neurotoxicology Association meeting (Jerusalem, June, 2009) provided the opportunity to discuss the new challenges that have to be faced to create new type of safety assessments for regulatory requirements. The integration of various tests into testing strategies as well as combination of information-rich approaches with bioinformatics was discussed. Furthermore relevant models and endpoints for developmental neurotoxicity (DNT) evaluation using in vitro approach were presented. The primary neuronal cultures of cerebellar granule cells (CGCs) as well as 3D aggregate model and the possible application of human embryonic and adult stem cells was discussed pointing out the potential of these models to be used for DNT testing. The presented systems are relevant for DNT evaluation as the key processes of brain development such cell proliferation, migration and neuronal/glial differentiation are present. Furthermore, emerging technologies such as gene expression, electrical activity measurements and metabonomics have been identified as promising tools. In a combination with other assays the in vitro approach could be included into a DNT intelligent testing strategy to speed up the process of DNT evaluation mainly by initial prioritization of chemicals with DNT potential for further testing. Copyright © 2009 Elsevier Inc. All rights reserved.
Gerzson, Mariana Freire Barbieri; Victoria, Francine N; Radatz, Cátia S; de Gomes, Marcelo G; Boeira, Silvana P; Jacob, Raquel G; Alves, Diego; Jesse, Cristiano Ricardo; Savegnago, Lucielli
2012-07-01
In this study, the antioxidant and antidepressant-like effects of α-(phenylselanyl) acetophenone (PSAP), an organoselenium compound, were investigated. To assess the in vitro antioxidant properties, PSAP was evaluated in four test systems (DPPH, ABTS, FRAP and inhibition of lipid peroxidation). PSAP (100-500 μM) showed potent antioxidant activity and protected against lipid peroxidation. Additionally, we investigated whether PSAP, when administered in mice (100, 200 and 400mg/kg, per oral, p.o.), could cause acute toxicity. Our results demonstrated that PSAP did not cause the death of any animal, significantly reduce body weight or cause any oxidative tissue stress following treatment. This study also evaluated the effect of PSAP (0.1-10 mg/kg, p.o) on mice in a forced swim test (FST) and tail suspension test (TST), assays that are predictive of depressant activity and motor activity in the open-field. PSAP (5-10 mg/kg) significantly reduced immobility time in the FST and TST without affecting motor activity. In addition, the antidepressant-like effect caused by PSAP (5m/kg, p.o) in mice during the TST was dependent on an interaction with the serotonergic system (5-HT(1A) receptors), but not with the noradrenergic, dopaminergic or adenosinergic system. Together, these results suggest that PSAP possesses antioxidant and antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
Development of a model system to analyze chondrogenic differentiation of mesenchymal stem cells
Ruedel, Anke; Hofmeister, Simone; Bosserhoff, Anja-Katrin
2013-01-01
High-density cell culture is widely used for the analysis of cartilage development of human mesenchymal stem cells (HMSCs) in vitro. Several cell culture systems, as micromass, pellet culture and alginate culture, are applied by groups in the field to induce chondrogenic differentiation of HMSCs. A draw back of all model systems is the high amount of cells necessary for the experiments. Further, handling of large experimental approaches is difficult due to culturing e.g. in 15 ml tubes. Therefore, we aimed to develop a new model system based on “hanging drop” cultures using 10 to 100 fold less cells. Here, we demonstrate that differentiation of chondrogenic cells was induced as previously shown in other model systems. Real time RT-PCR analysis demonstrated that Collagen type II and MIA/CD-RAP were upregulated during culturing whereas for induction of hypertrophic markers like Collagen type X and AP-2 epsilon treatment with TGF beta was needed. To further test the system, siRNA against Sox9 was used and effects on chondrogenic gene expression were evaluated. In summary, the hanging drop culture system was determined to be a promising tool for in vitro chondrogenic studies. PMID:24294400
Comparison of biotransformation and efficacy of aminoacetonitrile anthelmintics in vitro.
Stuchlíková, Lucie; Lecová, Lenka; Jirásko, Robert; Lamka, Jiří; Vokřál, Ivan; Szotáková, Barbora; Holčapek, Michal; Skálová, Lenka
2016-02-01
The present in vitro study was designed to test and compare anthelmintic activity, hepatotoxicity, and biotransformation of four selected aminoacetonitrile derivatives (AADs): monepantel (MOP, anthelmintic approved for the treatment), AAD-970, AAD-1154, and AAD-1336. Micro-agar larval development test, MTT test of cytotoxicity, and biotransformation study coupled with Ultra high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) technique were used for this purpose. Larvae of two Haemonchus contortus strains (drug susceptible and multi-drug resistant) and primary cultures of rat and ovine hepatocytes served as model systems. All AADs (including MOP) exhibited significant larvicidal effect in H. contortus susceptible as well as multi-resistant strains, much higher than those of reference anthelmintics thiabendazole and flubendazole. AAD-1154 provides the best results for most tested parameters among all AADs in this study. The cytotoxicity test showed that all AADs can be considered as nontoxic for hepatocytes. In the biotransformation study, Phase I and Phase II metabolites of AADs were identified and schemes of possible metabolic pathways in ovine hepatocytes were proposed. Biotransformation of MOP was much more extensive than biotransformation of other AADs. Based on obtained results, AAD-1154 and AAD-1336 can be considered as promising candidates for further in vivo testing. Copyright © 2015 John Wiley & Sons, Ltd.
In vitro eye irritation testing using the open source reconstructed hemicornea - a ring trial.
Mewes, Karsten R; Engelke, Maria; Zorn-Kruppa, Michaela; Bartok, Melinda; Tandon, Rashmi; Brandner, Johanna M; Petersohn, Dirk
2017-01-01
The aim of the present ring trial was to test whether two new methodological approaches for the in vitro classification of eye irritating chemicals can be reliably transferred from the developers' laboratories to other sites. Both test methods are based on the well-established open source reconstructed 3D hemicornea models. In the first approach, the initial depth of injury after chemical treatment in the hemicornea model is derived from the quantitative analysis of histological sections. In the second approach, tissue viability, as a measure for corneal damage after chemical treatment, is analyzed separately for epithelium and stroma of the hemicornea model. The three independent laboratories that participated in the ring trial produced their own hemicornea models according to the test producer's instructions, thus supporting the open source concept. A total of 9 chemicals with different physicochemical and eye-irritating properties were tested to assess the between-laboratory reproducibility (BLR), the predictive performance, as well as possible limitations of the test systems. The BLR was 62.5% for the first and 100% for the second method. Both methods enabled to discriminate Cat. 1 chemicals from all non-Cat. 1 substances, which qualifies them to be used in a top-down approach. However, the selectivity between No Cat. and Cat. 2 chemicals still needs optimization.
Morman, S.A.; Plumlee, G.S.; Smith, D.B.
2009-01-01
In vitro bioaccessibility tests (IVBA) are inexpensive, physiologically-based extraction tests designed to estimate the bioaccessibility of elements along ingestion exposure pathways. Published IVBA protocols call for the testing to be done on the Pb > Ni > As > Cr.
Soeteman-Hernández, Lya G; Fellows, Mick D; Johnson, George E; Slob, Wout
2015-12-01
In this study, we explored the applicability of using in vitro micronucleus (MN) data from human lymphoblastoid TK6 cells to derive in vivo genotoxicity potency information. Nineteen chemicals covering a broad spectrum of genotoxic modes of action were tested in an in vitro MN test using TK6 cells using the same study protocol. Several of these chemicals were considered to need metabolic activation, and these were administered in the presence of S9. The Benchmark dose (BMD) approach was applied using the dose-response modeling program PROAST to estimate the genotoxic potency from the in vitro data. The resulting in vitro BMDs were compared with previously derived BMDs from in vivo MN and carcinogenicity studies. A proportional correlation was observed between the BMDs from the in vitro MN and the BMDs from the in vivo MN assays. Further, a clear correlation was found between the BMDs from in vitro MN and the associated BMDs for malignant tumors. Although these results are based on only 19 compounds, they show that genotoxicity potencies estimated from in vitro tests may result in useful information regarding in vivo genotoxic potency, as well as expected cancer potency. Extension of the number of compounds and further investigation of metabolic activation (S9) and of other toxicokinetic factors would be needed to validate our initial conclusions. However, this initial work suggests that this approach could be used for in vitro to in vivo extrapolations which would support the reduction of animals used in research (3Rs: replacement, reduction, and refinement). © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology.
Fukui, E; Uemura, K; Kobayashi, M
2000-08-10
Press-coated tablets, containing diltiazem hydrochloride (DIL) in the core tablet and coated with hydroxypropylcellulose (HPC) as the outer shell, were examined for applicability as timed-release tablets with a predetermined lag time and subsequent rapid drug release phase. Various types of press-coated tablets were prepared using a rotary tabletting machine and their DIL dissolution behavior was evaluated by the JP paddle method. The results indicated that tablets with the timed-release function could be prepared, and that the lag times were prolonged as the viscosity of HPC and the amount of the outer shell were increased. The lag times could be controlled widely by the above method, however, the compression load had little effect. Two different kinds of timed-release press-coated tablets that showed lag times of 3 and 6 h in the in vitro test (denoted PCT(L3) and PCT(L6), respectively) were administered to beagle dogs. DIL was first detected in the plasma more than 3 h after administration, and both tablets showed timed-release. The lag times showed a good agreement between the in vivo and in vitro tests in PCT(L3). However, the in vivo lag times were about 4 h in PCT(L6) and were much shorter than the in vitro lag time. The dissolution test was performed at different paddle rotation speeds, and good agreement was obtained between the in vivo and in vitro lag times at 150 rpm. This suggested that the effects of gastrointestinal peristalsis and contraction should also be taken into consideration for the further development of drug delivery systems.
Weiser, Michael J.; Wu, T. John; Handa, Robert J.
2009-01-01
Estrogens have been shown to have positive and negative effects on anxiety and depressive-like behaviors, perhaps explained by the existence of two distinct estrogen receptor (ER) systems, ERα and ERβ. The ERβ agonist, diarylpropionitrile (DPN) has been shown to have anxiolytic properties in rats. DPN exists as a racemic mixture of two enantiomers, R-DPN and S-DPN. In this study, we compared R-DPN and S-DPN for their in vitro binding affinity, ability to activate transcription in vitro at an estrogen response element, and in vivo endocrine and behavioral responses. In vitro binding studies using recombinant rat ERβ revealed that S-DPN has a severalfold greater relative binding affinity for ERβ than does R-DPN. Furthermore, cotransfection of N-38 immortalized hypothalamic cells with an estrogen response element-luc reporter and ERβ revealed that S-DPN is a potent activator of transcription in vitro, whereas R-DPN is not. Subsequently, we examined anxiety-like behaviors using the open-field test and elevated plus maze or depressive-like behaviors, using the forced swim test. Ovariectomized young adult female Sprague Dawley rats treated with racemic DPN, S-DPN, and the ERβ agonist, WAY-200070, showed significantly decreased anxiety-like behaviors in both the open-field and elevated plus maze and significantly less depressive-like behaviors in the forced swim test compared with vehicle-, R-DPN-, or propylpyrazoletriol (ERα agonist)-treated animals. In concordance with the relative binding affinity and transcriptional potency, these results demonstrate that the S-enantiomer is the biologically active form of DPN. These studies also indicate that estrogen's positive effects on mood, including its anxiolytic and antidepressive actions, are due to its actions at ERβ. PMID:19074580
Fernando, Ruani N; Chaudhari, Umesh; Escher, Sylvia E; Hengstler, Jan G; Hescheler, Jürgen; Jennings, Paul; Keun, Hector C; Kleinjans, Jos C S; Kolde, Raivo; Kollipara, Laxmikanth; Kopp-Schneider, Annette; Limonciel, Alice; Nemade, Harshal; Nguemo, Filomain; Peterson, Hedi; Prieto, Pilar; Rodrigues, Robim M; Sachinidis, Agapios; Schäfer, Christoph; Sickmann, Albert; Spitkovsky, Dimitry; Stöber, Regina; van Breda, Simone G J; van de Water, Bob; Vivier, Manon; Zahedi, René P; Vinken, Mathieu; Rogiers, Vera
2016-06-01
SEURAT-1 is a joint research initiative between the European Commission and Cosmetics Europe aiming to develop in vitro- and in silico-based methods to replace the in vivo repeated dose systemic toxicity test used for the assessment of human safety. As one of the building blocks of SEURAT-1, the DETECTIVE project focused on a key element on which in vitro toxicity testing relies: the development of robust and reliable, sensitive and specific in vitro biomarkers and surrogate endpoints that can be used for safety assessments of chronically acting toxicants, relevant for humans. The work conducted by the DETECTIVE consortium partners has established a screening pipeline of functional and "-omics" technologies, including high-content and high-throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular in vitro models. Identification and statistical selection of highly predictive biomarkers in a pathway- and evidence-based approach constitute a major step in an integrated approach towards the replacement of animal testing in human safety assessment. To discuss the final outcomes and achievements of the consortium, a meeting was organized in Brussels. This meeting brought together data-producing and supporting consortium partners. The presentations focused on the current state of ongoing and concluding projects and the strategies employed to identify new relevant biomarkers of toxicity. The outcomes and deliverables, including the dissemination of results in data-rich "-omics" databases, were discussed as were the future perspectives of the work completed under the DETECTIVE project. Although some projects were still in progress and required continued data analysis, this report summarizes the presentations, discussions and the outcomes of the project.
Fernando, Ruani N.; Chaudhari, Umesh; Escher, Sylvia E.; Hengstler, Jan G.; Hescheler, Jürgen; Jennings, Paul; Keun, Hector C.; Kleinjans, Jos C. S.; Kolde, Raivo; Kollipara, Laxmikanth; Kopp-Schneider, Annette; Limonciel, Alice; Nemade, Harshal; Nguemo, Filomain; Peterson, Hedi; Prieto, Pilar; Rodrigues, Robim M.; Sachinidis, Agapios; Schäfer, Christoph; Sickmann, Albert; Spitkovsky, Dimitry; Stöber, Regina; van Breda, Simone G.J.; van de Water, Bob; Vivier, Manon; Zahedi, René P.
2017-01-01
SEURAT-1 is a joint research initiative between the European Commission and Cosmetics Europe aiming to develop in vitro and in silico based methods to replace the in vivo repeated dose systemic toxicity test used for the assessment of human safety. As one of the building blocks of SEURAT-1, the DETECTIVE project focused on a key element on which in vitro toxicity testing relies: the development of robust and reliable, sensitive and specific in vitro biomarkers and surrogate endpoints that can be used for safety assessments of chronically acting toxicants, relevant for humans. The work conducted by the DETECTIVE consortium partners has established a screening pipeline of functional and “-omics” technologies, including high-content and high-throughput screening platforms, to develop and investigate human biomarkers for repeated dose toxicity in cellular in vitro models. Identification and statistical selection of highly predictive biomarkers in a pathway- and evidence-based approach constitutes a major step in an integrated approach towards the replacement of animal testing in human safety assessment. To discuss the final outcomes and achievements of the consortium, a meeting was organized in Brussels. This meeting brought together data-producing and supporting consortium partners. The presentations focused on the current state of ongoing and concluding projects and the strategies employed to identify new relevant biomarkers of toxicity. The outcomes and deliverables, including the dissemination of results in data-rich “-omics” databases, were discussed as were the future perspectives of the work completed under the DETECTIVE project. Although some projects were still in progress and required continued data analysis, this report summarizes the presentations, discussions and the outcomes of the project. PMID:27129694
Cherwa, James E; Tyson, Joshua; Bedwell, Gregory J; Brooke, Dewey; Edwards, Ashton G; Dokland, Terje; Prevelige, Peter E; Fane, Bentley A
2017-01-01
During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical structures in the absence of coat protein, whereas the coat protein appears to control fidelity. Copyright © 2016 American Society for Microbiology.