Kemp, Matthew W; Ahmed, Shatha; Beeton, Michael L; Payne, Matthew S; Saito, Masatoshi; Miura, Yuichiro; Usuda, Haruo; Kallapur, Suhas G; Kramer, Boris W; Stock, Sarah J; Jobe, Alan H; Newnham, John P; Spiller, Owen B
2017-01-01
Complement is a central defence against sepsis, and increasing complement insufficiency in neonates of greater prematurity may predispose to increased sepsis. Ureaplasma spp. are the most frequently cultured bacteria from preterm blood samples. A sheep model of intrauterine Ureaplasma parvum infection was used to examine in vivo Ureaplasma bacteraemia at early and late gestational ages. Complement function and Ureaplasma killing assays were used to determine the correlation between complement potency and bactericidal activity of sera ex vivo. Ureaplasma was cultured from 50% of 95-day gestation lamb cord blood samples compared to 10% of 125-day gestation lambs. Bactericidal activity increased with increased gestational age, and a direct correlation between functional complement activity and bactericidal activity (R 2 =.86; P<.001) was found for 95-day gestational lambs. Ureaplasma bacteraemia in vivo was confined to early preterm lambs with low complement function, but Ureaplasma infection itself did not diminish complement levels. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The in vivo mechanism of action of CD20 monoclonal antibodies depends on local tumor burden
Boross, Peter; Jansen, J.H. Marco; de Haij, Simone; Beurskens, Frank J.; van der Poel, Cees E.; Bevaart, Lisette; Nederend, Maaike; Golay, Josée; van de Winkel, Jan G.J.; Parren, Paul W.H.I.; Leusen, Jeanette H.W.
2011-01-01
Background CD20 monoclonal antibodies are widely used in clinical practice. Antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity and direct cell death have been suggested to be important effector functions for CD20 antibodies. However, their specific contributions to the in vivo mechanism of action of CD20 immunotherapy have not been well defined. Design and Methods Here we studied the in vivo mechanism of action of type I (rituximab and ofatumumab) and type II (HuMab-11B8) CD20 antibodies in a peritoneal, syngeneic, mouse model with EL4-CD20 cells using low and high tumor burden. Results Interestingly, we observed striking differences in the in vivo mechanism of action of CD20 antibodies dependent on tumor load. In conditions of low tumor burden, complement was sufficient for tumor killing both for type I and type II CD20 antibodies. In contrast, in conditions of high tumor burden, activating FcγR (specifically FcγRIII), active complement and complement receptor 3 were all essential for tumor killing. Our data suggest that complement-enhanced antibody-dependent cellular cytotoxicity may critically affect tumor killing by CD20 antibodies in vivo. The type II CD20 antibody 11B8, which is a poor inducer of complement activation, was ineffective against high tumor burden. Conclusions Tumor burden affects the in vivo mechanism of action of CD20 antibodies. Low tumor load can be eliminated by complement alone, whereas elimination of high tumor load requires multiple effector mechanisms. PMID:21880632
Activation of the complement system in patients with porphyrias after irradiation in vivo.
Lim, H W; Poh-Fitzpatrick, M B; Gigli, I
1984-01-01
Irradiation of the forearms of two patients with erythropoietic protoporphyria and one patient with porphyria cutanea tarda resulted in an in vivo activation of the complement system, as assessed by diminution of the hemolytic titers of the third component of complement by 23-57%, and of the fifth component of complement (C5) by 19-47%. Such treatment also generated chemotactic activity for human polymorphonuclear cells; the chemotactic activity was stable at 56 degrees C and antigenically related to human C5. On Sephadex G-75 chromatography the chemotactic activity eluted with an apparent molecular weight of 15,000. These in vivo results extend our previous in vitro observation of photoactivation of complement in sera from patients with erythropoietic protoporphyria and porphyria cutanea tarda, and suggest that the complement system may participate in the pathogenesis of cutaneous phototoxicity in these patients. PMID:6392339
Scavuzzo-Duggan, Tess R.; Chaves, Arielle M.; Roberts, Alison W.
2015-07-14
Here, a method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Westernmore » blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. In conclusion, compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investigating protein structure/function relationships in plants.« less
Prechl, József; Papp, Krisztián; Hérincs, Zoltán; Péterfy, Hajna; Lóránd, Veronika; Szittner, Zoltán; Estonba, Andone; Rovero, Paolo; Paolini, Ilaria; Del Amo, Jokin; Uribarri, Maria; Alcaro, Maria Claudia; Ruiz-Larrañaga, Otsanda; Migliorini, Paola; Czirják, László
2016-01-01
Systemic lupus erythematosus is a chronic autoimmune disease with multifactorial ethiopathogenesis. The complement system is involved in both the early and late stages of disease development and organ damage. To better understand autoantibody mediated complement consumption we examined ex vivo immune complex formation on autoantigen arrays. We recruited patients with SLE (n = 211), with other systemic autoimmune diseases (n = 65) and non-autoimmune control subjects (n = 149). Standard clinical and laboratory data were collected and serum complement levels were determined. The genotype of SNP rs1143679 in the ITGAM gene was also determined. Ex vivo formation of immune complexes, with respect to IgM, IgG, complement C4 and C3 binding, was examined using a functional immunoassay on autoantigen microarray comprising nucleic acids, proteins and lipids. Complement consumption of nucleic acids increased upon binding of IgM and IgG even when serum complement levels were decreased due to consumption in SLE patients. A negative correlation between serum complement levels and ex vivo complement deposition on nucleic acid autoantigens is demonstrated. On the contrary, complement deposition on tested protein and lipid autoantigens showed positive correlation with C4 levels. Genetic analysis revealed that the non-synonymous variant rs1143679 in complement receptor type 3 is associated with an increased production of anti-dsDNA IgG antibodies. Notwithstanding, homozygous carriers of the previously reported susceptible allele (AA) had lower levels of dsDNA specific IgM among SLE patients. Both the non-synonymous variant rs1143679 and the high ratio of nucleic acid specific IgG/IgM were associated with multiple organ involvement. In summary, secondary complement deficiency in SLE does not impair opsonization of nucleic-acid-containing autoantigens but does affect other antigens and potentially other complement dependent processes. Dysfunction of the receptor recognizing complement opsonized immune complexes promotes the development of class-switched autoantibodies targeting nucleic acids.
The role of complement in myasthenia gravis: serological evidence of complement consumption in vivo.
Romi, Fredrik; Kristoffersen, Einar K; Aarli, Johan A; Gilhus, Nils Erik
2005-01-01
Antibodies to the acetylcholine receptor (AChR) titin and the ryanodine receptor (RyR) occur in myasthenia gravis (MG). These antibodies are capable of complement activation in vitro. The involvement of the complement system should cause consumption of complement components such as C3 and C4 in vivo. Complement components C3 and C4 were assayed in sera from 78 AChR antibody-positive MG patients and 52 healthy controls. Forty-eight of the patient sera contained titin antibodies as well, and 20 were also RyR antibody-positive. MG patients with AChR antibody concentrations above the median (11.2 nmol/l) had significantly lower mean C3 and C4 concentrations in serum compared to those with AChR antibody concentrations below the median. Titin antibody-positive MG patients, titin antibody-negative early-onset MG patients, titin antibody-negative late-onset MG patients, and controls had similar C3 and C4 concentrations. Nor did mean C3 and C4 concentrations differ in MG patients with RyR antibodies. Patients with severe MG (grades 4 and 5) had similar C3 and similar C4 levels compared to those with mild MG (grades 1 and 2). An increased in vivo complement consumption was detected in MG patients with high AChR antibody concentrations, unrelated to MG severity and non-AChR muscle antibodies.
Rosoff, J D; Soltow, L O; Vocelka, C R; Schmer, G; Chandler, W L; Cochran, R P; Kunzelman, K S; Spiess, B D
1998-08-01
To examine whether a second-generation perfluorocarbon (PFC) blood substitute added to the cardiopulmonary bypass (CPB) prime influences complement production. A prospective, randomized, single-blinded, ex vivo model. A university hospital, laboratory, and clinics. Ten healthy adult consented volunteer blood donors (five men, five women). Ex vivo closed-loop extracorporeal circuit including membrane oxygenator, tubing, and filter primed with crystalloid or crystalloid plus PFC was circulated for 1 hour with the addition of 500 mL of heparinized fresh human whole blood. Laboratory specimens were drawn from the circuit at 10-minute intervals for 1 hour and measured for complement (C3a, Bb fragment) concentrations, blood gases, fibrinogen concentration, platelet count, and hematocrit. In the PFC group, C3a and Bb fragments were equal to or less than those in the group that received crystalloid alone. The second-generation PFC added to the prime of a CPB circuit does not independently increase complement production.
Liu, Ming; Gao, Yue; Xiao, Rui; Zhang, Bo-li
2009-01-01
This study is to analyze microcosmic significance of Chinese medicine composing principle "principal, assistant, complement and mediating guide" and it's fuzzy mathematic quantitative law. According to molecular biology and maximal membership principle, fuzzy subset and membership functions were proposed. Using in vivo experiment on the effects of SiWu Decoction and its ingredients on mice with radiation-induced blood deficiency, it is concluded that DiHuang and DangGui belonged to the principal and assistant subset, BaiShao belonged to the contrary complement subset, ChuanXiong belonged to the mediating guide subset by maximal membership principle. It is discussed that traditional Chinese medicine will be consummate medical science when its theory can be described by mathematic language.
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs
Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A.; Nakauchi, Hiromitsu
2013-01-01
In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals. PMID:23431169
Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs.
Matsunari, Hitomi; Nagashima, Hiroshi; Watanabe, Masahito; Umeyama, Kazuhiro; Nakano, Kazuaki; Nagaya, Masaki; Kobayashi, Toshihiro; Yamaguchi, Tomoyuki; Sumazaki, Ryo; Herzenberg, Leonard A; Nakauchi, Hiromitsu
2013-03-19
In the field of regenerative medicine, one of the ultimate goals is to generate functioning organs from pluripotent cells, such as ES cells or induced pluripotent stem cells (PSCs). We have recently generated functional pancreas and kidney from PSCs in pancreatogenesis- or nephrogenesis-disabled mice, providing proof of principle for organogenesis from PSCs in an embryo unable to form a specific organ. Key when applying the principles of in vivo generation to human organs is compensation for an empty developmental niche in large nonrodent mammals. Here, we show that the blastocyst complementation system can be applied in the pig using somatic cell cloning technology. Transgenic approaches permitted generation of porcine somatic cell cloned embryos with an apancreatic phenotype. Complementation of these embryos with allogenic blastomeres then created functioning pancreata in the vacant niches. These results clearly indicate that a missing organ can be generated from exogenous cells when functionally normal pluripotent cells chimerize a cloned dysorganogenetic embryo. The feasibility of blastocyst complementation using cloned porcine embryos allows experimentation toward the in vivo generation of functional organs from xenogenic PSCs in large animals.
In Vitro and In Vivo Gene Delivery by Recombinant Baculoviruses
Tani, Hideki; Limn, Chang Kwang; Yap, Chan Choo; Onishi, Masayoshi; Nozaki, Masami; Nishimune, Yoshitake; Okahashi, Nobuo; Kitagawa, Yoshinori; Watanabe, Rie; Mochizuki, Rika; Moriishi, Kohji; Matsuura, Yoshiharu
2003-01-01
Although recombinant baculovirus vectors can be an efficient tool for gene transfer into mammalian cells in vitro, gene transduction in vivo has been hampered by the inactivation of baculoviruses by serum complement. Recombinant baculoviruses possessing excess envelope protein gp64 or other viral envelope proteins on the virion surface deliver foreign genes into a variety of mammalian cell lines more efficiently than the unmodified baculovirus. In this study, we examined the efficiency of gene transfer both in vitro and in vivo by recombinant baculoviruses possessing envelope proteins derived from either vesicular stomatitis virus (VSVG) or rabies virus. These recombinant viruses efficiently transferred reporter genes into neural cell lines, primary rat neural cells, and primary mouse osteal cells in vitro. The VSVG-modified baculovirus exhibited greater resistance to inactivation by animal sera than the unmodified baculovirus. A synthetic inhibitor of the complement activation pathway circumvented the serum inactivation of the unmodified baculovirus. Furthermore, the VSVG-modified baculovirus could transduce a reporter gene into the cerebral cortex and testis of mice by direct inoculation in vivo. These results suggest the possible use of the recombinant baculovirus vectors in combination with the administration of complement inhibitors for in vivo gene therapy. PMID:12941888
Bowers, T K; Craddock, P R; Jacob, H S
1977-01-01
A profound defect in granulocyte chemotaxis was documented in an otherwise healthy 21-yr-old man who failed to localize granulocytes to an area of cellulitis during an allergic reaction to cephalothin. During the period of drug allergy, characterized by urticaria, eosinophilia, and profound hypocomplementemia, in vitro migration of the patient's granulocytes in the Boyden chamber was markedly impaired. Although devoid of hemolytic complement activity, the patient's serum possessed supranormal chemotactic activity, even following heat inactivation, suggesting the presence of chemotactically active complement split products. Chemotactic function improved concomitantly with steroid therapy and normalization of serum complement levels, and was entirely normal following clinical recovery and cessation of steroid therapy. The chemotactic abnormality noted in the patient's cells was reproduced in normal granulocytes by preincubation either with patient serum or with cobra venom-activated fresh (but not heated) normal serum, suggesting that in vivo exposure of granulocytes to activated complement was responsible for the patient's abnormal chemotactic response. This mechanism may contribute to the increased infection propensity noted in other conditions characterized by in vivo complement activation, such as rheumatoid arthritis and systemic lupus erythematosis.
Immunological response to nitroglycerin-loaded shear-responsive liposomes in vitro and in vivo.
Buscema, Marzia; Matviykiv, Sofiya; Mészáros, Tamás; Gerganova, Gabriela; Weinberger, Andreas; Mettal, Ute; Mueller, Dennis; Neuhaus, Frederik; Stalder, Etienne; Ishikawa, Takashi; Urbanics, Rudolf; Saxer, Till; Pfohl, Thomas; Szebeni, János; Zumbuehl, Andreas; Müller, Bert
2017-10-28
Liposomes formulated from the 1,3-diamidophospholipid Pad-PC-Pad are shear-responsive and thus promising nano-containers to specifically release a vasodilator at stenotic arteries. The recommended preclinical safety tests for therapeutic liposomes of nanometer size include the in vitro assessment of complement activation and the evaluation of the associated risk of complement activation-related pseudo-allergy (CARPA) in vivo. For this reason, we measured complement activation by Pad-PC-Pad formulations in human and porcine sera, along with the nanopharmaceutical-mediated cardiopulmonary responses in pigs. The evaluated formulations comprised of Pad-PC-Pad liposomes, with and without polyethylene glycol on the surface of the liposomes, and nitroglycerin as a model vasodilator. The nitroglycerin incorporation efficiency ranged from 25% to 50%. In human sera, liposome formulations with 20mg/mL phospholipid gave rise to complement activation, mainly via the alternative pathway, as reflected by the rises in SC5b-9 and Bb protein complex concentrations. Formulations having a factor of ten lower phospholipid content did not result in measurable complement activation. The weak complement activation induced by Pad-PC-Pad liposomal formulations was confirmed by the results obtained by performing an in vivo study in a porcine model, where hemodynamic parameters were monitored continuously. Our study suggests that, compared to FDA-approved liposomal drugs, Pad-PC-Pad exhibits less or similar risks of CARPA. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Feliciani, C; Toto, P; Amerio, P
1999-01-01
Pemphigus vulgaris (PV) is a potentially life-threatening disease, characterized immunohistologically by IgG deposits and complement activation on the surface of keratinocytes. Complement activation has been implicated in the pathogenesis with C3 deposits in about 90% of patients. In order to further elucidate the role of complement in PV and to define which cytokines play a role in C3 mRNA expression, we performed an in vitro study in human keratinocytes. Normal human epidermal keratinocytes (NHuK) were incubated with PV serum and C3 mRNA was measured. We previously had shown that IL-1alpha and TNF-alpha are expressed in PV in vivo and in vitro. Since cytokines are able to modulate complement activation, mRNA expression was evaluated in a similar experiment after pretreatment using antibodies against IL-1alpha and TNF-alpha. Incubation of NHuK with PV sera caused their detachment from the plates after 20-30 minutes with a complete acantholysis within 12 hours. An early C3 mRNA expression was seen after 30 minutes with a peak level after 1 hour. Blocking studies, using antibodies against human IL-1alpha and TNF-alpha in NHuK together with PV-IgG, showed reduction of in vitro induced acantholysis and inhibition of C3 mRNA expression. This study supports the hypothesis that complement C3 is important in PV acantholysis and that complement activation is increased by IL-1alpha and TNF-alpha.
Cuddy, B G; Loegering, D J; Blumenstock, F A
1984-09-01
Previous studies have implicated a role for impaired hepatic macrophage blood clearance function in the increased susceptibility to infection caused by experimental thermal injury. The present study evaluated in vivo hepatic macrophage complement receptor clearance function as a possible factor contributing to impaired hepatic clearance after thermal injury. Rat erythrocytes treated with anti-erythrocyte serum (EA) were used as the test particle in rats. EA were rapidly removed from the circulation primarily by the liver and hepatic uptake of EA was greatly depressed in animals rendered C3 deficient by treatment with cobra venom factor. Thermal injury caused a large depression in the hepatic uptake of EA. It was shown that the depression in the binding of EA to hepatic macrophages was not due to decreased hepatic blood flow, decreased serum complement levels, or increased fluid phase C3b. Also, the depression of the hepatic uptake of EA incubated with serum prior to injection (EAC) was not different from that of EA after thermal injury. On this basis it was concluded that the impairment in binding of EA to the macrophages was at the cellular level and represented a depression in complement receptor clearance function. Additional studies showed that the injection of erythrocyte stroma, as a model of intravascular hemolysis, also depressed in vivo hepatic macrophage complement receptor clearance function. This latter finding suggests that the intravascular hemolysis caused by thermal injury may contribute to the depression of macrophage receptor function. The depression of hepatic macrophage complement receptor clearance function may contribute to the impaired bacterial clearance and increased susceptibility to infection following experimental thermal injury.
Barata, Lidia; Miwa, Takashi; Sato, Sayaka; Kim, David; Mohammed, Imran; Song, Wen-Chao
2013-03-15
Complement receptor 1-related gene/protein y (Crry) and decay-accelerating factor (DAF) are two murine membrane C3 complement regulators with overlapping functions. Crry deletion is embryonically lethal whereas DAF-deficient mice are generally healthy. Crry(-/-)DAF(-/-) mice were viable on a C3(-/-) background, but platelets from such mice were rapidly destroyed when transfused into C3-sufficient mice. In this study, we used the cre-lox system to delete platelet Crry in DAF(-/-) mice and studied Crry/DAF-deficient platelet development in vivo. Rather than displaying thrombocytopenia, Pf4-Cre(+)-Crry(flox/flox) mice had normal platelet counts and their peripheral platelets were resistant to complement attack. However, chimera mice generated with Pf4-Cre(+)-Crry(flox/flox) bone marrows showed platelets from C3(-/-) but not C3(+/+) recipients to be sensitive to complement activation, suggesting that circulating platelets in Pf4-Cre(+)-Crry(flox/flox) mice were naturally selected in a complement-sufficient environment. Notably, Pf4-Cre(+)-Crry(flox/flox) mouse platelets became complement susceptible when factor H function was blocked. Examination of Pf4-Cre(+)-Crry(flox/flox) mouse bone marrows revealed exceedingly active thrombopoiesis. Thus, under in vivo conditions, Crry/DAF deficiency on platelets led to abnormal platelet turnover, but peripheral platelet count was compensated for by increased thrombopoiesis. Selective survival of Crry/DAF-deficient platelets aided by factor H protection and compensatory thrombopoiesis demonstrates the cooperation between membrane and fluid phase complement inhibitors and the body's ability to adaptively respond to complement regulator deficiencies.
Simões, R V; Delgado-Goñi, T; Lope-Piedrafita, S; Arús, C
2010-01-01
MR spectroscopic Imaging (MRSI), with PRESS localization, is used here to monitor the effects of acute hyperglycemia in the spectral pattern of 11 mice bearing GL261 gliomas at normothermia (36.5-37.5 degrees C) and at hypothermia (28.5-29.5 degrees C). These in vivo studies were complemented by ex vivo high resolution magic angle spinning (HR-MAS) analysis of GL261 tumor samples from 6 animals sacrificed by focused microwave irradiation, and blood glucose measurements in 12 control mice. Apparent glucose levels, monitored by in vivo MRSI in brain tumors during acute hyperglycemia, rose to an average of 1.6-fold during hypothermia (p < 0.05), while no significant changes were detected at normothermia, or in control experiments performed at euglycemia, or in normal/peritumoral brain regions. Ex vivo analysis of glioma-bearing mouse brains at hypothermia revealed higher glucose increases in distinct regions during the acute hyperglycemic challenge (up to 6.6-fold at the tumor center), in agreement with maximal in vivo blood glucose changes (5-fold). Phantom studies on taurine plus glucose containing solutions explained the differences between in vivo and ex vivo measurements. Our results also indicate brain tumor heterogeneity in the four animal tumors investigated in response to a defined metabolic challenge.
Cheng, Xu-Dong; Jia, Xiao-Bin; Feng, Liang; Jiang, Jun
2013-12-01
The secondary development of major traditional Chinese medicine varieties is one of important links during the modernization, scientification and standardization of traditional Chinese medicines. How to accurately and effectively identify the pharmacodynamic material basis of original formulae becomes the primary problem in the secondary development, as well as the bottleneck in the modernization development of traditional Chinese medicines. On the basis of the existing experimental methods, and according to the study thought that the multi-component and complex effects of traditional Chinese medicine components need to combine multi-disciplinary methods and technologies, we propose the study thought of the material basis of secondary development of major traditional Chinese medicine varieties based on the combination of in vivo and in vitro experiments. It is believed that studies on material basis needs three links, namely identification, screening and verification, and in vivo and in vitro study method corresponding to each link is mutually complemented and verified. Finally, the accurate and reliable material basis is selected. This thought provides reference for the secondary development of major traditional Chinese medicine varieties and studies on compound material basis.
Mueller, Wolf-Dieter; de Mele, Monica Fernández Lorenzo; Nascimento, Maria Lucia; Zeddies, Miriam
2009-08-01
Magnesium and its alloys are highly degradable metals that are potentially useful as biomaterials, especially in orthopaedic and cardiovascular applications. However, the in vivo corrosion has proved to be too high. Because of the complexity of in vivo conditions, a careful study of the corrosion of magnesium in synthetic solutions that simulate the in vivo environment is necessary as a first approach to predict the actual in vivo situation. The aim of this work was to evaluate the influence of the electrolyte composition on the corrosion behavior of magnesium and two Mg-alloys in synthetic biological media. Pure magnesium and its alloys (AZ31 and LAE442) were employed in the experiments. Electrochemical potentiodynamic polarization curves were recorded in sodium chloride and PBS electrolytes with different chloride ion and albumin concentration. Optical and SEM observations complemented by EDX analysis were made. The results showed that magnesium corrosion is localized in chloride- and albumin-containing buffer solutions. They also showed that the chloride concentration and the presence of buffer and protein strongly affect the electrochemical behavior of magnesium and magnesium alloys.
All-atom Simulation of Amyloid Aggregates
NASA Astrophysics Data System (ADS)
Berhanu, Workalemahu M.; Alred, Erik J.; Bernhardt, Nathan A.; Hansmann, Ulrich H. E.
Molecular simulations are now commonly used to complement experiments in the investigation of amyloid formation and their role in human diseases. While various simulations based on enhanced sampling techniques are used in amyloid formation simulations, this article will focus on those using standard atomistic simulations to evaluate the stability of fibril models. Such studies explore the limitations that arise from the choice of force field or polymorphism; and explore the stability of in vivo and in vitro forms of Aβ fibril aggregates, and the role of heterologous seeding as a link between different amyloid diseases.
Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco
2015-01-01
Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273
Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan
2016-10-11
Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system.
Jäckel, Sven; Saffarzadeh, Mona; Langer, Florian
2017-01-01
Expanding evidence indicates multiple interactions between the hemostatic system and innate immunity, and the coagulation and complement cascades. Here we show in a tissue factor (TF)–dependent model of flow restriction-induced venous thrombosis that complement factors make distinct contributions to platelet activation and fibrin deposition. Complement factor 3 (C3) deficiency causes prolonged bleeding, reduced thrombus incidence, thrombus size, fibrin and platelet deposition in the ligated inferior vena cava, and diminished platelet activation in vitro. Initial fibrin deposition at the vessel wall over 6 hours in this model was dependent on protein disulfide isomerase (PDI) and TF expression by myeloid cells, but did not require neutrophil extracellular trap formation involving peptidyl arginine deiminase 4. In contrast to C3−/− mice, C5-deficient mice had no apparent defect in platelet activation in vitro, and vessel wall platelet deposition and initial hemostasis in vivo. However, fibrin formation, the exposure of negatively charged phosphatidylserine (PS) on adherent leukocytes, and clot burden after 48 hours were significantly reduced in C5−/− mice compared with wild-type controls. These results delineate that C3 plays specific roles in platelet activation independent of formation of the terminal complement complex and provide in vivo evidence for contributions of complement-dependent membrane perturbations to prothrombotic TF activation on myeloid cells. PMID:28223279
Characterization of serum proteins attached to distinct sol-gel hybrid surfaces.
Araújo-Gomes, Nuno; Romero-Gavilán, Francisco; Sánchez-Pérez, Ana M; Gurruchaga, Marilo; Azkargorta, Mikel; Elortza, Felix; Martinez-Ibañez, María; Iloro, Ibon; Suay, Julio; Goñi, Isabel
2018-05-01
The success of a dental implant depends on its osseointegration, an important feature of the implant biocompatibility. In this study, two distinct sol-gel hybrid coating formulations [50% methyltrimethoxysilane: 50% 3-glycidoxypropyl-trimethoxysilane (50M50G) and 70% methyltrimethoxysilane with 30% tetraethyl orthosilicate (70M30T)] were applied onto titanium implants. To evaluate their osseointegration, in vitro and in vivo assays were performed. Cell proliferation and differentiation in vitro did not show any differences between the coatings. However, four and eight weeks after in vivo implantation, the fibrous capsule area surrounding 50M50G-implant was 10 and 4 times, respectively, bigger than the area of connective tissue surrounding the 70M30T treated implant. Thus, the in vitro results gave no prediction or explanation for the 50M50G-implant failure in vivo. We hypothesized that the first protein layer adhered to the surface may have direct implication in implant osseointegration, and perhaps correlate with the in vivo outcome. Human serum was used for adsorption analysis on the biomaterials, the first layer of serum proteins adhered to the implant surface was analyzed by proteomic analysis, using mass spectrometry (LC-MS/MS). From the 171 proteins identified; 30 proteins were significantly enriched on the 50M50G implant surface. This group comprised numerous proteins of the immune complement system, including several subcomponents of the C1 complement, complement factor H, C4b-binding protein alpha chain, complement C5 and C-reactive protein. This result suggests that these proteins enriched in 50M50G surface might trigger the cascade leading to the formation of the fibrous capsule observed. The implications of these results could open up future possibilities to predict the biocompatibility problems in vivo. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1477-1485, 2018. © 2017 Wiley Periodicals, Inc.
Bertolaccini, Maria Laura; Contento, Gregorio; Lennen, Ross; Sanna, Giovanni; Blower, Philip J; Ma, Michelle T; Sunassee, Kavitha; Girardi, Guillermina
2016-12-01
Placental ischemic disease and adverse pregnancy outcomes are frequently observed in patients with antiphospholipid syndrome (APS). Despite the administration of conventional antithrombotic treatment a significant number of women continue to experience adverse pregnancy outcomes, with uncertain prevention and management. Efforts to develop effective pharmacological strategies for refractory obstetric APS cases will be of significant clinical benefit for both mothers and fetuses. Although the antimalarial drug, hydroxychloroquine (HCQ) is increasingly used to treat pregnant women with APS, little is known about its efficacy and mechanism of action of HCQ. Because complement activation plays a crucial and causative role in placental ischemia and abnormal fetal brain development in APS we hypothesised that HCQ prevents these pregnancy complications through inhibition of complement activation. Using a mouse model of obstetric APS that closely resembles the clinical condition, we found that HCQ prevented fetal death and the placental metabolic changes -measured by proton magnetic resonance spectroscopy in APS-mice. Using 111 In labelled antiphospholipid antibodies (aPL) we identified the placenta and the fetal brain as the main organ targets in APS-mice. Using this same method, we found that HCQ does not inhibit aPL binding to tissues as was previously suggested from in vitro studies. While HCQ did not affect aPL binding to fetal brain it prevented fetal brain abnormal cortical development. HCQ prevented complement activation in vivo and in vitro. Complement C5a levels in serum samples from APS patients and APS-mice were lower after treatment with HCQ while the antibodies titres remained unchanged. HCQ prevented not only placental insufficiency but also abnormal fetal brain development in APS. By inhibiting complement activation, HCQ might also be an effective antithrombotic therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.
McGonigal, Rhona; Cunningham, Madeleine E; Yao, Denggao; Barrie, Jennifer A; Sankaranarayanan, Sethu; Fewou, Simon N; Furukawa, Koichi; Yednock, Ted A; Willison, Hugh J
2016-03-02
Guillain-Barré syndrome (GBS) is an autoimmune disease that results in acute paralysis through inflammatory attack on peripheral nerves, and currently has limited, non-specific treatment options. The pathogenesis of the acute motor axonal neuropathy (AMAN) variant is mediated by complement-fixing anti-ganglioside antibodies that directly bind and injure the axon at sites of vulnerability such as nodes of Ranvier and nerve terminals. Consequently, the complement cascade is an attractive target to reduce disease severity. Recently, C5 complement component inhibitors that block the formation of the membrane attack complex and subsequent downstream injury have been shown to be efficacious in an in vivo anti-GQ1b antibody-mediated mouse model of the GBS variant Miller Fisher syndrome (MFS). However, since gangliosides are widely expressed in neurons and glial cells, injury in this model was not targeted exclusively to the axon and there are currently no pure mouse models for AMAN. Additionally, C5 inhibition does not prevent the production of early complement fragments such as C3a and C3b that can be deleterious via their known role in immune cell and macrophage recruitment to sites of neuronal damage. In this study, we first developed a new in vivo transgenic mouse model of AMAN using mice that express complex gangliosides exclusively in neurons, thereby enabling specific targeting of axons with anti-ganglioside antibodies. Secondly, we have evaluated the efficacy of a novel anti-C1q antibody (M1) that blocks initiation of the classical complement cascade, in both the newly developed anti-GM1 antibody-mediated AMAN model and our established MFS model in vivo. Anti-C1q monoclonal antibody treatment attenuated complement cascade activation and deposition, reduced immune cell recruitment and axonal injury, in both mouse models of GBS, along with improvement in respiratory function. These results demonstrate that neutralising C1q function attenuates injury with a consequent neuroprotective effect in acute GBS models and promises to be a useful new target for human therapy.
Li, Lian; Li, Yan; Feng, Danyang; Xu, Linghua; Yin, Fengxin; Zang, Hengchang; Liu, Chunhui; Wang, Fengshan
2016-01-01
Chondroitin sulfate (CS) plays important roles in the complement system. However, the CS structure is complicated due to different sources and the number and positions of sulfate groups. The objective of this study was to prepare different low molecular weight chondroitin sulfates (LMWCSs) and to investigate the biological activity in anti-complement capacity. A series of LMWCSs was prepared from different sources and characterized by ultraviolet-visible (UV) spectroscopy, high-performance liquid chromatography (HPLC), size exclusion chromatography-multiangle laser light scattering (SEC-MALLS) and nuclear magnetic resonance (NMR) spectroscopy. Hemolytic, anti-complement 3 deposition capacity and cell viability assays were carried out to investigate the biological activities in vitro. The results showed that LMWCS prepared from shark cartilage with the oxidative degradation method (LMWCS-S-O) had the best anti-complement capacity. LMWCS-S-O could inhibit the alternative pathway of the complement system and protect chondrocytes from cell death. The attenuating effect of LMWCS-S-O on Osteoarthritis (OA) was investigated by destabilization of the medial meniscus (DMM) model in vivo. Functional wind-up, histological and C5b-9 analyses were used to evaluate the treatment effect on the OA model. In vivo results showed that LMWCS-S-O could attenuate OA. LMWCS-S-O with a high content of ΔDi-2,6diS and ΔDi-6S could be used for attenuating OA through regulating the complement system. PMID:27727159
Transport mechanisms at the pulmonary mucosa: implications for drug delivery.
Nickel, Sabrina; Clerkin, Caoimhe G; Selo, Mohammed Ali; Ehrhardt, Carsten
2016-01-01
Over the past years, a significant number of papers have substantiated earlier findings proposing a role for drug transporter proteins in pulmonary drug disposition. Whilst the majority of reports present data from in vitro models, a growing number of publications advance the field by introducing sophisticated ex vivo and in vivo techniques. In a few cases, evidence from clinical studies in human volunteers is complementing the picture. In this review, recent advances in pulmonary drug transporter research are critically evaluated. Transporter expression data in tissues and cell-based in vitro models is summarized and information on transport activity assessed. Novel techniques allowing for better quantification of transporter-related effects following pulmonary delivery are also described. Different tissue and cell populations of the lung have distinct transporter expression patterns. Whether these patterns are affected by disease, gender and smoking habits requires further clarification. Transporters have been found to have an impact on drug absorption processes, at least in vitro. Recent ex vivo experiments using isolated, perfused lung models, however, suggest that mainly efflux pumps have significant effects on absorption into the pulmonary circulation. Whether these rodent-based ex vivo models predict the human situation is basis for further research.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2014-04-01
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM
2011-06-07
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Nucleic acid encoding a self-assembling split-fluorescent protein system
Waldo, Geoffrey S.; Cabantous, Stephanie
2015-07-14
The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.
Replication of poliovirus RNA and subgenomic RNA transcripts in transfected cells.
Collis, P S; O'Donnell, B J; Barton, D J; Rogers, J A; Flanegan, J B
1992-01-01
Full-length and subgenomic poliovirus RNAs were transcribed in vitro and transfected into HeLa cells to study viral RNA replication in vivo. RNAs with deletion mutations were analyzed for the ability to replicate in either the absence or the presence of helper RNA by using a cotransfection procedure and Northern (RNA) blot analysis. An advantage of this approach was that viral RNA replication and genetic complementation could be characterized without first isolating conditional-lethal mutants. A subgenomic RNA with a large in-frame deletion in the capsid coding region (P1) replicated more efficiently than full-length viral RNA transcripts. In cotransfection experiments, both the full-length and subgenomic RNAs replicated at slightly reduced levels and appeared to interfere with each other's replication. In contrast, a subgenomic RNA with a similarly sized out-of-frame deletion in P1 did not replicate in transfected cells, either alone or in the presence of helper RNA. Similar results were observed with an RNA transcript containing a large in-frame deletion spanning the P1, P2, and P3 coding regions. A mutant RNA with an in-frame deletion in the P1-2A coding sequence was self-replicating but at a significantly reduced level. The replication of this RNA was fully complemented after cotransfection with a helper RNA that provided 2A in trans. A P1-2A-2B in-frame deletion, however, totally blocked RNA replication and was not complemented. Control experiments showed that all of the expected viral proteins were both synthesized and processed when the RNA transcripts were translated in vitro. Thus, our results indicated that 2A was a trans-acting protein and that 2B and perhaps other viral proteins were cis acting during poliovirus RNA replication in vivo. Our data support a model for poliovirus RNA replication which directly links the translation of a molecule of plus-strand RNA with the formation of a replication complex for minus-strand RNA synthesis. Images PMID:1328676
Rietz, Anne; Li, Hongxia; Quist, Kevin M; Cherry, Jonathan J; Lorson, Christian L; Burnett, Barrington G; Kern, Nicholas L; Calder, Alyssa N; Fritsche, Melanie; Lusic, Hrvoje; Boaler, Patrick J; Choi, Sungwoon; Xing, Xuechao; Glicksman, Marcie A; Cuny, Gregory D; Androphy, Elliot J; Hodgetts, Kevin J
2017-06-08
Spinal muscular atrophy (SMA) is the leading genetic cause of infant death. We previously developed a high-throughput assay that employs an SMN2-luciferase reporter allowing identification of compounds that act transcriptionally, enhance exon recognition, or stabilize the SMN protein. We describe optimization and characterization of an analog suitable for in vivo testing. Initially, we identified analog 4m that had good in vitro properties but low plasma and brain exposure in a mouse PK experiment due to short plasma stability; this was overcome by reversing the amide bond and changing the heterocycle. Thiazole 27 showed excellent in vitro properties and a promising mouse PK profile, making it suitable for in vivo testing. This series post-translationally stabilizes the SMN protein, unrelated to global proteasome or autophagy inhibition, revealing a novel therapeutic mechanism that should complement other modalities for treatment of SMA.
Kaihara, Asami; Umezawa, Yoshio; Furukawa, Tetsushi
2008-01-01
Genetically encoded bioluminescent indicators for intracellular Ca2+ are described here with CaM-M13 interaction-induced complementation of split Renilla luciferase. The Ca2+-induced interaction between CaM and M13 leads to complementation of the N- and C-terminal halves of split Renilla luciferase in living cells. This intramolecular interaction results in the spontaneous and simultaneous emission of bioluminescence split Renilla luciferase. This is how intracellular Ca2+ is illuminated with the intramolecular complementation of split Renilla luciferase. The Ca2+-dependent spontaneous and simultaneous emission of bioluminescence promises to reveal Ca2+ dynamics in living cells, and also in vivo using the present indicators.
Hepatic macrophage complement receptor clearance function following injury.
Cuddy, B G; Loegering, D J; Blumenstock, F A; Shah, D M
1986-03-01
Previous work has demonstrated that in vivo hepatic macrophage complement receptor clearance function is depressed following thermal injury. The present study was carried out to determine if complement receptor function depression is associated with other states of depressed host defense. Hepatic complement receptor clearance function was determined from the hepatic uptake of rat erythrocytes coated with antierythrocyte IgM (EIgM) in rats. Receptor function was determined following cannulation of a carotid artery, laparotomy plus enterotomy, hemorrhagic shock, trauma, thermal injury, acute bacteremia, acute endotoxemia, and injection of erythrocyte stroma, gelatinized lipid emulsion, or colloidal carbon. Hepatic uptake of EIgM was depressed following each of these experimental interventions except arterial cannulation. This effect was shown not to be due to a decrease in hepatic blood flow or depletion of complement and was therefore due to a depression in hepatic macrophage complement receptor clearance function. Thus, impairment of hepatic macrophage complement receptor function is associated with several states of depressed host defense.
Marxen, Eva; Jin, Liang; Jacobsen, Jette; Janfelt, Christian; Hyrup, Birgitte; Nicolazzo, Joseph A
2018-02-21
The purpose of this study was to assess the effect of several chemical permeation enhancers on the buccal permeability of nicotine and to image the spatial distribution of nicotine in buccal mucosa with and without buccal permeation enhancers. The impact of sodium taurodeoxycholate (STDC), sodium dodecyl sulphate (SDS), dimethyl sulfoxide (DMSO) and Azone® on the permeability of [ 3 H]-nicotine and [ 14 C]-mannitol (a paracellular marker) across porcine buccal mucosa was studied ex vivo in modified Ussing chambers. The distribution of nicotine, mannitol and permeation enhancers was imaged using using matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI MSI). Despite STDC significantly increasing permeability of [ 14 C]-mannitol, no enhancing effect was seen on [ 3 H]-nicotine permeability with any of the permeation enhancers. Rather, SDS and DMSO retarded nicotine permeability, likely due to nicotine being retained in the donor compartment. The permeability results were complemented by the spatial distribution of nicotine and mannitol determined with MALDI MSI. The buccal permeability of nicotine was affected in an enhancer specific manner, suggesting that nicotine primarily diffuses via the transcellular pathway. MALDI MSI was shown to complement ex vivo permeability studies and to be a useful qualitative tool for visualizing drug and penetration enhancer distribution in buccal mucosa.
Biró, Éva; Nieuwland, Rienk; Tak, Paul P; Pronk, Loes M; Schaap, Marianne C L; Sturk, Augueste; Hack, C Erik
2007-01-01
Objectives In vitro, microparticles can activate complement via the classical pathway. If demonstrable ex vivo, this mechanism may contribute to the pathogenesis of rheumatoid arthritis (RA). We therefore investigated the presence of activated complement components and complement activator molecules on the surface of cell‐derived microparticles of RA patients and healthy individuals. Methods Microparticles from synovial fluid (n = 8) and plasma (n = 9) of 10 RA patients and plasma of sex‐ and age‐matched healthy individuals (n = 10) were analysed by flow cytometry for bound complement components (C1q, C4, C3) and complement activator molecules (C‐reactive protein (CRP), serum amyloid P component (SAP), immunoglobulin (Ig) M, IgG). Results Microparticles with bound C1q, C4, and/or C3 were abundant in RA synovial fluid, while in RA and control plasma much lower levels were present. Microparticles with bound C1q correlated with those with bound C3 in synovial fluid (r = 0.961, p = 0.0001), and with those with bound C4 in plasma (RA: r = 0.908, p = 0.0007; control: r = 0.632, p = 0.0498), indicating classical pathway activation. In synovial fluid, microparticles with IgM and IgG correlated with those with C1q (r = 0.728, p = 0.0408; r = 0.952, p = 0.0003, respectively), and in plasma, microparticles with CRP correlated with those with C1q (RA: r = 0.903, p = 0.0021; control: r = 0.683, p = 0.0296), implicating IgG and IgM in the classical pathway activation in RA synovial fluid, and CRP in the low level classical pathway activation in plasma. Conclusions This study demonstrates the presence of bound complement components and activator molecules on microparticles ex vivo, and supports their role in low grade complement activation in plasma and increased complement activation in RA synovial fluid. PMID:17261534
Farsky, S H; Gonçalves, L R; Gutiérrez, J M; Correa, A P; Rucavado, A; Gasque, P; Tambourgi, D V
2000-01-01
The venom of the snake Bothrops asper, the most important poisonous snake in Central America, evokes an inflammatory response, the mechanisms of which are not well characterized. The objectives of this study were to investigate whether B. asper venom and its purified toxins--phospholipases and metalloproteinase--activate the complement system and the contribution of the effect on leucocyte recruitment. In vitro chemotaxis assays were performed using Boyden's chamber model to investigate the ability of serum incubated with venom and its purified toxins to induce neutrophil migration. The complement consumption by the venom was evaluated using an in vitro haemolytic assay. The importance of complement activation by the venom on neutrophil migration was investigated in vivo by injecting the venom into the peritoneal cavity of C5-deficient mice. Data obtained demonstrated that serum incubated with crude venom and its purified metalloproteinase BaP-1 are able to induce rat neutrophil chemotaxis, probably mediated by agent(s) derived from the complement system. This hypothesis was corroborated by the capacity of the venom to activate this system in vitro. The involvement of C5a in neutrophil chemotaxis induced by venom-activated serum was demonstrated by abolishing migration when neutrophils were pre-incubated with antirat C5a receptor antibody. The relevance of the complement system in in vivo leucocyte mobilization was further demonstrated by the drastic decrease of this response in C5-deficient mice. Pre-incubation of serum with the soluble human recombinant complement receptor type 1 (sCR 1) did not prevent the response induced by the venom, but abolished the migration evoked by metalloproteinase-activated serum. These data show the role of the complement system in bothropic envenomation and the participation of metalloproteinase in the effect. Also, they suggest that the venom may contain other component(s) which can cause direct activation of C5a. PMID:11200361
Preparation of anionic polyurethane nanoparticles and blood compatible behaviors.
Zhu, Qinshu; Wang, Yan; Zhou, Min; Mao, Chun; Huang, Xiaohua; Bao, Jianchun; Shen, Jian
2012-05-01
The anionic polyurethane nanoparticles (APU-NPs) were obtained by an emulsion polymerization method. It was found that the average size of the prepared APU-NPs is about 84 nm, and the APU-NPs have zeta-potential of -38.9 mV. The bulk characterization of synthesized APU-NPs was investigated by FTIR. The blood compatibility of APU-NPs was characterized by in vitro for coagulation tests, complement activation, platelet activation, cytotoxicity experiments, and hemolysis assay. The results showed that the APU-NPs synthesized in this paper are blood compatible with low level of cell cytotoxicity, and the results were significant for their potential use in vivo.
HARRIS, C L; WILLIAMS, A S; LINTON, S M; MORGAN, B P
2002-01-01
Complement activation and subsequent generation of inflammatory molecules and membrane attack complex contributes to the pathology of a number of inflammatory and degenerative diseases, including arthritis, glomerulonephritis and demyelination. Agents that specifically inhibit complement activation might prove beneficial in the treatment of these diseases. Soluble recombinant forms of the naturally occurring membrane complement regulatory proteins (CRP) have been exploited for this purpose. We have undertaken to design better therapeutics based on CRP. Here we describe the generation of soluble, recombinant CRP comprising rat decay accelerating factor (DAF) or rat CD59 expressed as Fc fusion proteins, antibody-like molecules comprising two CRP moieties in place of the antibody Fab arms (CRP-Ig). Reagents bearing DAF on each arm (DAF-Ig), CD59 on each arm (CD59-Ig) and a hybrid reagent containing both DAF and CD59 were generated. All three reagents inhibited C activation in vitro. Compared with soluble CRP lacking Fc domains, activity was reduced, but was fully restored by enzymatic release of the regulator from the Ig moiety, implicating steric constraints in reducing functional activity. In vivo studies showed that DAF-Ig, when compared to soluble DAF, had a much extended half-life in the circulation in rats and concomitantly caused a sustained reduction in plasma complement activity. When given intra-articularly to rats in a model of arthritis, DAF-Ig significantly reduced severity of disease. The data demonstrate the potential of CRP-Ig as reagents for sustained therapy of inflammatory disorders, including arthritis, but emphasize the need for careful design of fusion proteins to retain function. PMID:12165074
Kossila, Maija; Jauhiainen, Suvi; Laukkanen, Mikko O; Lehtolainen, Pauliina; Jääskeläinen, Maiju; Turunen, Päivi; Loimas, Sami; Wahlfors, Jarmo; Ylä-Herttuala, Seppo
2002-01-01
Adenovirus is a widely used vector in gene transfer experiments because it produces high transduction efficiency in vitro and in vivo by means of the coxsackie-adenovirus receptor (CAR) and major histocompatibility complex (MHC) class I alpha-2 domain. Adenoviral gene transfer efficiency has been reported to correlate with cellular CAR expression. We report here a simple method to increase adenoviral gene transfer efficiency in cells that do not express high levels of CAR: preincubation of adenovirus for 30-40 minutes at +37 degrees C significantly increased the transduction efficiency in vitro in CHO and BALB/3T3 cells, in which CAR is expressed at very low levels. Increased transduction efficiency of preincubated adenovirus was also detected in vivo in rat brain tissue. In addition, we found that adenoviruses were rapidly inactivated in human serum in a complement-independent manner, whereas fetal bovine serum (FBS) had hardly any effects on the viral infectivity. We conclude that preincubation of adenoviral vectors at +37 degrees C may substantially increase gene transfer efficiency in applications in which target cells do not express high levels of CAR.
On the Functional Overlap between Complement and Anti-Microbial Peptides.
Zimmer, Jana; Hobkirk, James; Mohamed, Fatima; Browning, Michael J; Stover, Cordula M
2014-01-01
Intriguingly, activated complement and anti-microbial peptides share certain functionalities; lytic, phagocytic, and chemo-attractant activities and each may, in addition, exert cell instructive roles. Each has been shown to have distinct LPS detoxifying activity and may play a role in the development of endotoxin tolerance. In search of the origin of complement, a functional homolog of complement C3 involved in opsonization has been identified in horseshoe crabs. Horseshoe crabs possess anti-microbial peptides able to bind to acyl chains or phosphate groups/saccharides of endotoxin, LPS. Complement activity as a whole is detectable in marine invertebrates. These are also a source of anti-microbial peptides with potential pharmaceutical applicability. Investigating the locality for the production of complement pathway proteins and their role in modulating cellular immune responses are emerging fields. The significance of local synthesis of complement components is becoming clearer from in vivo studies of parenchymatous disease involving specifically generated, complement-deficient mouse lines. Complement C3 is a central component of complement activation. Its provision by cells of the myeloid lineage varies. Their effector functions in turn are increased in the presence of anti-microbial peptides. This may point to a potentiating range of activities, which should serve the maintenance of health but may also cause disease. Because of the therapeutic implications, this review will consider closely studies dealing with complement activation and anti-microbial peptide activity in acute inflammation (e.g., dialysis-related peritonitis, appendicitis, and ischemia).
Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo
NASA Astrophysics Data System (ADS)
Chen, Fangfang; Wang, Guankui; Griffin, James I.; Brenneman, Barbara; Banda, Nirmal K.; Holers, V. Michael; Backos, Donald S.; Wu, Linping; Moghimi, Seyed Moein; Simberg, Dmitri
2017-05-01
When nanoparticles are intravenously injected into the body, complement proteins deposit on the surface of nanoparticles in a process called opsonization. These proteins prime the particle for removal by immune cells and may contribute toward infusion-related adverse effects such as allergic responses. The ways complement proteins assemble on nanoparticles have remained unclear. Here, we show that dextran-coated superparamagnetic iron oxide core-shell nanoworms incubated in human serum and plasma are rapidly opsonized with the third complement component (C3) via the alternative pathway. Serum and plasma proteins bound to the nanoworms are mostly intercalated into the nanoworm shell. We show that C3 covalently binds to these absorbed proteins rather than the dextran shell and the protein-bound C3 undergoes dynamic exchange in vitro. Surface-bound proteins accelerate the assembly of the complement components of the alternative pathway on the nanoworm surface. When nanoworms pre-coated with human plasma were injected into mice, C3 and other adsorbed proteins undergo rapid loss. Our results provide important insight into dynamics of protein adsorption and complement opsonization of nanomedicines.
Dalia, Ankur B.; Weiser, Jeffrey N.
2011-01-01
SUMMARY The complement system, which functions by lysing pathogens directly or by promoting their uptake by phagocytes, is critical for controlling many microbial infections. Here we show that in Streptococcus pneumoniae, increasing bacterial chain length sensitizes this pathogen to complement deposition and subsequent uptake by human neutrophils. Consistent with this, we show that minimizing chain length provides wild-type bacteria with a competitive advantage in vivo in a model of systemic infection. Investigating how the host overcomes this virulence strategy, we find that antibody promotes complement-dependent opsonophagocytic killing of Streptococcus pneumoniae and lysis of Haemophilus influenzae independent of Fc-mediated effector functions. Consistent with the agglutinating effect of antibody, F(ab′)2 but not Fab could promote this effect. Therefore, increasing pathogen size, whether by natural changes in cellular morphology or via antibody-mediated agglutination, promotes complement-dependent killing. These observations have broad implications for how cell size and morphology can affect virulence among pathogenic microbes. PMID:22100164
Okroj, Marcin; Mark, Linda; Stokowska, Anna; Wong, Scott W; Rose, Nicola; Blackbourn, David J; Villoutreix, Bruno O; Spiller, O Brad; Blom, Anna M
2009-01-02
Rhesus rhadinovirus (RRV) is currently the closest known, fully sequenced homolog of human Kaposi sarcoma-associated herpesvirus. Both these viruses encode complement inhibitors as follows: Kaposi sarcoma-associated herpesvirus-complement control protein (KCP) and RRV-complement control protein (RCP). Previously we characterized in detail the functional properties of KCP as a complement inhibitor. Here, we performed comparative analyses for two variants of RCP protein, encoded by RRV strains H26-95 and 17577. Both RCP variants and KCP inhibited human and rhesus complement when tested in hemolytic assays measuring all steps of activation via the classical and the alternative pathway. RCP variants from both RRV strains supported C3b and C4b degradation by factor I and decay acceleration of the classical C3 convertase, similar to KCP. Additionally, the 17577 RCP variant accelerated decay of the alternative C3 convertase, which was not seen for KCP. In contrast to KCP, RCP showed no affinity to heparin and is the first described complement inhibitor in which the binding site for C3b/C4b does not interact with heparin. Molecular modeling shows a structural disruption in the region of RCP that corresponds to the KCP-heparin-binding site. This makes RRV a superior model for future in vivo investigations of complement evasion, as RCP does not play a supportive role in viral attachment as KCP does.
Studies on the CPA cysteine peptidase in the Leishmania infantum genome strain JPCM5.
Denise, Hubert; Poot, Jacqueline; Jiménez, Maribel; Ambit, Audrey; Herrmann, Daland C; Vermeulen, Arno N; Coombs, Graham H; Mottram, Jeremy C
2006-11-13
Visceral leishmaniasis caused by members of the Leishmania donovani complex is often fatal in the absence of treatment. Research has been hampered by the lack of good laboratory models and tools for genetic manipulation. In this study, we have characterised a L. infantum line (JPCM5) that was isolated from a naturally infected dog and then cloned. We found that JPCM5 has attributes that make it an excellent laboratory model; different stages of the parasite life cycle can be studied in vitro, it is accessible to genetic manipulation and it has retained its virulence. Furthermore, the L. infantum JPCM5 genome has now been fully sequenced. We have further focused our studies on LiCPA, the L. infantum homologue to L. mexicana cysteine peptidase CPA. LiCPA was found to share a high percentage of amino acid identity with CPA proteins of other Leishmania species. Two independent LiCPA-deficient promastigote clones (DeltaLicpa) were generated and their phenotype characterised. In contrast to L. mexicana CPA-deficient mutants, both clones of DeltaLicpa were found to have significantly reduced virulence in vitro and in vivo. Re-expression of just one LiCPA allele (giving DeltaLicpa::CPA) was sufficient to complement the reduced infectivity of both DeltaLicpa mutants for human macrophages, which confirms the importance of LiCPA for L. infantum virulence. In contrast, in vivo experiments did not show any virulence recovery of the re-expressor clone DeltaLicpaC1::CPA compared with the CPA-deficient mutant DeltaLicpaC1. The data suggest that CPA is not essential for replication of L. infantum promastigotes, but is important for the host-parasite interaction. Further studies will be necessary to elucidate the precise roles that LiCPA plays and why the re-expression of LiCPA in the DeltaLicpa mutants complemented the gene deletion phenotype only in in vitro and not in in vivo infection of hamsters.
Kupffer cell complement receptor clearance function and host defense.
Loegering, D J
1986-01-01
Kupffer cells are well known to be important for normal host defense function. The development of methods to evaluate the in vivo function of specific receptors on Kupffer cells has made it possible to assess the role of these receptors in host defense. The rationale for studying complement receptors is based on the proposed important role of these receptors in host defense and on the observation that the hereditary deficiency of a complement receptor is associated with recurrent severe bacterial infections. The studies reviewed here demonstrate that forms of injury that are associated with depressed host defense including thermal injury, hemorrhagic shock, trauma, and surgery also cause a decrease in complement receptor clearance function. This decrease in Kupffer cell receptor clearance function was shown not to be the result of depressed hepatic blood flow or depletion of complement components. Complement receptor function was also depressed following the phagocytosis of particulates that are known to depress Kupffer cell host defense function. Endotoxemia and bacteremia also were associated with a depression of complement receptor function. Complement receptor function was experimentally depressed in uninjured animals by the phagocytosis of IgG-coated erythrocytes. There was a close association between the depression of complement receptor clearance function and increased susceptibility to the lethal effects of endotoxin and bacterial infection. These studies support the hypotheses that complement receptors on Kupffer cells are important for normal host defense and that depression of the function of these receptors impairs host defense.
DeAngelis, Robert A.; Reis, Edimara S.; Ricklin, Daniel; Lambris, John D.
2012-01-01
Hemodialysis is the most common method used to remove waste and hazardous products of metabolism in patients suffering from renal failure. Hundreds of thousands of people with end-stage renal disease undergo hemodialysis treatment in the United States each year. Strikingly, the 5-year survival rate for all dialysis patients is only 35%. Most of the patients succumb to cardiovascular disease that is exacerbated by the chronic induction of inflammation caused by contact of the blood with the dialysis membrane. The complement system, a strong mediator of pro-inflammatory networks, is a key contributor to such biomaterial-induced inflammation. Though only evaluated in experimental ex vivo settings, specific targeting of complement activation during hemodialysis has uncovered valuable information that points towards the therapeutic use of complement inhibitors as means to control the unwelcomed inflammatory responses and consequent pathologies in hemodialysis patients. PMID:22964235
Dorwart, Michael R; Wray, Robin; Brautigam, Chad A; Jiang, Youxing; Blount, Paul
2010-12-07
While the bacterial mechanosensitive channel of large conductance (MscL) is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL) is a pentamer, while the S. aureus protein (SaMscL) forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL) is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering) and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8)E(5) detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.
Lohman, Rink-Jan; Hamidon, Johan K; Reid, Robert C; Rowley, Jessica A; Yau, Mei-Kwan; Halili, Maria A; Nielsen, Daniel S; Lim, Junxian; Wu, Kai-Chen; Loh, Zhixuan; Do, Anh; Suen, Jacky Y; Iyer, Abishek; Fairlie, David P
2017-08-24
Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.
Regulation of Chemokine Expression by Lipopolysaccharide In Vitro and In Vivo
2002-06-10
chain, the core polysaccharide , and the lipid A domain (Figure 1A). The hydrophilic O-specific chain is a polymer of repeating oligosaccharide units...necessary for protection from phagocytosis and complement-mediated lysis in vivo (9, 10). Linking the O-specific chain to lipid A is a core polysaccharide ...region that is relatively conserved among bacterial families on the basis of its monosaccharide composition. Among the common elements in the
Fruchterman, T M; Spain, D A; Wilson, M A; Harris, P D; Garrison, R N
1998-10-01
Complement, a nonspecific immune response, is activated during hemorrhage/resuscitation (HEM/RES) and is involved in cellular damage. We hypothesized that activated complement injures endothelial cells (ETCs) and is responsible for intestinal microvascular hypoperfusion after HEM/RES. Four groups of rats were studied by in vivo videomicroscopy of the intestine: SHAM, HEM/RES, HEM/RES + sCR1 (complement inhibitor, 15 mg/kg intravenously given before resuscitation), and SHAM + sCR1. Hemorrhage was to 50% of mean arterial pressure for 60 minutes followed by resuscitation with shed blood plus an equal volume of saline. ETC function was assessed by response to acetylcholine. Resuscitation restored central hemodynamics to baseline after hemorrhage. After resuscitation, inflow A1 and premucosal A3 arterioles progressively constricted (-24% and -29% change from baseline, respectively), mucosal blood flow was reduced, and ETC function was impaired. Complement inhibition prevented postresuscitation vasoconstriction and gut ischemia. This protective effect appeared to involve preservation of ETC function in the A3 vessels (SHAM 76% of maximal dilation, HEM/RES 61%, HEM/RES + sCR1 74%, P < .05). Complement inhibition preserved ETC function after HEM/RES and maintained gut perfusion. Inhibition of complement activation before resuscitation may be a useful adjunct in patients experiencing major hemorrhage and might prevent the sequelae of gut ischemia.
Cyclosporine Induces Endothelial Cell Release of Complement-Activating Microparticles
Renner, Brandon; Klawitter, Jelena; Goldberg, Ryan; McCullough, James W.; Ferreira, Viviana P.; Cooper, James E.; Christians, Uwe
2013-01-01
Defective control of the alternative pathway of complement is an important risk factor for several renal diseases, including atypical hemolytic uremic syndrome. Infections, drugs, pregnancy, and hemodynamic insults can trigger episodes of atypical hemolytic uremic syndrome in susceptible patients. Although the mechanisms linking these clinical events with disease flares are unknown, recent work has revealed that each of these clinical conditions causes cells to release microparticles. We hypothesized that microparticles released from injured endothelial cells promote intrarenal complement activation. Calcineurin inhibitors cause vascular and renal injury and can trigger hemolytic uremic syndrome. Here, we show that endothelial cells exposed to cyclosporine in vitro and in vivo release microparticles that activate the alternative pathway of complement. Cyclosporine-induced microparticles caused injury to bystander endothelial cells and are associated with complement-mediated injury of the kidneys and vasculature in cyclosporine-treated mice. Cyclosporine-induced microparticles did not bind factor H, an alternative pathway regulatory protein present in plasma, explaining their complement-activating phenotype. Finally, we found that in renal transplant patients, the number of endothelial microparticles in plasma increases 2 weeks after starting tacrolimus, and treatment with tacrolimus associated with increased C3 deposition on endothelial microparticles in the plasma of some patients. These results suggest that injury-associated release of endothelial microparticles is an important mechanism by which systemic insults trigger intravascular complement activation and complement-dependent renal diseases. PMID:24092930
Winkler, Mark T; Bushey, Ryan T; Gottlin, Elizabeth B; Campa, Michael J; Guadalupe, Eross S; Volkheimer, Alicia D; Weinberg, J Brice; Patz, Edward F
2017-01-01
Rituximab therapy for B cell chronic lymphocytic leukemia (B-CLL) has met with mixed success. Among several factors to which resistance can be attributed is failure to activate complement dependent cytotoxicity (CDC) due to protective complement regulatory proteins, including the soluble regulator complement factor H (CFH). We hypothesized that rituximab killing of non-responsive B-CLL cells could be augmented by a novel human monoclonal antibody against CFH. The B cells from 11 patients with B-CLL were tested ex vivo in CDC assays with combinations of CFH monoclonal antibody, rituximab, and a negative control antibody. CDC of rituximab non-responsive malignant B cells from CLL patients could in some cases be augmented by the CFH monoclonal antibody. Antibody-mediated cytotoxicity of cells was dependent upon functional complement. In one case where B-CLL cells were refractory to CDC by the combination of rituximab plus CFH monoclonal antibody, additionally neutralizing the membrane complement regulatory protein CD59 allowed CDC to occur. Inhibiting CDC regulatory proteins such as CFH holds promise for overcoming resistance to rituximab therapy in B-CLL.
NASA Technical Reports Server (NTRS)
Chapes, S. K.; Woods, K. M.; Armstrong, J. W.; Spooner, B. S. (Principal Investigator)
1993-01-01
This manuscript briefly reviews ground-based and flight experiments, discusses how those experiments complement each other, and details how those experiments lead us to speculate about the gravity-sensitive nature of protein kinase C.
Informing Mechanistic Toxicology with Computational Molecular Models
Computational molecular models of chemicals interacting with biomolecular targets provides toxicologists a valuable, affordable, and sustainable source of in silico molecular level information that augments, enriches, and complements in vitro and in vivo effo...
Wu, Jun; Izpisua Belmonte, Juan Carlos
2016-06-01
The past decade's rapid progress in human pluripotent stem cell (hPSC) research has generated hope for meeting the rising demand of organ donation, which remains the only effective cure for end-stage organ failure, a major cause of death worldwide. Despite the potential, generation of transplantable organs from hPSCs using in vitro differentiation is far-fetched. An in vivo interspecies chimeric complementation strategy relying on chimeric-competent hPSCs and zygote genome editing provides an auspicious alternative for providing unlimited organ source for transplantation.
Rubin, R L; Teodorescu, M; Beutner, E H; Plunkett, R W
2004-01-01
The immunofluorescence antinuclear antibody (ANA) test has been widely used to monitor autoimmune disease, but its value for diagnostic purposes is compromised by low specificity and high prevalence in disease-free individuals. The capacity of autoantibodies to fix serum complement proteins when bound to antigen is an important effector function because this property is associated with acute and chronic inflammatory processes. The current study evaluates the complement-fixing properties of antinuclear antibodies (CANA) in three well-defined and clinically-related patient groups: systemic lupus erythematosus (SLE), drug-induced lupus (DIL) and drug-induced autoimmunity (DIA). Of 20 patients diagnosed with SLE, 90% displayed complement-fixing ANA while this feature was present in only two of 18 patients with DIL and no patients with DIA without associated disease even though the mean ANA titres were similar among these patient groups. CANA was significantly correlated with anti-Sm activity. Because SLE but not DIL or DIA can be a life-threatening disease associated with complement consumption in vivo, these results demonstrate that measurement of CANA is a diagnostically useful tool and may have immunopathologic implications.
Concerted Action of Sphingomyelinase and Non-Hemolytic Enterotoxin in Pathogenic Bacillus cereus
Doll, Viktoria M.
2013-01-01
Bacillus cereus causes food poisoning and serious non-gastrointestinal-tract infections. Non-hemolytic enterotoxin (Nhe), which is present in most B. cereus strains, is considered to be one of the main virulence factors. However, a B. cereus ΔnheBC mutant strain lacking Nhe is still cytotoxic to intestinal epithelial cells. In a screen for additional cytotoxic factors using an in vitro model for polarized colon epithelial cells we identified B. cereus sphingomyelinase (SMase) as a strong inducer of epithelial cell death. Using single and double deletion mutants of sph, the gene encoding for SMase, and nheBC in B. cereus we demonstrated that SMase is an important factor for B. cereus cytotoxicity in vitro and pathogenicity in vivo. SMase substantially complemented Nhe induced cytotoxicity in vitro. In addition, SMase but not Nhe contributed significantly to the mortality rate of larvae in vivo in the insect model Galleria mellonella. Our study suggests that the role of B. cereus SMase as a secreted virulence factor for in vivo pathogenesis has been underestimated and that Nhe and SMase complement each other significantly to cause full B. cereus virulence hence disease formation. PMID:23613846
Szott, Luisa M.; Horbett, Thomas A.
2010-01-01
The role of complement C3 in mediating adhesion of monocytes to plasma deposited tetraglyme surfaces was studied. Although fibrinogen (Fg) is usually considered the main factor in mediating phagocyte attachment, plasma deposited PEO-like tetraethylene glycol dimethyl ether (tetraglyme) coatings that have ultra-low Fg adsorption (< 10 ng/cm2) from low concentration solutions and low monocyte adhesion in vitro still show high phagocyte adhesion after short implantations and later become encapsulated when tested in vivo. To test whether higher Fg adsorption under in vivo conditions could explain the higher in vivo reactivity, we again measured the resistance of tetraglyme films to Fg adsorption. We found a surprising and previously unreported increased amount of adsorbed Fg on tetraglyme surfaces from higher concentration protein solutions. However, monocyte adhesion to tetraglyme did not markedly increase despite the increased Fg adsorption. We thus suspected proteins other than Fg must be responsible for the increased in vivo reactivity. We found that on tetraglyme pre-adsorbed with C3-depleted serum, monocyte adhesion was greatly reduced as compared to samples adsorbed with normal serum. Addition of exogenous pure C3 to the serum used to pre-adsorb the surfaces restored monocyte adhesion to tetraglyme coatings. While Fg clearly plays an important role in mediating monocyte adhesion to tetraglyme surfaces, the results show an additional role for adsorbed C3 in monocyte adhesion. PMID:20939050
Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J.; Critser, John; Arwert, Fre; Haneline, Laura S.; Clapp, D. Wade
2006-01-01
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc–/– cells to interferon-gamma (IFN-γ), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc–/– mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca–/– and Fancg–/– mice are hypersensitive to IFN-γ and that in vivo infusion of IFN-γ at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-γ conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients. PMID:16946306
Si, Yue; Ciccone, Samantha; Yang, Feng-Chun; Yuan, Jin; Zeng, Daisy; Chen, Shi; van de Vrugt, Henri J; Critser, John; Arwert, Fre; Haneline, Laura S; Clapp, D Wade
2006-12-15
Fanconi anemia (FA) is a heterogeneous genetic disorder characterized by bone marrow (BM) failure and cancer susceptibility. Identification of the cDNAs of FA complementation types allows the potential of using gene transfer technology to introduce functional cDNAs as transgenes into autologous stem cells and provide a cure for the BM failure in FA patients. However, strategies to enhance the mobilization, transduction, and engraftment of exogenous stem cells are required to optimize efficacy prior to widespread clinical use. Hypersensitivity of Fancc-/- cells to interferon-gamma (IFN-gamma), a nongenotoxic immune-regulatory cytokine, enhances engraftment of syngeneic wild-type (WT) cells in Fancc-/- mice. However, whether this phenotype is of broad relevance in other FA complementation groups is unresolved. Here we show that primitive and mature myeloid progenitors in Fanca-/- and Fancg-/- mice are hypersensitive to IFN-gamma and that in vivo infusion of IFN-gamma at clinically relevant concentrations was sufficient to allow consistent long-term engraftment of isogenic WT repopulating stem cells. Given that FANCA, FANCC, and FANCG complementation groups account for more than 90% of all FA patients, these data provide evidence that IFN-gamma conditioning may be a useful nongenotoxic strategy for myelopreparation in FA patients.
The structural requirements for immunoglobulin aggregates to localize in germinal centres.
Embling, P H; Evans, H; Guttierez, C; Holborow, E J; Johns, P; Johnson, P M; Papamichail, M; Stanworth, D R
1978-01-01
The capacity of non-heat-aggregated monoclonal human immunoglobulins of different classes, to localize in murine splenic germinal centres within 24 h of intravenous injection has been investigated. It has been shown that at least trimerization of polyclonal IgG must occur before any germinal centre trapping is manifest. Studies of complement fixation by these IgG preparations in vivo, together with studies of the germinal centre trapping of various monoclonal immunoglobulins, have indicated that the sole structural requirement for germinal centre localization of immunoglobulin aggregates is the ability to fix complement. Results suggest that immunoglobulin aggregates are transported to germinal centres via membrane C3 receptors of mobile cells, and then are released with loss of complement to become fixed to dendritic macrophages by a separate mechanism. PMID:363602
Susceptibility of pathogenic and nonpathogenic Naegleria ssp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, L.Y.
1988-01-01
The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenicmore » or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loyer, M.; Leclerc, D.; Gravel, R.A.
1994-09-01
Propionic acidemia is a rare autosomal recessive disorder resulting from defects of the {alpha} or {beta} subunit of biotin-dependent propionyl-CoA carboxylase (PCC). Mutations are assigned to defects of the PCCA ({alpha} subunit) or PCCB ({beta} subunit) gene through complementation studies after somatic fusion of patient cell lines. About two-thirds of patients with {beta} subunit defects (complementation group pccBC) show interallelic complementation in cell fusion experiments (subgroups pccB and pccC), monitored by the PCC-dependent metabolisms of {sup 14}C-propionate. Most patient cell lines are heteroallelic for two different mutations, leaving ambiguous the identity of the mutation participating in interallelic complementation. To identifymore » the complementing mutations, we have expressed {beta}-subunit cDNAs containing individual mutations by microinjection of the cDNAs in recipient cells from patients with {beta} subunit defects. Correction of the PCC defect was monitored by autoradiography of {sup 14}C-propionate incorporation. In some experiments, cDNAs were co-injected with a plasmid expressing the E. coli lacZ gene as a positive control for successful injection. Two mutations from the pccB subgroup showed complementation when injected into pccC cells; dupKICK140-143 and Pro228Leu. Similarly, two mutations from the pccC subgroup complemented after injection into pccB cells; {Delta}Ile408 and Arg410Trp. No mutation complemented with mutation of the pccBC group which are classified as non-complementing in cell fusion experiments. The results show that the complementing pccB mutations are found in the N-terminal half of the {beta} subunit, while the complementing pccC mutations cluxter at a site in the C-terminal half. The latter site is a candidate for the propionyl-CoA binding site based on sequence identity with a region of transcarboxylase from Propionibacterium shermanii.« less
Interaction between the macrophage system and IgA immune complexes in IgA nephropathy.
Roccatello, D; Coppo, R; Basolo, B; Martina, G; Rollino, C; Cordonnier, D; Busquet, G; Picciotto, G; Sena, L M; Piccoli, G
1983-01-01
In nine patients with IgA nephropathy, the function of the mononuclear phagocyte system was assessed by measuring in vivo clearance of anti-D coated red blood cells (RBC) and in vitro phagocytosis of sensitised RBC by monocytes. A strict correlation was found between in vivo macrophage function and in vitro monocyte phagocytosis. Statistical correlations were also found between in vivo clearance values and IgAIC and C3d values. A defective macrophage and monocyte function affects patients with major signs of clinical activity, highest IgAIC values, signs of complement activation and the most unfavourable clinical course.
Novel genetic tools for diaminopimelic acid selection in virulence studies of Yersinia pestis.
Bland, David M; Eisele, Nicholas A; Keleher, Lauren L; Anderson, Paul E; Anderson, Deborah M
2011-03-02
Molecular studies of bacterial virulence are enhanced by expression of recombinant DNA during infection to allow complementation of mutants and expression of reporter proteins in vivo. For highly pathogenic bacteria, such as Yersinia pestis, these studies are currently limited because deliberate introduction of antibiotic resistance is restricted to those few which are not human treatment options. In this work, we report the development of alternatives to antibiotics as tools for host-pathogen research during Yersinia pestis infections focusing on the diaminopimelic acid (DAP) pathway, a requirement for cell wall synthesis in eubacteria. We generated a mutation in the dapA-nlpB(dapX) operon of Yersinia pestis KIM D27 and CO92 which eliminated the expression of both genes. The resulting strains were auxotrophic for diaminopimelic acid and this phenotype was complemented in trans by expressing dapA in single and multi-copy. In vivo, we found that plasmids derived from the p15a replicon were cured without selection, while selection for DAP enhanced stability without detectable loss of any of the three resident virulence plasmids. The dapAX mutation rendered Y. pestis avirulent in mouse models of bubonic and septicemic plague which could be complemented when dapAX was inserted in single or multi-copy, restoring development of disease that was indistinguishable from the wild type parent strain. We further identified a high level, constitutive promoter in Y. pestis that could be used to drive expression of fluorescent reporters in dapAX strains that had minimal impact to virulence in mouse models while enabling sensitive detection of bacteria during infection. Thus, diaminopimelic acid selection for single or multi-copy genetic systems in Yersinia pestis offers an improved alternative to antibiotics for in vivo studies that causes minimal disruption to virulence.
Identifying Structural Alerts Based on Zebrafish Developmental Morphological Toxicity (TDS)
Zebrafish constitute a powerful alternative animal model for chemical hazard evaluation. To provide an in vivo complement to high-throughput screening data from the ToxCast program, zebrafish developmental toxicity screens were conducted on the ToxCast Phase I (Padilla et al., 20...
Sasidhar, Manda V; Itoh, Noriko; Gold, Stefan M; Lawson, Gregory W; Voskuhl, Rhonda R
2012-08-01
Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.
Mohos, Steven C.; Kidd, John G.
1957-01-01
Immune serums prepared in rabbits with antigens made from normal mouse organs and tissues that were presumably devoid of large numbers of lymphocytic cells (notably kidney, liver, brain, whole embryos, and erythrocytes) proved lethal for the cells of several transplanted mouse lymphomas in vitro in the presence of complement; but these immune serums, when given intraperitoneally in large amounts to susceptible mice that had been implanted subcutaneously with lymphoma cells of one or another of several types, failed entirely to inhibit growth of the lymphoma cells in vivo. In contrast, immune serums made with cells procured from transplanted mouse lymphomas as antigens, and those made with cells from normal mouse thymus or lymph nodes, acted even more powerfully upon the several types of lymphoma cells in vitro than did the immune serums prepared with normal mouse organs, and when given intraperitoneally to implanted mice they brought about death of the lymphoma cells in vivo, the effect being to a considerable extent specific and referable to an antibody that reacts with neoplastic and non-neoplastic lymphocytic cells of mice, as absorption experiments disclosed. In comparative tests, furthermore, the anti-lymphoma serums acted more powerfully upon the lymphoma cells in vivo than did such chemotherapeutic agents as amethopterin, azaguanine, ethionine, azaserine, and 6-mercaptopurine, given singly or in various combinations in maximal tolerated amounts, though their effects were not so powerful as those exerted by normal guinea pig serum on lymphoma cells of two types that are susceptible to its action in vivo. The significance of the findings was briefly discussed. PMID:13406182
Kolter, Marise; Ott, Melanie; Hauer, Christian; Reimold, Isolde; Fricker, Gert
2015-01-10
Therapy of diseases of the central nervous system is a major challenge since drugs have to overcome the blood-brain barrier (BBB). A powerful strategy to enhance cerebral drug concentration is administration of drug-loaded poly(n-butylcyano-acrylate) (PBCA) nanoparticles coated with polysorbate 80 (PS80). This study evaluates the toxicity of PBCA-nanoparticles at the BBB, representing the target organ, the inflammatory response in human whole blood, as the site of administration and in a rat model in vivo. PBCA-nanoparticles were prepared by a mini-emulsion method and characterized concerning size, surface charge, shape and PS80-adsorption. The influence on metabolic activity, cell viability and integrity of the BBB was analyzed in an in vitro model of the BBB. In ex vivo experiments in human whole blood the release of 12 inflammatory cytokines was investigated. In addition, the inflammatory response was studied in vivo in rats and complemented with the analysis of different organ toxicity parameters. PBCA-nanoparticles showed time- and concentration-dependent effects on metabolic activity, cell viability and BBB integrity. No cell death or loss of metabolic activity was observed for nanoparticle-concentrations ≤500μg/ml up to 3h of treatment. Within 12 tested inflammatory cytokines, only interleukin-8 displayed a significant release after nanoparticle exposure in human blood. No severe inflammatory processes or organ damages were identified in rats in vivo. Thus, PBCA-nanoparticles are a promising drug delivery system to overcome the BBB since they showed hardly any cytotoxic or inflammatory effect at therapeutic concentrations and incubation times. Copyright © 2014 Elsevier B.V. All rights reserved.
Ly6G-mediated depletion of neutrophils is dependent on macrophages.
Bruhn, Kevin W; Dekitani, Ken; Nielsen, Travis B; Pantapalangkoor, Paul; Spellberg, Brad
2016-01-01
Antibody-mediated depletion of neutrophils is commonly used to study neutropenia. However, the mechanisms by which antibodies deplete neutrophils have not been well defined. We noticed that mice deficient in complement and macrophages had blunted neutrophil depletion in response to anti-Ly6G monoclonal antibody (MAb) treatment. In vitro, exposure of murine neutrophils to anti-Ly6G MAb in the presence of plasma did not result in significant depletion of cells, either in the presence or absence of complement. In vivo, anti-Ly6G-mediated neutrophil depletion was abrogated following macrophage depletion, but not complement depletion, indicating a requirement for macrophages to induce neutropenia by this method. These results inform the use and limitations of anti-Ly6G antibody as an experimental tool for depleting neutrophils in various immunological settings.
In vivo therapeutic responses contingent on Fanconi anemia/BRCA2 status of the tumor.
van der Heijden, Michiel S; Brody, Jonathan R; Dezentje, David A; Gallmeier, Eike; Cunningham, Steven C; Swartz, Michael J; DeMarzo, Angelo M; Offerhaus, G Johan A; Isacoff, William H; Hruban, Ralph H; Kern, Scott E
2005-10-15
BRCA2, FANCC, and FANCG gene mutations are present in a subset of pancreatic cancer. Defects in these genes could lead to hypersensitivity to interstrand cross-linkers in vivo and a more optimal treatment of pancreatic cancer patients based on the genetic profile of the tumor. Two retrovirally complemented pancreatic cancer cell lines having defects in the Fanconi anemia pathway, PL11 (FANCC-mutated) and Hs766T (FANCG-mutated), as well as several parental pancreatic cancer cell lines with or without mutations in the Fanconi anemia/BRCA2 pathway, were assayed for in vitro and in vivo sensitivities to various chemotherapeutic agents. A distinct dichotomy of drug responses was observed. Fanconi anemia-defective cancer cells were hypersensitive to the cross-linking agents mitomycin C (MMC), cisplatin, chlorambucil, and melphalan but not to 5-fluorouracil, gemcitabine, doxorubicin, etoposide, vinblastine, or paclitaxel. Hypersensitivity to cross-linking agents was confirmed in vivo; FANCC-deficient xenografts of PL11 and BRCA2-deficient xenografts of CAPAN1 regressed on treatment with two different regimens of MMC whereas Fanconi anemia-proficient xenografts did not. The MMC response comprised cell cycle arrest, apoptosis, and necrosis. Xenografts of PL11 also regressed after a single dose of cyclophosphamide whereas xenografts of genetically complemented PL11(FANCC) did not. MMC or other cross-linking agents as a clinical therapy for pancreatic cancer patients with tumors harboring defects in the Fanconi anemia/BRCA2 pathway should be specifically investigated.
Stynen, Bram; Tournu, Hélène; Tavernier, Jan
2012-01-01
Summary: The yeast two-hybrid system pioneered the field of in vivo protein-protein interaction methods and undisputedly gave rise to a palette of ingenious techniques that are constantly pushing further the limits of the original method. Sensitivity and selectivity have improved because of various technical tricks and experimental designs. Here we present an exhaustive overview of the genetic approaches available to study in vivo binary protein interactions, based on two-hybrid and protein fragment complementation assays. These methods have been engineered and employed successfully in microorganisms such as Saccharomyces cerevisiae and Escherichia coli, but also in higher eukaryotes. From single binary pairwise interactions to whole-genome interactome mapping, the self-reassembly concept has been employed widely. Innovative studies report the use of proteins such as ubiquitin, dihydrofolate reductase, and adenylate cyclase as reconstituted reporters. Protein fragment complementation assays have extended the possibilities in protein-protein interaction studies, with technologies that enable spatial and temporal analyses of protein complexes. In addition, one-hybrid and three-hybrid systems have broadened the types of interactions that can be studied and the findings that can be obtained. Applications of these technologies are discussed, together with the advantages and limitations of the available assays. PMID:22688816
Mark, Linda; Spiller, O Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A; Wong, Scott W; Damania, Blossom; Blom, Anna M; Blackbourn, David J
2007-04-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model.
Mark, Linda; Spiller, O. Brad; Okroj, Marcin; Chanas, Simon; Aitken, Jim A.; Wong, Scott W.; Damania, Blossom; Blom, Anna M.; Blackbourn, David J.
2007-01-01
The diversity of viral strategies to modulate complement activation indicates that this component of the immune system has significant antiviral potential. One example is the Kaposi's sarcoma-associated herpesvirus (KSHV) complement control protein (KCP), which inhibits progression of the complement cascade. Rhesus rhadinovirus (RRV), like KSHV, is a member of the subfamily Gammaherpesvirinae and currently provides the only in vivo model of KSHV pathobiology in primates. In the present study, we characterized the KCP homologue encoded by RRV, RRV complement control protein (RCP). Two strains of RRV have been sequenced to date (H26-95 and 17577), and the RCPs they encode differ substantially in structure: RCP from strain H26-95 has four complement control protein (CCP) domains, whereas RCP from strain 17577 has eight CCP domains. Transcriptional analyses of the RCP gene (ORF4, referred to herein as RCP) in infected rhesus macaque fibroblasts mapped the ends of the transcripts of both strains. They revealed that H26-95 encodes a full-length, unspliced RCP transcript, while 17577 RCP generates a full-length unspliced mRNA and two alternatively spliced transcripts. Western blotting confirmed that infected cells express RCP, and immune electron microscopy disclosed this protein on the surface of RRV virions. Functional studies of RCP encoded by both RRV strains revealed their ability to suppress complement activation by the classical (antibody-mediated) pathway. These data provide the foundation for studies into the biological significance of gammaherpesvirus complement regulatory proteins in a tractable, non-human primate model. PMID:17287274
Woodman, Michael E.; Worth, Randall G.; Wooten, R. Mark
2012-01-01
Burkholderia pseudomallei is the causative agent of melioidosis and is a major mediator of sepsis in its endemic areas. Because of the low LD50 via aerosols and resistance to multiple antibiotics, it is considered a Tier 1 select agent by the CDC and APHIS. B. pseudomallei is an encapsulated bacterium that can infect, multiply, and persist within a variety of host cell types. In vivo studies suggest that macrophages and neutrophils are important for controlling B. pseudomallei infections, however few details are known regarding how neutrophils respond to these bacteria. Our goal is to describe the capacity of human neutrophils to control highly virulent B. pseudomallei compared to the relatively avirulent, acapsular B. thailandensis using in vitro analyses. B. thailandensis was more readily phagocytosed than B. pseudomallei, but both displayed similar rates of persistence within neutrophils, indicating they possess similar inherent abilities to escape neutrophil clearance. Serum opsonization studies showed that both were resistant to direct killing by complement, although B. thailandensis acquired significantly more C3 on its surface than B. pseudomallei, whose polysaccharide capsule significantly decreased the levels of complement deposition on the bacterial surface. Both Burkholderia species showed significantly enhanced uptake and killing by neutrophils after critical levels of C3 were deposited. Serum-opsonized Burkholderia induced a significant respiratory burst by neutrophils compared to unopsonized bacteria, and neutrophil killing was prevented by inhibiting NADPH-oxidase. In summary, neutrophils can efficiently kill B. pseudomallei and B. thailandensis that possess a critical threshold of complement deposition, and the relative differences in their ability to resist surface opsonization may contribute to the distinct virulence phenotypes observed in vivo. PMID:23251706
Gelderman, Grant; Sivakumar, Anusha; Lipp, Sarah; Contreras, Lydia
2015-02-01
sRNAs play a significant role in controlling and regulating cellular metabolism. One of the more interesting aspects of certain sRNAs is their ability to make global changes in the cell by interacting with regulatory proteins. In this work, we demonstrate the use of an in vivo Tri-molecular Fluorescence Complementation assay to detect and visualize the central regulatory sRNA-protein interaction of the Carbon Storage Regulatory system in E. coli. The Carbon Storage Regulator consists primarily of an RNA binding protein, CsrA, that alters the activity of mRNA targets and of an sRNA, CsrB, that modulates the activity of CsrA. We describe the construction of a fluorescence complementation system that detects the interactions between CsrB and CsrA. Additionally, we demonstrate that the intensity of the fluorescence of this system is able to detect changes in the affinity of the CsrB-CsrA interaction, as caused by mutations in the protein sequence of CsrA. While previous methods have adopted this technique to study mRNA or RNA localization, this is the first attempt to use this technique to study the sRNA-protein interaction directly in bacteria. This method presents a potentially powerful tool to study complex bacterial RNA protein interactions in vivo. © 2014 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szebeni, Janos, E-mail: jszebeni2@gmail.com; Storm, Gert
Liposomes are known to activate the complement (C) system, which can lead in vivo to a hypersensitivity syndrome called C activation-related pseudoallergy (CARPA). CARPA has been getting increasing attention as a safety risk of i.v. therapy with liposomes, whose testing is now recommended in bioequivalence evaluations of generic liposomal drug candidates. This review highlights the adverse consequences of C activation, the unique symptoms of CARPA triggered by essentially all i.v. administered liposomal drugs, and the various features of vesicles influencing this adverse immune effect. For the case of Doxil, we also address the mechanism of C activation and the opsonization vs.more » long circulation (stealth) paradox. In reviewing the methods of assessing C activation and CARPA, we delineate the most sensitive porcine model and an algorithm for stepwise evaluation of the CARPA risk of i.v. liposomes, which are proposed for standardization for preclinical toxicology evaluation of liposomal and other nanoparticulate drug candidates. - Highlights: • Outlining of difficulties in generic development of liposomal drugs. • New regulatory requirements to evaluate CARPA in preclinical studies. • Review of complement activation by liposomes and its adverse consequences (CARPA). • Assays of C activation in vitro and CARPA in vivo, with the porcine test in focus. • Decision tree how to handle the risk of CARPA assessed by a battery of tests.« less
Roy Choudhury, Swarup; Wang, Yuqi; Pandey, Sona
2014-07-01
Signalling pathways mediated by heterotrimeric G-proteins are common to all eukaryotes. Plants have a limited number of each of the G-protein subunits, with the most elaborate G-protein network discovered so far in soya bean (Glycine max, also known as soybean) which has four Gα, four Gβ and ten Gγ proteins. Biochemical characterization of Gα proteins from plants suggests significant variation in their properties compared with the well-characterized non-plant proteins. Furthermore, the four soya bean Gα (GmGα) proteins exhibit distinct biochemical activities among themselves, but the extent to which such biochemical differences contribute to their in vivo function is also not known. We used the yeast gpa1 mutant which displays constitutive signalling and growth arrest in the pheromone-response pathway as an in vivo model to evaluate the effect of distinct biochemical activities of GmGα proteins. We showed that specific GmGα proteins can be activated during pheromone-dependent receptor-mediated signalling in yeast and they display different strengths towards complementation of yeast gpa1 phenotypes. We also identified amino acids that are responsible for differential complementation abilities of specific Gα proteins. These data establish that specific plant Gα proteins are functional in the receptor-mediated pheromone-response pathway in yeast and that the subtle biochemical differences in their activity are physiologically relevant.
Complementation studies in Niemann-Pick disease type C indicate the existence of a second group.
Steinberg, S J; Ward, C P; Fensom, A H
1994-01-01
Niemann-Pick disease type C is a clinically heterogeneous storage disorder with an unknown primary metabolic defect. We have undertaken somatic cell hybridisation experiments using skin fibroblast strains from 12 patients representing a wide clinical spectrum. Preliminary experiments using filipin staining of free cholesterol as a marker for complementation indicated the existence of one major group (group alpha) and one minor group (group beta) represented by one mutant strain. Subsequent experiments in which sphingomyelinase activity was measured as a marker for complementation using five mutant strains showing activity consistently < 40% control levels confirmed the existence of the second group. Images PMID:8071958
IMMUNOREACTIONS INVOLVING PLATELETS
Shulman, N. Raphael
1958-01-01
Quantitative aspects of platelet agglutination and inhibition of clot retraction by the antibody of quinidine purpura were described. The reactions appeared to depend on formation of types of antibody-quinidine-platelet complexes which could fix complement but complement was not necessary for these reactions. Complement fixation was at least 10 times more sensitive than platelet agglutination or inhibition of clot retraction for measurement and detection of antibody activity. Although it has been considered that antibodies of drug purpura act as platelet lysins in the presence of complement and that direct lysis of platelets accounts for development of thrombocytopenia in drug purpura, the present study suggests that attachment of antibody produces a change in platelets which is manifested in vitro only by increased susceptibility to non-specific factors which can alter the stability of platelets in the absence of antibody. The attachment of antibody to platelets in vivo may only indirectly affect platelet survival. In contrast to human platelets, dog, rabbit, and guinea pig platelets, and normal or trypsin-treated human red cells did not agglutinate, fix complement, or adsorb antibody; and intact human endothelial cells did not fix complement or adsorb antibody. Rhesus monkey platelets were not agglutinated by the antibody but did adsorb antibody and fix complement although their activity in these reactions differed quantitatively from that of human platelets. Cinchonine could be substituted for quinidine in agglutination and inhibition of clot retraction reactions but quinine and cinchonidine could not. Attempts to cause passive anaphylaxis in guinea pigs with the antibody of quinidine purpura were not successful. PMID:13525580
Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl
2012-01-01
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351
The Surface-Exposed Protein SntA Contributes to Complement Evasion in Zoonotic Streptococcus suis.
Deng, Simin; Xu, Tong; Fang, Qiong; Yu, Lei; Zhu, Jiaqi; Chen, Long; Liu, Jiahui; Zhou, Rui
2018-01-01
Streptococcus suis is an emerging zoonotic pathogen causing streptococcal toxic shock like syndrome (STSLS), meningitis, septicemia, and even sudden death in human and pigs. Serious septicemia indicates this bacterium can evade the host complement surveillance. In our previous study, a functionally unknown protein SntA of S. suis has been identified as a heme-binding protein, and contributes to virulence in pigs. SntA can interact with the host antioxidant protein AOP2 and consequently inhibit its antioxidant activity. In the present study, SntA is identified as a cell wall anchored protein that functions as an important player in S. suis complement evasion. The C3 deposition and membrane attack complex (MAC) formation on the surface of sntA -deleted mutant strain Δ sntA are demonstrated to be significantly higher than the parental strain SC-19 and the complementary strain CΔ sntA . The abilities of anti-phagocytosis, survival in blood, and in vivo colonization of Δ sntA are obviously reduced. SntA can interact with C1q and inhibit hemolytic activity via the classical pathway. Complement activation assays reveal that SntA can also directly activate classical and lectin pathways, resulting in complement consumption. These two complement evasion strategies may be crucial for the pathogenesis of this zoonotic pathogen. Concerning that SntA is a bifunctional 2',3'-cyclic nucleotide 2'-phosphodiesterase/3'-nucleotidase in many species of Gram-positive bacteria, these complement evasion strategies may have common biological significance.
Loeschenberger, Beatrix; Niess, Lea; Würzner, Reinhard; Schwelberger, Hubert; Eder, Iris E; Puhr, Martin; Guenther, Julia; Troppmair, Jakob; Rudnicki, Michael; Neuwirt, Hannes
2018-02-01
One factor that significantly contributes to renal allograft loss is chronic calcineurin inhibitor (CNI) nephrotoxicity (CIN). Among other factors, the complement (C-) system has been proposed to be involved CIN development. Hence, we investigated the impact of CNIs on intracellular signalling and the effects on the C-system in human renal tubule cells. In a qPCR array, CNI treatment upregulated C-factors and downregulated SOCS-3 and the complement inhibitors CD46 and CD55. Additionally, ERK1/-2 was required for these regulations. Following knock-down and overexpression of SOCS-3, we found that SOCS-3 inhibits ERK1/-2 signalling. Finally, we assessed terminal complement complex formation, cell viability and apoptosis. Terminal complement complex formation was induced by CNIs. Cell viability was significantly decreased, whereas apoptosis was increased. Both effects were reversed under complement component-depleted conditions. In vivo, increased ERK1/-2 phosphorylation and SOCS-3 downregulation were observed at the time of transplantation in renal allograft patients who developed a progressive decline of renal function in the follow-up compared to stable patients. The progressive cohort also had lower total C3 levels, suggesting higher complement activity at baseline. In conclusion, our data suggest that SOCS-3 inhibits CNI-induced ERK1/-2 signalling, thereby blunting the negative control of C-system activation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Traditional toxicity testing involves a large investment in resources, often using low-throughput in vivo animal studies for limited numbers of chemicals. An alternative strategy is the emergence of high-throughput (HT) in vitro assays as a rapid, cost-efficient means to screen t...
We propose the use of gene expression profiling to complement the chemical characterization currently based on HTS assay data and present a case study relevant to the Endocrine Disruptor Screening Program. We have developed computational methods to identify estrogen receptor &alp...
Tjomsland, Veronica; Ellegård, Rada; Burgener, Adam; Mogk, Kenzie; Che, Karlhans F; Westmacott, Garrett; Hinkula, Jorma; Lifson, Jeffrey D; Larsson, Marie
2013-01-01
Induction of optimal HIV-1-specific T-cell responses, which can contribute to controlling viral infection in vivo, depends on antigen processing and presentation processes occurring in DCs. Opsonization can influence the routing of antigen processing and pathways used for presentation. We studied antigen proteolysis and the role of endocytic receptors in MHC class I (MHCI) and II (MHCII) presentation of antigens derived from HIV-1 in human monocyte-derived immature DCs (IDCs) and mature DCs, comparing free and complement opsonized HIV-1 particles. Opsonization of virions promoted MHCI presentation by DCs, indicating that complement opsonization routes more virions toward the MHCI presentation pathway. Blockade of macrophage mannose receptor (MMR) and β7-integrin enhanced MHCI and MHCII presentation by IDCs and mature DCs, whereas the block of complement receptor 3 decreased MHCI and MHCII presentation. In addition, we found that IDC and MDC proteolytic activities were modulated by HIV-1 exposure; complement-opsonized HIV-1 induced an increased proteasome activity in IDCs. Taken together, these findings indicate that endocytic receptors such as MMR, complement receptor 3, and β7-integrin can promote or disfavor antigen presentation probably by routing HIV-1 into different endosomal compartments with distinct efficiencies for degradation of viral antigens and MHCI and MHCII presentation, and that HIV-1 affects the antigen-processing machinery. PMID:23526630
Wells, Laura A; Guo, Hongbo; Emili, Andrew; Sefton, Michael V
2017-02-01
Polymer beads made of 45% methacrylic acid co methyl methacrylate (MAA beads) promote vascular regenerative responses in contrast to control materials without methacrylic acid (here polymethyl methacrylate beads, PMMA). In vitro and in vivo studies suggest that MAA copolymers induce differences in macrophage phenotype and polarization and inflammatory responses, presumably due to protein adsorption differences between the beads. To explore differences in protein adsorption in an unbiased manner, we used high resolution shotgun mass spectrometry to identify and compare proteins that adsorb from human plasma or serum onto MAA and PMMA beads. From plasma, MAA beads adsorbed many complement proteins, such as C1q, C4-related proteins and the complement inhibitor factor H, while PMMA adsorbed proteins, such as albumin, C3 and apolipoproteins. Because of the differences in complement protein adsorption, follow-up studies focused on using ELISA to assess complement activation. When incubated in serum, MAA beads generated significantly lower levels of soluble C5b9 and C3a/C3a desarg in comparison to PMMA beads, indicating a decrease in complement activation with MAA beads. The differences in adsorbed protein on the two materials likely alter subsequent cell-material interactions that ultimately result in different host responses and local vascularization. Copyright © 2016 Elsevier Ltd. All rights reserved.
Medina, Eva; van Rooijen, Willemien J.; Spaan, András N.; van Kessel, Kok P. M.; Höök, Magnus; Rooijakkers, Suzan H. M.
2013-01-01
Upon contact with human plasma, bacteria are rapidly recognized by the complement system that labels their surface for uptake and clearance by phagocytic cells. Staphylococcus aureus secretes the 16 kD Extracellular fibrinogen binding protein (Efb) that binds two different plasma proteins using separate domains: the Efb N-terminus binds to fibrinogen, while the C-terminus binds complement C3. In this study, we show that Efb blocks phagocytosis of S. aureus by human neutrophils. In vitro, we demonstrate that Efb blocks phagocytosis in plasma and in human whole blood. Using a mouse peritonitis model we show that Efb effectively blocks phagocytosis in vivo, either as a purified protein or when produced endogenously by S. aureus. Mutational analysis revealed that Efb requires both its fibrinogen and complement binding residues for phagocytic escape. Using confocal and transmission electron microscopy we show that Efb attracts fibrinogen to the surface of complement-labeled S. aureus generating a ‘capsule’-like shield. This thick layer of fibrinogen shields both surface-bound C3b and antibodies from recognition by phagocytic receptors. This information is critical for future vaccination attempts, since opsonizing antibodies may not function in the presence of Efb. Altogether we discover that Efb from S. aureus uniquely escapes phagocytosis by forming a bridge between a complement and coagulation protein. PMID:24348255
New Milestones Ahead in Complement-Targeted Therapy
Ricklin, Daniel; Lambris, John D.
2017-01-01
The complement system is a powerful effector arm of innate immunity that typically confers protection from microbial intruders and accumulating debris. In many clinical situations, however, the defensive functions of complement can turn against host cells and induce or exacerbate immune, inflammatory, and degenerative conditions. Although the value of inhibiting complement in a therapeutic context has long been recognized, bringing complement-targeted drugs into clinical use has proved challenging. This important milestone was finally reached a decade ago, yet the clinical availability of complement inhibitors has remained limited. Still, the positive long-term experience with complement drugs and their proven effectiveness in various diseases has reinvigorated interest and confidence in this approach. Indeed, a broad variety of clinical candidates that act at almost any level of the complement activation cascade are currently in clinical development, with several of them being evaluated in phase 2 and phase 3 trials. With antibody-related drugs dominating the panel of clinical candidates, the emergence of novel small-molecule, peptide, protein, and oligonucleotide-based inhibitors offers new options for drug targeting and administration. Whereas all the currently approved and many of the proposed indications for complement-targeted inhibitors belong to the rare disease spectrum, these drugs are increasingly being evaluated for more prevalent conditions. Fortunately, the growing experience from preclinical and clinical use of therapeutic complement inhibitors has enabled a more evidence-based assessment of suitable targets and rewarding indications as well as related technical and safety considerations. This review highlights recent concepts and developments in complement-targeted drug discovery, provides an overview of current and emerging treatment options, and discusses the new milestones ahead on the way to the next generation of clinically available complement therapeutics. PMID:27321574
Nepal, Keshav Kumar; Oh, Tae-Jin; Subba, Bimala; Yoo, Jin Cheol; Sohng, Jae Kyung
2009-01-31
Amino acid homology analysis predicted that rbmD, a putative glycosyltransferase from Streptomyces ribosidificus ATCC 21294, has the highest homology with neoD in neomycin biosynthesis. S. fradiae BS1, in which the production of neomycin was abolished, was generated by disruption of the neoD gene in the neomycin producer S. fradiae. The restoration of neomycin by self complementation suggested that there was no polar effect in the mutant. In addition, S. fradiae BS6 was created with complementation by rbmD in S. fradiae BS1, and secondary metabolite analysis by ESI/MS, LC/MS and MS/MS showed the restoration of neomycin production in S. fradiae BS6. These gene inactivation and complementation studies suggested that, like neoD, rbmD functions as a 2-N-acetlyglucosaminyltransferase and demonstrated the potential for the generation of novel aminoglycoside antibiotics using glycosyltransferases in vivo.
NPACT: Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database
Mangal, Manu; Sagar, Parul; Singh, Harinder; Raghava, Gajendra P. S.; Agarwal, Subhash M.
2013-01-01
Plant-derived molecules have been highly valued by biomedical researchers and pharmaceutical companies for developing drugs, as they are thought to be optimized during evolution. Therefore, we have collected and compiled a central resource Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target database (NPACT, http://crdd.osdd.net/raghava/npact/) that gathers the information related to experimentally validated plant-derived natural compounds exhibiting anti-cancerous activity (in vitro and in vivo), to complement the other databases. It currently contains 1574 compound entries, and each record provides information on their structure, manually curated published data on in vitro and in vivo experiments along with reference for users referral, inhibitory values (IC50/ED50/EC50/GI50), properties (physical, elemental and topological), cancer types, cell lines, protein targets, commercial suppliers and drug likeness of compounds. NPACT can easily be browsed or queried using various options, and an online similarity tool has also been made available. Further, to facilitate retrieval of existing data, each record is hyperlinked to similar databases like SuperNatural, Herbal Ingredients’ Targets, Comparative Toxicogenomics Database, PubChem and NCI-60 GI50 data. PMID:23203877
Tavano, Regina; Gabrielli, Luca; Lubian, Elisa; Fedeli, Chiara; Visentin, Silvia; Polverino De Laureto, Patrizia; Arrigoni, Giorgio; Geffner-Smith, Alessandra; Chen, Fangfang; Simberg, Dmitri; Morgese, Giulia; Benetti, Edmondo M; Wu, Linping; Moghimi, Seyed Moein; Mancin, Fabrizio; Papini, Emanuele
2018-05-23
Poly(2-methyl-2-oxazoline) (PMOXA) is an alternative promising polymer to poly(ethylene glycol) (PEG) for design and engineering of macrophage-evading nanoparticles (NPs). Although PMOXA-engineered NPs have shown comparable pharmacokinetics and in vivo performance to PEGylated stealth NPs in the murine model, its interaction with elements of the human innate immune system has not been studied. From a translational angle, we studied the interaction of fully characterized PMOXA-coated vinyltriethoxysilane-derived organically modified silica NPs (PMOXA-coated NPs) of approximately 100 nm in diameter with human complement system, blood leukocytes, and macrophages and compared their performance with PEGylated and uncoated NP counterparts. Through detailed immunological and proteomic profiling, we show that PMOXA-coated NPs extensively trigger complement activation in human sera exclusively through the classical pathway. Complement activation is initiated by the sensing molecule C1q, where C1q binds with high affinity ( K d = 11 ± 1 nM) to NP surfaces independent of immunoglobulin binding. C1q-mediated complement activation accelerates PMOXA opsonization with the third complement protein (C3) through the amplification loop of the alternative pathway. This promoted NP recognition by human blood leukocytes and monocyte-derived macrophages. The macrophage capture of PMOXA-coated NPs correlates with sera donor variability in complement activation and opsonization but not with other major corona proteins, including clusterin and a wide range of apolipoproteins. In contrast to these observations, PMOXA-coated NPs poorly activated the murine complement system and were marginally recognized by mouse macrophages. These studies provide important insights into compatibility of engineered NPs with elements of the human innate immune system for translational steps.
Zhang, Zhifei; Yang, Jing; Wei, Junfei; Yang, Yaping; Chen, Xiaoqin; Zhao, Xi; Gu, Yuan; Cui, Shijuan; Zhu, Xinping
2011-01-01
Background Paramyosin is a thick myofibrillar protein found exclusively in invertebrates. Evidence suggested that paramyosin from helminths serves not only as a structural protein but also as an immunomodulatory agent. We previously reported that recombinant Trichinella spiralis paramyosin (Ts-Pmy) elicited a partial protective immunity in mice. In this study, the ability of Ts-Pmy to bind host complement components and protect against host complement attack was investigated. Methods and Findings In this study, the transcriptional and protein expression levels of Ts-Pmy were determined in T. spiralis newborn larva (NBL), muscle larva (ML) and adult worm developmental stages by RT-PCR and western blot analysis. Expression of Ts-Pmy at the outer membrane was observed in NBL and adult worms using immunogold electron microscopy and immunofluorescence staining. Functional analysis revealed that recombinant Ts-Pmy(rTs-Pmy) strongly bound to complement components C8 and C9 and inhibited the polymerization of C9 during the formation of the membrane attack complex (MAC). rTs-Pmy also inhibited the lysis of rabbit erythrocytes (ER) elicited by an alternative pathway-activated complement from guinea pig serum. Inhibition of native Ts-Pmy on the surface of NBL with a specific antiserum reduced larvae viability when under the attack of complement in vitro. In vivo passive transfer of anti-Ts-Pmy antiserum and complement-treated larvae into mice also significantly reduced the number of larvae that developed to ML. Conclusion These studies suggest that the outer membrane form of T. spiralis paramyosin plays an important role in the evasion of the host complement attack. PMID:21750743
Tüzün, Erdem; Scott, Benjamin G; Goluszko, Elzbieta; Higgs, Stephen; Christadoss, Premkumar
2003-10-01
Abs to acetylcholine receptor (AChR) and complement are the major constituents of pathogenic events causing neuromuscular junction destruction in both myasthenia gravis (MG) and experimental autoimmune MG (EAMG). To analyze the differential roles of the classical vs alternative complement pathways in EAMG induction, we immunized C3(-/-), C4(-/-), C3(+/-), and C4(+/-) mice and their control littermates (C3(+/+) and C4(+/+) mice) with AChR in CFA. C3(-/-) and C4(-/-) mice were resistant to disease, whereas mice heterozygous for C3 or C4 displayed intermediate susceptibility. Although C3(-/-) and C4(-/-) mice had anti-AChR Abs in their sera, anti-AChR IgG production by C3(-/-) mice was significantly suppressed. Both C3(-/-) and C4(-/-) mice had reduced levels of B cells and increased expression of apoptotis inducers (Fas ligand, CD69) and apoptotic cells in lymph nodes. Immunofluorescence studies showed that the neuromuscular junction of C3(-/-) and C4(-/-) mice lacked C3 or membrane attack complex deposits, despite having IgG deposits, thus providing in vivo evidence for the incapacity of anti-AChR IgGs to induce full-blown EAMG without the aid of complements. The data provide the first direct genetic evidence for the classical complement pathway in the induction of EAMG induced by AChR immunization. Accordingly, severe MG and other Ab- and complement-mediated diseases could be effectively treated by inhibiting C4, thus leaving the alternative complement pathway intact.
Immunogenicity of allogeneic mesenchymal stem cells
Schu, Sabine; Nosov, Mikhail; O'Flynn, Lisa; Shaw, Georgina; Treacy, Oliver; Barry, Frank; Murphy, Mary; O'Brien, Timothy; Ritter, Thomas
2012-01-01
Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule-1 (VCAM-1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen-specific cytotoxic T cells in vitro. However, after treatment with IFN-γ and IL-1β, MSCs upregulated MHCI, MHCII and VCAM-1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4+ T cells from recipient rats. However, intravenous injection of allo-MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement-mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo-MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo-MSCs. Interestingly, no increased immunogenicity of IFN-γ stimulated allo-MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement-activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications. PMID:22151542
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Xiaofei; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 310036; Deng, Ping
Double-stranded RNA (dsRNA) is an important type of RNA that plays essential roles in diverse cellular processes in eukaryotic organisms and a hallmark in infections by positive-sense RNA viruses. Currently, no in vivo technology has been developed for visualizing dsRNA in living cells. Here, we report a dsRNA binding-dependent fluorescence complementation (dRBFC) assay that can be used to efficiently monitor dsRNA distribution and dynamics in vivo. The system consists of two dsRNA-binding proteins, which are fused to the N- and C-terminal halves of the yellow fluorescent protein (YFP). Binding of the two fusion proteins to a common dsRNA brings themore » split YFP halves in close proximity, leading to the reconstitution of the fluorescence-competent structure and restoration of fluorescence. Using this technique, we were able to visualize the distribution and trafficking of the replicative RNA intermediates of positive-sense RNA viruses in living cells. - Highlights: • A live-cell imaging system was developed for visualizing dsRNA in vivo. • It uses dsRNA binding proteins fused with two halves of a fluorescent protein. • Binding to a common dsRNA enables the reporter to become fluorescent. • The system can efficiently monitor viral RNA replication in living cells.« less
Correction of xeroderma pigmentosum repair defect by basal transcription factor BTF2 (TFIIH).
van Vuuren, A J; Vermeulen, W; Ma, L; Weeda, G; Appeldoorn, E; Jaspers, N G; van der Eb, A J; Bootsma, D; Hoeijmakers, J H; Humbert, S
1994-01-01
ERCC3 was initially identified as a gene correcting the nucleotide excision repair (NER) defect of xeroderma pigmentosum complementation group B (XP-B). The recent finding that its gene product is identical to the p89 subunit of basal transcription factor BTF2(TFIIH), opened the possibility that it is not directly involved in NER but that it regulates the transcription of one or more NER genes. Using an in vivo microinjection repair assay and an in vitro NER system based on cell-free extracts we demonstrate that ERCC3 in BTF2 is directly implicated in excision repair. Antibody depletion experiments support the idea that the p62 BTF2 subunit and perhaps the entire transcription factor function in NER. Microinjection experiments suggest that exogenous ERCC3 can exchange with ERCC3 subunits in the complex. Expression of a dominant negative K436-->R ERCC3 mutant, expected to have lost all helicase activity, completely abrogates NER and transcription and concomitantly induces a dramatic chromatin collapse. These findings establish the role of ERCC3 and probably the entire BTF2 complex in transcription in vivo which was hitherto only demonstrated in vitro. The results strongly suggest that transcription itself is a critical component for maintenance of chromatin structure. The remarkable dual role of ERCC3 in NER and transcription provides a clue in understanding the complex clinical features of some inherited repair syndromes. Images PMID:8157004
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K; Liu, Peter; Pantua, Homer; Abbas, Alexander R; Nickerson, Nicholas N; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min; Whitfield, Chris; Kapadia, Sharookh B
2017-05-23
Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro , the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for "group 2" capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. IMPORTANCE Uropathogenic E. coli (UPEC) isolates represent a significant cause of nosocomial urinary tract and bloodstream infections. Many UPEC isolates are resistant to serum killing. Here, we show that a major cell-envelope lipoprotein (murein lipoprotein) is required for serum resistance in vitro and for complement-mediated bacterial clearance in vivo This is mediated, in part, through a novel mechanism by which murein lipoprotein affects the proper assembly of a key component of the machinery involved in production of "group 2" capsules. The absence of murein lipoprotein results in impaired production of the capsule layer, a known participant in complement resistance. These results demonstrate an important role for murein lipoprotein in complex interactions between different outer membrane biogenesis pathways and further highlight the importance of lipoprotein assembly and transport in bacterial pathogenesis. Copyright © 2017 Diao et al.
The lectin pathway in renal disease: old concept and new insights.
Gaya da Costa, Mariana; Poppelaars, Felix; Berger, Stefan P; Daha, Mohamed R; Seelen, Marc A
2018-04-26
The complement system is composed of a network of at least 40 proteins, which significantly contributes to health and disease. The lectin pathway (LP) is one of three pathways that can activate the complement system. Next to protection of the host against pathogens, the LP has been shown to play a crucial role in multiple renal diseases as well as during renal replacement therapy. Therefore, several complement-targeted drugs are currently being explored in clinical trials. Among these complement inhibitors, specific LP inhibitors are also being tested in renal abnormalities such as in immunoglobulin A nephropathy and lupus nephritis. Using various in vitro models, Yaseen et al. (Lectin pathway effector enzyme mannan-binding lectin-associated serine protease-2 can activate native complement component 3 (C3) in absence of C4 and/or C2. FASEB J 2017; 31: 2210-2219) showed that Mannan-associated serine protease2 can directly activate C3 thereby bypassing C2 and C4 in the activation of the LP. These new findings broaden our understanding of the mechanisms of complement activation and could potentially impact our strategies to inhibit the LP in renal diseases. In support of these findings, we present data of human renal biopsies, demonstrating the occurrence of the LP bypass mechanism in vivo. In conclusion, this review provides a detailed overview of the LP and clarifies the recently described bypass mechanism and its relevance. Finally, we speculate on the role of the C4 bypass mechanism in other renal diseases.
The Manuscript That We Finished: Structural Separation Reduces the Cost of Complement Coercion
ERIC Educational Resources Information Center
Lowder, Matthew W.; Gordon, Peter C.
2015-01-01
Two eye-tracking experiments examined the effects of sentence structure on the processing of complement coercion, in which an event-selecting verb combines with a complement that represents an entity (e.g., "began the memo"). Previous work has demonstrated that these expressions impose a processing cost, which has been attributed to the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Baoqiang; Berti, Romain; Abran, Maxime
2014-05-15
Ultrasound imaging, having the advantages of low-cost and non-invasiveness over MRI and X-ray CT, was reported by several studies as an adequate complement to fluorescence molecular tomography with the perspective of improving localization and quantification of fluorescent molecular targets in vivo. Based on the previous work, an improved dual-modality Fluorescence-Ultrasound imaging system was developed and then validated in imaging study with preclinical tumor model. Ultrasound imaging and a profilometer were used to obtain the anatomical prior information and 3D surface, separately, to precisely extract the tissue boundary on both sides of sample in order to achieve improved fluorescence reconstruction. Furthermore,more » a pattern-based fluorescence reconstruction on the detection side was incorporated to enable dimensional reduction of the dataset while keeping the useful information for reconstruction. Due to its putative role in the current imaging geometry and the chosen reconstruction technique, we developed an attenuation compensated Born-normalization method to reduce the attenuation effects and cancel off experimental factors when collecting quantitative fluorescence datasets over large area. Results of both simulation and phantom study demonstrated that fluorescent targets could be recovered accurately and quantitatively using this reconstruction mechanism. Finally, in vivo experiment confirms that the imaging system associated with the proposed image reconstruction approach was able to extract both functional and anatomical information, thereby improving quantification and localization of molecular targets.« less
Zhou, Jingling; Feng, Gaoqian; Beeson, James; Hogarth, P Mark; Rogerson, Stephen J; Yan, Yan; Jaworowski, Anthony
2015-07-07
With more than 600,000 deaths from malaria, mainly of children under five years old and caused by infection with Plasmodium falciparum, comes an urgent need for an effective anti-malaria vaccine. Limited details on the mechanisms of protective immunity are a barrier to vaccine development. Antibodies play an important role in immunity to malaria and monocytes are key effectors in antibody-mediated protection by phagocytosing antibody-opsonised infected erythrocytes (IE). Eliciting antibodies that enhance phagocytosis of IE is therefore an important potential component of an effective vaccine, requiring robust assays to determine the ability of elicited antibodies to stimulate this in vivo. The mechanisms by which monocytes ingest IE and the nature of the monocytes which do so are unknown. Purified trophozoite-stage P. falciparum IE were stained with ethidium bromide, opsonised with anti-erythrocyte antibodies and incubated with fresh whole blood. Phagocytosis of IE and TNF production by individual monocyte subsets was measured by flow cytometry. Ingestion of IE was confirmed by imaging flow cytometry. CD14(hi)CD16+ monocytes phagocytosed antibody-opsonised IE and produced TNF more efficiently than CD14(hi)CD16- and CD14(lo)CD16+ monocytes. Blocking experiments showed that Fcγ receptor IIIa (CD16) but not Fcγ receptor IIa (CD32a) or Fcγ receptor I (CD64) was necessary for phagocytosis. CD14(hi)CD16+ monocytes ingested antibody-opsonised IE when peripheral blood mononuclear cells were reconstituted with autologous serum but not heat-inactivated autologous serum. Antibody-opsonised IE were rapidly opsonised with complement component C3 in serum (t1/2 = 2-3 minutes) and phagocytosis of antibody-opsonised IE was inhibited in a dose-dependent manner by an inhibitor of C3 activation, compstatin. Compared to other monocyte subsets, CD14(hi)CD16+ monocytes expressed the highest levels of complement receptor 4 (CD11c) and activated complement receptor 3 (CD11b) subunits. We show a special role for CD14(hi)CD16+ monocytes in phagocytosing opsonised P. falciparum IE and production of TNF. While ingestion was mediated by Fcγ receptor IIIa, this receptor was not sufficient to allow phagocytosis; despite opsonisation with antibody, phagocytosis of IE also required complement opsonisation. Assays which measure the ability of vaccines to elicit a protective antibody response to P. falciparum should consider their ability to promote phagocytosis and fix complement.
ERIC Educational Resources Information Center
Hyndman, Brendon; Mahony, Linda; Te Ava, Aue; Smith, Sue; Nutton, Georgie
2017-01-01
This paper unearths how primary school children experience and can complement the Australian HPE curriculum within three unique school ground equipment scenarios that include an "empty", "loose parts" and a "traditional" school ground context. Using direct observation, 490 scans were undertaken of the school grounds…
Regulated Eukaryotic DNA Replication Origin Firing with Purified Proteins
Yeeles, Joseph T.P.; Deegan, Tom D.; Janska, Agnieszka; Early, Anne; Diffley, John F. X.
2016-01-01
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric MCM complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45, MCM, GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4 dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication. PMID:25739503
Regulated eukaryotic DNA replication origin firing with purified proteins.
Yeeles, Joseph T P; Deegan, Tom D; Janska, Agnieszka; Early, Anne; Diffley, John F X
2015-03-26
Eukaryotic cells initiate DNA replication from multiple origins, which must be tightly regulated to promote precise genome duplication in every cell cycle. To accomplish this, initiation is partitioned into two temporally discrete steps: a double hexameric minichromosome maintenance (MCM) complex is first loaded at replication origins during G1 phase, and then converted to the active CMG (Cdc45-MCM-GINS) helicase during S phase. Here we describe the reconstitution of budding yeast DNA replication initiation with 16 purified replication factors, made from 42 polypeptides. Origin-dependent initiation recapitulates regulation seen in vivo. Cyclin-dependent kinase (CDK) inhibits MCM loading by phosphorylating the origin recognition complex (ORC) and promotes CMG formation by phosphorylating Sld2 and Sld3. Dbf4-dependent kinase (DDK) promotes replication by phosphorylating MCM, and can act either before or after CDK. These experiments define the minimum complement of proteins, protein kinase substrates and co-factors required for regulated eukaryotic DNA replication.
High-throughput in vitro assays offer a rapid, cost-efficient means to screen thousands of chemicals across hundreds of pathway-based toxicity endpoints. However, one main concern involved with the use of in vitro assays is the erroneous omission of chemicals that are inactive un...
Smith, Wyatt C.; Xiang, Longkuan; Shen, Ben
2000-01-01
The macrotetrolides are a family of cyclic polyethers derived from tetramerization, in a stereospecific fashion, of the enantiomeric nonactic acid (NA) and its homologs. Isotope labeling experiments established that NA is of polyketide origin, and biochemical investigations demonstrated that 2-methyl-6,8-dihydroxynon-2E-enoic acid can be converted into NA by a cell-free preparation from Streptomyces lividans that expresses nonS. These results lead to the hypothesis that macrotetrolide biosynthesis involves a pair of enantiospecific polyketide pathways. In this work, a 55-kb contiguous DNA region was cloned from Streptomyces griseus DSM40695, a 6.3-kb fragment of which was sequenced to reveal five open reading frames, including the previously reported nonR and nonS genes. Inactivation of nonS in vivo completely abolished macrotetrolide production. Complementation of the nonS mutant by the expression of nonS in trans fully restored its macrotetrolide production ability, with a distribution of individual macrotetrolides similar to that for the wild-type producer. In contrast, fermentation of the nonS mutant in the presence of exogenous (±)-NA resulted in the production of nonactin, monactin, and dinactin but not in the production of trinactin and tetranactin. These results prove the direct involvement of nonS in macrotetrolide biosynthesis. The difference in macrotetrolide production between in vivo complementation of the nonS mutant by the plasmid-borne nonS gene and fermentation of the nonS mutant in the presence of exogenously added (±)-NA suggests that NonS catalyzes the formation of (−)-NA and its homologs, supporting the existence of a pair of enantiospecific polyketide pathways for macrotetrolide biosynthesis in S. griseus. The latter should provide a model that can be used to study the mechanism by which polyketide synthase controls stereochemistry during polyketide biosynthesis. PMID:10858335
Eye-Tracking and Corpus-Based Analyses of Syntax-Semantics Interactions in Complement Coercion
Lowder, Matthew W.; Gordon, Peter C.
2016-01-01
Previous work has shown that the difficulty associated with processing complex semantic expressions is reduced when the critical constituents appear in separate clauses as opposed to when they appear together in the same clause. We investigated this effect further, focusing in particular on complement coercion, in which an event-selecting verb (e.g., began) combines with a complement that represents an entity (e.g., began the memo). Experiment 1 compared reading times for coercion versus control expressions when the critical verb and complement appeared together in a subject-extracted relative clause (SRC) (e.g., The secretary that began/wrote the memo) compared to when they appeared together in a simple sentence. Readers spent more time processing coercion expressions than control expressions, replicating the typical coercion cost. In addition, readers spent less time processing the verb and complement in SRCs than in simple sentences; however, the magnitude of the coercion cost did not depend on sentence structure. In contrast, Experiment 2 showed that the coercion cost was reduced when the complement appeared as the head of an object-extracted relative clause (ORC) (e.g., The memo that the secretary began/wrote) compared to when the constituents appeared together in an SRC. Consistent with the eye-tracking results of Experiment 2, a corpus analysis showed that expressions requiring complement coercion are more frequent when the constituents are separated by the clause boundary of an ORC compared to when they are embedded together within an SRC. The results provide important information about the types of structural configurations that contribute to reduced difficulty with complex semantic expressions, as well as how these processing patterns are reflected in naturally occurring language. PMID:28529960
A novel factor H-Fc chimeric immunotherapeutic molecule against Neisseria gonorrhoeae
Shaughnessy, Jutamas; Gulati, Sunita; Agarwal, Sarika; Unemo, Magnus; Ohnishi, Makoto; Su, Xia-Hong; Monks, Brian G.; Visintin, Alberto; Madico, Guillermo; Lewis, Lisa A.; Golenbock, Douglas T.; Reed, George W.; Rice, Peter A.; Ram, Sanjay
2015-01-01
Neisseria gonorrhoeae (Ng), the causative agent of the sexually transmitted infection gonorrhea, has developed resistance to almost every conventional antibiotic. There is an urgent need to develop novel therapies against gonorrhea. Many pathogens, including Ng, bind the complement inhibitor factor H (FH) to evade complement-dependent killing. Sialylation of gonococcal lipooligosaccharide, as occurs in vivo, augments binding of human FH through its domains 18-20 (FH18-20). We explored the utility of fusing FH18-20 with IgG Fc (FH18-20/Fc) to create a novel anti-infective immunotherapeutic. FH18-20 also binds to select host glycosaminoglycans to limit unwanted complement activation on host cells. To identify mutation(s) in FH18-20 that eliminated complement activation on host cells, yet maintained binding to Ng, we created four mutations in domains 19 or 20 described in atypical hemolytic uremic syndrome that prevented binding of mutated fH to human erythrocytes. One of the mutant proteins (D to G at position 1119 in domain 19; FHD1119G/Fc) facilitated complement-dependent killing of gonococci similar to unmodified FH18-20/Fc, but unlike FH18-20/Fc, did not lyse human erythrocytes. FHD1119G/Fc bound to all (100%) of 15 sialylated clinical Ng isolates tested (including three contemporary ceftriaxone-resistant strains), mediated complement-dependent killing of 10/15 (67%) strains and enhanced C3 deposition (≥10-fold above baseline levels) on each of the five isolates not directly killed by complement. FHD1119G/Fc facilitated opsonophagocytic killing of a serum-resistant strain by human polymorphonuclear neutrophils. FHD1119G/Fc administered intravaginally significantly reduced the duration and burden of gonococcal infection in the mouse vaginal colonization model. FHD1119G/Fc represents a novel immunotherapeutic against multidrug-resistant Ng. PMID:26773149
A local complement response by RPE causes early-stage macular degeneration
Fernandez-Godino, Rosario; Garland, Donita L.; Pierce, Eric A.
2015-01-01
Inherited and age-related macular degenerations (AMDs) are important causes of vision loss. An early hallmark of these disorders is the formation of sub-retinal pigment epithelium (RPE) basal deposits. A role for the complement system in MDs was suggested by genetic association studies, but direct functional connections between alterations in the complement system and the pathogenesis of MD remain to be defined. We used primary RPE cells from a mouse model of inherited MD due to a p.R345W mutation in EGF-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to investigate the role of the RPE in early MD pathogenesis. Efemp1R345W RPE cells recapitulate the basal deposit formation observed in vivo by producing sub-RPE deposits in vitro. The deposits share features with basal deposits, and their formation was mediated by EFEMP1R345W or complement component 3a (C3a), but not by complement component 5a (C5a). Increased activation of complement appears to occur in response to an abnormal extracellular matrix (ECM), generated by the mutant EFEMP1R345W protein and reduced ECM turnover due to inhibition of matrix metalloproteinase 2 by EFEMP1R345W and C3a. Increased production of C3a also stimulated the release of cytokines such as interleukin (IL)-6 and IL-1B, which appear to have a role in deposit formation, albeit downstream of C3a. These studies provide the first direct indication that complement components produced locally by the RPE are involved in the formation of basal deposits. Furthermore, these results suggest that C3a generated by RPE is a potential therapeutic target for the treatment of EFEMP1-associated MD as well as AMD. PMID:26199322
Reglinski, Mark; Calay, Damien; Siggins, Matthew K.; Mason, Justin C.; Botto, Marina; Sriskandan, Shiranee
2017-01-01
The complement cascade is crucial for clearance and control of invading pathogens, and as such is a key target for pathogen mediated host modulation. C3 is the central molecule of the complement cascade, and plays a vital role in opsonization of bacteria and recruitment of neutrophils to the site of infection. Streptococcal species have evolved multiple mechanisms to disrupt complement-mediated innate immunity, among which ScpA (C5a peptidase), a C5a inactivating enzyme, is widely conserved. Here we demonstrate for the first time that pyogenic streptococcal species are capable of cleaving C3, and identify C3 and C3a as novel substrates for the streptococcal ScpA, which are functionally inactivated as a result of cleavage 7 amino acids upstream of the natural C3 convertase. Cleavage of C3a by ScpA resulted in disruption of human neutrophil activation, phagocytosis and chemotaxis, while cleavage of C3 generated abnormally-sized C3a and C3b moieties with impaired function, in particular reducing C3 deposition on the bacterial surface. Despite clear effects on human complement, expression of ScpA reduced clearance of group A streptococci in vivo in wildtype and C5 deficient mice, and promoted systemic bacterial dissemination in mice that lacked both C3 and C5, suggesting an additional complement-independent role for ScpA in streptococcal pathogenesis. ScpA was shown to mediate streptococcal adhesion to both human epithelial and endothelial cells, consistent with a role in promoting bacterial invasion within the host. Taken together, these data show that ScpA is a multi-functional virulence factor with both complement-dependent and independent roles in streptococcal pathogenesis. PMID:28806402
Effects of block copolymer properties on nanocarrier protection from in vivo clearance
D’Addio, Suzanne M.; Saad, Walid; Ansell, Steven M.; Squiers, John J.; Adamson, Douglas; Herrera-Alonso, Margarita; Wohl, Adam R.; Hoye, Thomas R.; Macosko, Christopher W.; Mayer, Lawrence D.; Vauthier, Christine; Prud’homme, Robert K.
2012-01-01
Drug nanocarrier clearance by the immune system must be minimized to achieve targeted delivery to pathological tissues. There is considerable interest in finding in vitro tests that can predict in vivo clearance outcomes. In this work, we produce nanocarriers with dense PEG layers resulting from block copolymer-directed assembly during rapid precipitation. Nanocarriers are formed using block copolymers with hydrophobic blocks of polystyrene (PS), poly-ε-caprolactone (PCL), poly-D,L-lactide (PLA), or poly-lactide-co-glycolide (PLGA), and hydrophilic blocks of polyethylene glycol (PEG) with molecular weights from 1.5 kg/mol to 9 kg/mol. Nanocarriers with paclitaxel prodrugs are evaluated in vivo in Foxn1nu mice to determine relative rates of clearance. The amount of nanocarrier in circulation after 4 h varies from 10% to 85% of initial dose, depending on the block copolymer. In vitro complement activation assays are conducted in an effort to correlate the protection of the nanocarrier surface from complement binding and activation and in vivo circulation. Guidelines for optimizing block copolymer structure to maximize circulation of nanocarriers formed by rapid precipitation and directed assembly are proposed, relating to the relative size of the hydrophilic and hydrophobic block, the hydrophobicity of the anchoring block, the absolute size of the PEG block, and polymer crystallinity. The in vitro results distinguish between the poorly circulating PEG5k-PCL9k and the better circulating nanocarriers, but could not rank the better circulating nanocarriers in order of circulation time. Analysis of PEG surface packing on monodisperse 200 nm latex spheres indicates that the sizes of the hydrophobic PCL, PS, and PLA blocks are correlated with the PEG blob size, and possibly the clearance from circulation. Suggestions for next step in vitro measurements are made. PMID:22732478
Herrmann, Johannes B.; Muenstermann, Marcel; Strobel, Lea; Schubert-Unkmeir, Alexandra; Woodruff, Trent M.; Klos, Andreas
2018-01-01
ABSTRACT Sepsis caused by Neisseria meningitidis (meningococcus) is a rapidly progressing, life-threatening disease. Because its initial symptoms are rather unspecific, medical attention is often sought too late, i.e., when the systemic inflammatory response is already unleashed. This in turn limits the success of antibiotic treatment. The complement system is generally accepted as the most important innate immune determinant against invasive meningococcal disease since it protects the host through the bactericidal membrane attack complex. However, complement activation concomitantly liberates the C5a peptide, and it remains unclear whether this potent anaphylatoxin contributes to protection and/or drives the rapidly progressing immunopathogenesis associated with meningococcal disease. Here, we dissected the specific contribution of C5a receptor 1 (C5aR1), the canonical receptor for C5a, using a mouse model of meningococcal sepsis. Mice lacking C3 or C5 displayed susceptibility that was enhanced by >1,000-fold or 100-fold, respectively, consistent with the contribution of these components to protection. In clear contrast, C5ar1−/− mice resisted invasive meningococcal infection and cleared N. meningitidis more rapidly than wild-type (WT) animals. This favorable outcome stemmed from an ameliorated inflammatory cytokine response to N. meningitidis in C5ar1−/− mice in both in vivo and ex vivo whole-blood infections. In addition, inhibition of C5aR1 signaling without interference with the complement bactericidal activity reduced the inflammatory response also in human whole blood. Enticingly, pharmacologic C5aR1 blockade enhanced mouse survival and lowered meningococcal burden even when the treatment was administered after sepsis induction. Together, our findings demonstrate that C5aR1 drives the pathophysiology associated with meningococcal sepsis and provides a promising target for adjunctive therapy. PMID:29362231
Plested, Joyce S; Welsch, Jo Anne; Granoff, Dan M
2009-06-01
The binding of complement factor H (fH) to meningococci was recently found to be specific for human fH. Therefore, passive protective antibody activity measured in animal models of meningococcal bacteremia may overestimate protection in humans, since in the absence of bound fH, complement activation is not downregulated. We developed an ex vivo model of meningococcal bacteremia using nonimmune human blood to measure the passive protective activity of stored sera from 36 adults who had been immunized with an investigational meningococcal multicomponent recombinant protein vaccine. Before immunization, human complement-mediated serum bactericidal activity (SBA) titers of > or = 1:4 against group B strains H44/76, NZ98/254, and S3032 were present in 19, 11, and 8% of subjects, respectively; these proportions increased to 97, 22, and 36%, respectively, 1 month after dose 3 (P < 0.01 for H44/76 and S3032). Against the two SBA-resistant strains, NZ98/254 and S3032, passive protective titers of > or = 1:4 were present in 11 and 42% of sera before immunization, respectively, and these proportions increased to 61 and 94% after immunization (P < 0.001 for each strain). Most of the sera with SBA titers of <1:4 and passive protective activity showed a level of killing in the whole-blood assay (>1 to 2 log(10) decreases in CFU/ml during a 90-min incubation) similar to that of sera with SBA titers of > or = 1:4. In conclusion, passive protective activity was 2.6- to 2.8-fold more frequent than SBA after immunization. The ability of SBA-negative sera to kill Neisseria meningitidis in human blood where fH is bound to the bacteria provides further evidence that SBA titers of > or = 1:4 measured with human complement may underestimate meningococcal immunity.
Falcone, D L; Tabita, F R
1991-01-01
A Rhodobacter sphaeroides ribulose 1,5-bisphosphate carboxylase-oxygenase (RubisCO) deletion strain was constructed that was complemented by plasmids containing either the form I or form II CO2 fixation gene cluster. This strain was also complemented by genes encoding foreign RubisCO enzymes expressed from a Rhodospirillum rubrum RubisCO promoter. In R. sphaeroides, the R. rubrum promoter was regulated, resulting in variable levels of disparate RubisCO molecules under different growth conditions. Photosynthetic growth of the R. sphaeroides deletion strain complemented with cyanobacterial RubisCO revealed physiological properties reflective of the unique cellular environment of the cyanobacterial enzyme. The R. sphaeroides RubisCO deletion strain and R. rubrum promoter system may be used to assess the properties of mutagenized proteins in vivo, as well as provide a potential means to select for altered RubisCO molecules after random mutagenesis of entire genes or gene regions encoding RubisCO enzymes. Images PMID:1900508
Toropainen, Maija; Saarinen, Leena; Vidarsson, Gestur; Käyhty, Helena
2006-05-01
The relative contributions of antibody-induced complement-mediated bacterial lysis and antibody/complement-mediated phagocytosis to host immunity against meningococcal infections are currently unclear. Further, the in vivo effector functions of antibodies may vary depending on their specificity and Fc heavy-chain isotype. In this study, a mouse immunoglobulin G2a (mIgG2a) monoclonal antibody (MN12H2) to meningococcal outer membrane protein PorA (P1.16), its human IgG subclass derivatives (hIgG1 to hIgG4), and an mIgG2a monoclonal antibody (Nmb735) to serogroup B capsular polysaccharide (B-PS) were evaluated for passive protection against meningococcal serogroup B strain 44/76-SL (B:15:P1.7,16) in an infant rat infection model. Complement component C6-deficient (PVG/c-) rats were used to assess the importance of complement-mediated bacterial lysis for protection. The PorA-specific parental mIgG2a and the hIgG1 to hIgG3 derivatives all induced efficient bactericidal activity in vitro in the presence of human or infant rat complement and augmented bacterial clearance in complement-sufficient HsdBrlHan:WIST rats, while the hIgG4 was unable to do so. In C6-deficient PVG/c- rats, lacking complement-mediated bacterial lysis, the augmentation of bacterial clearance by PorA-specific mIgG2a and hIgG1 antibodies was impaired compared to that in the syngeneic complement-sufficient PVG/c+ rat strain. This was in contrast to the case for B-PS-specific mIgG2a, which conferred similar protective activity in both rat strains. These data suggest that while anti-B-PS antibody can provide protection in the infant rats without membrane attack complex formation, the protection afforded by anti-PorA antibody is more dependent on the activation of the whole complement pathway and subsequent bacterial lysis.
Cap, Andrew P; Pidcoke, Heather F; Keil, Shawn D; Staples, Hilary M; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A; Frazer-Abel, Ashley; Taylor, Audra L; Gonzales, Richard; Patterson, Jean L; Goodrich, Raymond P
2016-03-01
Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called "convalescent plasma," is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV+RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV+RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of Ebola virus disease (EVD). Four in vitro experiments were conducted to evaluate effects of UV+RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum, and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1 to 3 were 4.21 log GFP units/mL, 4.96 log infectious units/mL, and 4.23 log plaque-forming units/mL. Conditions tested in the first three experiments included the following: 1-EBOV-GFP plus UV+RB; 2-EBOV-GFP plus RB only; 3-EBOV-GFP plus UV only; 4-EBOV-GFP without RB or UV; 5-virus-free control plus UV only; and 6-virus-free control without RB or UV. UV+RB reduced EBOV titers to nondetectable levels in both nonhuman primate serum (≥2.8- to 3.2-log reduction) and human whole blood (≥3.0-log reduction) without decreasing protective antibody titers in human plasma. Our in vitro results demonstrate that the UV+RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV+RB can improve convalescent blood product safety is indicated. © 2016 AABB.
Cap, Andrew P.; Pidcoke, Heather F.; Keil, Shawn D.; Staples, Hilary M.; Anantpadma, Manu; Carrion, Ricardo; Davey, Robert A.; Frazer-Abel, Ashley; Taylor, Audra L.; Gonzales, Richard; Patterson, Jean L.; Goodrich, Raymond P.
2018-01-01
BACKGROUND Transfusion of plasma from recovered patients after Ebolavirus (EBOV) infection, typically called ‘convalescent plasma,’ is an effective treatment for active disease available in endemic areas, but carries the risk of introducing other pathogens, including other strains of EBOV. A pathogen reduction technology using ultraviolet light and riboflavin (UV + RB) is effective against multiple enveloped, negative-sense, single-stranded RNA viruses that are similar in structure to EBOV. We hypothesized that UV + RB is effective against EBOV in blood products without activating complement or reducing protective immunoglobulin titers that are important for the treatment of ebolavirus disease (EVD). STUDY DESIGN AND METHODS Four in vitro experiments were conducted to evaluate effects of UV + RB on green fluorescent protein EBOV (EBOV-GFP), wild-type EBOV in serum and whole blood, respectively, and on immunoglobulins and complement in plasma. Initial titers for Experiments 1–3 were: 4.21 log10 GFP units/mL, 4.96 log10 infectious units per mL, and 4.23 log10 plaque forming units per mL (PFU/mL). Conditions tested in the first three experiments included: 1. EBOV-GFP + UV + RB; 2. EBOV-GFP + RB only; 3 EBOV-GFP + UV only; 4. EBOV-GFP without RB or UV; 5. Virus-free control + UV only; and 6. Virus-free control without RB or UV. RESULTS UV + RB reduced EBOV titers to non-detectable levels in both non-human primate serum (≥ 2.8 to 3.2 log reduction) and human whole blood (≥ 3.0 log reduction) without decreasing protective antibody titers in human plasma. CONCLUSION Our in vitro results demonstrate that the UV + RB treatment efficiently reduces EBOV titers to below limits of detection in both serum and whole blood. In vivo testing to determine whether UV + RB can improve convalescent blood product safety is indicated. PMID:27001363
Emmens, Reindert W; Wouters, Diana; Zeerleder, Sacha; van Ham, S Marieke; Niessen, Hans W M; Krijnen, Paul A J
2017-04-01
The complement system plays an important role in the inflammatory response subsequent to acute myocardial infarction (AMI). The aim of this study is to create a systematic overview of studies that have investigated therapeutic administration of complement inhibitors in both AMI animal models and human clinical trials. To enable extrapolation of observations from included animal studies toward post-AMI clinical trials, ex vivo studies on isolated hearts and proof-of-principle studies on inhibitor administration before experimental AMI induction were excluded. Positive therapeutic effects in AMI animal models have been described for cobra venom factor, soluble complement receptor 1, C1-esterase inhibitor (C1-inh), FUT-175, C1s-inhibitor, anti-C5, ADC-1004, clusterin, and glycosaminoglycans. Two types of complement inhibitors have been tested in clinical trials, being C1-inh and anti-C5. Pexelizumab (anti-C5) did not result in reproducible beneficial effects for AMI patients. Beneficial effects were reported in AMI patients for C1-inhibitor, albeit in small patient groups. In general, despite the absence of consistent positive effects in clinical trials thus far, the complement system remains a potentially interesting target for therapy in AMI patients. Based on the study designs of previous animal studies and clinical trials, we discuss several issues which require attention in the design of future studies: adjustment of clinical trial design to precise mechanism of action of administered inhibitor, optimizing the duration of therapy, and optimization of time point(s) on which therapeutic effects will be evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas; Baums, Christoph G
2014-06-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3(-/-) mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3(-/-) mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3(-/-) mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3(-/-) blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR(-/-) mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity.
Peterson, Sheri L.; Nguyen, Hal X.; Mendez, Oscar A.
2015-01-01
Traumatic injury to CNS fiber tracts is accompanied by failure of severed axons to regenerate and results in lifelong functional deficits. The inflammatory response to CNS trauma is mediated by a diverse set of cells and proteins with varied, overlapping, and opposing effects on histological and behavioral recovery. Importantly, the contribution of individual inflammatory complement proteins to spinal cord injury (SCI) pathology is not well understood. Although the presence of complement components increases after SCI in association with axons and myelin, it is unknown whether complement proteins affect axon growth or regeneration. We report a novel role for complement C1q in neurite outgrowth in vitro and axon regrowth after SCI. In culture, C1q increased neurite length on myelin. Protein and molecular assays revealed that C1q interacts directly with myelin associated glycoprotein (MAG) in myelin, resulting in reduced activation of growth inhibitory signaling in neurons. In agreement with a C1q-outgrowth-enhancing mechanism in which C1q binding to MAG reduces MAG signaling to neurons, complement C1q blocked both the growth inhibitory and repulsive turning effects of MAG in vitro. Furthermore, C1q KO mice demonstrated increased sensory axon turning within the spinal cord lesion after SCI with peripheral conditioning injury, consistent with C1q-mediated neutralization of MAG. Finally, we present data that extend the role for C1q in axon growth and guidance to include the sprouting patterns of descending corticospinal tract axons into spinal gray matter after dorsal column transection SCI. PMID:25762679
shRNA-Induced Gene Knockdown In Vivo to Investigate Neutrophil Function.
Basit, Abdul; Tang, Wenwen; Wu, Dianqing
2016-01-01
To silence genes in neutrophils efficiently, we exploited the RNA interference and developed an shRNA-based gene knockdown technique. This method involves transfection of mouse bone marrow-derived hematopoietic stem cells with retroviral vector carrying shRNA directed at a specific gene. Transfected stem cells are then transplanted into irradiated wild-type mice. After engraftment of stem cells, the transplanted mice have two sets of circulating neutrophils. One set has a gene of interest knocked down while the other set has full complement of expressed genes. This efficient technique provides a unique way to directly compare the response of neutrophils with a knocked-down gene to that of neutrophils with the full complement of expressed genes in the same environment.
Marta, Cecilia B.; Bansal, Rashmi; Pfeiffer, Steven E.
2009-01-01
Antibodies to myelin oligodendrocyte glycoprotein (MOG) have been implicated in Multiple Sclerosis demyelination through activation of complement and/or macrophage-effector processes. We presented a novel mechanism, whereby MOG on oligodendrocytes, when cross-linked with anti-MOG and secondary antibody resulted in its repartitioning into lipid rafts, and changes in protein phosphorylation and morphology. Here, we show that similar events occur when anti-MOG is cross-linked with Fc receptors (FcRs) present on microglia but not with complement. These results indicate that FcRs are endogenous antigen/antibody cross-linkers in vitro, suggesting that FcRs could be physiologically relevant in vivo and possible targets for therapy in Multiple Sclerosis. PMID:18406472
Complement and Immunotherapy of Breast Cancer
2009-10-01
Task 6) To investigate the ability of CR2Fc to enhance mAb immunotherapy we used an already established metastatic model with EL4 cell line due to a...technical problem with continued stable expression of MUC1 on the EO771 breast cancer cell line in vivo. EL4 cells endogenously express the tumor
Morell, Montse; Espargaro, Alba; Aviles, Francesc Xavier; Ventura, Salvador
2008-01-01
We present a high-throughput approach to study weak protein-protein interactions by coupling bimolecular fluorescent complementation (BiFC) to flow cytometry (FC). In BiFC, the interaction partners (bait and prey) are fused to two rationally designed fragments of a fluorescent protein, which recovers its function upon the binding of the interacting proteins. For weak protein-protein interactions, the detected fluorescence is proportional to the interaction strength, thereby allowing in vivo discrimination between closely related binders with different affinity for the bait protein. FC provides a method for high-speed multiparametric data acquisition and analysis; the assay is simple, thousands of cells can be analyzed in seconds and, if required, selected using fluorescence-activated cell sorting (FACS). The combination of both methods (BiFC-FC) provides a technically straightforward, fast and highly sensitive method to validate weak protein interactions and to screen and identify optimal ligands in biologically synthesized libraries. Once plasmids encoding the protein fusions have been obtained, the evaluation of a specific interaction, the generation of a library and selection of active partners using BiFC-FC can be accomplished in 5 weeks.
Silica-gelatin hybrid sol-gel coatings: a proteomic study with biocompatibility implications.
Araújo-Gomes, N; Romero-Gavilán, F; Lara-Sáez, I; Elortza, F; Azkargorta, M; Iloro, I; Martínez-Ibañez, M; Martín de Llano, J J; Gurruchaga, M; Goñi, I; Suay, J; Sánchez-Pérez, A M
2018-05-21
Osseointegration, including the foreign body reaction to biomaterials, is an immune-modulated, multifactorial, and complex healing process in which various cells and mediators are involved. The buildup of the osseointegration process is immunological and inflammation-driven, often triggered by the adsorption of proteins on the surfaces of the biomaterials and complement activation. New strategies for improving osseointegration use coatings as vehicles for osteogenic biomolecules delivery from implants. Natural polymers, such as gelatin, can mimic collagen I and enhance the biocompatibility of a material. In this experimental study, two different base sol-gel formulations and their combination with gelatin, were applied as coatings on sandblasted, acid-etched titanium (SAE-Ti) substrates and their biological potential as osteogenic biomaterials was tested. We examined the proteins adsorbed onto each surface and their in vitro and in vivo effects. In vitro results showed an improvement in cell proliferation and mineralization in gelatin-containing samples. In vivo testing showed the presence of a looser connective tissue layer in those coatings with substantially more complement activation proteins adsorbed, especially those containing gelatin. Vitronectin and FETUA, proteins associated with mineralization process, were significantly more adsorbed in gelatin coatings. This article is protected by copyright. All rights reserved.
Musoke, A J; Williams, J F
1975-01-01
Passive transfer of immunity to Taenia taeniaeformis was achieved with serum taken 14, 21, 49 and 63 days after infection. The protective capacity of serum collected at 14 and 21 days resided in the 7Sgamma2 immunoglobulins and appeared to be partics the infection progressed the range of chromatographic fractions showing protective capacity was extended to all those containing 7Sgamma2 and 7Sgamma1 immunoglobulins. Fractions enriched for gammaM did not confer protection. Immune serum containing 7Sgamma2a antibodies was able to kill developing parasites after they had left the intestine, and the hepatic postoncospheral forms retained their susceptibility to antibody over the first 5 days of growth. After that time they rapidly became insusceptible to antibody both in vivo and in vitro. Susceptibility to antibody-mediated attack was complement dependent. This appears to be the first time that complement has been demonstrated to play a role in immunity to a helminth infection in vivo. This finding is discussed in relation to the phenomenon of cestode parasite survival in immune animals. Images FIG. 1 PMID:1201860
Environmental adjuvants, apoptosis and the censorship over autoimmunity.
Rovere-Querini, Patrizia; Manfredi, Angelo A; Sabbadini, Maria Grazia
2005-11-01
Alterations during apoptosis lead to the activation of autoreactive T cells and the production of autoantibodies. This article discusses the pathogenic potential of cells dying in vivo, dissecting the role of signals that favor immune responses (adjuvants) and the influence of genetic backgrounds. Diverse factors determine whether apoptosis leads or not to a self-sustaining, clinically apparent autoimmune disease. The in vivo accumulation of uncleared dying cells per se is not sufficient to cause disease. However, dying cells are antigenic and their complementation with immune adjuvants causes lethal diseases in predisposed lupus-prone animals. At least some adjuvant signals directly target the function and the activation state of antigen presenting cells. Several laboratories are aggressively pursuing the molecular identification of endogenous adjuvants. Sodium monourate and the high mobility group B1 protein (HMGB1) are, among those identified so far, well known to rheumatologists. However, even the complementation of apoptotic cells with potent adjuvant signals fail to cause clinical autoimmunity in most strains: autoantibodies generated are transient, do not undergo to epitope/spreading and do not cause disease. Novel tools for drug development will derive from the molecular identification of the constraints that prevent autoimmunity in normal subjects.
Sun, Kaiwen; Zheng, Yuyu; Zhu, Ziqiang
2017-11-20
Protein-protein interactions are fundamental mechanisms for relaying signal transduction in most cellular processes; therefore, identification of novel protein-protein interaction pairs and monitoring protein interaction dynamics are of particular interest for revealing how plants respond to environmental factors and/or developmental signals. A plethora of approaches have been developed to examine protein-protein interactions, either in vitro or in vivo. Among them, the recently established luciferase complementation imaging (LCI) assay is the simplest and fastest method for demonstrating in vivo protein-protein interactions. In this assay, protein A or protein B is fused with the amino-terminal or carboxyl-terminal half of luciferase, respectively. When protein A interacts with protein B, the two halves of luciferase will be reconstituted to form a functional and active luciferase enzyme. Luciferase activity can be recorded with a luminometer or CCD-camera. Compared with other approaches, the LCI assay shows protein-protein interactions both qualitatively and quantitatively. Agrobacterium infiltration in Nicotiana benthamiana leaves is a widely used system for transient protein expression. With the combination of LCI and transient expression, these approaches show that the physical interaction between COP1 and SPA1 was gradually reduced after jasmonate treatment.
Widhalm, Joshua R; Ducluzeau, Anne-Lise; Buller, Nicole E; Elowsky, Christian G; Olsen, Laura J; Basset, Gilles J C
2012-07-01
It is not known how plants cleave the thioester bond of 1,4-dihydroxy-2-naphthoyl-CoA (DHNA-CoA), a necessary step to form the naphthoquinone ring of phylloquinone (vitamin K(1) ). In fact, only recently has the hydrolysis of DHNA-CoA been demonstrated to be enzyme driven in vivo, and the cognate thioesterase characterized in the cyanobacterium Synechocystis. With a few exceptions in certain prokaryotic (Sorangium and Opitutus) and eukaryotic (Cyanidium, Cyanidioschyzon and Paulinella) organisms, orthologs of DHNA-CoA thioesterase are missing outside of the cyanobacterial lineage. In this study, genomic approaches and functional complementation experiments identified two Arabidopsis genes encoding functional DHNA-CoA thioesterases. The deduced plant proteins display low percentages of identity with cyanobacterial DHNA-CoA thioesterases, and do not even share the same catalytic motif. GFP-fusion experiments demonstrated that the Arabidopsis proteins are targeted to peroxisomes, and subcellular fractionations of Arabidopsis leaves confirmed that DHNA-CoA thioesterase activity occurs in this organelle. In vitro assays with various aromatic and aliphatic acyl-CoA thioester substrates showed that the recombinant Arabidopsis enzymes preferentially hydrolyze DHNA-CoA. Cognate T-DNA knock-down lines display reduced DHNA-CoA thioesterase activity and phylloquinone content, establishing in vivo evidence that the Arabidopsis enzymes are involved in phylloquinone biosynthesis. Extraordinarily, structure-based phylogenies coupled to comparative genomics demonstrate that plant DHNA-CoA thioesterases originate from a horizontal gene transfer with a bacterial species of the Lactobacillales order. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Zhou, Haiying; Gunsten, Sean P.; Zhegalova, Natalia G.; Bloch, Sharon; Achilefu, Samuel; Holley, J. Christopher; Schweppe, Daniel; Akers, Walter; Brody, Steven L.; Eades, William; Berezin, Mikhail Y.
2016-01-01
In vivo optical imaging with near-infrared (NIR) probes is an established method of diagnostics in preclinical and clinical studies. However, the specificities of these probes are difficult to validate ex vivo due to the lack of NIR flow cytometry. To address this limitation, we modified a flow cytometer to include an additional NIR channel using a 752 nm laser line. The flow cytometry system was tested using NIR microspheres and cell lines labeled with a combination of visible range and NIR fluorescent dyes. The approach was verified in vivo in mice evaluated for immune response in lungs after intratracheal delivery of the NIR contrast agent. Flow cytometry of cells obtained from the lung bronchoalveolar lavage demonstrated that the NIR dye was taken up by pulmonary macrophages as early as four-hours post-injection. This combination of optical imaging with NIR flow cytometry extends the capability of imaging and enables complementation of in vivo imaging with cell-specific studies. PMID:25808737
Regulation of age-related macular degeneration-like pathology by complement factor H
Toomey, Christopher B.; Kelly, Una; Saban, Daniel R.; Bowes Rickman, Catherine
2015-01-01
Complement factor H (CFH) is a major susceptibility gene for age-related macular degeneration (AMD); however, its impact on AMD pathobiology is unresolved. Here, the role of CFH in the development of AMD pathology in vivo was interrogated by analyzing aged Cfh+/− and Cfh−/− mice fed a high-fat, cholesterol-enriched diet. Strikingly, decreased levels of CFH led to increased sub-retinal pigmented epithelium (sub-RPE) deposit formation, specifically basal laminar deposits, following high-fat diet. Mechanistically, our data show that deposits are due to CFH competition for lipoprotein binding sites in Bruch’s membrane. Interestingly and despite sub-RPE deposit formation occurring in both Cfh+/− and Cfh−/− mice, RPE damage accompanied by loss of vision occurred only in old Cfh+/− mice. We demonstrate that such pathology is a function of excess complement activation in Cfh+/− mice versus complement deficiency in Cfh−/− animals. Due to the CFH-dependent increase in sub-RPE deposit height, we interrogated the potential of CFH as a previously unidentified regulator of Bruch’s membrane lipoprotein binding and show, using human Bruch’s membrane explants, that CFH removes endogenous human lipoproteins in aged donors. Thus, advanced age, high-fat diet, and decreased CFH induce sub-RPE deposit formation leading to complement activation, which contributes to RPE damage and visual function impairment. This new understanding of the complicated interactions of CFH in AMD-like pathology provides an improved foundation for the development of targeted therapies for AMD. PMID:25991857
Andreoli, Maria C C; Dalboni, Maria A; Watanabe, Renato; Manfredi, Silvia R; Canziani, Maria E F; Kallás, Esper G; Sesso, Ricardo C; Draibe, Sergio A; Balakrishnan, Vaidyanathapuram S; Jaber, Bertrand L; Liangos, Orfeas; Cendoroglo, Miguel
2007-12-01
In an in vivo crossover trial, we compared a cellulosic with a synthetic dialyzer with respect to polymorphonuclear cells (PMN) function and apoptosis, cytokine serum levels and synthesis by peripheral blood mononuclear cells (PBMC), and complement activation. Twenty hemodialysis (HD) patients were assigned in alternate order to HD with cellulose acetate (CA) or polysulfone (PS) dialyzer. After 2 weeks, patients were crossed over to the second dialyzer and treated for another 2 weeks. Apoptosis was assessed by flow cytometry in freshly isolated PMN. Phagocytosis and production of peroxide by PMN were studied by flow cytometry in whole blood. PBMC were isolated from blood samples and incubated for 24 h with or without lipopolysaccharide (LPS). There was no impact of dialyzer biocompatibility on PMN apoptosis and function, cytokine synthesis by PBMC or on their serum levels, serum levels of C3a, and terminal complement complex (TCC). Nevertheless, after HD, serum levels of complement correlated negatively with PMN phagocytosis and peroxide production, and positively with PMN apoptosis and cytokine production by PBMC. Although the results did not show a dialyzer advantage on the immunologic parameters, complement activation may have modulated cell function and apoptosis after HD.
USDA-ARS?s Scientific Manuscript database
The Arabidopsis thaliana F-BOX protein COLD TEMPERATURE GERMINATING10 (CTG10) was identified from an activation tagged mutant screen as causing seeds to complete germination faster than wild type at 10°C when its expression is increased (Salaita et al. 2005. J. Exp. Bot. 56: 2059). Our unpublished d...
Seitz, Maren; Beineke, Andreas; Singpiel, Alena; Willenborg, Jörg; Dutow, Pavel; Goethe, Ralph; Valentin-Weigand, Peter; Klos, Andreas
2014-01-01
Virulent Streptococcus suis serotype 2 strains are invasive extracellular bacteria causing septicemia and meningitis in piglets and humans. One objective of this study was to elucidate the function of complement in innate immune defense against S. suis. Experimental infection of wild-type (WT) and C3−/− mice demonstrated for the first time that the complement system protects naive mice against invasive mucosal S. suis infection. S. suis WT but not an unencapsulated mutant caused mortality associated with meningitis and other pathologies in C3−/− mice. The capsule contributed also substantially to colonization of the upper respiratory tract. Experimental infection of C3−/− mice with a suilysin mutant indicated that suilysin expression facilitated an early disease onset and the pathogenesis of meningitis. Flow cytometric analysis revealed C3 antigen deposition on the surface of ca. 40% of S. suis WT bacteria after opsonization with naive WT mouse serum, although to a significantly lower intensity than on the unencapsulated mutant. Ex vivo multiplication in murine WT and C3−/− blood depended on capsule but not suilysin expression. Interestingly, S. suis invasion of inner organs was also detectable in C5aR−/− mice, suggesting that chemotaxis and activation of immune cells via the anaphylatoxin receptor C5aR is, in addition to opsonization, a further important function of the complement system in defense against mucosal S. suis infection. In conclusion, we unequivocally demonstrate here the importance of complement against mucosal S. suis serotype 2 infection and that the capsule of this pathogen is also involved in escape from complement-independent immunity. PMID:24686060
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
The renaissance of complement therapeutics
Ricklin, Daniel; Mastellos, Dimitrios C.; Reis, Edimara S.; Lambris, John D.
2018-01-01
The increasing number of clinical conditions that involve a pathological contribution from the complement system — many of which affect the kidneys — has spurred a regained interest in therapeutic options to modulate this host defence pathway. Molecular insight, technological advances, and the first decade of clinical experience with the complement-specific drug eculizumab, have contributed to a growing confidence in therapeutic complement inhibition. More than 20 candidate drugs that target various stages of the complement cascade are currently being evaluated in clinical trials, and additional agents are in preclinical development. Such diversity is clearly needed in view of the complex and distinct involvement of complement in a wide range of clinical conditions, including rare kidney disorders, transplant rejection and haemodialysis-induced inflammation. The existing drugs cannot be applied to all complement-driven diseases, and each indication has to be assessed individually. Alongside considerations concerning optimal points of intervention and economic factors, patient stratification will become essential to identify the best complement-specific therapy for each individual patient. This Review provides an overview of the therapeutic concepts, targets and candidate drugs, summarizes insights from clinical trials, and reflects on existing challenges for the development of complement therapeutics for kidney diseases and beyond. PMID:29199277
Yap, Ronald; Veliceasa, Dorina; Emmenegger, Urban; Kerbel, Robert S; McKay, Laura M; Henkin, Jack; Volpert, Olga V
2005-09-15
Blocking angiogenesis is a promising approach in cancer therapy. Natural inhibitors of angiogenesis and derivatives induce receptor-mediated signals, which often result in the endothelial cell death. Low-dose chemotherapy, given at short regular intervals with no prolonged breaks (metronomic chemotherapy), also targets angiogenesis by obliterating proliferating endothelial cells and circulating endothelial cell precursors. ABT-510, a peptide derivative of thrombospondin, kills endothelial cell by increasing CD95L, a ligand for the CD95 death receptor. However, CD95 expression itself is unaffected by ABT-510 and limits its efficacy. We found that multiple chemotherapy agents, cyclophosphamide (cytoxan), cisplatin, and docetaxel, induced endothelial CD95 in vitro and in vivo at low doses that failed to kill endothelial cells (cytoxan > cisplatin > docetaxel). Thus, we concluded that some of these agents might complement each other and together block angiogenesis with maximal efficacy. As a proof of principle, we designed an antiangiogenic cocktail combining ABT-510 with cytoxan or cisplatin. Cyclophosphamide and cisplatin synergistically increased in vivo endothelial cell apoptosis and angiosuppression by ABT-510. This synergy required CD95, as it was reversible with the CD95 decoy receptor. In a mouse model, ABT-510 and cytoxan, applied together at low doses, acted in synergy to delay tumor take, to stabilize the growth of established tumors, and to cause a long-term progression delay of PC-3 prostate carcinoma. These antitumor effects were accompanied by major decreases in microvascular density and concomitant increases of the vascular CD95, CD95L, and apoptosis. Thus, our study shows a "complementation" design of an optimal cancer treatment with the antiangiogenic peptide and a metronomic chemotherapy.
Pence, Morgan A; Rooijakkers, Suzan H M; Cogen, Anna L; Cole, Jason N; Hollands, Andrew; Gallo, Richard L; Nizet, Victor
2010-01-01
Streptococcal inhibitor of complement (SIC) is a highly polymorphic extracellular protein and putative virulence factor secreted by M1 and M57 strains of group A Streptococcus (GAS). The sic gene is highly upregulated in invasive M1T1 GAS isolates following selection of mutations in the covR/S regulatory locus in vivo. Previous work has shown that SIC (allelic form 1.01) binds to and inactivates complement C5b67 and human cathelicidin LL-37. We examined the contribution of SIC to innate immune resistance phenotypes of GAS in the intact organism, using (1) targeted deletion of sic in wild-type and animal-passaged (covS mutant) M1T1 GAS harboring the sic 1.84 allele and (2) heterologous expression of sic in M49 GAS, which does not possess the sic genein its genome. We find that M1T1 SIC production is strongly upregulated upon covS mutation but that the sic gene is not required for generation and selection of covS mutants in vivo. SIC 1.84 bound both human and murine cathelicidins and was necessary and sufficient to promote covS mutant M1T1 GAS resistance to LL-37, growth in human whole blood and virulence in a murine model of systemic infection. Finally, the sic knockout mutant M1T1 GAS strain was deficient in growth in human serum and intracellular macrophage survival. We conclude that SIC contributes to M1T1 GAS immune resistance and virulence phenotypes. Copyright © 2010 S. Karger AG, Basel.
Smith, Robin P; Riesenfeld, Samantha J; Holloway, Alisha K; Li, Qiang; Murphy, Karl K; Feliciano, Natalie M; Orecchia, Lorenzo; Oksenberg, Nir; Pollard, Katherine S; Ahituv, Nadav
2013-07-18
Large-scale annotation efforts have improved our ability to coarsely predict regulatory elements throughout vertebrate genomes. However, it is unclear how complex spatiotemporal patterns of gene expression driven by these elements emerge from the activity of short, transcription factor binding sequences. We describe a comprehensive promoter extension assay in which the regulatory potential of all 6 base-pair (bp) sequences was tested in the context of a minimal promoter. To enable this large-scale screen, we developed algorithms that use a reverse-complement aware decomposition of the de Bruijn graph to design a library of DNA oligomers incorporating every 6-bp sequence exactly once. Our library multiplexes all 4,096 unique 6-mers into 184 double-stranded 15-bp oligomers, which is sufficiently compact for in vivo testing. We injected each multiplexed construct into zebrafish embryos and scored GFP expression in 15 tissues at two developmental time points. Twenty-seven constructs produced consistent expression patterns, with the majority doing so in only one tissue. Functional sequences are enriched near biologically relevant genes, match motifs for developmental transcription factors, and are required for enhancer activity. By concatenating tissue-specific functional sequences, we generated completely synthetic enhancers for the notochord, epidermis, spinal cord, forebrain and otic lateral line, and show that short regulatory sequences do not always function modularly. This work introduces a unique in vivo catalog of short, functional regulatory sequences and demonstrates several important principles of regulatory element organization. Furthermore, we provide resources for designing compact, reverse-complement aware k-mer libraries.
Novel Bioluminescent Activatable Reporter for Src Tyrosine Kinase Activity in Living Mice
Leng, Weibing; Li, Dezhi; Chen, Liang; Xia, Hongwei; Tang, Qiulin; Chen, Baoqin; Gong, Qiyong; Gao, Fabao; Bi, Feng
2016-01-01
Aberrant activation of the Src kinase is implicated in the development of a variety of human malignancies. However, it is almost impossible to monitor Src activity in an in vivo setting with current biochemical techniques. To facilitate the noninvasive investigation of the activity of Src kinase both in vitro and in vivo, we developed a genetically engineered, activatable bioluminescent reporter using split-luciferase complementation. The bioluminescence of this reporter can be used as a surrogate for Src activity in real time. This hybrid luciferase reporter was constructed by sandwiching a Src-dependent conformationally responsive unit (SH2 domain-Srcpep) between the split luciferase fragments. The complementation bioluminescence of this reporter was dependent on the Src activity status. In our study, Src kinase activity in cultured cells and tumor xenografts was monitored quantitatively and dynamically in response to clinical small-molecular kinase inhibitors, dasatinib and saracatinib. This system was also applied for high-throughput screening of Src inhibitors against a kinase inhibitor library in living cells. These results provide unique insights into drug development and pharmacokinetics/phoarmocodynamics of therapeutic drugs targeting Src signaling pathway enabling the optimization of drug administration schedules for maximum benefit. Using both Firefly and Renilla luciferase imaging, we have successfully monitored Src tyrosine kinase activity and Akt serine/threonine kinase activity concurrently in one tumor xenograft. This dual luciferase reporter imaging system will be helpful in exploring the complex signaling networks in vivo. The strategies reported here can also be extended to study and image other important kinases and the cross-talks among them. PMID:26941850
Regulation of macrophage migration by products of the complement system.
Bianco, C; Götze, O; Cohn, Z A
1979-01-01
Agents formerly shown to induce rapid macrophage spreading were examined for their ability to modify the migration of macrophages in the capillary tube assay. Products of the activation of the contact phase of blood coagulation as well as the purified component Bb, the large cleavage fragment of factor B of the alternative complement pathway produced a dose-dependent inhibition of migration. In addition, inflammatory macrophages elicited with either a lipopolysaccharide endotoxin or thioglycollate medium exhibited rapid spreading and inhibited migration, whereas resident cells did not. A close correlation existed, therefore, between enhanced spreading and inhibited migration under both in vitro induced and in vivo situations. Cleavage products of component C5 of the classical complement pathway enhanced macrophage migration and did not alter spreading. In mixtures of C5 cleavage products and Bb, the predominant peptide determined the outcome of the reaction. Factor B, a normal secretory product of macrophages, may represent a common substrate for several of the proteases that induce spreading, inhibit migration, and lead to the generation of the enzymatically active fragment Bb. PMID:284412
A toolbox to explore the mechanics of living embryonic tissues
Campàs, Otger
2016-01-01
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360
A toolbox to explore the mechanics of living embryonic tissues.
Campàs, Otger
2016-07-01
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ren, J; Youssoufian, H
2001-01-01
Fanconi anemia (FA) is an autosomal recessive disorder manifested by chromosomal breakage, birth defects, and susceptibility to bone marrow failure and cancer. At least seven complementation groups have been identified, and the genes defective in four groups have been cloned. The most common subtype is complementation group A. Although the normal functions of the gene products defective in FA cells are not completely understood, a clue to the function of the FA group A gene product (FANCA) was provided by the detection of limited homology in the amino terminal region to a class of heme peroxidases. We evaluated this hypothesis by mutagenesis and functional complementation studies. We substituted alanine residues for the most conserved FANCA residues in the putative peroxidase domain and tested their effects on known biochemical and cellular functions of FANCA. While the substitution mutants were comparable to wild-type FANCA with regard to their stability, subcellular localization, and interaction with FANCG, only the Trp(183)-to-Ala substitution (W183A) abolished the ability of FANCA to complement the sensitivity of FA group A cells to mitomycin C. By contrast, TUNEL assays for apoptosis after exposure to H2O2 showed no differences between parental FA group A cells, cells complemented with wild-type FANCA, and cells complemented with the W183A of FANCA. Moreover, semiquantitative RT-PCR analysis for the expression of the peroxide-sensitive heme oxygenase gene showed appropriate induction after H2O2 exposure. Thus, W183A appears to be essential for the in vivo activity of FANCA in a manner independent of its interaction with FANCG. Moreover, neither wild-type FANCA nor the W183A mutation appears to alter the peroxide-induced apoptosisor peroxide-sensing ability of FA group A cells. Copyright 2001 Academic Press.
Bellone, S; Roque, D; Cocco, E; Gasparrini, S; Bortolomai, I; Buza, N; Abu-Khalaf, M; Silasi, D-A; Ratner, E; Azodi, M; Schwartz, P E; Rutherford, T J; Pecorelli, S; Santin, A D
2012-04-24
We evaluated the expression of CD46, CD55 and CD59 membrane-bound complement-regulatory proteins (mCRPs) in primary uterine serous carcinoma (USC) and the ability of small interfering RNA (siRNA) against these mCRPs to sensitise USC to complement-dependent cytotoxicity (CDC) and antibody (trastuzumab)-dependent cellular cytotoxicity (ADCC) in vitro. Membrane-bound complement-regulatory proteins expression was evaluated using real-time PCR (RT-PCR) and flow cytometry, whereas Her2/neu expression and c-erbB2 gene amplification were assessed using immunohistochemistry, flow cytometry and fluorescent in-situ hybridisation. The biological effect of siRNA-mediated knockdown of mCRPs on HER2/neu-overexpressing USC cell lines was evaluated in CDC and ADCC 4-h chromium-release assays. High expression of mCRPs was found in USC cell lines when compared with normal endometrial cells (P<0.05). RT-PCR and FACS analyses demonstrated that anti-mCRP siRNAs were effective in reducing CD46, CD55 and CD59 expression on USC (P<0.05). Baseline complement-dependent cytotoxicity (CDC) against USC cell lines was low (mean ± s.e.m.=6.8 ± 0.9%) but significantly increased upon CD55 and CD59 knockdown (11.6 ± 0.8% and 10.7 ± 0.9%, respectively, P<0.05). Importantly, in the absence of complement, both CD55 and CD59, but not CD46, knockdowns significantly augmented ADCC against USC overexpressing Her2/neu. Uterine serous carcinoma express high levels of the mCRPs CD46, CD55 and CD59. Small interfering RNA inhibition of CD55 and CD59, but not CD46, sensitises USC to both CDC and ADCC in vitro, and if specifically targeted to tumour cells, may significantly increase trastuzumab-mediated therapeutic effect in vivo.
Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T
2017-04-15
RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oldenburg, C.M.
2011-06-01
The need for risk-driven field experiments for CO{sub 2} geologic storage processes to complement ongoing pilot-scale demonstrations is discussed. These risk-driven field experiments would be aimed at understanding the circumstances under which things can go wrong with a CO{sub 2} capture and storage (CCS) project and cause it to fail, as distinguished from accomplishing this end using demonstration and industrial scale sites. Such risk-driven tests would complement risk-assessment efforts that have already been carried out by providing opportunities to validate risk models. In addition to experimenting with high-risk scenarios, these controlled field experiments could help validate monitoring approaches to improvemore » performance assessment and guide development of mitigation strategies.« less
Mechanism of Cytotoxicity of the AIDS Virus, HTLV-III/LAV
1990-06-25
AIDS) and associated diseases . Studies of related viruses , simian inmunodeficiency virus (SIV) and HIV-1, complement these studies and allow additional...envelope alterations in inmune evasion and tissue tropism. 20 DISTRIBUTIONIAVAILASILITY OF ABSTRACT j21 ABSTRACT SECURITY CLASSIFICATION O- UNCLASSIFMI...the pathogenesis of HIV-1 infections in vivo, and to the development of vaccines for this disease . It is clear that HIV-l’s are a heterogeneous
Recently differentiated epimastigotes from Trypanosoma cruzi are infective to the mammalian host.
Kessler, Rafael Luis; Contreras, Víctor Tulio; Marliére, Newmar Pinto; Aparecida Guarneri, Alessandra; Villamizar Silva, Luz Helena; Mazzarotto, Giovanny Augusto Camacho Antevere; Batista, Michel; Soccol, Vanete Thomaz; Krieger, Marco Aurelio; Probst, Christian Macagnan
2017-06-01
Trypanosoma cruzi, the etiologic agent of Chagas disease, has a complex life cycle in which four distinct developmental forms alternate between the insect vector and the mammalian host. It is assumed that replicating epimastigotes present in the insect gut are not infective to mammalian host, a paradigm corroborated by the widely acknowledged fact that only this stage is susceptible to the complement system. In the present work, we establish a T. cruzi in vitro and in vivo epimastigogenesis model to analyze the biological aspects of recently differentiated epimastigotes (rdEpi). We show that both trypomastigote stages of T. cruzi (cell-derived and metacyclic) are able to transform into epimastigotes (processes termed primary and secondary epimastigogenesis, respectively) and that rdEpi have striking properties in comparison to long-term cultured epimastigotes: resistance to complement-mediated lysis and both in vitro (cell culture) and in vivo (mouse) infectivity. Proteomics analysis of all T. cruzi stages reveled a cluster of proteins that were up-regulated only in rdEpi (including ABC transporters and ERO1), suggesting a role for them in rdEpi virulence. The present work introduces a new experimental model for the study of host-parasite interactions, showing that rdEpi can be infective to the mammalian host. © 2017 John Wiley & Sons Ltd.
McMahon, Kaylin M; Plebanek, Michael P; Thaxton, C Shad
2016-11-15
Efficient systemic administration of therapeutic short interfering RNA (siRNA) is challenging. High-density lipoproteins (HDL) are natural in vivo RNA delivery vehicles. Specifically, native HDLs: 1) Load single-stranded RNA; 2) Are anionic, which requires charge reconciliation between the RNA and HDL, and 3) Actively target scavenger receptor type B-1 (SR-B1) to deliver RNA. Emphasizing these particular parameters, we employed templated lipoprotein particles (TLP), mimics of spherical HDLs, and self-assembled them with single-stranded complements of, presumably, any highly unmodified siRNA duplex pair after formulation with a cationic lipid. Resulting siRNA templated lipoprotein particles (siRNA-TLP) are anionic and tunable with regard to RNA assembly and function. Data demonstrate that the siRNA-TLPs actively target SR-B1 to potently reduce androgen receptor (AR) and enhancer of zeste homolog 2 (EZH2) proteins in multiple cancer cell lines. Systemic administration of siRNA-TLPs demonstrated no off-target toxicity and significantly reduced the growth of prostate cancer xenografts. Thus, native HDLs inspired the synthesis of a hybrid siRNA delivery vehicle that can modularly load single-stranded RNA complements after charge reconciliation with a cationic lipid, and that function due to active targeting of SR-B1.
A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome
Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F.; Gilette, Nicole M.; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D.; Robson, Caroline D.; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R.; Hartman, Tyler; Hayes, Ian M.; Morgan, Tim; Markie, David M.; Fagiolini, Michela; Swift, Amy; Chines, Peter S.; Speck-Martins, Carlos E.; Collins, Francis S.; Jabs, Ethylin Wang; Bönnemann, Carsten G.; Olson, Eric N.; Andrews, Caroline V.; Barry, Brenda J.; Hunter, David G.; Mackinnon, Sarah E.; Shaaban, Sherin; Erazo, Monica; Frempong, Tamiesha; Hao, Ke; Naidich, Thomas P.; Rucker, Janet C.; Zhang, Zhongyang; Biesecker, Barbara B.; Bonnycastle, Lori L.; Brewer, Carmen C.; Brooks, Brian P.; Butman, John A.; Chien, Wade W.; Farrell, Kathleen; FitzGibbon, Edmond J.; Gropman, Andrea L.; Hutchinson, Elizabeth B.; Jain, Minal S.; King, Kelly A.; Lehky, Tanya J.; Lee, Janice; Liberton, Denise K.; Narisu, Narisu; Paul, Scott M.; Sadeghi, Neda; Snow, Joseph; Solomon, Beth; Summers, Angela; Toro, Camilo; Thurm, Audrey; Zalewski, Christopher K.; Carey, John C.; Robertson, Stephen P.; Manoli, Irini; Engle, Elizabeth C.
2017-01-01
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymkinsT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits. PMID:28681861
Kim, Hong-Man; Xu, Yongbin; Lee, Minho; Piao, Shunfu; Sim, Se-Hoon; Ha, Nam-Chul; Lee, Kangseok
2010-01-01
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria. PMID:20581201
A defect in myoblast fusion underlies Carey-Fineman-Ziter syndrome.
Di Gioia, Silvio Alessandro; Connors, Samantha; Matsunami, Norisada; Cannavino, Jessica; Rose, Matthew F; Gilette, Nicole M; Artoni, Pietro; de Macena Sobreira, Nara Lygia; Chan, Wai-Man; Webb, Bryn D; Robson, Caroline D; Cheng, Long; Van Ryzin, Carol; Ramirez-Martinez, Andres; Mohassel, Payam; Leppert, Mark; Scholand, Mary Beth; Grunseich, Christopher; Ferreira, Carlos R; Hartman, Tyler; Hayes, Ian M; Morgan, Tim; Markie, David M; Fagiolini, Michela; Swift, Amy; Chines, Peter S; Speck-Martins, Carlos E; Collins, Francis S; Jabs, Ethylin Wang; Bönnemann, Carsten G; Olson, Eric N; Carey, John C; Robertson, Stephen P; Manoli, Irini; Engle, Elizabeth C
2017-07-06
Multinucleate cellular syncytial formation is a hallmark of skeletal muscle differentiation. Myomaker, encoded by Mymk (Tmem8c), is a well-conserved plasma membrane protein required for myoblast fusion to form multinucleated myotubes in mouse, chick, and zebrafish. Here, we report that autosomal recessive mutations in MYMK (OMIM 615345) cause Carey-Fineman-Ziter syndrome in humans (CFZS; OMIM 254940) by reducing but not eliminating MYMK function. We characterize MYMK-CFZS as a congenital myopathy with marked facial weakness and additional clinical and pathologic features that distinguish it from other congenital neuromuscular syndromes. We show that a heterologous cell fusion assay in vitro and allelic complementation experiments in mymk knockdown and mymk insT/insT zebrafish in vivo can differentiate between MYMK wild type, hypomorphic and null alleles. Collectively, these data establish that MYMK activity is necessary for normal muscle development and maintenance in humans, and expand the spectrum of congenital myopathies to include cell-cell fusion deficits.
Supervised extensions of chemography approaches: case studies of chemical liabilities assessment
2014-01-01
Chemical liabilities, such as adverse effects and toxicity, play a significant role in modern drug discovery process. In silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by complementing or replacing in vitro and in vivo experiments. Herein, we propose an approach combining several classification and chemography methods to be able to predict chemical liabilities and to interpret obtained results in the context of impact of structural changes of compounds on their pharmacological profile. To our knowledge for the first time, the supervised extension of Generative Topographic Mapping is proposed as an effective new chemography method. New approach for mapping new data using supervised Isomap without re-building models from the scratch has been proposed. Two approaches for estimation of model’s applicability domain are used in our study to our knowledge for the first time in chemoinformatics. The structural alerts responsible for the negative characteristics of pharmacological profile of chemical compounds has been found as a result of model interpretation. PMID:24868246
Generation of a transgenic ORFeome library in Drosophila
Bischof, Johannes; Sheils, Emma M.; Björklund, Mikael; Basler, Konrad
2014-01-01
Overexpression screens can be used to explore gene function in Drosophila melanogaster, but to demonstrate their full potential comprehensive and systematic collections of fly strains are required. Here we provide a protocol for high-throughput cloning of Drosophila open reading frames (ORFs) regulated by Upstream Activation Sequences (UAS sites); the resulting Gal4-inducible UAS-ORF plasmid library is then used to generate Drosophila strains by ΦC31 integrase-mediated site-specific integration. We also provide details for FLP/FRT-mediated in vivo exchange of epitope tags (or regulatory regions) in the ORF library strains, which further extends their potential applications. These transgenic UAS-ORF strains are a useful resource to complement and validate genetic experiments performed with loss-of-function mutants and RNAi lines. The duration of the complete protocol strongly depends on the number of ORFs required, but the procedure of injection and establishing balanced fly stocks can be completed within approx. 6-7 weeks for a few genes. PMID:24922270
Imaging molecular dynamics in vivo--from cell biology to animal models.
Timpson, Paul; McGhee, Ewan J; Anderson, Kurt I
2011-09-01
Advances in fluorescence microscopy have enabled the study of membrane diffusion, cell adhesion and signal transduction at the molecular level in living cells grown in culture. By contrast, imaging in living organisms has primarily been restricted to the localization and dynamics of cells in tissues. Now, imaging of molecular dynamics is on the cusp of progressing from cell culture to living tissue. This transition has been driven by the understanding that the microenvironment critically determines many developmental and pathological processes. Here, we review recent progress in fluorescent protein imaging in vivo by drawing primarily on cancer-related studies in mice. We emphasize the need for techniques that can be easily combined with genetic models and complement fluorescent protein imaging by providing contextual information about the cellular environment. In this Commentary we will consider differences between in vitro and in vivo experimental design and argue for an approach to in vivo imaging that is built upon the use of intermediate systems, such as 3-D and explant culture models, which offer flexibility and control that is not always available in vivo. Collectively, these methods present a paradigm shift towards the molecular-level investigation of disease and therapy in animal models of disease.
Interactions between late acting proteins required for peptidoglycan synthesis during sporulation
Fay, Allison; Meyer, Pablo; Dworkin, Jonathan
2010-01-01
The requirement of peptidoglycan synthesis for growth complicates the analysis of interactions between proteins involved in this pathway. In particular, the later steps that involve membrane-linked substrates have proven largely recalcitrant to in vivo analysis. Here we have taken advantage of the peptidoglycan synthesis that occurs during sporulation in Bacillus subtilis to examine the interactions between SpoVE, a non-essential, sporulation-specific homolog of the well-conserved and essential SEDS proteins, and SpoVD, a non-essential class B penicillin binding protein (PBP). We found that localization of SpoVD is dependent on SpoVE and that SpoVD protects SpoVE from in vivo proteolysis. Co-immunoprecipitations and Fluorescence Resonance Energy Transfer experiments indicated that SpoVE and SpoVD interact and co-affinity purification in E. coli demonstrated that this interaction is direct. Finally, we generated a functional protein consisting of a SpoVE-SpoVD fusion and found that a loss-of-function point mutation in either part of the fusion resulted in a loss of function of the entire fusion that was not complemented by a wild type protein. Thus, SpoVE has a direct and functional interaction with SpoVD and this conclusion will facilitate understanding the essential function SpoVE and related SEDS proteins such as FtsW and RodA play in bacterial growth and division. PMID:20417640
Progress and trends in complement therapeutics.
Ricklin, Daniel; Lambris, John D
2013-01-01
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Progress and Trends in Complement Therapeutics.
Ricklin, Daniel; Lambris, John D
2013-01-01
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Okazaki, Yozo; Lithio, Andrew; Jin, Huanan
2017-01-01
We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism. PMID:28202596
Ji, Xin; Olinger, Gene G; Aris, Sheena; Chen, Ying; Gewurz, Henry; Spear, Gregory T
2005-09-01
Mannose-binding lectin (MBL), a serum lectin that mediates innate immune functions including activation of the lectin complement pathway, binds to carbohydrates expressed on some viral glycoproteins. In this study, the ability of MBL to bind to virus particles pseudotyped with Ebola and Marburg envelope glycoproteins was evaluated. Virus particles bearing either Ebola (Zaire strain) or Marburg (Musoke strain) envelope glycoproteins bound at significantly higher levels to immobilized MBL compared with virus particles pseudotyped with vesicular stomatitis virus glycoprotein or with no virus glycoprotein. As observed in previous studies, Ebola-pseudotyped virus bound to cells expressing the lectin DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin). However, pre-incubation of virus with MBL blocked DC-SIGN-mediated binding to cells, suggesting that the two lectins bind at the same or overlapping sites on the Ebola glycoprotein. Neutralization experiments showed that virus pseudotyped with Ebola or Marburg (Musoke) glycoprotein was neutralized by complement, while the Marburg (Ravn strain) glycoprotein-pseudotyped virus was less sensitive to neutralization. Neutralization was partially mediated through the lectin complement pathway, since a complement source deficient in MBL was significantly less effective at neutralizing viruses pseudotyped with filovirus glycoproteins and addition of purified MBL to the MBL-deficient complement increased neutralization. These experiments demonstrated that MBL binds to filovirus envelope glycoproteins resulting in important biological effects and suggest that MBL can interact with filoviruses during infection in humans.
Chestnut, Eleanor K; Markman, Ellen M
2018-06-28
Although "Girls are as good as boys at math" explicitly expresses equality, we predict it could nevertheless suggest that boys have more raw talent. In statements with this subject-complement structure, the item in the complement position serves as the reference point and is thus considered more typical and prominent. This explains why "Tents are like houses," for instance, sounds better than "Houses are like tents"-people generally think of houses as more typical. For domains about ability, the reference point should be the item that is typically more skilled. We further propose that the reference point should be naturally more skilled. In two experiments, we presented adults with summaries of actual scientific evidence for gender equality in math (Experiment 1) or verbal ability (Experiment 2), but we manipulated whether the reference point in the statements of equality in the summaries (e.g., "Boys' verbal ability is as good as girls'") was girls or boys. As predicted, adults attributed more natural ability to each gender when it was in the complement rather than subject position. Yet, in Experiment 3, we found that when explicitly asked, participants judged that such sentences were not biased in favor of either gender, indicating that subject-complement statements must be transmitting this bias in a subtle way. Thus, statements such as "Girls are as good as boys at math" can actually backfire and perpetuate gender stereotypes about natural ability. © 2018 Cognitive Science Society, Inc.
Mäenpää, A.; Junnikkala, S.; Hakulinen, J.; Timonen, T.; Meri, S.
1996-01-01
Gliomas are malignant brain tumors, which, despite recent progress in surgical and radiological treatment, still have a poor prognosis. Since gliomas apparently resist immunological clearance mechanisms, we became interested in examining bow gliomas resist killing by the human complement system. The resistance of human cells to complement-mediated damage is, in large part, mediated by specific inhibitors of complement:membrane cofactor protein (CD46), decay-accelerating factor (CD55), and protectin (CD59). In the present study we examined the expression of complement regulators in 14 human glioma tumors and in 7 glioma cell lines (U251, U87, HS683, U373, U138, U118, and H2). Protectin was found to be strongly expressed by all glioma tumors and cell lines. Northern blotting analysis demonstrated the typical pattern of four to five protectin mRNAs in the glioma cells. Except for blood vessels, the expression of decay-accelerating factor was weak or absent in the tumors in situ, whereas in the cell lines its expression varied, ranging from negative to intermediate. Membrane cofactor protein was moderately expressed by all the cell lines but only weakly in the tumors. Cell-killing experiments demonstrated that the glioma cell lines were exceptionally resistant to C-mediated lysis. Five of the seven cell lines (U373, HS683, U118, U138, and H2) resisted complement lysis under conditions where most other cell lines were sensitive to killing. Neutralization experiments using specific monoclonal antibodies indicated that protectin was functionally the most important complement regulator in the glioma cells. The killing of the U87 and U251 cells could be significantly increased by a blocking anti-protectin monoclonal antibody, whereas for the other cell lines only moderate or no response was observed. The H2 cell line resisted killing by all antibodies and by complement. These results show that protectin is the most important complement regulator on human glioma cells. The exceptional complement resistance of some glioma cell lines suggests that they may utilize other, hitherto less well characterized, mechanisms to resist complement killing. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Figure 7 PMID:8644856
Romero-Gavilan, F; Araújo-Gomes, N; Sánchez-Pérez, A M; García-Arnáez, I; Elortza, F; Azkargorta, M; de Llano, J J Martín; Carda, C; Gurruchaga, M; Suay, J; Goñi, I
2018-02-01
There is an ever-increasing need to develop dental implants with ideal characteristics to achieve specific and desired biological response in the scope of improve the healing process post-implantation. Following that premise, enhancing and optimizing titanium implants through superficial treatments, like silica sol-gel hybrid coatings, are regarded as a route of future research in this area. These coatings change the physicochemical properties of the implant, ultimately affecting its biological characteristics. Sandblasted acid-etched titanium (SAE-Ti) and a silica hybrid sol-gel coating (35M35G30T) applied onto the Ti substrate were examined. The results of in vitro and in vivo tests and the analysis of the protein layer adsorbed to each surface were compared and discussed. In vitro analysis with MC3T3-E1 osteoblastic cells, showed that the sol-gel coating raised the osteogenic activity potential of the implants (the expression of osteogenic markers, the alkaline phosphatase (ALP) and IL-6 mRNAs, increased). In the in vivo experiments using as model rabbit tibiae, both types of surfaces promoted osseointegration. However, the coated implants demonstrated a clear increase in the inflammatory activity in comparison with SAE-Ti. Mass spectrometry (LC-MS/MS) analysis showed differences in the composition of protein layers formed on the two tested surfaces. Large quantities of apolipoproteins were found attached predominantly to SAE-Ti. The 35M35G30T coating adsorbed a significant quantity of complement proteins, which might be related to the material intrinsic bioactivity, following an associated, natural and controlled immune response. The correlation between the proteomic data and the in vitro and in vivo outcomes is discussed on this experimental work. Copyright © 2017 Elsevier B.V. All rights reserved.
Fernández, Aurora Piñas; Gil, Patricia; Valkai, Ildiko; Nagy, Ferenc; Schäfer, Eberhard
2005-05-01
To investigate the mechanism of phytochrome action in vivo, NtPHYB, AtPHYB and phyD:green fluorescent protein (GFP) were overexpressed in Nicotiana plumbaginifolia and Arabidopsis thaliana. The expression of 35S:NtPHYB:GFP and 35S:AtPHYB:GFP complemented the tobacco hgl2 and Arabidopsis phyB-9 mutations, whereas the 35S:AtPHYD:GFP only rescued the hgl2 mutant. All three fusion proteins are transported into the nucleus in all genetic backgrounds. These data indicate that AtPHYD:GFP is biologically active and functions as the main red light receptor in transgenic tobacco, and establish an experimental system for the functional analysis of this elusive photoreceptor in vivo.
NASA Astrophysics Data System (ADS)
de Souza, Ludmilla Regina; Alexandre Muehlmann, Luis; Carneiro Matos, Lívia; Simón-Vázquez, Rosana; Guerreiro Marques Lacava, Zulmira; Maurício Batista De-Paula, Alfredo; Mosiniewicz-Szablewska, Ewa; Suchocki, Piotr; César Morais, Paulo; González-Fernández, África; Nair Báo, Sônia; Bentes Azevedo, Ricardo
2015-12-01
Selol is a semi-synthetic compound containing selenite that is effective against cancerous cells and safer for clinical applications in comparison with other inorganic forms of selenite. Recently, we have developed a formulation of poly(methyl vinyl ether-co-maleic anhydride)-shelled selol nanocapsules (SPN), which reduced the proliferative activity of lung adenocarcinoma cells and presented little deleterious effects on normal cells in in vitro studies. In this study, we report on the antitumor activity and systemic effects induced by this formulation in chemically induced lung adenocarcinoma-bearing mice. The in vivo antitumor activity of the SPN was verified by macroscopic quantification, immunohistochemistry and morphological analyses. Toxicity analyses were performed by evaluations of the kidney, liver, and spleen; analyses of hemogram and plasma levels of alanine aminotransferase, aspartate transaminase, urea, and creatinine; and DNA fragmentation and cell cycle activity of the bone marrow cells. Furthermore, we investigated the potential of the SPN formulation to cause hemolysis, activate the complement system, provoke an inflammatory response and change the conformation of the plasma proteins. Our results showed that the SPN reduced the area of the surface tumor nodules but not the total number of tumor nodules. The biochemical and hematological findings were suggestive of the low systemic toxicity of the SPN formulation. The surface properties of the selol nanocapsules point to characteristics that are consistent with the treatment of the tumors in vivo: low hemolytic activity, weak inflammatory reaction with no activation of the complement system, and mild or absent conformational changes of the plasma proteins. In conclusion, this report suggests that the SPN formulation investigated herein exhibits anti-tumoral effects against lung adenocarcinoma in vivo and is associated with low systemic toxicity and high biocompatibility.
In vivo protein stabilization based on fragment complementation and a split GFP system.
Lindman, Stina; Hernandez-Garcia, Armando; Szczepankiewicz, Olga; Frohm, Birgitta; Linse, Sara
2010-11-16
Protein stabilization was achieved through in vivo screening based on the thermodynamic linkage between protein folding and fragment complementation. The split GFP system was found suitable to derive protein variants with enhanced stability due to the correlation between effects of mutations on the stability of the intact chain and the effects of the same mutations on the affinity between fragments of the chain. PGB1 mutants with higher affinity between fragments 1 to 40 and 41 to 56 were obtained by in vivo screening of a library of the 1 to 40 fragments against wild-type 41 to 56 fragments. Colonies were ranked based on the intensity of green fluorescence emerging from assembly and folding of the fused GFP fragments. The DNA from the brightest fluorescent colonies was sequenced, and intact mutant PGB1s corresponding to the top three sequences were expressed, purified, and analyzed for stability toward thermal denaturation. The protein sequence derived from the top fluorescent colony was found to yield a 12 °C increase in the thermal denaturation midpoint and a free energy of stabilization of -8.7 kJ/mol at 25 °C. The stability rank order of the three mutant proteins follows the fluorescence rank order in the split GFP system. The variants are stabilized through increased hydrophobic effect, which raises the free energy of the unfolded more than the folded state; as well as substitutions, which lower the free energy of the folded more than the unfolded state; optimized van der Waals interactions; helix stabilization; improved hydrogen bonding network; and reduced electrostatic repulsion in the folded state.
Clement, Cristina C.; Becerra, Aniuska; Yin, Liusong; Zolla, Valerio; Huang, Liling; Merlin, Simone; Follenzi, Antonia; Shaffer, Scott A.; Stern, Lawrence J.; Santambrogio, Laura
2016-01-01
The repertoire of peptides displayed in vivo by MHC II molecules derives from a wide spectrum of proteins produced by different cell types. Although intracellular endosomal processing in dendritic cells and B cells has been characterized for a few antigens, the overall range of processing pathways responsible for generating the MHC II peptidome are currently unclear. To determine the contribution of non-endosomal processing pathways, we eluted and sequenced over 3000 HLA-DR1-bound peptides presented in vivo by dendritic cells. The processing enzymes were identified by reference to a database of experimentally determined cleavage sites and experimentally validated for four epitopes derived from complement 3, collagen II, thymosin β4, and gelsolin. We determined that self-antigens processed by tissue-specific proteases, including complement, matrix metalloproteases, caspases, and granzymes, and carried by lymph, contribute significantly to the MHC II self-peptidome presented by conventional dendritic cells in vivo. Additionally, the presented peptides exhibited a wide spectrum of binding affinity and HLA-DM susceptibility. The results indicate that the HLA-DR1-restricted self-peptidome presented under physiological conditions derives from a variety of processing pathways. Non-endosomal processing enzymes add to the number of epitopes cleaved by cathepsins, altogether generating a wider peptide repertoire. Taken together with HLA-DM-dependent and-independent loading pathways, this ensures that a broad self-peptidome is presented by dendritic cells. This work brings attention to the role of “self-recognition” as a dynamic interaction between dendritic cells and the metabolic/catabolic activities ongoing in every parenchymal organ as part of tissue growth, remodeling, and physiological apoptosis. PMID:26740625
Skarzynski, Martin; Niemann, Carsten U; Lee, Yuh Shan; Martyr, Sabrina; Maric, Irina; Salem, Dalia; Stetler-Stevenson, Maryalice; Marti, Gerald E; Calvo, Katherine R; Yuan, Constance; Valdez, Janet; Soto, Susan; Farooqui, Mohammed Z H; Herman, Sarah E M; Wiestner, Adrian
2016-01-01
Clinical trials of ibrutinib combined with anti-CD20 monoclonal antibodies (mAb) for chronic lymphocytic leukemia (CLL) report encouraging results. Paradoxically, in preclinical studies, in vitro ibrutinib was reported to decrease CD20 expression and inhibit cellular effector mechanisms. We therefore set out to investigate effects of in vivo ibrutinib treatment that could explain this paradox. Patients received single-agent ibrutinib (420 mg daily) on an investigator-initiated phase II trial. Serial blood samples were collected pretreatment and during treatment for ex vivo functional assays to examine the effects on CLL cell susceptibility to anti-CD20 mAbs. We demonstrate that CD20 expression on ibrutinib was rapidly and persistently downregulated (median reduction 74%, day 28, P < 0.001) compared with baseline. Concomitantly, CD20 mRNA was decreased concurrent with reduced NF-κB signaling. An NF-κB binding site in the promoter of MS4A1 (encoding CD20) and downregulation of CD20 by NF-κB inhibitors support a direct transcriptional effect. Ex vivo, tumor cells from patients on ibrutinib were less susceptible to anti-CD20 mAb-mediated complement-dependent cytotoxicity than pretreatment cells (median reduction 75%, P < 0.001); however, opsonization by the complement protein C3d, which targets cells for phagocytosis, was relatively maintained. Expression of decay-accelerating factor (CD55) decreased on ibrutinib, providing a likely mechanism for the preserved C3d opsonization. In addition, ibrutinib significantly inhibited trogocytosis, a major contributor to antigen loss and tumor escape during mAb therapy. Our data indicate that ibrutinib promotes both positive and negative interactions with anti-CD20 mAbs, suggesting that successfully harnessing maximal antitumor effects of such combinations requires further investigation. ©2015 American Association for Cancer Research.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W; Song, Wenchao; Dunaief, Joshua L
2015-05-08
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Yafeng; Song, Delu; Song, Ying; Zhao, Liangliang; Wolkow, Natalie; Tobias, John W.; Song, Wenchao; Dunaief, Joshua L.
2015-01-01
Dysregulation of iron homeostasis may be a pathogenic factor in age-related macular degeneration (AMD). Meanwhile, the formation of complement-containing deposits under the retinal pigment epithelial (RPE) cell layer is a pathognomonic feature of AMD. In this study, we investigated the molecular mechanisms by which complement component 3 (C3), a central protein in the complement cascade, is up-regulated by iron in RPE cells. Modulation of TGF-β signaling, involving ERK1/2, SMAD3, and CCAAT/enhancer-binding protein-δ, is responsible for iron-induced C3 expression. The differential effects of spatially distinct SMAD3 phosphorylation sites at the linker region and at the C terminus determined the up-regulation of C3. Pharmacologic inhibition of either ERK1/2 or SMAD3 phosphorylation decreased iron-induced C3 expression levels. Knockdown of SMAD3 blocked the iron-induced up-regulation and nuclear accumulation of CCAAT/enhancer-binding protein-δ, a transcription factor that has been shown previously to bind the basic leucine zipper 1 domain in the C3 promoter. We show herein that mutation of this domain reduced iron-induced C3 promoter activity. In vivo studies support our in vitro finding of iron-induced C3 up-regulation. Mice with a mosaic pattern of RPE-specific iron overload demonstrated co-localization of iron-induced ferritin and C3d deposits. Humans with aceruloplasminemia causing RPE iron overload had increased RPE C3d deposition. The molecular events in the iron-C3 pathway represent therapeutic targets for AMD or other diseases exacerbated by iron-induced local complement dysregulation. PMID:25802332
Generation of Anaphylatoxins by Human β-Tryptase from C3, C4, and C51
Fukuoka, Yoshihiro; Xia, Han-Zhang; Sanchez-Muñoz, Laura B.; Dellinger, Anthony L.; Escribano, Luis; Schwartz, Lawrence B.
2009-01-01
Both mast cells and complement participate in innate and acquired immunity. The current study examines whether β-tryptase, the major protease of human mast cells, can directly generate bioactive complement anaphylatoxins. Important variables included pH, monomeric vs tetrameric forms of β-tryptase, and the β-tryptase-activating polyanion. The B12 mAb was used to stabilize β-tryptase in its monomeric form. C3a and C4a were best generated from C3 and C4, respectively, by monomeric β-tryptase in the presence of low molecular weight dextran sulfate or heparin at acidic pH. High molecular weight polyanions increased degradation of these anaphylatoxins. C5a was optimally generated from C5 at acidic pH by β-tryptase monomers in the presence of high molecular weight dextran sulfate and heparin polyanions, but also was produced by β-tryptase tetramers under these conditions. Mass spectrometry verified that the molecular mass of each anaphylatoxin was correct. Both β-tryptase-generated C5a and C3a (but not C4a) were potent activators of human skin mast cells. These complement anaphylatoxins also could be generated by β-tryptase in releasates of activated skin mast cells. Of further biologic interest, β-tryptase also generated C3a from C3 in human plasma at acidic pH. These results suggest β-tryptase might generate complement anaphylatoxins in vivo at sites of inflammation, such as the airway of active asthma patients where the pH is acidic and where elevated levels of β-tryptase and complement anaphylatoxins are detected. PMID:18424754
NASA Astrophysics Data System (ADS)
Wang, Baiyang; Chen, Yi-Bin; Ayalon, Oran; Bender, Jeffrey; Garen, Alan
1999-02-01
Two antimelanoma immunoconjugates containing a human single-chain Fv (scFv) targeting domain conjugated to the Fc effector domain of human IgG1 were synthesized as secreted two-chain molecules in Chinese hamster ovary and Drosophila S2 cells, and purified by affinity chromatography on protein A. The scFv targeting domains originally were isolated as melanoma-specific clones from a scFv fusion-phage library, derived from the antibody repertoire of a vaccinated melanoma patient. The purified immunoconjugates showed similar binding specificity as did the fusion-phage clones. Binding occurred to human melanoma cells but not to human melanocytes or to several other types of normal cells and tumor cells. A 250-kDa melanoma protein was immunoprecipitated by the immunoconjugates and analyzed by mass spectrometry, using two independent procedures. A screen of protein sequence databases showed an exact match of several peptide masses between the immunoprecipitated protein and the core protein of a chondroitin sulfate proteoglycan, which is expressed on the surface of most human melanoma cells. The Fc effector domain of the immunoconjugates binds natural killer (NK) cells and also the C1q protein that initiates the complement cascade; both NK cells and complement can activate powerful cytolytic responses against the targeted tumor cells. An in vitro cytolysis assay was used to test for an immunoconjugate-dependent specific cytolytic response against cultured human melanoma cells by NK cells and complement. The melanoma cells, but not the human fibroblast cells used as the control, were efficiently lysed by both NK cells and complement in the presence of the immunoconjugates. The in vitro results suggest that the immunoconjugates also could activate a specific cytolytic immune response against melanoma tumors in vivo.
Arabidopsis TH2 Encodes the Orphan Enzyme Thiamin Monophosphate Phosphatase[OPEN
Niehaus, Thomas D.; Hasnain, Ghulam; Gidda, Satinder K.; Nguyen, Thuy N.D.; Anderson, Erin M.; Brown, Greg; Yakunin, Alexander F.; de Crécy-Lagard, Valérie; Gregory, Jesse F.
2016-01-01
To synthesize the cofactor thiamin diphosphate (ThDP), plants must first hydrolyze thiamin monophosphate (ThMP) to thiamin, but dedicated enzymes for this hydrolysis step were unknown and widely doubted to exist. The classical thiamin-requiring th2-1 mutation in Arabidopsis thaliana was shown to reduce ThDP levels by half and to increase ThMP levels 5-fold, implying that the THIAMIN REQUIRING2 (TH2) gene product could be a dedicated ThMP phosphatase. Genomic and transcriptomic data indicated that TH2 corresponds to At5g32470, encoding a HAD (haloacid dehalogenase) family phosphatase fused to a TenA (thiamin salvage) family protein. Like the th2-1 mutant, an insertional mutant of At5g32470 accumulated ThMP, and the thiamin requirement of the th2-1 mutant was complemented by wild-type At5g32470. Complementation tests in Escherichia coli and enzyme assays with recombinant proteins confirmed that At5g32470 and its maize (Zea mays) orthologs GRMZM2G148896 and GRMZM2G078283 are ThMP-selective phosphatases whose activity resides in the HAD domain and that the At5g32470 TenA domain has the expected thiamin salvage activity. In vitro and in vivo experiments showed that alternative translation start sites direct the At5g32470 protein to the cytosol and potentially also to mitochondria. Our findings establish that plants have a dedicated ThMP phosphatase and indicate that modest (50%) ThDP depletion can produce severe deficiency symptoms. PMID:27677881
A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei
Pauli, Wolfgang M.; Nili, Amanda N.; Tyszka, J. Michael
2018-01-01
Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain. PMID:29664465
Yipp, Bryan G.; Petri, Björn; Salina, Davide; Jenne, Craig N.; Scott, Brittney N. V.; Zbytnuik, Lori D.; Pittman, Keir; Asaduzzaman, Muhammad; Wu, Kaiyu; Meijndert, H. Christopher; Malawista, Stephen E.; de Boisfleury Chevance, Anne; Zhang, Kunyan; Conly, John; Kubes, Paul
2013-01-01
Neutrophil extracellular traps (NETs) are released, as neutrophils die in vitro, in a process requiring hours, leaving a temporal gap for invasive microbes to exploit. Functional neutrophils undergoing NETosis have not been documented. During Gram-positive skin infections, we directly visualized live PMN in vivo rapidly releasing NETs, which prevented bacterial dissemination. NETosis occurred during crawling thereby casting large areas of NETs. NET-releasing PMN developed diffuse decondensed nuclei ultimately becoming devoid of DNA. Cells with abnormal nuclei displayed unusual crawling behavior highlighted by erratic pseudopods and hyperpolarization consistent with the nucleus being a fulcrum for crawling. A combined requirement of Tlr2 and complement mediated opsonization tightly regulated NET release. Additionally live human PMN developed decondensed nuclei and formed NETS in vivo and intact anuclear neutrophils were abundant in Gram-positive human abscesses. Therefore early in infection, non-cell death NETosis occurs in vivo during Gram-positive infection in mice and humans. PMID:22922410
Derivation of Pluripotent Stem Cells with In Vivo Embryonic and Extraembryonic Potency.
Yang, Yang; Liu, Bei; Xu, Jun; Wang, Jinlin; Wu, Jun; Shi, Cheng; Xu, Yaxing; Dong, Jiebin; Wang, Chengyan; Lai, Weifeng; Zhu, Jialiang; Xiong, Liang; Zhu, Dicong; Li, Xiang; Yang, Weifeng; Yamauchi, Takayoshi; Sugawara, Atsushi; Li, Zhongwei; Sun, Fangyuan; Li, Xiangyun; Li, Chen; He, Aibin; Du, Yaqin; Wang, Ting; Zhao, Chaoran; Li, Haibo; Chi, Xiaochun; Zhang, Hongquan; Liu, Yifang; Li, Cheng; Duo, Shuguang; Yin, Ming; Shen, Huan; Belmonte, Juan Carlos Izpisua; Deng, Hongkui
2017-04-06
Of all known cultured stem cell types, pluripotent stem cells (PSCs) sit atop the landscape of developmental potency and are characterized by their ability to generate all cell types of an adult organism. However, PSCs show limited contribution to the extraembryonic placental tissues in vivo. Here, we show that a chemical cocktail enables the derivation of stem cells with unique functional and molecular features from mice and humans, designated as extended pluripotent stem (EPS) cells, which are capable of chimerizing both embryonic and extraembryonic tissues. Notably, a single mouse EPS cell shows widespread chimeric contribution to both embryonic and extraembryonic lineages in vivo and permits generating single-EPS-cell-derived mice by tetraploid complementation. Furthermore, human EPS cells exhibit interspecies chimeric competency in mouse conceptuses. Our findings constitute a first step toward capturing pluripotent stem cells with extraembryonic developmental potentials in culture and open new avenues for basic and translational research. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Luciferase Protein Complementation Assays for Bioluminescence Imaging of Cells and Mice
Luker, Gary D.; Luker, Kathryn E.
2015-01-01
Summary Protein fragment complementation assays (PCAs) with luciferase reporters currently are the preferred method for detecting and quantifying protein-protein interactions in living animals. At the most basic level, PCAs involve fusion of two proteins of interest to enzymatically inactive fragments of luciferase. Upon association of the proteins of interest, the luciferase fragments are capable of reconstituting enzymatic activity to generate luminescence in vivo. In addition to bi-molecular luciferase PCAs, unimolecular biosensors for hormones, kinases, and proteases also have been developed using target peptides inserted between inactive luciferase fragments. Luciferase PCAs offer unprecedented opportunities to quantify dynamics of protein-protein interactions in intact cells and living animals, but successful use of luciferase PCAs in cells and mice involves careful consideration of many technical factors. This chapter discusses the design of luciferase PCAs appropriate for animal imaging, including construction of reporters, incorporation of reporters into cells and mice, imaging techniques, and data analysis. PMID:21153371
Aparicio, Frederic; Sánchez-Navarro, Jesús A; Pallás, Vicente
2006-06-01
Interactions between viral proteins are critical for virus viability. Bimolecular fluorescent complementation (BiFC) technique determines protein interactions in real-time under almost normal physiological conditions. The coat protein (CP) of Prunus necrotic ringspot virus is required for multiple functions in its replication cycle. In this study, the region involved in CP dimerization has been mapped by BiFC in both bacteria and plant tissue. Full-length and C-terminal deleted forms of the CP gene were fused in-frame to the N- and C-terminal fragments of the yellow fluorescent protein. The BiFC analysis showed that a domain located between residues 9 and 27 from the C-end plays a critical role in dimerization. The importance of this C-terminal region in dimer formation and the applicability of the BiFC technique to analyse viral protein interactions are discussed.
1989-08-15
hemoglobin, hemoglobin that has been internally crosslinked, polymerized crosslinked-hemoglobin, and I hemoglobin that is conjugated to carriers such as...dextran and polyethyleneglycol are also under intense study. To date, only unmodified hemoglobin and crosslinked- polymerized hemoglobin have been...complement and may bind bacterial endotoxins in vivo . I During the past 3 years, the US Army has supported the industrial scaleup of one such product
Jocks, T; Zahner, G; Freudenberg, J; Wolf, G; Thaiss, F; Helmchen, U; Stahl, R A
1996-06-01
To study whether prostaglandins (PG) can regulate the mRNA expression of monocyte-chemoattractant protein 1 (MCP-1) in glomerular immune injury, MCP-1 mRNA levels were evaluated in anti-thymocyte antibody (ATS) -induced glomerular injury by Northern blotting and reverse transcription-polymerase chain reaction. Immune injury was induced in vivo by the intravenous application of ATS to male Wistar rats and in vitro by the perfusion of isolated rat kidneys with ATS and rat serum. In vivo 3 h and 5 days after antibody application, glomerular mRNA expression of MCP-1 was markedly enhanced compared with controls. In the isolated perfused kidney, antibody and complement also induced an increase in MCP-1 expression at 10 min and 60 min after antibody perfusion. When the rats were treated with PGE (250 micrograms, twice daily), the increase in MCP-1 expression was reduced. This was associated with a reduction of intraglomerular recruitment of monocytes/macrophages. In the isolated perfused kidneys, PGE1 (1 mg/L) prevented the antibody- and rat serum-stimulated increase in glomerular MCP-1 mRNA expression. These data demonstrate that PGE1 reduces glomerular MCP-1 mRNA expression in glomerulonephritis and in the isolated perfused rat kidney after induction of immune injury with antibody and complement. The data suggest that prostaglandins might mediate MCP-1 effects in glomerular immune injuries.
Protein domains connect cell cycle stimulation directly to initiation of DNA replication.
Gjørup, O V; Rose, P E; Holman, P S; Bockus, B J; Schaffhausen, B S
1994-01-01
Polyoma large T antigen (LT) is the only viral gene product required for viral DNA replication. LT can be divided into two domains, one N-terminal (NT) spanning residues 1-260 and one C-terminal (CT) comprising approximately residues 264-785. NT is known to immortalize primary cells in a manner dependent on binding of pRB/p107. Here a CT construct comprising residues 264-785 was shown to have independent function in DNA replication. CT is entirely sufficient for driving viral DNA replication in vivo in growing mouse cells at a level approaching that of full-length LT. In contrast, CT is strikingly deficient for replication in serum-starved cells. However, this deficiency can be complemented by coexpression of NT. BrdUrd incorporation in transfected, starved cells showed that NT was sufficient for inducing S phase, suggesting a mechanism for complementation. By contrast, CT was unable to induce S phase when tested in the same assay. NT also promotes phosphorylation of sites in CT that are likely to be important for replication. Other DNA tumor virus gene products such as adenovirus E1A 12S and human papillomavirus 16 E7 could also complement CT for replication. Although NT, E1A 12S, and E7 all bind the retinoblastoma gene product (pRB) and p107, genetic analysis demonstrates an additional function, independent of that binding, is responsible for complementation. Images PMID:7991595
THE PRODUCTION OF ERYTHROCYTE AUTOANTIBODIES IN CHIMPANZEES
Zmijewski, Chester M.
1965-01-01
Young adult chimpanzees immunized with human blood products produced circulating antibodies which reacted with human red cells of a certain proportion of chimpanzees. In addition, agglutinins were formed which reacted with the animals' own erythrocytes. That these agglutinins were true autoantibodies was demonstrated by: (a) their ability to sensitize the animals' own erythrocytes at 37°C both in vivo and in intro; (b) the iso-specificity which they displayed toward other chimpanzee red cells; and (c) the fact that they belonged to the γG-class of immunoglobulins. Complement appeared to be bound to the in vivo sensitized cells but no evidence of increased cell destruction was observed. It seemed most likely that these autoagglutinins were produced as a result of active immunization with closely related antigens. PMID:14278223
NASA Astrophysics Data System (ADS)
Ghita, Adrian; Matousek, Pavel; Stone, Nick
2018-02-01
Our work focuses on the development of a medical Raman spectroscopy based platform to non-invasively detect and determine in-vivo molecular information deep inside biological tissues by monitoring the chemical composition of breast calcifications. The ultimate goal is to replace a needle biopsy which typically follows the detection of an abnormality in mammographic images. Here we report the non-invasive detection of calcium oxalate monohydrate in tissue through 40 mm of phantom tissues using our recently developed advanced Raman instrument complementing our previous detection of calcium hydroxyapatite through this thickness of tissue. The ability to detect these two key types of calcifications opens avenues for the development of non-invasive in-vivo breast cancer diagnostic tool in the future.
Yamamoto, Yoshiko; Negi, Juntaro; Wang, Cun; Isogai, Yasuhiro; Schroeder, Julian I; Iba, Koh
2016-02-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. © 2016 American Society of Plant Biologists. All rights reserved.
Yamamoto, Yoshiko; Negi, Juntaro; Isogai, Yasuhiro; Schroeder, Julian I.; Iba, Koh
2016-01-01
The guard cell S-type anion channel, SLOW ANION CHANNEL1 (SLAC1), a key component in the control of stomatal movements, is activated in response to CO2 and abscisic acid (ABA). Several amino acids existing in the N-terminal region of SLAC1 are involved in regulating its activity via phosphorylation in the ABA response. However, little is known about sites involved in CO2 signal perception. To dissect sites that are necessary for the stomatal CO2 response, we performed slac1 complementation experiments using transgenic plants expressing truncated SLAC1 proteins. Measurements of gas exchange and stomatal apertures in the truncated transgenic lines in response to CO2 and ABA revealed that sites involved in the stomatal CO2 response exist in the transmembrane region and do not require the SLAC1 N and C termini. CO2 and ABA regulation of S-type anion channel activity in guard cells of the transgenic lines confirmed these results. In vivo site-directed mutagenesis experiments targeted to amino acids within the transmembrane region of SLAC1 raise the possibility that two tyrosine residues exposed on the membrane are involved in the stomatal CO2 response. PMID:26764376
2017-01-01
Tamm-Horsfall protein (THP) is an abundant urinary protein of renal origin. We hypothesize that THP can act as an inhibitor of complement since THP binds complement 1q (C1q) of the classical complement pathway, inhibits activation of this pathway, and is important in decreasing renal ischemia-reperfusion injury (a complement-mediated condition). In this study, we began to investigate whether THP interacted with the alternate complement pathway via complement factor H (CFH). THP was shown to bind CFH using ligand blots and in an ELISA (KD of 1 × 10−6 M). Next, the ability of THP to alter CFH’s normal action as it functioned as a cofactor in complement factor I (CFI)–mediated complement 3b (C3b) degradation was investigated. Unexpectedly, control experiments in these in vitro assays suggested that THP, without added CFH, could act as a cofactor in CFI-mediated C3b degradation. This cofactor activity was present equally in THP isolated from 10 different individuals. While an ELISA demonstrated small amounts of CFH contaminating THP samples, these CFH amounts were insufficient to explain the degree of cofactor activity present in THP. An ELISA demonstrated that THP directly bound C3b (KD ~ 5 × 10−8 m), a prerequisite for a protein acting as a C3b degradation cofactor. The cofactor activity of THP likely resides in the protein portion of THP since partially deglycosylated THP still retained cofactor activity. In conclusion, THP appears to participate directly in complement inactivation by its ability to act as a cofactor for C3b degradation, thus adding support to the hypothesis that THP might act as an endogenous urinary tract inhibitor of complement. PMID:28742158
Broders-Bondon, Florence; Paul-Gilloteaux, Perrine; Gazquez, Elodie; Heysch, Julie; Piel, Matthieu; Mayor, Roberto; Lambris, John D.; Dufour, Sylvie
2016-01-01
We analyzed the cellular and molecular mechanisms governing the adhesive and migratory behavior of enteric neural crest cells (ENCCs) during their collective migration within the developing mouse gut. We aimed to decipher the role of the complement anaphylatoxin C3a during this process, because this well-known immune system attractant has been implicated in cephalic NCC co-attraction, a process controlling directional migration. We used the conditional Ht-PA-cre transgenic mouse model allowing a specific ablation of the N-cadherin gene and the expression of a fluorescent reporter in migratory ENCCs without affecting the central nervous system. We performed time-lapse videomicroscopy of ENCCs from control and N-cad-herin mutant gut explants cultured on fibronectin (FN) and micropatterned FN-stripes with C3a or C3aR antagonist, and studied cell migration behavior with the use of triangulation analysis to quantify cell dispersion. We performed ex vivo gut cultures with or without C3aR antagonist to determine the effect on ENCC behavior. Confocal microscopy was used to analyze the cell-matrix adhesion properties. We provide the first demonstration of the localization of the complement anaphylatoxin C3a and its receptor on ENCCs during their migration in the embryonic gut. C3aR receptor inhibition alters ENCC adhesion and migration, perturbing directionality and increasing cell dispersion both in vitro and ex vivo. N-cad-herin-null ENCCs do not respond to C3a co-attraction. These findings indicate that C3a regulates cell migration in a N-cadherin-dependent process. Our results shed light on the role of C3a in regulating collective and directional cell migration, and in ganglia network organization during enteric nervous system ontogenesis. The detection of an immune system chemokine in ENCCs during ENS development may also shed light on new mechanisms for gastrointestinal disorders. PMID:27041467
NASA Astrophysics Data System (ADS)
Neubauer, Jürgen; Mergell, Patrick; Eysholdt, Ulrich; Herzel, Hanspeter
2001-12-01
This report is on direct observation and modal analysis of irregular spatio-temporal vibration patterns of vocal fold pathologies in vivo. The observed oscillation patterns are described quantitatively with multiline kymograms, spectral analysis, and spatio-temporal plots. The complex spatio-temporal vibration patterns are decomposed by empirical orthogonal functions into independent vibratory modes. It is shown quantitatively that biphonation can be induced either by left-right asymmetry or by desynchronized anterior-posterior vibratory modes, and the term ``AP (anterior-posterior) biphonation'' is introduced. The presented phonation examples show that for normal phonation the first two modes sufficiently explain the glottal dynamics. The spatio-temporal oscillation pattern associated with biphonation due to left-right asymmetry can be explained by the first three modes. Higher-order modes are required to describe the pattern for biphonation induced by anterior-posterior vibrations. Spatial irregularity is quantified by an entropy measure, which is significantly higher for irregular phonation than for normal phonation. Two asymmetry measures are introduced: the left-right asymmetry and the anterior-posterior asymmetry, as the ratios of the fundamental frequencies of left and right vocal fold and of anterior-posterior modes, respectively. These quantities clearly differentiate between left-right biphonation and anterior-posterior biphonation. This paper proposes methods to analyze quantitatively irregular vocal fold contour patterns in vivo and complements previous findings of desynchronization of vibration modes in computer modes and in in vitro experiments.
Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production
Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph
2012-01-01
Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269
Saveleva, M S; Ivanov, A N; Kurtukova, M O; Atkin, V S; Ivanova, A G; Lyubun, G P; Martyukova, A V; Cherevko, E I; Sargsyan, A K; Fedonnikov, A S; Norkin, I A; Skirtach, A G; Gorin, D A; Parakhonskiy, B V
2018-04-01
Designing advanced biomaterials for tissue regeneration with drug delivery and release functionalities remains a challenge in regenerative medicine. In this research, we have developed novel composite scaffolds based on polymeric polycaprolactone fibers coated with porous calcium carbonate structures (PCL/CaCO 3 ) for tissue engineering and have shown their drug delivery and release in rats. In vivo biocompatibility tests of PCL/CaCO 3 scaffolds were complemented with in vivo drug release study, where tannic acid (TA) was used as a model drug. Release of TA from the scaffolds was realized by recrystallization of the porous vaterite phase of calcium carbonate into the crystalline calcite. Cell colonization and tissue vascularization as well as transplantability of developed PCL/CaCO 3 +TA scaffolds were observed. Detailed study of scaffold transformations during 21-day implantation period was followed by scanning electron microscopy and X-ray diffraction studies before and after in vivo implantation. The presented results demonstrate that PCL/CaCO 3 scaffolds are attractive candidates for implants in bone regeneration and tissue engineering with a possibility of loading biologically active molecules and controlled release. Copyright © 2017 Elsevier B.V. All rights reserved.
Identification of C3b-Binding Small-Molecule Complement Inhibitors Using Cheminformatics.
Garcia, Brandon L; Skaff, D Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K; Wyckoff, Gerald J; Geisbrecht, Brian V
2017-05-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of more than two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology, such as acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases, which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small-molecule inhibitors, small-molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study, we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies, we identified 45 small molecules that putatively bind C3b near ligand-guided functional hot spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand that guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small-molecule complement inhibitors and, to our knowledge, provides the first demonstration of cheminformatics-based, complement-directed drug discovery. Copyright © 2017 by The American Association of Immunologists, Inc.
Identification of C3b-binding Small Molecule Complement Inhibitors Using Cheminformatics
Garcia, Brandon L.; Skaff, D. Andrew; Chatterjee, Arindam; Hanning, Anders; Walker, John K.; Wyckoff, Gerald J.; Geisbrecht, Brian V.
2017-01-01
The complement system is an elegantly regulated biochemical cascade formed by the collective molecular recognition properties and proteolytic activities of over two dozen membrane-bound or serum proteins. Complement plays diverse roles in human physiology which include acting as a sentry against invading microorganisms, priming of the adaptive immune response, and removal of immune complexes. However, dysregulation of complement can serve as a trigger for a wide range of human diseases which include autoimmune, inflammatory, and degenerative conditions. Despite several potential advantages of modulating complement with small molecule inhibitors, small molecule drugs are highly underrepresented in the current complement-directed therapeutics pipeline. In this study we have employed a cheminformatics drug discovery approach based on the extensive structural and functional knowledge available for the central proteolytic fragment of the cascade, C3b. Using parallel in silico screening methodologies we identified 45 small molecules which putatively bind C3b near ligand-guided functional hot-spots. Surface plasmon resonance experiments resulted in the validation of seven dose-dependent C3b-binding compounds. Competition-based biochemical assays demonstrated the ability of several C3b-binding compounds to interfere with binding of the original C3b ligand which guided their discovery. In vitro assays of complement function identified a single complement inhibitory compound, termed cmp-5, and mechanistic studies of the cmp-5 inhibitory mode revealed it acts at the level of C5 activation. This study has led to the identification of a promising new class of C3b-binding small molecule complement inhibitors, and to our knowledge, provides the first demonstration of cheminformatics-based complement-directed drug discovery. PMID:28298523
Knowledge-based design of a biosensor to quantify localized ERK activation in living cells
Kummer, Lutz; Hsu, Chia-Wen; Dagliyan, Onur; MacNevin, Christopher; Kaufholz, Melanie; Zimmermann, Bastian; Dokholyan, Nikolay V.; Hahn, Klaus M.; Plückthun, Andreas
2014-01-01
Summary Investigation of protein activation in living cells is fundamental to understand how proteins are influenced by the full complement of upstream regulators they experience. We describe here the generation of a biosensor based on the Designed Ankyrin Repeat Protein (DARPin) binding scaffold suited for intracellular applications. Combining selection and evolution from libraries, knowledge-based design and efficient and rapid testing of conjugate candidates, we created an ERK activity biosensor by derivatizing a DARPin specific for phosphorylated ERK (pERK) with a solvatochromic merocyanine dye (mero87), whose fluorescence increases upon pERK binding. The biosensor specifically responded to pERK2, recognized by its conformation, but not to non-phosphorylated ERK2 or other closely related mitogen-activated kinases tested. Activated endogenous ERK was visualized in mouse embryo fibroblasts incubated in 2% serum, revealing greater activation in the nucleus, perinuclear regions, and especially the nucleoli. Activity was greatly reduced by the MEK1/2 inhibitor U0126. The DARPin-based biosensor will serve as useful tool for studying biological functions of ERK in vitro and in vivo. PMID:23790495
A regenerative approach to the treatment of multiple sclerosis.
Deshmukh, Vishal A; Tardif, Virginie; Lyssiotis, Costas A; Green, Chelsea C; Kerman, Bilal; Kim, Hyung Joon; Padmanabhan, Krishnan; Swoboda, Jonathan G; Ahmad, Insha; Kondo, Toru; Gage, Fred H; Theofilopoulos, Argyrios N; Lawson, Brian R; Schultz, Peter G; Lairson, Luke L
2013-10-17
Progressive phases of multiple sclerosis are associated with inhibited differentiation of the progenitor cell population that generates the mature oligodendrocytes required for remyelination and disease remission. To identify selective inducers of oligodendrocyte differentiation, we performed an image-based screen for myelin basic protein (MBP) expression using primary rat optic-nerve-derived progenitor cells. Here we show that among the most effective compounds identifed was benztropine, which significantly decreases clinical severity in the experimental autoimmune encephalomyelitis (EAE) model of relapsing-remitting multiple sclerosis when administered alone or in combination with approved immunosuppressive treatments for multiple sclerosis. Evidence from a cuprizone-induced model of demyelination, in vitro and in vivo T-cell assays and EAE adoptive transfer experiments indicated that the observed efficacy of this drug results directly from an enhancement of remyelination rather than immune suppression. Pharmacological studies indicate that benztropine functions by a mechanism that involves direct antagonism of M1 and/or M3 muscarinic receptors. These studies should facilitate the development of effective new therapies for the treatment of multiple sclerosis that complement established immunosuppressive approaches.
Integration of QSAR and in vitro toxicology.
Barratt, M D
1998-01-01
The principles of quantitative structure-activity relationships (QSAR) are based on the premise that the properties of a chemical are implicit in its molecular structure. Therefore, if a mechanistic hypothesis can be proposed linking a group of related chemicals with a particular toxic end point, the hypothesis can be used to define relevant parameters to establish a QSAR. Ways in which QSAR and in vitro toxicology can complement each other in development of alternatives to live animal experiments are described and illustrated by examples from acute toxicological end points. Integration of QSAR and in vitro methods is examined in the context of assessing mechanistic competence and improving the design of in vitro assays and the development of prediction models. The nature of biological variability is explored together with its implications for the selection of sets of chemicals for test development, optimization, and validation. Methods are described to support the use of data from in vivo tests that do not meet today's stringent requirements of acceptability. Integration of QSAR and in vitro methods into strategic approaches for the replacement, reduction, and refinement of the use of animals is described with examples. PMID:9599692
An, Jian-Ping; Liu, Xin; Li, Hao-Hao; You, Chun-Xiang; Wang, Xiao-Fei; Hao, Yu-Jin
2017-11-01
MdMYB1 is an important regulator for anthocyanin accumulation in apple (Malus × domestica). Here, an apple RING E3 ligase, MdMIEL1, was screened out as a partner of MdMYB1 with a yeast two-hybrid approach. Pull-down, bimolecular fluorescence complementation and coimmunoprecipitation assays further verified the interaction between MdMIEL1 and MdMYB1 proteins. Subsequently, in vitro and in vivo experiments indicated that MdMIEL1 functioned as a ubiquitin E3 ligase to ubiquitinate MdMYB1 protein, followed by degradation through a 26S proteasome pathway. Furthermore, transgenic studies in apple calli and Arabidopsis demonstrated that MdMIEL1 negatively regulated anthocyanin accumulation by modulating the degradation of MdMYB1 protein. Taken together, our findings provide a new insight into the molecular mechanism by which MdMIEL1 negatively regulates anthocyanin biosynthesis by ubiquitinating and degrading MdMYB1 protein. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Billeter, M A; Naim, H Y; Udem, S A
2009-01-01
An overview is given on the development of technologies to allow reverse genetics of RNA viruses, i.e., the rescue of viruses from cDNA, with emphasis on nonsegmented negative-strand RNA viruses (Mononegavirales), as exemplified for measles virus (MV). Primarily, these technologies allowed site-directed mutagenesis, enabling important insights into a variety of aspects of the biology of these viruses. Concomitantly, foreign coding sequences were inserted to (a) allow localization of virus replication in vivo through marker gene expression, (b) develop candidate multivalent vaccines against measles and other pathogens, and (c) create candidate oncolytic viruses. The vector use of these viruses was experimentally encouraged by the pronounced genetic stability of the recombinants unexpected for RNA viruses, and by the high load of insertable genetic material, in excess of 6 kb. The known assets, such as the small genome size of the vector in comparison to DNA viruses proposed as vectors, the extensive clinical experience of attenuated MV as vaccine with a proven record of high safety and efficacy, and the low production cost per vaccination dose are thus favorably complemented.
Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S
2015-06-01
Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K.; Liu, Peter; Pantua, Homer; Abbas, Alexander R.; Nickerson, Nicholas N.; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min
2017-01-01
ABSTRACT Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. PMID:28536290
An 'instant gene bank' method for gene cloning by mutant complementation.
Gems, D; Aleksenko, A; Belenky, L; Robertson, S; Ramsden, M; Vinetski, Y; Clutterbuck, A J
1994-02-01
We describe a new method of gene cloning by complementation of mutant alleles which obviates the need for construction of a gene library in a plasmid vector in vitro and its amplification in Escherichia coli. The method involves simultaneous transformation of mutant strains of the fungus Aspergillus nidulans with (i) fragmented chromosomal DNA from a donor species and (ii) DNA of a plasmid without a selectable marker gene, but with a fungal origin of DNA replication ('helper plasmid'). Transformant colonies appear as the result of the joining of chromosomal DNA fragments carrying the wild-type copies of the mutant allele with the helper plasmid. Joining may occur either by ligation (if the helper plasmid is in linear form) or recombination (if it is cccDNA). This event occurs with high efficiency in vivo, and generates an autonomously replicating plasmid cointegrate. Transformants containing Penicillium chrysogenum genomic DNA complementing A. nidulans niaD, nirA and argB mutations have been obtained. While some of these cointegrates were evidently rearranged or consisted only of unaltered replicating plasmid, in other cases plasmids could be recovered into E. coli and were subsequently shown to contain the selected gene. The utility of this "instant gene bank" technique is demonstrated here by the molecular cloning of the P. canescens trpC gene.
Brain magnetic resonance imaging with contrast dependent on blood oxygenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, S.; Lee, T.M.; Kay, A.R.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high yields, the authors demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normalmore » physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complement other techniques that are attempting to provide position emission tomography-like measurements related to regional neural activity.« less
Brain Magnetic Resonance Imaging with Contrast Dependent on Blood Oxygenation
NASA Astrophysics Data System (ADS)
Ogawa, S.; Lee, T. M.; Kay, A. R.; Tank, D. W.
1990-12-01
Paramagnetic deoxyhemoglobin in venous blood is a naturally occurring contrast agent for magnetic resonance imaging (MRI). By accentuating the effects of this agent through the use of gradient-echo techniques in high fields, we demonstrate in vivo images of brain microvasculature with image contrast reflecting the blood oxygen level. This blood oxygenation level-dependent (BOLD) contrast follows blood oxygen changes induced by anesthetics, by insulin-induced hypoglycemia, and by inhaled gas mixtures that alter metabolic demand or blood flow. The results suggest that BOLD contrast can be used to provide in vivo real-time maps of blood oxygenation in the brain under normal physiological conditions. BOLD contrast adds an additional feature to magnetic resonance imaging and complements other techniques that are attempting to provide positron emission tomography-like measurements related to regional neural activity.
Diocou, S; Volpe, A; Jauregui-Osoro, M; Boudjemeline, M; Chuamsaamarkkee, K; Man, F; Blower, P J; Ng, T; Mullen, G E D; Fruhwirth, G O
2017-04-19
Cancer cell metastasis is responsible for most cancer deaths. Non-invasive in vivo cancer cell tracking in spontaneously metastasizing tumor models still poses a challenge requiring highest sensitivity and excellent contrast. The goal of this study was to evaluate if the recently introduced PET radiotracer [ 18 F]tetrafluoroborate ([ 18 F]BF 4 - ) is useful for sensitive and specific metastasis detection in an orthotopic xenograft breast cancer model expressing the human sodium iodide symporter (NIS) as a reporter. In vivo imaging was complemented by ex vivo fluorescence microscopy and γ-counting of harvested tissues. Radionuclide imaging with [ 18 F]BF 4 - (PET/CT) was compared to the conventional tracer [ 123 I]iodide (sequential SPECT/CT). We found that [ 18 F]BF 4 - was superior due to better pharmacokinetics, i.e. faster tumor uptake and faster and more complete clearance from circulation. [ 18 F]BF 4 - -PET was also highly specific as in all detected tissues cancer cell presence was confirmed microscopically. Undetected comparable tissues were similarly found to be free of metastasis. Metastasis detection by routine metabolic imaging with [ 18 F]FDG-PET failed due to low standard uptake values and low contrast caused by adjacent metabolically active organs in this model. [ 18 F]BF 4 - -PET combined with NIS expressing disease models is particularly useful whenever preclinical in vivo cell tracking is of interest.
Moyers, C; Pottmeyer-Gerber, C; Gerber, M; Buszello, H; Dröge, W
1984-10-01
The activation of cytotoxic T lymphocytes (CTL) in vivo after immunization of normal or cyclophosphamide-treated mice with allogeneic cells was strongly augmented by the administration of mitomycin C-treated or irradiated concanavalin A-activated spleen cells (Con A-spl). This effect of the Con A-spl was abrogated by treatment with Anti-Thy 1 antibody plus complement, and was therefore presumably mediated by activated "helper" T cells. (The term "helper" cell is only operationally defined in this context and indicates that the augmenting irradiation resistant T cells are obviously not CTL precursor cells). These observations indicated (i) that even the cytotoxic response against allogeneic stimulator cells suffers in vivo from insufficient "helper" T cell activity, and (ii) that the injection of Con A-spl may serve as a simple procedure to apply this "helper" activity in vivo. This procedure was at least as effective as the repeated injection of interleukin 2 (IL-2)-containing cell supernatants with up to four 30-unit doses of IL-2 per mouse. IL-2-containing cell supernatants were found to mediate similar effects only if injected into the footpads but not intravenously. This was in line with the reported observation that IL-2 has an extremely short half-life in vivo. The injection of Con A-spl was also found to augment the proliferative response in the regional lymph nodes.
Improved ex vivo blood compatibility of central venous catheter with noble metal alloy coating.
Vafa Homann, Manijeh; Johansson, Dorota; Wallen, Håkan; Sanchez, Javier
2016-10-01
Central line associated bloodstream infections (CLABSIs) are a serious cause of morbidity and mortality induced by the use of central venous catheters (CVCs). Nobel metal alloy (NMA) coating is an advanced surface modification that prevents microbial adhesion and growth on catheters and thereby reduces the risk of infection. In vitro microbiological analyses have shown up to 90% reduction in microbial adhesion on coated CVC compared to uncoated ones. This study aimed to assess the blood compatibility of NMA-coated CVC according to ISO 10993-4. Hemolysis, thrombin-antithrombin (TAT) complex, platelet counts, fibrin deposition, and C3a and SC5b-9 complement activation were analyzed in human blood exposed to the NMA-coated and control CVCs using a Chandler-loop model. NMA-coated CVC did not induce hemolysis and fell in the "nonhemolytic" category according to ASTM F756-00. Significantly lower amounts of TAT were generated and less fibrin was deposited on NMA-coated CVC than on uncoated ones. Slightly higher platelet counts and lower complement markers were observed for NMA-coated CVC compared to uncoated ones. These data suggest that the NMA-coated CVC has better ex vivo blood compatibility compared to uncoated CVC. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1359-1365, 2016. © 2015 The Authors Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.
Rajabi, Mohsen; Struble, Evi; Zhou, Zhaohua; Karnaukhova, Elena
2012-01-01
Human C1-esterase inhibitor (C1-INH) is a multifunctional plasma protein with a wide range of inhibitory and non-inhibitory properties, mainly recognized as a key down-regulator of the complement and contact cascades. The potentiation of C1-INH by heparin and other glycosaminoglycans (GAGs) regulates a broad spectrum of C1-INH activities in vivo both in normal and disease states. SCOPE OF RESEARCH: We have studied the potentiation of human C1-INH by heparin using Surface Plasmon Resonance (SPR), circular dichroism (CD) and a functional assay. To advance a SPR for multiple-unit interaction studies of C1-INH we have developed a novel (consecutive double capture) approach exploring different immobilization and layout. Our SPR experiments conducted in three different design versions showed marked acceleration in C1-INH interactions with complement protease C1s as a result of potentiation of C1-INH by heparin (from 5- to 11-fold increase of the association rate). Far-UV CD studies suggested that heparin binding did not alter C1-INH secondary structure. Functional assay using chromogenic substrate confirmed that heparin does not affect the amidolytic activity of C1s, but does accelerate its consumption due to C1-INH potentiation. This is the first report that directly demonstrates a significant acceleration of the C1-INH interactions with C1s due to heparin by using a consecutive double capture SPR approach. The results of this study may be useful for further C-INH therapeutic development, ultimately for the enhancement of current C1-INH replacement therapies. Published by Elsevier B.V.
Using NMR to Probe the Regio- and Stereochemistry of the Hydration of 1-Hexene
ERIC Educational Resources Information Center
Saba, Shahrokh; Clarke, Donald D.; Iwanoski, Christa; Lobasso, Thomas
2010-01-01
This undergraduate organic laboratory experiment complements previously described and popular experiments on hydration of 1-hexene where students experimentally establish the Markovnikov regioselectivity of alkene hydration. In this experiment, students explore not only the regiochemistry but also the stereochemistry of 1-hexene hydration and…
Troxell, Bryan
2016-07-01
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a leading cause of salmonellosis. Poultry and poultry products are implicated in transmission of Salmonella to humans. In 2013, an outbreak of S Typhimurium occurred that comprised 39 states within the United States and was associated with backyard flocks of chickens. Colonization of the avian host by S Typhimurium requires numerous genetic factors encoded within the bacterium. Of particular interest are genetic factors induced by alternative sigma factors within S Typhimurium since these genetic elements are important for adaptation to different environmental stresses. The heat shock response is a dedicated change in gene regulation within bacteria in response to several stresses, specifically growth at 42°C. Because chickens have a higher body temperature than other animals (42°C) the hypothesis was tested that components of the heat shock response are important for optimal fitness within the chicken. To this end, deletion of the heat shock proteases clpPX (BTNC0022) or lon (BTNC0021) was accomplished and the bacterial fitness in vivo was compared to the "wild-type" strain (NC1040) using a competition assay. One-day-old chicks were orally gavaged with an equal mixture of NC1040 and either BTNC0022 or BTNC0021. Quantification of viable bacteria over time by using plate counts indicated that deletion of either heat shock protease resulted in significantly reduced colonization of the chicken ceca compared to the wild-type strain. To satisfy the molecular Koch's postulates, clpPX and lon mutants were complemented in trans using a low-copy number plasmid for additional in vivo experiments. Complementation studies confirmed the importance of either heat shock protease to colonization of the chicken ceca. This report demonstrated that both ClpPX and Lon were important for optimal fitness within chickens. Moreover, these results suggested that components of the heat shock may be critical factors used by S. Typhimurium for colonization of poultry. The use of feed additives or other treatments that inactivate or inhibit ClpPX or Lon may reduce the bacterial burden of S. Typhimurium in poultry. © The Author 2016. Published by Oxford University Press on behalf of Poultry Science Association.
Optical imaging for breast cancer prescreening
Godavarty, Anuradha; Rodriguez, Suset; Jung, Young-Jin; Gonzalez, Stephanie
2015-01-01
Breast cancer prescreening is carried out prior to the gold standard screening using X-ray mammography and/or ultrasound. Prescreening is typically carried out using clinical breast examination (CBE) or self-breast examinations (SBEs). Since CBE and SBE have high false-positive rates, there is a need for a low-cost, noninvasive, non-radiative, and portable imaging modality that can be used as a prescreening tool to complement CBE/SBE. This review focuses on the various hand-held optical imaging devices that have been developed and applied toward early-stage breast cancer detection or as a prescreening tool via phantom, in vivo, and breast cancer imaging studies. Apart from the various optical devices developed by different research groups, a wide-field fiber-free near-infrared optical scanner has been developed for transillumination-based breast imaging in our Optical Imaging Laboratory. Preliminary in vivo studies on normal breast tissues, with absorption-contrasted targets placed in the intramammary fold, detected targets as deep as 8.8 cm. Future work involves in vivo imaging studies on breast cancer subjects and comparison with the gold standard X-ray mammography approach. PMID:26229503
Bjornson, H. S.; Hill, E. O.
1973-01-01
The effects of Bacteroides sp., Fusobacterium mortiferum, Bacteroides fragilis, and Sphaerophorus necrophorus on various parameters of blood coagulation in vivo and in vitro were determined and compared to the coagulation effects of Escherichia coli and Salmonella minnesota, wild type and R595. Intravenous injection of washed cells, culture filtrate, lipopolysaccharide, or lipid A of the anaerobic gram-negative microorganisms into mice resulted in acceleration of coagulation. Lipopolysaccharide and lipid A of the anaerobic microorganisms had no apparent effect on circulating platelets in mice or rabbits and did not cause aggregation of human platelets in vitro. Washed cells, lipopolysaccharide, and lipid A of Bacteroides sp. and F. mortiferum also significantly accelerated the clotting time of recalcified platelet poor normal human plasma and C6-deficient rabbit plasma. Lipid A, but not lipopolysaccharide, of E. coli and washed cells of S. minnesota R595 accelerated coagulation by a similar mechanism. These results indicated that Bacteroides sp. and F. mortiferum can accelerate blood coagulation in vivo and in vitro by a mechanism which does not involve platelets or terminal components of complement. PMID:4594118
Wilderness visitor experiences: Lessons from 50 years of research
David N. Cole; Daniel R. Williams
2012-01-01
This paper reviews 50 years of research on the experiences of wilderness visitors. Research on the nature of experiences began with an emphasis on motivations for taking wilderness trips and a focus on the experiential outcomes of wilderness visits. This perspective has been complemented by recent work that more deeply explores the lived experience in wilderness, its...
Skarzynski, Martin; Niemann, Carsten U; Lee, Yuh Shan; Martyr, Sabrina; Maric, Irina; Salem, Dalia; Stetler-Stevenson, Maryalice; Marti, Gerald E; Calvo, Katherine R; Yuan, Constance; Valdez, Janet; Soto, Susan; Farooqui, Mohammed Z.H.; Herman, Sarah E.M.; Wiestner, Adrian
2015-01-01
Purpose Clinical trials of ibrutinib combined with anti-CD20 monoclonal antibodies (mAbs) for chronic lymphocytic leukemia (CLL) report encouraging results. Paradoxically, in pre-clinical studies in vitro ibrutinib was reported to decrease CD20 expression and inhibits cellular effector mechanisms. We therefore set out to investigate effects of in vivo ibrutinib treatment that could explain this paradox. Experimental Design Patients received single agent ibrutinib (420mg daily) on an investigator-initiated phase 2 trial. Serial blood samples were collected pre-treatment and during treatment for ex vivo functional assays to examine the effects on CLL cell susceptibility to anti-CD20 mAbs. Results We demonstrate that CD20 expression on ibrutinib was rapidly and persistently down-regulated (median reduction 74%, day 28, P<0.001) compared to baseline. Concomitantly, CD20 mRNA was decreased concurrent with reduced NF-κB signaling. An NF-κB binding site in the promoter of MS4A1 (encoding CD20) and down-regulation of CD20 by NF-κB inhibitors support a direct transcriptional effect. Ex vivo, tumor cells from patients on ibrutinib were less susceptible to anti-CD20 mAb-mediated complement-dependent cytotoxicity than pre-treatment cells (median reduction 75%, P<0.001); however, opsonization by the complement protein C3d, which targets cells for phagocytosis, was relatively maintained. Expression of decay accelerating factor (CD55) decreased on ibrutinib, providing a likely mechanism for the preserved C3d opsonization. Additionally, ibrutinib significantly inhibited trogocytosis, a major contributor to antigen loss and tumor escape during mAb therapy. Conclusions Our data indicate that ibrutinib promotes both positive and negative interactions with anti-CD20 mAbs, suggesting that successfully harnessing maximal anti-tumor effects of such combinations requires further investigation. PMID:26283682
Krieter, Detlef H; Lemke, Horst-Dieter; Wanner, Christoph
2008-07-01
Optimizing solute removal at minimized albumin loss is a major goal of dialyzer engineering. In a prospective, randomized, crossover study on eight patients (age 63 +/- 14 years) on maintenance hemodialysis, the new Baxter Xenium 170 high-flux dialyzer (BX), which contains a 1.7-m(2) PUREMA H dialysis membrane, was compared with two widely used reference high-flux dialyzers currently available for hemodialysis in North America, the Fresenius Optiflux 180 NR (FO) and the Gambro Polyflux 170 H (GP). Solute removal and biocompatibility were assessed in hemodialysis for 240 min at blood and dialysate flow rates of 300 and 500 mL/min, respectively. Additional ex vivo experiments detecting the interleukin-1beta (IL-1b) generation in recirculated donor blood were performed to demonstrate the pyrogen retention properties of the dialyzers. The instantaneous plasma clearances were similar for the three dialyzers except for cystatin c (cysc), for which a lower clearance was measured with FO as compared with BX and GP after 30 and 180 min of hemodialysis. The reduction ratios (RRs) corrected for the hemoconcentration of beta(2)-microglobulin and cysc were lower in FO (44 +/- 9 and 35 +/- 9%, respectively) versus BX (62 +/- 6 and 59 +/- 7%, respectively) and GP (61 +/- 7 and 56 +/- 8%, respectively). The RRs of the cytokine tumor necrosis factor alpha and interleukin-6 were not different between the dialyzers. The albumin loss was <300 mg for all filters. No differences between the dialyzers were found in the biocompatibility parameters showing very low leukocyte and complement activation. The ex vivo recirculation experiments revealed a significantly higher IL-1b generation for GP (710 +/- 585 pg/mL) versus BX (317 +/- 211 pg/mL) and FO (151 +/- 38 pg/mL). BX is characterized by a steep solute sieving profile with high low-molecular weight protein removal at virtually no albumin loss and an excellent biocompatibility. This improved performance may be regarded as a contribution to optimal dialysis therapy.
Functional conservation of RNA polymerase II in fission and budding yeasts.
Shpakovski, G V; Gadal, O; Labarre-Mariotte, S; Lebedenko, E N; Miklos, I; Sakurai, H; Proshkin, S A; Van Mullem, V; Ishihama, A; Thuriaux, P
2000-02-04
The complementary DNAs of the 12 subunits of fission yeast (Schizosaccharomyces pombe) RNA polymerase II were expressed from strong promoters in Saccharomyces cerevisiae and tested for heterospecific complementation by monitoring their ability to replace in vivo the null mutants of the corresponding host genes. Rpb1 and Rpb2, the two largest subunits and Rpb8, a small subunit shared by all three polymerases, failed to support growth in S. cerevisiae. The remaining nine subunits were all proficient for heterospecific complementation and led in most cases to a wild-type level of growth. The two alpha-like subunits (Rpb3 and Rpb11), however, did not support growth at high (37 degrees C) or low (25 degrees C) temperatures. In the case of Rpb3, growth was restored by increasing the gene dosage of the host Rpb11 or Rpb10 subunits, confirming previous evidence of a close genetic interaction between these three subunits. Copyright 2000 Academic Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myhre, Marit Renee; Olsen, Gunn-Hege; Gosert, Rainer
High-level replication of polyomavirus BK (BKV) in kidney transplant recipients is associated with the emergence of BKV variants with rearranged (rr) non-coding control region (NCCR) increasing viral early gene expression and cytopathology. Cloning and sequencing revealed the presence of a BKV quasispecies which included non-functional variants when assayed in a recombinant virus assay. Here we report that the rr-NCCR of BKV variants RH-3 and RH-12, both bearing a NCCR deletion including the 5' end of the agnoprotein coding sequence, mediated early and late viral reporter gene expression in kidney cells. However, in a recombinant virus they failed to produce infectiousmore » progeny despite large T-antigen and VP1 expression and the formation of nuclear virus-like particles. Infectious progeny was generated when the agnogene was reconstructed in cis or agnoprotein provided in trans from a co-existing BKV rr-NCCR variant. We conclude that complementation can rescue non-functional BKV variants in vitro and possibly in vivo.« less
Pelkonen, S; Pluschke, G
1989-10-01
Functional properties of rat immunoglobulins obtained from hybridoma isotype switch variants were studied in vivo in a rat model for neonatal bacterial sepsis. Escherichia coli 018:K1, a common cause of human neonatal sepsis and meningitis, was injected intravenously into 6-day-old rats after incubation with 018-specific antibodies IgM, IgG1, IgG2a, IgG2b, IgG2c, IgE and IgA. The clearance of bacteria treated with saline or IgE was low, whereas monoclonal antibodies of other isotypes triggered hepatic sequestration and killing of the K1 E. coli cells. All four IgG subclasses were more efficient than IgM and IgA. Comparable results were obtained upon injecting antibodies into rats with an established fulminating bacteraemia. IgM was inactive in animals depleted of complement with cobra-venom factor (CVF), whereas IgG2b was able to trigger hepatic clearance independently of complement.
CovR Regulates Streptococcus mutans Susceptibility To Complement Immunity and Survival in Blood
Alves, Lívia A.; Nomura, Ryota; Mariano, Flávia S.; Harth-Chu, Erika N.; Stipp, Rafael N.; Nakano, Kazuhiko
2016-01-01
Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro. Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans. Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization. PMID:27572331
Lee, Sooncheol; Nguyen, Huong Minh; Kang, Changwon
2010-10-01
No biological function has been identified for tiny RNA transcripts that are abortively and repetitiously released from initiation complexes of RNA polymerase in vitro and in vivo to date. In this study, we show that abortive initiation affects termination in transcription of bacteriophage T7 gene 10. Specifically, abortive transcripts produced from promoter phi 10 exert trans-acting antitermination activity on terminator T phi both in vitro and in vivo. Following abortive initiation cycling of T7 RNA polymerase at phi 10, short G-rich and oligo(G) RNAs were produced and both specifically sequestered 5- and 6-nt C + U stretch sequences, consequently interfering with terminator hairpin formation. This antitermination activity depended on sequence-specific hybridization of abortive transcripts with the 5' but not 3' half of T phi RNA. Antitermination was abolished when T phi was mutated to lack a C + U stretch, but restored when abortive transcript sequence was additionally modified to complement the mutation in T phi, both in vitro and in vivo. Antitermination was enhanced in vivo when the abortive transcript concentration was increased via overproduction of RNA polymerase or ribonuclease deficiency. Accordingly, antitermination activity exerted on T phi by abortive transcripts should facilitate expression of T phi-downstream promoter-less genes 11 and 12 in T7 infection of Escherichia coli.
Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds
Georgiev, Georgi As.; Yokoi, Norihiko; Nencheva, Yana; Peev, Nikola; Daull, Philippe
2017-01-01
Cationorm® (CN) cationic nanoemulsion was demonstrated to enhance tear film (TF) stability in vivo possibly via effects on tear film lipid layer (TFLL). Therefore the interactions of CN with human meibum (MGS) and TFLL in vitro and in vivo deserve special study. MGS and CN were spread at the air/water interface of a Langmuir surface balance to ensure a range of MGS/CN oil phase ratios: 20/1, 10/1, 5/1, 3/1, 2/1 and 1/1. The films capability to reorganize during dynamic area changes was evaluated via the surface pressure-area compression isotherms and step/relaxation dilatational rheology studies. Films structure was monitored with Brewster angle microscopy. CN/TFLL interactions at the ocular surface were monitored with non-contact specular microscopy. The in vitro studies of MGS/CN layers showed that (i) CN inclusion (at fixed MGS content) increased film elasticity and thickness and that (ii) CN can compensate for moderate meibum deficiency in MGS/CN films. In vivo CN mixed with TFLL in a manner similar to CN/MGS interactions in vitro, and resulted in enhanced thickness of TFLL. In vitro and in vivo data complement each other and facilitated the study of the composition-structure-function relationship that determines the impact of cationic nanoemulsions on TF. PMID:28718823
Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol
2014-01-01
Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis. PMID:24549330
Chandrapala, Dilini; Kim, Kyumson; Choi, Younho; Senevirathne, Amal; Kang, Dong-Hyun; Ryu, Sangryeol; Kim, Kwang-Pyo
2014-05-01
Cronobacter sakazakii is an opportunistic pathogen that causes neonatal meningitis and necrotizing enterocolitis. Its interaction with intestinal epithelium is important in the pathogenesis of enteric infections. In this study, we investigated the involvement of the inv gene in the virulence of C. sakazakii ATCC 29544 in vitro and in vivo. Sequence analysis of C. sakazakii ATCC 29544 inv revealed that it is different from other C. sakazakii isolates. In various cell culture models, an Δinv deletion mutant showed significantly lowered invasion efficiency, which was restored upon genetic complementation. Studying invasion potentials using tight-junction-disrupted Caco-2 cells suggested that the inv gene product mediates basolateral invasion of C. sakazakii ATCC 29544. In addition, comparison of invasion potentials of double mutant (ΔompA Δinv) and single mutants (ΔompA and Δinv) provided evidence for an additive effect of the two putative outer membrane proteins. Finally, the importance of inv and the additive effect of putative Inv and OmpA were also proven in an in vivo rat pup model. This report is the first to demonstrate two proteins working synergistically in vitro, as well as in vivo in C. sakazakii pathogenesis.
Structure transition in lipids and nucleic acids of tumor cells under anticancer drugs applications
NASA Astrophysics Data System (ADS)
Dovbeshko, G. I.; Repnytska, O. P.; Tryndiak, V. P.; Todor, I. N.
2003-12-01
Interaction of DNA and phospholipids from Carcinoma Guerina resistant and sensitive cells of Wistar line rats with anti-cancer drugs - cis-platin and doxorubicin (DOX) have been studied in vivo and in vitro experiments. Surface enhanced infrared absorption (SEIRA) spectroscopy was applied for registration of conformational changes in DNA and lipids induced by anti-cancer drugs. It has been shown in vivo experiment that doxorubicin influences less structural disordering of the membrane than cis-platin. Cis-platin creates irreversible complex with memebrane phospholipids, strongly interacting with phosophates and carbohydrate chains. Doxorubicin influences the ordering of carbohydrate chains and does not strongly influence phosphate heads. This change seems to be partially reversible. In contrast, in vivo experiment the doxorubicin strongly influences the DNA structure, leading to DNA stabilization and formation of new H-bonds in DNA-doxorubicin complex. We have not registered the interaction of DNA with cis-platin in vivo experiment. Experiment in vitro for cis-platin incubation with phospholipids from cancer cells during 0.5 hour at 37°C has not shown those drastic structural peculiarities that it was observed in vivo experiments.
Systematic approaches to toxicology in the zebrafish.
Peterson, Randall T; Macrae, Calum A
2012-01-01
As the current paradigms of drug discovery evolve, it has become clear that a more comprehensive understanding of the interactions between small molecules and organismal biology will be vital. The zebrafish is emerging as a complement to existing in vitro technologies and established preclinical in vivo models that can be scaled for high-throughput. In this review, we highlight the current status of zebrafish toxicology studies, identify potential future niches for the model in the drug development pipeline, and define the hurdles that must be overcome as zebrafish technologies are refined for systematic toxicology.
Salomon, Robert G.; Gu, Xiaodong
2011-01-01
Basic research, exploring the hypothesis that γ-hydroxyalkenal phospholipids are generated in vivo through oxidative cleavage of polyunsaturated phospholipids, is delivering a bonanza of molecular mechanistic insights into cardiovascular disease. Rather than targeting a specific pathology, these studies were predicated on the presumption that a fundamental understanding of lipid oxidation is likely to provide critical insights into disease processes. This investigational approach – from the chemistry of biomolecules to disease phenotype – that complements the more common opposite paradigm, is proving remarkably productive. PMID:21870852
Mirror image DNA nanostructures for chiral supramolecular assemblies.
Lin, Chenxiang; Ke, Yonggang; Li, Zhe; Wang, James H; Liu, Yan; Yan, Hao
2009-01-01
L-DNA, the mirror image of natural D-DNA, can be readily self-assembled into designer discrete or periodic nanostructures. The assembly products are characterized by polyacrylamide gel electrophoresis, circular dichroism spectrum, atomic force microscope, and fluorescence microscope. We found that the use of enantiomer DNA as building material leads to the formation of DNA supramolecules with opposite chirality. Therefore, the L-DNA self-assembly is a substantial complement to the structural DNA nanotechnology. Moreover, the L-DNA architectures feature superior nuclease resistance thus are appealing for in vivo medical applications.
Kulakovskiy, Ivan V; Vorontsov, Ilya E; Yevshin, Ivan S; Sharipov, Ruslan N; Fedorova, Alla D; Rumynskiy, Eugene I; Medvedeva, Yulia A; Magana-Mora, Arturo; Bajic, Vladimir B; Papatsenko, Dmitry A; Kolpakov, Fedor A; Makeev, Vsevolod J
2018-01-04
We present a major update of the HOCOMOCO collection that consists of patterns describing DNA binding specificities for human and mouse transcription factors. In this release, we profited from a nearly doubled volume of published in vivo experiments on transcription factor (TF) binding to expand the repertoire of binding models, replace low-quality models previously based on in vitro data only and cover more than a hundred TFs with previously unknown binding specificities. This was achieved by systematic motif discovery from more than five thousand ChIP-Seq experiments uniformly processed within the BioUML framework with several ChIP-Seq peak calling tools and aggregated in the GTRD database. HOCOMOCO v11 contains binding models for 453 mouse and 680 human transcription factors and includes 1302 mononucleotide and 576 dinucleotide position weight matrices, which describe primary binding preferences of each transcription factor and reliable alternative binding specificities. An interactive interface and bulk downloads are available on the web: http://hocomoco.autosome.ru and http://www.cbrc.kaust.edu.sa/hocomoco11. In this release, we complement HOCOMOCO by MoLoTool (Motif Location Toolbox, http://molotool.autosome.ru) that applies HOCOMOCO models for visualization of binding sites in short DNA sequences. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Learning on the Job: Cooperative Education, Internships and Engineering Problem-Solving Skills
ERIC Educational Resources Information Center
Yin, Alexander C.
2009-01-01
Cooperative education (co-op) and internships are forms of experiential education that allow students to complement their classroom experiences with work experience. This study examines the influence of co-op and internships on engineering problem-solving skills by answering the following research questions: (1) Does experience in cooperative…
Augmented Reality Learning Experiences: Survey of Prototype Design and Evaluation
ERIC Educational Resources Information Center
Santos, Marc Ericson C.; Chen, Angie; Taketomi, Takafumi; Yamamoto, Goshiro; Miyazaki, Jun; Kato, Hirokazu
2014-01-01
Augmented reality (AR) technology is mature for creating learning experiences for K-12 (pre-school, grade school, and high school) educational settings. We reviewed the applications intended to complement traditional curriculum materials for K-12. We found 87 research articles on augmented reality learning experiences (ARLEs) in the IEEE Xplore…
ERIC Educational Resources Information Center
Ison, A.; Ison, E. A.; Perry, C. M.
2017-01-01
An effective way of teaching undergraduates a full complement of research skills is through a multiweek advanced laboratory experiment. Here we outline a comprehensive set of experiments adapted from current primary literature focusing on organic and inorganic synthesis, catalysis, reactivity, and reaction kinetics. The catalyst,…
The Escherichia coli O157:H7 bovine rumen fluid proteome reflects adaptive bacterial responses.
Kudva, Indira T; Stanton, Thaddeus B; Lippolis, John D
2014-02-21
To obtain insights into Escherichia coli O157:H7 (O157) survival mechanisms in the bovine rumen, we defined the growth characteristics and proteome of O157 cultured in rumen fluid (RF; pH 6.0-7.2 and low volatile fatty acid content) obtained from rumen-fistulated cattle fed low protein content "maintenance diet" under diverse in vitro conditions. Bottom-up proteomics (LC-MS/MS) of whole cell-lysates of O157 cultured under anaerobic conditions in filter-sterilized RF (fRF; devoid of normal ruminal microbiota) and nutrient-depleted and filtered RF (dRF) resulted in an anaerobic O157 fRF-and dRF-proteome comprising 35 proteins functionally associated with cell structure, motility, transport, metabolism and regulation, but interestingly, not with O157 virulence. Shotgun proteomics-based analysis using isobaric tags for relative and absolute quantitation used to further study differential protein expression in unfiltered RF (uRF; RF containing normal rumen microbial flora) complemented these results. Our results indicate that in the rumen, the first anatomical compartment encountered by this human pathogen within the cattle gastrointestinal tract (GIT), O157 initiates a program of specific gene expression that enables it to adapt to the in vivo environment, and successfully transit to its colonization sites in the bovine GIT. Further experiments in vitro using uRF from animals fed different diets and with additional O157 strains, and in vivo using rumen-fistulated cattle will provide a comprehensive understanding of the adaptive mechanisms involved, and help direct evolution of novel modalities for blocking O157 infection of cattle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juvvadi, Praveen Rao; Belina, Detti; Soderblom, Erik J.
2013-02-15
Highlights: ► In vivo interactions of the novel septin AspE were identified by GFP-Trap® affinity purification. ► Septins AspA, AspB, AspC and AspD interacted with AspE in vivo. ► Actin and tubulin interacted with AspE in vivo. ► AspE is phosphorylated at six serine residues in vivo. -- Abstract: We previously analyzed the differential localization patterns of five septins (AspA–E), including a filamentous fungal-specific septin, AspE, in the human pathogen Aspergillus fumigatus. Here we utilized the A. fumigatus strain expressing an AspE–EGFP fusion protein and show that this novel septin with a tubular localization pattern in hyphae is phosphorylated inmore » vivo and interacts with the other septins, AspA, AspB, AspC and AspD. The other major proteins interacting with AspE included the cytoskeletal proteins, actin and tubulin, which may be involved in the organization and transport of the septins. This is the first report analyzing the phosphorylation of AspE and localizing the sites of phosphorylation, and opens opportunities for further analysis on the role of post-translational modifications in the assembly and organization of A. fumigatus septins. This study also describes the previously unknown interaction of AspE with the actin-microtubule network. Furthermore, the novel GFP-Trap® affinity purification method used here complements widely-used GFP localization studies in fungal systems.« less
Multimodal imaging of vascular grafts using time-resolved fluorescence and ultrasound
NASA Astrophysics Data System (ADS)
Fatakdawala, Hussain; Griffiths, Leigh G.; Wong, Maelene L.; Humphrey, Sterling; Marcu, Laura
2015-02-01
The translation of engineered tissues into clinic requires robust monitoring of tissue development, both in vitro and in vivo. Traditional methods for the same are destructive, inefficient in time and cost and do not allow time-lapse measurements from the same sample or animal. This study reports on the ability of time-resolved fluorescence and ultrasound measurements for non-destructive characterization of explanted tissue engineered vascular grafts. Results show that TRFS and FLIm are able to assess alterations in luminal composition namely elastin, collagen and cellular (hyperplasia) content via changes in fluorescence lifetime values between normal and grafted tissue. These observations are complemented by structural changes observed in UBM pertaining to graft integration and intimal thickness over the grafted region. These results encourage the future application of a catheter-based technique that combines these imaging modalities for non-destructive characterization of vascular grafts in vivo.
Ortiz, X A; Smith, J F; Bradford, B J; Harner, J P; Oddy, A
2011-02-01
Two experiments were conducted on a commercial dairy farm in eastern Saudi Arabia to investigate the effects of Korral Kool (KK; Korral Kool Inc., Mesa, AZ) cattle cooling systems complemented with feedline soakers on core body temperature (CBT) of dairy cows. In both experiments, cows had access to KK 24h/d. In the first experiment, 7 primiparous and 6 multiparous lactating Holstein dairy cows were assigned to 1 of 2 pens, which were assigned randomly to treatment sequence over 4 d in a switchback design. Soakers were on (ON24) or off (OFF24) for 24h/d. For the second experiment, 20 multiparous lactating Holstein cows were assigned randomly to 1 of 2 pens, which were assigned randomly to treatment sequence in a switchback design. This experiment lasted 4 d and feedline soakers alternately remained off or were on (ON12) for 12h/d. In experiment 1, average ambient temperature was 30 ± 0.9°C and average relative humidity was 44 ± 14% (mean ± SD). Feedline soakers complementing KK systems for 24 h/d decreased the mean CBT of lactating dairy cows compared with KK systems alone (38.80 vs. 38.98 ± 0.061°C, respectively). A significant treatment by time interaction was found. The greatest treatment effects occurred at 2100 h; treatment means at this time were 39.26 and 38.85 ± 0.085°C for OFF24 and ON24 treatments, respectively. In experiment 2, average ambient temperature was 35 ± 1.5°C and average relative humidity was 33 ± 16%. Feedline soakers running for 12 h/d significantly decreased the mean 24-h CBT from 39.16 to 38.99 ± 0.084°C. Treatment by time interaction was also significant; the greatest treatment effects occurred at 1500 h, when ON12 reduced CBT from 39.38 to 38.81 ± 0.088°C. These results demonstrate that complementing the KK system with feedline soakers decreased the CBT of dairy cows housed in desert environments. However, the combined systems were not sufficient to lower CBT to normal temperatures in this extreme environment. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Structural basis for activation of the complement system by component C4 cleavage
Kidmose, Rune T.; Laursen, Nick S.; Dobó, József; Kjaer, Troels R.; Sirotkina, Sofia; Yatime, Laure; Sottrup-Jensen, Lars; Thiel, Steffen; Gál, Péter; Andersen, Gregers R.
2012-01-01
An essential aspect of innate immunity is recognition of molecular patterns on the surface of pathogens or altered self through the lectin and classical pathways, two of the three well-established activation pathways of the complement system. This recognition causes activation of the MASP-2 or the C1s serine proteases followed by cleavage of the protein C4. Here we present the crystal structures of the 203-kDa human C4 and the 245-kDa C4⋅MASP-2 substrate⋅enzyme complex. When C4 binds to MASP-2, substantial conformational changes in C4 are induced, and its scissile bond region becomes ordered and inserted into the protease catalytic site in a manner canonical to serine proteases. In MASP-2, an exosite located within the CCP domains recognizes the C4 C345C domain 60 Å from the scissile bond. Mutations in C4 and MASP-2 residues at the C345C–CCP interface inhibit the intermolecular interaction and C4 cleavage. The possible assembly of the huge in vivo enzyme–substrate complex consisting of glycan-bound mannan-binding lectin, MASP-2, and C4 is discussed. Our own and prior functional data suggest that C1s in the classical pathway of complement activated by, e.g., antigen–antibody complexes, also recognizes the C4 C345C domain through a CCP exosite. Our results provide a unified structural framework for understanding the early and essential step of C4 cleavage in the elimination of pathogens and altered self through two major pathways of complement activation. PMID:22949645
Shaner, Lance; Trott, Amy; Goeckeler, Jennifer L; Brodsky, Jeffrey L; Morano, Kevin A
2004-05-21
The Sse1/Hsp110 molecular chaperones are a poorly understood subgroup of the Hsp70 chaperone family. Hsp70 can refold denatured polypeptides via a C-terminal peptide binding domain (PBD), which is regulated by nucleotide cycling in an N-terminal ATPase domain. However, unlike Hsp70, both Sse1 and mammalian Hsp110 bind unfolded peptide substrates but cannot refold them. To test the in vivo requirement for interdomain communication, SSE1 alleles carrying amino acid substitutions in the ATPase domain were assayed for their ability to complement sse1Delta yeast. Surprisingly, all mutants predicted to abolish ATP hydrolysis (D8N, K69Q, D174N, D203N) complemented the temperature sensitivity of sse1Delta and lethality of sse1Deltasse2Delta cells, whereas mutations in predicted ATP binding residues (G205D, G233D) were non-functional. Complementation ability correlated well with ATP binding assessed in vitro. The extreme C terminus of the Hsp70 family is required for substrate targeting and heterocomplex formation with other chaperones, but mutant Sse1 proteins with a truncation of up to 44 C-terminal residues that were not included in the PBD were active. Remarkably, the two domains of Sse1, when expressed in trans, functionally complement the sse1Delta growth phenotype and interact by coimmunoprecipitation analysis. In addition, a functional PBD was required to stabilize the Sse1 ATPase domain, and stabilization also occurred in trans. These data represent the first structure-function analysis of this abundant but ill defined chaperone, and establish several novel aspects of Sse1/Hsp110 function relative to Hsp70.
Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe
2003-01-01
Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia–reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated. PMID:12871223
Lupia, Enrico; Del Sorbo, Lorenzo; Bergerone, Serena; Emanuelli, Giorgio; Camussi, Giovanni; Montrucchio, Giuseppe
2003-08-01
Thrombolytic agents, used to restore blood flow to ischaemic tissues, activate several enzymatic systems with pro-inflammatory effects, thus potentially contributing to the pathogenesis of ischaemia-reperfusion injury. Platelet-activating factor (PAF), a phospholipid mediator of inflammation, has been implicated in the pathogenesis of this process. We previously showed that the infusion of streptokinase (SK) induces the intravascular release of PAF in patients with acute myocardial infarction (AMI), and that cultured human endothelial cells (EC) synthesized PAF in response to SK and plasmin (PLN). In the present study, we investigated the role of the membrane attack complex (MAC) of complement in the PLN-induced synthesis of PAF. In vivo, we showed a correlation between the levels of soluble terminal complement components (sC5b-9) and the concentrations of PAF detected in blood of patients with AMI infused with SK. In vitro both EC and polymorphonuclear neutrophils (PMN), incubated in the presence of PLN and normal human serum, showed an intense staining for the MAC neoepitope, while no staining was detected when they were incubated with PLN in the presence of heat-inactivated normal human serum. Moreover, the insertion of MAC on EC and PMN plasmamembrane elicited the synthesis of PAF. In conclusion, our results elucidate the mechanisms involved in PAF production during the activation of the fibrinolytic system, showing a role for complement products in this setting. The release of PAF may increase the inflammatory response, thus limiting the beneficial effects of thrombolytic therapy. Moreover, it may have a pathogenic role in other pathological conditions, such as transplant rejection, tumoral angiogenesis, and septic shock, where fibrinolysis is activated.
Blom, Anna M; Magda, Michal; Kohl, Lisa; Shaughnessy, Jutamas; Lambris, John D; Ram, Sanjay; Ermert, David
2017-12-01
Bacteria can cause life-threatening infections, such as pneumonia, meningitis, or sepsis. Antibiotic therapy is a mainstay of treatment, although antimicrobial resistance has drastically increased over the years. Unfortunately, safe and effective vaccines against most pathogens have not yet been approved, and thus developing alternative treatments is important. We analyzed the efficiency of factor H (FH)6-7/Fc, a novel antibacterial immunotherapeutic protein against the Gram-positive bacterium Streptococcus pyogenes This protein is composed of two domains of complement inhibitor human FH (FH complement control protein modules 6 and 7) that bind to S. pyogenes , linked to the Fc region of IgG (FH6-7/Fc). FH6-7/Fc has previously been shown to enhance complement-dependent killing of, and facilitate bacterial clearance in, animal models of the Gram-negative pathogens Haemophilus influenzae and Neisseria meningitidis We hypothesized that activation of complement by FH6-7/Fc on the surface of Gram-positive bacteria such as S. pyogenes will enable professional phagocytes to eliminate the pathogen. We found that FH6-7/Fc alleviated S. pyogenes- induced sepsis in a transgenic mouse model expressing human FH ( S. pyogenes binds FH in a human-specific manner). Furthermore, FH6-7/Fc, which binds to protein H and selected M proteins, displaced FH from the bacterial surface, enhanced alternative pathway activation, and reduced bacterial blood burden by opsonophagocytosis in a C3-dependent manner in an ex vivo human whole-blood model. In conclusion, FH-Fc chimeric proteins could serve as adjunctive treatments against multidrug-resistant bacterial infections. Copyright © 2017 by The American Association of Immunologists, Inc.
Kristin, Forner; René, Holm; Boontida, Morakul; Buraphacheep, Junyaprasert Varaporn; Maximilian, Ackermann; Johanna, Mazur; Peter, Langguth
2017-04-01
In order to save time and resources in early drug development, in vitro methods that correctly predict the formulation effect on oral drug absorption are necessary. The aim of this study was to 1) evaluate various BCS class II drug formulations with in vitro methods and in vivo in order to 2) determine which in vitro method best correlates with the in vivo results. Clarithromycin served as model compound in formulations with different particle sizes and content of excipients. The performed in vitro experiments were dissolution and dissolution/permeation experiments across two types of membrane, Caco-2 cells and excised rat intestinal sheets. The in vivo study was performed in rats. The oral absorption was enhanced by downsizing drug particles and by increasing the excipient concentration. This correlated strongly with the flux across Caco-2 cells but not with the other in vitro experiments. The insufficient correlation with the dissolution experiments can be partly explained by excipient caused problems during the filtration step. The very poor correlation of the in vivo data with the flux across excised rat intestinal sheets might be due to an artificially enlarged mucus layer ex vivo. In conclusion, downsizing BCS class II drug particles and the addition of surfactants enhanced the in vivo absorption, which was best depicted by dissolution/permeation experiments across Caco-2 cells. This setup is proposed as best model to predict the in vivo formulation effect. Also, this is the first study to evaluate the impact of the nature of the permeation membrane in dissolution/permeation experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhang, Jidong; Verma, Rakesh; Park, Tae-Ju; Wong, Hetty; Curran, Tom; Nihalani, Deepak; Holzman, Lawrence B.
2014-01-01
Activation of the slit diaphragm protein Nephrin induces actin cytoskeletal remodeling resulting in lamellipodia formation in podocytes in vitro in a phosphatidylinositol-3 kinase, focal adhesion kinase, Cas, and Crk1/2-dependent fashion. In mice, podocyte-specific deletion of Crk1/2 prevents or attenuates foot process effacement in two models of podocyte injury. This suggests that cellular mechanisms governing lamellipodial protrusion in vitro are similar to those in vivo during foot process effacement. Since Crk1/2 null mice develop and aged normally, we tested whether the Crk1/2 paralog, CrkL, functionally complements Crk1/2 in a podocyte-specific context. Podocyte-specific CrkL null mice, like podocyte-specific Crk1/2 null mice, developed and aged normally but were protected from protamine sulfate-induced foot process effacement. Simultaneous podocyte-specific deletion of Crk1/2 and CrkL resulted in albuminuria detected by six weeks post-partum and associated with altered podocyte process architecture. Nephrin-induced lamellipodia formation in podocytes in vitro was CrkL-dependent. CrkL formed a heterooligomer with Crk2 and, like Crk2, was recruited to tyrosine phosphorylated Nephrin. Thus, Crk1/2 and CrkL are physically-linked, functionally complement each other during podocyte foot process spreading, and together are required for developing typical foot process architecture. PMID:24499776
Role of capsule and O antigen in the virulence of uropathogenic Escherichia coli.
Sarkar, Sohinee; Ulett, Glen C; Totsika, Makrina; Phan, Minh-Duy; Schembri, Mark A
2014-01-01
Urinary tract infection (UTI) is one of the most common bacterial infections in humans, with uropathogenic Escherichia coli (UPEC) the leading causative organism. UPEC has a number of virulence factors that enable it to overcome host defenses within the urinary tract and establish infection. The O antigen and the capsular polysaccharide are two such factors that provide a survival advantage to UPEC. Here we describe the application of the rpsL counter selection system to construct capsule (kpsD) and O antigen (waaL) mutants and complemented derivatives of three reference UPEC strains: CFT073 (O6:K2:H1), RS218 (O18:K1:H7) and 1177 (O1:K1:H7). We observed that while the O1, O6 and O18 antigens were required for survival in human serum, the role of the capsule was less clear and linked to O antigen type. In contrast, both the K1 and K2 capsular antigens provided a survival advantage to UPEC in whole blood. In the mouse urinary tract, mutation of the O6 antigen significantly attenuated CFT073 bladder colonization. Overall, this study contrasts the role of capsule and O antigen in three common UPEC serotypes using defined mutant and complemented strains. The combined mutagenesis-complementation strategy can be applied to study other virulence factors with complex functions both in vitro and in vivo.
Clark, Robin A; Shoaib, Mohammed; Hewitt, Katherine N; Stanford, S Clare; Bate, Simon T
2012-08-01
InVivoStat is a free-to-use statistical software package for analysis of data generated from animal experiments. The package is designed specifically for researchers in the behavioural sciences, where exploiting the experimental design is crucial for reliable statistical analyses. This paper compares the analysis of three experiments conducted using InVivoStat with other widely used statistical packages: SPSS (V19), PRISM (V5), UniStat (V5.6) and Statistica (V9). We show that InVivoStat provides results that are similar to those from the other packages and, in some cases, are more advanced. This investigation provides evidence of further validation of InVivoStat and should strengthen users' confidence in this new software package.
Ullrich, Sebastian; Fraedrich, Katharina; Schulze zur Wiesch, Julian; Fründt, Thorben; Tiegs, Gisa; Lohse, Ansgar; Lüth, Stefan
2013-01-01
Background An outbreak of Shiga Toxin 2 (Stx-2) producing enterohemorrhagic and enteroaggregative E.coli (EAHEC) O104H4 infection in May 2011 caused enterocolitis and an unprecedented high 22% rate of hemolytic uremic syndrome (HUS). The monoclonal anti-C5 antibody Eculizumab (ECU) has been used experimentally in EAHEC patients with HUS but treatment efficacy is uncertain. ECU can effectively prevent hemolysis in paroxysmal nocturnal hemoglobinuria (PNH) caused by a lack of complement-regulating CD55 and CD59 on blood cells. We hypothesized a low expression of CD55 and CD59, as seen in PNH, might correlate with HUS development in EAHEC patients. Methods 76 EAHEC patients (34 only gastrointestinal symptoms [GI], 23: HUS, 19: HUS and neurological symptoms [HUS/N]) and 12 healthy controls (HC) were tested for the expression of CD55 and CD59 on erythrocytes and leukocytes retrospectively. Additionally, the effect of Stx-2 on CD55 and CD59 expression on erythrocytes and leukocytes was studied ex vivo. Results CD55 expression on erythrocytes was similar in all patient groups and HC while CD59 showed a significantly higher expression in HUS and HUS/N patients compared to HC and the GI group. CD55 and CD59 expression on leukocytes and their subsets was significantly higher in all patient groups compared to HC regardless of treatment type. However, CD59 expression on erythrocytes was significantly higher in HUS and HUS/N patients treated combined with plasma separation (PS) and ECU compared to HC. Adding Stx-2 ex vivo had no effect on CD55 and CD59 expression on leukocytes from HC or patients. Conclusion HUS evolved independently from CD55 and CD59 expression on peripheral blood cells in EAHEC O104:H4 infected patients. Our data do not support a role for CD55 and CD59 in HUS development during EAHEC O104:H4 infection and point to a different mechanism within the complement system for HUS development in EAHEC patients. PMID:24086391
Zupančič, Daša; Kreft, Mateja Erdani; Romih, Rok
2014-01-01
Bladder cancer adjuvant intravesical therapy could be optimized by more selective targeting of neoplastic tissue via specific binding of lectins to plasma membrane carbohydrates. Our aim was to establish rat and mouse models of bladder carcinogenesis to investigate in vivo and ex vivo binding of selected lectins to the luminal surface of normal and neoplastic urothelium. Male rats and mice were treated with 0.05 % N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) in drinking water and used for ex vivo and in vivo lectin binding experiments. Urinary bladder samples were also used for paraffin embedding, scanning electron microscopy and immunofluorescence labelling of uroplakins. During carcinogenesis, the structure of the urinary bladder luminal surface changed from microridges to microvilli and ropy ridges and the expression of urothelial-specific glycoproteins uroplakins was decreased. Ex vivo and in vivo lectin binding experiments gave comparable results. Jacalin (lectin from Artocarpus integrifolia) exhibited the highest selectivity for neoplastic compared to normal urothelium of rats and mice. The binding of lectin from Amaranthus caudatus decreased in rat model and increased in mouse carcinogenesis model, indicating interspecies variations of plasma membrane glycosylation. Lectin from Datura stramonium showed higher affinity for neoplastic urothelium compared to the normal in rat and mouse model. The BBN-induced animal models of bladder carcinogenesis offer a promising approach for lectin binding experiments and further lectin-mediated targeted drug delivery research. Moreover, in vivo lectin binding experiments are comparable to ex vivo experiments, which should be considered when planning and optimizing future research.
Yi-Fu Tuan
1977-01-01
A young child has keen senses, but his world is not thereby more filled with sensory values than that of an adult. To enjoy the physical environment fully the mere capacity to experience stimuli is not enough; it must be complemented by appreciation, which is an intellectual activity. A young child's experiences of nature are often more intense than those of an...
Induction of suppressor cells in vitro by Candida albicans.
Cuff, C F; Rogers, C M; Lamb, B J; Rogers, T J
1986-06-01
Normal splenocytes cultured with Formalin-killed Candida albicans were shown to acquire significant suppressor cell activity in a period of 3 days. These cells were found to suppress both the phytohemagglutinin-induced mitogen response as well as the anti-sheep erythrocyte antibody response. Experiments were carried out to determine the nature of the suppressor cell population. Results showed that these cells were not susceptible to treatment with anti-Thy 1 antibody and complement. Panning experiments showed that the suppressor cells were not plastic-adherent or Mac-1 antigen-positive. The suppressor cells were, however, adherent to anti-mouse immunoglobulin (F(ab')2-fragment)-coated dishes. Additional experiments showed that the suppressor cell activity was susceptible to treatment with monoclonal anti-Lyb 2.1 antibody and complement. These results suggest that the suppressor cell induced in vitro by Candida is a member of the B-lymphocyte lineage.
2013-01-01
Background The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. Results To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Conclusion Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo. PMID:24308601
Liu, Yi; Shi, Zi; Maximova, Siela; Payne, Mark J; Guiltinan, Mark J
2013-12-05
The proanthocyanidins (PAs), a subgroup of flavonoids, accumulate to levels of approximately 10% total dry weight of cacao seeds. PAs have been associated with human health benefits and also play important roles in pest and disease defense throughout the plant. To dissect the genetic basis of PA biosynthetic pathway in cacao (Theobroma cacao), we have isolated three genes encoding key PA synthesis enzymes, anthocyanidin synthase (ANS), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). We measured the expression levels of TcANR, TcANS and TcLAR and PA content in cacao leaves, flowers, pod exocarp and seeds. In all tissues examined, all three genes were abundantly expressed and well correlated with PA accumulation levels, suggesting their active roles in PA synthesis. Overexpression of TcANR in an Arabidopsis ban mutant complemented the PA deficient phenotype in seeds and resulted in reduced anthocyanidin levels in hypocotyls. Overexpression of TcANS in tobacco resulted in increased content of both anthocyanidins and PAs in flower petals. Overexpression of TcANS in an Arabidopsis ldox mutant complemented its PA deficient phenotype in seeds. Recombinant TcLAR protein converted leucoanthocyanidin to catechin in vitro. Transgenic tobacco overexpressing TcLAR had decreased amounts of anthocyanidins and increased PAs. Overexpressing TcLAR in Arabidopsis ldox mutant also resulted in elevated synthesis of not only catechin but also epicatechin. Our results confirm the in vivo function of cacao ANS and ANR predicted based on sequence homology to previously characterized enzymes from other species. In addition, our results provide a clear functional analysis of a LAR gene in vivo.
Zou, Yanming; He, Lina; Chi, Feng; Jong, Ambrose; Huang, Sheng-He
2008-12-01
IbeT is a downstream gene of the invasion determinant ibeA in the chromosome of a clinical isolate of Escherichia coli K1 strain RS218 (serotype 018:K1:H7). Both ibeT and ibeA are in the same operon. Our previous mutagenesis and complementation studies suggested that ibeT may coordinately contribute to E. coli K1 invasion with ibeA. An isogenic in-frame deletion mutant of ibeT has been made by chromosomal gene replacement with a recombinant suicide vector carrying a fragment with an ibeT internal deletion. The characteristics of the mutant in meningitic E. coli infection were examined in vitro [cell culture of human brain microvascular endothelial cells (HBMEC)] and in vivo (infant rat model of E. coli meningitis) in comparison with the parent strain. The ibeT deletion mutant was significantly less adhesive and invasive than its parent strain E. coli E44 in vitro, and the adhesion- and invasion-deficient phenotypes of the mutant can be complemented by the ibeT gene. Recombinant IbeT protein is able to block E. coli E44 invasion of HBMEC. Furthermore, the ibeT deletion mutant is less capable of colonizing intestine and less virulent in bacterial translocation across the blood-brain barrier (BBB) than its parent E. coli E44 in vivo. These data suggest that ibeT-mediated E. coli K1 adhesion is associated with the bacterial invasion process.
Dengue virus induces increased activity of the complement alternative pathway in infected cells.
Cabezas, Sheila; Bracho, Gustavo; L Aloia, Amanda; Adamson, Penelope J; Bonder, Claudine S; Smith, Justine R; Gordon, David L; Carr, Jillian M
2018-05-09
Severe dengue virus (DENV) infection is associated with overactivity of the complement alternative pathway (AP) in patient studies. Here, the molecular changes in components of the AP during DENV infection in vitro are investigated. mRNA for factor H (FH) a major negative regulator of the AP, is significantly increased in DENV-infected endothelial cells (EC) and macrophages but in contrast production of extracellular FH protein is not. This discord is not seen for the AP activator, factor B (FB), with DENV induction of both FB mRNA and protein, nor with Toll-like receptor 3 or 4 stimulation of EC and macrophages, which induces both FH and FB mRNA and protein. Surface bound and intracellular FH protein is however induced by DENV, but only in DENV antigen-positive cells, while in two other DENV-susceptible immortalised cell lines (ARPE-19 and HREC) FH protein is induced both intracellularly and extracellularly by DENV infection. Regardless of the cell type, there is an imbalance in AP components and an increase in markers of complement AP activity associated with DENV-infected cells - with lower FH relative to FB protein, increased ability to promote AP-mediated lytic activity and increased deposition of complement component C3b on the surface of DENV-infected cells. For EC in particular, these changes are predicted to result in higher complement activity in the local cellular microenvironment, with the potential to induce functional changes that may result in increased vascular permeability, a hallmark of dengue disease. IMPORTANCE Dengue virus (DENV) is a significant human viral pathogen with global medical and economic impact. DENV may cause serious and life-threatening disease with increased vascular permeability and plasma leakage. The pathogenic mechanisms underlying these features remain unclear; however overactivity of the complement alternative pathway has been suggested to play a role. In this study we investigate the molecular events that may be responsible for this observed alternative pathway overactivity and provide novel findings of changes in the complement system in response to DENV infection in primary cell types that are a major target for DENV infection (macrophages) and pathogenesis (endothelial cells) in vivo Our results suggest a new dimension of cellular events that may influence endothelial cell barrier function during DENV infection that could expand strategies for developing therapeutics to prevent or control DENV-mediated vascular disease. Copyright © 2018 American Society for Microbiology.
Weber, Janine; Bao, Han; Hartlmüller, Christoph; Wang, Zhiqin; Windhager, Almut; Janowski, Robert; Madl, Tobias; Jin, Peng; Niessing, Dierk
2016-01-01
The neuronal DNA-/RNA-binding protein Pur-alpha is a transcription regulator and core factor for mRNA localization. Pur-alpha-deficient mice die after birth with pleiotropic neuronal defects. Here, we report the crystal structure of the DNA-/RNA-binding domain of Pur-alpha in complex with ssDNA. It reveals base-specific recognition and offers a molecular explanation for the effect of point mutations in the 5q31.3 microdeletion syndrome. Consistent with the crystal structure, biochemical and NMR data indicate that Pur-alpha binds DNA and RNA in the same way, suggesting binding modes for tri- and hexanucleotide-repeat RNAs in two neurodegenerative RNAopathies. Additionally, structure-based in vitro experiments resolved the molecular mechanism of Pur-alpha's unwindase activity. Complementing in vivo analyses in Drosophila demonstrated the importance of a highly conserved phenylalanine for Pur-alpha's unwinding and neuroprotective function. By uncovering the molecular mechanisms of nucleic-acid binding, this study contributes to understanding the cellular role of Pur-alpha and its implications in neurodegenerative diseases. DOI: http://dx.doi.org/10.7554/eLife.11297.001 PMID:26744780
Biomarkers of Dietary Polyphenols in Cancer Studies: Current Evidence and Beyond.
Wang, Jincheng; Tang, Lili; Wang, Jia-Sheng
2015-01-01
Polyphenols, commonly contained in fruits and vegetables, have long been associated with a protective role against multiple diseases and adverse health effects. Generally, in vitro and animal experiments have provided strong positive evidence, whereas evidence from in vivo and human epidemiological studies is not strong enough. Most epidemiological studies to date use food frequency questionnaire based dietary intake estimations, which inevitably incur imprecision. Biomarkers of polyphenol have the potential to complement and enhance current studies. This review performed a literature search of all epidemiological studies or controlled clinical/intervention trials which employed biomarkers of exposure for polyphenols to help assess their anticarcinogenic role, using studies on green tea polyphenols as a study model. Currently, studies on this topic are still limited; breast cancer and prostate cancer were the only widely studied cancer types. Isoflavone is the only widely studied polyphenol. In addition to associations between polyphenols and cancer risks, factors such as host genetic susceptibility, epigenetic modification, and gut microbiome patterns may also impact on the protective roles of polyphenols. More evidence should be collected by utilizing biomarkers of exposure for polyphenols in future epidemiological studies before a clear conclusion can be made.
Bolenz, Christian; Trojan, Lutz; Gabriel, Ute; Honeck, Patrick; Wendt-Nordahl, Gunnar; Schaaf, Axel; Alken, Peter; Michel, Maurice Stephan
2008-10-01
To evaluate cellular uptake and urothelial penetration of oligodeoxynucleotides (ODNs) in transitional cell carcinoma (TCC) cell lines and in a porcine ex vivo model, respectively. A panel of human TCC cell lines (RT 112, HT 1197 and UM-UC3) were exposed tofluorescein-labeled ODNs. Transfection rates were assessed byfluorescence microscopy and fluorescence-activated cell sorting (FACS). Intravesical treatment with ODNs was performed in a porcine ex vivo model. Urothelial penetration was evaluated using fluorescence microscopy of cryosections. Treatment with ODNs provided transfection rates of at least 96.8% of TCC cells, irrespective of use of a transfection agent. Effective urothelial penetration by ODNs was detected when compared with controls (p = 0.0325). The addition of a liposomal transfection agent significantly increased the penetration depth, allowing affection of deep urothelial cell layers (p = 0.0082). High transfection rates of ODNs can be achieved in TCC cells. Urothelial penetration of ODNs was observed down to the deepest cell layers when a transfection agent is added, suggesting a high potential for complementing the chemoresection effects on residual tumor areas during intravesical therapy of non-muscle-invasive TCC.
Atay, Stefan M.; Kroenke, Christopher D.; Sabet, Arash; Bayly, Philip V.
2008-01-01
In this study, the magnetic resonance elastography (MRE) technique was used to estimate the dynamic shear modulus of mouse brain tissue in vivo. The technique allows visualization and measurement of mechanical shear waves excited by lateral vibration of the skull. Quantitative measurements of displacement in three dimensions (3-D) during vibration at 1200 Hz were obtained by applying oscillatory magnetic field gradients at the same frequency during an MR imaging sequence. Contrast in the resulting phase images of the mouse brain is proportional to displacement. To obtain estimates of shear modulus, measured displacement fields were fitted to the shear wave equation. Validation of the procedure was performed on gel characterized by independent rheometry tests and on data from finite element simulations. Brain tissue is, in reality, viscoelastic and nonlinear. The current estimates of dynamic shear modulus are strictly relevant only to small oscillations at a specific frequency, but these estimates may be obtained at high frequencies (and thus high deformation rates), non-invasively throughout the brain. These data complement measurements of nonlinear viscoelastic properties obtained by others at slower rates, either ex vivo or invasively. PMID:18412500
Kurbegovic, Almira; Kim, Hyunho; Xu, Hangxue; Yu, Shengqiang; Cruanès, Julie; Maser, Robin L.; Boletta, Alessandra; Trudel, Marie
2014-01-01
Polycystin-1 (Pc1) cleavage at the G protein-coupled receptor (GPCR) proteolytic site (GPS) is required for normal kidney morphology in humans and mice. We found a complex pattern of endogenous Pc1 forms by GPS cleavage. GPS cleavage generates not only the heterodimeric cleaved full-length Pc1 (Pc1cFL) in which the N-terminal fragment (NTF) remains noncovalently associated with the C-terminal fragment (CTF) but also a novel (Pc1) form (Pc1deN) in which NTF becomes detached from CTF. Uncleaved Pc1 (Pc1U) resides primarily in the endoplasmic reticulum (ER), whereas both Pc1cFL and Pc1deN traffic through the secretory pathway in vivo. GPS cleavage is not a prerequisite, however, for Pc1 trafficking in vivo. Importantly, Pc1deN is predominantly found at the plasma membrane of renal epithelial cells. By functional genetic complementation with five Pkd1 mouse models, we discovered that CTF plays a crucial role in Pc1deN trafficking. Our studies support GPS cleavage as a critical regulatory mechanism of Pc1 biogenesis and trafficking for proper kidney development and homeostasis. PMID:24958103
Survival of cord blood haematopoietic stem cells in a hyaluronan hydrogel for ex vivo biomimicry.
Demange, Elise; Kassim, Yusra; Petit, Cyrille; Buquet, Catherine; Dulong, Virginie; Cerf, Didier Le; Buchonnet, Gérard; Vannier, Jean-Pierre
2013-11-01
Haematopoietic stem cells (HSCs) and haematopoietic progenitor cells (HPCs) grow in a specified niche in close association with the microenvironment, the so-called 'haematopoietic niche'. Scaffolds have been introduced to overcome the liquid culture limitations, mimicking the presence of the extracellular matrix (ECM). In the present study the hyaluronic acid scaffold, already developed in the laboratory, has been used for the first time to maintain long-term cultures of CD34⁺ haematopoietic cells obtained from human cord blood. One parameter investigated was the impact on ex vivo survival of CD34⁺ cord blood cells (CBCs) on the hyaluronic acid surface, immobilized with peptides containing the RGD motif. This peptide was conjugated by coating the hyaluronan hydrogel and cultured in serum-free liquid phase complemented with stem cell factor (SCF), a commonly indispensable cytokine for haematopoiesis. Our work demonstrated that these hyaluronan hydrogels were superior to traditional liquid cultures by maintaining and expanding the HPCs without the need for additional cytokines, and a colonization of 280-fold increment in the hydrogel compared with liquid culture after 28 days of ex vivo expansion. Copyright © 2012 John Wiley & Sons, Ltd.
Scalfaro, Concetta; Iacobino, Angelo; Nardis, Chiara; Franciosa, Giovanna
2017-04-01
The antagonistic activity against gastrointestinal bacterial pathogens is an important property of probiotic bacteria and a desirable feature for pre-selection of novel strains with probiotic potential. Pre-screening of candidate probiotics for antibacterial activity should be based on in vitro and in vivo tests. This study investigated whether the protective activity of probiotic bacteria against gastrointestinal bacterial pathogens can be evaluated using Galleria mellonella larvae as an in vivo model. Larvae were pre-inoculated with either of two widely used probiotic bacteria, Lactobacillus rhamnosus GG or Clostridium butyricum Miyairi 588, and then challenged with Salmonella enterica Typhimurium, enteropathogenic Escherichia coli or Listeria monocytogenes. Survival rates increased in the probiotic pretreated larvae compared with control larvae inoculated with pathogens only. The hemocyte density increased as well in the probiotic pretreated larvae, indicating that both probiotics induce an immune response in the larvae. The antibacterial activity of probiotics against the pathogens was also assayed by an in vitro agar spot test: results were partially consistent with those obtained by the G. mellonella protection assay. The results obtained, as a whole, suggest that G. mellonella larvae are a potentially useful in vivo model that can complement in vitro assays for pre-screening of candidate probiotics. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Bacterial infection as assessed by in vivo gene expression
Heithoff, Douglas M.; Conner, Christopher P.; Hanna, Philip C.; Julio, Steven M.; Hentschel, Ute; Mahan, Michael J.
1997-01-01
In vivo expression technology (IVET) has been used to identify >100 Salmonella typhimurium genes that are specifically expressed during infection of BALB/c mice and/or murine cultured macrophages. Induction of these genes is shown to be required for survival in the animal under conditions of the IVET selection. One class of in vivo induced (ivi) genes, iviVI-A and iviVI-B, constitute an operon that resides in a region of the Salmonella genome with low G+C content and presumably has been acquired by horizontal transfer. These ivi genes encode predicted proteins that are similar to adhesins and invasins from prokaryotic and eukaryotic pathogens (Escherichia coli [tia], Plasmodium falciparum [PfEMP1]) and have coopted the PhoPQ regulatory circuitry of Salmonella virulence genes. Examination of the in vivo induction profile indicates (i) many ivi genes encode regulatory functions (e.g., phoPQ and pmrAB) that serve to enhance the sensitivity and amplitude of virulence gene expression (e.g., spvB); (ii) the biochemical function of many metabolic genes may not represent their sole contribution to virulence; (iii) the host ecology can be inferred from the biochemical functions of ivi genes; and (iv) nutrient limitation plays a dual signaling role in pathogenesis: to induce metabolic functions that complement host nutritional deficiencies and to induce virulence functions required for immediate survival and spread to subsequent host sites. PMID:9023360
Corcóstegui, Reyes; Labeaga, Luis; Innerárity, Ana; Berisa, Agustín; Orjales, Aurelio
2006-01-01
We set out to establish the in vivo histamine H(1) receptor antagonistic (antihistaminic) and antiallergic properties of bilastine. In vivo antihistaminic activity experiments consisted of measurement of: inhibition of increase in capillary permeability and reduction in microvascular extravasation and bronchospasm in rats and guinea pigs induced by histamine and other inflammatory mediators; and protection against lethality induced by histamine and other inflammatory mediators in rats. In vivo antiallergic activity experiments consisted of measurement of passive and active cutaneous anaphylactic reactions as well as type III and type IV allergic reactions in sensitised rodents. In the in vivo antihistaminic activity experiments, bilastine was shown to have a positive effect, similar to that of cetirizine and more potent than that of fexofenadine. The results of the in vivo antiallergic activity experiments showed that the properties of bilastine in this setting are similar to those observed for cetirizine and superior to fexofenadine in the model of passive cutaneous anaphylactic reaction. When active cutaneous anaphylactic reaction experiments were conducted, bilastine showed significant activity, less potent than that observed with cetirizine but superior to that of fexofenadine. Evaluation of the type III allergic reaction showed that of the antihistamines only bilastine was able to inhibit oedema in sensitised mice, although its effect in this respect was much less potent than that observed with dexamethasone. In terms of the type IV allergic reaction, neither bilastine, cetirizine nor fexofenadine significantly modified the effect caused by oxazolone. The results of our in vivo preclinical studies corroborate those obtained from previously conducted in vitro experiments of bilastine, and provide evidence that bilastine possesses antihistaminic as well as antiallergic properties, with similar potency to cetirizine and superior potency to fexofenadine.
Rösch, Sarah; Aretzweiler, Christoph; Müller, Frank; Walter, Peter
2017-02-01
To characterize the course of retinal degeneration in the pink-eyed RCS rat in vivo and in vitro. Retinal function of RCS rats at the age of 2 to 100 weeks was determined in vivo using full-field electroretinography (ERG). Retinal morphology was evaluated in vivo using spectral domain Optical Coherence Tomography (sd-OCT) and Fluorescence angiography (FA) as well as postmortem using immunohistochemistry (IH). As a control, retinal function and morphology of non-dystrophic Wistar rats were analyzed. RCS rats showed an extinction of the ERG beginning with the age of 4 weeks. In the OCT, the outer part of the retina (OPR) could be clearly distinguished from the inner part of the retina (IPR) until the age of 8 weeks. However, at this age, it was impossible to determine from OCT images whether the OPR was formed by the outer nuclear layer (ONL) or by cellular debris built in the course of retinal degeneration. In contrast, immunohistochemistry always enabled to differentiate between ONL and debris (RCS 4 weeks of age: OPR mainly formed by ONL; RCS 8 weeks of age: OPR consisted mainly of cell debris, only 1-2 cell rows of photoreceptor somata were left). In general, data obtained in vivo were confirmed by data obtained post mortem. Apart from the problem to differentiate between debris and ONL at the age of 8 weeks in the RCS rat, ERG and OCT are useful methods to evaluate retinal function and structure in vivo and to complement immunohistochemical analysis of the degeneration process.
Human Factors Experiments for Data Link : Interim Report No. 5
DOT National Transportation Integrated Search
1975-02-01
One and two-man crews of general aviation pilots and two-man crews of FAA/NAFEC test pilots made a series of simulated flights in a GAT-2 simulator to evaluate various complements of I/O equipment for Data Link. In the earlier experiments in the seri...
Mission Mathematics II: Prekindergarten-Grade 2 (with CD-ROM)
ERIC Educational Resources Information Center
Hynes, Ellen Mary, Ed.; Blair, Catherine, Ed.
2005-01-01
Get students into math using outer space! Mission Mathematics translates the NASA experience into language and experiences appropriate for young learners, and provides teachers with mathematics activities that complement many of the available NASA resources for students and educators. In these motivating investigations, young children engage in…
A Classroom-Field Model of Inter-Ethnic Communication.
ERIC Educational Resources Information Center
Nielsen, Keith E.
The BLBC (bilingual-bicultural) model of inter-ethnic communication is an effective method for bridging the instructional "gap" between classroom education and field experiences. These two learning experiences are distinct; yet each should complement the other. The BLBC model of inter-ethnic communication attempts to interface the student's…
Synthesis of Ethyl Nalidixate: A Medicinal Chemistry Experiment
ERIC Educational Resources Information Center
Leslie, Ray; Leeb, Elaine; Smith, Robert B.
2012-01-01
A series of laboratory experiments that complement a medicinal chemistry lecture course in drug design and development have been developed. The synthesis of ethyl nalidixate covers three separate experimental procedures, all of which can be completed in three, standard three-hour lab classes and incorporate aspects of green chemistry such as…
Mutations participating in interallelic complementation in propionic acidemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gravel, R.A.; Akerman, B.R.; Lamhonwah, A.M.
1994-07-01
Deficiency of propionyl-CoA carboxylase (PCC; [alpha][sub 4][beta][sub 4]) results in the rare, autosomal recessive disease propionic acidemia. Cell fusion experiments have revealed two complementation groups, pccA and pccB, corresponding to defects of the PCCA ([alpha]-subunit) and PCCB ([beta]-subunit) genes, respectively. The pccBCC group includes subgroups, pccB and pccC, which are thought to reflect interallelic complementation between certain mutations of the PCCB gene. In this study, the authors have identified the mutations in two pccB, one pccC, and two pccBC cell lines and have deduced those alleles participating in interallelic complementation. One pccB line was a compound hetrozygote of Pro228Leu andmore » Asn536Asp. The latter mutation was also detected in a noncomplementing pccBC line. This leaves Pro228Leu responsible for complementation in the pccB cells. The second pccB line contained an insertional duplication, dupKICK140-143, and a splice mutation IVS+1 G[yields]T, located after Lys466. The authors suggest that the dupKICK mutation is the complementing allele, since the second allele is incompatible with normal splicing. The pccC line studied was homozygous for Arg410Trp, which is necessarily the complementing allele in that line. For a second pccC line, they previously had proposed that [Delta]Ile408 was the complementing allele. They now show that its second allele, [open quotes]Ins[center dot]Del[close quotes], a 14-bp deletion replaced by a 12-bp insertion beginning at codon 407, fails to complement in homozygous form. The authors conclude that the interallelic complementation results from mutations in domains that can interact between [beta]-subunits in the PCC heteromer to restore enzymatic function. On the basis of sequence homology with the Propionibacterium shermanii transcarboxylase 12S subunit, they suggest that the pccC domain, defined by Ile408 and Arg410, may involve the propionyl-CoA binding site. 37 refs., 5 figs., 2 tabs.« less
Sun, Hongchao; Zhuo, Xunhui; Zhao, Xianfeng; Yang, Yi; Chen, Xueqiu; Yao, Chaoqun; Du, Aifang
2017-01-01
Toxoplasma gondii is an obligate intracellular apicomplexan parasite that infects almost all warm-blooded vertebrates. Heat shock proteins (HSP) regulate key signal transduction events in many organisms, and heat shock protein 90 (Hsp90) plays an important role in growth, development, and virulence in several parasitic protozoa. Here, we discovered increased transcription of the Hsp90 gene under conditions for bradyzoite differentiation, i.e. alkaline and heat shock conditions in vitro, suggesting that Hsp90 may be connected with bradyzoite development in T. gondii. A knockout of the TgHsp90 strain (ΔHsp90) and a complementation strain were constructed. The TgHsp90 knockout cells were found to be defective in host-cell invasion, were not able to proliferate in vitro in Vero cells, and did not show long-time survival in mice in vivo. These inabilities of the knockout parasites were restored upon complementation of TgHsp90. These data unequivocally show that TgHsp90 contributes to bradyzoite development, and to invasion and replication of T. gondii in host cells. PMID:28627357
Interactions between muscle and the immune system during modified musculoskeletal loading
NASA Technical Reports Server (NTRS)
Tidball, James G.
2002-01-01
Interactions between the immune system and skeletal muscle may play a significant role in modulating the course of muscle injury and repair after modified musculoskeletal loading. Current evidence indicates that activation of the complement system is an early event during modified loading, which then leads to inflammatory cell invasion. However, the functions of those inflammatory cells are complex and they seem to be capable of promoting additional injury and repair. Recent findings implicate an early invading neutrophil population in increasing muscle damage that is detected by the presence of muscle membrane lesions. Macrophages that invade subsequently serve to remove cellular debris, and seem to promote repair. However, macrophages also have the ability to increase damage in muscle in which there is an impaired capacity to generate nitric oxide. In vivo and in vitro evidence indicates that muscle-derived nitric oxide can serve an important role in protecting muscle from membrane damage by invading inflammatory cells. Collectively, these findings indicate that the dynamic balance between inflammatory cells, the complement system, and muscle-derived free radicals can play important roles in the secondary damage of muscle during modified musculoskeletal loading.
Ekdahl, Kristina N; Davoodpour, Padideh; Ekstrand-Hammarström, Barbro; Fromell, Karin; Hamad, Osama A; Hong, Jaan; Bucht, Anders; Mohlin, Camilla; Seisenbaeva, Gulaim A; Kessler, Vadim G; Nilsson, Bo
2018-04-01
Iron-oxide nanoparticles (NPs) generated by environmental events are likely to represent health problems. α-Fe 2 O 3 NPs were synthesized, characterized and tested in a model for toxicity utilizing human whole blood without added anticoagulant. MALDI-TOF of the corona was performed and activation markers for plasma cascade systems (complement, contact and coagulation systems), platelet consumption and release of growth factors, MPO, and chemokine/cytokines from blood cells were analyzed. The coronas formed on the pristine α-Fe 2 O 3 NPs contained contact system proteins and they induced massive activation of the contact (kinin/kallikrein) system, as well as thrombin generation, platelet activation, and release of two pro-angiogeneic growth factors: platelet-derived growth factor and vascular endothelial growth factor, whereas complement activation was unaffected. The α-Fe 2 O 3 NPs exhibited a noticeable toxicity, with kinin/kallikrein activation, which may be associated with hypotension and long-term angiogenesis in vivo, with implications for cancer, arteriosclerosis and pulmonary disease. Copyright © 2017 Elsevier Inc. All rights reserved.
Yang, Xiuli; Coleman, Adam S; Anguita, Juan; Pal, Utpal
2009-03-01
Borrelia burgdorferi, the bacterial pathogen of Lyme borreliosis, differentially expresses select genes in vivo, likely contributing to microbial persistence and disease. Expression analysis of spirochete genes encoding potential membrane proteins showed that surface-located membrane protein 1 (lmp1) transcripts were expressed at high levels in the infected murine heart, especially during early stages of infection. Mice and humans with diagnosed Lyme borreliosis also developed antibodies against Lmp1. Deletion of lmp1 severely impaired the pathogen's ability to persist in diverse murine tissues including the heart, and to induce disease, which was restored upon chromosomal complementation of the mutant with the lmp1 gene. Lmp1 performs an immune-related rather than a metabolic function, as its deletion did not affect microbial persistence in immunodeficient mice, but significantly decreased spirochete resistance to the borreliacidal effects of anti-B. burgdorferi sera in a complement-independent manner. These data demonstrate the existence of a virulence factor that helps the pathogen evade host-acquired immune defense and establish persistent infection in mammals.
Yersinia pestis targets neutrophils via complement receptor 3
Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.
2015-01-01
Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083
Stimulatory effect of Eucalyptus essential oil on innate cell-mediated immune response
Serafino, Annalucia; Vallebona, Paola Sinibaldi; Andreola, Federica; Zonfrillo, Manuela; Mercuri, Luana; Federici, Memmo; Rasi, Guido; Garaci, Enrico; Pierimarchi, Pasquale
2008-01-01
Background Besides few data concerning the antiseptic properties against a range of microbial agents and the anti-inflammatory potential both in vitro and in vivo, little is known about the influence of Eucalyptus oil (EO) extract on the monocytic/macrophagic system, one of the primary cellular effectors of the immune response against pathogen attacks. The activities of this natural extract have mainly been recognized through clinical experience, but there have been relatively little scientific studies on its biological actions. Here we investigated whether EO extract is able to affect the phagocytic ability of human monocyte derived macrophages (MDMs) in vitro and of rat peripheral blood monocytes/granulocytes in vivo in absence or in presence of immuno-suppression induced by the chemotherapeutic agent 5-fluorouracil (5-FU). Methods Morphological activation of human MDMs was analysed by scanning electron microscopy. Phagocytic activity was tested: i) in vitro in EO treated and untreated MDMs, by confocal microscopy after fluorescent beads administration; ii) in vivo in monocytes/granulocytes from peripheral blood of immuno-competent or 5-FU immuno-suppressed rats, after EO oral administration, by flow cytometry using fluorescein-labelled E. coli. Cytokine release by MDMs was determined using the BD Cytometric Bead Array human Th1/Th2 cytokine kit. Results EO is able to induce activation of MDMs, dramatically stimulating their phagocytic response. EO-stimulated internalization is coupled to low release of pro-inflammatory cytokines and requires integrity of the microtubule network, suggesting that EO may act by means of complement receptor-mediated phagocytosis. Implementation of innate cell-mediated immune response was also observed in vivo after EO administration, mainly involving the peripheral blood monocytes/granulocytes. The 5-FU/EO combined treatment inhibited the 5-FU induced myelotoxicity and raised the phagocytic activity of the granulocytic/monocytic system, significantly decreased by the chemotherapic. Conclusion Our data, demonstrating that Eucalyptus oil extract is able to implement the innate cell-mediated immune response, provide scientific support for an additional use of this plant extract, besides those concerning its antiseptic and anti-inflammatory properties and stimulate further investigations also using single components of this essential oil. This might drive development of a possible new family of immuno-regulatory agents, useful as adjuvant in immuno-suppressive pathologies, in infectious disease and after tumour chemotherapy. PMID:18423004
Guo, Chang; Buckley, Alison; Marczylo, Tim; Seiffert, Joanna; Römer, Isabella; Warren, James; Hodgson, Alan; Chung, Kian Fan; Gant, Timothy W; Smith, Rachel; Leonard, Martin O
2018-05-11
Experimental modeling to identify specific inhalation hazards for nanomaterials has in the main focused on in vivo approaches. However, these models suffer from uncertainties surrounding species-specific differences and cellular targets for biologic response. In terms of pulmonary exposure, approaches which combine 'inhalation-like' nanoparticulate aerosol deposition with relevant human cell and tissue air-liquid interface cultures are considered an important complement to in vivo work. In this study, we utilized such a model system to build on previous results from in vivo exposures, which highlighted the small airway epithelium as a target for silver nanoparticle (AgNP) deposition. RNA-SEQ was used to characterize alterations in mRNA and miRNA within the lung. Organotypic-reconstituted 3D human primary small airway epithelial cell cultures (SmallAir) were exposed to the same spark-generated AgNP and at the same dose used in vivo, in an aerosol-exposure air-liquid interface (AE-ALI) system. Adverse effects were characterized using lactate, LDH release and alterations in mRNA and miRNA. Modest toxicological effects were paralleled by significant regulation in gene expression, reflective mainly of specific inflammatory events. Importantly, there was a level of concordance between gene expression changes observed in vitro and in vivo. We also observed a significant correlation between AgNP and mass equivalent silver ion (Ag + ) induced transcriptional changes in SmallAir cultures. In addition to key mechanistic information relevant for our understanding of the potential health risks associated with AgNP inhalation exposure, this work further highlights the small airway epithelium as an important target for adverse effects.
Proteomic characterization of the nucleolar linker histone H1 interaction network
Szerlong, Heather J.; Herman, Jacob A.; Krause, Christine M.; DeLuca, Jennifer G.; Skoultchi, Arthur; Winger, Quinton A.; Prenni, Jessica E.; Hansen, Jeffrey C.
2015-01-01
To investigate the relationship between linker histone H1 and protein-protein interactions in the nucleolus, biochemical and proteomics approaches were used to characterize nucleoli purified from cultured human and mouse cells. Mass spectrometry identified 175 proteins in human T-cell nucleolar extracts that bound to sepharose-immobilized H1 in vitro. Gene ontology analysis found significant enrichment for H1 binding proteins with functions related to nucleolar chromatin structure and RNA polymerase I transcription regulation, rRNA processing, and mRNA splicing. Consistent with the affinity binding results, H1 existed in large (400 to >650 kDa) macromolecular complexes in human T cell nucleolar extracts. To complement the biochemical experiments, the effects of in vivo H1 depletion on protein content and structural integrity of the nucleolus were investigated using the H1 triple isoform knock out (H1ΔTKO) mouse embryonic stem cell (mESC) model system. Proteomic profiling of purified wild type mESC nucleoli identified a total of 613 proteins, only ~60% of which were detected in the H1 mutant nucleoli. Within the affected group, spectral counting analysis quantitated 135 specific nucleolar proteins whose levels were significantly altered in H1ΔTKO mESC. Importantly, the functions of the affected proteins in mESC closely overlapped with those of the human T cell nucleolar H1 binding proteins. Immunofluorescence microscopy of intact H1ΔTKO mESC demonstrated both a loss of nucleolar RNA content and altered nucleolar morphology resulting from in vivo H1 depletion. We conclude that H1 organizes and maintains an extensive protein-protein interaction network in the nucleolus required for nucleolar structure and integrity. PMID:25584861
Absorption and Clearance of Pharmaceutical Aerosols in the Human Nose: Development of a CFD Model.
Rygg, Alex; Longest, P Worth
2016-10-01
The objective of this study was to develop a computational fluid dynamics (CFD) model to predict the deposition, dissolution, clearance, and absorption of pharmaceutical particles in the human nasal cavity. A three-dimensional nasal cavity geometry was converted to a surface-based model, providing an anatomically-accurate domain for the simulations. Particle deposition data from a commercial nasal spray product was mapped onto the surface model, and a mucus velocity field was calculated and validated with in vivo nasal clearance rates. A submodel for the dissolution of deposited particles was developed and validated based on comparisons to existing in vitro data for multiple pharmaceutical products. A parametric study was then performed to assess sensitivity of epithelial drug uptake to model conditions and assumptions. The particle displacement distance (depth) in the mucus layer had a modest effect on overall drug absorption, while the mucociliary clearance rate was found to be primarily responsible for drug uptake over the timescale of nasal clearance for the corticosteroid mometasone furoate (MF). The model revealed that drug deposition in the nasal vestibule (NV) could slowly be transported into the main passage (MP) and then absorbed through connection of the liquid layer in the NV and MP regions. As a result, high intersubject variability in cumulative uptake was predicted, depending on the length of time the NV dose was left undisturbed without blowing or wiping the nose. This study has developed, for the first time, a complete CFD model of nasal aerosol delivery from the point of spray formation through absorption at the respiratory epithelial surface. For the development and assessment of nasal aerosol products, this CFD-based in silico model provides a new option to complement existing in vitro nasal cast studies of deposition and in vivo imaging experiments of clearance.
O’Reilly, Michael W.; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E.; Manolopoulos, Konstantinos N.; Allwood, J. William; Semple, Robert K.; Hebenstreit, Daniel; Dunn, Warwick B.; Tomlinson, Jeremy W.
2017-01-01
Context: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. Methods: We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index–matched healthy controls, complemented by in vitro experiments. Results: PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. Conclusions: These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. PMID:28645211
O'Reilly, Michael W; Kempegowda, Punith; Walsh, Mark; Taylor, Angela E; Manolopoulos, Konstantinos N; Allwood, J William; Semple, Robert K; Hebenstreit, Daniel; Dunn, Warwick B; Tomlinson, Jeremy W; Arlt, Wiebke
2017-09-01
Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder occurring in up to 10% of women of reproductive age. PCOS is associated with insulin resistance and cardiovascular risk. Androgen excess is a defining feature of PCOS and has been suggested as causally associated with insulin resistance; however, mechanistic evidence linking both is lacking. We hypothesized that adipose tissue is an important site linking androgen activation and metabolic dysfunction in PCOS. We performed a human deep metabolic in vivo phenotyping study examining the systemic and intra-adipose effects of acute and chronic androgen exposure in 10 PCOS women, in comparison with 10 body mass index-matched healthy controls, complemented by in vitro experiments. PCOS women had increased intra-adipose concentrations of testosterone (P = 0.0006) and dihydrotestosterone (P = 0.01), with increased expression of the androgen-activating enzyme aldo-ketoreductase type 1 C3 (AKR1C3) (P = 0.04) in subcutaneous adipose tissue. Adipose glycerol levels in subcutaneous adipose tissue microdialysate supported in vivo suppression of lipolysis after acute androgen exposure in PCOS (P = 0.04). Mirroring this, nontargeted serum metabolomics revealed prolipogenic effects of androgens in PCOS women only. In vitro studies showed that insulin increased adipose AKR1C3 expression and activity, whereas androgen exposure increased adipocyte de novo lipid synthesis. Pharmacologic AKR1C3 inhibition in vitro decreased de novo lipogenesis. These findings define an intra-adipose mechanism of androgen activation that contributes to adipose remodeling and a systemic lipotoxic metabolome, with intra-adipose androgens driving lipid accumulation and insulin resistance in PCOS. AKR1C3 represents a promising therapeutic target in PCOS. Copyright © 2017 Endocrine Society
Gravina, Giovanni Luca; Mancini, Andrea; Marampon, Francesco; Colapietro, Alessandro; Delle Monache, Simona; Sferra, Roberta; Vitale, Flora; Richardson, Peter J; Patient, Lee; Burbidge, Stephen; Festuccia, Claudio
2017-01-05
Glioblastoma recurrence after treatment with the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab is characterized by a highly infiltrative and malignant behavior that renders surgical excision and chemotherapy ineffective. It has been demonstrated that anti-VEGF/VEGFR therapies control the invasive phenotype and that relapse occurs through the increased activity of CXCR4. We therefore hypothesized that combining bevacizumab or sunitinib with the novel CXCR4 antagonist, PRX177561, would have superior antitumor activity. The effects of bevacizumab, sunitinib, and PRX177561 were tested alone or in combination in subcutaneous xenografts of U87MG, U251, and T98G cells as well as on intracranial xenografts of luciferase tagged U87MG cells injected in CD1-nu/nu mice. Animals were randomized to receive vehicle, bevacizumab (4 mg/kg iv every 4 days), sunitinib (40 mg/kg po qd), or PRX177561 (50 mg/kg po qd). The in vivo experiments demonstrated that bevacizumab and sunitinib increase the in vivo expression of CXCR4, SDF-1α, and TGFβ1. In addition, we demonstrate that the co-administration of the novel brain-penetrating CXCR4 antagonist, PRX177561, with bevacizumab or sunitinib inhibited tumor growth and reduced the inflammation. The combination of PRX177561 with bevacizumab resulted in a synergistic reduction of tumor growth with an increase of disease-free survival (DSF) and overall survival (OS), whereas the combination of PRX177561 with sunitinib showed a mild additive effect. The CXC4 antagonist PRX177561 may be a valid therapeutic complement to anti-angiogenic therapy, particularly when used in combination with VEGF/VEGFR inhibitors. Therefore, this compound deserves to be considered for future clinical evaluation.
Nakagawa, K; Yoshida, F; Omori, N; Tsunoda, T; Nose, T
1990-01-01
The effect of radiation therapy combined with lymphoid cells against spontaneous murine fibrosarcoma (FSa-II) was investigated both in vivo and in vitro. In the in vivo experiment, syngeneic C3H mice were divided into 3 groups. Animals in the first group were injected with 1 x 10(5) tumor cells into the right hind leg. Animals in the second and third groups were injected with 1 x 10(5) tumor cells mixed with 1 x 10(7) normal lymphoid cells (NLC) or effector lymphoid cells (ELC), respectively. ELC were obtained from spleen and lymph nodes of FSa-II-bearing mice and incubated in vitro for 40 hr to eliminate suppressor T cell function. NLC were obtained from normal mice and incubated in the same way. Irradiation was given using 137Cs unit 3 days after cell inoculation. 12 out of 14 mice (85.7%) inoculated with tumor cells mixed with NLC did not show any tumor growth at 60 Gy local irradiation. 12 out of 21 mice (57.1%) inoculated with tumor cells alone and 6 out of 10 (60%) with tumor cells mixed with ELC rejected tumors at the same radiation dose. This synergistic effect with NLC was not observed when NLC was inoculated after irradiation, indicating that lymphoid cells should be in contact with tumor cells before irradiation. In the 51Cr release assay, lymphoid cells obtained from whole body irradiated (WBI) mice showed 17.8% lysis without irradiation and 28.8% lysis at 5 Gy irradiation. Untreated NLC showed almost no cytotoxic effect at the same radiation dose. This synergistic effect disappeared when WBI lymphoid cells were treated with anti asialo GM1 and complement.(ABSTRACT TRUNCATED AT 250 WORDS)
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling
2013-01-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter−1 of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism. PMID:23811508
Krog, Anne; Heggeset, Tonje Marita Bjerkan; Ellingsen, Trond Erling; Brautaset, Trygve
2013-09-01
Bacillus methanolicus wild-type strain MGA3 secretes 59 g/liter(-1) of l-glutamate in fed-batch methanol cultivations at 50°C. We recently sequenced the MGA3 genome, and we here characterize key enzymes involved in l-glutamate synthesis and degradation. One glutamate dehydrogenase (GDH) that is encoded by yweB and two glutamate synthases (GOGATs) that are encoded by the gltAB operon and by gltA2 were found, in contrast to Bacillus subtilis, which has two different GDHs and only one GOGAT. B. methanolicus has a glutamine synthetase (GS) that is encoded by glnA and a 2-oxoglutarate dehydrogenase (OGDH) that is encoded by the odhAB operon. The yweB, gltA, gltB, and gltA2 gene products were purified and characterized biochemically in vitro. YweB has a low Km value for ammonium (10 mM) and a high Km value for l-glutamate (250 mM), and the Vmax value is 7-fold higher for l-glutamate synthesis than for the degradation reaction. GltA and GltA2 displayed similar Km values (1 to 1.4 mM) and Vmax values (4 U/mg) for both l-glutamate and 2-oxoglutarate as the substrates, and GltB had no effect on the catalytic activities of these enzymes in vitro. Complementation assays indicated that GltA and not GltA2 is dependent on GltB for GOGAT activity in vivo. To our knowledge, this is the first report describing the presence of two active GOGATs in a bacterium. In vivo experiments indicated that OGDH activity and, to some degree, GOGAT activity play important roles in regulating l-glutamate production in this organism.
Hobbs, Joanne K; Prentice, Erica J; Groussin, Mathieu; Arcus, Vickery L
2015-10-01
Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported--high thermostability and high catalytic activity--compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered "superior" to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M.
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with 125I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases. PMID:22514678
Malm, Sven; Jusko, Monika; Eick, Sigrun; Potempa, Jan; Riesbeck, Kristian; Blom, Anna M
2012-01-01
Infection with the Gram-negative pathogen Prevotella intermedia gives rise to periodontitis and a growing number of studies implies an association of P. intermedia with rheumatoid arthritis. The serine protease Factor I (FI) is the central inhibitor of complement degrading complement components C3b and C4b in the presence of cofactors such as C4b-binding protein (C4BP) and Factor H (FH). Yet, the significance of complement inhibitor acquisition in P. intermedia infection and FI binding by Gram-negative pathogens has not been addressed. Here we show that P. intermedia isolates bound purified FI as well as FI directly from heat-inactivated human serum. FI bound to bacteria retained its serine protease activity as shown in degradation experiments with (125)I-labeled C4b. Since FI requires cofactors for its activity we also investigated the binding of purified cofactors C4BP and FH and found acquisition of both proteins, which retained their activity in FI mediated degradation of C3b and C4b. We propose that FI binding by P. intermedia represents a new mechanism contributing to complement evasion by a Gram-negative bacterial pathogen associated with chronic diseases.
Evaluation of Pasteurella multocida serotype B:2 resistance to immune serum and complement system
Ataei Kachooei, Saeed; Ranjbar, Mohammad Mehdi; Ataei Kachooei, Saba
2017-01-01
Members of gram-negative bacteria family Pasteurellaceae, include a large number of important economically human and veterinary pathogens. Organisms belonging to the family can colonize in mucosal surfaces of the respiratory, alimentary, genital tracts and cause diseases in various mammals, birds, and reptiles. Hemorrhagic septicemia is an acute disease of cattle and buffaloes in tropical countries caused by Pasteurella multocida serotype B:2. In the present study, the possible bactericidal activity of immune calf sera in the presence and absence of complement system was investigated. The results showed that P. multocida B:2 is highly resistant to positive serum, containing high levels of IgG and IgM obtained from calves after vaccination, and complement activity in normal fresh calf serum. This organism also grew rapidly in the normal fresh calf serum and the mixture of positive serum as well as normal fresh calf serum. As a control test an E. coli strain was subjected to the same experiment and found completely sensitive to the bactericidal activity of complement in calf and guinea pig fresh sera. Results were indicative of the presence of inhibitory mechanism(s) in P. multocida B:2 against bactericidal activity of immune calf serum and complement system. PMID:29085604
Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium
Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli
2017-01-01
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism—which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid iBSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with iBSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions. PMID:29213256
Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium.
Ponce-de-Leon, Miguel; Tamarit, Daniel; Calle-Espinosa, Jorge; Mori, Matteo; Latorre, Amparo; Montero, Francisco; Pereto, Juli
2017-01-01
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism-which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca . Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid i BSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with i BSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.
Bloom, Anja C; Collins, Fraser L; Van't Hof, Rob J; Ryan, Elizabeth S; Jones, Emma; Hughes, Timothy R; Morgan, B Paul; Erlandsson, Malin; Bokarewa, Maria; Aeschlimann, Daniel; Evans, Bronwen A J; Williams, Anwen S
2016-03-01
Degenerative joint diseases such as osteoarthritis are characterised by aberrant region-specific bone formation and abnormal bone mineral content. A recent study suggested a role for the complement membrane attack complex in experimental models of osteoarthritis. Since CD59a is the principal regulator of the membrane attack complex in mice, we evaluated the impact of CD59a gene deletion upon maintenance of bone architecture. In vivo bone morphology analysis revealed that male CD59a-deficient mice have increased femur length and cortical bone volume, albeit with reduced bone mineral density. However, this phenomenon was not observed in female mice. Histomorphometric analysis of the trabecular bone showed increased rates of bone homeostasis, with both increased bone resorption and mineral apposition rate in CD59a-deficient male mice. When bone cells were studied in isolation, in vitro osteoclastogenesis was significantly increased in male CD59a-deficient mice, although osteoblast formation was not altered. Our data reveal, for the first time, that CD59a is a regulator of bone growth and homeostasis. CD59a ablation in male mice results in longer and wider bones, but with less density, which is likely a major contributing factor for their susceptibility to osteoarthritis. These findings increase our understanding of the role of complement regulation in degenerative arthritis. Copyright © 2016 Amgen Inc. Published by Elsevier Inc. All rights reserved.
Jordheim, Lars Petter; Cros-Perrial, Emeline; Matera, Eva-Laure; Bouledrak, Karima; Dumontet, Charles
2014-10-01
Nucleotide excision repair (NER) is involved in the repair of DNA damage caused by platinum derivatives and has been shown to decrease the cytotoxic activity of these drugs. Because protein-protein interactions are essential for NER activity, we transfected human cancer cell lines (A549 and HCT116) with plasmids coding the amino acid sequences corresponding to the interacting domains between excision repair cross-complementation group 1 (ERCC1) and xeroderma pigmentosum, complementation group A (XPA), as well as ERCC1 and xeroderma pigmentosum, complementation group F (XPF), all NER proteins. Using the 3-(4,5-dimethyl-2 thiazoyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and annexin V staining, we showed that transfected A549 cells were sensitized 1.2-2.2-fold to carboplatin and that transfected HCT116 cells were sensitized 1.4-5.4-fold to oxaliplatin in vitro. In addition, transfected cells exhibited modified in vivo sensitivity to the same drugs. Finally, in particular cell models of the interaction between ERCC1 and XPF, DNA repair was decreased, as evidenced by increased phosphorylation of the histone 2AX after exposure to mitomycin C, and genomic instability was increased, as determined by comparative genomic hybridization studies. The results indicate that the interacting peptides act as dominant negatives and decrease NER activity through inhibition of protein-protein interactions. © 2014 Wiley Publishing Asia Pty Ltd.
Abbitt, Katherine B; Cotter, Matthew J; Ridger, Victoria C; Crossman, David C; Hellewell, Paul G; Norman, Keith E
2009-01-01
Ly-6G is a member of the Ly-6 family of GPI-linked proteins, which is expressed on murine neutrophils. Antibodies against Ly-6G cause neutropenia, and fatal reactions also develop if mice are primed with TNF-alpha prior to antibody treatment. We have investigated the mechanisms behind these responses to Ly-6G ligation in the belief that similar mechanisms may be involved in neutropenia and respiratory disorders associated with alloantibody ligation of the related Ly-6 family member, NB1, in humans. Neutrophil adhesion, microvascular obstruction, breathing difficulties, and death initiated by anti-Ly-6G antibodies in TNF-alpha-primed mice were shown to be highly complement-dependent, partly mediated by CD11b, CD18, and FcgammaR and associated with clustering of Ly-6G. Neutrophil depletion, on the other hand, was only partly complement-dependent and was not altered by blockade of CD11b, CD18, or FcgammaR. Unlike other neutrophil-activating agents, Ly-6G ligation did not induce neutropenia via sequestration in the lungs. Cross-linking Ly-6G mimicked the responses seen with whole antibody in vivo and also activated murine neutrophils in vitro. Although this suggests that the responses are, in part, mediated by nonspecific properties of antibody ligation, neutrophil depletion requires an additional mechanism possibly specific to the natural function of Ly-6G.
Impact of X/Y genes and sex hormones on mouse neuroanatomy.
Vousden, Dulcie A; Corre, Christina; Spring, Shoshana; Qiu, Lily R; Metcalf, Ariane; Cox, Elizabeth; Lerch, Jason P; Palmert, Mark R
2018-06-01
Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy. Copyright © 2018 Elsevier Inc. All rights reserved.
Functional basis for complement evasion by staphylococcal superantigen-like 7.
Bestebroer, Jovanka; Aerts, Piet C; Rooijakkers, Suzan H M; Pandey, Manoj K; Köhl, Jörg; van Strijp, Jos A G; de Haas, Carla J C
2010-10-01
The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of Escherichia coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defence against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole-blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. © 2010 Blackwell Publishing Ltd.
Functional basis for complement evasion by staphylococcal superantigen-like 7
Bestebroer, Jovanka; Aerts, Piet C.; Rooijakkers, Suzan H.M.; Pandey, Manoj K.; Köhl, Jörg; van Strijp, Jos A. G.; de Haas, Carla J. C.
2010-01-01
Summary The human pathogen Staphylococcus aureus has a plethora of virulence factors that promote its colonization and survival in the host. Among such immune modulators are staphylococcal superantigen-like (SSL) proteins, comprising a family of 14 small, secreted molecules that seem to interfere with the host innate immune system. SSL7 has been described to bind immunoglobulin A (IgA) and complement C5, thereby inhibiting IgA-FcαRI binding and serum killing of E. coli. As C5a generation, in contrast to C5b-9-mediated lysis, is crucial for immune defense against staphylococci, we investigated the impact of SSL7 on staphylococcal-induced C5a-mediated effects. Here, we show that SSL7 inhibits C5a generation induced by staphylococcal opsonization, slightly enhanced by its IgA-binding capacity. Moreover, we demonstrate a strong protective activity of SSL7 against staphylococcal clearance in human whole blood. SSL7 strongly inhibited the C5a-induced phagocytosis of S. aureus and oxidative burst in an in vitro whole blood inflammation model. Furthermore, we found that SSL7 affects all three pathways of complement activation and inhibits the cleavage of C5 by interference of its binding to C5 convertases. Finally, SSL7 effects were also demonstrated in vivo. In a murine model of immune complex peritonitis, SSL7 abrogated the C5a-driven influx of neutrophils in mouse peritoneum. PMID:20545943
Complement factor C5a induces atherosclerotic plaque disruptions
Wezel, Anouk; de Vries, Margreet R; Lagraauw, H Maxime; Foks, Amanda C; Kuiper, Johan; Quax, Paul HA; Bot, Ilze
2014-01-01
Complement factor C5a and its receptor C5aR are expressed in vulnerable atherosclerotic plaques; however, a causal relation between C5a and plaque rupture has not been established yet. Accelerated atherosclerosis was induced by placing vein grafts in male apoE−/− mice. After 24 days, when advanced plaques had developed, C5a or PBS was applied locally at the lesion site in a pluronic gel. Three days later mice were killed to examine the acute effect of C5a on late stage atherosclerosis. A significant increase in C5aR in the plaque was detectable in mice treated with C5a. Lesion size and plaque morphology did not differ between treatment groups, but interestingly, local treatment with C5a resulted in a striking increase in the amount of plaque disruptions with concomitant intraplaque haemorrhage. To identify the potential underlying mechanisms, smooth muscle cells and endothelial cells were treated in vitro with C5a. Both cell types revealed a marked increase in apoptosis after stimulation with C5a, which may contribute to lesion instability in vivo. Indeed, apoptosis within the plaque was seen to be significantly increased after C5a treatment. We here demonstrate a causal role for C5a in atherosclerotic plaque disruptions, probably by inducing apoptosis. Therefore, intervention in complement factor C5a signalling may be a promising target in the prevention of acute atherosclerotic complications. PMID:25124749
Dupont, Aline; Mohamed, Fatima; Salehen, Nur'Ain; Glenn, Sarah; Francescut, Lorenza; Adib, Rozita; Byrne, Simon; Brewin, Hannah; Elliott, Irina; Richards, Luke; Dimitrova, Petya; Schwaeble, Wilhelm; Ivanovska, Nina; Kadioglu, Aras; Machado, Lee R; Andrew, Peter W; Stover, Cordula
2014-08-01
Streptococcus pneumoniae and Listeria monocytogenes, pathogens which can cause severe infectious disease in human, were used to infect properdin-deficient and wildtype mice. The aim was to deduce a role for properdin, positive regulator of the alternative pathway of complement activation, by comparing and contrasting the immune response of the two genotypes in vivo. We show that properdin-deficient and wildtype mice mounted antipneumococcal serotype-specific IgM antibodies, which were protective. Properdin-deficient mice, however, had increased survival in the model of streptococcal pneumonia and sepsis. Low activity of the classical pathway of complement and modulation of FcγR2b expression appear to be pathogenically involved. In listeriosis, however, properdin-deficient mice had reduced survival and a dendritic cell population that was impaired in maturation and activity. In vitro analyses of splenocytes and bone marrow-derived myeloid cells support the view that the opposing outcomes of properdin-deficient and wildtype mice in these two infection models is likely to be due to a skewing of macrophage activity to an M2 phenotype in the properdin-deficient mice. The phenotypes observed thus appear to reflect the extent to which M2- or M1-polarised macrophages are involved in the immune responses to S. pneumoniae and L. monocytogenes. We conclude that properdin controls the strength of immune responses by affecting humoral as well as cellular phenotypes during acute bacterial infection and ensuing inflammation.
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A; Delp, Scott L
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico . We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors.
University of Rhode Island Adapted Aquatics Program Manual. Second Edition.
ERIC Educational Resources Information Center
Bloomquist, Lorraine E.
This manual provides guidelines for aquatic teachers of people with disabilities. It is based on experience in teaching American Red Cross Adapted Aquatics and is to be used to complement and accompany the Red Cross Adapted Aquatics materials. Emphasis is placed on successful experiences in a positive, safe, reinforcing environment stressing…
ERIC Educational Resources Information Center
Papp, Inkeri; Markkanen, Marjatta; von Bonsdorff, Mikaela
2003-01-01
Finnish student nurses (n=16) described their clinical learning experiences. Several themes were identified: feeling appreciated and supported, the quality of mentoring and patient care, and self-directedness. School and clinical staff cooperation helped create a good learning environment in which theory and practice complemented each other.…
An Environmental Chemistry Experiment: The Determination of Radon Levels in Water.
ERIC Educational Resources Information Center
Welch, Lawrence E.; Mossman, Daniel M.
1994-01-01
Describes a radiation experiment developed to complement a new environmental chemistry laboratory curriculum. A scintillation counter is used to measure radon in water. The procedure relies on the fact that toluene will preferentially extract radon from water. Sample preparation is complete in less than 90 minutes. Because the level of…
Back to Basic: Aesthetic Experiences with Literature and Discovering the World
ERIC Educational Resources Information Center
Tice, Kathleen C.
2008-01-01
In this article, the author shares a current analysis of data that complements findings from earlier, related research that confirms the emotional aspects of reading experiences. The data from the earlier study is based upon comments by graduate students in online discussion groups, where they share their thoughts about the professional readings…
Travelling Academics: The Lived Experience of Academics Moving across Countries
ERIC Educational Resources Information Center
Uusimaki, Liisa; Garvis, Susanne
2017-01-01
The article reports on a study that explored the personal narratives of two female travelling academics at a Swedish University who had moved from Australia. To complement previous accounts of difficult migration and enculturation within the research literature, this article focuses mainly on the successful experiences of the academics and how…
McLenigan, Mary P.; Kulaeva, Olga I.; Ennis, Don G.; Levine, Arthur S.; Woodgate, Roger
1999-01-01
The Escherichia coli umuD and umuC genes comprise an operon and encode proteins that are involved in the mutagenic bypass of normally replication-inhibiting DNA lesions. UmuD is, however, unable to function in this process until it undergoes a RecA-mediated cleavage reaction to generate UmuD′. Many homologs of umuDC have now been identified. Most are located on bacterial chromosomes or on broad-host-range R plasmids. One such putative homolog, humD (homolog of umuD) is, however, found on the bacteriophage P1 genome. Interestingly, humD differs from other umuD homologs in that it encodes a protein similar in size to the posttranslationally generated UmuD′ protein and not UmuD, nor is it in an operon with a cognate umuC partner. To determine if HumD is, in fact, a bona fide homolog of the prokaryotic UmuD′-like mutagenesis proteins, we have analyzed the ability of HumD to complement UmuD′ functions in vivo as well as examined HumD’s physical properties in vitro. When expressed from a high-copy-number plasmid, HumD restored cellular mutagenesis and increased UV survival to normally nonmutable recA430 lexA(Def) and UV-sensitive ΔumuDC recA718 lexA(Def) strains, respectively. Complementing activity was reduced when HumD was expressed from a low-copy-number plasmid, but this observation is explained by immunoanalysis which indicates that HumD is normally poorly expressed in vivo. In vitro analysis revealed that like UmuD′, HumD forms a stable dimer in solution and is able to interact with E. coli UmuC and RecA nucleoprotein filaments. We conclude, therefore, that bacteriophage P1 HumD is a functional homolog of the UmuD′-like proteins, and we speculate as to the reasons why P1 might require the activity of such a protein in vivo. PMID:10559166
Grandvalet, Cosette; Assad-García, Juan Simón; Chu-Ky, Son; Tollot, Marie; Guzzo, Jean; Gresti, Joseph; Tourdot-Maréchal, Raphaëlle
2008-09-01
Cyclopropane fatty acid (CFA) synthesis was investigated in Oenococcus oeni. The data obtained demonstrated that acid-grown cells or cells harvested in the stationary growth phase showed changes in fatty acid composition similar to those of ethanol-grown cells. An increase of the CFA content and a decrease of the oleic acid content were observed. The biosynthesis of CFAs from unsaturated fatty acid phospholipids is catalysed by CFA synthases. Quantitative real-time-PCR experiments were performed on the cfa gene of O. oeni, which encodes a putative CFA synthase. The level of cfa transcripts increased when cells were harvested in stationary phase and when cells were grown in the presence of ethanol or at low pH, suggesting transcriptional regulation of the cfa gene under different stress conditions. In contrast to Escherichia coli, only one functional promoter was identified upstream of the cfa gene of O. oeni. The function of the cfa gene was confirmed by complementation of a cfa-deficient E. coli strain. Nevertheless, the complementation remained partial because the conversion percentage of unsaturated fatty acids into CFA of the complemented strain was much lower than that of the wild-type strain. Moreover, a prevalence of cycC19 : 0 was observed in the membrane of the complemented strain. This could be due to a specific affinity of the CFA synthase from O. oeni. In spite of this partial complementation, the complemented strain of E. coli totally recovered its viability after ethanol shock (10 %, v/v) whereas its viability was only partly recovered after an acid shock at pH 3.0.
Feng, Haibo; Dong, Dinghui; Ma, Tengfei; Zhuang, Jinlei; Fu, Yili; Lv, Yi; Li, Liyi
2017-12-01
Surgical robot systems which can significantly improve surgical procedures have been widely used in laparoendoscopic single-site surgery (LESS). For a relative complex surgical procedure, the development of an in vivo visual robot system for LESS can effectively improve the visualization for surgical robot systems. In this work, an in vivo visual robot system with a new mechanism for LESS was investigated. A finite element method (FEM) analysis was carried out to ensure the safety of the in vivo visual robot during the movement, which was the most important concern for surgical purposes. A master-slave control strategy was adopted, in which the control model was established by off-line experiments. The in vivo visual robot system was verified by using a phantom box. The experiment results show that the robot system can successfully realize the expected functionalities and meet the demands of LESS. The experiment results indicate that the in vivo visual robot with high manipulability has great potential in clinical application. Copyright © 2017 John Wiley & Sons, Ltd.
Study on recognition technology of complementary image
NASA Astrophysics Data System (ADS)
Liu, Chengxiang; Hu, Xuejuan; Jian, Yaobo; Zhang, Li
2006-11-01
Complementation image is often used as a guard technology in the trademark and paper currency. The key point of recognizing this kind of images is judging the complementary effect of complementation printing. The perspective images are usually not clear and legible, so it is difficult to recognize them. In this paper, a new method is proposed. Firstly, capture the image by reflex. Secondly, find the same norm to man-made pair printing. Lastly, judge the true and false of paper currency by the complementary effect of complementation printing. This is the purpose of inspecting the false. Theoretic analysis and simulation results reveal that the effect of man-made pair printing is good, the method has advantages such as simplicity, high calculating speed, and good robust to different RMB. The experiment results reveal that the conclusion is reasonable, and demonstrates that this approach is effective.
Stefan, E; Aquin, S; Berger, N; Landry, C R; Nyfeler, B; Bouvier, M; Michnick, S W
2007-10-23
The G protein-coupled receptor (GPCR) superfamily represents the most important class of pharmaceutical targets. Therefore, the characterization of receptor cascades and their ligands is a prerequisite to discovering novel drugs. Quantification of agonist-induced second messengers and downstream-coupled kinase activities is central to characterization of GPCRs or other pathways that converge on GPCR-mediated signaling. Furthermore, there is a need for simple, cell-based assays that would report on direct or indirect actions on GPCR-mediated effectors of signaling. More generally, there is a demand for sensitive assays to quantify alterations of protein complexes in vivo. We describe the development of a Renilla luciferase (Rluc)-based protein fragment complementation assay (PCA) that was designed specifically to investigate dynamic protein complexes. We demonstrate these features for GPCR-induced disassembly of protein kinase A (PKA) regulatory and catalytic subunits, a key effector of GPCR signaling. Taken together, our observations show that the PCA allows for direct and accurate measurements of live changes of absolute values of protein complex assembly and disassembly as well as cellular imaging and dynamic localization of protein complexes. Moreover, the Rluc-PCA has a sufficiently high signal-to-background ratio to identify endogenously expressed Galpha(s) protein-coupled receptors. We provide pharmacological evidence that the phosphodiesterase-4 family selectively down-regulates constitutive beta-2 adrenergic- but not vasopressin-2 receptor-mediated PKA activities. Our results show that the sensitivity of the Rluc-PCA simplifies the recording of pharmacological profiles of GPCR-based candidate drugs and could be extended to high-throughput screens to identify novel direct modulators of PKA or upstream components of GPCR signaling cascades.
Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J
2016-01-01
The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773.
Bekker, Pirow; Dairaghi, Daniel; Seitz, Lisa; Leleti, Manmohan; Wang, Yu; Ertl, Linda; Baumgart, Trageen; Shugarts, Sarah; Lohr, Lisa; Dang, Ton; Miao, Shichang; Zeng, Yibin; Fan, Pingchen; Zhang, Penglie; Johnson, Daniel; Powers, Jay; Jaen, Juan; Charo, Israel; Schall, Thomas J.
2016-01-01
The complement 5a receptor has been an attractive therapeutic target for many autoimmune and inflammatory disorders. However, development of a selective and potent C5aR antagonist has been challenging. Here we describe the characterization of CCX168 (avacopan), an orally administered selective and potent C5aR inhibitor. CCX168 blocked the C5a binding, C5a-mediated migration, calcium mobilization, and CD11b upregulation in U937 cells as well as in freshly isolated human neutrophils. CCX168 retains high potency when present in human blood. A transgenic human C5aR knock-in mouse model allowed comparison of the in vitro and in vivo efficacy of the molecule. CCX168 effectively blocked migration in in vitro and ex vivo chemotaxis assays, and it blocked the C5a-mediated neutrophil vascular endothelial margination. CCX168 was effective in migration and neutrophil margination assays in cynomolgus monkeys. This thorough in vitro and preclinical characterization enabled progression of CCX168 into the clinic and testing of its safety, tolerability, pharmacokinetic, and pharmacodynamic profiles in a Phase 1 clinical trial in 48 healthy volunteers. CCX168 was shown to be well tolerated across a broad dose range (1 to 100 mg) and it showed dose-dependent pharmacokinetics. An oral dose of 30 mg CCX168 given twice daily blocked the C5a-induced upregulation of CD11b in circulating neutrophils by 94% or greater throughout the entire day, demonstrating essentially complete target coverage. This dose regimen is being tested in clinical trials in patients with anti-neutrophil cytoplasmic antibody-associated vasculitis. Trial Registration ISRCTN registry with trial ID ISRCTN13564773. PMID:27768695
Fehr, J; Jacob, H S
1977-09-01
To study mechanisms and mediators regulating the distribution of intravascular granulocytes between circulating and marginated pools, a human model with extreme transient margination, the neutropenia of continuous flow filtration leukophoresis, was analyzed. Studies in animals demonstrated the existence of a complement (C)-derived granulocytopenia-inducing factor. Thus, autologous plasma, exposed to nylon fibers (NF) of the filtration system, produced an acute selective decrement of circulating granulocytes and monocytes. This phenomenon was blocked by decomplementing plasma, by pretreatment of plasma with EDTA or hydrazine, and by preheating at 56 degrees C, but did occur after recombination of heat-inactivated and hydrazine-treated plasma before NF exposure. Preheating plasma at 50 degrees C did not inhibit the neutropenic response, suggesting involvement of the classical pathway of C activation. Ultrafiltration studies indicated that the NF-provoked neutropenia-inducing factor has a mol wt in the range of 10,000-30,000, and is heat stable (56 degrees C). To analyze the hypothesis that C- induced neutrophil margination might be consequent to increased cell adhesiveness to endothelial surfaces, the role of C in promoting granulocyte adherence was evaluated in vitro. Measured with a plastic Petridish assay, granulocyte adherence was significantly reduced in heat- inactivated (56 degrees C) and hydrazine-treated plasma, but adherence promoting capacity was restored by mixing the two plasmas, or by adding purified C3 to hydrazine-treated plasma. After exposure to activated C, neutrophils showed significantly increased adhesiveness which was maintained when cells were resuspended in heat-inactivated plasma, but progressively lost when resuspended in fresh plasma. On the basis of these results we conclude that granulocyte adhesiveness in vitro and margination in vivo are closely associated, C-dependent phenomena.
Hardersen, Randolf; Enebakk, Terje; Christiansen, Dorte; Bergseth, Grethe; Brekke, Ole-Lars; Mollnes, Tom Eirik; Lappegård, Knut Tore; Hovland, Anders
2018-04-01
The aim of the study was to investigate the role of complement factor 5 (C5) in reactions elicited by plasma separation using blood from a C5-deficient (C5D) individual, comparing it to C5-deficient blood reconstituted with C5 (C5DR) and blood from healthy donors. Blood was circulated through an ex vivo plasma separation model. Leukocyte CD11b expression and leukocyte-platelet conjugates were measured by flow cytometry during a 30-min period. Other markers were assessed during a 240-min period. Granulocyte and monocyte CD11b expression did not increase in C5D blood during plasma separation. In C5DR samples granulocytes CD11b expression, measured by mean fluorescence intensity (MFI), increased from 10481 ± 6022 (SD) to 62703 ± 4936, and monocytes CD11b expression changed from 13837 ± 7047 to 40063 ± 713. Granulocyte-platelet conjugates showed a 2.5-fold increase in the C5DR sample compared to the C5D sample. Monocyte-platelet conjugates increased independently of C5. In the C5D samples, platelet count decreased from 210 × 10 9 /L (201-219) (median and range) to 51 × 10 9 /L (50-51), and C3bc increased from 14 CAU/mL (21-7) to 198 CAU/mL (127-269), whereas TCC formation was blocked during plasma separation. In conclusion, up-regulation of granulocyte and monocyte CD11b during plasma separation was C5-dependent. The results also indicate C5 dependency in granulocyte-platelet conjugates formation. © 2018 APMIS. Published by John Wiley & Sons Ltd.
Mapping Neurodegenerative Disease Onset and Progression.
Seeley, William W
2017-08-01
Brain networks have been of long-standing interest to neurodegeneration researchers, including but not limited to investigators focusing on conventional prion diseases, which are known to propagate along neural pathways. Tools for human network mapping, however, remained inadequate, limiting our understanding of human brain network architecture and preventing clinical research applications. Until recently, neuropathological studies were the only viable approach to mapping disease onset and progression in humans but required large autopsy cohorts and laborious methods for whole-brain sectioning and staining. Despite important advantages, postmortem studies cannot address in vivo, physiological, or longitudinal questions and have limited potential to explore early-stage disease except for the most common disorders. Emerging in vivo network-based neuroimaging strategies have begun to address these issues, providing data that complement the neuropathological tradition. Overall, findings to date highlight several fundamental principles of neurodegenerative disease anatomy and pathogenesis, as well as some enduring mysteries. These principles and mysteries provide a road map for future research. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Synthetic biology and regulatory networks: where metabolic systems biology meets control engineering
He, Fei; Murabito, Ettore; Westerhoff, Hans V.
2016-01-01
Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. PMID:27075000
In vivo fluorescent detection of Fe-S clusters coordinated by human GRX2.
Hoff, Kevin G; Culler, Stephanie J; Nguyen, Peter Q; McGuire, Ryan M; Silberg, Jonathan J; Smolke, Christina D
2009-12-24
A major challenge to studying Fe-S cluster biosynthesis in higher eukaryotes is the lack of simple tools for imaging metallocluster binding to proteins. We describe the first fluorescent approach for in vivo detection of 2Fe2S clusters that is based upon the complementation of Venus fluorescent protein fragments via human glutaredoxin 2 (GRX2) coordination of a 2Fe2S cluster. We show that Escherichia coli and mammalian cells expressing Venus fragments fused to GRX2 exhibit greater fluorescence than cells expressing fragments fused to a C37A mutant that cannot coordinate a metallocluster. In addition, we find that maximal fluorescence in the cytosol of mammalian cells requires the iron-sulfur cluster assembly proteins ISCU and NFS1. These findings provide evidence that glutaredoxins can dimerize within mammalian cells through coordination of a 2Fe2S cluster as observed with purified recombinant proteins. Copyright 2009 Elsevier Ltd. All rights reserved.
Purification of Transcript-Specific mRNP Complexes Formed In Vivo from Saccharomyces cerevisiae.
Smith, Jenna E; Baker, Kristian E
2017-01-01
RNA binding proteins play critical roles in shaping the complex life cycle of cellular transcripts. For most RNAs, the association with a distinct complement of proteins serves to orchestrate its unique pattern of maturation, localization, translation, and stability. A key aspect to understanding how transcripts are differentially regulated lies, therefore, in the ability to identify the particular repertoire of protein binding partners associated with an individual transcript. We describe here an optimized experimental procedure for purifying a single mRNA population from yeast cells for the characterization of transcript-specific mRNA-protein complexes (mRNPs) as they exist in vivo. Chemical cross-linking is used to trap native mRNPs and facilitate the co-purification of protein complexes associated with an individual transcript population that is captured under stringent conditions from cell lysates through hybridization to complementary DNA oligonucleotides. The resulting mRNP is highly enriched and largely devoid of non-target transcripts, and can be used for a number of downstream analyses including protein identification by mass spectrometry.
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P.; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta; Sailor, Michael; Ruoslahti, Erkki
2009-01-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles. PMID:19394687
Simberg, Dmitri; Park, Ji-Ho; Karmali, Priya P; Zhang, Wan-Ming; Merkulov, Sergei; McCrae, Keith; Bhatia, Sangeeta N; Sailor, Michael; Ruoslahti, Erkki
2009-08-01
In order to understand the role of plasma proteins in the rapid liver clearance of dextran-coated superparamagnetic iron oxide (SPIO) in vivo, we analyzed the full repertoire of SPIO-binding blood proteins using novel two-dimensional differential mass spectrometry approach. The identified proteins showed specificity for surface domains of the nanoparticles: mannan-binding lectins bound to the dextran coating, histidine-rich glycoprotein and kininogen bound to the iron oxide part, and the complement lectin and contact clotting factors were secondary binders. Nanoparticle clearance studies in knockout mice suggested that these proteins, as well as several previously identified opsonins, do not play a significant role in the SPIO clearance. However, both the dextran coat and the iron oxide core remained accessible to specific probes after incubation of SPIO in plasma, suggesting that the nanoparticle surface could be available for recognition by macrophages, regardless of protein coating. These data provide guidance to rational design of bioinert, long-circulating nanoparticles.
In vivo effects of a GPR30 antagonist.
Dennis, Megan K; Burai, Ritwik; Ramesh, Chinnasamy; Petrie, Whitney K; Alcon, Sara N; Nayak, Tapan K; Bologa, Cristian G; Leitao, Andrei; Brailoiu, Eugen; Deliu, Elena; Dun, Nae J; Sklar, Larry A; Hathaway, Helen J; Arterburn, Jeffrey B; Oprea, Tudor I; Prossnitz, Eric R
2009-06-01
Estrogen is central to many physiological processes throughout the human body. We have previously shown that the G protein-coupled receptor GPR30 (also known as GPER), in addition to classical nuclear estrogen receptors (ER and ER), activates cellular signaling pathways in response to estrogen. In order to distinguish between the actions of classical estrogen receptors and GPR30, we have previously characterized G-1 (1), a selective agonist of GPR30. To complement the pharmacological properties of G-1, we sought to identify an antagonist of GPR30 that displays similar selectivity against the classical estrogen receptors. Here we describe the identification and characterization of G15 (2), a G-1 analog that binds to GPR30 with high affinity and acts as an antagonist of estrogen signaling through GPR30. In vivo administration of G15 revealed that GPR30 contributes to both uterine and neurological responses initiated by estrogen. The identification of this antagonist will accelerate the evaluation of the roles of GPR30 in human physiology.
WHO expert committee on specifications for pharmaceutical preparations. Fortieth report.
2006-01-01
This report presents the recommendations of an international group of experts convened by the World Health Organization to consider matters concerning the quality assurance of pharmaceuticals and specifications for drug substances and dosage forms. The report is complemented by a number of annexes. These include: a list of available International Chemical Reference Substances and International Infrared Spectra; supplementary guidelines on good manufacturing practices for heating, ventilation and air-conditioning systems for non-sterile pharmaceutical dosage forms; updated supplementary guidelines on good manufacturing practices for the manufacture of herbal medicines; supplementary guidelines on good manufacturing practices for validation; good distribution practices for pharmaceutical products; a model quality assurance system for procurement agencies (recommendations for quality assurance systems focusing on prequalification of products and manufacturers, purchasing, storage and distribution of pharmaceutical products); multisource (generic) pharmaceutical products: guidelines on registration requirements to establish interchangeability; a proposal to waive in vivo bioequivalence requirements for WHO Model List of Essential Medicines immediate-release, solid oral dosage forms; and additional guidance for organizations performing in vivo bioequivalence studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bursuker, I.; Pearce, M.T.
1990-02-01
The state of active immunity to Meth A fibrosarcoma in mice immunized with an admixture of Meth A cells and Propionibacterium acnes is associated with possession by the host of spleen cells capable of producing interferon-gamma (IFN-gamma) upon in vitro restimulation with irradiated tumor cells. The ability of spleen cells from immunized mice to produce IFN-gamma in response to irradiated Meth A cells decays as active antitumor immunity is replaced by a state of immunological memory. The IFN-producing cells are L3T4+Ly2+, cyclophosphamide-sensitive and radiosensitive T cells, as determined by their sensitivity to corresponding monoclonal antibodies and complement. The induction ofmore » IFN-gamma production by in vivo tumor-sensitized T cells is tumor specific, in that spleen cells from mice immunized against Meth A fibrosarcoma can produce IFN in response to irradiated Meth A cells but not in response to another syngeneic tumor M109 lung carcinoma.« less
Glutamate and dopamine in schizophrenia: an update for the 21st century
Howes, Oliver; McCutcheon, Rob; Stone, James
2016-01-01
The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an up- date on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on the in vivo neuroimaging studies in patients and clinical high risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed. PMID:25586400
An adjuvant-modulated vaccine response in human whole blood
Hakimi, Jalil; Azizi, Ali; Ausar, Salvador F.; Todryk, Stephen M.; Rahman, Nausheen; Brookes, Roger H.
2017-01-01
ABSTRACT The restimulation of an immune memory response by in vitro culture of blood cells with a specific antigen has been used as a way to gauge immunity to vaccines for decades. In this commentary we discuss a less appreciated application to support vaccine process development. We report that human whole blood from pre-primed subjects can generate a profound adjuvant-modulated, antigen-specific response to several different vaccine formulations. The response is able to differentiate subtle changes in the quality of an immune memory response to vaccine formulations and can be used to select optimal conditions relating to a particular manufacture process step. While questions relating to closeness to in vivo vaccination remain, the approach is another big step nearer to the more relevant human response. It has special importance for new adjuvant development, complementing other preclinical in vivo and in vitro approaches to considerably de-risk progression of novel vaccines before and throughout early clinical development. Broader implications of the approach are discussed. PMID:28605295
Mika, Angela; Reynolds, Simone L.; Pickering, Darren; McMillan, David; Sriprakash, Kadaba S.; Kemp, David J.; Fischer, Katja
2012-01-01
Background Scabies is highly prevalent in socially disadvantaged communities such as indigenous populations and in developing countries. Generalized itching causes discomfort to the patient; however, serious complications can occur as a result of secondary bacterial pyoderma, commonly caused by Streptococcus pyogenes (GAS) or Staphylococcus aureus. In the tropics, skin damage due to scabies mite infestations has been postulated to be an important link in the pathogenesis of disease associated with acute rheumatic fever and heart disease, poststreptococcal glomerulonephritis and systemic sepsis. Treatment of scabies decreases the prevalence of infections by bacteria. This study aims to identify the molecular mechanisms underlying the link between scabies and GAS infections. Methodology/Principal Findings GAS bacteria were pre-incubated with blood containing active complement, phagocytes and antibodies against the bacteria, and subsequently tested for viability by plate counts. Initial experiments were done with serum from an individual previously exposed to GAS with naturally acquired anti-GAS antibodies. The protocol was optimized for large-scale testing of low-opsonic whole blood from non-exposed human donors by supplementing with a standard dose of heat inactivated human sera previously exposed to GAS. This allowed an extension of the dataset to two additional donors and four proteins tested at a range of concentrations. Shown first is the effect of scabies mite complement inhibitors on human complement using ELISA-based complement activation assays. Six purified recombinant mite proteins tested at a concentration of 50 µg/ml blocked all three complement activation pathways. Further we demonstrate in human whole blood assays that each of four scabies mite complement inhibitors tested increased GAS survival rates by 2–15 fold. Conclusions/Significance We propose that local complement inhibition plays an important role in the development of pyoderma in scabies infested skin. This molecular link between scabies and bacterial infections may provide new avenues to develop alternative treatment options against this neglected disease. PMID:22815998
Simulation of FRET dyes allows quantitative comparison against experimental data
NASA Astrophysics Data System (ADS)
Reinartz, Ines; Sinner, Claude; Nettels, Daniel; Stucki-Buchli, Brigitte; Stockmar, Florian; Panek, Pawel T.; Jacob, Christoph R.; Nienhaus, Gerd Ulrich; Schuler, Benjamin; Schug, Alexander
2018-03-01
Fully understanding biomolecular function requires detailed insight into the systems' structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function.
On the temporality of creative insight: a psychological and phenomenological perspective
Cosmelli, Diego; Preiss, David D.
2014-01-01
Research into creative insight has had a strong emphasis on the psychological processes underlying problem-solving situations as a standard model for the empirical study of this phenomenon. Although this model has produced significant advances in our scientific understanding of the nature of insight, we believe that a full comprehension of insight requires complementing cognitive and neuroscientific studies with a descriptive, first-person, phenomenological approach into how creative insight is experienced. Here we propose to take such first-person perspective while paying special attention to the temporal aspects of this experience. When this first-person perspective is taken into account, a dynamic past–future interplay can be identified at the core of the experience of creative insight, a structure that is compatible with both biological and biographical evidences. We believe this approach could complement and help bring together biological and psychological perspectives. Furthermore, we argue that because of its spontaneous but recurrent nature, creative insight could represent a relevant target for the phenomenological investigation of the flow of experience itself. PMID:25368595
Using acoustic cavitation to enhance chemotherapy of DOX liposomes: experiment in vitro and in vivo.
Zhao, Ying-Zheng; Dai, Dan-Dan; Lu, Cui-Tao; Lv, Hai-Feng; Zhang, Yan; Li, Xing; Li, Wen-Feng; Wu, Yan; Jiang, Lei; Li, Xiao-Kun; Huang, Pin-Tong; Chen, Li-Juan; Lin, Min
2012-09-01
Experiments in vitro and in vivo were designed to investigate tumor growth inhibition of chemotherapeutics-loaded liposomes enhanced by acoustic cavitation. Doxorubicin-loaded liposomes (DOX liposomes) were used in experiments to investigate acoustic cavitation mediated effects on cell viability and chemotherapeutic function. The influence of lingering sensitive period after acoustic cavitation on tumor inhibition was also investigated. Animal experiment was carried out to verify the practicability of this technique in vivo. From experiment results, blank phospholipid-based microbubbles (PBM) combined with ultrasound (US) at intensity below 0.3 W/cm² could produce acoustic cavitation which maintained cell viability at high level. Compared with DOX solution, DOX liposomes combined with acoustic cavitation exerted effective tumor inhibition in vitro and in vivo. The lingering sensitive period after acoustic cavitation could also enhance the susceptibility of tumor to chemotherapeutic drugs. DOX liposomes could also exert certain tumor inhibition under preliminary acoustic cavitation. Acoustic cavitation could enhance the absorption efficiency of DOX liposomes, which could be used to reduce DOX adverse effect on normal organs in clinical chemotherapy.
Strengthening the Role of Part-Time Faculty in Community Colleges. Focus Group Toolkit
ERIC Educational Resources Information Center
Center for Community College Student Engagement, 2014
2014-01-01
The Center for Community College Student Engagement encourages colleges to hold focus groups with part-time and full-time faculty to learn about differences in the faculty and their experience at their college and to complement survey data. Survey responses tell the "what" about faculty's experiences; through conducting focus groups,…
Foda, Bardees M.; Downey, Kurtis M.; Fisk, John C.
2012-01-01
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3′-to-5′ progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain. PMID:22798390
Daher, Ahmad; de Groot, John
2018-01-01
Tumor heterogeneity is a major factor in glioblastoma's poor response to therapy and seemingly inevitable recurrence. Only two glioblastoma drugs have received Food and Drug Administration approval since 1998, highlighting the urgent need for new therapies. Profiling "omics" analyses have helped characterize glioblastoma molecularly and have thus identified multiple molecular targets for precision medicine. These molecular targets have influenced clinical trial design; many "actionable" mutation-focused trials are underway, but because they have not yet led to therapeutic breakthroughs, new strategies for treating glioblastoma, especially those with a pharmacological functional component, remain in high demand. In that regard, high-throughput screening that allows for expedited preclinical drug testing and the use of GBM models that represent tumor heterogeneity more accurately than traditional cancer cell lines is necessary to maximize the successful translation of agents into the clinic. High-throughput screening has been successfully used in the testing, discovery, and validation of potential therapeutics in various cancer models, but it has not been extensively utilized in glioblastoma models. In this report, we describe the basic aspects of high-throughput screening and propose a modified high-throughput screening model in which ex vivo and in vivo drug testing is complemented by post-screening pharmacological, pan-omic analysis to expedite anti-glioma drugs' preclinical testing and develop predictive biomarker datasets that can aid in personalizing glioblastoma therapy and inform clinical trial design. Copyright © 2017 Elsevier Inc. All rights reserved.
Alves, Livia A; Harth-Chu, Erika N; Palma, Thais H; Stipp, Rafael N; Mariano, Flávia S; Höfling, José F; Abranches, Jacqueline; Mattos-Graner, Renata O
2017-10-01
Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRK Sm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRK Sm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicK Sm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicK Sm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRK Sm. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Ren, Weihong; Liu, Yan; Wang, Xuerui; Piao, Chunmei; Ma, Youcai; Qiu, Shulan; Jia, Lixin; Chen, Boya; Wang, Yuan; Jiang, Wenjian; Zheng, Shuai; Liu, Chang; Dai, Nan; Lan, Feng; Zhang, Hongjia; Song, Wen-Chao; Du, Jie
2018-03-01
Thoracic aortic dissection (TAD), once ruptured, is devastating to patients, and no effective pharmaceutical therapy is available. Anaphylatoxins released by complement activation are involved in a variety of diseases. However, the role of the complement system in TAD is unknown. We found that plasma levels of C3a, C4a, and C5a were significantly increased in patients with TAD. Elevated circulating C3a levels were also detected in the developmental process of mouse TAD, which was induced by β-aminopropionitrile monofumarate (BAPN) treatment, with enhanced expression of C1q and properdin in mouse dissected aortas. These findings indicated activation of classical and alternative complement pathways. Further, expression of C3aR was obviously increased in smooth muscle cells of human and mouse dissected aortas, and knockout of C3aR notably inhibited BAPN-induced formation and rupture of TAD in mice. C3aR antagonist administered pre- and post-BAPN treatment attenuated the development of TAD. We found that C3aR knockout decreased matrix metalloproteinase 2 (MMP2) expression in BAPN-treated mice. Additionally, recombinant C3a stimulation enhanced MMP2 expression and activation in smooth muscle cells that were subjected to mechanical stretch. Finally, we generated MMP2-knockdown mice by in vivo MMP2 short hairpin RNA delivery using recombinant adeno-associated virus and found that MMP2 deficiency significantly reduced the formation of TAD. Therefore, our study suggests that the C3a - C3aR axis contributes to the development of TAD via regulation of MMP2 expression. Targeting the C3a-C3aR axis may represent a strategy for inhibiting the formation of TAD. Copyright © 2018 by The American Association of Immunologists, Inc.
Demons registration for in vivo and deformable laser scanning confocal endomicroscopy.
Chiew, Wei-Ming; Lin, Feng; Seah, Hock Soon
2017-09-01
A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
Pitek, Andrzej S; Wen, Amy M; Shukla, Sourabh; Steinmetz, Nicole F
2016-04-06
Biomolecules in bodily fluids such as plasma can adsorb to the surface of nanoparticles and influence their biological properties. This phenomenon, known as the protein corona, is well established in the field of synthetic nanotechnology but has not been described in the context of plant virus nanoparticles (VNPs). The interaction between VNPs derived from Tobacco mosaic virus (TMV) and plasma proteins is investigated, and it is found that the VNP protein corona is significantly less abundant compared to the corona of synthetic particles. The formed corona is dominated by complement proteins and immunoglobulins, the binding of which can be reduced by PEGylating the VNP surface. The impact of the VNP protein corona on molecular recognition and cell targeting in the context of cancer and thrombosis is investigated. A library of functionalized TMV rods with polyethylene glycol (PEG) and peptide ligands targeting integrins or fibrin(ogen) show different dispersion properties, cellular interactions, and in vivo fates depending on the properties of the protein corona, influencing target specificity, and non-specific scavenging by macrophages. Our results provide insight into the in vivo properties of VNPs and suggest that the protein corona effect should be considered during the development of efficacious, targeted VNP formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
In vivo and in vitro phagocytosis of Leishmania (Leishmania) amazonensis promastigotes by B-1 cells.
Geraldo, M M; Costa, C R; Barbosa, F M C; Vivanco, B C; Gonzaga, W F K M; Novaes E Brito, R R; Popi, A F; Lopes, J D; Xander, P
2016-06-01
Leishmaniasis is caused by Leishmania parasites that infect several cell types. The promastigote stage of Leishmania is internalized by phagocytic cells and transformed into the obligate intracellular amastigote form. B-1 cells are a subpopulation of B cells that are able to differentiate in vitro and in vivo into mononuclear phagocyte-like cells with phagocytic properties. B-1 cells use several receptors for phagocytosis, such as the mannose receptor and third complement receptor. Leishmania binds to the same receptors on macrophages. In this study, we demonstrated that phagocytes derived from B-1 cells (B-1 CDP) were able to internalize promastigotes of L. (L.) amazonensis in vitro. The internalized promastigotes differentiated into amastigotes. Our results showed that the phagocytic index was higher in B-1 CDP compared to peritoneal macrophages and bone marrow-derived macrophages. The in vivo phagocytic ability of B-1 cells was also demonstrated. Parasites were detected inside purified B-1 cells after intraperitoneal infection with L. (L.) amazonensis promastigotes. Intraperitoneal stimulation with the parasites led to an increase in both IL-10 and TNF-α. These results highlight the importance of studying B-1 CDP cells as phagocytic cells that can participate and contribute to immunity to parasites. © 2016 John Wiley & Sons Ltd.
Spiridon, Camelia I; Ghetie, Maria-Ana; Uhr, Jonathan; Marches, Radu; Li, Jia-Ling; Shen, Guo-Liang; Vitetta, Ellen S
2002-06-01
Her-2 (p185(erbB-2)) is a transmembrane tyrosine kinase receptor, which is encoded by the Her-2/neu proto-oncogene. Her-2 is overexpressed on 30% of highly malignant breast cancers. Monoclonal antibodies (MAbs) against Her-2 inhibit the growth of Her-2-overexpressing tumor cells and this occurs by a variety of mechanisms. One such MAb, Herceptin (Trastuzumab), has been approved for human use. We have generated a panel of murine anti-Her-2 MAbs against nine different epitopes on the extracellular domain of Her-2 and have evaluated the antitumor activity of three of these MAbs alone and in combination, both in vitro and in vivo. We found that MAbs (against different epitopes) make a highly effective mixture, which was more effective than the individual MAbs in treating s.c. tumor nodules of BT474 cells in SCID mice. In vitro, the MAb mixture was also more effective than the single MAbs in inducing antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity, inhibiting cell growth and inducing apoptosis, and inhibiting the secretion of vascular endothelial growth factor. Taken together, these activities might explain the superior performance of the MAb mixture in vivo.
Demons registration for in vivo and deformable laser scanning confocal endomicroscopy
NASA Astrophysics Data System (ADS)
Chiew, Wei Ming; Lin, Feng; Seah, Hock Soon
2017-09-01
A critical effect found in noninvasive in vivo endomicroscopic imaging modalities is image distortions due to sporadic movement exhibited by living organisms. In three-dimensional confocal imaging, this effect results in a dataset that is tilted across deeper slices. Apart from that, the sequential flow of the imaging-processing pipeline restricts real-time adjustments due to the unavailability of information obtainable only from subsequent stages. To solve these problems, we propose an approach to render Demons-registered datasets as they are being captured, focusing on the coupling between registration and visualization. To improve the acquisition process, we also propose a real-time visual analytics tool, which complements the imaging pipeline and the Demons registration pipeline with useful visual indicators to provide real-time feedback for immediate adjustments. We highlight the problem of deformation within the visualization pipeline for object-ordered and image-ordered rendering. Visualizations of critical information including registration forces and partial renderings of the captured data are also presented in the analytics system. We demonstrate the advantages of the algorithmic design through experimental results with both synthetically deformed datasets and actual in vivo, time-lapse tissue datasets expressing natural deformations. Remarkably, this algorithm design is for embedded implementation in intelligent biomedical imaging instrumentation with customizable circuitry.
Hak, Sjoerd; Garaiova, Zuzana; Olsen, Linda Therese; Nilsen, Asbjørn Magne; de Lange Davies, Catharina
2015-04-01
Lipid-based nanoparticles are extensively studied for drug delivery. These nanoparticles are often surface-coated with polyethylene glycol (PEG) to improve their biodistribution. Until now, the effects of varying PEG surface density have been studied in a narrow and low range. Here, the effects of high and a broad range of PEG surface densities on the in vivo performance of lipid-based nanoparticles were studied. Oil-in-water nanoemulsions were prepared with PEG surface densities of 5-50 mol%. Confocal microscopy was used to assess intracellular disintegration in vitro. In vivo pharmacokinetics and biodistribution in tumor bearing mice were studied using a small animal optical imager. PEG surface density did not affect intracellular nanoemulsion stability. Surprisingly, circulation half-lives decreased with increasing PEG surface density. A plausible explanation was that nanoemulsion with high (50 mol%) PEG surface density activated the complement in a whole blood assay, whereas nanoemulsion with low (5 mol%) PEG density did not. In vivo, nanoemulsion with low PEG surface density was mostly confined to the tumor and organs of the mononuclear phagocyte system, whereas nanoemulsion with high PEG density accumulated throughout the mouse. Optimal PEG surface density of lipid-based nanoparticles for tumor targeting was found to be below 10 mol%.
In vivo X-ray fluorescence of lead in bone: review and current issues.
Todd, A C; Chettle, D R
1994-01-01
Bone lead measurements can assess long-term lead dosimetry because the residence time of lead in bone is long. Bone lead measurements thus complement blood and plasma lead measurements, which reflect more short-term exposure. Although the noninvasive, in vivo measurement of lead in bone by X-ray fluorescence (XRF) has been under development since the 1970s, its use is still largely confined to research institutions. There are three principal methods used that vary both in the how lead X-rays are fluoresced and in which lead X-rays are fluoresced. Several groups have reported the independent development of in vivo measurement systems, the majority adopting the 109Cd K XRF method because of its advantages: a robust measurement, a lower detection limit (compared to 57Co K XRF), and a lower effective (radiation) dose (compared to L XRF) when calculated according to the most recent guidelines. These advantages, and the subsequent widespread adoption of the 109Cd method, are primarily consequences of the physics principles of the technique. This paper presents an explanation of the principles of XRF, a description of the practical measurement systems, a review of the human bone lead studies performed to date; and a discussion of some issues surrounding future application of the methods. Images p172-a PMID:8033846
GM1 and GM2 gangliosides: recent developments.
Bisel, Blaine; Pavone, Francesco S; Calamai, Martino
2014-03-01
GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction.
Aftereffects of Lithium-Conditioned Stimuli on Consummatory Behavior
ERIC Educational Resources Information Center
Domjan, Michael; Gillan, Douglas J.
1977-01-01
To complement investigations of the direct effects of lithium toxicosis on consummatory behavior, these experiments were designed to determine the aftereffects on drinking of exposure to a conditioned stimulus previously paired with lithium. (Author/RK)
Computational Labs Using VPython Complement Conventional Labs in Online and Regular Physics Classes
NASA Astrophysics Data System (ADS)
Bachlechner, Martina E.
2009-03-01
Fairmont State University has developed online physics classes for the high-school teaching certificate based on the text book Matter and Interaction by Chabay and Sherwood. This lead to using computational VPython labs also in the traditional class room setting to complement conventional labs. The computational modeling process has proven to provide an excellent basis for the subsequent conventional lab and allows for a concrete experience of the difference between behavior according to a model and realistic behavior. Observations in the regular class room setting feed back into the development of the online classes.
Distinct Contributions of TNF Receptor 1 and 2 to TNF-Induced Glomerular Inflammation in Mice
Taubitz, Anela; Schwarz, Martin; Eltrich, Nuru; Lindenmeyer, Maja T.; Vielhauer, Volker
2013-01-01
TNF is an important mediator of glomerulonephritis. The two TNF-receptors TNFR1 and TNFR2 contribute differently to glomerular inflammation in vivo, but specific mechanisms of TNFR-mediated inflammatory responses in glomeruli are unknown. We investigated their expression and function in murine kidneys, isolated glomeruli ex vivo, and glomerular cells in vitro. In normal kidney TNFR1 and TNFR2 were preferentially expressed in glomeruli. Expression of both TNFRs and TNF-induced upregulation of TNFR2 mRNA was confirmed in murine glomerular endothelial and mesangial cell lines. In vivo, TNF exposure rapidly induced glomerular accumulation of leukocytes. To examine TNFR-specific inflammatory responses in intrinsic glomerular cells but not infiltrating leukocytes we performed microarray gene expression profiling on intact glomeruli isolated from wildtype and Tnfr-deficient mice following exposure to soluble TNF ex vivo. Most TNF-induced effects were exclusively mediated by TNFR1, including induced glomerular expression of adhesion molecules, chemokines, complement factors and pro-apoptotic molecules. However, TNFR2 contributed to TNFR1-dependent mRNA expression of inflammatory mediators in glomeruli when exposed to low TNF concentrations. Chemokine secretion was absent in TNF-stimulated Tnfr1-deficient glomeruli, but also significantly decreased in glomeruli lacking TNFR2. In vivo, TNF-induced glomerular leukocyte infiltration was abrogated in Tnfr1-deficient mice, whereas Tnfr2-deficiency decreased mononuclear phagocytes infiltrates, but not neutrophils. These data demonstrate that activation of intrinsic glomerular cells by soluble TNF requires TNFR1, whereas TNFR2 is not essential, but augments TNFR1-dependent effects. Previously described TNFR2-dependent glomerular inflammation may therefore require TNFR2 activation by membrane-bound, but not soluble TNF. PMID:23869211
Kireeva, Natalia V; Ovchinnikova, Svetlana I; Kuznetsov, Sergey L; Kazennov, Andrey M; Tsivadze, Aslan Yu
2014-02-01
This study concerns large margin nearest neighbors classifier and its multi-metric extension as the efficient approaches for metric learning which aimed to learn an appropriate distance/similarity function for considered case studies. In recent years, many studies in data mining and pattern recognition have demonstrated that a learned metric can significantly improve the performance in classification, clustering and retrieval tasks. The paper describes application of the metric learning approach to in silico assessment of chemical liabilities. Chemical liabilities, such as adverse effects and toxicity, play a significant role in drug discovery process, in silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by complementing or replacing in vitro and in vivo experiments. Here, to our knowledge for the first time, a distance-based metric learning procedures have been applied for in silico assessment of chemical liabilities, the impact of metric learning on structure-activity landscapes and predictive performance of developed models has been analyzed, the learned metric was used in support vector machines. The metric learning results have been illustrated using linear and non-linear data visualization techniques in order to indicate how the change of metrics affected nearest neighbors relations and descriptor space.
NASA Astrophysics Data System (ADS)
Nickelsen, J.; Kück, U.
Chloroplasts are typical organelles of photoautotrophic eukaryotic cells which drive a variety of functions, including photosynthesis. For many years the unicellular green alga Chlamydomonas reinhardtii has served as an experimental organism for studying photosynthetic processes. The recent development of molecular tools for this organism together with efficient methods of genetic analysis and the availability of many photosynthesis mutants has now made this alga a powerful model system for the analysis of chloroplast biogenesis. For example, techniques have been developed to transfer recombinant DNA into both the nuclear and the chloroplast genome. This allows both complementation tests and analyses of gene functions in vivo. Moreover, site-specific DNA recombinations in the chloroplast allow targeted gene disruption experiments which enable a "reverse genetics" to be performed. The potential of the algal system for the study of chloroplast biogenesis is illustrated in this review by the description of regulatory systems of gene expression involved in organelle biogenesis. One example concerns the regulation of trans-splicing of chloroplast mRNAs, a process which is controlled by both multiple nuclear- and chloroplast-encoded factors. The second example involves the stabilization of chloroplast mRNAs. The available data lead us predict distinct RNA elements, which interact with trans-acting factors to protect the RNA against nucleolytic attacks.
Li, Yuan-Yuan; Mao, Ke; Zhao, Cheng; Zhao, Xian-Yan; Zhang, Hua-Lei; Shu, Huai-Rui; Hao, Yu-Jin
2012-01-01
MdMYB1 is a crucial regulator of light-induced anthocyanin biosynthesis and fruit coloration in apple (Malus domestica). In this study, it was found that MdMYB1 protein accumulated in the light but degraded via a ubiquitin-dependent pathway in the dark. Subsequently, the MdCOP1-1 and MdCOP1-2 genes were isolated from apple fruit peel and were functionally characterized in the Arabidopsis (Arabidopsis thaliana) cop1-4 mutant. Yeast (Saccharomyces cerevisiae) two-hybrid, bimolecular fluorescence complementation, and coimmunoprecipitation assays showed that MdMYB1 interacts with the MdCOP1 proteins. Furthermore, in vitro and in vivo experiments indicated that MdCOP1s are necessary for the ubiquitination and degradation of MdMYB1 protein in the dark and are therefore involved in the light-controlled stability of the MdMYB1 protein. Finally, a viral vector-based transformation approach demonstrated that MdCOP1s negatively regulate the peel coloration of apple fruits by modulating the degradation of the MdMYB1 protein. Our findings provide new insight into the mechanism by which light controls anthocyanin accumulation and red fruit coloration in apple and even other plant species. PMID:22855936
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis.
Watson, Peter J; Gröning, Flora; Curtis, Neil; Fitton, Laura C; Herrel, Anthony; McCormack, Steven W; Fagan, Michael J
2014-10-06
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments.
Masticatory biomechanics in the rabbit: a multi-body dynamics analysis
Watson, Peter J.; Gröning, Flora; Curtis, Neil; Fitton, Laura C.; Herrel, Anthony; McCormack, Steven W.; Fagan, Michael J.
2014-01-01
Multi-body dynamics is a powerful engineering tool which is becoming increasingly popular for the simulation and analysis of skull biomechanics. This paper presents the first application of multi-body dynamics to analyse the biomechanics of the rabbit skull. A model has been constructed through the combination of manual dissection and three-dimensional imaging techniques (magnetic resonance imaging and micro-computed tomography). Individual muscles are represented with multiple layers, thus more accurately modelling muscle fibres with complex lines of action. Model validity was sought through comparing experimentally measured maximum incisor bite forces with those predicted by the model. Simulations of molar biting highlighted the ability of the masticatory system to alter recruitment of two muscle groups, in order to generate shearing or crushing movements. Molar shearing is capable of processing a food bolus in all three orthogonal directions, whereas molar crushing and incisor biting are predominately directed vertically. Simulations also show that the masticatory system is adapted to process foods through several cycles with low muscle activations, presumably in order to prevent rapidly fatiguing fast fibres during repeated chewing cycles. Our study demonstrates the usefulness of a validated multi-body dynamics model for investigating feeding biomechanics in the rabbit, and shows the potential for complementing and eventually reducing in vivo experiments. PMID:25121650
NASA Astrophysics Data System (ADS)
Kireeva, Natalia V.; Ovchinnikova, Svetlana I.; Kuznetsov, Sergey L.; Kazennov, Andrey M.; Tsivadze, Aslan Yu.
2014-02-01
This study concerns large margin nearest neighbors classifier and its multi-metric extension as the efficient approaches for metric learning which aimed to learn an appropriate distance/similarity function for considered case studies. In recent years, many studies in data mining and pattern recognition have demonstrated that a learned metric can significantly improve the performance in classification, clustering and retrieval tasks. The paper describes application of the metric learning approach to in silico assessment of chemical liabilities. Chemical liabilities, such as adverse effects and toxicity, play a significant role in drug discovery process, in silico assessment of chemical liabilities is an important step aimed to reduce costs and animal testing by complementing or replacing in vitro and in vivo experiments. Here, to our knowledge for the first time, a distance-based metric learning procedures have been applied for in silico assessment of chemical liabilities, the impact of metric learning on structure-activity landscapes and predictive performance of developed models has been analyzed, the learned metric was used in support vector machines. The metric learning results have been illustrated using linear and non-linear data visualization techniques in order to indicate how the change of metrics affected nearest neighbors relations and descriptor space.
Hoff, Michael N; Andre, Jalal B; Xiang, Qing-San
2017-02-01
Balanced steady state free precession (bSSFP) imaging suffers from off-resonance artifacts such as signal modulation and banding. Solutions for removal of bSSFP off-resonance dependence are described and compared, and an optimal solution is proposed. An Algebraic Solution (AS) that complements a previously described Geometric Solution (GS) is derived from four phase-cycled bSSFP datasets. A composite Geometric-Algebraic Solution (GAS) is formed from a noise-variance-weighted average of the AS and GS images. Two simulations test the solutions over a range of parameters, and phantom and in vivo experiments are implemented. Image quality and performance of the GS, AS, and GAS are compared with the complex sum and a numerical parameter estimation algorithm. The parameter estimation algorithm, GS, AS, and GAS remove most banding and signal modulation in bSSFP imaging. The variable performance of the GS and AS on noisy data justifies generation of the GAS, which consistently provides the highest performance. The GAS is a robust technique for bSSFP signal demodulation that balances the regional efficacy of the GS and AS to remove banding, a feat not possible with prevalent techniques. Magn Reson Med 77:644-654, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Development of the Design Laboratory.
ERIC Educational Resources Information Center
Silla, Harry
1986-01-01
Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)
ERIC Educational Resources Information Center
McMillan, Brian G.
2016-01-01
This experiment was designed and successfully introduced to complement the nanochemistry taught to undergraduate students in a useful and interesting way. Colloidal Ag nanoparticles were synthesized by a simple, room-temperature method, and the resulting suspension was then used to study the surface-enhanced Raman scattering (SERS) of methylene…
ERIC Educational Resources Information Center
Gans, Connie; And Others
The work-study guide is the third volume in the advanced level of a career education curriculum for elementary-secondary migrant children. Complementing the secondary level job information text and a workbook about decision making and self-awareness, the work-study guide is designed to accompany work exploration and experience programs. It…
ERIC Educational Resources Information Center
Saba, Shahrokh; Cagino, Kristen; Bennett, Caitlin
2015-01-01
A pedagogically useful discovery-based undergraduate organic chemistry lab experiment probing the chemo- and diastereoselectivity in the NaBH[subscript 4] reduction of two chiral ketoesters (benzoin acetate and benzoin benzoate) has been developed. This experiment complements a previously described and highly popular discovery-based experiment…
Social complementation and growth advantages promote socially defective bacterial isolates.
Kraemer, Susanne A; Velicer, Gregory J
2014-04-22
Social interactions among diverse individuals that encounter one another in nature have often been studied among animals but rarely among microbes. For example, the evolutionary forces that determine natural frequencies of bacteria that express cooperative behaviours at low levels remain poorly understood. Natural isolates of the soil bacterium Myxococcus xanthus sampled from the same fruiting body often vary in social phenotypes, such as group swarming and multicellular development. Here, we tested whether genotypes highly proficient at swarming or development might promote the persistence of less socially proficient genotypes from the same fruiting body. Fast-swarming strains complemented slower isolates, allowing the latter to keep pace with faster strains in mixed groups. During development, one low-sporulating strain was antagonized by high sporulators, whereas others with severe developmental defects had those defects partially complemented by high-sporulating strains. Despite declining in frequency overall during competition experiments spanning multiple cycles of development, developmentally defective strains exhibited advantages during the growth phases of competitions. These results suggest that microbes with low-sociality phenotypes often benefit from interacting with more socially proficient strains. Such complementation may combine with advantages at other traits to increase equilibrium frequencies of low-sociality genotypes in natural populations.
Husain, Mainul; Wu, Dongmei; Saber, Anne T.; Decan, Nathalie; Jacobsen, Nicklas R.; Williams, Andrew; Yauk, Carole L.; Wallin, Hakan; Vogel, Ulla; Halappanavar, Sabina
2015-01-01
Abstract An estimated 1% or less of nanoparticles (NPs) deposited in the lungs translocate to systemic circulation and enter other organs; however, this estimation may not be accurate given the low sensitivity of existing in vivo NP detection methods. Moreover, the biological effects of such low levels of translocation are unclear. We employed a nano-scale hyperspectral microscope to spatially observe and spectrally profile NPs in tissues and blood following pulmonary deposition in mice. In addition, we characterized effects occurring in blood, liver and heart at the mRNA and protein level following translocation from the lungs. Adult female C57BL/6 mice were exposed via intratracheal instillation to 18 or 162 µg of industrially relevant titanium dioxide nanoparticles (nano-TiO2) alongside vehicle controls. Using the nano-scale hyperspectral microscope, translocation to heart and liver was confirmed at both doses, and to blood at the highest dose, in mice analyzed 24 h post-exposure. Global gene expression profiling and ELISA analysis revealed activation of complement cascade and inflammatory processes in heart and specific activation of complement factor 3 in blood, suggesting activation of an early innate immune response essential for particle opsonisation and clearance. The liver showed a subtle response with changes in the expression of genes associated with acute phase response. This study characterizes the subtle systemic effects that occur in liver and heart tissues following pulmonary exposure and low levels of translocation of nano-TiO2 from lungs. PMID:25993494
Saubi, Narcís; Gea-Mallorquí, Ester; Ferrer, Pau; Hurtado, Carmen; Sánchez-Úbeda, Sara; Eto, Yoshiki; Gatell, Josep M; Hanke, Tomáš; Joseph, Joan
2014-01-01
In this study, we have engineered a new mycobacterial vaccine design by using an antibiotic-free plasmid selection system. We assembled a novel Escherichia coli (E. coli)–mycobacterial shuttle plasmid p2auxo.HIVA, expressing the HIV-1 clade A immunogen HIVA. This shuttle vector employs an antibiotic resistance-free mechanism for plasmid selection and maintenance based on glycine complementation in E. coli and lysine complementation in mycobacteria. This plasmid was first transformed into glycine auxotroph of E. coli strain and subsequently transformed into lysine auxotroph of Mycobacterium bovis BCG strain to generate vaccine BCG.HIVA2auxo. We demonstrated that the episomal plasmid p2auxo.HIVA was stable in vivo over a 7-week period and genetically and phenotypically characterized the BCG.HIVA2auxo vaccine strain. The BCG.HIVA2auxo vaccine in combination with modified vaccinia virus Ankara (MVA). HIVA was safe and induced HIV-1 and Mycobacterium tuberculosis-specific interferon-γ-producing T-cell responses in adult BALB/c mice. Polyfunctional HIV-1-specific CD8+ T cells, which produce interferon-γ and tumor necrosis factor-α and express the degranulation marker CD107a, were induced. Thus, we engineered a novel, safer, good laboratory practice–compatible BCG-vectored vaccine using prototype immunogen HIVA. This antibiotic-free plasmid selection system based on “double” auxotrophic complementation might be a new mycobacterial vaccine platform to develop not only recombinant BCG-based vaccines expressing second generation of HIV-1 immunogens but also other major pediatric pathogens to prime protective response soon after birth. PMID:26015961
Risco, Ester; Ghia, Felipe; Vila, Roser; Iglesias, José; Alvarez, Elida; Cañigueral, Salvador
2003-09-01
The immunomodulatory activity of the latex from Croton lechleri (sangre de drago) was determined by in vitro assays. Classical (CP) and alternative (AP) complement pathways activities were determined in human serum. Intracellular generation of reactive oxygen species (ROS) by human polymorphonuclear leukocytes (PMNs) and monocytes, and phagocytosis of opsonised fluorescent microspheres were measured by flow cytometry. Free radical scavenging activity was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH). Activity on proliferation of murine lymphocytes was also investigated. In addition, anti-inflammatory activity was assayed in vivo by carrageenan-induced rat paw oedema test. Some of the activities were compared with those of the isolated alkaloid taspine. Sangre de drago from Croton lechleri showed immunomodulatory activity. It exhibited a potent inhibitory activity on CP and AP of complement system and inhibited the proliferation of activated T-cells. The latex showed free radical scavenging capacity. Depending on the concentration, it showed antioxidant or prooxidant properties, and stimulated or inhibited the phagocytosis. Moreover, the latex has strong anti-inflammatory activity when administered i. p. Taspine cannot be considered the main responsible for these activities, and other constituents, probably proanthocyanidins, should be also involved.
Tewari, Rita; Patzewitz, Eva-Maria; Poulin, Benoit; Stewart, Lindsay; Baker, David A
2014-01-01
With the inevitable selection of resistance to antimalarial drugs in treated populations, there is a need for new medicines to enter the clinic and new targets to progress through the drug discovery pipeline. In this study we set out to develop a transgenic rodent model for testing inhibitors of the Plasmodium falciparum cyclic GMP-dependent kinase in vivo. A model was needed that would allow us to investigate whether differences in amino acid sequence of this enzyme between species influences in vivo efficacy. Here we report the successful development of a transgenic P. berghei line in which the cyclic GMP-dependent protein kinase (PKG) was replaced by the P. falciparum orthologue. We demonstrate that the P. falciparum orthologue was able to functionally complement the endogenous P. berghei pkg gene throughout blood stage development and early sexual development. However, subsequent development in the mosquito was severely compromised. We show that this is due to a defect in the female lineage of the transgenic by using genetic crosses with both male and female deficient P. berghei lines. This defect could be due to expression of a female-specific target in the mosquito stages of P. berghei that cannot be phosphorylated by the P. falciparum kinase. Using a previously reported anti-coccidial inhibitor of the cyclic GMP-dependent protein kinase, we show no difference in in vivo efficacy between the transgenic and control P. berghei lines. This in vivo model will be useful for screening future generations of cyclic GMP-dependent protein kinase inhibitors and allowing us to overcome any species-specific differences in the enzyme primary sequence that would influence in vivo efficacy in the rodent model. The approach will also be applicable to in vivo testing of other antimalarial compounds where the target is known.
Two-dimensional NMR spectrometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farrar, T.C.
1987-06-01
This article is the second in a two-part series. In part one (ANALYTICAL CHEMISTRY, May 15) the authors discussed one-dimensional nuclear magnetic resonance (NMR) spectra and some relatively advanced nuclear spin gymnastics experiments that provide a capability for selective sensitivity enhancements. In this article and overview and some applications of two-dimensional NMR experiments are presented. These powerful experiments are important complements to the one-dimensional experiments. As in the more sophisticated one-dimensional experiments, the two-dimensional experiments involve three distinct time periods: a preparation period, t/sub 0/; an evolution period, t/sub 1/; and a detection period, t/sub 2/.
Kim, Hee Man; Yang, Sungwook; Kim, Jinseok; Park, Semi; Cho, Jae Hee; Park, Jeong Youp; Kim, Tae Song; Yoon, Eui-Sung; Song, Si Young; Bang, Seungmin
2010-08-01
Capsule endoscopy that could actively move and approach a specific site might be more valuable for the diagnosis or treatment of GI diseases. We tested the performance of active locomotion of a novel wired capsule endoscope with a paddling-based locomotion mechanism, using 3 models: a silicone tube, an extracted porcine colon, and a living pig. In vitro, ex vivo, and in vivo experiments in a pig model. Study in an animal laboratory. For the in vitro test, the locomotive capsule was controlled to actively move from one side of a silicone tube to the other by a controller-operated automatic traveling program. The velocity was calculated by following a video recording. We performed ex vivo tests by using an extracted porcine colon in the same manner we performed the in vitro test. In in vivo experiments, the capsule was inserted into the rectum of a living pig under anesthesia, and was controlled to move automatically forward. After 8 consecutive trials, the velocity was calculated. Elapsed time, velocity, and mucosal damage. The locomotive capsule showed stable and active movement inside the lumen both in vitro and ex vivo. The velocity was 60 cm/min in the silicone tube, and 36.8 and 37.5 cm/min in the extracted porcine colon. In the in vivo experiments, the capsule stably moved forward inside the colon of a living pig without any serious complications. The mean velocity was 17 cm/min over 40 cm length. We noted pinpoint erythematous mucosal injuries in the colon. Porcine model experiments, wired capsule endoscope. The novel paddling-based locomotive capsule endoscope performed fast and stable movement in a living pig colon with consistent velocity. Further investigation is necessary for practical use in humans. Copyright 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.
Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M
2018-02-13
Cell-cell communication mediated by peptide pheromones (cCF10 [CF]) is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis To examine the role of pheromone signaling in vivo , we established either a CF-producing (CF+) recipient or a recipient producing a biologically inactive variant of CF (CF- recipient) in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF- recipient. While rescue of the CF- mating defect by coculture with CF+ recipients is easily accomplished in vitro , no extracellular complementation occurred in vivo This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants) steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo In the absence of CF+ recipients, a low level of transfer to CF- recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI) tract, similar to that previously observed in serum. IMPORTANCE Horizontal gene transfer is a major factor in the biology of Enterococcus faecalis , an important nosocomial pathogen. Previous studies showing efficient conjugative plasmid transfer in the gastrointestinal (GI) tracts of experimental animals did not examine how the enterococcal sex pheromone response impacts the efficiency of transfer. Our study demonstrates for the first time pheromone-enhanced, high-frequency plasmid transfer of E. faecalis plasmid pCF10 in a mouse model in the absence of antibiotic or bacteriocin selection. Pheromone production by recipients dramatically increased plasmid transfer in germfree mice colonized initially with recipients, followed by donors. The presence of a coresident community of common gut microbes did not significantly reduce in vivo plasmid transfer between enterococcal donors and recipients. In mice colonized with enterococcal recipients, we detected plasmid transfer in the intestinal tract within 5 h of addition of donors, before transconjugants could be cultured from feces. Surprisingly, pCF10 carriage provided a competitive fitness advantage unrelated to antibiotic resistance or bacteriocin production. Copyright © 2018 Hirt et al.
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors.
Diwakar, Shyam; Parasuram, Harilal; Medini, Chaitanya; Raman, Raghu; Nedungadi, Prema; Wiertelak, Eric; Srivastava, Sanjeeva; Achuthan, Krishnashree; Nair, Bipin
2014-01-01
Classroom-level neuroscience experiments vary from detailed protocols involving chemical, physiological and imaging techniques to computer-based modeling. The application of Information and Communication Technology (ICT) is revolutionizing the current laboratory scenario in terms of active learning especially for distance education cases. Virtual web-based labs are an asset to educational institutions confronting economic issues in maintaining equipment, facilities and other conditions needed for good laboratory practice. To enhance education, we developed virtual laboratories in neuroscience and explored their first-level use in (Indian) University education in the context of developing countries. Besides using interactive animations and remotely-triggered experimental devices, a detailed mathematical simulator was implemented on a web-based software platform. In this study, we focused on the perceptions of technology adoption for a virtual neurophysiology laboratory as a new pedagogy tool for complementing college laboratory experience. The study analyses the effect of virtual labs on users assessing the relationship between cognitive, social and teaching presence. Combining feedback from learners and teachers, the study suggests enhanced motivation for students and improved teaching experience for instructors. PMID:24693260
Coating of human decay accelerating factor (hDAF) onto medical devices to improve biocompatibility.
Watkins, N J; Braidley, P; Bray, C J; Savill, C M; White, D J
1997-12-01
In passing blood through an artificial circulatory system, the blood is exposed to surfaces that result in activation of the complement system. The consequences of the activation of complement can be extremely serious for the patient ranging from mild discomfort to respiratory distress and even anaphylaxis. An entirely novel approach was to express recombinant GPI anchored human decay accelerating factor (hDAF) using the baculovirus system and then coat the recombinant protein onto the surfaces of these materials to reduce complement activation. Expression of hDAF in Sf9 cells was shown by ELISA, FACS analysis, and Western blot. Functional activity was tested by CH50 assay. For the coating experiments a small scale model of a cardiovascular bypass circuit constructed from COBE tubing was used. hDAF was either coated onto the circuit using adsorption or covalently linked via the photoreactive crosslinker, p-azidobenzoyl hydrazide. After coating, heparinised human blood was pumped around the circuit and samples were collected into EDTA collection tubes at different time points. Complement activation was measured using a Quidel C3a-des-arg EIA. The photolinked circuits gave a reduction in C3a production of 20-50%, compared to 10-20% seen with an absorbed hDAF circuit. Furthermore, the inhibition of complement was seen over the whole time scale of the photolinked circuit, 60-90 min, whilst in the adsorbed circuit inhibition was not seen to a significant degree after 60 min. The time scale of a standard cardiac bypass is 45-90 min, therefore, the photolinked circuit results are encouraging, as significant inhibition of complement activation is seen within this time frame.
NASA Astrophysics Data System (ADS)
Li, Guo-Yang; He, Qiong; Qian, Lin-Xue; Geng, Huiying; Liu, Yanlin; Yang, Xue-Yi; Luo, Jianwen; Cao, Yanping
2016-09-01
In part I of this study, we investigated the elastic Cherenkov effect (ECE) in an incompressible transversely isotropic (TI) soft solid using a combined theoretical and computational approach, based on which an inverse method has been proposed to measure both the anisotropic and hyperelastic parameters of TI soft tissues. In this part, experiments were carried out to validate the inverse method and demonstrate its usefulness in practical measurements. We first performed ex vivo experiments on bovine skeletal muscles. Not only the shear moduli along and perpendicular to the direction of muscle fibers but also the elastic modulus EL and hyperelastic parameter c2 were determined. We next carried out tensile tests to determine EL, which was compared with the value obtained using the shear wave elastography method. Furthermore, we conducted in vivo experiments on the biceps brachii and gastrocnemius muscles of ten healthy volunteers. To the best of our knowledge, this study represents the first attempt to determine EL of human muscles using the dynamic elastography method and inverse analysis. The significance of our method and its potential for clinical use are discussed.
In vivo gene delivery and expression by bacteriophage lambda vectors.
Lankes, H A; Zanghi, C N; Santos, K; Capella, C; Duke, C M P; Dewhurst, S
2007-05-01
Bacteriophage vectors have potential as gene transfer and vaccine delivery vectors because of their low cost, safety and physical stability. However, little is known concerning phage-mediated gene transfer in mammalian hosts. We therefore performed experiments to examine phage-mediated gene transfer in vivo. Mice were inoculated with recombinant lambda phage containing a mammalian expression cassette encoding firefly luciferase (luc). Efficient, dose-dependent in vivo luc expression was detected, which peaked within 24 h of delivery and declined to undetectable levels within a week. Display of an integrin-binding peptide increased cellular internalization of phage in vitro and enhanced phage-mediated gene transfer in vivo. Finally, in vivo depletion of phagocytic cells using clodronate liposomes had only a minor effect on the efficiency of phage-mediated gene transfer. Unmodified lambda phage particles are capable of transducing mammalian cells in vivo, and may be taken up -- at least in part -- by nonphagocytic mechanisms. Surface modifications that enhance phage uptake result in more efficient in vivo gene transfer. These experiments shed light on the mechanisms involved in phage-mediated gene transfer in vivo, and suggest new approaches that may enhance the efficiency of this process.
Seth, Ajay; Sherman, Michael; Reinbolt, Jeffrey A.; Delp, Scott L.
2015-01-01
Movement science is driven by observation, but observation alone cannot elucidate principles of human and animal movement. Biomechanical modeling and computer simulation complement observations and inform experimental design. Biological models are complex and specialized software is required for building, validating, and studying them. Furthermore, common access is needed so that investigators can contribute models to a broader community and leverage past work. We are developing OpenSim, a freely available musculoskeletal modeling and simulation application and libraries specialized for these purposes, by providing: musculoskeletal modeling elements, such as biomechanical joints, muscle actuators, ligament forces, compliant contact, and controllers; and tools for fitting generic models to subject-specific data, performing inverse kinematics and forward dynamic simulations. OpenSim performs an array of physics-based analyses to delve into the behavior of musculoskeletal models by employing Simbody, an efficient and accurate multibody system dynamics code. Models are publicly available and are often reused for multiple investigations because they provide a rich set of behaviors that enables different lines of inquiry. This report will discuss one model developed to study walking and applied to gain deeper insights into muscle function in pathological gait and during running. We then illustrate how simulations can test fundamental hypotheses and focus the aims of in vivo experiments, with a postural stability platform and human model that provide a research environment for performing human posture experiments in silico. We encourage wide adoption of OpenSim for community exchange of biomechanical models and methods and welcome new contributors. PMID:25893160
Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A.; Wierda, William G.; Keating, Michael J.; Balakrishnan, Kumudha; Gandhi, Varsha
2015-01-01
Purpose Bruton’s tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Experimental design Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199) and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. Results The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted highly cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family anti-apoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Conclusions Our biological and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. PMID:25829398
Abdulnour, R E; Sham, H P; Douda, D N; Colas, R A; Dalli, J; Bai, Y; Ai, X; Serhan, C N; Levy, B D
2016-09-01
Bacterial pneumonia is a leading cause of morbidity and mortality worldwide. Host responses to contain infection and mitigate pathogen-mediated lung inflammation are critical for pneumonia resolution. Aspirin-triggered resolvin D1 (AT-RvD1; 7S,8R,17R-trihydroxy-4Z,9E,11E,13Z,15E,19Z-docosahexaenoic acid) is a lipid mediator (LM) that displays organ-protective actions in sterile lung inflammation, and regulates pathogen-initiated cellular responses. Here, in a self-resolving murine model of Escherichia coli pneumonia, LM metabololipidomics performed on lungs obtained at baseline, 24, and 72 h after infection uncovered temporal regulation of endogenous AT-RvD1 production. Early treatment with exogenous AT-RvD1 (1 h post infection) enhanced clearance of E. coli and Pseudomonas aeruginosa in vivo, and lung macrophage phagocytosis of fluorescent bacterial particles ex vivo. Characterization of macrophage subsets in the alveolar compartment during pneumonia identified efferocytosis by infiltrating macrophages (CD11b(Hi) CD11c(Low)) and exudative macrophages (CD11b(Hi) CD11c(Hi)). AT-RvD1 increased efferocytosis by these cells ex vivo, and accelerated neutrophil clearance during pneumonia in vivo. These anti-bacterial and pro-resolving actions of AT-RvD1 were additive to antibiotic therapy. Taken together, these findings suggest that the pro-resolving actions of AT-RvD1 during pneumonia represent a novel host-directed therapeutic strategy to complement the current antibiotic-centered approach for combatting infections.
Zürcher, Nicole R; Loggia, Marco L; Lawson, Robert; Chonde, Daniel B; Izquierdo-Garcia, David; Yasek, Julia E; Akeju, Oluwaseun; Catana, Ciprian; Rosen, Bruce R; Cudkowicz, Merit E; Hooker, Jacob M; Atassi, Nazem
2015-01-01
Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [(11)C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38-68 years) and ten age- and [(11)C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33-65 years) completed a positron emission tomography scan. Standardized uptake values were calculated from 60 to 90 min post-injection and normalized to whole brain mean. Voxel-wise analysis showed increased binding in the motor cortices and corticospinal tracts in patients with amyotrophic lateral sclerosis compared to healthy controls (p FWE < 0.05). Region of interest analysis revealed increased [(11)C]-PBR28 binding in the precentral gyrus in patients (normalized standardized uptake value = 1.15) compared to controls (1.03, p < 0.05). In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = -0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [(11)C]-PBR28 as a marker of treatments that target neuroinflammation.
Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis.
Turner, Lauren Senty; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L; Kitten, Todd
2009-08-01
Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo.
Development of genetic tools for in vivo virulence analysis of Streptococcus sanguinis
Senty Turner, Lauren; Das, Sankar; Kanamoto, Taisei; Munro, Cindy L.; Kitten, Todd
2009-01-01
Completion of the genome sequence of Streptococcus sanguinis SK36 necessitates tools for further characterization of this species. It is often desirable to insert antibiotic resistance markers and other exogenous genes into the chromosome; therefore, we sought to identify a chromosomal site for ectopic expression of foreign genes, and to verify that insertion into this site did not affect important cellular phenotypes. We designed three plasmid constructs for insertion of erm, aad9 or tetM resistance determinants into a genomic region encoding only a small (65 aa) hypothetical protein. To determine whether this insertion affected important cellular properties, SK36 and its erythromycin-resistant derivative, JFP36, were compared for: (i) growth in vitro, (ii) genetic competence, (iii) biofilm formation and (iv) virulence for endocarditis in the rabbit model of infective endocarditis (IE). The spectinomycin-resistant strain, JFP56, and tetracycline-resistant strain, JFP76, were also tested for virulence in vivo. Insertion of erm did not affect growth, competence or biofilm development of JFP36. Recovery of bacteria from heart valves of co-inoculated rabbits was similar to wild-type for JFP36, JFP56 and JFP76, indicating that IE virulence was not significantly affected. The capacity for mutant complementation in vivo was explored in an avirulent ssaB mutant background. Expression of ssaB from its predicted promoter in the target region restored IE virulence. Thus, the chromosomal site utilized is a good candidate for further manipulations of S. sanguinis. In addition, the resistant strains developed may be further applied as controls to facilitate screening for virulence factors in vivo. PMID:19423626
Cervantes-Gomez, Fabiola; Lamothe, Betty; Woyach, Jennifer A; Wierda, William G; Keating, Michael J; Balakrishnan, Kumudha; Gandhi, Varsha
2015-08-15
Bruton's tyrosine kinase (BTK) is a critical enzyme in the B-cell receptor pathway and is inhibited by ibrutinib due to covalent binding to the kinase domain. Though ibrutinib results in impressive clinical activity in chronic lymphocytic leukemia (CLL), most patients achieve only partial remission due to residual disease. We performed a pharmacologic profiling of residual circulating CLL cells from patients receiving ibrutinib to identify optimal agents that could induce cell death of these lymphocytes. Ex vivo serial samples of CLL cells from patients on ibrutinib were obtained prior and after (weeks 2, 4, and 12) the start of treatment. These cells were incubated with PI3K inhibitors (idelalisib or IPI-145), bendamustine, additional ibrutinib, or BCL-2 antagonists (ABT-737 or ABT-199), and cell death was measured. In vitro investigations complemented ex vivo studies. Immunoblots for BTK signaling pathway and antiapoptotic proteins were performed. The BCL-2 antagonists, especially ABT-199, induced high cell death during ex vivo incubations. In concert with the ex vivo data, in vitro combinations also resulted in high cytotoxicity. Serial samples of CLL cells obtained before and 2, 4, 12, or 36 weeks after the start of ibrutinib showed inhibition of BTK activity and sensitivity to ABTs. Among the three BCL-2 family antiapoptotic proteins that are overexpressed in CLL, levels of MCL-1 and BCL-XL were decreased after ibrutinib while ABT-199 selectively antagonizes BCL-2. Our biologic and molecular results suggest that ibrutinib and ABT-199 combination should be tested clinically against CLL. ©2015 American Association for Cancer Research.
Thermal control surfaces on the MSFC LDEF experiments
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Whitaker, Ann F.; Zwiener, James M.; Linton, Roger C.; Shular, David; Peters, Palmer N.; Gregory, John C.
1992-01-01
There were five Marshall Space Flight Center (MSFC) experiments on the LDEF. Each of those experiments carried thermal control surfaces either as test samples or as operational surfaces. These materials experienced varying degrees of mechanical and optical damage. Some materials were virtually unchanged by the extended exposure while others suffered extensive degradation. The synergistic effects due to the constituents of the space environment are evident in the diversity of these material changes. The sample complement for the MSFC experiments is described along with results of the continuing analyses efforts.
Isolation and Characterization of Sex-Linked Female-Sterile Mutants in DROSOPHILA MELANOGASTER
Gans, Madeleine; Audit, Claudie; Masson, Michele
1975-01-01
The purpose of the experiments described was to identify X chromosome genes functioning mainly or exclusively during oogenesis. Two mutagenesis experiments were carried out with ethyl methane sulfonate. Following treatment inducing 60% lethals, 9% of the treated X chromosomes carried a female sterility mutation which did not otherwise seriously affect viability. Among —95 isolated mutants, 19 were heat-sensitive and 5 cold-sensitive. The mutants have been classified as follows: I (16 mutants; 12 complementation groups): the females laid few or no eggs; the defect concerned either ovulation or oogenesis. II (37 mutants; 18 complementation groups): the female laid morphologically abnormal eggs, often with increased membrane permeability. III A (13 mutants; at least 8 complementation groups): the homozygous females were sterile if mated to mutant males; their progeny (homo- and hemizygous) died at a late embryonic stage (11 mutants), at the larval stage (1 mutant) or at the pupal stage (1 mutant). However fertility was partly restored by breeding to wild-type males as shown by survival of some heterozygous descendants. III B (29 mutants; 22 complementation groups): the fertility of the females was not restored by breeding to a wild-type male. Most of the eggs of 13 of the mutants died at a late stage of embryogenesis. The eggs of the others ceased development earlier or, perhaps, remained unfertilized. The distribution of the number of mutants per complementation group led to an estimation of a total of about 150 X-linked genes involved in female fertility. The females of three mutants, heat-sensitive and totally sterile at 29°, produced at a lower temperature descendants morphologically abnormal or deprived of germ cells. Three other mutants not described in detail showed a reduction in female fertility with many descendants lacking germ cells. A desirable mutant which was not recovered was one with normal fertile females producing descendants which, regardless of their genotype, bore specific morphological abnormalities. The value of the mutants isolated for analysis of the complex processes leading to egg formation and initiation of development is discussed. PMID:814037
Liftoff of STS-67 Space Shuttle Endeavour
NASA Technical Reports Server (NTRS)
1995-01-01
Carrying a crew of seven and a complement of astronomic experiments, the Space Shuttle Endeavour embarks on NASA's longest Shuttle flight to date. Endeavour's liftoff from Launch Pad 39A occurred at 1:38:13 a.m. (EST), March 2, 1995.
Tools for Systematic Identification of Cross-Disciplinary Research Relevant to Exploration Missions
NASA Astrophysics Data System (ADS)
Shelhamer, M.; Mindock, J. A.
2018-02-01
A Contributing Factor Map and text analytics on articles and reports can identify connections between major factors contributing to health and performance on Deep Space Gateway missions. Connections suggest experiment complements to maximize use of these flights.
ERIC Educational Resources Information Center
Owen Blakemore, Judith E.; Berenbaum, Sheri A.; Liben, Lynn S.
2008-01-01
This new text offers a unique developmental focus on gender. Gender development is examined from infancy through adolescence, integrating biological, socialization, and cognitive perspectives. The book's current empirical focus is complemented by a lively and readable style that includes anecdotes about children's everyday experiences. The book's…
Jiang, Hua; Fan, Wei-jun; Zhang, Liang; Li, Xin; Zhang, Jian-lei
2012-09-18
To explore the net power and net energy of a cooled antenna radiator in ex vivo and in vivo porcine livers. All animal experiments complied with the guidelines of our animal use committee. Microwave ablation (MWA) was performed in ex vivo and in vivo porcine livers with a cooled-shaft antenna in different microwave ablation parameter groups (50, 80 and 110 W for 10 min). The energy losses from the microwave antenna or cables were calculated. And the net power, net energy and the relationship between net power and power readout were determined. When the power displayed by the machine indicated 50 W, 80 W and 110 W, the net power during MWA was 31.3 ± 0.6, 47.3 ± 0.8 and 62.1 ± 0.9 W ex vivo and 31.8 ± 0.8, 47.4 ± 0.3 and 61.7 ± 1.5 W in vivo. For the same power readout, the ex vivo or in vivo effective power was the same (P = 0.841, P = 0.133, P = 0.551). For both ex vivo and in vivo experiments, the ratio of microwave antenna energy loss to microwave antenna input energy was relatively constant (P = 0.613, 0.326). For the same treatment time and net power, the difference was significant between ex vivo and in vivo ablation volumes (P = 0.001, 0.006, 0.001). Using net power as a reference during MWA is more accurate compared to the traditional power readout. And net energy offers a more realistic reflection of MWA energy in tissues.
Probing Protein Structure in Vivo with FRET
Davis, Trisha; Muller, Eric
2012-01-01
Fluorescence resonance energy transfer (FRET) is widely used to construct probes for cellular activities and to complement two-hybrid results that predict protein-protein interactions. The Yeast Resource Center promotes an underutilized potential of FRET as an in vivo tool to position proteins within low resolution structures derived from electron microscopy. The success of this approach using widefield microscopy depends upon the choice of filter sets, standardized image acquisition, a robust metric and controls matched to the structure under investigation. A comparison of various CFP and YFP filter combinations from Chroma and Semrock demonstrated the strength of the Chroma filters when coupled with our FRET metric, termed FretR. Coupling CFP and YFP to a selection of proteins of known structure allowed us to create a standard curve of FretR versus distance. How well other FRET metrics conform was also evaluated. Finally FretR was linked to an approximation of the efficiency of energy transfer. Together this feature set has allowed us to contribute to our understanding of the organization of the yeast spindle pole body, cohesin complex and gamma-tubulin complex.
He, Fei; Murabito, Ettore; Westerhoff, Hans V
2016-04-01
Metabolic pathways can be engineered to maximize the synthesis of various products of interest. With the advent of computational systems biology, this endeavour is usually carried out through in silico theoretical studies with the aim to guide and complement further in vitro and in vivo experimental efforts. Clearly, what counts is the result in vivo, not only in terms of maximal productivity but also robustness against environmental perturbations. Engineering an organism towards an increased production flux, however, often compromises that robustness. In this contribution, we review and investigate how various analytical approaches used in metabolic engineering and synthetic biology are related to concepts developed by systems and control engineering. While trade-offs between production optimality and cellular robustness have already been studied diagnostically and statically, the dynamics also matter. Integration of the dynamic design aspects of control engineering with the more diagnostic aspects of metabolic, hierarchical control and regulation analysis is leading to the new, conceptual and operational framework required for the design of robust and productive dynamic pathways. © 2016 The Author(s).
Nanocapsules of perfluorooctyl bromide for theranostics: from formulation to targeting
NASA Astrophysics Data System (ADS)
Diou, O.; Fattal, E.; Payen, T.; Bridal, S. L.; Valette, J.; Tsapis, N.
2014-03-01
The need to detect cancer at its early stages, as well as, to deliver chemotherapy to targeted site motivates many researchers to build theranostic platforms which combine diagnostic and therapy. Among imaging modalities, ultrasonography and Magnetic Resonance Imaging (MRI) are widely available, non invasive and complement each other. Both techniques often require the use of contrast agents. We have developed nanocapsules of perfluorooctyl bromide as dual contrast agent for both imaging modalities. The soft, amorphous polymer shell provides echogenicity, while the high-density perfluorinated liquid core allows detection by 19F MRI. We have used a shell of poly(lactide-co-glycolide) (PLGA) since this polymer is biodegradable, biocompatible and can be loaded with drugs. These capsules were shown to be efficient in vitro as contrast agents for both 19F MRI and ultrasonography. In addition, for in vivo applications a poly(ethyleneglycol) (PEG) coating promotes stability and prolonged circulation. Being stealth, nanocapsule can accumulate passively into implanted tumors by the EPR effect. We will present nanocapsule formulation and characterization, and will show promising in vivo results obtained for both ultrasonography and 19F MRI.
Paterson, Gavin K; Cone, Danielle B; Northen, Helen; Peters, Sarah E; Maskell, Duncan J
2009-05-01
The glycolytic enzyme triosephosphate isomerase (tpi) (EC 5.3.1.1) plays a key role in central carbon metabolism yet few studies have characterized isogenic bacterial mutants lacking this enzyme and none have examined its role in the in vivo fitness of a bacterial pathogen. Here we have deleted tpiA in Salmonella enterica serovar Typhimurium and found that the mutant had an altered morphology, displaying an elongated shape compared with the wild type. In a mouse model of typhoid fever the tpiA mutant was attenuated for growth as assessed by bacterial counts in the livers and spleens of infected mice. However, this attenuation was not deemed sufficient for consideration of a tpiA mutant as a live attenuated vaccine strain. These phenotypes were complemented by provision of tpiA on pBR322. We therefore provide the first demonstration that tpiA is required for full in vivo fitness of a bacterial pathogen, and that it has a discernable impact on cell morphology.
Glucocorticoid-induced skeletal muscle atrophy in vitro is attenuated by mechanical stimulation
NASA Technical Reports Server (NTRS)
Chromiak, J. A.; Vandenburgh, H. H.
1992-01-01
Glucocorticoids induce rapid atrophy of fast skeletal myofibers in vivo, and either weight lifting or endurance exercise reduces this atrophy by unknown mechanisms. We examined the effects of the synthetic glucocorticoid dexamethasone (Dex) on protein turnover in tissue-cultured avian fast skeletal myofibers and determined whether repetitive mechanical stretch altered the myofiber response to Dex. In static cultures after 3-5 days, 10(-8) M Dex decreased total protein content 42-74%, total protein synthesis rates 38-56%, mean myofiber diameter 35%, myosin heavy chain (MHC) content 86%, MHC synthesis rate 44%, and fibronectin synthesis rate 29%. Repetitive 10% stretch-relaxations of the cultured myofibers for 60 s every 5 min for 3-4 days prevented 52% of the Dex-induced decrease in protein content, 42% of the decrease in total protein synthesis rate, 77% of the decrease in MHC content, 42% of the decrease in MHC synthesis rate, and 67% of the decrease in fibronectin synthesis rate. This in vitro model system will complement in vivo studies in understanding the mechanism by which mechanical activity and glucocorticoids interact to regulate skeletal muscle growth.
Gold and Iron-Gold Nanoparticles for Intracellular Tracking and in Vivo Medical Applicatons
NASA Astrophysics Data System (ADS)
Fu, Wei
2005-03-01
We have fabricated Au and Fe-Au nanoparticles for potential use in ex vivo experiments such as intracellular tracking, as well as a variety of in vivo medical applications. In order to improve their targeting potential, circulation time and flexibility, gold NPs were surface modified using a hetero-bifunctional poly(ethylene glycol) (PEG, MW 1,500) spacers. A coumarin-PEG-gold NP complex was formed and cell viability studies and optical fluorescence experiments were carried out demonstrating the use of these surface-modified gold NPs for drug delivery, gene therapy and cell trafficking experiments. Fe-Au nanoparticles were also fabricated and show significant contrast enhancement in MRI studies through a substantial reduction of the T2 relaxation time.
Neuroanatomical Correlates of Intelligence
Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.
2009-01-01
With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches have further enhanced our ability to localize the presence of correlations between cerebral characteristics and intelligence with high anatomic precision. These in vivo assessments have confirmed mainly positive correlations, suggesting that optimally increased brain regions are associated with better cognitive performance. Findings further suggest that the models proposed to explain the anatomical substrates of intelligence should address contributions from not only (pre)frontal regions, but also widely distributed networks throughout the whole brain. PMID:20160919
In vitro V(D)J recombination: signal joint formation.
Cortes, P; Weis-Garcia, F; Misulovin, Z; Nussenzweig, A; Lai, J S; Li, G; Nussenzweig, M C; Baltimore, D
1996-11-26
The first step of V(D)J recombination, specific cleavage at the recombination signal sequence (RSS), can be carried out by the recombination activating proteins RAG1 and RAG2. In vivo, the cleaved coding and signal ends must be rejoined to generate functional antigen receptors and maintain chromosomal integrity. We have investigated signal joint formation using deletion and inversion substrates in a cell free system. RAG1 and RAG2 alone or in combination were unable to generate signal joints. However, RAG1 and RAG2 complemented with nuclear extracts were able to recombine an extrachromosomal substrate and form precise signal joints. The in vitro reaction resembled authentic V(D)J recombination in being Ku-antigen-dependent.
University of Wisconsin Cirrus Remote Sensing Pilot Experiment
NASA Technical Reports Server (NTRS)
Ackerman, Steven A.; Eloranta, Ed W.; Grund, Chris J.; Knuteson, Robert O.; Revercomb, Henry E.; Smith, William L.; Wylie, Donald P.
1993-01-01
During the period of 26 October 1989 through 6 December 1989 a unique complement of measurements was made at the University of Wisconsin-Madison to study the radiative properties of cirrus clouds. Simultaneous observations were obtained from a scanning lidar, two interferometers, a high spectral resolution lidar, geostationary and polar orbiting satellites, radiosonde launches, and a whole-sky imager. This paper describes the experiment, the instruments deployed, and, as an example, the data collected during one day of the experiment.
STS-37 Gamma Ray Observatory (GRO) grappled by RMS
1991-04-07
Backdropped against the Earth's surface, the Gamma Ray Observatory (GRO) with its solar array (SA) panels deployed is grappled by the remote manipulator system (RMS) during STS-37 systems checkout. GRO's four complement instruments are visible: the Energetic Gamma Ray Experiment Telescope (EGRET) (at the bottom); the Imaging Compton Telescope (COMPTEL) (center); the Oriented Scintillation Spectrometer Experiment (OSSE) (top); and Burst and Transient Source Experiment (BATSE) (on four corners). The view was taken by STS-37 crew through an aft flight deck overhead window.
Yang, Feikun; Hao, Ru; Kessler, Barbara; Brem, Gottfried; Wolf, Eckhard; Zakhartchenko, Valeri
2007-01-01
The epigenetic status of a donor nucleus has an important effect on the developmental potential of embryos produced by somatic cell nuclear transfer (SCNT). In this study, we transferred cultured rabbit cumulus cells (RCC) and fetal fibroblasts (RFF) from genetically marked rabbits (Alicia/Basilea) into metaphase II oocytes and analyzed the levels of histone H3-lysine 9-lysine 14 acetylation (acH3K9/14) in donor cells and cloned embryos. We also assessed the correlation between the histone acetylation status of donor cells and cloned embryos and their developmental potential. To test whether alteration of the histone acetylation status affects development of cloned embryos, we treated donor cells with sodium butyrate (NaBu), a histone deacetylase inhibitor. Further, we tried to improve cloning efficiency by chimeric complementation of cloned embryos with blastomeres from in vivo fertilized or parthenogenetic embryos. The levels of acH3K9/14 were higher in RCCs than in RFFs (P<0.05). Although the type of donor cells did not affect development to blastocyst, after transfer into recipients, RCC cloned embryos induced a higher initial pregnancy rate as compared to RFF cloned embryos (40 vs 20%). However, almost all pregnancies with either type of cloned embryos were lost by the middle of gestation and only one fully developed, live RCC-derived rabbit was obtained. Treatment of RFFs with NaBu significantly increased the level of acH3K9/14 and the proportion of nuclear transfer embryos developing to blastocyst (49 vs 33% with non-treated RFF, P<0.05). The distribution of acH3K9/14 in either group of cloned embryos did not resemble that in in vivo fertilized embryos suggesting that reprogramming of this epigenetic mark is aberrant in cloned rabbit embryos and cannot be corrected by treatment of donor cells with NaBu. Aggregation of embryos cloned from NaBu-treated RFFs with blastomeres from in vivo derived embryos improved development to blastocyst, but no cloned offspring were obtained. Two live cloned rabbits were produced from this donor cell type only after aggregation of cloned embryos with a parthenogenetic blastomere. Our study demonstrates that the levels of histone acetylation in donor cells and cloned embryos correlate with their developmental potential and may be a useful epigenetic mark to predict efficiency of SCNT in rabbits.
Steps for the autologous ex vivo perfused porcine liver-kidney experiment.
Chung, Wen Yuan; Eltweri, Amar M; Isherwood, John; Haqq, Jonathan; Ong, Seok Ling; Gravante, Gianpiero; Lloyd, David M; Metcalfe, Matthew S; Dennison, Ashley R
2013-12-18
The use of ex vivo perfused models can mimic the physiological conditions of the liver for short periods, but to maintain normal homeostasis for an extended perfusion period is challenging. We have added the kidney to our previous ex vivo perfused liver experiment model to reproduce a more accurate physiological state for prolonged experiments without using live animals. Five intact livers and kidneys were retrieved post-mortem from sacrificed pigs on different days and perfused for a minimum of 6 hr. Hourly arterial blood gases were obtained to analyze pH, lactate, glucose and renal parameters. The primary endpoint was to investigate the effect of adding one kidney to the model on the acid base balance, glucose, and electrolyte levels. The result of this liver-kidney experiment was compared to the results of five previous liver only perfusion models. In summary, with the addition of one kidney to the ex vivo liver circuit, hyperglycemia and metabolic acidosis were improved. In addition this model reproduces the physiological and metabolic responses of the liver sufficiently accurately to obviate the need for the use of live animals. The ex vivo liver-kidney perfusion model can be used as an alternative method in organ specific studies. It provides a disconnection from numerous systemic influences and allows specific and accurate adjustments of arterial and venous pressures and flow.
Robust optical fiber patch-cords for in vivo optogenetic experiments in rats.
Trujillo-Pisanty, Ivan; Sanio, Christian; Chaudhri, Nadia; Shizgal, Peter
2015-01-01
In vivo optogenetic experiments commonly employ long lengths of optical fiber to connect the light source (commonly a laser) to the optical fiber implants in the brain. Commercially available patch cords are expensive and break easily. Researchers have developed methods to build these cables in house for in vivo experiments with rodents [1-4]. However, the half-life of those patch cords is greatly reduced when they are used with behaving rats, which are strong enough to break the delicate cable tip and to bite through the optical fiber and furcation tubing. Based on [3] we have strengthened the patch-cord tip that connects to the optical implant, and we have incorporated multiple layers of shielding to produce more robust and resistant cladding. Here, we illustrate how to build these patch cords with FC or M3 connectors. However, the design can be adapted for use with other common optical-fiber connectors. We have saved time and money by using this design in our optical self-stimulation experiments with rats, which are commonly several months long and last four to eleven hours per session. The main advantages are: •Long half-life.•Resistant to moderate rodent bites.•Suitable for long in vivo optogenetic experiments with large rodents.
Zhou, Zhao-hua; Wild, Teresa; Xiong, Ying; Sylvers, Peter; Zhang, Yahong; Zhang, Luxia; Wahl, Larry; Wahl, Sharon M.; Kozlowski, Steven; Notkins, Abner L.
2013-01-01
Polyreactive antibodies are a major component of the natural antibody repertoire and are capable of binding a variety of structurally unrelated antigens. Many of the properties attributed to natural antibodies, in fact, are turning out to be due to polyreactive antibodies. In humans, each day, billions of cells undergo apoptosis. In the present experiments, we show by ImageStream technology that although polyreactive antibodies do not bind to live T cells they bind to both the plasma membrane and cytoplasm of late apoptotic cells, fix complement, generate the anaphylatoxin C5a and increase by as much as 5 fold complement-mediated phagocytosis by macrophages. Of particular importance, T cells undergoing apoptosis following infection with HIV also bind polyreactive antibodies and are phagocytosed. We conclude that the polyreactive antibodies in the natural antibody repertoire contribute in a major way to the clearance of cells made apoptotic by a variety of natural and infectious processes. PMID:23881356
Ekman, Drew R.; Ankley, Gerald T.; Blazer, Vicki; Collette, Timothy W.; Garcia-Reyero, Natàlia; Iwanowicz, Luke R.; Jorgensen, Zachary G.; Lee, Kathy E.; Mazik, Pat M.; Miller, David H.; Perkins, Edward J.; Smith, Edwin T.; Tietge, Joseph E.; Villeneuve, Daniel L.
2013-01-01
There is increasing demand for the implementation of effects-based monitoring and surveillance (EBMS) approaches in the Great Lakes Basin to complement traditional chemical monitoring. Herein, we describe an ongoing multiagency effort to develop and implement EBMS tools, particularly with regard to monitoring potentially toxic chemicals and assessing Areas of Concern (AOCs), as envisioned by the Great Lakes Restoration Initiative (GLRI). Our strategy includes use of both targeted and open-ended/discovery techniques, as appropriate to the amount of information available, to guide a priori end point and/or assay selection. Specifically, a combination of in vivo and in vitro tools is employed by using both wild and caged fish (in vivo), and a variety of receptor- and cell-based assays (in vitro). We employ a work flow that progressively emphasizes in vitro tools for long-term or high-intensity monitoring because of their greater practicality (e.g., lower cost, labor) and relying on in vivo assays for initial surveillance and verification. Our strategy takes advantage of the strengths of a diversity of tools, balancing the depth, breadth, and specificity of information they provide against their costs, transferability, and practicality. Finally, a series of illustrative scenarios is examined that align EBMS options with management goals to illustrate the adaptability and scaling of EBMS approaches and how they can be used in management decisions.
Zehri, Aqib H.; Ramey, Wyatt; Georges, Joseph F.; Mooney, Michael A.; Martirosyan, Nikolay L.; Preul, Mark C.; Nakaji, Peter
2014-01-01
Background: The clinical application of fluorescent contrast agents (fluorescein, indocyanine green, and aminolevulinic acid) with intraoperative microscopy has led to advances in intraoperative brain tumor imaging. Their properties, mechanism of action, history of use, and safety are analyzed in this report along with a review of current laser scanning confocal endomicroscopy systems. Additional imaging modalities with potential neurosurgical utility are also analyzed. Methods: A comprehensive literature search was performed utilizing PubMed and key words: In vivo confocal microscopy, confocal endomicroscopy, fluorescence imaging, in vivo diagnostics/neoplasm, in vivo molecular imaging, and optical imaging. Articles were reviewed that discussed clinically available fluorophores in neurosurgery, confocal endomicroscopy instrumentation, confocal microscopy systems, and intraoperative cancer diagnostics. Results: Current clinically available fluorescent contrast agents have specific properties that provide microscopic delineation of tumors when imaged with laser scanning confocal endomicroscopes. Other imaging modalities such as coherent anti-Stokes Raman scattering (CARS) microscopy, confocal reflectance microscopy, fluorescent lifetime imaging (FLIM), two-photon microscopy, and second harmonic generation may also have potential in neurosurgical applications. Conclusion: In addition to guiding tumor resection, intraoperative fluorescence and microscopy have the potential to facilitate tumor identification and complement frozen section analysis during surgery by providing real-time histological assessment. Further research, including clinical trials, is necessary to test the efficacy of fluorescent contrast agents and optical imaging instrumentation in order to establish their role in neurosurgery. PMID:24872922
Rawal, Tejal; Mishra, Neha; Jha, Abhishek; Bhatt, Apurva; Tyagi, Rajeev K; Panchal, Shital; Butani, Shital
2018-05-01
The elevated blood levels of cholesterol and low-density lipoproteins result in hyperlipidemia. The available expensive prophylactic treatments are kindred with severe side effects. Therefore, we fabricated the polymeric nanoparticles of gamma-oryzanol to achieving the improved efficacy of drug. The nanoparticles were prepared by ionic gelation method and optimized using 2 3 full factorial design taking drug/polymer ratio (X 1 ), polymer/cross linking agent ratio (X 2 ), and stirring speed (X 3 ) as independent variables. The average particle size, percentage entrapment efficiency, and in vitro drug release at 2, 12, and 24 h were selected as response parameters. The factorial batches were statistically analyzed and optimized. The optimized nanoparticles were characterized with respect to particle size (141 nm) and zeta potential (+ 6.45 mV). Results obtained with the prepared and characterized formulation showed 83% mucoadhesion towards the intestinal mucosa. The in vitro findings were complemented well by in vivo anti-hyperlipidemic activity of developed formulation carried out in Swiss albino mouse model. The in vivo studies showed improved atherogenic index, malondialdehyde, and superoxide dismutase levels in poloxamer-407-induced hyperlipidemic animals when treated with oryzanol and gamma-oryzanol nanoformulation. Based on our findings, we believe that chitosan-mediated delivery of gamma-oryzanol nanoparticles might prove better in terms of anti-hyperlipidemic therapeutics.
Alaraby, Mohamed; Hernández, Alba; Annangi, Balasubramanyam; Demir, Esref; Bach, Jordi; Rubio, Laura; Creus, Amadeu; Marcos, Ricard
2015-01-01
Although in vitro approaches are the most used for testing the potential harmful effects of nanomaterials, in vivo studies produce relevant information complementing in vitro data. In this context, we promote the use of Drosophila melanogaster as a suitable in vivo model to characterise the potential risks associated to nanomaterials exposure. The main aim of this study was to evaluate different biological effects associated to cerium oxide nanoparticles (Ce-NPs) and cerium (IV) sulphate exposure. The end-points evaluated were egg-to-adult viability, particles uptake through the intestinal barrier, gene expression and intracellular reactive oxygen species (ROS) production by haemocytes, genotoxicity and antigenotoxicity. Transmission electron microscopy images showed internalisation of Ce-NPs by the intestinal barrier and haemocytes, and significant expression of Hsp genes was detected. In spite of these findings, neither toxicity nor genotoxicity related to both forms of cerium were observed. Interestingly, Ce-NPs significantly reduced the genotoxic effect of potassium dichromate and the intracellular ROS production. No morphological malformations were detected after larvae treatment. This study highlights the importance of D. melanogaster as animal model in the study of the different biological effects caused by nanoparticulated materials, at the time that shows its usefulness to study the role of the intestinal barrier in the transposition of nanomaterials entering via ingestion.
Hong, Xu; Lei, Lu; Glas, Rickard
2003-06-16
Many tumors overexpress members of the inhibitor of apoptosis protein (IAP) family. IAPs contribute to tumor cell apoptosis resistance by the inhibition of caspases, and are degraded by the proteasome to allow further progression of apoptosis. Here we show that tumor cells can alter the specificity of cytosolic proteolysis in order to acquire apoptosis resistance, which promotes formation of rapidly growing tumors. Survival of tumor cells with low proteasomal activity can occur in the presence of high expression of Tri-peptidyl-peptidase II (TPP II), a large subtilisin-like peptidase that complements proteasomal activity. We find that this state leaves tumor cells unable of effectively degrading IAPs, and that cells in this state form rapidly growing tumors in vivo. We also find, in studies of apoptosis resistant cells derived from large in vivo tumors, that these have acquired an altered peptidase activity, with up-regulation of TPP II activity and decreased proteasomal activity. Importantly, we find that growth of subcutaneous tumors is limited by maintenance of the apoptosis resistant phenotype. The apoptosis resistant phenotype was reversed by increased expression of Smac/DIABLO, an antagonist of IAP molecules. Our data suggest a reversible mechanism in regulation of apoptosis resistance that drives tumor progression in vivo. These data are relevant in relation to the multitude of therapy-resistant clinical tumors that have increased levels of IAP molecules.
Silke, Wiegand-Grefe; Möller, Birgit
2012-01-01
The paper presents some reflections on the transgenerational transmission of traumatic experiences of war and in particular bombing during Second World War. These theoretical considerations are based on a case study (family interview) deriving from the research project "Kriegskindheit im Hamburger Feuersturm" additionally illustrated and complemented with impressions based on interviews with three generations in context of the project.
1995-10-20
Payload specialist Fred Leslie makes use of the versatile U.S. Microgravity Laboratory (USML-2) glovebox to conduct an investigation with the Oscillatory Thermocapillary Flow Experiment (OTFE). This complement of the Surface-Tension-Driven Convection Experiment (STDCE) studies the shapes that fluid surfaces in weightless environments assume within specific containers. Leslie was one of two guest researchers who joined five NASA astronauts for 16 days of on Earth-orbit research in support of USML-2.
Montreal electronic artificial urinary sphincters: Our futuristic alternatives to the AMS800™.
Biardeau, Xavier; Hached, Sami; Loutochin, Oleg; Campeau, Lysanne; Sawan, Mohamad; Corcos, Jacques
2017-10-01
We aimed to present three novel remotely controlled hydromechanical artificial urinary sphincters (AUSs) and report their in-vitro and ex-vivo results. We successively developed three distinct hydromechanical AUSs on the basis of the existing AMS800 ™ device by incorporating an electronic pump. No changes were made to the cuff and balloon. The AUS#1 was designed as an electromagnetically controlled device. The AUS#2 and AUS#3 were conceived as Bluetooth 2.1 remotely controlled and Bluetooth 4.0 remotely-controlled, adaptive devices, respectively. In-vitro experiments profiled occlusive cuff pressure (OCP) during a complete device cycle, with different predetermined OCP. Ex-vivo experiments were performed on a fresh pig bladder with 4 cm cuff placed around the urethra. Leak point pressure with different predetermined OCP values was successively measured during cystometry via a catheter at the bladder dome. Our in-vitro and ex-vivo experiments demonstrated that these three novel AUSs provided stable and predetermined OCP - within the physiological range - and completely deflated the cuff, when required, in a limited time compatible with physiological voiding cycles. Our three novel, remotely controlled AUSs showed promising results that should be confirmed by in-vivo experiments focusing on efficacy and safety.
Einfinger, Katrin; Badrnya, Sigrun; Furtmüller, Margareta; Handschuh, Daniela; Lindner, Herbert; Geiger, Margarethe
2015-01-01
Protein C inhibitor is a secreted, non-specific serine protease inhibitor with broad protease reactivity. It binds glycosaminoglycans and anionic phospholipids, which can modulate its activity. Anionic phospholipids, such as phosphatidylserine are normally localized to the inner leaflet of the plasma membrane, but are exposed on activated and apoptotic cells and on plasma membrane-derived microparticles. In this report we show by flow cytometry that microparticles derived from cultured cells and activated platelets incorporated protein C inhibitor during membrane blebbing. Moreover, protein C inhibitor is present in/on microparticles circulating in normal human plasma as judged from Western blots, ELISAs, flow cytometry, and mass spectrometry. These plasma microparticles are mainly derived from megakaryocytes. They seem to be saturated with protein C inhibitor, since they do not bind added fluorescence-labeled protein C inhibitor. Heparin partially removed microparticle-bound protein C inhibitor, supporting our assumption that protein C inhibitor is bound via phospholipids. To assess the biological role of microparticle-bound protein C inhibitor we performed protease inhibition assays and co-precipitated putative binding partners on microparticles with anti-protein C inhibitor IgG. As judged from amidolytic assays microparticle-bound protein C inhibitor did not inhibit activated protein C or thrombin, nor did microparticles modulate the activity of exogenous protein C inhibitor. Among the proteins co-precipitating with protein C inhibitor, complement factors, especially complement factor 3, were most striking. Taken together, our data do not support a major role of microparticle-associated protein C inhibitor in coagulation, but rather suggest an interaction with proteins of the complement system present on these phospholipid vesicles. PMID:26580551
Posch, Wilfried; Cardinaud, Sylvain; Hamimi, Chiraz; Fletcher, Adam; Mühlbacher, Annelies; Loacker, Klaus; Eichberger, Paul; Dierich, Manfred P.; Pancino, Gianfranco; Lass-Flörl, Cornelia; Moris, Arnaud; Saez-Cirion, Asier; Wilflingseder, Doris
2014-01-01
Background Control of HIV is suggested to depend on potent effector functions of the virus-specific CD8+ T-cell response. Antigen opsonization can modulate the capture of antigen, its presentation, and the priming of specific CD8+ T-cell responses. Objective We have previously shown that opsonization of retroviruses acts as an endogenous adjuvant for dendritic cell (DC)–mediated induction of specific cytotoxic T lymphocytes (CTLs). However, in some HIV-positive subjects, high levels of antibodies and low levels of complement fragments coat the HIV surface. Methods Therefore we analyzed the effect of IgG opsonization on the antigen-presenting capacity of DCs by using CD8+ T-cell proliferation assays after repeated prime boosting, by measuring the antiviral activity against HIV-infected autologous CD4+ T cells, and by determining IFN-γ secretion from HIV-specific CTL clones. Results We find that DCs exposed to IgG-opsonized HIV significantly decreased the HIV-specific CD8+ T-cell response compared with the earlier described efficient CD8+ T-cell activation induced by DCs loaded with complement-opsonized HIV. DCs exposed to HIV bearing high surface IgG levels after incubation in plasma from HIV-infected subjects acted as weak stimulators for HIV-specific CTL clones. In contrast, HIV opsonized with plasma from patients exhibiting high complement and low IgG deposition on the viral surface favored significantly higher activation of HIV-specific CD8+ T-cell clones. Conclusion Our ex vivo and in vitro observations provide the first evidence that IgG opsonization of HIV is associated with a decreased CTL-stimulatory capacity of DCs. PMID:23063584
Behavior Therapy for Fears Brought On By War Experiences
ERIC Educational Resources Information Center
Kipper, David A.
1977-01-01
Desensitization therapy was offered to Israeli soldiers suffering from fears developed as a result of their participation in the Yom Kippur War. Two kinds of in vivo desensitization procedures used were: (a) an individual self-administered in vivo desensitization and (b) in vivo desensitization in dyads. Advantages of these procedures discussed.…
2010-01-01
Background Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. Methods In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. Results ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. Conclusions ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability. PMID:20875134
Tamrazi, Anobel; Massoud, Tarik F.; Katzenellenbogen, John A.; Gambhir, Sanjiv S.
2011-01-01
Estrogen receptor (ER) biology reflects the actions of estrogens through the two receptors, ERα and ERβ, although little is known regarding the preference for formation of ER homo- vs. heterodimers, and how this is affected by the level of ligand occupancy and preferential ligand affinity for one of the ER subtypes. In this report, we use a split optical reporter-protein complementation system to demonstrate the physical interaction between ERα and ERβ in response to different ER ligands in cells and, for the first time, by in vivo imaging in living animals. The genetically encoded reporter vectors constructed with the ligand-binding domains of ERα and ERβ, fused to split firefly or Renilla luciferase (Fluc or hRluc) fragments, were used for this study. This molecular proteomic technique was used to detect ERα/ERα or ERβ/ERβ homodimerization, or ERα/ERβ heterodimerization induced by ER subtype-selective and nonselective ligands, and selective ER modulators (SERM), as well as in dimers in which one mutant monomer was unable to bind estradiol. The SERM-bound ERα and ERβ form the strongest dimers, and subtype-preferential homodimerization was seen with ERα-selective ligands (methyl piperidino pyrazole/propyl pyrazole triol) and the ERβ-selective ligands (diarylpropionitrile/tetrahydrochrysene/genistein). We also demonstrated that a single ligand-bound monomer can form homo- or heterodimers with an apo-monomer. Xenografts of human embryonic kidney 293T cells imaged in living mice by bioluminescence showed real-time ligand induction of ERα/ERβ heterodimerization and reversal of dimerization upon ligand withdrawal. The results from this study demonstrate the value of the split luciferase-based complementation system for studying ER-subtype interactions in cells and for evaluating them in living animals by noninvasive imaging. They also probe what combinations of ERα and ERβ dimers might be the mediators of the effects of different types of ER ligands given at different doses. PMID:22052998
Sabino, Fabio; Hermes, Olivia; Egli, Fabian E.; Kockmann, Tobias; Schlage, Pascal; Croizat, Pierre; Kizhakkedathu, Jayachandran N.; Smola, Hans; auf dem Keller, Ulrich
2015-01-01
Proteases control complex tissue responses by modulating inflammation, cell proliferation and migration, and matrix remodeling. All these processes are orchestrated in cutaneous wound healing to restore the skin's barrier function upon injury. Altered protease activity has been implicated in the pathogenesis of healing impairments, and proteases are important targets in diagnosis and therapy of this pathology. Global assessment of proteolysis at critical turning points after injury will define crucial events in acute healing that might be disturbed in healing disorders. As optimal biospecimens, wound exudates contain an ideal proteome to detect extracellular proteolytic events, are noninvasively accessible, and can be collected at multiple time points along the healing process from the same wound in the clinics. In this study, we applied multiplexed Terminal Amine Isotopic Labeling of Substrates (TAILS) to globally assess proteolysis in early phases of cutaneous wound healing. By quantitative analysis of proteins and protein N termini in wound fluids from a clinically relevant pig wound model, we identified more than 650 proteins and discerned major healing phases through distinctive abundance clustering of markers of inflammation, granulation tissue formation, and re-epithelialization. TAILS revealed a high degree of proteolysis at all time points after injury by detecting almost 1300 N-terminal peptides in ∼450 proteins. Quantitative positional proteomics mapped pivotal interdependent processing events in the blood coagulation and complement cascades, temporally discerned clotting and fibrinolysis during the healing process, and detected processing of complement C3 at distinct time points after wounding and by different proteases. Exploiting data on primary cleavage specificities, we related candidate proteases to cleavage events and revealed processing of the integrin adapter protein kindlin-3 by caspase-3, generating new hypotheses for protease-substrate relations in the healing skin wound in vivo. The data have been deposited to the ProteomeXchange Consortium with identifier PXD001198. PMID:25516628
van der Pals, Jesper; Koul, Sasha; Andersson, Patrik; Götberg, Matthias; Ubachs, Joey F A; Kanski, Mikael; Arheden, Håkan; Olivecrona, Göran K; Larsson, Bengt; Erlinge, David
2010-09-27
Polymorphonuclear neutrophils, stimulated by the activated complement factor C5a, have been implicated in cardiac ischemia/reperfusion injury. ADC-1004 is a competitive C5a receptor antagonist that has been shown to inhibit complement related neutrophil activation. ADC-1004 shields the neutrophils from C5a activation before they enter the reperfused area, which could be a mechanistic advantage compared to previous C5a directed reperfusion therapies. We investigated if treatment with ADC-1004, according to a clinically applicable protocol, would reduce infarct size and microvascular obstruction in a large animal myocardial infarct model. In anesthetized pigs (42-53 kg), a percutaneous coronary intervention balloon was inflated in the left anterior descending artery for 40 minutes, followed by 4 hours of reperfusion. Twenty minutes after balloon inflation the pigs were randomized to an intravenous bolus administration of ADC-1004 (175 mg, n = 8) or saline (9 mg/ml, n = 8). Area at risk (AAR) was evaluated by ex vivo SPECT. Infarct size and microvascular obstruction were evaluated by ex vivo MRI. The observers were blinded to the treatment at randomization and analysis. ADC-1004 treatment reduced infarct size by 21% (ADC-1004: 58.3 ± 3.4 vs control: 74.1 ± 2.9%AAR, p = 0.007). Microvascular obstruction was similar between the groups (ADC-1004: 2.2 ± 1.2 vs control: 5.3 ± 2.5%AAR, p = 0.23). The mean plasma concentration of ADC-1004 was 83 ± 8 nM at sacrifice. There were no significant differences between the groups with respect to heart rate, mean arterial pressure, cardiac output and blood-gas data. ADC-1004 treatment reduces myocardial ischemia-reperfusion injury and represents a novel treatment strategy of myocardial infarct with potential clinical applicability.
Comparative assessment of fluorescent proteins for in vivo imaging in an animal model system.
Heppert, Jennifer K; Dickinson, Daniel J; Pani, Ariel M; Higgins, Christopher D; Steward, Annette; Ahringer, Julie; Kuhn, Jeffrey R; Goldstein, Bob
2016-11-07
Fluorescent protein tags are fundamental tools used to visualize gene products and analyze their dynamics in vivo. Recent advances in genome editing have expedited the precise insertion of fluorescent protein tags into the genomes of diverse organisms. These advances expand the potential of in vivo imaging experiments and facilitate experimentation with new, bright, photostable fluorescent proteins. Most quantitative comparisons of the brightness and photostability of different fluorescent proteins have been made in vitro, removed from biological variables that govern their performance in cells or organisms. To address the gap, we quantitatively assessed fluorescent protein properties in vivo in an animal model system. We generated transgenic Caenorhabditis elegans strains expressing green, yellow, or red fluorescent proteins in embryos and imaged embryos expressing different fluorescent proteins under the same conditions for direct comparison. We found that mNeonGreen was not as bright in vivo as predicted based on in vitro data but is a better tag than GFP for specific kinds of experiments, and we report on optimal red fluorescent proteins. These results identify ideal fluorescent proteins for imaging in vivo in C. elegans embryos and suggest good candidate fluorescent proteins to test in other animal model systems for in vivo imaging experiments. © 2016 Heppert et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Wang, Han; Dong, Xiao-Xi; Yang, Ji-Chun; Huang, He; Li, Ying-Xin; Zhang, Hai-Xia
2017-07-01
For predicting the temperature distribution within skin tissue in 980-nm laser-evoked potentials (LEPs) experiments, a five-layer finite element model (FEM-5) was constructed based on Pennes bio-heat conduction equation and the Lambert-Beer law. The prediction results of the FEM-5 model were verified by ex vivo pig skin and in vivo rat experiments. Thirty ex vivo pig skin samples were used to verify the temperature distribution predicted by the model. The output energy of the laser was 1.8, 3, and 4.4 J. The laser spot radius was 1 mm. The experiment time was 30 s. The laser stimulated the surface of the ex vivo pig skin beginning at 10 s and lasted for 40 ms. A thermocouple thermometer was used to measure the temperature of the surface and internal layers of the ex vivo pig skin, and the sampling frequency was set to 60 Hz. For the in vivo experiments, nine adult male Wistar rats weighing 180 ± 10 g were used to verify the prediction results of the model by tail-flick latency. The output energy of the laser was 1.4 and 2.08 J. The pulsed width was 40 ms. The laser spot radius was 1 mm. The Pearson product-moment correlation and Kruskal-Wallis test were used to analyze the correlation and the difference of data. The results of all experiments showed that the measured and predicted data had no significant difference (P > 0.05) and good correlation (r > 0.9). The safe laser output energy range (1.8-3 J) was also predicted. Using the FEM-5 model prediction, the effective pain depth could be accurately controlled, and the nociceptors could be selectively activated. The FEM-5 model can be extended to guide experimental research and clinical applications for humans.
Verdi Invades the Kindergarten.
ERIC Educational Resources Information Center
McGirr, Paula Ifft
1995-01-01
Children can complement all areas of their language learning with music, and can enhance their musical activities with language. Opportunities to experience sounds, language, and rhythmic movement support the learning and development of the whole child. Activities dealing with children's books that have musical themes, song picture books, and…
Story Immersion of Videogames for Youth Health Promotion: A Review of Literature
Baranowski, Tom; Thompson, Debbe; Buday, Richard
2012-01-01
Abstract This article reviews research in the fields of psychology, literature, communication, human–computer interaction, public health, and consumer behavior on narrative and its potential relationships with videogames and story immersion. It also reviews a narrative's role in complementing behavioral change theories and the potential of story immersion for health promotion through videogames. Videogames have potential for health promotion and may be especially promising when attempting to reach youth. An understudied characteristic of videogames is that many contain a narrative, or story. Story immersion (transportation) is a mechanism through which a narrative influences players' cognition, affect, and, potentially, health behavior. Immersion promotes the suspension of disbelief and the reduction of counterarguments, enables the story experience as a personal experience, and creates the player's deep affection for narrative protagonists. Story immersion complements behavioral change theories, including the Theory of Planned Behavior, Social Cognitive Theory, and Self-Determination Theory. Systematic investigations are needed to realize the powerful potential of interactive narratives within theory-driven research. PMID:24416639
Story Immersion of Videogames for Youth Health Promotion: A Review of Literature.
Lu, Amy Shirong; Baranowski, Tom; Thompson, Debbe; Buday, Richard
2012-06-01
This article reviews research in the fields of psychology, literature, communication, human-computer interaction, public health, and consumer behavior on narrative and its potential relationships with videogames and story immersion. It also reviews a narrative's role in complementing behavioral change theories and the potential of story immersion for health promotion through videogames. Videogames have potential for health promotion and may be especially promising when attempting to reach youth. An understudied characteristic of videogames is that many contain a narrative, or story. Story immersion (transportation) is a mechanism through which a narrative influences players' cognition, affect, and, potentially, health behavior. Immersion promotes the suspension of disbelief and the reduction of counterarguments, enables the story experience as a personal experience, and creates the player's deep affection for narrative protagonists. Story immersion complements behavioral change theories, including the Theory of Planned Behavior, Social Cognitive Theory, and Self-Determination Theory. Systematic investigations are needed to realize the powerful potential of interactive narratives within theory-driven research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morita, T.; Mehendale, H.M.
This study was designed to examine whether chlorphentermine (CP) affects pulmonary disposition of 5-hydroxytryptamine (5-HT) in rat in vivo. Further, the effects of CP were compared with those of phentermine (P), the nonchlorinated congener. The right jugular vein and left carotid artery of male Sprague-Dawley rats were cannulated and fresh saline solution containing 150 micrograms indocyanine green and a mixture of labeled and unlabeled 5-HT was injected into the jugular vein, and arterial blood samples were collected for 20 s. In order to compare the effect of CP and P on pulmonary disposition of 5-HT, 2.6 nmol (/sup 14/C)-5-HT wasmore » employed for in vivo single-pass experiments. Each animal was used for 2 in vivo single-pass experiments. After the first experiment, which served as a control, animals received an indicated dose of CP or P, to commence the second ''drug-treated'' in vivo experiment. Pulmonary clearance of 5-HT was inhibited by prior administration of CP (1 mg/kg) by 42%, whereas at the highest dose (20 mg/kg) P inhibited 5-HT clearance by only 25%. Pulmonary accumulation of CP was greater than P at higher doses, and the inhibition of 5-HT clearance correlated with the pulmonary accumulation of these drugs. In addition to the in vivo demonstration of the CP inhibition of pulmonary clearance of 5-HT in the rat, these studies also demonstrate a higher affinity of the lung tissue for CP than for P and a greater propensity for the impairment of pulmonary 5-HT clearance.« less
Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978
Pure optical photoacoustic microscopy
Xie, Zhixing; Chen, Sung-Liang; Ling, Tao; Guo, L. Jay; Carson, Paul L.; Wang, Xueding
2011-01-01
The concept of pure optical photoacoustic microscopy(POPAM) was proposed based on optical rastering of a focused excitation beam and optically sensing the photoacoustic signal using a microring resonator fabricated by a nanoimprinting technique. After the refinements of the microring’s working wavelength and in the resonator structure and mold fabrication, an ultrahigh Q factor of 3.0×105 was achieved which provided high sensitivity with a noise equivalent detectable pressure(NEDP) value of 29Pa. This NEDP is much lower than the hundreds of Pascals achieved with existing optical resonant structures such as etalons, fiber gratings and dielectric multilayer interference filters available for acoustic measurement. The featured high sensitivity allowed the microring resonator to detect the weak photoacoustic signals from micro- or submicroscale objects. The inherent superbroad bandwidth of the optical microring resonator combined with an optically focused scanning beam provided POPAM with high resolution in the axial as well as both lateral directions while the axial resolution of conventional photoacoustic microscopy (PAM) suffers from the limited bandwidth of PZT detectors. Furthermore, the broadband microring resonator showed similar sensitivity to that of our most sensitive PZT detector. The current POPAM system provides a lateral resolution of 5 μm and an axial resolution of 8 μm, comparable to that achieved by optical microscopy while presenting the unique contrast of optical absorption and functional information complementing other optical modalities. The 3D structure of microvasculature, including capillary networks, and even individual red blood cells have been discerned successfully in the proof-of-concept experiments on mouse bladders ex vivo and mouse ears in vivo. The potential of approximately GHz bandwidth of the microring resonator also might allow much higher resolution than shown here in microscopy of optical absorption and acoustic propagation properties at depths in unfrozen tissue specimens or thicker tissue sections, which is not now imageable with current optical or acoustic microscopes of comparable resolution. PMID:21643156
Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.
Geis, Christian; Ritter, Christian; Ruschil, Christoph; Weishaupt, Andreas; Grünewald, Benedikt; Stoll, Guido; Holmoy, Trygve; Misu, Tatsuro; Fujihara, Kazuo; Hemmer, Bernhard; Stadelmann, Christine; Bennett, Jeffrey L.; Sommer, Claudia; Toyka, Klaus V.
2015-01-01
Neuromyelitis optica (NMO) is causally linked to autoantibodies (ABs) against aquaporin 4 (AQP4). Here, we focused on the pathogenic effects exclusively mediated by human ABs to AQP4 in vivo. We performed cell-free intrathecal (i.th.) passive transfer experiments in Lewis rats using purified patient NMO immunoglobulin G (IgG) and various recombinant human anti-AQP4 IgG-ABs via implanted i.th. catheters. Repetitive application of patient NMO IgG fractions and of recombinant human anti-AQP4 ABs induced signs of spinal cord disease. Magnetic resonance imaging (MRI) revealed longitudinal spinal cord lesions at the site of application of anti-AQP4 IgG. Somatosensory evoked potential amplitudes were reduced in symptomatic animals corroborating the observed functional impairment. Spinal cord histology showed specific IgG deposition in the grey and white matter in the affected areas. We did not find inflammatory cell infiltration nor activation of complement in spinal cord areas of immunoglobulin deposition. Moreover, destructive lesions showing axon or myelin damage and loss of astrocytes and oligodendrocytes were all absent. Immunoreactivity to AQP4 and to the excitatory amino acid transporter 2 (EAAT2) was markedly reduced whereas immunoreactivity to the astrocytic marker glial fibrillary acid protein (GFAP) was preserved. The expression of the NMDA-receptor NR1 subunit was down-regulated in areas of IgG deposition possibly induced by sustained glutamatergic overexcitation. Disease signs and histopathology were reversible within weeks after stopping injections. We conclude that in vivo application of ABs directed at AQP 4 can induce a reversible spinal cord disease in recipient rats by inducing distinct histopathological abnormalities. These findings may be the experimental correlate of “penumbra-like” lesions recently reported in NMO patients adjacent to effector-mediated tissue damage. PMID:25542977
Geis, Christian; Ritter, Christian; Ruschil, Christoph; Weishaupt, Andreas; Grünewald, Benedikt; Stoll, Guido; Holmoy, Trygve; Misu, Tatsuro; Fujihara, Kazuo; Hemmer, Bernhard; Stadelmann, Christine; Bennett, Jeffrey L; Sommer, Claudia; Toyka, Klaus V
2015-03-01
Neuromyelitis optica (NMO) is causally linked to autoantibodies (ABs) against aquaporin 4 (AQP4). Here, we focused on the pathogenic effects exclusively mediated by human ABs to AQP4 in vivo. We performed cell-free intrathecal (i.th.) passive transfer experiments in Lewis rats using purified patient NMO immunoglobulin G (IgG) and various recombinant human anti-AQP4 IgG-ABs via implanted i.th. catheters. Repetitive application of patient NMO IgG fractions and of recombinant human anti-AQP4 ABs induced signs of spinal cord disease. Magnetic resonance imaging (MRI) revealed longitudinal spinal cord lesions at the site of application of anti-AQP4 IgG. Somatosensory evoked potential amplitudes were reduced in symptomatic animals corroborating the observed functional impairment. Spinal cord histology showed specific IgG deposition in the grey and white matter in the affected areas. We did not find inflammatory cell infiltration nor activation of complement in spinal cord areas of immunoglobulin deposition. Moreover, destructive lesions showing axon or myelin damage and loss of astrocytes and oligodendrocytes were all absent. Immunoreactivity to AQP4 and to the excitatory amino acid transporter 2 (EAAT2) was markedly reduced whereas immunoreactivity to the astrocytic marker glial fibrillary acid protein (GFAP) was preserved. The expression of the NMDA-receptor NR1 subunit was downregulated in areas of IgG deposition possibly induced by sustained glutamatergic overexcitation. Disease signs and histopathology were reversible within weeks after stopping injections. We conclude that in vivo application of ABs directed at AQP 4 can induce a reversible spinal cord disease in recipient rats by inducing distinct histopathological abnormalities. These findings may be the experimental correlate of "penumbra-like" lesions recently reported in NMO patients adjacent to effector-mediated tissue damage. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Buecker, H.; Facius, R.; Hildebrand, D.; Horneck, G.; Reitz, G.; Scheidemann, U.; Schaefer, M.; Thomas, C.; Toth, B.; Kranz, A. R.
1976-01-01
The Biostack III experiment onboard the Apollo spacecraft during the Apollo Soyuz Test Project complemented the Biostack I and II experiments of the Apollo 16 and 17 missions. The objectives of these experiments were to study the biological effects of individual heavy cosmic particles of high energy loss (HZE) not available on earth, to study the influence of additional space flight factors, to obtain knowledge on the mechanism by which HZE particles damage biological materials, to get information on the spectrum of charge and energy of the cosmic ions in the spacecraft, and to estimate the radiation hazards to man in space.
Dental pulp stem cells for in vivo bone regeneration: a systematic review of literature.
Morad, Golnaz; Kheiri, Lida; Khojasteh, Arash
2013-12-01
This review of literature was aimed to assess in vivo experiments which have evaluated the efficacy of dental pulp stem cells (DPSCs) for bone regeneration. An electronic search of English-language papers was conducted on PubMed database. Studies that assessed the use of DPSCs in bone regeneration in vivo were included and experiments evaluating regeneration of hard tissues other than bone were excluded. The retrieved articles were thoroughly reviewed according to the source of stem cell, cell carrier, the in vivo experimental model, defect type, method of evaluating bone regeneration, and the obtained results. Further assessment of the results was conducted by classifying the studies based on the defect type. Seventeen papers formed the basis of this systematic review. Sixteen out of 17 experiments were performed on animal models with mouse and rat being the most frequently used animal models. Seven out of 17 animal studies, contained subcutaneous pockets on back of the animal for stem cell implantation. In only one study hard tissue formation was not observed. Other types of defects used in the retrieved studies, included cranial defects and mandibular bone defects, in all of which bone formation was reported. When applied in actual bone defects, DPSCs were capable of regenerating bone. Nevertheless, a precise conclusion regarding the efficiency of DPSCs for bone regeneration is yet to be made, considering the limited number of the in vivo experiments and the heterogeneity within their methods. Copyright © 2013 Elsevier Ltd. All rights reserved.
Atmospheric microphysical experiments on an orbital platform
NASA Technical Reports Server (NTRS)
Eaton, L. R.
1974-01-01
The Zero-Gravity Atmospheric Cloud Physics Laboratory is a Shuttle/Spacelab payload which will be capable of performing a large range of microphysics experiments. This facility will complement terrestrial cloud physics research by allowing many experiments to be performed which cannot be accomplished within the confines of a terrestrial laboratory. This paper reviews the general Cloud Physics Laboratory concept and the experiment scope. The experimental constraints are given along with details of the proposed equipment. Examples of appropriate experiments range from three-dimensional simulation of the earth and planetary atmosphere and of ocean circulation to cloud electrification processes and the effects of atmospheric pollution materials on microphysical processes.
History, ethics, advantages and limitations of experimental models for hepatic ablation.
Ong, Seok Ling; Gravante, Gianpiero; Metcalfe, Matthew S; Dennison, Ashley R
2013-01-14
Numerous techniques developed in medicine require careful evaluation to determine their indications, limitations and potential side effects prior to their clinical use. At present this generally involves the use of animal models which is undesirable from an ethical standpoint, requires complex and time-consuming authorization, and is very expensive. This process is exemplified in the development of hepatic ablation techniques, starting experiments on explanted livers and progressing to safety and efficacy studies in living animals prior to clinical studies. The two main approaches used are ex vivo isolated non-perfused liver models and in vivo animal models. Ex vivo non perfused models are less expensive, easier to obtain but not suitable to study the heat sink effect or experiments requiring several hours. In vivo animal models closely resemble clinical subjects but often are expensive and have small sample sizes due to ethical guidelines. Isolated perfused ex vivo liver models have been used to study drug toxicity, liver failure, organ transplantation and hepatic ablation and combine advantages of both previous models.
Altenburg, Arwen F; van de Sandt, Carolien E; Li, Bobby W S; MacLoughlin, Ronan J; Fouchier, Ron A M; van Amerongen, Geert; Volz, Asisa; Hendriks, Rudi W; de Swart, Rik L; Sutter, Gerd; Rimmelzwaan, Guus F; de Vries, Rory D
2017-08-17
Modified Vaccinia virus Ankara (MVA) is a promising vaccine vector with an excellent safety profile. However, despite extensive pre-clinical and clinical testing, surprisingly little is known about the cellular tropism of MVA, especially in relevant animal species. Here, we performed in vitro, ex vivo and in vivo experiments with recombinant MVA expressing green fluorescent protein (rMVA-GFP). In both human peripheral blood mononuclear cells and mouse lung explants, rMVA-GFP predominantly infected antigen presenting cells. Subsequent in vivo experiments performed in mice, ferrets and non-human primates indicated that preferential targeting of dendritic cells and alveolar macrophages was observed after respiratory administration, although subtle differences were observed between the respective animal species. Following intramuscular injection, rMVA-GFP was detected in interdigitating cells between myocytes, but also in myocytes themselves. These data are important in advancing our understanding of the basis for the immunogenicity of MVA-based vaccines and aid rational vaccine design and delivery strategies.
A Review of Therapeutic Aptamer Conjugates with Emphasis on New Approaches
Bruno, John G.
2013-01-01
The potential to emulate or enhance antibodies with nucleic acid aptamers while lowering costs has prompted development of new aptamer-protein, siRNA, drug, and nanoparticle conjugates. Specific focal points of this review discuss DNA aptamers covalently bound at their 3' ends to various proteins for enhanced stability and greater pharmacokinetic lifetimes in vivo. The proteins can include Fc tails of IgG for opsonization, and the first component of complement (C1q) to trigger complement-mediated lysis of antibiotic-resistant Gram negative bacteria, cancer cells and possibly some parasites during vulnerable stages. In addition, the 3' protein adduct may be a biotoxin, enzyme, or may simply be human serum albumin (HSA) or a drug known to bind HSA, thereby retarding kidney and other organ clearance and inhibiting serum exonucleases. In this review, the author summarizes existing therapeutic aptamer conjugate categories and describes his patented concept for PCR-based amplification of double-stranded aptamers followed by covalent attachment of proteins or other agents to the chemically vulnerable overhanging 3' adenine added by Taq polymerase. PCR amplification of aptamers could dramatically lower the current $2,000/gram cost of parallel chemical oligonucleotide synthesis, thereby enabling mass production of aptamer-3'-protein or drug conjugates to better compete against expensive humanized monoclonal antibodies. PMID:24276022
Cai, Yitian; Teo, Boon Heng Dennis; Yeo, Joo Guan; Lu, Jinhua
2015-01-01
In infection, complement C1q recognizes pathogen-congregated antibodies and elicits complement activation. Among endogenous ligands, C1q binds to DNA and apoptotic cells, but whether C1q binds to nuclear DNA in apoptotic cells remains to be investigated. With UV irradiation-induced apoptosis, C1q initially bound to peripheral cellular regions in early apoptotic cells. By 6 h, binding concentrated in the nuclei to the nucleolus but not the chromatins. When nucleoli were isolated from non-apoptotic cells, C1q also bound to these structures. In vivo, C1q exists as the C1 complex (C1qC1r2C1s2), and C1q binding to ligands activates the C1r/C1s proteases. Incubation of nucleoli with C1 caused degradation of the nucleolar proteins nucleolin and nucleophosmin 1. This was inhibited by the C1 inhibitor. The nucleoli are abundant with autoantigens. C1q binding and C1r/C1s degradation of nucleolar antigens during cell apoptosis potentially reduces autoimmunity. These findings help us to understand why genetic C1q and C1r/C1s deficiencies cause systemic lupus erythematosus. PMID:26231209
The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9
Vu, Michael T; Zhai, Peng; Lee, Juhye; Guerra, Cecilia; Liu, Shirley; Gustin, Michael C; Silberg, Jonathan J
2012-01-01
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones. PMID:22162012
The DNLZ/HEP zinc-binding subdomain is critical for regulation of the mitochondrial chaperone HSPA9.
Vu, Michael T; Zhai, Peng; Lee, Juhye; Guerra, Cecilia; Liu, Shirley; Gustin, Michael C; Silberg, Jonathan J
2012-02-01
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Δzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel β-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones. Copyright © 2011 The Protein Society.
Xeroderma pigmentosum complementation group E and UV-damaged DNA-binding protein
Tang, Jean; Chu, Gilbert
2010-01-01
UV-damaged DNA-binding protein (UV-DDB) is composed of two subunits, DDB1 (p127) and DDB2 (p48). Mutations in the DDB2 gene inactivate UV-DDB in individuals from complementation group E of xeroderma pigmentosum (XP-E), an autosomal recessive disease characterized by sun sensitivity, severe risk for skin cancer and defective nucleotide excision repair. UV-DDB is also deficient in many rodent tissues, exposing a shortcoming in rodent models for cancer. In vitro, UV-DDB binds to cyclobutane pyrimidine dimers (CPDs), 6–4 photoproducts and other DNA lesions, stimulating the excision of CPDs, and to a lesser extent, of 6–4 photoproducts. In vivo, UV-DDB plays an important role in the p53-dependent response of mammalian cells to DNA damage. When cells are exposed to UV, the resulting accumulation of p53 activates DDB2 transcription, which leads to increased levels of UV-DDB. Binding of UV-DDB to CPDs targets these lesions for global genomic repair, suppressing mutations without affecting UV survival. Apparently, cells are able to survive with unrepaired CPDs because of the activity of bypass DNA polymerases. Finally, there is evidence that UV-DDB may have roles in the cell that are distinct from DNA repair. PMID:12509284
Pratheeshkumar, Poyil; Kuttan, Girija
2012-02-01
Effect of Vernonia cinerea L. and vernolide-A on cell-mediated immune (CMI) response was studied in normal as well as tumor-bearing BALB/c mice. Administration of V. cinerea and vernolide-A significantly enhanced natural killer (NK) cell activity in both normal as well as tumor-bearing animals, and the activity was observed earlier than in tumor-bearing control animals. Antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent complement-mediated cytotoxicity (ACC) were also enhanced significantly in both normal as well as tumor-bearing animals after V. cinerea and vernolide-A administration compared with untreated control tumor-bearing animals. Extract and vernolide-A showed a significant increase in cytotoxic T lymphocyte (CTL) production in both the in vivo and in vitro models. The level of cytokines such as interleukin (IL)-2 and interferon (IFN)-γ were also enhanced by the treatment of V. cinerea and vernolide-A in both normal as well as tumor-bearing animals. This study demonstrated that V. cinerea extract and vernolide-A stimulate the CTL, NK cell, ADCC, and ADCC through enhanced secretion of IL-2 and IFN-γ.
Dzelzkalns, V A; Bogorad, L
1988-01-01
Photosynthesis-defective mutants of the transformable cyanobacterium Synechocystis 6803 have been isolated following nitrosoguanidine mutagenesis. The photosystem II- phenotype of one of these mutants is shown by DNA sequencing to be attributable to a short deletion in psbC, the gene encoding the 44-kd, chlorophyll-binding protein of photosystem II. Although not a component of the reaction center of photosystem II, the 44-kd protein is none the less shown to be essential in vivo for photosystem II activity. The deletion in psbC also results in greatly diminished levels of D-2 (a component of the reaction center of photosystem II) indicating that the loss of the product of the psbC gene affects the assembly or stability of the photosystem II reaction center. The isolation of a clone capable of restoring both photosystem II activity and photoautotrophy to the mutant cells was aided by the observation that restriction fragments or cloned Synechocystis 6803 DNA applied in liquid or in melted agarose directly onto a lawn of Synechocystis 6803 will lead to the transformation of the cells. This in situ 'dot' transformation procedure provides a convenient method for the rapid identification of fractions or clones containing complementing Synechocystis 6803 DNA. Images PMID:3130247
Biocompatibility of nanoporous alumina membranes for immunoisolation
La Flamme, Kristen E.; Popat, Ketul C.; Leoni, Lara; Markiewicz, Erica; LaTempa, Thomas J.; Roman, Brian B.; Grimes, Craig A.; Desai, Tejal A.
2011-01-01
Cellular immunoisolation using semi-permeable barriers has been investigated over the past several decades as a promising treatment approach for diseases such as Parkinson’s, Alzheimer’s, and Type 1 diabetes. Typically, polymeric membranes are used for immunoisolation applications; however, recent advances in technology have led to the development of more robust membranes that are able to more completely meet the requirements for a successful immunoisolation device, including well controlled pore size, chemical and mechanical stability, non-biodegradability, and biocompatibility with both the graft tissue as well as the host. It has been shown previously that nanoporous alumina biocapsules can act effectively as immunoisolation devices, and support the viability and functionality of encapsulated β cells. The aim of this investigation was to assess the biocompatibility of the material with host tissue. The cytotoxicity of the capsule, as well as its ability to activate complement and inflammation was studied. Further, the effects of PEG-modification on the tissue response to implanted capsules were studied. Our results have shown that the device is non-toxic and does not induce significant complement activation. Further, in vivo work has demonstrated that implantation of these capsules into the peritoneal cavity of rats induces a transient inflammatory response, and that PEG is useful in minimizing the host response to the material. PMID:17335895
Hu, Qian; Zhang, Yi; Wang, Changyong; Xu, Jiake; Wu, Jianping; Liu, Zonghua; Xue, Wei
2016-03-01
Amphiphilic block copolymer methoxy polyethyleneglycol-polycaprolactone (mPEG-PCL) has attracted interest in the biomedical field, due to its water solubility and biodegradability. Nevertheless, the blood safety of mPEG-PCL copolymers has not been investigated in detail. Because mPEG-PCL copolymers introduced in vivo would inevitably interact with blood tissue, an investigation of possible interactions of mPEG-PCL with key blood components is crucial. We studied the effects of two mPEG-PCL copolymer solutions on blood coagulation, the morphology and lysis of human red blood cells (RBCs), the structure of plasma fibrinogen, complement activation, and platelet aggregation. We found that higher concentrations of the mPEG-PCL copolymers impaired blood clotting, and the copolymers had little impact on the morphology or lysis of RBCs. From the spectroscopy results, the copolymers affected the local microstructure of fibrinogen. The copolymers significantly activated the complement system in a concentration-dependent way. At higher concentrations, the copolymers impaired platelet aggregation, which may have been mediated by an inhibition of the arachidonic acid pathway. These findings provide important information that may be useful for the molecular design and biomedical applications of mPEG-PCL copolymers. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 802-812, 2016. © 2016 Wiley Periodicals, Inc.
Masuda, Shinji; Harada, Jiro; Yokono, Makio; Yuzawa, Yuichi; Shimojima, Mie; Murofushi, Kazuhiro; Tanaka, Hironori; Masuda, Hanako; Murakawa, Masato; Haraguchi, Tsuyoshi; Kondo, Maki; Nishimura, Mikio; Yuasa, Hideya; Noguchi, Masato; Oh-Oka, Hirozo; Tanaka, Ayumi; Tamiaki, Hitoshi; Ohta, Hiroyuki
2011-07-01
Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.
Krutzke, L; Prill, J M; Engler, T; Schmidt, C Q; Xu, Z; Byrnes, A P; Simmet, T; Kreppel, F
2016-08-10
The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilgrim, Corey D.; Zavarin, Mavrik; Casey, William H.
Here, the rates of ligand exchange into the geochemically important [NpO 2(CO 3) 3] 4– aqueous complex are measured as a function of pressure in order to complement existing data on the isostructural [UO 2(CO 3) 3] 4– complex. Experiments are conducted at pH conditions where the rate of exchange is independent of the proton concentration. Unexpectedly, the experiments show a distinct difference in the pressure dependencies of rates of exchange for the uranyl and neptunyl complexes.
Neutral Pion Photoproduction on Neutron
Bulychev, S. A.; Kudryavtsev, A. E.; Kulikov, V. V.; ...
2018-03-12
The reaction γn → π 0n is investigated both theoretically and experimentally as an important step toward determining the electromagnetic coupling constants of the N* and Δ* resonances. We analyze the data on the collisions of γ quanta with energies between 200 and 800 MeV with a deuterium target collected by the A2 experiment in Mainz, Germany. Furthermore, these complement the data for neutral-pion photoproduction on protons obtained by the same experiment.
Cervantes-Pahm, Sarah; Knapp, Brenda K; Kim, Beob G; Liu, Yanhong; Parsons, Carl M; Fahey, George C; Stein, Hans H
2013-12-18
The objective of this study was to compare two in vivo methods using pigs and roosters and an in vitro method for determining the caloric value of four fiber sources [i.e., two resistant starches (RS 60 and RS 75), soluble corn fiber (SCF 70), and pullulan]. Metabolizable energy (ME) in pigs and true metabolizable energy (TMEn) in roosters were determined by using 72 barrows and 24 roosters, respectively. A two-step in vitro procedure was used to quantify monosaccharides released. Results of the two in vivo experiments corresponded well with RS 75 having the least caloric value (7.55 MJ/kg in pigs; 6.19 MJ/kg in roosters) and pullulan having the greatest caloric value (12.21 MJ/kg in pigs; 13.94 MJ/kg in roosters). The caloric values for all the fiber ingredients were less (P < 0.05) than in MD both in pigs and in roosters. Despite some limitations, results of the in vitro procedure corresponded well with the in vivo experiments where the concentration of glucose hydrolyzed from RS 60, RS 75, and SCF 70, but not pullulan, was less (P < 0.05) than the concentration of glucose hydrolyzed from MD. However, the greatest accuracy was obtained in the in vivo experiments.
In vivo induced antigenic determinants of Actinobacillus actinomycetemcomitans.
Cao, Sam Linsen; Progulske-Fox, Ann; Hillman, Jeffrey D; Handfield, Martin
2004-08-01
Actinobacillus actinomycetemcomitans is a Gram-negative capnophilic rod and the etiological agent of localized aggressive periodontitis. The genome-wide survey of A. actinomycetemcomitans using in vivo induced antigen technology (IVIAT) has previously resulted in the discovery of antigenic determinants expressed specifically in diseased patients. The present study evaluated the potential of these antigens as putative disease markers, and investigating their contribution to the pathogenesis of the microorganism. Sera from patients had a significantly greater antibody titer than sera from healthy controls against six antigens, which supports the in vivo expression of these antigens, and suggests their usefulness as disease markers. A. actinomycetemcomitans invasion of epithelium-derived HeLa cells resulted in the induction of all three genes tested, as evidenced by real-time PCR. Isogenic mutants of these three genes were constructed and the adhesion and intracellular survival of the mutants was assayed in a competition assay with the wild-type strain. A significant defect in the intracellular survival of two of these mutant strains (orf1402 and orf859) was found. This defect could not be attributed to an adhesion defect. In contrast, a mutation in vapA, a homologue of a novel putative transcriptional regulator, out-competed the wild-type strain in the same assay. The virulent phenotype was restored for a mutant strain in orf859 upon complementation. This data provided new insight into the pathogenic personality of A. actinomycetemcomitans in vivo and supported the use of HeLa cells as a valid in vitro host-pathogen interactions model for that microorganism. IVIAT is applicable to most pathogens and will undoubtedly lead to the discovery of novel therapies, antibiotics and diagnostic tools.
Luo, Tao; Fan, Tingting; Liu, Yinan; Rothbart, Maxi; Yu, Jing; Zhou, Shuaixiang; Grimm, Bernhard; Luo, Meizhong
2012-01-01
The chloroplast thioredoxins (TRXs) function as messengers of redox signals from ferredoxin to target enzymes. In this work, we studied the regulatory impact of pea (Pisum sativum) TRX-F on the magnesium (Mg) chelatase CHLI subunit and the enzymatic activation of Mg chelatase in vitro and in vivo. In vitro, reduced TRX-F activated the ATPase activity of pea CHLI and enhanced the activity of Mg chelatase reconstituted from the three recombinant subunits CHLI, CHLD, and CHLH in combination with the regulator protein GENOMES UNCOUPLED4 (GUN4). Yeast two-hybrid and bimolecular fluorescence complementation assays demonstrated that TRX-F physically interacts with CHLI but not with either of the other two subunits or GUN4. In vivo, virus-induced TRX-F gene silencing (VIGS-TRX-F) in pea plants did not result in an altered redox state of CHLI. However, simultaneous silencing of the pea TRX-F and TRX-M genes (VIGS-TRX-F/TRX-M) resulted in partially and fully oxidized CHLI in vivo. VIGS-TRX-F/TRX-M plants demonstrated a significant reduction in Mg chelatase activity and 5-aminolevulinic acid synthesizing capacity as well as reduced pigment content and lower photosynthetic capacity. These results suggest that, in vivo, TRX-M can compensate for a lack of TRX-F and that both TRXs act as important redox regulators of Mg chelatase. Furthermore, the silencing of TRX-F and TRX-M expression also affects gene expression in the tetrapyrrole biosynthesis pathway and leads to the accumulation of reactive oxygen species, which may also serve as an additional signal for the transcriptional regulation of photosynthesis-associated nuclear genes. PMID:22452855
Quantification of in vivo pH-weighted amide proton transfer (APT) MRI in acute ischemic stroke
NASA Astrophysics Data System (ADS)
Zhou, Iris Y.; Igarashi, Takahiro; Guo, Yingkun; Sun, Phillip Z.
2015-03-01
Amide proton transfer (APT) imaging is a specific form of chemical exchange saturation transfer (CEST) MRI that probes the pH-dependent amide proton exchange.The endogenous APT MRI is sensitive to tissue acidosis, which may complement the commonly used perfusion and diffusion scans for characterizing heterogeneous ischemic tissue damage. Whereas the saturation transfer asymmetry analysis (MTRasym) may reasonably compensate for direct RF saturation, in vivo MTRasym is however, susceptible to an intrinsically asymmetric shift (MTR'asym). Specifically, the reference scan for the endogenous APT MRI is 7 ppm upfield from that of the label scan, and subjects to concomitant RF irradiation effects, including nuclear overhauser effect (NOE)-mediated saturation transfer and semisolid macromolecular magnetization transfer. As such, the commonly used asymmetry analysis could not fully compensate for such slightly asymmetric concomitant RF irradiation effects, and MTRasym has to be delineated in order to properly characterize the pH-weighted APT MRI contrast. Given that there is very little change in relaxation time immediately after ischemia and the concomitant RF irradiation effects only minimally depends on pH, the APT contrast can be obtained as the difference of MTRasym between the normal and ischemic regions. Thereby, the endogenous amide proton concentration and exchange rate can be solved using a dual 2-pool model, and the in vivo MTR'asym can be calculated by subtracting the solved APT contrast from asymmetry analysis (i.e., MTR'asym =MTRasym-APTR). In addition, MTR'asym can be quantified using the classical 2-pool exchange model. In sum, our study delineated the conventional in vivo pH-sensitive MTRasym contrast so that pHspecific contrast can be obtained for imaging ischemic tissue acidosis.
Rodriguez, Blanca; Carusi, Annamaria; Abi-Gerges, Najah; Ariga, Rina; Britton, Oliver; Bub, Gil; Bueno-Orovio, Alfonso; Burton, Rebecca A B; Carapella, Valentina; Cardone-Noott, Louie; Daniels, Matthew J; Davies, Mark R; Dutta, Sara; Ghetti, Andre; Grau, Vicente; Harmer, Stephen; Kopljar, Ivan; Lambiase, Pier; Lu, Hua Rong; Lyon, Aurore; Minchole, Ana; Muszkiewicz, Anna; Oster, Julien; Paci, Michelangelo; Passini, Elisa; Severi, Stefano; Taggart, Peter; Tinker, Andy; Valentin, Jean-Pierre; Varro, Andras; Wallman, Mikael; Zhou, Xin
2016-09-01
Both biomedical research and clinical practice rely on complex datasets for the physiological and genetic characterization of human hearts in health and disease. Given the complexity and variety of approaches and recordings, there is now growing recognition of the need to embed computational methods in cardiovascular medicine and science for analysis, integration and prediction. This paper describes a Workshop on Computational Cardiovascular Science that created an international, interdisciplinary and inter-sectorial forum to define the next steps for a human-based approach to disease supported by computational methodologies. The main ideas highlighted were (i) a shift towards human-based methodologies, spurred by advances in new in silico, in vivo, in vitro, and ex vivo techniques and the increasing acknowledgement of the limitations of animal models. (ii) Computational approaches complement, expand, bridge, and integrate in vitro, in vivo, and ex vivo experimental and clinical data and methods, and as such they are an integral part of human-based methodologies in pharmacology and medicine. (iii) The effective implementation of multi- and interdisciplinary approaches, teams, and training combining and integrating computational methods with experimental and clinical approaches across academia, industry, and healthcare settings is a priority. (iv) The human-based cross-disciplinary approach requires experts in specific methodologies and domains, who also have the capacity to communicate and collaborate across disciplines and cross-sector environments. (v) This new translational domain for human-based cardiology and pharmacology requires new partnerships supported financially and institutionally across sectors. Institutional, organizational, and social barriers must be identified, understood and overcome in each specific setting. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Cardiology.
Chen, Qiyu; Jia, Ai; Snyder, Shane A; Gong, Zhiyuan; Lam, Siew Hong
2016-02-01
Glucocorticoids are pharmaceutical contaminants of emerging concern due to their incomplete removal during wastewater treatment, increased presence in aquatic environment and their biological potency. The zebrafish is a popular model for aquatic toxicology and environmental risk assessment. This study aimed to determine if glucocorticoids at environmental concentrations would perturb expression of selected glucocorticoid-responsive genes in zebrafish and to investigate their potentials as an in vivo zebrafish assay in complementing in vitro glucocorticoid receptor bioassay. The relative expression of eleven glucocorticoid-responsive genes in zebrafish larvae and liver of adult male zebrafish exposed to three representative glucocorticoids (dexamethasone, prednisolone and triamcinolone) was determined. The expression of pepck, baiap2 and pxr was up-regulated in zebrafish larvae and the expression of baiap2, pxr and mmp-2 was up-regulated in adult zebrafish exposed to glucocorticoids at concentrations equivalent to total glucocorticoids reported in environmental samples. The responsiveness of the specific genes were sufficiently robust in zebrafish larvae exposed to a complex environmental sample detected with in vitro glucocorticoid activity equivalent to 478 pM dexamethasone (DEX-EQ) and confirmed to contain low concentration (0.2 ng/L or less) of the targeted glucocorticoids, and possibly other glucocorticoid-active compounds. The findings provided in vivo relevance to the in vitro glucocorticoid activity and suggested that the environmental sample can perturb glucocorticoid-responsive genes in its original, or half the diluted, concentration as may be found in the environment. The study demonstrated the important complementary roles of in vivo zebrafish and in vitro bioassays coupled with analytical chemistry in monitoring environmental glucocorticoid contaminants. Copyright © 2015 Elsevier Ltd. All rights reserved.
Koenig, Vinciane; Wulfman, Claudine P; Derbanne, Mathieu A; Dupont, Nathalie M; Le Goff, Stéphane O; Tang, Mie-Leng; Seidel, Laurence; Dewael, Thibaut Y; Vanheusden, Alain J; Mainjot, Amélie K
2016-12-15
Recent introduction of computer-aided design/computer-aided manufacturing (CAD/CAM) monolithic zirconia dental prostheses raises the issue of material low thermal degradation (LTD), a well-known problem with zirconia hip prostheses. This phenomenon could be accentuated by masticatory mechanical stress. Until now zirconia LTD process has only been studied in vitro . This work introduces an original protocol to evaluate LTD process of monolithic zirconia prostheses in the oral environment and to study their general clinical behavior, notably in terms of wear. 101 posterior monolithic zirconia tooth elements (molars and premolars) are included in a 5-year prospective clinical trial. On each element, several areas between 1 and 2 mm 2 (6 on molars, 4 on premolars) are determined on restoration surface: areas submitted or non-submitted to mastication mechanical stress, glazed or non-glazed. Before prosthesis placement, ex vivo analyses regarding LTD and wear are performed using Raman spectroscopy, SEM imagery and 3D laser profilometry. After placement, restorations are clinically evaluated following criteria of the World Dental Federation (FDI), complemented by the analysis of fracture clinical risk factors. Two independent examiners perform the evaluations. Clinical evaluation and ex vivo analyses are carried out after 6 months and then each year for up to 5 years. For clinicians and patients, the results of this trial will justify the use of monolithic zirconia restorations in dental practice. For researchers, the originality of a clinical study including ex vivo analyses of material aging will provide important data regarding zirconia properties.Trial registration: ClinicalTrials.gov Identifier: NCT02150226.
Guidelines for Interpretive Building Design.
ERIC Educational Resources Information Center
Manly, Richard J., Ed.
This booklet is intended to assist those planning nature centers to choose building designs appropriate for intended purposes. The publication presents a set of general interpretive building-site and design considerations compiled over years of experience in nature center design. These generalizations are complemented by examples of floor plans,…
The Thinking Styles of Human Resource Practitioners
ERIC Educational Resources Information Center
Higgins, Paul; Zhang, Li-fang
2009-01-01
Purpose: Drawing upon Sternberg's theory of mental self-government, this paper aims to investigate the thinking styles and workplace experiences of 152 human resource (HR) practitioners pursuing Chartered Institute of Personnel and Development (CIPD) membership. It seeks to explore whether their thinking styles complemented their jobs and consider…
Radiation testing of GaAs on CRRES and LIPS experiment
NASA Technical Reports Server (NTRS)
Trumble, T. M.; Masloski, K.
1984-01-01
The radiation damage of solar cells has become a prime concern to the U.S. Air Force due to longer satellite lifetime requirements. Flight experiments were undertaken on the Navy Living Plume Shield (LPS) satellite and the NASA/Air Force Combined Release and Radiation Effects Satellite (CRRES) to complement existing radiation testing. Each experiment, the rationale behind it, and its approach and status are presented. The effect of space radiation on gallium arsenide (GaAs) solar cells was the central parameter investigated. Specifications of the GaAs solar cells are given.
Fakhouri, Fadi; Fila, Marc; Provôt, François; Delmas, Yahsou; Barbet, Christelle; Châtelet, Valérie; Rafat, Cédric; Cailliez, Mathilde; Hogan, Julien; Servais, Aude; Karras, Alexandre; Makdassi, Raifah; Louillet, Feriell; Coindre, Jean-Philippe; Rondeau, Eric; Loirat, Chantal; Frémeaux-Bacchi, Véronique
2017-01-06
The complement inhibitor eculizumab has dramatically improved the outcome of atypical hemolytic uremic syndrome. However, the optimal duration of eculizumab treatment in atypical hemolytic uremic syndrome remains debated. We report on the French atypical hemolytic uremic syndrome working group's first 2-year experience with eculizumab discontinuation in patients with atypical hemolytic uremic syndrome. Using the French atypical hemolytic uremic syndrome registry database, we retrospectively identified all dialysis-free patients with atypical hemolytic uremic syndrome who discontinued eculizumab between 2010 and 2014 and reviewed their relevant clinical and biologic data. The decision to discontinue eculizumab was made by the clinician in charge of the patient. All patients were closely monitored by regular urine dipsticks and blood tests. Eculizumab was rapidly (24-48 hours) restarted in case of relapse. Among 108 patients treated with eculizumab, 38 patients (nine children and 29 adults) discontinued eculizumab (median treatment duration of 17.5 months). Twenty-one patients (55%) carried novel or rare complement genes variants. Renal recovery under eculizumab was equally good in patients with and those without complement gene variants detected. After a median follow-up of 22 months, 12 patients (31%) experienced atypical hemolytic uremic syndrome relapse. Eight of 11 patients (72%) with complement factor H variants, four of eight patients (50%) with membrane cofactor protein variants, and zero of 16 patients with no rare variant detected relapsed. In relapsing patients, early reintroduction (≤48 hours) of eculizumab led to rapid (<7 days) hematologic remission and a return of serum creatinine to baseline level in a median time of 26 days. At last follow-up, renal function remained unchanged in nonrelapsing and relapsing patients compared with baseline values before eculizumab discontinuation. Pathogenic variants in complement genes were associated with higher risk of atypical hemolytic uremic syndrome relapse after eculizumab discontinuation. Prospective studies are needed to identify biomarkers predictive of relapse and determine the best strategy of retreatment in relapsing patients. Copyright © 2016 by the American Society of Nephrology.
Chiang, Harry; Robinson, Lucy C; Brame, Cynthia J; Messina, Troy C
2013-01-01
Over the past 20 years, the biological sciences have increasingly incorporated chemistry, physics, computer science, and mathematics to aid in the development and use of mathematical models. Such combined approaches have been used to address problems from protein structure-function relationships to the workings of complex biological systems. Computer simulations of molecular events can now be accomplished quickly and with standard computer technology. Also, simulation software is freely available for most computing platforms, and online support for the novice user is ample. We have therefore created a molecular dynamics laboratory module to enhance undergraduate student understanding of molecular events underlying organismal phenotype. This module builds on a previously described project in which students use site-directed mutagenesis to investigate functions of conserved sequence features in members of a eukaryotic protein kinase family. In this report, we detail the laboratory activities of a MD module that provide a complement to phenotypic outcomes by providing a hypothesis-driven and quantifiable measure of predicted structural changes caused by targeted mutations. We also present examples of analyses students may perform. These laboratory activities can be integrated with genetics or biochemistry experiments as described, but could also be used independently in any course that would benefit from a quantitative approach to protein structure-function relationships. Copyright © 2013 Wiley Periodicals, Inc.
Zito, Francesca; Blangy, Stéphanie; Auroy, Pascaline; Johnson, Xenie; Peltier, Gilles
2017-01-01
The cytochrome (cyt) b6f complex and Stt7 kinase regulate the antenna sizes of photosystems I and II through state transitions, which are mediated by a reversible phosphorylation of light harvesting complexes II, depending on the redox state of the plastoquinone pool. When the pool is reduced, the cyt b6f activates the Stt7 kinase through a mechanism that is still poorly understood. After random mutagenesis of the chloroplast petD gene, coding for subunit IV of the cyt b6f complex, and complementation of a ΔpetD host strain by chloroplast transformation, we screened for impaired state transitions in vivo by chlorophyll fluorescence imaging. We show that residues Asn122, Tyr124, and Arg125 in the stromal loop linking helices F and G of cyt b6f subunit IV are crucial for state transitions. In vitro reconstitution experiments with purified cyt b6f and recombinant Stt7 kinase domain show that cyt b6f enhances Stt7 autophosphorylation and that the Arg125 residue is directly involved in this process. The peripheral stromal structure of the cyt b6f complex had, until now, no reported function. Evidence is now provided of a direct interaction with Stt7 on the stromal side of the membrane. PMID:29078388
Santos, Clelton A; Janissen, Richard; Toledo, Marcelo A S; Beloti, Lilian L; Azzoni, Adriano R; Cotta, Monica A; Souza, Anete P
2015-10-01
The intriguing roles of the bacterial Tol-Pal trans-envelope protein complex range from maintenance of cell envelope integrity to potential participation in the process of cell division. In this study, we report the characterization of the XfTolB and XfPal proteins of the Tol-Pal complex of Xylella fastidiosa. X. fastidiosa is a major plant pathogen that forms biofilms inside xylem vessels, triggering the development of diseases in important cultivable plants around the word. Based on functional complementation experiments in Escherichia coli tolB and pal mutant strains, we confirmed the role of xftolB and xfpal in outer membrane integrity. In addition, we observed a dynamic and coordinated protein expression profile during the X. fastidiosa biofilm development process. Using small-angle X-ray scattering (SAXS), the low-resolution structure of the isolated XfTolB-XfPal complex in solution was solved for the first time. Finally, the localization of the XfTolB and XfPal polar ends was visualized via immunofluorescence labeling in vivo during bacterial cell growth. Our results highlight the major role of the components of the cell envelope, particularly the TolB-Pal complex, during the different phases of bacterial biofilm development. Copyright © 2015 Elsevier B.V. All rights reserved.
Toledo, M A S; Schneider, D R; Azzoni, A R; Favaro, M T P; Pelloso, A C; Santos, C A; Saraiva, A M; Souza, A P
2011-02-01
The OxyR oxidative stress transcriptional regulator is a DNA-binding protein that belongs to the LysR-type transcriptional regulators (LTTR) family. It has the ability to sense oxidative species inside the cell and to trigger the cell's response, activating the transcription of genes involved in scavenging oxidative species. In the present study, we have overexpressed, purified and characterized the predicted OxyR homologue (orf xf1273) of the phytopathogen Xylella fastidiosa. This bacterium is the causal agent of citrus variegated chlorosis (CVC) disease caused by the 9a5c strain, resulting in economic and social losses. The secondary structure of the recombinant protein was analyzed by circular dichroism. Gel filtration showed that XfoxyR is a dimer in solution. Gel shift assays indicated that it does bind to its own predicted promoter under in vitro conditions. However, considering our control experiment we cannot state that this interaction occurs in vivo. Functional complementation assays indicated that xfoxyR is able to restore the oxidative stress response in an oxyr knockout Escherichia coli strain. These results show that the predicted orfxf1273 codes for a transcriptional regulator, homologous to E. coli OxyR, involved in the oxidative stress response. This may be important for X. fastidiosa to overcome the defense mechanisms of its host during the infection and colonization processes. Copyright © 2010 Elsevier Inc. All rights reserved.
Analyzing Intracellular Binding and Diffusion with Continuous Fluorescence Photobleaching
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W.; Knoch, Tobias A.; Waldeck, Waldemar; Langowski, Jörg
2003-01-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of ∼13 s. PMID:12719264
Analyzing intracellular binding and diffusion with continuous fluorescence photobleaching.
Wachsmuth, Malte; Weidemann, Thomas; Müller, Gabriele; Hoffmann-Rohrer, Urs W; Knoch, Tobias A; Waldeck, Waldemar; Langowski, Jörg
2003-05-01
Transport and binding of molecules to specific sites are necessary for the assembly and function of ordered supramolecular structures in cells. For analyzing these processes in vivo, we have developed a confocal fluorescence fluctuation microscope that allows both imaging of the spatial distribution of fluorescent molecules with confocal laser scanning microscopy and probing their mobility at specific positions in the cell with fluorescence correlation spectroscopy and continuous fluorescence photobleaching (CP). Because fluorescence correlation spectroscopy is restricted to rapidly diffusing particles and CP to slower processes, these two methods complement each other. For the analysis of binding-related contributions to mobility we have derived analytical expressions for the temporal behavior of CP curves from which the bound fraction and/or the dissociation rate or residence time at binding sites, respectively, can be obtained. In experiments, we investigated HeLa cells expressing different fluorescent proteins: Although enhanced green fluorescent protein (EGFP) shows high mobility, fusions of histone H2B with the yellow fluorescent protein are incorporated into chromatin, and these nuclei exhibit the presence of a stably bound and a freely diffusing species. Nonpermanent binding was found for mTTF-I, a transcription termination factor for RNA polymerase I, fused with EGFP. The cells show fluorescent nucleoli, and binding is transient. CP yields residence times for mTTF-I-EGFP of approximately 13 s.
In vivo serial sampling of epididymal sperm in mice.
Del Val, Gonzalo Moreno; Robledano, Patricia Muñoz
2013-07-01
This study was undertaken to refine the techniques of in vivo collection of sperm in the mouse. The principal objective was to offer a viable, safe and reliable method for serial collection of in vivo epididimary sperm through the direct puncture of the epididymis. Six C57Bl/6J males were subjected to the whole experiment. First we obtain a sperm sample of the right epididymis, and perform a vasectomy on the left side. This sample was used in an in vitro fertilization (IVF) experiment while the males were individually housed for 10 days to let them recover from the surgery, and then their fertility was tested with natural matings until we obtained a litter of each one. After that, the animals were subjected another time to the same process (sampling, recover and natural mating). The results of these experiments were a fertilization average value of 56.7%, and that all the males had a litter in the first month after the natural matings. This study documented the feasibility of the epididimary puncture technique to in vivo serial sampling of sperm in the mouse.
Mobility experiments with microrobots for minimally invasive intraocular surgery.
Ullrich, Franziska; Bergeles, Christos; Pokki, Juho; Ergeneman, Olgac; Erni, Sandro; Chatzipirpiridis, George; Pané, Salvador; Framme, Carsten; Nelson, Bradley J
2013-04-23
To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases.
Claes, Julien M.; Dean, Mason N.; Nilsson, Dan-Eric; Hart, Nathan S.; Mallefet, Jérôme
2013-01-01
We report the discovery of light organs (photophores) adjacent to the dorsal defensive spines of a small deep-sea lanternshark (Etmopterus spinax). Using a visual modeling based on in vivo luminescence recordings we show that this unusual light display would be detectable by the shark's potential predators from several meters away. We also demonstrate that the luminescence from the spine-associated photophores (SAPs) can be seen through the mineralized spines, which are partially translucent. These results suggest that the SAPs function, either by mimicking the spines' shape or by shining through them, as a unique visual deterrent for predators. This conspicuous dorsal warning display is a surprising complement to the ventral luminous camouflage (counterillumination) of the shark. PMID:23425862
Jerome, Jason; Heck, Detlef H.
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886
Claes, Julien M; Dean, Mason N; Nilsson, Dan-Eric; Hart, Nathan S; Mallefet, Jérôme
2013-01-01
We report the discovery of light organs (photophores) adjacent to the dorsal defensive spines of a small deep-sea lanternshark (Etmopterus spinax). Using a visual modeling based on in vivo luminescence recordings we show that this unusual light display would be detectable by the shark's potential predators from several meters away. We also demonstrate that the luminescence from the spine-associated photophores (SAPs) can be seen through the mineralized spines, which are partially translucent. These results suggest that the SAPs function, either by mimicking the spines' shape or by shining through them, as a unique visual deterrent for predators. This conspicuous dorsal warning display is a surprising complement to the ventral luminous camouflage (counterillumination) of the shark.
Polymeric Packaging for Fully Implantable Wireless Neural Microsensors
Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.
2014-01-01
We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999
Jerome, Jason; Heck, Detlef H
2011-01-01
Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.
Learned helplessness: unique features and translational value of a cognitive depression model.
Vollmayr, Barbara; Gass, Peter
2013-10-01
The concept of learned helplessness defines an escape or avoidance deficit after uncontrollable stress and is regarded as a depression-like coping deficit in aversive but avoidable situations. Based on a psychological construct, it ideally complements other stress-induced or genetic animal models for major depression. Because of excellent face, construct, and predictive validity, it has contributed to the elaboration of several pathophysiological concepts and has brought forward new treatment targets. Whereas learned helplessness can be modeled not only in a broad variety of mammals, but also in fish and Drosophila, we will focus here on the use of this model in rats and mice, which are today the most common species for preclinical in vivo research in psychiatry.
Woodruff, M. F. A.; Inchley, M. P.; Dunbar, Noreen
1972-01-01
The inhibitory effect of an i.v. or i.p. injection of C. parvum on intrastrain transplants of a mammary carcinoma in A/HeJ mice has been confirmed, and it has been shown further that C. parvum inhibits the growth of transplants of sarcomata induced with methylcholanthrene both in this strain (members of which lack the fifth component of complement) and in CBA mice (which are not complement deficient). In experiments with the mammary carcinoma, 2 injections of C. parvum on days + 3 and + 9 were more effective than a single injection on day + 3; injections on days + 3 and + 6, or + 3 and + 12, appeared to be marginally less effective than on days + 3 and + 9, but the difference was not statistically significant. Development of the CBA sarcoma was inhibited to about the same extent if, instead of treating the mouse with C. parvum, the tumour cells were pre-incubated with anti-tumour globulin (ATG) in the absence of complement prior to inoculation, and the effect of combining these procedures was much greater than that of either alone. Pre-incubation with ATG had a similar but less marked effect on the development of the mammary carcinoma but had no effect on the A/HeJ sarcoma. Injection (i.v.) of ATG did not inhibit the growth of any of the tumours in these experiments and possible reasons for this are discussed. PMID:5038327
Computational strategies to address chromatin structure problems
NASA Astrophysics Data System (ADS)
Perišić, Ognjen; Schlick, Tamar
2016-06-01
While the genetic information is contained in double helical DNA, gene expression is a complex multilevel process that involves various functional units, from nucleosomes to fully formed chromatin fibers accompanied by a host of various chromatin binding enzymes. The chromatin fiber is a polymer composed of histone protein complexes upon which DNA wraps, like yarn upon many spools. The nature of chromatin structure has been an open question since the beginning of modern molecular biology. Many experiments have shown that the chromatin fiber is a highly dynamic entity with pronounced structural diversity that includes properties of idealized zig-zag and solenoid models, as well as other motifs. This diversity can produce a high packing ratio and thus inhibit access to a majority of the wound DNA. Despite much research, chromatin’s dynamic structure has not yet been fully described. Long stretches of chromatin fibers exhibit puzzling dynamic behavior that requires interpretation in the light of gene expression patterns in various tissue and organisms. The properties of chromatin fiber can be investigated with experimental techniques, like in vitro biochemistry, in vivo imagining, and high-throughput chromosome capture technology. Those techniques provide useful insights into the fiber’s structure and dynamics, but they are limited in resolution and scope, especially regarding compact fibers and chromosomes in the cellular milieu. Complementary but specialized modeling techniques are needed to handle large floppy polymers such as the chromatin fiber. In this review, we discuss current approaches in the chromatin structure field with an emphasis on modeling, such as molecular dynamics and coarse-grained computational approaches. Combinations of these computational techniques complement experiments and address many relevant biological problems, as we will illustrate with special focus on epigenetic modulation of chromatin structure.
NASA Astrophysics Data System (ADS)
Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh B.; Poeggel, Sven; Adilzhan, Abzal; Aliakhmet, Kamilla; Silvestri, Sergio; Leen, Gabriel; Lewis, Elfed
2016-05-01
Optical fibre sensors have been applied to perform biophysical measurement in ex-vivo laser ablation (LA), on pancreas animal phantom. Experiments have been performed using Fibre Bragg Grating (FBG) arrays for spatially resolved temperature detection, and an all-glass Extrinsic Fabry-Perot Interferometer (EFPI) for pressure measurement. Results using a Nd:YAG laser source as ablation device, are presented and discussed.
Biomedical engineering support. Final report, June 15, 1971--June 30, 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolff, W.J.; Sandquist, G.; Olsen, D.B.
On June 15, 1971 the Institute for Biomedical Engineering at the University of Utah contracted with the USAEC to provide biomedical support for an Artificial Heart Program. The goal of the program was to conceive, design, construct and test a prototype artificial heart system powered by an implantable radioisotope heat source. The system would serve as a total artificial heart for animal experiments and for studies directed at developing a total heart replacement system for humans. The major responsibilities of the Institute during the eight year contract period were to design, construct and test all blood handling components of themore » system and prove in vivo accommodation, performance and adequacy of the system in experimental animals. Upon completion of development of the Implantable Version of the Bench Model Blood Pump, a long series of comprehensive in vitro and in vivo experiments were conducted. In vivo experiments with the system conducted in calves demonstrated the general accommodation, adequate performance and good capacity to sustain the calf as a heart model for up to 36 days. During the more successful in vivo experiments the implanted calves were able to eat, drink, stand, exercise on a treadmill, and exhibited normal blood chemistry and pulmonary function.« less
Zhu, Jili; Chaki, Moumita; Lu, Dongmei; Ren, Chongyu; Wang, Shan-Shan; Rauhauser, Alysha; Li, Binghua; Zimmerman, Susan; Jun, Bokkyoo; Du, Yong; Vadnagara, Komal; Wang, Hanquin; Elhadi, Sarah; Quigg, Richard J.; Topham, Matthew K.; Mohan, Chandra; Ozaltin, Fatih; Zhou, Xin J.; Marciano, Denise K.; Bazan, Nicolas G.
2016-01-01
Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531–536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377–384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress. PMID:26887830
Zhu, Jili; Chaki, Moumita; Lu, Dongmei; Ren, Chongyu; Wang, Shan-Shan; Rauhauser, Alysha; Li, Binghua; Zimmerman, Susan; Jun, Bokkyoo; Du, Yong; Vadnagara, Komal; Wang, Hanquin; Elhadi, Sarah; Quigg, Richard J; Topham, Matthew K; Mohan, Chandra; Ozaltin, Fatih; Zhou, Xin J; Marciano, Denise K; Bazan, Nicolas G; Attanasio, Massimo
2016-05-01
Thrombotic microangiopathy (TMA) is a disorder characterized by microvascular occlusion that can lead to thrombocytopenia, hemolytic anemia, and glomerular damage. Complement activation is the central event in most cases of TMA. Primary forms of TMA are caused by mutations in genes encoding components of the complement or regulators of the complement cascade. Recently, we and others have described a genetic form of TMA caused by mutations in the gene diacylglycerol kinase-ε (DGKE) that encodes the lipid kinase DGKε (Lemaire M, Fremeaux-Bacchi V, Schaefer F, Choi MR, Tang WH, Le Quintrec M, Fakhouri F, Taque S, Nobili F, Martinez F, Ji WZ, Overton JD, Mane SM, Nurnberg G, Altmuller J, Thiele H, Morin D, Deschenes G, Baudouin V, Llanas B, Collard L, Majid MA, Simkova E, Nurnberg P, Rioux-Leclerc N, Moeckel GW, Gubler MC, Hwa J, Loirat C, Lifton RP. Nat Genet 45: 531-536, 2013; Ozaltin F, Li BH, Rauhauser A, An SW, Soylemezoglu O, Gonul II, Taskiran EZ, Ibsirlioglu T, Korkmaz E, Bilginer Y, Duzova A, Ozen S, Topaloglu R, Besbas N, Ashraf S, Du Y, Liang CY, Chen P, Lu DM, Vadnagara K, Arbuckle S, Lewis D, Wakeland B, Quigg RJ, Ransom RF, Wakeland EK, Topham MK, Bazan NG, Mohan C, Hildebrandt F, Bakkaloglu A, Huang CL, Attanasio M. J Am Soc Nephrol 24: 377-384, 2013). DGKε is unrelated to the complement pathway, which suggests that unidentified pathogenic mechanisms independent of complement dysregulation may result in TMA. Studying Dgke knockout mice may help to understand the pathogenesis of this disease, but no glomerular phenotype has been described in these animals so far. Here we report that Dgke null mice present subclinical microscopic anomalies of the glomerular endothelium and basal membrane that worsen with age and develop glomerular capillary occlusion when exposed to nephrotoxic serum. We found that induction of cyclooxygenase-2 and of the proangiogenic prostaglandin E2 are impaired in Dgke null kidneys and are associated with reduced expression of the antithrombotic cell adhesion molecule platelet endothelial cell adhesion molecule-1/CD31 in the glomerular endothelium. Notably, prostaglandin E2 supplementation was able to rescue motility defects of Dgke knockdown cells in vitro and to restore angiogenesis in a test in vivo. Our results unveil an unexpected role of Dgke in the induction of cyclooxygenase-2 and in the regulation of glomerular prostanoids synthesis under stress. Copyright © 2016 the American Physiological Society.
Rosa, Benoit; Machaidze, Zurab; Shin, Borami; Manjila, Sunil; Brown, David W; Baird, Christopher W; Mayer, John E; Dupont, Pierre E
2017-11-01
This paper provides detailed instructions for constructing low-cost bioprosthetic semilunar valves for animal research and clinical training. This work fills an important gap between existing simulator training valves and clinical valves by providing fully functioning designs that can be employed in ex vivo and in vivo experiments and can also be modified to model valvular disease. Valves are constructed in 4 steps consisting of creating a metal frame, covering it with fabric and attaching a suture ring and leaflets. Computer-aided design files are provided for making the frame from wire or by metal 3D printing. The covering fabric and suturing ring are made from materials readily available in a surgical lab, while the leaflets are made from pericardium. The entire fabrication process is described in figures and in a video. To demonstrate disease modelling, design modifications are described for producing paravalvular leaks, and these valves were evaluated in porcine ex vivo (n = 3) and in vivo (n = 6) experiments. Porcine ex vivo and acute in vivo experiments demonstrate that the valves can replicate the performance of clinical valves for research and training purposes. Surgical implantation is similar, and echocardiograms are comparable to clinical valves. Furthermore, valve leaflet function was satisfactory during acute in vivo tests with little central regurgitation, while the paravalvular leak modifications consistently produced leaks in the desired locations. The detailed design procedure presented here, which includes a tutorial video and computer-aided design files, should be of substantial benefit to researchers developing valve disease models and to clinicians developing realistic valve training systems. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.
NASA Astrophysics Data System (ADS)
Capogrosso, Marco; Gandar, Jerome; Greiner, Nathan; Moraud, Eduardo Martin; Wenger, Nikolaus; Shkorbatova, Polina; Musienko, Pavel; Minev, Ivan; Lacour, Stephanie; Courtine, Grégoire
2018-04-01
Objective. We recently developed soft neural interfaces enabling the delivery of electrical and chemical stimulation to the spinal cord. These stimulations restored locomotion in animal models of paralysis. Soft interfaces can be placed either below or above the dura mater. Theoretically, the subdural location combines many advantages, including increased selectivity of electrical stimulation, lower stimulation thresholds, and targeted chemical stimulation through local drug delivery. However, these advantages have not been documented, nor have their functional impact been studied in silico or in a relevant animal model of neurological disorders using a multimodal neural interface. Approach. We characterized the recruitment properties of subdural interfaces using a realistic computational model of the rat spinal cord that included explicit representation of the spinal roots. We then validated and complemented computer simulations with electrophysiological experiments in rats. We additionally performed behavioral experiments in rats that received a lateral spinal cord hemisection and were implanted with a soft interface. Main results. In silico and in vivo experiments showed that the subdural location decreased stimulation thresholds compared to the epidural location while retaining high specificity. This feature reduces power consumption and risks of long-term damage in the tissues, thus increasing the clinical safety profile of this approach. The hemisection induced a transient paralysis of the leg ipsilateral to the injury. During this period, the delivery of electrical stimulation restricted to the injured side combined with local chemical modulation enabled coordinated locomotor movements of the paralyzed leg without affecting the non-impaired leg in all tested rats. Electrode properties remained stable over time, while anatomical examinations revealed excellent bio-integration properties. Significance. Soft neural interfaces inserted subdurally provide the opportunity to deliver electrical and chemical neuromodulation therapies using a single, bio-compatible and mechanically compliant device that effectively alleviates locomotor deficits after spinal cord injury.
Teasing apart coercion and surprisal: Evidence from eye-movements and ERPs.
Delogu, Francesca; Crocker, Matthew W; Drenhaus, Heiner
2017-04-01
Previous behavioral and electrophysiological studies have presented evidence suggesting that coercion expressions (e.g., began the book) are more difficult to process than control expressions like read the book. While this processing cost has been attributed to a specific coercion operation for recovering an event-sense of the complement (e.g., began reading the book), an alternative view based on the Surprisal Theory of language processing would attribute the cost to the relative unpredictability of the complement noun in the coercion compared to the control condition, with no need to postulate coercion-specific mechanisms. In two experiments, monitoring eye-tracking and event-related potentials (ERPs), respectively, we sought to determine whether there is any evidence for coercion-specific processing cost above-and-beyond the difficulty predicted by surprisal, by contrasting coercing and control expressions with a further control condition in which the predictability of the complement noun was similar to that in the coercion condition (e.g., bought the book). While the eye-tracking study showed significant effects of surprisal and a marginal effect of coercion on late reading measures, the ERP study clearly supported the surprisal account. Overall, our findings suggest that the coercion cost largely reflects the surprisal of the complement noun with coercion specific operations possibly influencing later processing stages. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Bimolecular fluorescence complementation: visualization of molecular interactions in living cells.
Kerppola, Tom K
2008-01-01
A variety of experimental methods have been developed for the analysis of protein interactions. The majority of these methods either require disruption of the cells to detect molecular interactions or rely on indirect detection of the protein interaction. The bimolecular fluorescence complementation (BiFC) assay provides a direct approach for the visualization of molecular interactions in living cells and organisms. The BiFC approach is based on the facilitated association between two fragments of a fluorescent protein when the fragments are brought together by an interaction between proteins fused to the fragments. The BiFC approach has been used for visualization of interactions among a variety of structurally diverse interaction partners in many different cell types. It enables detection of transient complexes as well as complexes formed by a subpopulation of the interaction partners. It is essential to include negative controls in each experiment in which the interface between the interaction partners has been mutated or deleted. The BiFC assay has been adapted for simultaneous visualization of multiple protein complexes in the same cell and the competition for shared interaction partners. A ubiquitin-mediated fluorescence complementation assay has also been developed for visualization of the covalent modification of proteins by ubiquitin family peptides. These fluorescence complementation assays have a great potential to illuminate a variety of biological interactions in the future.
Rehabilitation Services for Rural Blind Persons in Malaysia.
ERIC Educational Resources Information Center
Ooi, G.
1990-01-01
The article traces the experiences of the Malaysian Association for the Blind in developing rehabilitation services for rural blind persons. It explains the rationale for a community-based approach to rehabilitation and concludes that center-based and community-based approaches to rehabilitation complement each other in bringing services to rural…
Comparison between Perceptual Assessments of Nasality and Nasalance Scores
ERIC Educational Resources Information Center
Brunnegard, Karin; Lohmander, Anette; van Doorn, Jan
2012-01-01
Background: There are different reports of the usefulness of the Nasometer[TM] as a complement to listening, often as correlation calculations between listening and nasalance measurements. Differences between findings have been attributed to listener experience and types of speech stimuli. Aims: To compare nasalance scores from the Nasometer with…
Tests of Behavioral-Economic Assessments of Relative Reinforcer Efficacy II: Economic Complements
ERIC Educational Resources Information Center
Madden, Gregory J.; Smethells, John R.; Ewan, Eric E.; Hursh, Steven R.
2007-01-01
This experiment was conducted to test the predictions of two behavioral-economic approaches to quantifying relative reinforcer efficacy. The normalized demand analysis suggests that characteristics of averaged normalized demand curves may be used to predict progressive-ratio breakpoints and peak responding. By contrast, the demand analysis holds…
Cultural Considerations for Evaluation Consulting in the Egyptian Context.
ERIC Educational Resources Information Center
Seefeldt, Michael F.
1985-01-01
Reflecting on his experiences as an evaluation consultant at the Suez Canal University Faculty of Medicine in Egypt the author discusses: (1) implications of the Egyptian political context; (2) adapting to the host culture; and (3) maintaining distance from one's own culture. Personal qualities to complement the recommended naturalistic methods…
ERIC Educational Resources Information Center
Uckun, Berrin
2012-01-01
Different meanings of a verb are associated with different argument structures (subcategorization), which in this study are sentential complements (SC) and direct object (DO) arguments. Interaction between verbal meaning and argument structure is investigated at the production level using polysemous verbs in the absence (Norming Experiment) and…
Enhancing the College Student Experience: Outcomes of a Leisure Education Program
ERIC Educational Resources Information Center
Jordan, Katherine A.; Gagnon, Ryan J.; Anderson, Denise M.; Pilcher, June J.
2018-01-01
Background: Experiential education in higher education provides opportunities for college student development that contribute to student success. As such, a leisure education program is posited as a complement to experiential education programming. Purpose: This study explored the impact of a leisure education program (leisure skills) on…
Exploring the Atmosphere Using Smartphones
ERIC Educational Resources Information Center
Monteiro, Martin; Vogt, Patrik; Stari, Cecilia; Cabeza, Cecilia; Marti, Arturo C.
2016-01-01
The characteristics of the inner layer of the atmosphere, the troposphere, are determinant for Earth's life. In this experience we explore the first hundreds of meters using a smartphone mounted on a quadcopter. Both the altitude and the pressure are obtained using the smartphone's sensors. We complement these measures with data collected from the…
Biomedical Research Experiences for Biology Majors at a Small College
ERIC Educational Resources Information Center
Stover, Shawn K.; Mabry, Michelle L.
2010-01-01
A program-level assessment of the biology curriculum at a small liberal arts college validates a previous study demonstrating success in achieving learning outcomes related to content knowledge and communication skills. Furthermore, research opportunities have been provided to complement pedagogical strategies and give students a more complete…
Integrating Technology into the Montessori Elementary Classroom.
ERIC Educational Resources Information Center
Hubbell, Elizabeth Ross
2003-01-01
Asserts that if used correctly, with forethought and respect to the Montessori philosophy, technology will advance and complement the experiences made available to children. Addresses the integration of technology into the Montessori elementary classroom focusing on the learning environment and the reduction of teacher time spent on tedious tasks.…
NASA Astrophysics Data System (ADS)
Yang, Ping; Liu, Rongrong; Niu, Zhenyu; Suo, Yuanzhen; He, Hao; Wei, Xunbin
2015-03-01
Melanoma is a malignant tumor of melanocytes. Circulating melanoma cell has high light absorption due to melanin highly contained in melanoma cells. This property is employed for the detection of circulating melanoma cell by in vivo photoacoustic flow cytometry (PAFC). PAFC is based on photoacoustic effect. Compared to in vivo flow cytometry based on fluorescence, PAFC can employ high melanin content of melanoma cells as endogenous biomarkers to detect circulating melanoma cells in vivo. In our research, we developed in vitro experiments to prove the ability of PAFC system of detecting PA signals from melanoma cells. For in vivo experiments, we constructed a model of melanoma tumor bearing mice by inoculating highly metastatic murine melanoma cancer cells B16F10 with subcutaneous injection. PA signals were detected in the blood vessels of mouse ears in vivo. By counting circulating melanoma cells termly, we obtained the number variation of circulating melanoma cells as melanoma metastasized. Those results show that PAFC is a noninvasive and label-free method to detect melanoma metastases in blood or lymph circulation. Our PAFC system is an efficient tool to monitor melanoma metastases, cancer recurrence and therapeutic efficacy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nunn, D.N.; Lidstrom, M.E.
A method has been developed for the direct selection of methanol oxidation mutants of the facultative methylotroph Methylobacterium sp. strain AM1 (formerly Pseudomonas sp. strain AM1). Using this direct selection technique, we have isolated mutants of Methylobacterium sp. strain AM1 that are no longer capable of growth on methanol but retain the ability to grow on methylamine. These methanol oxidation (Mox) mutants were complemented with a genomic clone bank of this organism constructed in the broad-host-range cosmid pVK100, and subcloning and Tn5 mutagenesis experiments have assigned the Mox mutants to 10 distinct complementation groups. Using an open reading frame beta-galactosidasemore » fusion vector and antibodies specific for Methylobacterium sp. strain AM1 methanol dehydrogenase, we have identified the methanol dehydrogenase structural gene and determined the direction of transcription. The results suggest that the synthesis and utilization of an active methanol dehydrogenase in this organism requires at least 10 different gene functions.« less
Building a Program of University Physics and Mathematics Education
NASA Astrophysics Data System (ADS)
Tanaka, Tadayoshi; Nakamura, Akira; Kagiyama, Shigenori; Namiki, Masatoshi; Ejiri, Arisato; Ohshima, Kazunari; Mishima, Akiomi; Aoki, Katsuhiko
Authors built physics learning modules which consist of lectures, experiments and practices, introducing physics experiments of elementary and secondary education. In addition, we are operating "KIT Mathematics Navigation" in order to complement mathematical basics to engineering education. Based on these results, we are building studies and development of an education program in order to support the learning paradigm shift and to help students learn physics and mathematics complimentarily for liberal arts education course in universities.
Low-level light therapy improves cortical metabolic capacity and memory retention.
Rojas, Julio C; Bruchey, Aleksandra K; Gonzalez-Lima, Francisco
2012-01-01
Cerebral hypometabolism characterizes mild cognitive impairment and Alzheimer's disease. Low-level light therapy (LLLT) enhances the metabolic capacity of neurons in culture through photostimulation of cytochrome oxidase, the mitochondrial enzyme that catalyzes oxygen consumption in cellular respiration. Growing evidence supports that neuronal metabolic enhancement by LLLT positively impacts neuronal function in vitro and in vivo. Based on its effects on energy metabolism, it is proposed that LLLT will also affect the cerebral cortex in vivo and modulate higher-order cognitive functions such as memory. In vivo effects of LLLT on brain and behavior are poorly characterized. We tested the hypothesis that in vivo LLLT facilitates cortical oxygenation and metabolic energy capacity and thereby improves memory retention. Specifically, we tested this hypothesis in rats using fear extinction memory, a form of memory modulated by prefrontal cortex activation. Effects of LLLT on brain metabolism were determined through measurement of prefrontal cortex oxygen concentration with fluorescent quenching oximetry and by quantitative cytochrome oxidase histochemistry. Experiment 1 verified that LLLT increased the rate of oxygen consumption in the prefrontal cortex in vivo. Experiment 2 showed that LLLT-treated rats had an enhanced extinction memory as compared to controls. Experiment 3 showed that LLLT reduced fear renewal and prevented the reemergence of extinguished conditioned fear responses. Experiment 4 showed that LLLT induced hormetic dose-response effects on the metabolic capacity of the prefrontal cortex. These data suggest that LLLT can enhance cortical metabolic capacity and retention of extinction memories, and implicate LLLT as a novel intervention to improve memory.
Saotome, Kousaku; Matsushita, Akira; Matsumoto, Koji; Kato, Yoshiaki; Nakai, Kei; Murata, Koichi; Yamamoto, Tetsuya; Sankai, Yoshiyuki; Matsumura, Akira
2017-02-01
A fast spin-echo sequence based on the Periodically Rotated Overlapping Parallel Lines with Enhanced Reconstruction (PROPELLER) technique is a magnetic resonance (MR) imaging data acquisition and reconstruction method for correcting motion during scans. Previous studies attempted to verify the in vivo capabilities of motion-corrected PROPELLER in real clinical situations. However, such experiments are limited by repeated, stray head motion by research participants during the prescribed and precise head motion protocol of a PROPELLER acquisition. Therefore, our purpose was to develop a brain phantom set for motion-corrected PROPELLER. The profile curves of the signal intensities on the in vivo T 2 -weighted image (T 2 WI) and 3-D rapid prototyping technology were used to produce the phantom. In addition, we used a homemade driver system to achieve in-plane motion at the intended timing. We calculated the Pearson's correlation coefficient (R 2 ) between the signal intensities of the in vivo T 2 WI and the phantom T 2 WI and clarified the rotation precision of the driver system. In addition, we used the phantom set to perform initial experiments to show the rotational angle and frequency dependences of PROPELLER. The in vivo and phantom T 2 WIs were visually congruent, with a significant correlation (R 2 ) of 0.955 (p<.001). The rotational precision of the driver system was within 1 degree of tolerance. The experiment on the rotational angle dependency showed image discrepancies between the rotational angles. The experiment on the rotational frequency dependency showed that the reconstructed images became increasingly blurred by the corruption of the blades as the number of motions increased. In this study, we developed a phantom that showed image contrasts and construction similar to the in vivo T 2 WI. In addition, our homemade driver system achieved precise in-plane motion at the intended timing. Our proposed phantom set could perform systematic experiments with a real clinical MR image, which to date has not been possible in in vivo studies. Further investigation should focus on the improvement of the motion-correction algorithm in PROPELLER using our phantom set for what would traditionally be considered problematic patients (children, emergency patients, elderly, those with dementia, and so on). Copyright © 2016 Elsevier Inc. All rights reserved.
Correction for specimen movement and rotation errors for in-vivo Optical Projection Tomography
Birk, Udo Jochen; Rieckher, Matthias; Konstantinides, Nikos; Darrell, Alex; Sarasa-Renedo, Ana; Meyer, Heiko; Tavernarakis, Nektarios; Ripoll, Jorge
2010-01-01
The application of optical projection tomography to in-vivo experiments is limited by specimen movement during the acquisition. We present a set of mathematical correction methods applied to the acquired data stacks to correct for movement in both directions of the image plane. These methods have been applied to correct experimental data taken from in-vivo optical projection tomography experiments in Caenorhabditis elegans. Successful reconstructions for both fluorescence and white light (absorption) measurements are shown. Since no difference between movement of the animal and movement of the rotation axis is made, this approach at the same time removes artifacts due to mechanical drifts and errors in the assumed center of rotation. PMID:21258448
Garcia-Milian, Rolando; Norton, Hannah F.; Auten, Beth; Davis, Valrie I.; Holmes, Kristi L.; Johnson, Margeaux; Tennant, Michele R.
2013-01-01
Cross-disciplinary, team-based collaboration is essential for addressing today’s complex research questions, and librarians are increasingly entering into such collaborations. This study identifies skills needed as librarians integrate into cross-disciplinary teams, based on the experiences of librarians involved in the development and implementation of VIVO, a research discovery and collaboration platform. Participants discussed the challenges, skills gained, and lessons learned throughout the project. Their responses were analyzed in the light of the science of team science literature, and factors affecting collaboration on the VIVO team were identified. Skills in inclusive thinking, communication, perseverance, adaptability, and leadership were found to be essential. PMID:23833333
Cross-regulatory protein-protein interactions between Hox and Pax transcription factors.
Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L; Gehring, Walter J
2008-09-09
Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein-protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP-EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein-DNA and protein-RNA interactions; it is also involved in protein-protein interactions.
Cross-regulatory protein–protein interactions between Hox and Pax transcription factors
Plaza, Serge; Prince, Frederic; Adachi, Yoshitsugu; Punzo, Claudio; Cribbs, David L.; Gehring, Walter J.
2008-01-01
Homeotic Hox selector genes encode highly conserved transcriptional regulators involved in the differentiation of multicellular organisms. Ectopic expression of the Antennapedia (ANTP) homeodomain protein in Drosophila imaginal discs induces distinct phenotypes, including an antenna-to-leg transformation and eye reduction. We have proposed that the eye loss phenotype is a consequence of a negative posttranslational control mechanism because of direct protein–protein interactions between ANTP and Eyeless (EY). In the present work, we analyzed the effect of various ANTP homeodomain mutations for their interaction with EY and for head development. Contrasting with the eye loss phenotype, we provide evidence that the antenna-to-leg transformation involves ANTP DNA-binding activity. In a complementary genetic screen performed in yeast, we isolated mutations located in the N terminus of the ANTP homeodomain that inhibit direct interactions with EY without abolishing DNA binding in vitro and in vivo. In a bimolecular fluorescence complementation assay, we detected the ANTP–EY interaction in vivo, these interactions occurring through the paired domain and/or the homeodomain of EY. These results demonstrate that the homeodomain supports multiple molecular regulatory functions in addition to protein–DNA and protein–RNA interactions; it is also involved in protein–protein interactions. PMID:18755899
NASA Astrophysics Data System (ADS)
Danis-Wlodarczyk, Katarzyna; Vandenheuvel, Dieter; Jang, Ho Bin; Briers, Yves; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Drabik, Marcin; Higgins, Gerard; Tyrrell, Jean; Harvey, Brian J.; Noben, Jean-Paul; Lavigne, Rob; Drulis-Kawa, Zuzanna
2016-06-01
Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.
Applicability of Glass Dosimeters for In-vivo Dosimetry in Brachytherapy
NASA Astrophysics Data System (ADS)
Moon, Sun Young; Son, Jaeman; Yoon, Myonggeun; Jeang, EunHee; Lim, Young Kyung; Chung, Weon Kyu; Kim, Dong Wook
2018-06-01
During brachytherapy, confirming the dose delivered is very important in order to prevent radiation-associated side effects. Therefore, we aimed to confirm the accuracy of dose delivery near the source by inserting glass dosimeters within the applicator. We created an alternative pelvic phantom with the same shape and internal structures as the usual patient. In addition, we created a tandem for insertion of the glass dosimeters and measured the dose near the source by inserting the glass dosimeters into the tandem and evaluating the accuracy of the dwell position and time through the dose near the source. Errors between the values obtained from the five glass dosimeters and the values from the treatment planning system were -6.27, -2.1, -4.18, 6.31, and -0.39%, respectively. The mean error was 3.85%. This value was acceptable considering that the error of the glass dosimeter itself is approximately 3%. Even though a complement of the applicator and the error calibration is required in order to apply this technique clinically, we believe that radiation accidents and overdoses can be prevented through in-vivo dosimetry using a glass dosimeter for brachytherapy.
Beyond small molecule SAR – using the dopamine D3 receptor crystal structure to guide drug design
Keck, Thomas M.; Burzynski, Caitlin; Shi, Lei; Newman, Amy Hauck
2016-01-01
The dopamine D3 receptor is a target of pharmacotherapeutic interest in a variety of neurological disorders including schizophrenia, restless leg syndrome, and drug addiction. The high protein sequence homology between the D3 and D2 receptors has posed a challenge to developing D3 receptor-selective ligands whose behavioral actions can be attributed to D3 receptor engagement, in vivo. However, through primarily small molecule structure-activity relationship (SAR) studies, a variety of chemical scaffolds have been discovered over the past two decades that have resulted in several D3 receptor-selective ligands with high affinity and in vivo activity. Nevertheless, viable clinical candidates remain limited. The recent determination of the high-resolution crystal structure of the D3 receptor has invigorated structure-based drug design, providing refinements to the molecular dynamic models and testable predictions about receptor-ligand interactions. This review will highlight recent preclinical and clinical studies demonstrating potential utility of D3 receptor-selective ligands in the treatment of addiction. In addition, new structure-based rational drug design strategies for D3 receptor-selective ligands that complement traditional small molecule SAR to improve the selectivity and directed efficacy profiles are examined. PMID:24484980
Characterizing Lysine Acetylation of Isocitrate Dehydrogenase in Escherichia coli.
Venkat, Sumana; Chen, Hao; Stahman, Alleigh; Hudson, Denver; McGuire, Paige; Gan, Qinglei; Fan, Chenguang
2018-06-22
The Escherichia coli isocitrate dehydrogenase (ICDH) is one of the tricarboxylic acid cycle enzymes, playing key roles in energy production and carbon flux regulation. E. coli ICDH was the first bacterial enzyme shown to be regulated by reversible phosphorylation. However, the effect of lysine acetylation on E. coli ICDH, which has no sequence similarity with its counterparts in eukaryotes, is still unclear. Based on previous studies of E. coli acetylome and ICDH crystal structures, eight lysine residues were selected for mutational and kinetic analyses. They were replaced with acetyllysine by the genetic code expansion strategy or substituted with glutamine as a classic approach. Although acetylation decreased the overall ICDH activity, its effects were different site by site. Deacetylation tests demonstrated that the CobB deacetylase could deacetylate ICDH both in vivo and in vitro, but CobB was only specific for lysine residues at the protein surface. On the other hand, ICDH could be acetylated by acetyl-phosphate chemically in vitro. And in vivo acetylation tests indicated that the acetylation level of ICDH was correlated with the amounts of intracellular acetyl-phosphate. This study nicely complements previous proteomic studies to provide direct biochemical evidence for ICDH acetylation. Copyright © 2018 Elsevier Ltd. All rights reserved.
Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György
2017-01-01
Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338
Crépin, Sébastien; Ottosen, Elizabeth N; Peters, Katharina; Smith, Sara N; Himpsl, Stephanie D; Vollmer, Waldemar; Mobley, Harry L T
2018-06-08
Acinetobacter baumannii has emerged as a leading nosocomial pathogen, infecting a wide range of anatomic sites including the respiratory tract and the bloodstream. In addition to being multi-drug resistant, little is known about the molecular basis of A. baumannii pathogenesis. To better understand A. baumannii virulence, a combination of a transposon-sequencing (TraDIS) screen and the neutropenic mouse model of bacteremia was used to identify the full set of fitness genes required during bloodstream infection. The lytic transglycosylase MltB was identified as a critical fitness factor. MltB cleaves the MurNAc-GlcNAc bond of peptidoglycan, which leads to cell wall remodeling. Here we show that MltB is part of a complex network connecting resistance to stresses, membrane homeostasis, biogenesis of pili and in vivo fitness. Indeed, inactivation of mltB not only impaired resistance to serum complement, cationic antimicrobial peptides and oxygen species, but also altered the cell envelope integrity, activated the envelope stress response, drastically reduced the number of pili at the cell surface and finally, significantly decreased colonization of both the bloodstream and the respiratory tract. This article is protected by copyright. All rights reserved. © 2018 John Wiley & Sons Ltd.
Interferon α-Enhanced Clearance of Group A Streptococcus Despite Neutropenia.
Uchiyama, Satoshi; Keller, Nadia; Schlaepfer, Erika; Grube, Christina; Schuepbach, Reto A; Speck, Roberto F; Zinkernagel, Annelies S
2016-07-15
Neutrophils and monocytes are crucial for controlling bacterial infections. More-frequent bacterial infections are accordingly encountered in neutropenic patients undergoing chemotherapy. This is not the case for pegylated interferon α (IFN-α)-induced neutropenia. We hypothesized that IFN-α induces a compensatory innate antibacterial state that prevents bacterial infections despite the neutropenia. To investigate whether patients with hepatitis C virus infection treated with IFN-α killed group A Streptococcus (GAS) better than before initiating therapy, whole blood was used to perform ex vivo GAS killing assays before, during, and after IFN-α therapy. We found that IFN-α therapy enhanced GAS killing in whole blood ex vivo despite the decreased neutrophil and monocyte numbers during IFN-α therapy. IFN-α also boosted neutrophil- and monocyte-mediated GAS killing in vitro. Underlying mechanisms included increased production of the antibacterial properdin, a regulator of the complement activation, as well as reactive oxygen species. These findings help to explain the rather discrepant facts of neutropenia but preserved antibacterial immune defenses in patients treated with IFN-α. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.