Science.gov

Sample records for vivo functional analysis

  1. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions.

    PubMed

    Salas, Nelson; Manns, Fabrice; Milne, Peter J; Denham, David B; Minhaj, Ahmed M; Parel, Jean-Marie; Robinson, David S

    2004-05-01

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 degrees C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 x 10(3) mm3) coagulation volume without unwanted tissue liquefaction and carbonization.

  2. Thermal analysis of laser interstitial thermotherapy in ex vivo fibro-fatty tissue using exponential functions

    NASA Astrophysics Data System (ADS)

    Salas, Nelson, Jr.; Manns, Fabrice; Milne, Peter J.; Denham, David B.; Minhaj, Ahmed M.; Parel, Jean-Marie; Robinson, David S.

    2004-05-01

    A therapeutic procedure to treat small, surface breast tumours up to 10 mm in radius plus a 5 mm margin of healthy, surrounding tissue using laser interstitial thermotherapy (LITT) is currently being investigated. The purpose of this study is to analyse and model the thermal and coagulative response of ex vivo fibro-fatty tissue, a model for breast tissue, during experimental laser interstitial thermotherapy at 980 nm. Laser radiation at 980 nm was delivered interstitially through a diffusing tip optical fibre inserted into a fibro-fatty tissue model to produce controlled heating at powers ranging from 3.2 to 8.0 W. Tissue temperature was measured with thermocouples placed at 15 positions around the fibre. The induced coagulation zone was measured on gross anatomical sections. Thermal analysis indicates that a finite sum of exponential functions is an approximate solution to the heat conduction equation that more accurately predicts the time-temperature dependence in tissue prior to carbonization (T < 100 °C) during LITT than the traditional model using a single exponential function. Analysis of the ellipsoid coagulation volume induced in tissue indicates that the 980 nm wavelength does not penetrate deep enough in fibro-fatty tissue to produce a desired 30 mm diameter (14.1 × 103 mm3) coagulation volume without unwanted tissue liquefaction and carbonization.

  3. Functional analysis of propeptide as an intramolecular chaperone for in vivo folding of subtilisin nattokinase.

    PubMed

    Jia, Yan; Liu, Hui; Bao, Wei; Weng, Meizhi; Chen, Wei; Cai, Yongjun; Zheng, Zhongliang; Zou, Guolin

    2010-12-01

    Here, we show that during in vivo folding of the precursor, the propeptide of subtilisin nattokinase functions as an intramolecular chaperone (IMC) that organises the in vivo folding of the subtilisin domain. Two residues belonging to β-strands formed by conserved regions of the IMC are crucial for the folding of the subtilisin domain through direct interactions. An identical protease can fold into different conformations in vivo due to the action of a mutated IMC, resulting in different kinetic parameters. Some interfacial changes involving conserved regions, even those induced by the subtilisin domain, blocked subtilisin folding and altered its conformation. Insight into the interaction between the subtilisin and IMC domains is provided by a three-dimensional structural model.

  4. Analysis of in vitro and in vivo function of total knee replacements using dynamic contact models

    NASA Astrophysics Data System (ADS)

    Zhao, Dong

    Despite the high incidence of osteoarthritis in human knee joint, its causes remain unknown. Total knee replacement (TKR) has been shown clinically to be effective in restoring the knee function. However, wear of ultra-high molecular weight polyethylene has limited the longevity of TKRs. To address these important issues, it is necessary to investigate the in vitro and in vivo function of total knee replacements using dynamic contact models. A multibody dynamic model of an AMTI knee simulator was developed. Incorporating a wear prediction model into the contact model based on elastic foundation theory enables the contact surface to take into account creep and wear during the dynamic simulation. Comparisons of the predicted damage depth, area, and volume lost with worn retrievals from a physical machine were made to validate the model. In vivo tibial force distributions during dynamic and high flexion activities were investigated using the dynamic contact model. In vivo medial and lateral contact forces experienced by a well-aligned instrumented knee implant, as well as upper and lower bounds on contact pressures for a variety of activities were studied. For all activities, the predicted medial and lateral contact forces were insensitive to the selected material model. For this patient, the load split during the mid-stance phase of gait and during stair is more equal than anticipated. The external knee adduction torque has been proposed as a surrogate measure for medial compartment load during gait. However, a direct link between these two quantities has not been demonstrated using in vivo measurement of medial compartment load. In vivo data collected from a subject with an instrumented knee implant were analyzed to evaluate this link. The subject performed five different overground gait motions (normal, fast, slow, wide, and toe out) while instrumented implant, video motion, and ground reaction data were simultaneously collected. The high correlation coefficient

  5. An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo

    PubMed Central

    Mao, Junhao; Barrow, Jeffery; McMahon, Jill; Vaughan, Joe; McMahon, Andrew P.

    2005-01-01

    We describe a versatile genetic system for rapid analysis of mammalian gene function. In this, loss of reporter activity in a novel embryonic stem (ES) cell line enables rapid identification of targeting to the ubiquitously expressed Rosa26 locus. Subsequent regulation of gene activity is governed by a dual regulatory strategy utilizing two drugs, Tamoxifen and Doxycycline. To illustrate this approach, a dominant allele of Smoothened was introduced into this cell line, enabling regulated activation of Hedgehog signaling. By coupling Cre-loxP dependent activation with tetracycline dependent transcription in a single allele, we established a conditional method to control Smoothened activity and neural progenitor specification in differentiating ES cells in vitro and in chimeric embryos in vivo When crossed to an appropriate Cre driver strain, gene activity can also be temporally regulated within a specific cell lineage. This platform will facilitate rapid analysis of gene function in the mouse. PMID:16221970

  6. In Vivo Noninvasive Analysis of Human Forearm Muscle Function and Fatigue: Applications to EVA Operations and Training Maneuvers

    NASA Technical Reports Server (NTRS)

    Fotedar, L. K.; Marshburn, T.; Quast, M. J.; Feeback, D. L.

    1999-01-01

    Forearm muscle fatigue is one of the major limiting factors affecting endurance during performance of deep-space extravehicular activity (EVA) by crew members. Magnetic resonance (MR) provides in vivo noninvasive analysis of tissue level metabolism and fluid exchange dynamics in exercised forearm muscles through the monitoring of proton magnetic resonance imaging (MRI) and phosphorus magnetic resonance spectroscopy (P-31-MRS) parameter variations. Using a space glove box and EVA simulation protocols, we conducted a preliminary MRS/MRI study in a small group of human test subjects during submaximal exercise and recovery and following exhaustive exercise. In assessing simulated EVA-related muscle fatigue and function, this pilot study revealed substantial changes in the MR image longitudinal relaxation times (T2) as an indicator of specific muscle activation and proton flux as well as changes in spectral phosphocreatine-to-phosphate (PCr/Pi) levels as a function of tissue bioenergetic potential.

  7. In vivo analysis of trypanosome mitochondrial RNA function by artificial site-specific RNA endonuclease-mediated knockdown.

    PubMed

    Szempruch, Anthony J; Choudhury, Rajarshi; Wang, Zefeng; Hajduk, Stephen L

    2015-10-01

    Trypanosomes possess a unique mitochondrial genome called the kinetoplast DNA (kDNA). Many kDNA genes encode pre-mRNAs that must undergo guide RNA-directed editing. In addition, alternative mRNA editing gives rise to diverse mRNAs and several kDNA genes encode open reading frames of unknown function. To better understand the mechanism of RNA editing and the function of mitochondrial RNAs in trypanosomes, we have developed a reverse genetic approach using artificial site-specific RNA endonucleases (ASREs) to directly silence kDNA-encoded genes. The RNA-binding domain of an ASRE can be programmed to recognize unique 8-nucleotide sequences, allowing the design of ASREs to cleave any target RNA. Utilizing an ASRE containing a mitochondrial localization signal, we targeted the extensively edited mitochondrial mRNA for the subunit A6 of the F0F1 ATP synthase (A6) in the procyclic stage of Trypanosoma brucei. This developmental stage, found in the midgut of the insect vector, relies on mitochondrial oxidative phosphorylation for ATP production with A6 forming the critical proton half channel across the inner mitochondrial membrane. Expression of an A6-targeted ASRE in procyclic trypanosomes resulted in a 50% reduction in A6 mRNA levels after 24 h, a time-dependent decrease in mitochondrial membrane potential (ΔΨm), and growth arrest. Expression of the A6-ASRE, lacking the mitochondrial localization signal, showed no significant growth defect. The development of the A6-ASRE allowed the first in vivo functional analysis of an edited mitochondrial mRNA in T. brucei and provides a critical new tool to study mitochondrial RNA biology in trypanosomes.

  8. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad.

    PubMed

    Somers, Jason; Nguyen, Joseph; Lumb, Chris; Batterham, Phil; Perry, Trent

    2015-09-01

    The vinegar fly, Drosophila melanogaster, has been used to identify and manipulate insecticide resistance genes. The advancement of genome engineering technology and the increasing availability of pest genome sequences has increased the predictive and diagnostic capacity of the Drosophila model. The Drosophila model can be extended to investigate the basic biology of the interaction between insecticides and the proteins they target. Recently we have developed an in vivo system that permits the expression and study of key insecticide targets, the nicotinic acetylcholine receptors (nAChRs), in controlled genetic backgrounds. Here this system is used to study the interaction between the insecticide spinosad and a nAChR subunit, Dα6. Reciprocal chimeric subunits were created from Dα6 and Dα7, a subunit that does not respond to spinosad. Using the in vivo system, the Dα6/Dα7 chimeric subunits were tested for their capacity to respond to spinosad. Only the subunits containing the C-terminal region of Dα6 were able to respond to spinosad, thus confirming the importance this region for spinosad binding. A new incompletely dominant, spinosad resistance mechanism that may evolve in pest species is also examined. First generated using chemical mutagenesis, the Dα6(P146S) mutation was recreated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, the first use of this technology to introduce a resistant mutation into a controlled genetic background. Both alleles present with the same incompletely dominant, spinosad resistance phenotype, proving the P146S replacement to be the causal mutation. The proximity of the P146S mutation to the conserved Cys-loop indicates that it may impair the gating of the receptor. The results of this study enhance the understanding of nAChR structure:function relationships. PMID:25747007

  9. In vivo functional analysis of the Drosophila melanogaster nicotinic acetylcholine receptor Dα6 using the insecticide spinosad.

    PubMed

    Somers, Jason; Nguyen, Joseph; Lumb, Chris; Batterham, Phil; Perry, Trent

    2015-09-01

    The vinegar fly, Drosophila melanogaster, has been used to identify and manipulate insecticide resistance genes. The advancement of genome engineering technology and the increasing availability of pest genome sequences has increased the predictive and diagnostic capacity of the Drosophila model. The Drosophila model can be extended to investigate the basic biology of the interaction between insecticides and the proteins they target. Recently we have developed an in vivo system that permits the expression and study of key insecticide targets, the nicotinic acetylcholine receptors (nAChRs), in controlled genetic backgrounds. Here this system is used to study the interaction between the insecticide spinosad and a nAChR subunit, Dα6. Reciprocal chimeric subunits were created from Dα6 and Dα7, a subunit that does not respond to spinosad. Using the in vivo system, the Dα6/Dα7 chimeric subunits were tested for their capacity to respond to spinosad. Only the subunits containing the C-terminal region of Dα6 were able to respond to spinosad, thus confirming the importance this region for spinosad binding. A new incompletely dominant, spinosad resistance mechanism that may evolve in pest species is also examined. First generated using chemical mutagenesis, the Dα6(P146S) mutation was recreated using the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 system, the first use of this technology to introduce a resistant mutation into a controlled genetic background. Both alleles present with the same incompletely dominant, spinosad resistance phenotype, proving the P146S replacement to be the causal mutation. The proximity of the P146S mutation to the conserved Cys-loop indicates that it may impair the gating of the receptor. The results of this study enhance the understanding of nAChR structure:function relationships.

  10. Reversal of coenzyme specificity of 2,3-butanediol dehydrogenase from Saccharomyces cerevisae and in vivo functional analysis.

    PubMed

    Ehsani, Maryam; Fernández, Maria R; Biosca, Josep A; Dequin, Sylvie

    2009-10-01

    Saccharomyces cerevisiae NAD(H)-dependent 2,3-butanediol dehydrogenase (Bdh1), a medium chain dehydrogenase/reductase is the main enzyme catalyzing the reduction of acetoin to 2,3-butanediol. In this work we focused on altering the coenzyme specificity of Bdh1 from NAD(H) to NADP(H). Based on homology studies and the crystal structure of the NADP(H)-dependent yeast alcohol dehydrogenase Adh6, three adjacent residues (Glu(221), Ile(222), and Ala(223)) were predicted to be involved in the coenzyme specificity of Bdh1 and were altered by site-directed mutagenesis. Coenzyme reversal of Bdh1 was obtained with double Glu221Ser/Ile222Arg and triple Glu221Ser/Ile222Arg/Ala223Ser mutants. The performance of the triple mutant for NADPH was close to that of native Bdh1 for NADH. The three engineered mutants were able to restore the growth of a phosphoglucose isomerase deficient strain (pgi), which cannot grow on glucose unless an alternative NADPH oxidizing system is provided, thus demonstrating their in vivo functionality. These mutants are interesting tools to reduce the excess of acetoin produced by engineered brewing or wine yeasts overproducing glycerol. In addition, they represent promising tools for the manipulation of the NADP(H) metabolism and for the development of a powerful catalyst in biotransformations requiring NADPH regeneration.

  11. Phenotypical Analysis of Atypical PKCs In Vivo Function Display a Compensatory System at Mouse Embryonic Day 7.5

    PubMed Central

    Seidl, Sebastian; Braun, Ursula; Roos, Norbert; Li, Shaohua; Lüdtke, Timo H.-W.

    2013-01-01

    Background The atypical protein kinases C (PKC) isoforms ι/λ and ζ play crucial roles in many cellular processes including development, cell proliferation, differentiation and cell survival. Possible redundancy between the two isoforms has always been an issue since most biochemical tools do not differentiate between the two proteins. Thus, much effort has been made during the last decades to characterize the functions of aPKCs using gene targeting approaches and depletion studies. However, little is known about the specific roles of each isoform in mouse development. Methodology/Principal Findings To evaluate the importance of PKCι in mouse development we designed PKCι deletion mutants using the gene targeting approach. We show that the deletion of PKCι, results in a reduced size of the amniotic cavity at E7.5 and impaired growth of the embryo at E8.5 with subsequent absorption of the embryo. Our data also indicate an impaired localization of ZO-1 and disorganized structure of the epithelial tissue in the embryo. Importantly, using electron microscopy, embryoid body formation and immunofluorescence analysis, we found, that in the absence of PKCι, tight junctions and apico-basal polarity were still established. Finally, our study points to a non-redundant PKCι function at E9.5, since expression of PKCζ is able to rescue the E7.5 phenotype, but could not prevent embryonic lethality at a later time-point (E9.5). Conclusion Our data show that PKCι is crucial for mouse embryogenesis but is dispensable for the establishment of polarity and tight junction formation. We present a compensatory function of PKCζ at E7.5, rescuing the phenotype. Furthermore, this study indicates at least one specific, yet unknown, PKCι function that cannot be compensated by the overexpression of PKCζ at E9.5. PMID:23690951

  12. Overcoming the heterologous bias: An in vivo functional analysis of multidrug efflux transporter, CgCdr1p in matched pair clinical isolates of Candida glabrata

    SciTech Connect

    Puri, Nidhi; Manoharlal, Raman; Sharma, Monika; Sanglard, Dominique; Prasad, Rajendra

    2011-01-07

    Research highlights: {yields} First report to demonstrate an in vivo expression system of an ABC multidrug transporter CgCdr1p of C. glabrata. {yields} First report on the structure and functional characterization of CgCdr1p. {yields} Functional conservation of divergent but typical residues of CgCdr1p. {yields} CgCdr1p elicits promiscuity towards substrates and has a large drug binding pocket with overlapping specificities. -- Abstract: We have taken advantage of the natural milieu of matched pair of azole sensitive (AS) and azole resistant (AR) clinical isolates of Candida glabrata for expressing its major ABC multidrug transporter, CgCdr1p for structure and functional analysis. This was accomplished by tagging a green fluorescent protein (GFP) downstream of ORF of CgCDR1 and integrating the resultant fusion protein at its native chromosomal locus in AS and AR backgrounds. The characterization confirmed that in comparison to AS isolate, CgCdr1p-GFP was over-expressed in AR isolates due to its hyperactive native promoter and the GFP tag did not affect its functionality in either construct. We observed that in addition to Rhodamine 6 G (R6G) and Fluconazole (FLC), a recently identified fluorescent substrate of multidrug transporters Nile Red (NR) could also be expelled by CgCdr1p. Competition assays with these substrates revealed the presence of overlapping multiple drug binding sites in CgCdr1p. Point mutations employing site directed mutagenesis confirmed that the role played by unique amino acid residues critical to ATP catalysis and localization of ABC drug transporter proteins are well conserved in C. glabrata as in other yeasts. This study demonstrates a first in vivo novel system where over-expression of GFP tagged MDR transporter protein can be driven by its own hyperactive promoter of AR isolates. Taken together, this in vivo system can be exploited for the structure and functional analysis of CgCdr1p and similar proteins wherein the arte-factual concerns

  13. Analysis of the Peroxidase Activity of Rice (Oryza Sativa) Recombinant Hemoglobin 1: Implications for the In Vivo Function of Hexacoordinate Non-Symbiotic Hemoglobins in Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In plants, it has been proposed that hexacoordinate (class 1) non-symbiotic Hbs (nsHb-1) function in vivo as peroxidases. However, little is known about the peroxidase activity of nsHb-1. We evaluated the peroxidase activity of rice recombinant Hb1 (a nsHb-1) by using the guaiacol/H2O2 system at pH ...

  14. GAGA Factor Isoforms Have Distinct but Overlapping Functions In Vivo

    PubMed Central

    Greenberg, Anthony J.; Schedl, Paul

    2001-01-01

    The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo. PMID:11713290

  15. A seven-year storage report of good manufacturing practice-grade naked plasmid DNA: stability, topology, and in vitro/in vivo functional analysis.

    PubMed

    Walther, Wolfgang; Schmeer, Marco; Kobelt, Dennis; Baier, Ruth; Harder, Alexander; Walhorn, Volker; Anselmetti, Dario; Aumann, Jutta; Fichtner, Iduna; Schleef, Martin

    2013-12-01

    The great interest for naked plasmid DNA in gene therapy studies is reflected by the fact that it is currently used in 18% of all gene therapy trials. Therefore, validation of topology and functionality of DNA resulting from its long-term stability is an essential requirement for safe and effective gene transfer. To this aim, we analyzed the stability of good manufacturing practice-grade pCMVβ reporter plasmid DNA by capillary gel electrophoresis, agarose gel electrophoresis, and atomic force microscopy. The plasmid DNA was produced for a clinical gene transfer study started in 2005 and was stored for meanwhile 7 years under continuously monitored conditions at -20 °C. The stability of plasmid DNA was monitored by LacZ transgene expression functional assays performed in vitro and in vivo on the 7-year-old plasmid DNA samples compared with plasmid batches newly produced in similar experimental conditions and quality standards. The analyses revealed that during the overall storage time and conditions, the proportion of open circular and supercoiled or covalently closed circular forms is conserved without linearization or degradation of the plasmid. The in vitro transfection and the in vivo jet-injection of DNA showed unaltered functionality of the long-stored plasmid. In summary, the 7-year-old and the newly produced plasmid samples showed similar topology and expression performance. Therefore, our stable storage conditions are effective to preserve the integrity of the DNA to be used in clinical studies. This is an important prerequisite for the long-term performance of gene transfer materials used in trials of long duration as well as of the reference material used in standardization procedures and assays.

  16. Simultaneous ex vivo Functional Testing of Two Retinas by in vivo Electroretinogram System

    PubMed Central

    Vinberg, Frans; Kefalov, Vladimir

    2015-01-01

    An In vivo electroretinogram (ERG) signal is composed of several overlapping components originating from different retinal cell types, as well as noise from extra-retinal sources. Ex vivo ERG provides an efficient method to dissect the function of retinal cells directly from an intact isolated retina of animals or donor eyes. In addition, ex vivo ERG can be used to test the efficacy and safety of potential therapeutic agents on retina tissue from animals or humans. We show here how commercially available in vivo ERG systems can be used to conduct ex vivo ERG recordings from isolated mouse retinas. We combine the light stimulation, electronic and heating units of a standard in vivo system with custom-designed specimen holder, gravity-controlled perfusion system and electromagnetic noise shielding to record low-noise ex vivo ERG signals simultaneously from two retinas with the acquisition software included in commercial in vivo systems. Further, we demonstrate how to use this method in combination with pharmacological treatments that remove specific ERG components in order to dissect the function of certain retinal cell types. PMID:25992809

  17. Identification of the determinants of tRNA function and susceptibility to rapid tRNA decay by high-throughput in vivo analysis.

    PubMed

    Guy, Michael P; Young, David L; Payea, Matthew J; Zhang, Xiaoju; Kon, Yoshiko; Dean, Kimberly M; Grayhack, Elizabeth J; Mathews, David H; Fields, Stanley; Phizicky, Eric M

    2014-08-01

    Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5' ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology. PMID:25085423

  18. Analysis of TFIIA Function In Vivo: Evidence for a Role in TATA-Binding Protein Recruitment and Gene-Specific Activation

    PubMed Central

    Liu, Qing; Gabriel, Scott E.; Roinick, Kelli L.; Ward, Robert D.; Arndt, Karen M.

    1999-01-01

    Activation of transcription can occur by the facilitated recruitment of TFIID to promoters by gene-specific activators. To investigate the role of TFIIA in TFIID recruitment in vivo, we exploited a class of yeast TATA-binding protein (TBP) mutants that is activation and DNA binding defective. We found that co-overexpression of TOA1 and TOA2, the genes that encode yeast TFIIA, overcomes the activation defects caused by the TBP mutants. Using a genetic screen, we isolated a new class of TFIIA mutants and identified three regions on TFIIA that are likely to be involved in TBP recruitment or stabilization of the TBP-TATA complex in vivo. Amino acid replacements in only one of these regions enhance TFIIA-TBP-DNA complex formation in vitro, suggesting that the other regions are involved in regulatory interactions. To determine the relative importance of TFIIA in the regulation of different genes, we constructed yeast strains to conditionally deplete TFIIA levels prior to gene activation. While the activation of certain genes, such as INO1, was dramatically impaired by TFIIA depletion, activation of other genes, such as CUP1, was unaffected. These data suggest that TFIIA facilitates DNA binding by TBP in vivo, that TFIIA may be regulated by factors that target distinct regions of the protein, and that promoters vary significantly in the degree to which they require TFIIA for activation. PMID:10567590

  19. Dendritic spines: from structure to in vivo function

    PubMed Central

    Rochefort, Nathalie L; Konnerth, Arthur

    2012-01-01

    Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines. PMID:22791026

  20. Expansion of the Clavulanic Acid Gene Cluster: Identification and In Vivo Functional Analysis of Three New Genes Required for Biosynthesis of Clavulanic Acid by Streptomyces clavuligerus

    PubMed Central

    Li, Rongfeng; Khaleeli, Nusrat; Townsend, Craig A.

    2000-01-01

    Clavulanic acid is a potent inhibitor of β-lactamase enzymes and is of demonstrated value in the treatment of infections by β-lactam-resistant bacteria. Previously, it was thought that eight contiguous genes within the genome of the producing strain Streptomyces clavuligerus were sufficient for clavulanic acid biosynthesis, because they allowed production of the antibiotic in a heterologous host (K. A. Aidoo, A. S. Paradkar, D. C. Alexander, and S. E. Jensen, p. 219–236, In V. P. Gullo et al., ed., Development in industrial microbiology series, 1993). In contrast, we report the identification of three new genes, orf10 (cyp), orf11 (fd), and orf12, that are required for clavulanic acid biosynthesis as indicated by gene replacement and trans-complementation analysis in S. clavuligerus. These genes are contained within a 3.4-kb DNA fragment located directly downstream of orf9 (cad) in the clavulanic acid cluster. While the orf10 (cyp) and orf11 (fd) proteins show homologies to other known CYP-150 cytochrome P-450 and [3Fe-4S] ferredoxin enzymes and may be responsible for an oxidative reaction late in the pathway, the protein encoded by orf12 shows no significant similarity to any known protein. The results of this study extend the biosynthetic gene cluster for clavulanic acid and attest to the importance of analyzing biosynthetic genes in the context of their natural host. Potential functional roles for these proteins are proposed. PMID:10869089

  1. Novel in vivo techniques to visualize kidney anatomy and function.

    PubMed

    Peti-Peterdi, János; Kidokoro, Kengo; Riquier-Brison, Anne

    2015-07-01

    Intravital imaging using multiphoton microscopy (MPM) has become an increasingly popular and widely used experimental technique in kidney research over the past few years. MPM allows deep optical sectioning of the intact, living kidney tissue with submicron resolution, which is unparalleled among intravital imaging approaches. MPM has solved a long-standing critical technical barrier in renal research to study several complex and inaccessible cell types and anatomical structures in vivo in their native environment. Comprehensive and quantitative kidney structure and function MPM studies helped our better understanding of the cellular and molecular mechanisms of the healthy and diseased kidney. This review summarizes recent in vivo MPM studies with a focus on the glomerulus and the filtration barrier, although select, glomerulus-related renal vascular and tubular functions are also mentioned. The latest applications of serial MPM of the same glomerulus in vivo, in the intact kidney over several days, during the progression of glomerular disease are discussed. This visual approach, in combination with genetically encoded fluorescent markers of cell lineage, has helped track the fate and function (e.g., cell calcium changes) of single podocytes during the development of glomerular pathologies, and provided visual proof for the highly dynamic, rather than static, nature of the glomerular environment. Future intravital imaging applications have the promise to further push the limits of optical microscopy, and to advance our understanding of the mechanisms of kidney injury. Also, MPM will help to study new mechanisms of tissue repair and regeneration, a cutting-edge area of kidney research.

  2. Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo.

    PubMed

    Feng, Jun; Li, Guang; Liu, Xin; Wang, Jing; Wang, Yi-Quan

    2014-10-01

    Amphioxus is a promising new animal model for developmental biology. To develop molecular tools for this model, we characterized the promoter region of a cytoplasmic β-actin gene (Bb-actin-6-2) from the Chinese amphioxus Branchiostoma belcheri. In situ hybridization and real time-quantitative PCR analyses showed that this gene is expressed in many tissues throughout embryonic development. Cloning of cDNA revealed two isoforms with distinct transcription start sites. Isoform #1 exhibits a similar exon/intron and regulatory element organization to that of vertebrate β-actin, whereas isoform #2 lacks the first exon of isoform #1 and recruits its first intron as a promoter. The activities of upstream promoter regions in the two isoforms were examined using the lacZ reporter system in amphioxus embryos. The proximal promoter of isoform #1 drove reporter gene expression broadly in 58.6 % of injected embryos. That of isoform #2 exhibited much higher activity (91.5 %) than that of isoform #1 or the human EF-1-α gene (38.2 %). We determined the minimal promoter regions of the two isoforms via functional analysis. These two regions, alone or inserted a random DNA fragment upstream, had no detectable activity, but when an upstream enhancer was inserted, the promoters directed reporter gene expression in 61.0 and 93.8 %, respectively, of injected embryos in a tissue-specific manner. Our study not only provides insight into the regulatory mechanism underlying amphioxus Bb-actin-6-2 gene expression, but also identifies two sets of efficient proximal and minimal promoters. These promoters could be used to construct gene expression vectors for transgenic studies using amphioxus as a model.

  3. Functional analysis of the promoter region of amphioxus β-actin gene: a useful tool for driving gene expression in vivo.

    PubMed

    Feng, Jun; Li, Guang; Liu, Xin; Wang, Jing; Wang, Yi-Quan

    2014-10-01

    Amphioxus is a promising new animal model for developmental biology. To develop molecular tools for this model, we characterized the promoter region of a cytoplasmic β-actin gene (Bb-actin-6-2) from the Chinese amphioxus Branchiostoma belcheri. In situ hybridization and real time-quantitative PCR analyses showed that this gene is expressed in many tissues throughout embryonic development. Cloning of cDNA revealed two isoforms with distinct transcription start sites. Isoform #1 exhibits a similar exon/intron and regulatory element organization to that of vertebrate β-actin, whereas isoform #2 lacks the first exon of isoform #1 and recruits its first intron as a promoter. The activities of upstream promoter regions in the two isoforms were examined using the lacZ reporter system in amphioxus embryos. The proximal promoter of isoform #1 drove reporter gene expression broadly in 58.6 % of injected embryos. That of isoform #2 exhibited much higher activity (91.5 %) than that of isoform #1 or the human EF-1-α gene (38.2 %). We determined the minimal promoter regions of the two isoforms via functional analysis. These two regions, alone or inserted a random DNA fragment upstream, had no detectable activity, but when an upstream enhancer was inserted, the promoters directed reporter gene expression in 61.0 and 93.8 %, respectively, of injected embryos in a tissue-specific manner. Our study not only provides insight into the regulatory mechanism underlying amphioxus Bb-actin-6-2 gene expression, but also identifies two sets of efficient proximal and minimal promoters. These promoters could be used to construct gene expression vectors for transgenic studies using amphioxus as a model. PMID:25078982

  4. In vivo investigation of cilia structure and function using Xenopus

    PubMed Central

    Brooks, Eric R.; Wallingford, John B.

    2015-01-01

    Cilia are key organelles in development and homeostasis. The ever-expanding complement of cilia associated proteins necessitates rapid and tractable models for in vivo functional investigation. Xenopus laevis provides an attractive model for such studies, having multiple ciliated populations, including primary and multiciliated tissues. The rapid external development of Xenopus and the large cells make it an especially excellent platform for imaging studies. Here we present embryological and cell-biological methods for the investigation of cilia structure and function in Xenopus laevis, with a focus on quantitative live and fixed imaging. PMID:25837389

  5. In Vivo Gait Analysis During Bone Transport.

    PubMed

    Mora-Macías, J; Reina-Romo, E; Morgaz, J; Domínguez, J

    2015-09-01

    The load bearing characteristics of the intervened limb over time in vivo are important to know in distraction osteogenesis and bone healing for the characterization of the bone maturation process. Gait analyses were performed for a group of sheep in which bone transport was carried out. The ground reaction force was measured by means of a force platform, and the gait parameters (i.e., the peak, the mean vertical ground reaction force and the impulse) were calculated during the stance phase for each limb. The results showed that these gait parameters decreased in the intervened limb and interestingly increased in the other limbs due to the implantation of the fixator. Additionally, during the process, the gait parameters exponentially approached the values for healthy animals. Corresponding radiographies showed an increasing level of ossification in the callus. This study shows, as a preliminary approach to be confirmed with more experiments, that gait analysis could be used as an alternative method to control distraction osteogenesis or bone healing. For example, these analyses could determine the appropriate time to remove the fixator. Furthermore, gait analysis has advantages over other methods because it provides quantitative data and does not require instrumented fixators.

  6. Recent molecular approaches to understanding astrocyte function in vivo

    PubMed Central

    Davila, David; Thibault, Karine; Fiacco, Todd A.; Agulhon, Cendra

    2013-01-01

    Astrocytes are a predominant glial cell type in the nervous systems, and are becoming recognized as important mediators of normal brain function as well as neurodevelopmental, neurological, and neurodegenerative brain diseases. Although numerous potential mechanisms have been proposed to explain the role of astrocytes in the normal and diseased brain, research into the physiological relevance of these mechanisms in vivo is just beginning. In this review, we will summarize recent developments in innovative and powerful molecular approaches, including knockout mouse models, transgenic mouse models, and astrocyte-targeted gene transfer/expression, which have led to advances in understanding astrocyte biology in vivo that were heretofore inaccessible to experimentation. We will examine the recently improved understanding of the roles of astrocytes – with an emphasis on astrocyte signaling – in the context of both the healthy and diseased brain, discuss areas where the role of astrocytes remains debated, and suggest new research directions. PMID:24399932

  7. Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.

    PubMed

    Wang, Dingding; Hu, Lili; Su, Manman; Wang, Ju; Xu, Tianmin

    2015-09-01

    Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer. PMID:26166416

  8. Preparation and functional characterization of human vascular endothelial growth factor-melittin fusion protein with analysis of the antitumor activity in vitro and in vivo.

    PubMed

    Wang, Dingding; Hu, Lili; Su, Manman; Wang, Ju; Xu, Tianmin

    2015-09-01

    Vascular endothelial growth factor and its tyrosine kinase receptors have been identified as key mediators of the regulation of pathologic blood vessel growth and maintenance in the promotion of angiogenesis and tumor growth. Therefore, an alternative approach to destroying tumor endothelium would be to make this tissue particularly sensitive to VEGF-mediated drug delivery. To verify this hypothesis, we generated a protein containing VEGF165 fused to melittin. Melittin is a small linear peptide composed of 26 amino acid residues that can exert toxic or inhibitory effects on many types of tumor cells. This protein is a cytolytic peptide that attacks lipid membranes, leading to significant toxicity. In the present study, the Pichia pastoris expression system was used to express the fusion protein. Under optimal conditions, stable VEGF165-melittin production was achieved using a series of purification steps. The activity of VEGF165-melittin fusion protein was compared with melittin for its ability to suppress the growth of tumor cell line in vitro. The fusion toxin selectively inhibited growth of human hepatocellular carcinoma HepG-2 cell line with high expression of VEGFR-2. We found that sensitivity of VEGFR-2 transfected 293 cells to VEGF165-melittin enhanced as the cellular VEGFR-2 density increased. In an in vivo initial experiment, the fusion protein inhibited tumor growth in xenografts assays. Furthermore, successful expression and characterization of the fusion protein demonstrated its efficacy for use as a novel treatment strategy for cancer.

  9. Neurovascular coupling: in vivo optical techniques for functional brain imaging

    PubMed Central

    2013-01-01

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology. PMID:23631798

  10. Neurovascular coupling: in vivo optical techniques for functional brain imaging.

    PubMed

    Liao, Lun-De; Tsytsarev, Vassiliy; Delgado-Martínez, Ignacio; Li, Meng-Lin; Erzurumlu, Reha; Vipin, Ashwati; Orellana, Josue; Lin, Yan-Ren; Lai, Hsin-Yi; Chen, You-Yin; Thakor, Nitish V

    2013-04-30

    Optical imaging techniques reflect different biochemical processes in the brain, which is closely related with neural activity. Scientists and clinicians employ a variety of optical imaging technologies to visualize and study the relationship between neurons, glial cells and blood vessels. In this paper, we present an overview of the current optical approaches used for the in vivo imaging of neurovascular coupling events in small animal models. These techniques include 2-photon microscopy, laser speckle contrast imaging (LSCI), voltage-sensitive dye imaging (VSDi), functional photoacoustic microscopy (fPAM), functional near-infrared spectroscopy imaging (fNIRS) and multimodal imaging techniques. The basic principles of each technique are described in detail, followed by examples of current applications from cutting-edge studies of cerebral neurovascular coupling functions and metabolic. Moreover, we provide a glimpse of the possible ways in which these techniques might be translated to human studies for clinical investigations of pathophysiology and disease. In vivo optical imaging techniques continue to expand and evolve, allowing us to discover fundamental basis of neurovascular coupling roles in cerebral physiology and pathophysiology.

  11. Algal photoreceptors: in vivo functions and potential applications.

    PubMed

    Kianianmomeni, Arash; Hallmann, Armin

    2014-01-01

    Many algae, particularly microalgae, possess a sophisticated light-sensing system including photoreceptors and light-modulated signaling pathways to sense environmental information and secure the survival in a rapidly changing environment. Over the last couple of years, the multifaceted world of algal photobiology has enriched our understanding of the light absorption mechanisms and in vivo function of photoreceptors. Moreover, specific light-sensitive modules have already paved the way for the development of optogenetic tools to generate light switches for precise and spatial control of signaling pathways in individual cells and even in complex biological systems. PMID:24081482

  12. In vivo compartmental analysis of leukocytes in mouse lungs.

    PubMed

    Patel, Brijesh V; Tatham, Kate C; Wilson, Michael R; O'Dea, Kieran P; Takata, Masao

    2015-10-01

    The lung has a unique structure consisting of three functionally different compartments (alveolar, interstitial, and vascular) situated in an extreme proximity. Current methods to localize lung leukocytes using bronchoalveolar lavage and/or lung perfusion have significant limitations for determination of location and phenotype of leukocytes. Here we present a novel method using in vivo antibody labeling to enable accurate compartmental localization/quantification and phenotyping of mouse lung leukocytes. Anesthetized C57BL/6 mice received combined in vivo intravenous and intratracheal labeling with fluorophore-conjugated anti-CD45 antibodies, and lung single-cell suspensions were analyzed by flow cytometry. The combined in vivo intravenous and intratracheal CD45 labeling enabled robust separation of the alveolar, interstitial, and vascular compartments of the lung. In naive mice, the alveolar compartment consisted predominantly of resident alveolar macrophages. The interstitial compartment, gated by events negative for both intratracheal and intravenous CD45 staining, showed two conventional dendritic cell populations, as well as a Ly6C(lo) monocyte population. Expression levels of MHCII on these interstitial monocytes were much higher than on the vascular Ly6C(lo) monocyte populations. In mice exposed to acid aspiration-induced lung injury, this protocol also clearly distinguished the three lung compartments showing the dynamic trafficking of neutrophils and exudative monocytes across the lung compartments during inflammation and resolution. This simple in vivo dual-labeling technique substantially increases the accuracy and depth of lung flow cytometric analysis, facilitates a more comprehensive examination of lung leukocyte pools, and enables the investigation of previously poorly defined "interstitial" leukocyte populations during models of inflammatory lung diseases.

  13. Pleiotrophin induces formation of functional neovasculature in vivo.

    PubMed

    Christman, Karen L; Fang, Qizhi; Kim, Anne J; Sievers, Richard E; Fok, Hubert H; Candia, Albert F; Colley, Kenneth J; Herradon, Gonzalo; Ezquerra, Laura; Deuel, Thomas F; Lee, Randall J

    2005-07-15

    Pleiotrophin (PTN) is a heparin-binding growth/differentiation inducing cytokine that shares 50% amino acid sequence identity and striking domain homology with Midkine (MK), the only other member of the Ptn/Mk developmental gene family. The Ptn gene is expressed in sites of early vascular development in embryos and in healing wounds and its constitutive expression in many human tumors is associated with an angiogenic phenotype, suggesting that PTN has an important role in angiogenesis during development and in wound repair and advanced malignancies. To directly test whether PTN is angiogenic in vivo, we injected a plasmid to express PTN into ischemic myocardium in rats. Pleiotrophin stimulated statistically significant increases in both normal appearing new capillaries and arterioles each of which had readily detectable levels of the arteriole marker, smooth muscle cell alpha-actin. Furthermore, the newly formed blood vessels were shown to interconnect with the existent coronary vascular system. The results of these studies demonstrate directly that PTN is an effective angiogenic agent in vivo able to initiate new vessel formation that is both normal in appearance and function. The data suggest that PTN signals the more "complete" new blood vessel formation through its ability to stimulate different functions in different cell types not limited to the endothelial cell.

  14. Intracellular glycine receptor function facilitates glioma formation in vivo.

    PubMed

    Förstera, Benjamin; a Dzaye, Omar Dildar; Winkelmann, Aline; Semtner, Marcus; Benedetti, Bruno; Markovic, Darko S; Synowitz, Michael; Wend, Peter; Fähling, Michael; Junier, Marie-Pierre; Glass, Rainer; Kettenmann, Helmut; Meier, Jochen C

    2014-09-01

    The neuronal function of Cys-loop neurotransmitter receptors is established; however, their role in non-neuronal cells is poorly defined. As brain tumors are enriched in the neurotransmitter glycine, we studied the expression and function of glycine receptors (GlyRs) in glioma cells. Human brain tumor biopsies selectively expressed the GlyR α1 and α3 subunits, which have nuclear localization signals (NLSs). The mouse glioma cell line GL261 expressed GlyR α1, and knockdown of GlyR α1 protein expression impaired the self-renewal capacity and tumorigenicity of GL261 glioma cells, as shown by a neurosphere assay and GL261 cell inoculation in vivo, respectively. We furthermore showed that the pronounced tumorigenic effect of GlyR α1 relies on a new intracellular signaling function that depends on the NLS region in the large cytosolic loop and impacts on GL261 glioma cell gene regulation. Stable expression of GlyR α1 and α3 loops rescued the self-renewal capacity of GlyR α1 knockdown cells, which demonstrates their functional equivalence. The new intracellular signaling function identified here goes beyond the well-established role of GlyRs as neuronal ligand-gated ion channels and defines NLS-containing GlyRs as new potential targets for brain tumor therapies.

  15. HIV control in vivo: Dynamical analysis

    NASA Astrophysics Data System (ADS)

    Gumel, A. B.; Moghadas, S. M.

    2004-10-01

    A deterministic model for the immunological and therapeutic control of human immunodeficiency virus (HIV) in vivo is studied qualitatively. In addition to analyzing the local stability of the equilibria, the global stability of the infection-free equilibrium is established. The optimal efficacy level of anti-retroviral therapy needed to eradicate HIV from the body of an HIV-infected individual is obtained.

  16. Bacterial ApbC Protein Has Two Biochemical Activities That Are Required for in Vivo Function*

    PubMed Central

    Boyd, Jeffrey M.; Sondelski, Jamie L.; Downs, Diana M.

    2009-01-01

    The ApbC protein has been shown previously to bind and rapidly transfer iron-sulfur ([Fe-S]) clusters to an apoprotein (Boyd, J. M., Pierik, A. J., Netz, D. J., Lill, R., and Downs, D. M. (2008) Biochemistry 47, 8195–8202. This study utilized both in vivo and in vitro assays to examine the function of variant ApbC proteins. The in vivo assays assessed the ability of ApbC proteins to function in pathways with low and high demand for [Fe-S] cluster proteins. Variant ApbC proteins were purified and assayed for the ability to hydrolyze ATP, bind [Fe-S] cluster, and transfer [Fe-S] cluster. This study details the first kinetic analysis of ATP hydrolysis for a member of the ParA subfamily of “deviant” Walker A proteins. Moreover, this study details the first functional analysis of mutant variants of the ever expanding family of ApbC/Nbp35 [Fe-S] cluster biosynthetic proteins. The results herein show that ApbC protein needs ATPase activity and the ability to bind and rapidly transfer [Fe-S] clusters for in vivo function. PMID:19001370

  17. Emerging in vivo analyses of cell function using fluorescence imaging (*).

    PubMed

    Lippincott-Schwartz, Jennifer

    2011-01-01

    Understanding how cells of all types sense external and internal signals and how these signals are processed to yield particular responses is a major goal of biology. Genetically encoded fluorescent proteins (FPs) and fluorescent sensors are playing an important role in achieving this comprehensive knowledge base of cell function. Providing high sensitivity and immense versatility while being minimally perturbing to a biological specimen, the probes can be used in different microscopy techniques to visualize cellular processes on many spatial scales. Three review articles in this volume discuss recent advances in probe design and applications. These developments help expand the range of biochemical processes in living systems suitable for study. They provide researchers with exciting new tools to explore how cellular processes are organized and their activity regulated in vivo.

  18. Functional Extended Redundancy Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Suk, Hye Won; Lee, Jang-Han; Moskowitz, D. S.; Lim, Jooseop

    2012-01-01

    We propose a functional version of extended redundancy analysis that examines directional relationships among several sets of multivariate variables. As in extended redundancy analysis, the proposed method posits that a weighed composite of each set of exogenous variables influences a set of endogenous variables. It further considers endogenous…

  19. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    NASA Astrophysics Data System (ADS)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  20. Intracranial nonthermal irreversible electroporation: in vivo analysis.

    PubMed

    Garcia, Paulo A; Rossmeisl, John H; Neal, Robert E; Ellis, Thomas L; Olson, John D; Henao-Guerrero, Natalia; Robertson, John; Davalos, Rafael V

    2010-07-01

    Nonthermal irreversible electroporation (NTIRE) is a new minimally invasive technique to treat cancer. It is unique because of its nonthermal mechanism of tumor ablation. Intracranial NTIRE procedures involve placing electrodes into the targeted area of the brain and delivering a series of short but intense electric pulses. The electric pulses induce irreversible structural changes in cell membranes, leading to cell death. We correlated NTIRE lesion volumes in normal brain tissue with electric field distributions from comprehensive numerical models. The electrical conductivity of brain tissue was extrapolated from the measured in vivo data and the numerical models. Using this, we present results on the electric field threshold necessary to induce NTIRE lesions (495-510 V/cm) in canine brain tissue using 90 50-mus pulses at 4 Hz. Furthermore, this preliminary study provides some of the necessary numerical tools for using NTIRE as a brain cancer treatment. We also computed the electrical conductivity of brain tissue from the in vivo data (0.12-0.30 S/m) and provide guidelines for treatment planning and execution. Knowledge of the dynamic electrical conductivity of the tissue and electric field that correlates to lesion volume is crucial to ensure predictable complete NTIRE treatment while minimizing damage to surrounding healthy tissue. PMID:20668843

  1. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function

    PubMed Central

    Gurzell, Eric A.; Teague, Heather; Harris, Mitchel; Clinthorne, Jonathan; Shaikh, Saame Raza; Fenton, Jenifer I.

    2013-01-01

    DHA is a n-3 LCPUFA in fish oil that generally suppresses T lymphocyte function. However, the effect of fish oil on B cell function remains relatively understudied. Given the important role of B cells in gut immunity and increasing human fish oil supplementation, we sought to determine whether DFO leads to enhanced B cell activation in the SMAD−/− colitis-prone mouse model, similar to that observed with C57BL/6 mice. This study tested the hypothesis that DHA from fish oil is incorporated into the B cell membrane to alter lipid microdomain clustering and enhance B cell function. Purified, splenic B cells from DFO-fed mice displayed increased DHA levels and diminished GM1 microdomain clustering. DFO enhanced LPS-induced B cell secretion of IL-6 and TNF-α and increased CD40 expression ex vivo compared with CON. Despite increased MHCII expression in the unstimulated ex vivo B cells from DFO-fed mice, we observed no difference in ex vivo OVA-FITC uptake in B cells from DFO or CON mice. In vivo, DFO increased lymphoid tissue B cell populations and surface markers of activation compared with CON. Finally, we investigated whether these ex vivo and in vivo observations were consistent with systemic changes. Indeed, DFO-fed mice had significantly higher plasma IL-5, IL-13, and IL-9 (Th2-biasing cytokines) and cecal IgA compared with CON. These results support the hypothesis and an emerging concept that fish oil enhances B cell function in vivo. PMID:23180828

  2. Inflammation Modulates Human HDL Composition and Function in vivo

    PubMed Central

    de la Llera Moya, Margarita; McGillicuddy, Fiona C; Hinkle, Christine C; Byrne, Michael; Joshi, Michelle R; Nguyen, Vihn; Tabita-Martinez, Jennifer; Wolfe, Megan L; Badellino, Karen; Pruscino, Leticia; Mehta, Nehal N; Asztalos, Bela F; Reilly, Muredach P

    2012-01-01

    Objectives Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Methods and Results We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-related parameters in vivo. Endotoxemia induced remodelling of HDL with depletion of pre-β1a HDL particles determined by 2-D gel electrophoresis (-32.2 ± 9.3% at 24h, p<0.05) as well as small (-23.0 ± 5.1%, p<0.01, at 24h) and medium (-57.6 ± 8.0% at 16h, p<0.001) HDL estimated by nuclear magnetic resonance (NMR). This was associated with induction of class II secretory phospholipase A2 (~36 fold increase) and suppression of lecithin:cholesterol acyltransferase activity (-20.8 ± 3.4% at 24h, p<0.01) and cholesterol ester transfer protein mass (-22.2 ± 6.8% at 24h, p<0.001). The HDL fraction, isolated following endotoxemia, had reduced capacity to efflux cholesterol in vitro from SR-BI and ABCA1, but not ABCG1 transporter cell models. Conclusions These data support the concept that “atherogenic-HDL dysfunction” and impaired RCT occur in human inflammatory syndromes, largely independent of changes in plasma HDL-C and ApoA-I levels. PMID:22456230

  3. In-vivo imaging of the photoreceptor mosaic in retinal dystrophies and correlations with visual function

    SciTech Connect

    Choi, S; Doble, N; Hardy, J; Jones, S; Keltner, J; Olivier, S; Werner, J S

    2005-10-26

    To relate in-vivo microscopic retinal changes to visual function assessed with clinical tests in patients with various forms of retinal dystrophies. The UC Davis Adaptive Optics (AO) Fundus Camera was used to acquire in-vivo retinal images at the cellular level. Visual function tests, consisting of visual field analysis, multifocal electroretinography (mfERG), contrast sensitivity and color vision measures, were performed on all subjects. Five patients with different forms of retinal dystrophies and three control subjects were recruited. Cone densities were quantified for all retinal images. In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were characteristic features in fundi with retinal dystrophies. There was a correlation between functional vision loss and the extent to which the irregularities occurred in retinal images. Cone densities were found to decrease with an associated decrease in retinal function. AO fundus photography is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests give borderline or ambiguous results, as it allows visualization of individual photoreceptors.

  4. Fetal in vivo continuous cardiovascular function during chronic hypoxia.

    PubMed

    Allison, B J; Brain, K L; Niu, Y; Kane, A D; Herrera, E A; Thakor, A S; Botting, K J; Cross, C M; Itani, N; Skeffington, K L; Beck, C; Giussani, D A

    2016-03-01

    Although the fetal cardiovascular defence to acute hypoxia and the physiology underlying it have been established for decades, how the fetal cardiovascular system responds to chronic hypoxia has been comparatively understudied. We designed and created isobaric hypoxic chambers able to maintain pregnant sheep for prolonged periods of gestation under controlled significant (10% O2) hypoxia, yielding fetal mean P(aO2) levels (11.5 ± 0.6 mmHg) similar to those measured in human fetuses of hypoxic pregnancy. We also created a wireless data acquisition system able to record fetal blood flow signals in addition to fetal blood pressure and heart rate from free moving ewes as the hypoxic pregnancy is developing. We determined in vivo longitudinal changes in fetal cardiovascular function including parallel measurement of fetal carotid and femoral blood flow and oxygen and glucose delivery during the last third of gestation. The ratio of oxygen (from 2.7 ± 0.2 to 3.8 ± 0.8; P < 0.05) and of glucose (from 2.3 ± 0.1 to 3.3 ± 0.6; P < 0.05) delivery to the fetal carotid, relative to the fetal femoral circulation, increased during and shortly after the period of chronic hypoxia. In contrast, oxygen and glucose delivery remained unchanged from baseline in normoxic fetuses. Fetal plasma urate concentration increased significantly during chronic hypoxia but not during normoxia (Δ: 4.8 ± 1.6 vs. 0.5 ± 1.4 μmol l(-1), P<0.05). The data support the hypotheses tested and show persisting redistribution of substrate delivery away from peripheral and towards essential circulations in the chronically hypoxic fetus, associated with increases in xanthine oxidase-derived reactive oxygen species. PMID:26926316

  5. In vivo predictive dissolution: transport analysis of the CO2 , bicarbonate in vivo buffer system.

    PubMed

    Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E

    2014-11-01

    Development of an oral in vivo predictive dissolution medium for acid drugs with a pKa in the physiological range (e.g., Biopharmaceutics Classification System Class IIa) requires transport analysis of the complex in vivo CO2 /bicarbonate buffering system. In this report, we analyze this buffer system using hydrodynamically defined rotating disk dissolution. Transport analysis of drug flux was predicted using the film model approach of Mooney et al based on equilibrium assumptions as well as accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . The accuracy of the models was compared with experimentally determined results using the rotating disk dissolution of ibuprofen, indomethacin, and ketoprofen. The equilibrium and slow hydration reaction rate models predict significantly different dissolution rates. The experimental results are more accurately predicted by accounting for the slow hydration reaction under a variety of pH and hydrodynamic conditions. Although the complex bicarbonate buffering system requires further consideration given its dynamic nature in vivo, a simplifying irreversible reaction (IRR) transport analysis accurately predicts in vitro rotating disk dissolution rates of several carboxylic acid drugs. This IRR transport model provides further insight into bicarbonate buffer and can be useful in developing more physiologically relevant buffer systems for dissolution testing.

  6. Functional group analysis

    SciTech Connect

    Smith, W.T. Jr.; Patterson, J.M.

    1986-04-01

    Analytical methods for functional group analysis are reviewed. Literature reviewed is from the period of December 1983 through November 1985 and presents methods for determining the following compounds: acids, acid halides, active hydrogen, alcohols, aldehydes, ketones, amides, amines, amino acids, anhydrides, aromatic hydrocarbons, azo compounds, carbohydrates, chloramines, esters, ethers, halogen compounds, hydrazines, isothiocyanates, nitro compounds, nitroso compounds, organometallic compounds, oxiranes, peroxides, phenols, phosphorus compounds, quinones, silicon compounds, sulfates, sulfonyl chlorides, thioamides, thiols, and thiosemicarbazones. 150 references.

  7. CRISPR/Cas9 Promotes Functional Study of Testis Specific X-Linked Gene In Vivo

    PubMed Central

    Jiang, Xue; Chen, Yuxi; Zhang, Zhen; Zhang, Xiya; Liang, Puping; Zhan, Shaoquan; Cao, Shanbo; Songyang, Zhou; Huang, Junjiu

    2015-01-01

    Mammalian spermatogenesis is a highly regulated multistage process of sperm generation. It is hard to uncover the real function of a testis specific gene in vitro since the in vitro model is not yet mature. With the development of the CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9) system, we can now rapidly generate knockout mouse models of testis specific genes to study the process of spermatogenesis in vivo. SYCP3-like X-linked 2 (SLX2) is a germ cell specific component, which contains a Cor1 domain and belongs to the XLR (X-linked, lymphocyte regulated) family. Previous studies suggested that SLX2 might play an important role in mouse spermatogenesis based on its subcellular localization and interacting proteins. However, the function of SLX2 in vivo is still elusive. Here, to investigate the functions of SLX2 in spermatogenesis, we disrupted the Slx2 gene by using the CRISPR/Cas9 system. Since Slx2 is a testis specific X-linked gene, we obtained knockout male mice in the first generation and accelerated the study process. Compared with wild-type mice, Slx2 knockout mice have normal testis and epididymis. Histological observation of testes sections showed that Slx2 knockout affected none of the three main stages of spermatogenesis: mitosis, meiosis and spermiogenesis. In addition, we further confirmed that disruption of Slx2 did not affect the number of spermatogonial stem cells, meiosis progression or XY body formation by immunofluorescence analysis. As spermatogenesis was normal in Slx2 knockout mice, these mice were fertile. Taken together, we showed that Slx2 itself is not an essential gene for mouse spermatogenesis and CRISPR/Cas9 technique could speed up the functional study of testis specific X-linked gene in vivo. PMID:26599493

  8. In vivo analysis of polyadenylation in prokaryotes.

    PubMed

    Mohanty, Bijoy K; Kushner, Sidney R

    2014-01-01

    Polyadenylation at the 3' ends of mRNAs, tRNAs, rRNAs, and sRNAs plays important roles in RNA metabolism in both prokaryotes and eukaryotes. However, the nature of poly(A) tails in prokaryotes is distinct compared to their eukaryotic counterparts. Specifically, depending on the organism, eukaryotic poly(A) tails average between 50 and >200 nt and can easily be isolated by several techniques involving oligo(dT)-dependent cDNA amplification. In contrast, the bulk of the poly(A) tails present on prokaryotic transcripts is relatively short (<10 nt) and is difficult to characterize using similar techniques. This chapter describes methods that can circumvent these problems. For example, we discuss how to isolate total RNA and characterize its overall polyadenylation status employing a poly(A) sizing assay. Furthermore, we describe a technique involving RNase H treatment of total RNA followed by northern analysis in order to distinguish length of poly(A) tails on various types of transcripts. Finally, we outline a useful procedure to clone the poly(A) tails of specific transcripts using 5'-3' end-ligated RNA, which is independent of oligo(dT)-dependent cDNA amplification. These approaches are particularly helpful in analyzing transcripts with either short or long poly(A) tails both in prokaryotes and eukaryotes.

  9. Quantitative analysis of in vivo cell proliferation.

    PubMed

    Cameron, Heather A

    2006-11-01

    Injection and immunohistochemical detection of 5-bromo-2'-deoxyuridine (BrdU) has become the standard method for studying the birth and survival of neurons, glia, and other cell types in the nervous system. BrdU, a thymidine analog, becomes stably incorporated into DNA during the S-phase of mitosis. Because DNA containing BrdU can be specifically recognized by antibodies, this method allows dividing cells to be marked at any given time and then identified at time points from a few minutes to several years later. BrdU immunohistochemistry is suitable for cell counting to examine the regulation of cell proliferation and cell fate. It can be combined with labeling by other antibodies, allowing confocal analysis of cell phenotype or expression of other proteins. The potential for nonspecific labeling and toxicity are discussed. Although BrdU immunohistochemistry has almost completely replaced tritiated thymidine autoradiography for labeling dividing cells, this method and situations in which it is still useful are also described. PMID:18428635

  10. Analysis of Cortical Flow Models In Vivo

    PubMed Central

    Benink, Hélène A.; Mandato, Craig A.; Bement, William M.

    2000-01-01

    Cortical flow, the directed movement of cortical F-actin and cortical organelles, is a basic cellular motility process. Microtubules are thought to somehow direct cortical flow, but whether they do so by stimulating or inhibiting contraction of the cortical actin cytoskeleton is the subject of debate. Treatment of Xenopus oocytes with phorbol 12-myristate 13-acetate (PMA) triggers cortical flow toward the animal pole of the oocyte; this flow is suppressed by microtubules. To determine how this suppression occurs and whether it can control the direction of cortical flow, oocytes were subjected to localized manipulation of either the contractile stimulus (PMA) or microtubules. Localized PMA application resulted in redirection of cortical flow toward the site of application, as judged by movement of cortical pigment granules, cortical F-actin, and cortical myosin-2A. Such redirected flow was accelerated by microtubule depolymerization, showing that the suppression of cortical flow by microtubules is independent of the direction of flow. Direct observation of cortical F-actin by time-lapse confocal analysis in combination with photobleaching showed that cortical flow is driven by contraction of the cortical F-actin network and that microtubules suppress this contraction. The oocyte germinal vesicle serves as a microtubule organizing center in Xenopus oocytes; experimental displacement of the germinal vesicle toward the animal pole resulted in localized flow away from the animal pole. The results show that 1) cortical flow is directed toward areas of localized contraction of the cortical F-actin cytoskeleton; 2) microtubules suppress cortical flow by inhibiting contraction of the cortical F-actin cytoskeleton; and 3) localized, microtubule-dependent suppression of actomyosin-based contraction can control the direction of cortical flow. We discuss these findings in light of current models of cortical flow. PMID:10930453

  11. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning.

    PubMed

    Hubeau, Michiel; Steppe, Kathy

    2015-10-01

    Medical imaging techniques are rapidly expanding in the field of plant sciences. Positron emission tomography (PET) is advancing as a powerful functional imaging technique to decipher in vivo the function of xylem water flow (with (15)O or (18)F), phloem sugar flow (with (11)C or (18)F), and the importance of their strong coupling. However, much remains to be learned about how water flow and sugar distribution are coordinated in intact plants, both under present and future climate regimes. We propose to use PET analysis of plants (plant-PET) to visualize and generate these missing data about integrated xylem and phloem transport. These insights are crucial to understanding how a given environment will affect plant physiological processes and growth.

  12. Genome-wide compendium and functional assessment of in vivo heart enhancers

    PubMed Central

    Dickel, Diane E.; Barozzi, Iros; Zhu, Yiwen; Fukuda-Yuzawa, Yoko; Osterwalder, Marco; Mannion, Brandon J.; May, Dalit; Spurrell, Cailyn H.; Plajzer-Frick, Ingrid; Pickle, Catherine S.; Lee, Elizabeth; Garvin, Tyler H.; Kato, Momoe; Akiyama, Jennifer A.; Afzal, Veena; Lee, Ah Young; Gorkin, David U.; Ren, Bing; Rubin, Edward M.; Visel, Axel; Pennacchio, Len A.

    2016-01-01

    Whole-genome sequencing is identifying growing numbers of non-coding variants in human disease studies, but the lack of accurate functional annotations prevents their interpretation. We describe the genome-wide landscape of distant-acting enhancers active in the developing and adult human heart, an organ whose impairment is a predominant cause of mortality and morbidity. Using integrative analysis of >35 epigenomic data sets from mouse and human pre- and postnatal hearts we created a comprehensive reference of >80,000 putative human heart enhancers. To illustrate the importance of enhancers in the regulation of genes involved in heart disease, we deleted the mouse orthologs of two human enhancers near cardiac myosin genes. In both cases, we observe in vivo expression changes and cardiac phenotypes consistent with human heart disease. Our study provides a comprehensive catalogue of human heart enhancers for use in clinical whole-genome sequencing studies and highlights the importance of enhancers for cardiac function. PMID:27703156

  13. Plant-PET Scans: In Vivo Mapping of Xylem and Phloem Functioning.

    PubMed

    Hubeau, Michiel; Steppe, Kathy

    2015-10-01

    Medical imaging techniques are rapidly expanding in the field of plant sciences. Positron emission tomography (PET) is advancing as a powerful functional imaging technique to decipher in vivo the function of xylem water flow (with (15)O or (18)F), phloem sugar flow (with (11)C or (18)F), and the importance of their strong coupling. However, much remains to be learned about how water flow and sugar distribution are coordinated in intact plants, both under present and future climate regimes. We propose to use PET analysis of plants (plant-PET) to visualize and generate these missing data about integrated xylem and phloem transport. These insights are crucial to understanding how a given environment will affect plant physiological processes and growth. PMID:26440436

  14. Single-cell analysis of endothelial morphogenesis in vivo

    PubMed Central

    Yu, Jianxin A.; Castranova, Daniel; Pham, Van N.; Weinstein, Brant M.

    2015-01-01

    Vessel formation has been extensively studied at the tissue level, but the difficulty in imaging the endothelium with cellular resolution has hampered study of the morphogenesis and behavior of endothelial cells (ECs) in vivo. We are using endothelial-specific transgenes and high-resolution imaging to examine single ECs in zebrafish. By generating mosaics with transgenes that simultaneously mark endothelial nuclei and membranes we are able to definitively identify and study the morphology and behavior of individual ECs during vessel sprouting and lumen formation. Using these methods, we show that developing trunk vessels are composed of ECs of varying morphology, and that single-cell analysis can be used to quantitate alterations in morphology and dynamics in ECs that are defective in proper guidance and patterning. Finally, we use single-cell analysis of intersegmental vessels undergoing lumen formation to demonstrate the coexistence of seamless transcellular lumens and single or multicellular enclosed lumens with autocellular or intercellular junctions, suggesting that heterogeneous mechanisms contribute to vascular lumen formation in vivo. The tools that we have developed for single EC analysis should facilitate further rigorous qualitative and quantitative analysis of EC morphology and behavior in vivo. PMID:26253401

  15. Identification and analysis of bacterial virulence genes in vivo.

    PubMed Central

    Unsworth, K E; Holden, D W

    2000-01-01

    Signature-tagged mutagenesis is a mutation-based screening method for the identification of virulence genes of microbial pathogens. Genes isolated by this approach fall into three classes: those with known biochemical function, those of suspected function and some whose functions cannot be predicted from database searches. A variety of in vitro and in vivo methods are available to elucidate the function of genes of the second and third classes. We describe the use of some of these approaches to study the function of the Salmonella pathogenicity island 2 type III secretion system of Salmonella typhimurium. This virulence determinant is required for intracellular survival. Secretion by this system is induced by an acidic pH, and its function may be to alter trafficking of the Salmonella-containing vacuole. Use of a temperature-sensitive non-replicating plasmid and competitive index tests with other genes show that in vivo phenotypes do not always correspond to those predicted from in vitro studies. PMID:10874734

  16. In vivo characterization of regenerative peripheral nerve interface function

    NASA Astrophysics Data System (ADS)

    Ursu, Daniel C.; Urbanchek, Melanie G.; Nedic, Andrej; Cederna, Paul S.; Gillespie, R. Brent

    2016-04-01

    Objective. Regenerative peripheral nerve interfaces (RPNIs) are neurotized free autologous muscle grafts equipped with electrodes to record myoelectric signals for prosthesis control. Viability of rat RPNI constructs have been demonstrated using evoked responses. In vivo RPNI characterization is the next critical step for assessment as a control modality for prosthetic devices. Approach. Two RPNIs were created in each of two rats by grafting portions of free muscle to the ends of divided peripheral nerves (peroneal in the left and tibial in the right hind limb) and placing bipolar electrodes on the graft surface. After four months, we examined in vivo electromyographic signal activity and compared these signals to muscular electromyographic signals recorded from autologous muscles in two rats serving as controls. An additional group of two rats in which the autologous muscles were denervated served to quantify cross-talk in the electrode recordings. Recordings were made while rats walked on a treadmill and a motion capture system tracked the hind limbs. Amplitude and periodicity of signals relative to gait were quantified, correlation between electromyographic and motion recording were assessed, and a decoder was trained to predict joint motion. Main Results. Raw RPNI signals were active during walking, with amplitudes of 1 mVPP, and quiet during standing, with amplitudes less than 0.1 mVPP. RPNI signals were periodic and entrained with gait. A decoder predicted bilateral ankle motion with greater than 80% reliability. Control group signal activity agreed with literature. Denervated group signals remained quiescent throughout all evaluations. Significance. In vivo myoelectric RPNI activity encodes neural activation patterns associated with gait. Signal contamination from muscles adjacent to the RPNI is minimal, as demonstrated by the low amplitude signals obtained from the Denervated group. The periodicity and entrainment to gait of RPNI recordings suggests the

  17. Functional Genetic Targeting of Embryonic Kidney Progenitor Cells Ex Vivo

    PubMed Central

    Junttila, Sanna; Saarela, Ulla; Halt, Kimmo; Manninen, Aki; Pärssinen, Heikki; Lecca, M. Rita; Brändli, André W.; Sims-Lucas, Sunder; Skovorodkin, Ilya

    2015-01-01

    The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor–treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting. PMID:25201883

  18. A Primer on Functional Analysis

    ERIC Educational Resources Information Center

    Yoman, Jerome

    2008-01-01

    This article presents principles and basic steps for practitioners to complete a functional analysis of client behavior. The emphasis is on application of functional analysis to adult mental health clients. The article includes a detailed flow chart containing all major functional diagnoses and behavioral interventions, with functional assessment…

  19. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    NASA Astrophysics Data System (ADS)

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-06-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment.

  20. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle.

    PubMed

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-06-15

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment.

  1. In vivo Monitoring of Serotonin by Nanomaterial Functionalized Acupuncture Needle

    PubMed Central

    Li, Yu-Tao; Tang, Li-Na; Ning, Yong; Shu, Qing; Liang, Feng-Xia; Wang, Hua; Zhang, Guo-Jun

    2016-01-01

    Acupuncture treatment is amazing but controversial. Up to now, the mechanism of treating diseases by acupuncture and moxibustion is still unclear, especially the occurrence of the molecular events in local acupoints. Herein, we report an extremely stable microsensor by modifying carbon nanotube (CNT) to the tip surface of acupuncture needle and applying this CNT-modified acupuncture needle for real time monitoring of serotonin (5-HT) in vivo. To stabilize CNT modification on the needle tip surface, poly(3,4-ethylenedioxythiophene)(PEDOT) was employed as glue water to stick CNT on the needle. The detection limit of the CNT-modified needle was found to be approximately 50 nM and 78 nM in the PBS and the cell medium, respectively. In addition, the needle showed good selectivity to some inflammatory mediators and some electroactive molecules. For the first time, the CNT-modified needle could be directly probed into rat body for real time monitoring of 5-HT in vivo, showing a great potential for better understanding the mechanism of acupuncture treatment. PMID:27301303

  2. Beyond Drosophila: RNAi in vivo and functional genomics in insects.

    PubMed

    Bellés, Xavier

    2010-01-01

    The increasing availability of insect genomes has revealed a large number of genes with unknown functions and the resulting problem of how to discover these functions. The RNA interference (RNAi) technique, which generates loss-of-function phenotypes by depletion of a chosen transcript, can help to overcome this challenge. RNAi can unveil the functions of new genes, lead to the discovery of new functions for old genes, and find the genes for old functions. Moreover, the possibility of studying the functions of homologous genes in different species can allow comparisons of the genetic networks regulating a given function in different insect groups, thereby facilitating an evolutionary insight into developmental processes. RNAi also has drawbacks and obscure points, however, such as those related to differences in species sensitivity. Disentangling these differences is one of the main challenges in the RNAi field.

  3. HLA-B27/microbial mimicry: an in vivo analysis.

    PubMed Central

    Kapasi, K; Chui, B; Inman, R D

    1992-01-01

    The association between three major spondyloarthritic diseases, ankylosing spondylitis, Reiter's syndrome, and reactive arthritis, and the major histocompatibility complex (MHC) class 1 antigen HLA-B27 is well documented. The hypothesis of cross-reactivity between HLA-B27 and the antecedent infection-causing Gram-negative pathogens such as Salmonella, Shigella and Yersinia has been suggested by in vitro studies employing monoclonal antibodies. We have examined the possibility of such cross-reactivity in vivo using various rabbit immune sera and patient sera as the source of cross-reacting antibody. Mouse L cells were transfected with HLA-A3 or HLA-B27 and used as a source of antigen. Western blot analysis employing denatured antigen, FACS analysis employing native antigen and immunoprecipitation studies were undertaken to detect cross-reacting antibodies generated in vivo to HLA-B27 antigen. Antibodies generated in vivo by infection in patients or immunization in animals against arthritogenic bacteria did not demonstrate any cross-reactivity with HLA-B27 by any of the methods used. As defined by the humoral immune response, molecular mimicry appears unlikely to explain the role of B27 in the pathogenesis of reactive arthritis. Images Figure 2 Figure 3 Figure 6 PMID:1478690

  4. Function Point Analysis Depot

    NASA Technical Reports Server (NTRS)

    Muniz, R.; Martinez, El; Szafran, J.; Dalton, A.

    2011-01-01

    The Function Point Analysis (FPA) Depot is a web application originally designed by one of the NE-C3 branch's engineers, Jamie Szafran, and created specifically for the Software Development team of the Launch Control Systems (LCS) project. The application consists of evaluating the work of each developer to be able to get a real estimate of the hours that is going to be assigned to a specific task of development. The Architect Team had made design change requests for the depot to change the schema of the application's information; that information, changed in the database, needed to be changed in the graphical user interface (GUI) (written in Ruby on Rails (RoR and the web service/server side in Java to match the database changes. These changes were made by two interns from NE-C, Ricardo Muniz from NE-C3, who made all the schema changes for the GUI in RoR and Edwin Martinez, from NE-C2, who made all the changes in the Java side.

  5. In vivo platforms for analysis of HIV persistence and eradication.

    PubMed

    Garcia, J Victor

    2016-02-01

    HIV persistence in patients undergoing antiretroviral therapy is a major impediment to the cure of HIV/AIDS. The molecular and cellular mechanisms underlying HIV persistence in vivo have not been fully elucidated. This lack of basic knowledge has hindered progress in this area. The in vivo analysis of HIV persistence and the implementation of curative strategies would benefit from animal models that accurately recapitulate key aspects of the human condition. This Review summarizes the contribution that humanized mouse models of HIV infection have made to the field of HIV cure research. Even though these models have been shown to be highly informative in many specific areas, their great potential to serve as excellent platforms for discovery in HIV pathogenesis and treatment has yet to be fully developed.

  6. Understanding functional miRNA-target interactions in vivo by site-specific genome engineering.

    PubMed

    Bassett, Andrew R; Azzam, Ghows; Wheatley, Lucy; Tibbit, Charlotte; Rajakumar, Timothy; McGowan, Simon; Stanger, Nathan; Ewels, Philip Andrew; Taylor, Stephen; Ponting, Chris P; Liu, Ji-Long; Sauka-Spengler, Tatjana; Fulga, Tudor A

    2014-01-01

    MicroRNA (miRNA) target recognition is largely dictated by short 'seed' sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA-target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA-MRE interactions at any point during development. PMID:25135198

  7. Understanding functional miRNA–target interactions in vivo by site-specific genome engineering

    PubMed Central

    Bassett, Andrew R.; Azzam, Ghows; Wheatley, Lucy; Tibbit, Charlotte; Rajakumar, Timothy; McGowan, Simon; Stanger, Nathan; Ewels, Philip Andrew; Taylor, Stephen; Ponting, Chris P.; Liu, Ji-Long; Sauka-Spengler, Tatjana; Fulga, Tudor A.

    2014-01-01

    MicroRNA (miRNA) target recognition is largely dictated by short ‘seed’ sequences, and single miRNAs therefore have the potential to regulate a large number of genes. Understanding the contribution of specific miRNA–target interactions to the regulation of biological processes in vivo remains challenging. Here we use transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 technologies to interrogate the functional relevance of predicted miRNA response elements (MREs) to post-transcriptional silencing in zebrafish and Drosophila. We also demonstrate an effective strategy that uses CRISPR-mediated homology-directed repair with short oligonucleotide donors for the assessment of MRE activity in human cells. These methods facilitate analysis of the direct phenotypic consequences resulting from blocking specific miRNA–MRE interactions at any point during development. PMID:25135198

  8. Analysis of leukocyte rolling in vivo and in vitro.

    PubMed

    Sperandio, Markus; Pickard, John; Unnikrishnan, Sunil; Acton, Scott T; Ley, Klaus

    2006-01-01

    Leukocyte rolling is an important step for the successful recruitment of leukocytes from blood to tissues mediated by a specialized group of glycoproteins termed selectins. Because of the dynamic process of leukocyte rolling, binding of selectins to their respective counter-receptors (selectin ligands) needs to fulfill three major requirements: (1) rapid bond formation, (2) high tensile strength, and (3) fast dissociation rates. These criteria are perfectly met by selectins, which interact with specific carbohydrate determinants on selectin ligands. This chapter describes the theoretical background, technical requirements, and analytical tools needed to quantitatively assess leukocyte rolling in vivo and in vitro. For the in vivo setting, intravital microscopy allows the observation and recording of leukocyte rolling under different physiological and pathological conditions in almost every organ. Real-time and off-line analysis tools help to assess geometric, hemodynamic, and rolling parameters. Under in vitro conditions, flow chamber assays such as parallel plate flow chamber systems have been the mainstay to study interactions between leukocytes and adhesion molecules under flow. In this setting, adhesion molecules are immobilized on plastic, in a lipid monolayer, or presented on cultured endothelial cells on the chamber surface. Microflow chambers are available for studying leukocyte adhesion in the context of whole blood and without blood cell isolation. The microscopic observation of leukocyte rolling in different in vivo and in vitro settings has significantly contributed to our understanding of the molecular mechanisms responsible for the stepwise extravasation of leukocytes into inflamed tissues.

  9. In Vivo Imaging of Tissue Physiological Function using EPR Spectroscopy | NCI Technology Transfer Center | TTC

    Cancer.gov

    Electron paramagnetic resonance (EPR) is a technique for studying chemical species that have one or more unpaired electrons.  The current invention describes Echo-based Single Point Imaging (ESPI), a novel EPR image formation strategy that allows in vivo imaging of physiological function.  The National Cancer Institute's Radiation Biology Branch is seeking statements of capability or interest from parties interested in in-licensing an in vivo imaging using Electron paramagnetic resonance (EPR) to measure active oxygen species.

  10. Rat parotid cell function in vitro following x irradiation in vivo

    SciTech Connect

    Bodner, L.; Kuyatt, B.L.; Hand, A.R.; Baum, B.J.

    1984-02-01

    The effect of X irradiation on rat parotid acinar cell function was evaluated in vitro 1, 3, and 7 days following in vivo exposure to 2000 R. Several cellular functions were followed: protein secretion (amylase release), ion movement (K/sup +/ efflux and reuptake), amino acid transport (..cap alpha..-amino(/sup 14/C)isobutyric acid), and an intermediary metabolic response ((/sup 14/C)glucose oxidation). In addition both the morphologic appearance and in vivo saliva secretory ability of parotid cells were assessed. Our results demonstrate that surviving rat parotid acinar cells, isolated and studied in vitro 1-7 days following 2000 R, remain functionally intact despite in vivo diminution of secretory function.

  11. Program functionality and information analysis

    SciTech Connect

    Woods, T.W.; Shipler, D.B.

    1992-04-01

    The Office of Civilian Radioactive Waste Management (OCRWM) is executing a plan for improvement of the United States Nuclear Waste Management Program. As part of the plan, OCRWM is performing a systems engineering analysis of both the physical system, i.e., the Nuclear Waste Management System (NWMS), and the programmatic functions that must be accomplished to bring the physical system into being. The functional analysis effort is being performed by two separate teams working in parallel, one of which addresses the physical system functions and the other the programmatic functions. This paper presents information on the analysis of the programmatic functions.

  12. Using vaccinations to assess in vivo immune function in psychoneuroimmunology.

    PubMed

    Burns, Victoria E

    2012-01-01

    Finding clinically relevant measures of immune function is an important challenge in psychoneuroimmunological research. Here, we discuss the advantages of the vaccination model, and provide guidance on the methodological decisions that are important to consider in the use of this technique. These include the choice of vaccination, timing of assessments, and the available outcome measures.

  13. Inflammation modulates human HDL composition and function in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inflammation may directly impair HDL functions, in particular reverse cholesterol transport (RCT), but limited data support this concept in humans. Our study was designed to investigate this relationship. We employed low-dose human endotoxemia to assess the effects of inflammation on HDL and RCT-rel...

  14. Specific in vivo knockdown of protein function by intrabodies

    PubMed Central

    Marschall, Andrea LJ; Dübel, Stefan; Böldicke, Thomas

    2015-01-01

    Intracellular antibodies (intrabodies) are recombinant antibody fragments that bind to target proteins expressed inside of the same living cell producing the antibodies. The molecules are commonly used to study the function of the target proteins (i.e., their antigens). The intrabody technology is an attractive alternative to the generation of gene-targeted knockout animals, and complements knockdown techniques such as RNAi, miRNA and small molecule inhibitors, by-passing various limitations and disadvantages of these methods. The advantages of intrabodies include very high specificity for the target, the possibility to knock down several protein isoforms by one intrabody and targeting of specific splice variants or even post-translational modifications. Different types of intrabodies must be designed to target proteins at different locations, typically either in the cytoplasm, in the nucleus or in the endoplasmic reticulum (ER). Most straightforward is the use of intrabodies retained in the ER (ER intrabodies) to knock down the function of proteins passing the ER, which disturbs the function of members of the membrane or plasma proteomes. More effort is needed to functionally knock down cytoplasmic or nuclear proteins because in this case antibodies need to provide an inhibitory effect and must be able to fold in the reducing milieu of the cytoplasm. In this review, we present a broad overview of intrabody technology, as well as applications both of ER and cytoplasmic intrabodies, which have yielded valuable insights in the biology of many targets relevant for drug development, including α-synuclein, TAU, BCR-ABL, ErbB-2, EGFR, HIV gp120, CCR5, IL-2, IL-6, β-amyloid protein and p75NTR. Strategies for the generation of intrabodies and various designs of their applications are also reviewed. PMID:26252565

  15. Development of functional in vivo imaging of cerebral lenticulostriate artery using novel synchrotron radiation angiography

    NASA Astrophysics Data System (ADS)

    Lin, Xiaojie; Miao, Peng; Mu, Zhihao; Jiang, Zhen; Lu, Yifan; Guan, Yongjing; Chen, Xiaoyan; Xiao, Tiqiao; Wang, Yongting; Yang, Guo-Yuan

    2015-02-01

    The lenticulostriate artery plays a vital role in the onset and development of cerebral ischemia. However, current imaging techniques cannot assess the in vivo functioning of small arteries such as the lenticulostriate artery in the brain of rats. Here, we report a novel method to achieve a high resolution multi-functional imaging of the cerebrovascular system using synchrotron radiation angiography, which is based on spatio-temporal analysis of contrast density in the arterial cross section. This method provides a unique tool for studying the sub-cortical vascular elasticity after cerebral ischemia in rats. Using this technique, we demonstrated that the vascular elasticity of the lenticulostriate artery decreased from day 1 to day 7 after transient middle cerebral artery occlusion in rats and recovered from day 7 to day 28 compared to the controls (p < 0.001), which paralleled with brain edema formation and inversely correlated with blood flow velocity (p < 0.05). Our results demonstrated that the change of vascular elasticity was related to the levels of brain edema and the velocity of focal blood flow, suggesting that reducing brain edema is important for the improvement of the function of the lenticulostriate artery in the ischemic brain.

  16. Effect of Processing and Storage on RBC function in vivo

    PubMed Central

    Doctor, Allan; Spinella, Phil

    2012-01-01

    Red Blood Cell (RBC) transfusion is indicated to improve oxygen delivery to tissue, and for no other purpose. We have come to appreciate that donor RBCs are fundamentally altered during processing and storage, in a fashion that both impairs oxygen transport efficacy and introduces additional risk by perturbing both immune and coagulation systems. The protean biophysical and physiologic changes in RBC function arising from storage are termed the ‘storage lesion’; many have been understood for some time; for example, we know that the oxygen affinity of stored blood rises during the storage period1 and that intracellular allosteric regulators, notably 2,3-bisphosphoglyceric acid (DPG) and ATP, are depleted during storage. Our appreciation of other storage lesion features has emerged with improved understanding of coagulation, immune and vascular signaling systems. Herein we review key features of the ‘storage lesion’. Additionally, we call particular attention to the newly appreciated role of RBCs in regulating linkage between regional blood flow and regional O2 consumption by regulating the bioavailability of key vasoactive mediators in plasma, as well as discuss how processing and storage disturbs this key signaling function and impairs transfusion efficacy. PMID:22818545

  17. Functional Group Analysis.

    ERIC Educational Resources Information Center

    Smith, Walter T., Jr.; Patterson, John M.

    1984-01-01

    Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…

  18. Ascl1 Converts Dorsal Midbrain Astrocytes into Functional Neurons In Vivo.

    PubMed

    Liu, Yueguang; Miao, Qinglong; Yuan, Jiacheng; Han, Su'e; Zhang, Panpan; Li, Sanlan; Rao, Zhiping; Zhao, Wenlong; Ye, Qian; Geng, Junlan; Zhang, Xiaohui; Cheng, Leping

    2015-06-24

    In vivo induction of non-neuronal cells into neurons by transcription factors offers potential therapeutic approaches for neural regeneration. Although generation of induced neuronal (iN) cells in vitro and in vivo has been reported, whether iN cells can be fully integrated into existing circuits remains unclear. Here we show that expression of achaete-scute complex homolog-like 1 (Ascl1) alone is sufficient to convert dorsal midbrain astrocytes of mice into functional iN cells in vitro and in vivo. Specific expression of Ascl1 in astrocytes by infection with GFAP-adeno-associated virus (AAV) vector converts astrocytes in dorsal midbrain, striatum, and somatosensory cortex of postnatal and adult mice into functional neurons in vivo. These iN cells mature progressively, exhibiting neuronal morphology and markers, action potentials, and synaptic inputs from and output to existing neurons. Thus, a single transcription factor, Ascl1, is sufficient to convert brain astrocytes into functional neurons, and GFAP-AAV is an efficient vector for generating iN cells from astrocytes in vivo.

  19. Development and in vivo evaluation of papain-functionalized nanoparticles.

    PubMed

    Müller, Christiane; Perera, Glen; König, Verena; Bernkop-Schnürch, Andreas

    2014-05-01

    The aim of the present study was to develop a novel nanoparticulate delivery system being capable of penetrating the intestinal mucus layer by cleaving mucoglycoprotein substructures. Nanoparticles based on papain grafted polyacrylic acid (papain-g-PAA) were prepared via ionic gelation and labeled with fluorescein diacetate. In vitro, the proteolytic potential of papain modified nanoparticles was investigated by rheological measurements and diffusion studies across fresh porcine intestinal mucus. The presence of papain on the surface and inside the particles strongly decreases viscosity of the mucus leading to facilitated particle transition across the mucus layer. Results of the permeation studies revealed that enzyme grafted particles diffuse through mucus layer to a 3.0-fold higher extent than the same particles without enzyme. Furthermore, the penetration behavior of the nanocarriers along the gastrointestinal tract of Sprague Dawley rats was investigated after oral administration of nanoparticles formulated as enteric coated capsules. The majority of the papain functionalized particles was able to traverse across the mucus layer and remained in the duodenum and jejunum of the small intestine where drug absorption primarily occurs. Polymeric nanoparticles combined with mucolytic enzymes that are capable of overcoming intestinal mucus barriers offer an encouraging new attempt for mucosal drug delivery.

  20. In-vivo heterogeneous functional and residual strains in human aortic valve leaflets.

    PubMed

    Aggarwal, Ankush; Pouch, Alison M; Lai, Eric; Lesicko, John; Yushkevich, Paul A; Gorman Iii, Joseph H; Gorman, Robert C; Sacks, Michael S

    2016-08-16

    Residual and physiological functional strains in soft tissues are known to play an important role in modulating organ stress distributions. Yet, no known comprehensive information on residual strains exist, or non-invasive techniques to quantify in-vivo deformations for the aortic valve (AV) leaflets. Herein we present a completely non-invasive approach for determining heterogeneous strains - both functional and residual - in semilunar valves and apply it to normal human AV leaflets. Transesophageal 3D echocardiographic (3DE) images of the AV were acquired from open-heart transplant patients, with each AV leaflet excised after heart explant and then imaged in a flattened configuration ex-vivo. Using an established spline parameterization of both 3DE segmentations and digitized ex-vivo images (Aggarwal et al., 2014), surface strains were calculated for deformation between the ex-vivo and three in-vivo configurations: fully open, just-coapted, and fully-loaded. Results indicated that leaflet area increased by an average of 20% from the ex-vivo to in-vivo open states, with a highly heterogeneous strain field. The increase in area from open to just-coapted state was the highest at an average of 25%, while that from just-coapted to fully-loaded remained almost unaltered. Going from the ex-vivo to in-vivo mid-systole configurations, the leaflet area near the basal attachment shrank slightly, whereas the free edge expanded by ~10%. This was accompanied by a 10° -20° shear along the circumferential-radial direction. Moreover, the principal stretches aligned approximately with the circumferential and radial directions for all cases, with the highest stretch being along the radial direction. Collectively, these results indicated that even though the AV did not support any measurable pressure gradient in the just-coapted state, the leaflets were significantly pre-strained with respect to the excised state. Furthermore, the collagen fibers of the leaflet were almost fully

  1. A guide to human in vivo microcirculatory flow image analysis.

    PubMed

    Massey, Michael J; Shapiro, Nathan I

    2016-01-01

    Various noninvasive microscopic camera technologies have been used to visualize the sublingual microcirculation in patients. We describe a comprehensive approach to bedside in vivo sublingual microcirculation video image capture and analysis techniques in the human clinical setting. We present a user perspective and guide suitable for clinical researchers and developers interested in the capture and analysis of sublingual microcirculatory flow videos. We review basic differences in the cameras, optics, light sources, operation, and digital image capture. We describe common techniques for image acquisition and discuss aspects of video data management, including data transfer, metadata, and database design and utilization to facilitate the image analysis pipeline. We outline image analysis techniques and reporting including video preprocessing and image quality evaluation. Finally, we propose a framework for future directions in the field of microcirculatory flow videomicroscopy acquisition and analysis. Although automated scoring systems have not been sufficiently robust for widespread clinical or research use to date, we discuss promising innovations that are driving new development. PMID:26861691

  2. SAHA enhances synaptic function and plasticity in vitro but has limited brain availability in vivo and does not impact cognition.

    PubMed

    Hanson, Jesse E; La, Hank; Plise, Emile; Chen, Yung-Hsiang; Ding, Xiao; Hanania, Taleen; Sabath, Emily V; Alexandrov, Vadim; Brunner, Dani; Leahy, Emer; Steiner, Pascal; Liu, Lichuan; Scearce-Levie, Kimberly; Zhou, Qiang

    2013-01-01

    Suberoylanilide hydroxamic acid (SAHA) is an inhibitor of histone deacetylases (HDACs) used for the treatment of cutaneous T cell lymphoma (CTCL) and under consideration for other indications. In vivo studies suggest reducing HDAC function can enhance synaptic function and memory, raising the possibility that SAHA treatment could have neurological benefits. We first examined the impacts of SAHA on synaptic function in vitro using rat organotypic hippocampal brain slices. Following several days of SAHA treatment, basal excitatory but not inhibitory synaptic function was enhanced. Presynaptic release probability and intrinsic neuronal excitability were unaffected suggesting SAHA treatment selectively enhanced postsynaptic excitatory function. In addition, long-term potentiation (LTP) of excitatory synapses was augmented, while long-term depression (LTD) was impaired in SAHA treated slices. Despite the in vitro synaptic enhancements, in vivo SAHA treatment did not rescue memory deficits in the Tg2576 mouse model of Alzheimer's disease (AD). Along with the lack of behavioral impact, pharmacokinetic analysis indicated poor brain availability of SAHA. Broader assessment of in vivo SAHA treatment using high-content phenotypic characterization of C57Bl6 mice failed to demonstrate significant behavioral effects of up to 150 mg/kg SAHA following either acute or chronic injections. Potentially explaining the low brain exposure and lack of behavioral impacts, SAHA was found to be a substrate of the blood brain barrier (BBB) efflux transporters Pgp and Bcrp1. Thus while our in vitro data show that HDAC inhibition can enhance excitatory synaptic strength and potentiation, our in vivo data suggests limited brain availability may contribute to the lack of behavioral impact of SAHA following peripheral delivery. These results do not predict CNS effects of SAHA during clinical use and also emphasize the importance of analyzing brain drug levels when interpreting preclinical

  3. Application of electrical stimulation for functional tissue engineering in vitro and in vivo

    NASA Technical Reports Server (NTRS)

    Radisic, Milica (Inventor); Park, Hyoungshin (Inventor); Langer, Robert (Inventor); Freed, Lisa (Inventor); Vunjak-Novakovic, Gordana (Inventor)

    2013-01-01

    The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.

  4. In vivo circulation, clearance, and biodistribution of polyglycerol grafted functional red blood cells.

    PubMed

    Chapanian, Rafi; Constantinescu, Iren; Brooks, Donald E; Scott, Mark D; Kizhakkedathu, Jayachandran N

    2012-04-01

    The in vivo circulation of hyperbranched polyglycerol (HPG) grafted red blood cells (RBCs) was investigated in mice. The number of HPG molecules grafted per RBC was measured using tritium labeled HPGs ((3)H-HPG) of different molecular weights; the values ranged from 1 × 10(5) to 2 × 10(6) molecules per RBC. HPG-grafted RBCs were characterized in vitro by measuring the electrophoretic mobility, complement mediated lysis, and osmotic fragility. Our results show that RBCs grafted with 1.5 × 10(5) HPG molecules per RBC having molecular weights 20 and 60 kDa have similar characteristics as that of control RBCs. The in vivo circulation of HPG-grafted RBCs was measured by a tail vain injection of (3)H-HPG60K-RBC in mice. The radioactivity of isolated RBCs, whole blood, plasma, different organs, urine and feces was evaluated at different time intervals. The portion of (3)H-HPG60K-RBC that survived the first day in mice (52%) remained in circulation for 50 days. Minimal accumulation radioactivity in organs other than liver and spleen was observed suggesting the normal clearance mechanism of modified RBCs. Animals gained normal weights and no abnormalities observed in necropsy analysis. The stability of the ester-amide linker between the RBC and HPG was evaluated by comparing the clearance rate of (3)H-HPG60K-RBC and PKH-26 lipid fluorescent membrane marker labeled HPG60K-RBCs. HPG modified RBCs combine the many advantages of a dendritic polymer and RBCs, and hold great promise in systemic drug delivery and other applications of functional RBC.

  5. Quantitative analysis of in vivo confocal microscopy images: a review.

    PubMed

    Patel, Dipika V; McGhee, Charles N

    2013-01-01

    In vivo confocal microscopy (IVCM) is a non-invasive method of examining the living human cornea. The recent trend towards quantitative studies using IVCM has led to the development of a variety of methods for quantifying image parameters. When selecting IVCM images for quantitative analysis, it is important to be consistent regarding the location, depth, and quality of images. All images should be de-identified, randomized, and calibrated prior to analysis. Numerous image analysis software are available, each with their own advantages and disadvantages. Criteria for analyzing corneal epithelium, sub-basal nerves, keratocytes, endothelium, and immune/inflammatory cells have been developed, although there is inconsistency among research groups regarding parameter definition. The quantification of stromal nerve parameters, however, remains a challenge. Most studies report lower inter-observer repeatability compared with intra-observer repeatability, and observer experience is known to be an important factor. Standardization of IVCM image analysis through the use of a reading center would be crucial for any future large, multi-centre clinical trials using IVCM.

  6. Anti-CEA-functionalized superparamagnetic iron oxide nanoparticles for examining colorectal tumors in vivo

    NASA Astrophysics Data System (ADS)

    Huang, Kai-Wen; Chieh, Jen-Jie; Lin, In-Tsang; Horng, Herng-Er; Yang, Hong-Chang; Hong, Chin-Yih

    2013-10-01

    Although the biomarker carcinoembryonic antigen (CEA) is expressed in colorectal tumors, the utility of an anti-CEA-functionalized image medium is powerful for in vivo positioning of colorectal tumors. With a risk of superparamagnetic iron oxide nanoparticles (SPIONPs) that is lower for animals than other material carriers, anti-CEA-functionalized SPIONPs were synthesized in this study for labeling colorectal tumors by conducting different preoperatively and intraoperatively in vivo examinations. In magnetic resonance imaging (MRI), the image variation of colorectal tumors reached the maximum at approximately 24 h. However, because MRI requires a nonmetal environment, it was limited to preoperative imaging. With the potentiality of in vivo screening and intraoperative positioning during surgery, the scanning superconducting-quantum-interference-device biosusceptometry (SSB) was adopted, showing the favorable agreement of time-varied intensity with MRI. Furthermore, biological methodologies of different tissue staining methods and inductively coupled plasma (ICP) yielded consistent results, proving that the obtained in vivo results occurred because of targeted anti-CEA SPIONPs. This indicates that developed anti-CEA SPIONPs owe the utilities as an image medium of these in vivo methodologies.

  7. EFFECTS OF BROMODICHLOROMETHANE (BDCM) ON EX VIVO LUTEAL FUNCTION IN THE F344 RAT DURING PREGNANCY

    EPA Science Inventory

    Effects of Bromodichloromethane (BDCM) on Ex Vivo Luteal Function In the Pregnant F344 Rat

    Susan R. Bielmeier1, Ashley S. Murr2, Deborah S. Best2, Jerome M. Goldman2, and Michael G. Narotsky2

    1Curriculum in Toxicology, Univ. of North Carolina, Chapel Hill, NC 27599,...

  8. Kinetic analysis of pre-ribosome structure in vivo.

    PubMed

    Swiatkowska, Agata; Wlotzka, Wiebke; Tuck, Alex; Barrass, J David; Beggs, Jean D; Tollervey, David

    2012-12-01

    Pre-ribosomal particles undergo numerous structural changes during maturation, but their high complexity and short lifetimes make these changes very difficult to follow in vivo. In consequence, pre-ribosome structure and composition have largely been inferred from purified particles and analyzed in vitro. Here we describe techniques for kinetic analyses of the changes in pre-ribosome structure in living cells of Saccharomyces cerevisiae. To allow this, in vivo structure probing by DMS modification was combined with affinity purification of newly synthesized 20S pre-rRNA over a time course of metabolic labeling with 4-thiouracil. To demonstrate that this approach is generally applicable, we initially analyzed the accessibility of the region surrounding cleavage site D site at the 3' end of the mature 18S rRNA region of the pre-rRNA. This revealed a remarkably flexible structure throughout 40S subunit biogenesis, with little stable RNA-protein interaction apparent. Analysis of folding in the region of the 18S central pseudoknot was consistent with previous data showing U3 snoRNA-18S rRNA interactions. Dynamic changes in the structure of the hinge between helix 28 (H28) and H44 of pre-18S rRNA were consistent with recently reported interactions with the 3' guide region of U3 snoRNA. Finally, analysis of the H18 region indicates that the RNA structure matures early, but additional protection appears subsequently, presumably reflecting protein binding. The structural analyses described here were performed on total, affinity-purified, newly synthesized RNA, so many classes of RNA and RNA-protein complex are potentially amenable to this approach.

  9. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia

    PubMed Central

    Ruozi, Giulia; Bortolotti, Francesca; Falcione, Antonella; Dal Ferro, Matteo; Ukovich, Laura; Macedo, Antero; Zentilin, Lorena; Filigheddu, Nicoletta; Cappellari, Gianluca Gortan; Baldini, Giovanna; Zweyer, Marina; Barazzoni, Rocco; Graziani, Andrea; Zacchigna, Serena; Giacca, Mauro

    2015-01-01

    Functional screening of expression libraries in vivo would offer the possibility of identifying novel biotherapeutics without a priori knowledge of their biochemical function. Here we describe a procedure for the functional selection of tissue-protective factors based on the in vivo delivery of arrayed cDNA libraries from the mouse secretome using adeno-associated virus (AAV) vectors. Application of this technique, which we call FunSel, in the context of acute ischaemia, revealed that the peptide ghrelin protects skeletal muscle and heart from ischaemic damage. When delivered to the heart using an AAV9 vector, ghrelin markedly reduces infarct size and preserves cardiac function over time. This protective activity associates with the capacity of ghrelin to sustain autophagy and remove dysfunctional mitochondria after myocardial infarction. Our findings describe an innovative tool to identify biological therapeutics and reveal a novel role of ghrelin as an inducer of myoprotective autophagy. PMID:26066847

  10. In-vivo visualization and functional characterization of primary somatic neurons

    PubMed Central

    Ma, Chao; Donnelly, David F.; LaMotte, Robert H.

    2010-01-01

    In-vivo electrophysiological recordings from cell bodies of primary sensory neurons are used to determine sensory function but are commonly performed blindly and without access to voltage-(patch-clamp) electrophysiology or optical imaging. We present a procedure to visualize and patch-clamp the neuronal cell body in the dorsal root ganglion, in vivo, manipulate its chemical environment, determine its receptive field properties, and remove it either to obtain subsequent molecular analyses or to gain access to deeper lying cells. This method allows the association of the peripheral transduction capacities of a sensory neuron with the biophysical and chemical characteristics of its cell body. PMID:20558205

  11. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating

    PubMed Central

    Alba, Nicolas A.; Du, Zhanhong J.; Catt, Kasey A.; Kozai, Takashi D. Y.; Cui, X. Tracy

    2015-01-01

    Neural electrodes hold tremendous potential for improving understanding of brain function and restoring lost neurological functions. Multi-walled carbon nanotube (MWCNT) and dexamethasone (Dex)-doped poly(3,4-ethylenedioxythiophene) (PEDOT) coatings have shown promise to improve chronic neural electrode performance. Here, we employ electrochemical techniques to characterize the coating in vivo. Coated and uncoated electrode arrays were implanted into rat visual cortex and subjected to daily cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) for 11 days. Coated electrodes experienced a significant decrease in 1 kHz impedance within the first two days of implantation followed by an increase between days 4 and 7. Equivalent circuit analysis showed that the impedance increase is the result of surface capacitance reduction, likely due to protein and cellular processes encapsulating the porous coating. Coating’s charge storage capacity remained consistently higher than uncoated electrodes, demonstrating its in vivo electrochemical stability. To decouple the PEDOT/MWCNT material property changes from the tissue response, in vitro characterization was conducted by soaking the coated electrodes in PBS for 11 days. Some coated electrodes exhibited steady impedance while others exhibiting large increases associated with large decreases in charge storage capacity suggesting delamination in PBS. This was not observed in vivo, as scanning electron microscopy of explants verified the integrity of the coating with no sign of delamination or cracking. Despite the impedance increase, coated electrodes successfully recorded neural activity throughout the implantation period. PMID:26473938

  12. Adenosine A2A Agonist Improves Lung Function During Ex-vivo Lung Perfusion

    PubMed Central

    Emaminia, Abbas; LaPar, Damien J.; Zhao, Yunge; Steidle, John F.; Harris, David A.; Linden, Joel; Kron, Irving L.; Lau, Christine L.

    2012-01-01

    Background Ex-vivo lung perfusion (EVLP) is a novel technique to assess, and potentially repair marginal lungs that may otherwise be rejected for transplantation. Adenosine has been shown to protect against lung ischemia-reperfusion injury through its A2A receptor. We hypothesized that combining EVLP with adenosine A2A receptor agonist treatment would enhance lung functional quality and increase donor lung usage. Methods Eight bilateral pig lungs were harvested and flushed with cold Perfadex. After 14 hours storage at 4°C, EVLP was performed for 5 hours on two explanted lung groups: 1) Control group lungs (n=4), were perfused with Steen Solution and Dimethyl sulfoxide (DMSO), and 2) treated group lungs (n=4) received 10μM CGS21680, a selective A2A receptor agonist, in a Steen Solution-primed circuit. Lung histology, tissue cytokines, gas analysis and pulmonary function were compared between groups. Results Treated lungs demonstrated significantly less edema as reflected by wet-dry weight ratio (6.6 vs. 5.2, p<0.03) and confirmed by histology. In addition, treated lung demonstrated significantly lower levels of interferon gamma (45.1 vs. 88.5, p<0.05). Other measured tissue cytokines (interleukin (IL) 1 beta, IL-6, and IL-8) were lower in treatment group, but values failed to reach statistical significance. Oxygenation index was improved in the treated group (1.5 vs. 2.3, p<0.01) as well as mean airway pressure (10.3 vs. 13 p<0.009). Conclusions EVLP is a novel and efficient way to assess and optimize lung function and oxygen exchange within donor lungs, and the use of adenosine A2A agonist potentiates its potential. EVLP with the concomitant administration of A2A agonist may enhance donor lung quality and could increase the donor lung pool for transplantation. PMID:22051279

  13. Quantifying long-term microelectrode array functionality using chronic in vivo impedance testing

    NASA Astrophysics Data System (ADS)

    Prasad, Abhishek; Sanchez, Justin C.

    2012-04-01

    Long-term acquisition of high-quality neural recordings is a cornerstone of neuroprosthetic system design. Mitigating the experimental variability of chronically implanted arrays has been a formidable task because the sensor recording sites can be influenced by biotic and abiotic responses. Several studies have implicated changes in electrical interface impedance as a preliminary marker to infer electrode viability. Microelectrode impedance plays an important role in the monitoring of low amplitude and high-resolution extracellular neural signals. In this work, we seek to quantify long-term microelectrode array functionality and derive an impedance-based predictor for electrode functionality that correlates the recording site electrical properties with the functional neuronal recordings in vivo. High temporal resolution metrics of this type would allow one to assess, predict, and improve electrode performance in the future. In a large cohort of animals, we performed daily impedance measurements and neural signal recordings over long periods (up to 21 weeks) of time in rats using tungsten microwire arrays implanted into the somatosensory cortex. This study revealed that there was a time-varying trend in the modulation of impedance that was related to electrode performance. Single units were best detected from electrodes at time points when the electrode entered into the 40-150 KΩ impedance range. This impedance trend was modeled across the full cohort of animals to predict future electrode performance. The model was tested on data from all animals and was able to provide predictions of electrode performance chronically. Insight from this study can be combined with knowledge of electrode materials and histological analysis to provide a more comprehensive predictive model of electrode failure in the future.

  14. CD47 enhances in vivo functionality of artificial antigen-presenting cells

    PubMed Central

    Bruns, Heiko; Bessell, Catherine; Varela, Juan Carlos; Haupt, Carl; Fang, Jerry; Pasemann, Shirin; Mackensen, Andreas; Oelke, Mathias; Schneck, Jonathan P.; Schütz, Christian

    2015-01-01

    Purpose Artificial Antigen-Presenting Cells, aAPC, have successfully been used to stimulate antigen-specific T cell responses in vitro as well as in vivo. While aAPC compare favorable to autologous dendritic cells in vitro, their effect in vivo might be diminished through rapid clearance by macrophages. Therefore, to prevent uptake and minimize clearance of aAPC by macrophages, and thereby increasing in vivo functionality, we investigated the efficiency of “don’t eat me” three-signal aAPC compared to classical two-signal aAPC. Experimental Design To generate “don’t eat me” aAPC, CD47 was additionally immobilized onto classical aAPC (aAPCCD47+). aAPC and aAPCCD47+ were analyzed in in vitro human primary T cell and macrophage co-cultures. In vivo efficiency was compared in a NOD/SCID T cell proliferation and a B16-SIY melanoma model. Results This study demonstrates that aAPCCD47+ in co-culture with human macrophages show a CD47 concentration dependent inhibition of phagocytosis, while their ability to generate and expand antigen-specific T cells was not affected. Furthermore, aAPCCD47+ generated T cells displayed equivalent killing abilities and polyfunctionality when compared to aAPC generated T cells. In addition, in vivo studies demonstrated an enhanced stimulatory capacity and tumor inhibition of aAPCCD47+ over normal aAPC in conjunction with diverging bio-distribution in different organs. Conclusion Our data for the first time show that aAPC functionalized with CD47 maintain their stimulatory capacity in vitro and demonstrate enhanced in vivo efficiency. Thus this next generation aAPCCD47+ have a unique potential to enhance the application of the aAPC technology for future immunotherapy approaches. PMID:25593301

  15. Applications of phosphorescent materials for in-vivo imaging of brain structure and function

    NASA Astrophysics Data System (ADS)

    Boverman, Gregory; Shi, Xiaolei; Cotero, Victoria E.; Filkins, Robert J.; Srivastava, Alok M.; Lorraine, Peter W.; Neculaes, Vasile B.; Ishaque, A. N.

    2016-03-01

    A number of approaches have been developed for in-vivo imaging of neural function at the time scale of action potentials and at the spatial resolution of individual neurons. Remarkable results have been obtained with optogenetics, although the need for genetic modification is an important limitation of these approaches. Similarly, voltage and ion-sensitive dyes allow for optical imaging of action potentials but toxicity remains a problem. Additionally, optical techniques are often only able to be used up to a limited depth. Our preliminary work has shown that nanoparticles of common phosphorescent materials, believed to be generally non-toxic, specifically lutetium oxide and strontium aluminate, can be utilized for cellular imaging, for tomographic imaging, and that the particles can be designed to adhere to neurons. Additionally, lutetium oxide has been shown to be highly X-ray luminescent, potentially allowing for imaging deep within the brain, if the particles can be targeted properly. In ex vivo experiments, we have shown that the phosphorescence of strontium aluminate particles is significantly affected by electric fields similar in strength to those found in the vicinity of the cellular membrane of a neuron. This phenomenon is consistent with early published reports in the electroluminescence literature, namely the Gudden-Pohl effect. We will show results of the ex vivo imaging and dynamic electrical stimulation experiments. We will also show some preliminary ex vivo cell culture results, and will describe plans for future research, focusing on potential in both cell cultures and in vivo for animal models.

  16. Dissecting the Function and Assembly of Acentriolar Microtubule Organizing Centers in Drosophila Cells In Vivo

    PubMed Central

    Baumbach, Janina; Novak, Zsofia Anna; Raff, Jordan W.; Wainman, Alan

    2015-01-01

    Acentriolar microtubule organizing centers (aMTOCs) are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2—the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems). We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs. PMID:26020779

  17. Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study

    NASA Astrophysics Data System (ADS)

    Sousa, Fernanda; Mandal, Subhra; Garrovo, Chiara; Astolfo, Alberto; Bonifacio, Alois; Latawiec, Diane; Menk, Ralf Hendrik; Arfelli, Fulvia; Huewel, Sabine; Legname, Giuseppe; Galla, Hans-Joachim; Krol, Silke

    2010-12-01

    In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex.In the present study, the in vivo distribution of polyelectrolyte multilayer coated gold nanoparticles is shown, starting from the living animal down to cellular level. The coating was designed with functional moieties to serve as a potential nano drug for prion disease. With near infrared time-domain imaging we followed the biodistribution in mice up to 7 days after intravenous injection of the nanoparticles. The peak concentration in the head of mice was detected between 19 and 24 h. The precise particle distribution in the brain was studied ex vivo by X-ray microtomography, confocal laser and fluorescence microscopy. We found that the particles mainly accumulate in the hippocampus, thalamus, hypothalamus, and the cerebral cortex. Electronic supplementary information (ESI) available: Fig. S1-S6. See DOI: 10.1039/c0nr00345j

  18. In vivo function of tryptophans in the Arabidopsis UV-B photoreceptor UVR8.

    PubMed

    O'Hara, Andrew; Jenkins, Gareth I

    2012-09-01

    Arabidopsis thaliana UV RESISTANCE LOCUS8 (UVR8) is a photoreceptor specifically for UV-B light that initiates photomorphogenic responses in plants. UV-B exposure causes rapid conversion of UVR8 from dimer to monomer, accumulation in the nucleus, and interaction with CONSTITUTIVELY PHOTOMORPHOGENIC1 (COP1), which functions with UVR8 in UV-B responses. Studies in yeast and with purified UVR8 implicate several tryptophan amino acids in UV-B photoreception. However, their roles in UV-B responses in plants, and the functional significance of all 14 UVR8 tryptophans, are not known. Here we report the functions of the UVR8 tryptophans in vivo. Three tryptophans in the β-propeller core are important in maintaining structural stability and function of UVR8. However, mutation of three other core tryptophans and four at the dimeric interface has no apparent effect on function in vivo. Mutation of three tryptophans implicated in UV-B photoreception, W233, W285, and W337, impairs photomorphogenic responses to different extents. W285 is essential for UVR8 function in plants, whereas W233 is important but not essential for function, and W337 has a lesser role. Ala mutants of these tryptophans appear monomeric and constitutively bind COP1 in plants, but their responses indicate that monomer formation and COP1 binding are not sufficient for UVR8 function.

  19. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics.

    PubMed

    Yaung, Stephanie J; Deng, Luxue; Li, Ning; Braff, Jonathan L; Church, George M; Bry, Lynn; Wang, Harris H; Gerber, Georg K

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.

  20. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    DOE PAGES

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; Braff, Jonathan L.; Church, George M.; Bry, Lynn; Wang, Harris H.; Gerber, Georg K.

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Populationmore » dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.« less

  1. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics.

    PubMed

    Yaung, Stephanie J; Deng, Luxue; Li, Ning; Braff, Jonathan L; Church, George M; Bry, Lynn; Wang, Harris H; Gerber, Georg K

    2015-03-01

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.

  2. In Vivo Enhancer Analysis Chromosome 16 Conserved NoncodingSequences

    SciTech Connect

    Pennacchio, Len A.; Ahituv, Nadav; Moses, Alan M.; Nobrega,Marcelo; Prabhakar, Shyam; Shoukry, Malak; Minovitsky, Simon; Visel,Axel; Dubchak, Inna; Holt, Amy; Lewis, Keith D.; Plajzer-Frick, Ingrid; Akiyama, Jennifer; De Val, Sarah; Afzal, Veena; Black, Brian L.; Couronne, Olivier; Eisen, Michael B.; Rubin, Edward M.

    2006-02-01

    The identification of enhancers with predicted specificitiesin vertebrate genomes remains a significant challenge that is hampered bya lack of experimentally validated training sets. In this study, weleveraged extreme evolutionary sequence conservation as a filter toidentify putative gene regulatory elements and characterized the in vivoenhancer activity of human-fish conserved and ultraconserved1 noncodingelements on human chromosome 16 as well as such elements from elsewherein the genome. We initially tested 165 of these extremely conservedsequences in a transgenic mouse enhancer assay and observed that 48percent (79/165) functioned reproducibly as tissue-specific enhancers ofgene expression at embryonic day 11.5. While driving expression in abroad range of anatomical structures in the embryo, the majority of the79 enhancers drove expression in various regions of the developingnervous system. Studying a set of DNA elements that specifically droveforebrain expression, we identified DNA signatures specifically enrichedin these elements and used these parameters to rank all ~;3,400human-fugu conserved noncoding elements in the human genome. The testingof the top predictions in transgenic mice resulted in a three-foldenrichment for sequences with forebrain enhancer activity. These datadramatically expand the catalogue of in vivo-characterized human geneenhancers and illustrate the future utility of such training sets for avariety of iological applications including decoding the regulatoryvocabulary of the human genome.

  3. Structurally similar Drosophila alpha-tubulins are functionally distinct in vivo.

    PubMed Central

    Hutchens, J A; Hoyle, H D; Turner, F R; Raff, E C

    1997-01-01

    We used transgenic analysis in Drosophila to compare the ability of two structurally similar alpha-tubulin isoforms to support microtubule assembly in vivo. Our data revealed that even closely related alpha-tubulin isoforms have different functional capacities. Thus, in multicellular organisms, even small changes in tubulin structure may have important consequences for regulation of the microtubule cytoskeleton. In spermatogenesis, all microtubule functions in the postmitotic male germ cells are carried out by a single tubulin heterodimer composed of the major Drosophila alpha-84B tubulin isoform and the testis-specific beta 2-tubulin isoform. We tested the ability of the developmentally regulated alpha 85E-tubulin isoform to replace alpha 84B in spermatogenesis. Even though it is 98% similar in sequence, alpha 85E is not functionally equivalent to alpha 84B. alpha 85E can support some functional microtubules in the male germ cells, but alpha 85E causes dominant male sterility if it makes up more than one-half of the total alpha-tubulin pool in the spermatids. alpha 85E does not disrupt meiotic spindle or cytoplasmic microtubules but causes defects in morphogenesis of the two classes of singlet microtubules in the sperm tail axoneme, the central pair and the accessory microtubules. Axonemal defects caused by alpha 85E are precisely reciprocal to dominant defects in doublet microtubules we observed in a previous study of ectopic germ-line expression of the developmentally regulated beta 3-tubulin isoform. These data demonstrate that the doublet and singlet axoneme microtubules have different requirements for alpha- and beta-tubulin structure. In their normal sites of expression, alpha 85E and beta 3 are coexpressed during differentiation of several somatic cell types, suggesting that alpha 85E and beta 3 might form a specialized heterodimer. Our tests of different alpha-beta pairs in spermatogenesis did not support this model. We conclude that if alpha 85E and beta

  4. In vivo interrogation of gene function in the mammalian brain using CRISPR-Cas9

    PubMed Central

    Swiech, Lukasz; Heidenreich, Matthias; Banerjee, Abhishek; Habib, Naomi; Li, Yinqing; Trombetta, John; Sur, Mriganka; Zhang, Feng

    2015-01-01

    Probing gene function in the mammalian brain can be greatly assisted with methods to manipulate the genome of neurons in vivo. The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas)9 from Streptococcus pyogenes (SpCas9)1 can be used to edit single or multiple genes in replicating eukaryotic cells, resulting in frame-shifting insertion/deletion (indel) mutations and subsequent protein depletion. Here, we delivered SpCas9 and guide RNAs using adeno-associated viral (AAV) vectors to target single (Mecp2) as well as multiple genes (Dnmt1, Dnmt3a and Dnmt3b) in the adult mouse brain in vivo. We characterized the effects of genome modifications in postmitotic neurons using biochemical, genetic, electrophysiological and behavioral readouts. Our results demonstrate that AAV-mediated SpCas9 genome editing can enable reverse genetic studies of gene function in the brain. PMID:25326897

  5. In vivo generation of a mature and functional artificial skeletal muscle

    PubMed Central

    Fuoco, Claudia; Rizzi, Roberto; Biondo, Antonella; Longa, Emanuela; Mascaro, Anna; Shapira-Schweitzer, Keren; Kossovar, Olga; Benedetti, Sara; Salvatori, Maria L; Santoleri, Sabrina; Testa, Stefano; Bernardini, Sergio; Bottinelli, Roberto; Bearzi, Claudia; Cannata, Stefano M; Seliktar, Dror; Cossu, Giulio; Gargioli, Cesare

    2015-01-01

    Extensive loss of skeletal muscle tissue results in mutilations and severe loss of function. In vitro-generated artificial muscles undergo necrosis when transplanted in vivo before host angiogenesis may provide oxygen for fibre survival. Here, we report a novel strategy based upon the use of mouse or human mesoangioblasts encapsulated inside PEG-fibrinogen hydrogel. Once engineered to express placental-derived growth factor, mesoangioblasts attract host vessels and nerves, contributing to in vivo survival and maturation of newly formed myofibres. When the graft was implanted underneath the skin on the surface of the tibialis anterior, mature and aligned myofibres formed within several weeks as a complete and functional extra muscle. Moreover, replacing the ablated tibialis anterior with PEG-fibrinogen-embedded mesoangioblasts also resulted in an artificial muscle very similar to a normal tibialis anterior. This strategy opens the possibility for patient-specific muscle creation for a large number of pathological conditions involving muscle tissue wasting. PMID:25715804

  6. In Vivo Brillouin Analysis of the Aging Crystalline Lens

    PubMed Central

    Besner, Sebastien; Scarcelli, Giuliano; Pineda, Roberto; Yun, Seok-Hyun

    2016-01-01

    Purpose To analyze the age dependence of the longitudinal modulus of the crystalline lens in vivo using Brillouin scattering data in healthy subjects. Methods Brillouin scans were performed along the crystalline lens in 56 eyes from 30 healthy subjects aged from 19 to 63 years. Longitudinal elastic modulus was acquired along the sagittal axis of the lens with a transverse and axial resolution of 4 and 60 μm, respectively. The relative lens stiffness was computed, and correlations with age were analyzed. Results Brillouin axial profiles revealed nonuniform longitudinal modulus within the lens, increasing from a softer periphery toward a stiffer central plateau at all ages. The longitudinal modulus at the central plateau showed no age dependence in a range of 19 to 45 years and a slight decrease with age from 45 to 63 years. A significant intersubject variability was observed in an age-matched analysis. Importantly, the extent of the central stiff plateau region increased steadily over age from 19 to 63 years. The slope of change in Brillouin modulus in the peripheral regions were nearly age-invariant. Conclusions The adult human lens showed no measurable age-related increase in the peak longitudinal modulus. The expansion of the stiff central region of the lens is likely to be the major contributing factor to age-related lens stiffening. Brillouin microscopy may be useful in characterizing the crystalline lens for the optimization of surgical or pharmacological treatments aimed at restoring accommodative power. PMID:27699407

  7. Structured Functional Principal Component Analysis

    PubMed Central

    Shou, Haochang; Zipunnikov, Vadim; Crainiceanu, Ciprian M.; Greven, Sonja

    2015-01-01

    Summary Motivated by modern observational studies, we introduce a class of functional models that expand nested and crossed designs. These models account for the natural inheritance of the correlation structures from sampling designs in studies where the fundamental unit is a function or image. Inference is based on functional quadratics and their relationship with the underlying covariance structure of the latent processes. A computationally fast and scalable estimation procedure is developed for high-dimensional data. Methods are used in applications including high-frequency accelerometer data for daily activity, pitch linguistic data for phonetic analysis, and EEG data for studying electrical brain activity during sleep. PMID:25327216

  8. GTP-binding proteins of the Rho/Rac family: regulation, effectors and functions in vivo

    PubMed Central

    Bustelo, Xosé R.; Sauzeau, Vincent; Berenjeno, Inmaculada M.

    2007-01-01

    Summary Rho/Rac proteins constitute a subgroup of the Ras superfamily of GTP hydrolases. Although originally implicated in the control of cytoskeletal events, it is currently known that these GTPases coordinate diverse cellular functions, including cell polarity, vesicular trafficking, the cell cycle and transcriptomal dynamics. In this review, we will provide an overview on the recent advances in this field regarding the mechanism of regulation and signaling, and the roles in vivo of this important GTPase family. PMID:17373658

  9. Transcriptional Regulation of Rod Photoreceptor Homeostasis Revealed by In Vivo NRL Targetome Analysis

    PubMed Central

    Hao, Hong; Kim, Douglas S.; Klocke, Bernward; Johnson, Kory R.; Cui, Kairong; Gotoh, Norimoto; Zang, Chongzhi; Gregorski, Janina; Gieser, Linn; Peng, Weiqun; Fann, Yang; Seifert, Martin; Zhao, Keji; Swaroop, Anand

    2012-01-01

    A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP–Seq) data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP–Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP–Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s) for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis. PMID:22511886

  10. Structural and Functional Dissection of the Abp1 ADFH Actin-binding Domain Reveals Versatile In Vivo Adapter Functions

    SciTech Connect

    Quintero-Monzon,O.; Rodal, A.; Strokopytov, B.; Almo, S.; Goode, B.

    2005-01-01

    Abp1 is a multidomain protein that regulates the Arp2/3 complex and links proteins involved in endocytosis to the actin cytoskeleton. All of the proposed cellular functions of Abp1 involve actin filament binding, yet the actin binding site(s) on Abp1 have not been identified, nor has the importance of actin binding for Abp1 localization and function in vivo been tested. Here, we report the crystal structure of the Saccharomyces cerevisiae Abp1 actin-binding actin depolymerizing factor homology (ADFH) domain and dissect its activities by mutagenesis. Abp1-ADFH domain and ADF/cofilin structures are similar, and they use conserved surfaces to bind actin; however, there are also key differences that help explain their differential effects on actin dynamics. Using point mutations, we demonstrate that actin binding is required for localization of Abp1 in vivo, the lethality caused by Abp1 overexpression, and the ability of Abp1 to activate Arp2/3 complex. Furthermore, we genetically uncouple ABP1 functions that overlap with SAC6, SLA1, and SLA2, showing they require distinct combinations of activities and interactions. Together, our data provide the first structural and functional view of the Abp1-actin interaction and show that Abp1 has distinct cellular roles as an adapter, linking different sets of ligands for each function.

  11. Ex vivo generation of a functional and regenerative wound epithelium from axolotl (Ambystoma mexicanum) skin.

    PubMed

    Ferris, Donald R; Satoh, Akira; Mandefro, Berhan; Cummings, Gillian M; Gardiner, David M; Rugg, Elizabeth L

    2010-10-01

    Urodele amphibians (salamanders) are unique among adult vertebrates in their ability to regenerate structurally complete and fully functional limbs. Regeneration is a stepwise process that requires interactions between keratinocytes, nerves and fibroblasts. The formation of a wound epithelium covering the amputation site is an early and necessary event in the process but the molecular mechanisms that underlie the role of the wound epithelium in regeneration remain unclear. We have developed an ex vivo model that recapitulates many features of in vivo wound healing. The model comprises a circular explant of axolotl (Ambystoma mexicanum) limb skin with a central circular, full thickness wound. Re-epithelialization of the wound area is rapid (typically <11 h) and is dependent on metalloproteinase activity. The ex vivo wound epithelium is viable, responds to neuronal signals and is able to participate in ectopic blastema formation and limb regeneration. This ex vivo model provides a reproducible and tractable system in which to study the cellular and molecular events that underlie wound healing and regeneration.

  12. In vitro and in vivo analysis and characterization of engineered spinal neural implants (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shor, Erez; Shoham, Shy; Levenberg, Shulamit

    2016-03-01

    Spinal cord injury is a devastating medical condition. Recent developments in pre-clinical and clinical research have started to yield neural implants inducing functional recovery after spinal cord transection injury. However, the functional performance of the transplants was assessed using histology and behavioral experiments which are unable to study cell dynamics and the therapeutic response. Here, we use neurophotonic tools and optogenetic probes to investigate cellular level morphology and activity characteristics of neural implants over time at the cellular level. These methods were used in-vitro and in-vivo, in a mouse spinal cord injury implant model. Following previous attempts to induce recovery after spinal cord injury, we engineered a pre-vascularized implant to obtain better functional performance. To image network activity of a construct implanted in a mouse spinal cord, we transfected the implant to express GCaMP6 calcium activity indicators and implanted these constructs under a spinal cord chamber enabling 2-photon chronic in vivo neural activity imaging. Activity and morphology analysis image processing software was developed to automatically quantify the behavior of the neural and vascular networks. Our experimental results and analyses demonstrate that vascularized and non-vascularized constructs exhibit very different morphologic and activity patterns at the cellular level. This work enables further optimization of neural implants and also provides valuable tools for continuous cellular level monitoring and evaluation of transplants designed for various neurodegenerative disease models.

  13. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  14. Analysis of Chlamydomonas thiamin metabolism in vivo reveals riboswitch plasticity.

    PubMed

    Moulin, Michael; Nguyen, Ginnie T D T; Scaife, Mark A; Smith, Alison G; Fitzpatrick, Teresa B

    2013-09-01

    Thiamin (vitamin B1) is an essential micronutrient needed as a cofactor for many central metabolic enzymes. Animals must have thiamin in their diet, whereas bacteria, fungi, and plants can biosynthesize it de novo from the condensation of a thiazole and a pyrimidine moiety. Although the routes to biosynthesize these two heterocycles are not conserved in different organisms, in all cases exogenous thiamin represses expression of one or more of the biosynthetic pathway genes. One important mechanism for this control is via thiamin-pyrophosphate (TPP) riboswitches, regions of the mRNA to which TPP can bind directly, thus facilitating fine-tuning to maintain homeostasis. However, there is little information on how modulation of riboswitches affects thiamin metabolism in vivo. Here we use the green alga, Chlamydomonas reinhardtii, which regulates both thiazole and pyrimidine biosynthesis with riboswitches in the THI4 (Thiamin 4) and THIC (Thiamin C) genes, respectively, to investigate this question. Our study reveals that regulation of thiamin metabolism is not the simple dogma of negative feedback control. Specifically, balancing the provision of both of the heterocycles of TPP appears to be an important requirement. Furthermore, we show that the Chlamydomonas THIC riboswitch is controlled by hydroxymethylpyrimidine pyrophosphate, as well as TPP, but with an identical alternative splicing mechanism. Similarly, the THI4 gene is responsive to thiazole. The study not only provides insight into the plasticity of the TPP riboswitches but also shows that their maintenance is likely to be a consequence of evolutionary need as a function of the organisms' environment and the particular pathway used.

  15. In Vivo Models to Address the Function of Polycomb Group Proteins.

    PubMed

    Bantignies, Frédéric

    2016-01-01

    Initially discovered as repressors of homeotic gene expression in Drosophila, Polycomb group (PcG) proteins have now been shown to be involved in a plethora of biological processes. Indeed, by repressing a large number of target genes, including specific lineage genes, these chromatin factors play major roles in a multitude of cellular functions, such as pluripotency, differentiation, reprogramming, tissue regeneration, and nuclear organization. In this book chapter are presented in vivo approaches and technologies, which have been used in both mammalian and Drosophila systems to study the cellular functions of Polycomb group proteins. PMID:27659991

  16. Functionalized near-infrared quantum dots for in vivo tumor vasculature imaging.

    PubMed

    Hu, Rui; Yong, Ken-Tye; Roy, Indrajit; Ding, Hong; Law, Wing-Cheung; Cai, Hongxing; Zhang, Xihe; Vathy, Lisa A; Bergey, Earl J; Prasad, Paras N

    2010-04-01

    In this paper, we report the use of near-infrared (NIR)-emitting alloyed quantum dots (QDs) as efficient optical probes for high contrast in vivo imaging of tumors. Alloyed CdTe(1 - x)Se(x)/CdS QDs were prepared in the non-aqueous phase using the hot colloidal synthesis approach. Water dispersion of the QDs were accomplished by their encapsulation within polyethyleneglycol (PEG)-grafted phospholipid micelles. For tumor-specific delivery in vivo, the micelle-encapsulated QDs were conjugated with the cyclic arginine-glycine-aspartic acid (cRGD) peptide, which targets the alpha(v)beta(3) integrins overexpressed in the angiogenic tumor vasculatures. Using in vivo NIR optical imaging of mice bearing pancreatic cancer xenografts, implanted both subcutaneously and orthotopically, we have demonstrated that systemically delivered cRGD-conjugated QDs, but not the unconjugated ones, can efficiently target and label the tumors with high signal-to-noise ratio. Histopathological analysis of major organs of the treated mice showed no evidence of systemic toxicity associated with these QDs. These experiments suggest that cRGD-conjugated NIR QDs can serve as safe and efficient probes for optical bioimaging of tumors in vivo. Furthermore, by co-encapsulating these QDs and anticancer drugs within these micelles, we have demonstrated a promising theranostic, nanosized platform for both cancer imaging and therapy.

  17. Functional optical coherence tomography for high-resolution mapping of cilia beat frequency in the mouse oviduct in vivo

    NASA Astrophysics Data System (ADS)

    Wang, Shang; Burton, Jason C.; Behringer, Richard R.; Larina, Irina V.

    2016-02-01

    Since mouse is a superior model for genetic analysis of human disorders, reproductive studies in mice have significant implications on further understanding of fertility and infertility in humans. Fertilized oocytes are transported through the reproductive tract by motile cilia lining the lumen of the oviduct as well as by oviduct contractions. While the role of cilia is well recognized, ciliary dynamics in the oviduct is not well understood, largely owing to the lack of live imaging approaches. Here, we report in vivo micro-scale mapping of cilia and cilia beat frequency (CBF) in the mouse oviduct using optical coherence tomography (OCT). This functional imaging method is based on spectral analysis of the OCT speckle variations produced by the beat of cilia in the oviduct, which does not require exogenous contrast agents. Animal procedures similar to the ones used for production of transgenic mice are utilized to expose the reproductive organs for imaging in anesthetized females. In this paper, we first present in vivo structural imaging of the mouse oviduct capturing the oocyte and the preimplantation embryo and then show the result of depth-resolved high-resolution CBF mapping in the ampulla of the live mouse. These data indicate that this structural and functional OCT imaging approach can be a useful tool for a variety of live investigations of mammalian reproduction and infertility.

  18. Assembly requirements of PU.1-Pip (IRF-4) activator complexes: inhibiting function in vivo using fused dimers.

    PubMed Central

    Brass, A L; Zhu, A Q; Singh, H

    1999-01-01

    Gene expression in higher eukaryotes appears to be regulated by specific combinations of transcription factors binding to regulatory sequences. The Ets factor PU.1 and the IRF protein Pip (IRF-4) represent a pair of interacting transcription factors implicated in regulating B cell-specific gene expression. Pip is recruited to its binding site on DNA by phosphorylated PU.1. PU.1-Pip interaction is shown to be template directed and involves two distinct protein-protein interaction surfaces: (i) the ets and IRF DNA-binding domains; and (ii) the phosphorylated PEST region of PU.1 and a lysine-requiring putative alpha-helix in Pip. Thus, a coordinated set of protein-protein and protein-DNA contacts are essential for PU.1-Pip ternary complex assembly. To analyze the function of these factors in vivo, we engineered chimeric repressors containing the ets and IRF DNA-binding domains connected by a flexible POU domain linker. When stably expressed, the wild-type fused dimer strongly repressed the expression of a rearranged immunoglobulin lambda gene, thereby establishing the functional importance of PU.1-Pip complexes in B cell gene expression. Comparative analysis of the wild-type dimer with a series of mutant dimers distinguished a gene regulated by PU.1 and Pip from one regulated by PU.1 alone. This strategy should prove generally useful in analyzing the function of interacting transcription factors in vivo, and for identifying novel genes regulated by such complexes. PMID:10022840

  19. Environmentally persistent free radicals decrease cardiac function before and after ischemia/reperfusion injury in vivo

    PubMed Central

    Lord, Kevin; Moll, David; Lindsey, John K.; Mahne, Sarah; Raman, Girija; Dugas, Tammy; Cormier, Stephania; Troxlair, Dana; Lomnicki, Slawo; Dellinger, Barry; Varner, Kurt

    2011-01-01

    Exposure to airborne particles is associated with increased cardiovascular morbidity and mortality. During the combustion of chlorine-containing hazardous materials and fuels, chlorinated hydrocarbons chemisorb to the surface of transition metal-oxide-containing particles, reduce the metal, and form an organic free radical. These radical-particle systems can survive in the environment for days and are called environmentally persistent free radicals (EPFRs). This study determined whether EPFRs could decrease left ventricular function before and after ischemia and reperfusion (I/R) in vivo. Male Brown Norway rats were dosed (8 mg/kg, i.t.) 24 hr prior to testing with particles containing the EPFR of 1, 2-dichlorobenzene (DCB230). DCB230 treatment decreased systolic and diastolic function. DCB230 also produced pulmonary and cardiac inflammation. After ischemia, systolic, but not diastolic function was significantly decreased in DCB230-treated rats. Ventricular function was not affected by I/R in control rats. There was greater oxidative stress in the heart and increased 8-isoprostane (biomarker of oxidative stress) in the plasma of treated vs control rats after I/R. These data demonstrate for the first time that DCB230 can produce inflammation and significantly decrease cardiac function at baseline and after I/R in vivo. Furthermore, these data suggest that EPFRs may be a risk factor for cardiac toxicity in healthy individuals and individuals with ischemic heart disease. Potential mechanisms involving cytokines/chemokines and/or oxidative stress are discussed. PMID:21385100

  20. Structural Determinants of Arabidopsis thaliana Hyponastic Leaves 1 Function In Vivo

    PubMed Central

    Burdisso, Paula; Milia, Fernando; Schapire, Arnaldo L.; Bologna, Nicolás G.; Palatnik, Javier F.; Rasia, Rodolfo M.

    2014-01-01

    MicroRNAs have turned out to be important regulators of gene expression. These molecules originate from longer transcripts that are processed by ribonuclease III (RNAse III) enzymes. Dicer proteins are essential RNAse III enzymes that are involved in the generation of microRNAs (miRNAs) and other small RNAs. The correct function of Dicer relies on the participation of accessory dsRNA binding proteins, the exact function of which is not well-understood so far. In plants, the double stranded RNA binding protein Hyponastic Leaves 1 (HYL1) helps Dicer Like protein (DCL1) to achieve an efficient and precise excision of the miRNAs from their primary precursors. Here we dissected the regions of HYL1 that are essential for its function in Arabidopsis thaliana plant model. We generated mutant forms of the protein that retain their structure but affect its RNA-binding properties. The mutant versions of HYL1 were studied both in vitro and in vivo, and we were able to identify essential aminoacids/residues for its activity. Remarkably, mutation and even ablation of one of the purportedly main RNA binding determinants does not give rise to any major disturbances in the function of the protein. We studied the function of the mutant forms in vivo, establishing a direct correlation between affinity for the pri-miRNA precursors and protein activity. PMID:25409478

  1. Stiffened yeast telomerase RNA supports RNP function in vitro and in vivo.

    PubMed

    Lebo, Kevin J; Zappulla, David C

    2012-09-01

    The 1157-nt Saccharomyces cerevisiae telomerase RNA, TLC1, in addition to providing a 16-nt template region for reverse transcription, has been proposed to act as a scaffold for protein subunits. Although accessory subunits of the telomerase ribonucleoprotein (RNP) complex function even when their binding sites are relocated on the yeast telomerase RNA, the physical nature of the RNA scaffold has not been directly analyzed. Here we explore the structure-function organization of the yeast telomerase RNP by extensively stiffening the three long arms of TLC1, which connect essential and important accessory protein subunits Ku, Est1, and Sm(7), to its central catalytic hub. This 956-nt triple-stiff-arm TLC1 (TSA-T) reconstitutes active telomerase with TERT (Est2) in vitro. Furthermore, TSA-T functions in vivo, even maintaining longer telomeres than TLC1 on a per RNA basis. We also tested functional contributions of each stiffened arm within TSA-T and found that the stiffened Est1 and Ku arms contribute to telomere lengthening, while stiffening the terminal arm reduces telomere length and telomerase RNA abundance. The fact that yeast telomerase tolerates significant stiffening of its RNA subunit in vivo advances our understanding of the architectural and functional organization of this RNP and, more broadly, our conception of the world of lncRNPs.

  2. Skeletal muscle oxidative function in vivo and ex vivo in athletes with marked hypertrophy from resistance training.

    PubMed

    Salvadego, Desy; Domenis, Rossana; Lazzer, Stefano; Porcelli, Simone; Rittweger, Jörn; Rizzo, Giovanna; Mavelli, Irene; Simunic, Bostjan; Pisot, Rado; Grassi, Bruno

    2013-06-01

    Oxidative function during exercise was evaluated in 11 young athletes with marked skeletal muscle hypertrophy induced by long-term resistance training (RTA; body mass 102.6 ± 7.3 kg, mean ± SD) and 11 controls (CTRL; body mass 77.8 ± 6.0 kg). Pulmonary O2 uptake (Vo2) and vastus lateralis muscle fractional O2 extraction (by near-infrared spectroscopy) were determined during an incremental cycle ergometer (CE) and one-leg knee-extension (KE) exercise. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers obtained by biopsy. Quadriceps femoris muscle cross-sectional area, volume (determined by magnetic resonance imaging), and strength were greater in RTA vs. CTRL (by ∼40%, ∼33%, and ∼20%, respectively). Vo2peak during CE was higher in RTA vs. CTRL (4.05 ± 0.64 vs. 3.56 ± 0.30 l/min); no difference between groups was observed during KE. The O2 cost of CE exercise was not different between groups. When divided per muscle mass (for CE) or quadriceps muscle mass (for KE), Vo2 peak was lower (by 15-20%) in RTA vs. CTRL. Vastus lateralis fractional O2 extraction was lower in RTA vs. CTRL at all work rates, during both CE and KE. RTA had higher ADP-stimulated mitochondrial respiration (56.7 ± 23.7 pmol O2·s(-1)·mg(-1) ww) vs. CTRL (35.7 ± 10.2 pmol O2·s(-1)·mg(-1) ww) and a tighter coupling of oxidative phosphorylation. In RTA, the greater muscle mass and maximal force and the enhanced mitochondrial respiration seem to compensate for the hypertrophy-induced impaired peripheral O2 diffusion. The net results are an enhanced whole body oxidative function at peak exercise and unchanged efficiency and O2 cost at submaximal exercise, despite a much greater body mass.

  3. IN VIVO Function of Rare G6pd Variants from Natural Populations of DROSOPHILA MELANOGASTER

    PubMed Central

    Eanes, Walter F.; Hey, Jody

    1986-01-01

    From 1981 to 1983, 15,097 X-chromosomes were genetically extracted from a number of North American populations of D. melanogaster and were electrophoretically screened for rare mobility and activity variants of glucose-6-phosphate dehydrogenase (G6PD). Overall, 13 rare variants were recovered for a frequency of about 10-3. Eleven variants affect electrophoretic mobility and are apparently structural, and two variants exhibit low G6PD activity. One low activity variant is closely associated with a P-element insertion at 18D12-13—all of the variants were subjected to the previously described genetic scheme used to identify relative in vivo activity differences between the two common electrophoretic variants associated with the global polymorphism. Most of the rare variants exhibit apparent in vivo activities that are similar to one or the other of the common variants, and these specific rare variants appear to be geographically widespread. Several variants have significantly reduced function. All of the variants were measured for larval specific activity for G6PD as a first measure of in vitro activity. It appears that specific activity alone is not a sufficient predictor for G6PD in vivo function. PMID:17246336

  4. Dynamic contrast-enhanced optical imaging of in vivo organ function

    NASA Astrophysics Data System (ADS)

    Amoozegar, Cyrus B.; Wang, Tracy; Bouchard, Matthew B.; McCaslin, Addason F. H.; Blaner, William S.; Levenson, Richard M.; Hillman, Elizabeth M. C.

    2012-09-01

    Conventional approaches to optical small animal molecular imaging suffer from poor resolution, limited sensitivity, and unreliable quantitation, often reducing their utility in practice. We previously demonstrated that the in vivo dynamics of an injected contrast agent could be exploited to provide high-contrast anatomical registration, owing to the temporal differences in each organ's response to the circulating fluorophore. This study extends this approach to explore whether dynamic contrast-enhanced optical imaging (DyCE) can allow noninvasive, in vivo assessment of organ function by quantifying the differing cellular uptake or wash-out dynamics of an agent in healthy and damaged organs. Specifically, we used DyCE to visualize and measure the organ-specific uptake dynamics of indocyanine green before and after induction of transient liver damage. DyCE imaging was performed longitudinally over nine days, and blood samples collected at each imaging session were analyzed for alanine aminotransferase (ALT), a liver enzyme assessed clinically as a measure of liver damage. We show that changes in DyCE-derived dynamics of liver and kidney dye uptake caused by liver damage correlate linearly with ALT concentrations, with an r2 value of 0.91. Our results demonstrate that DyCE can provide quantitative, in vivo, longitudinal measures of organ function with inexpensive and simple data acquisition.

  5. EVENT PLANNING USING FUNCTION ANALYSIS

    SciTech Connect

    Lori Braase; Jodi Grgich

    2011-06-01

    Event planning is expensive and resource intensive. Function analysis provides a solid foundation for comprehensive event planning (e.g., workshops, conferences, symposiums, or meetings). It has been used at Idaho National Laboratory (INL) to successfully plan events and capture lessons learned, and played a significant role in the development and implementation of the “INL Guide for Hosting an Event.” Using a guide and a functional approach to planning utilizes resources more efficiently and reduces errors that could be distracting or detrimental to an event. This integrated approach to logistics and program planning – with the primary focus on the participant – gives us the edge.

  6. A functional analysis of crying.

    PubMed

    Bowman, Lynn G; Hardesty, Samantha L; Mendres-Smith, Amber E

    2013-01-01

    Crying has yet to be examined systematically in isolation from other problem behavior, such as aggression or tantrums, during functional analyses (Hanley, Iwata, & McCord, 2003). Identification of variables that may maintain crying is especially important for populations who are susceptible to psychiatric interventions (e.g., individuals who have intellectual disabilities and communication deficits). The current study extended functional analysis methodology to crying with an adolescent boy who had been diagnosed with intellectual disabilities. Results suggested that crying was maintained by caregiver attention delivered in a sympathetic manner. PMID:24114106

  7. Dual-selection for evolution of in vivo functional aptazymes as riboswitch parts.

    PubMed

    Goler, Jonathan A; Carothers, James M; Keasling, Jay D

    2014-01-01

    Both synthetic biology and metabolic engineering are aided by the development of genetic control parts. One class of riboswitch parts that has great potential for sensing and regulation of protein levels is aptamer-coupled ribozymes (aptazymes). These devices are comprised of an aptamer domain selected to bind a particular ligand, a ribozyme domain, and a communication module that regulates the ribozyme activity based on the state of the aptamer. We describe a broadly applicable method for coupling a novel, newly selected aptamer to a ribozyme to generate functional aptazymes via in vitro and in vivo selection. To illustrate this approach, we describe experimental procedures for selecting aptazymes assembled from aptamers that bind p-amino-phenylalanine and a hammerhead ribozyme. Because this method uses selection, it does not rely on sequence-specific design and thus should be generalizable for the generation of in vivo operational aptazymes that respond to any targeted molecules. PMID:24549623

  8. Critical role of tissue mast cells in controlling long-term glucose sensor function in vivo.

    PubMed

    Klueh, Ulrike; Kaur, Manjot; Qiao, Yi; Kreutzer, Donald L

    2010-06-01

    Little is known about the specific cells, mediators and mechanisms involved in the loss of glucose sensor function (GSF) in vivo. Since mast cells (MC) are known to be key effector cells in inflammation and wound healing, we hypothesized that MC and their products are major contributors to the skin inflammation and wound healing that controls GSF at sites of sensor implantation. To test this hypothesis we utilized a murine model of continuous glucose monitoring (CGM) in vivo in both normal C57BL/6 mice (mast cell sufficient), as well as mast cell deficient B6.Cg-Kit(W-sh)/HNihrJaeBsmJ (Sash) mice over a 28 day CGM period. As expected, both strains of mice displayed excellent CGM for the first 7 days post sensor implantation (PSI). CGM in the mast cell sufficient C57BL/6 mice was erratic over the remaining 21 days PSI. CGM in the mast cell deficient Sash mice displayed excellent sensor function for the entire 28 day of CGM. Histopathologic evaluation of implantation sites demonstrated that tissue reactions in Sash mice were dramatically less compared to the reactions in normal C57BL/6 mice. Additionally, mast cells were also seen to be consistently associated with the margins of sensor tissue reactions in normal C57BL/6 mice. Finally, direct injection of bone marrow derived mast cells at sites of sensor implantation induced an acute and dramatic loss of sensor function in both C57BL/6 and Sash mice. These results demonstrate the key role of mast cells in controlling glucose sensor function in vivo. PMID:20226521

  9. S100A1 gene therapy preserves in vivo cardiac function after myocardial infarction.

    PubMed

    Pleger, Sven T; Remppis, Andrew; Heidt, Beatrix; Völkers, Mirko; Chuprun, J Kurt; Kuhn, Matthew; Zhou, Rui-Hai; Gao, Erhe; Szabo, Gabor; Weichenhan, Dieter; Müller, Oliver J; Eckhart, Andrea D; Katus, Hugo A; Koch, Walter J; Most, Patrick

    2005-12-01

    Myocardial infarction (MI) represents an enormous clinical challenge as loss of myocardium due to ischemic injury is associated with compromised left ventricular (LV) function often leading to acute cardiac decompensation or chronic heart failure. S100A1 was recently identified as a positive inotropic regulator of myocardial contractility in vitro and in vivo. Here, we explore the strategy of myocardial S100A1 gene therapy either at the time of, or 2 h after, MI to preserve global heart function. Rats underwent cryothermia-induced MI and in vivo intracoronary delivery of adenoviral transgenes (4 x 10(10) pfu). Animals received saline (MI), the S100A1 adenovirus (MI/AdS100A1), a control adenovirus (MI/AdGFP), or a sham operation. S100A1 gene delivery preserved global in vivo LV function 1 week after MI. Preservation of LV function was due mainly to S100A1-mediated gain of contractility of the remaining, viable myocardium since contractile parameters and Ca(2+) transients of isolated MI/AdS100A1 myocytes were significantly enhanced compared to myocytes isolated from both MI/AdGFP and sham groups. Moreover, S100A1 gene therapy preserved the cardiac beta-adrenergic inotropic reserve, which was associated with the attenuation of GRK2 up-regulation. Also, S100A1 overexpression reduced cardiac hypertrophy 1 week post-MI. Overall, our data indicate that S100A1 gene therapy provides a potential novel treatment strategy to maintain contractile performance of the post-MI heart.

  10. Comparative Meta-Analysis of Transcriptomics Data during Cellular Senescence and In Vivo Tissue Ageing

    PubMed Central

    Voutetakis, Konstantinos; Gonos, Efstathios S.; Trougakos, Ioannis P.

    2015-01-01

    Several studies have employed DNA microarrays to identify gene expression signatures that mark human ageing; yet the features underlying this complicated phenomenon remain elusive. We thus conducted a bioinformatics meta-analysis on transcriptomics data from human cell- and biopsy-based microarrays experiments studying cellular senescence or in vivo tissue ageing, respectively. We report that coregulated genes in the postmitotic muscle and nervous tissues are classified into pathways involved in cancer, focal adhesion, actin cytoskeleton, MAPK signalling, and metabolism regulation. Genes that are differentially regulated during cellular senescence refer to pathways involved in neurodegeneration, focal adhesion, actin cytoskeleton, proteasome, cell cycle, DNA replication, and oxidative phosphorylation. Finally, we revealed genes and pathways (referring to cancer, Huntington's disease, MAPK signalling, focal adhesion, actin cytoskeleton, oxidative phosphorylation, and metabolic signalling) that are coregulated during cellular senescence and in vivo tissue ageing. The molecular commonalities between cellular senescence and tissue ageing are also highlighted by the fact that pathways that were overrepresented exclusively in the biopsy- or cell-based datasets are modules either of the same reference pathway (e.g., metabolism) or of closely interrelated pathways (e.g., thyroid cancer and melanoma). Our reported meta-analysis has revealed novel age-related genes, setting thus the basis for more detailed future functional studies. PMID:25977747

  11. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo.

    PubMed

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  12. Value of phagocyte function screening for immunotoxicity of nanoparticles in vivo

    PubMed Central

    Fröhlich, Eleonore

    2015-01-01

    Nanoparticles (NPs) present in the environment and in consumer products can cause immunotoxic effects. The immune system is very complex, and in vivo studies are the gold standard for evaluation. Due to the increased amount of NPs that are being developed, cellular screening assays to decrease the amount of NPs that have to be tested in vivo are highly needed. Effects on the unspecific immune system, such as effects on phagocytes, might be suitable for screening for immunotoxicity because these cells mediate unspecific and specific immune responses. They are present at epithelial barriers, in the blood, and in almost all organs. This review summarizes the effects of carbon, metal, and metal oxide NPs used in consumer and medical applications (gold, silver, titanium dioxide, silica dioxide, zinc oxide, and carbon nanotubes) and polystyrene NPs on the immune system. Effects in animal exposures through different routes are compared to the effects on isolated phagocytes. In addition, general problems in the testing of NPs, such as unknown exposure doses, as well as interference with assays are mentioned. NPs appear to induce a specific immunotoxic pattern consisting of the induction of inflammation in normal animals and aggravation of pathologies in disease models. The evaluation of particle action on several phagocyte functions in vitro may provide an indication on the potency of the particles to induce immunotoxicity in vivo. In combination with information on realistic exposure levels, in vitro studies on phagocytes may provide useful information on the health risks of NPs. PMID:26060398

  13. Analysis of the mutations inducedd by conazole fungicides in vivo

    EPA Science Inventory

    The mouse liver tumorigenic conazo1e fungicides triadimefon and propiconazo1e have previously been shown to be in vivo mouse liver mutagens in the Big Blue" transgenic mutation assay when administered in feed at tumorigenic doses, whereas the nontumorigenic conazo1e myc1obutani1 ...

  14. Rationally engineered Troponin C modulates in vivo cardiac function and performance in health and disease

    PubMed Central

    Shettigar, Vikram; Zhang, Bo; Little, Sean C.; Salhi, Hussam E.; Hansen, Brian J.; Li, Ning; Zhang, Jianchao; Roof, Steve R.; Ho, Hsiang-Ting; Brunello, Lucia; Lerch, Jessica K.; Weisleder, Noah; Fedorov, Vadim V.; Accornero, Federica; Rafael-Fortney, Jill A.; Gyorke, Sandor; Janssen, Paul M. L.; Biesiadecki, Brandon J.; Ziolo, Mark T.; Davis, Jonathan P.

    2016-01-01

    Treatment for heart disease, the leading cause of death in the world, has progressed little for several decades. Here we develop a protein engineering approach to directly tune in vivo cardiac contractility by tailoring the ability of the heart to respond to the Ca2+ signal. Promisingly, our smartly formulated Ca2+-sensitizing TnC (L48Q) enhances heart function without any adverse effects that are commonly observed with positive inotropes. In a myocardial infarction (MI) model of heart failure, expression of TnC L48Q before the MI preserves cardiac function and performance. Moreover, expression of TnC L48Q after the MI therapeutically enhances cardiac function and performance, without compromising survival. We demonstrate engineering TnC can specifically and precisely modulate cardiac contractility that when combined with gene therapy can be employed as a therapeutic strategy for heart disease. PMID:26908229

  15. Biomechanical regulation of vascular smooth muscle cell functions: from in vitro to in vivo understanding

    PubMed Central

    Qiu, Juhui; Zheng, Yiming; Hu, Jianjun; Liao, Donghua; Gregersen, Hans; Deng, Xiaoyan; Fan, Yubo; Wang, Guixue

    2014-01-01

    Vascular smooth muscle cells (VSMCs) have critical functions in vascular diseases. Haemodynamic factors are important regulators of VSMC functions in vascular pathophysiology. VSMCs are physiologically active in the three-dimensional matrix and interact with the shear stress sensor of endothelial cells (ECs). The purpose of this review is to illustrate how haemodynamic factors regulate VSMC functions under two-dimensional conditions in vitro or three-dimensional co-culture conditions in vivo. Recent advances show that high shear stress induces VSMC apoptosis through endothelial-released nitric oxide and low shear stress upregulates VSMC proliferation and migration through platelet-derived growth factor released by ECs. This differential regulation emphasizes the need to construct more actual environments for future research on vascular diseases (such as atherosclerosis and hypertension) and cardiovascular tissue engineering. PMID:24152813

  16. Fatigue alters in vivo function within and between limb muscles during locomotion

    PubMed Central

    Higham, Timothy E.; Biewener, Andrew A.

    2008-01-01

    Muscle fatigue, a reduction in force as a consequence of exercise, is an important factor for any animal that moves, and can result from both peripheral and/or central mechanisms. Although much is known about whole-limb force generation and activation patterns in fatigued muscles under sustained isometric contractions, little is known about the in vivo dynamics of limb muscle function in relation to whole-body fatigue. Here we show that limb kinematics and contractile function in the lateral (LG) and medial (MG) gastrocnemius of helmeted guineafowl (Numida meleagris) are significantly altered following fatiguing exercise at 2 m s−1 on an inclined treadmill. The two most significant findings were that the variation in muscle force generation, measured directly from the muscles' tendons, increased significantly with fatigue, and fascicle shortening in the proximal MG, but not the distal MG, decreased significantly with fatigue. We suggest that the former is a potential mechanism for decreased stability associated with fatigue. The region-specific alteration of fascicle behaviour within the MG as a result of fatigue suggests a complex response to fatigue that probably depends on muscle–aponeurosis and tendon architecture not previously explored. These findings highlight the importance of studying the integrative in vivo dynamics of muscle function in response to fatigue. PMID:19129096

  17. In vivo left ventricular function and collagen expression in aldosterone/salt-induced hypertension.

    PubMed

    Ramirez-Gil, J F; Delcayre, C; Robert, V; Wassef, M; Trouve, P; Mougenot, N; Charlemagne, D; Lechat, P

    1998-12-01

    Cardiac fibrosis is linked to aldosterone-induced hypertension, but the effects on in vivo left ventricular (LV) function are not established. We studied the relations between in vivo LV function and aldosterone/salt cardiac fibrosis. Adult guinea pigs (GPs) were treated for 3 months with an aldosterone infusion and high-salt diet. This treatment induced arterial hypertension (+35%) and moderate LV hypertrophy (LVH; +60%) without right ventricular (RV) hypertrophy. Echo-Doppler LV assessment demonstrated unaltered cardiac output, stroke volume, or LV relaxation. Type I collagen messenger RNA (mRNA) was significantly increased in both ventricles (LV, +48%; RV, +77%) and accompanied by a significant increase in total collagen deposition (LV, from 0.52% in controls to 4.4% in treated GPs; RV, from 0.82 to 5.5% in treated GPs). Plasma norepinephrine levels increased 2.6-fold (p < 0.01) and correlated with the increase in collagen deposition in both ventricles. Collagen content was not correlated with hypertension or LVH. We conclude that aldosterone administration induces cardiac collagen accumulation and a sympathetic stimulation, which might preserve systolic and diastolic function. PMID:9869498

  18. The Ras/Rap GTPase activating protein RASA3: from gene structure to in vivo functions.

    PubMed

    Schurmans, Stéphane; Polizzi, Séléna; Scoumanne, Ariane; Sayyed, Sufyan; Molina-Ortiz, Patricia

    2015-01-01

    RASA3 (or GTPase Activating Protein III, R-Ras GTPase-activating protein, GAP1(IP4BP)) is a GTPase activating protein of the GAP1 subfamily which targets Ras and Rap1. RASA3 was originally purified from pig platelet membranes through its intrinsic ability to bind inositol 1,3,4,5-tetrakisphosphate (I(1,3,4,5)P4) with high affinity, hence its first name GAP1(IP4BP) (for GAP1 subfamily member which binds I(1,3,4,5)P4). RASA3 was thus the first I(1,3,4,5)P4 receptor identified and cloned. The in vitro and in vivo functions of RASA3 remained somewhat elusive for a long time. However, recently, using genetically-modified mice and cells derived from these mice, the function of RASA3 during megakaryopoiesis, megakaryocyte adhesion and migration as well as integrin signaling has been reported. The goal of this review is thus to summarize and comment recent and less recent data in the literature on RASA3, in particular on the in vivo function of this specific GAP1 subfamily member.

  19. Small interfering RNAs as a tool to assign Rho GTPase exchange-factor function in vivo.

    PubMed Central

    Gampel, Alexandra; Mellor, Harry

    2002-01-01

    Rho GTPases control a complex network of intracellular signalling pathways. Whereas progress has been made in identifying downstream signalling partners for these proteins, the characterization of Rho upstream regulatory guanine-nucleotide exchange factors (GEFs) has been hampered by a lack of suitable research tools. Here we use small interfering RNAs (siRNAs) to examine the cellular regulation of the RhoB GTPase, and show that RhoB is activated downstream of the epidermal-growth-factor receptor through the Vav2 exchange factor. These studies demonstrate that siRNAs are an ideal research tool for the assignment of Rho GEF function in vivo. PMID:12113653

  20. Using CRISPR/Cas to study gene function and model disease in vivo.

    PubMed

    Tschaharganeh, Darjus F; Lowe, Scott W; Garippa, Ralph J; Livshits, Geulah

    2016-09-01

    The recent discovery of the CRISPR/Cas system and repurposing of this technology to edit a variety of different genomes have revolutionized an array of scientific fields, from genetics and translational research, to agriculture and bioproduction. In particular, the prospect of rapid and precise genome editing in laboratory animals by CRISPR/Cas has generated an immense interest in the scientific community. Here we review current in vivo applications of CRISPR/Cas and how this technology can improve our knowledge of gene function and our understanding of biological processes in animal models. PMID:27149548

  1. Validation of a P-Glycoprotein (P-gp) Humanized Mouse Model by Integrating Selective Absolute Quantification of Human MDR1, Mouse Mdr1a and Mdr1b Protein Expressions with In Vivo Functional Analysis for Blood-Brain Barrier Transport

    PubMed Central

    Sadiq, Muhammad Waqas; Uchida, Yasuo; Hoshi, Yutaro; Tachikawa, Masanori; Terasaki, Tetsuya; Hammarlund-Udenaes, Margareta

    2015-01-01

    It is essential to establish a useful validation method for newly generated humanized mouse models. The novel approach of combining our established species-specific protein quantification method combined with in vivo functional studies is evaluated to validate a humanized mouse model of P-gp/MDR1 efflux transporter. The P-gp substrates digoxin, verapamil and docetaxel were administered to male FVB Mdr1a/1b(+/+) (FVB WT), FVB Mdr1a/1b(-/-) (Mdr1a/1b(-/-)), C57BL/6 Mdr1a/1b(+/+) (C57BL/6 WT) and humanized C57BL (hMDR1) mice. Brain-to-plasma total concentration ratios (Kp) were measured. Quantitative targeted absolute proteomic (QTAP) analysis was used to selectively quantify the protein expression levels of hMDR1, Mdr1a and Mdr1b in the isolated brain capillaries. The protein expressions of other transporters, receptors and claudin-5 were also quantified. The Kp for digoxin, verapamil, and docetaxel were 20, 30 and 4 times higher in the Mdr1a/1b(-/-) mice than in the FVB WT controls, as expected. The Kp for digoxin, verapamil and docetaxel were 2, 16 and 2-times higher in the hMDR1 compared to the C57BL/6 WT mice. The hMDR1 mice had 63- and 9.1-fold lower expressions of the hMDR1 and Mdr1a proteins than the corresponding expression of Mdr1a in C57BL/6 WT mice, respectively. The protein expression levels of other molecules were almost consistent between C57BL/6 WT and hMDR1 mice. The P-gp function at the BBB in the hMDR1 mice was smaller than that in WT mice due to lower protein expression levels of hMDR1 and Mdr1a. The combination of QTAP and in vivo functional analyses was successfully applied to validate the humanized animal model and evaluates its suitability for further studies. PMID:25932627

  2. High pressure modulated transport and signaling functions of membrane proteins in models and in vivo

    NASA Astrophysics Data System (ADS)

    Vogel, R. F.; Linke, K.; Teichert, H.; Ehrmann, M. A.

    2008-07-01

    Cellular membranes serve in the separation of compartments, recognition of the environment, selective transport and signal transduction. Membrane lipids and membrane proteins play distinct roles in these processes, which are affected by environmental chemical (e. g. pH) or physical (e. g. pressure and temperature) changes. High hydrostatic pressure (HHP) affects fluidity and integrity of bacterial membranes instantly during the ramp, resulting in a loss of membrane potential and vital membrane protein functions. We have used the multiple drug transporter LmrA from Lactococcus lactis and ToxR, a membrane protein sensor from Photobacterium profundum, a deep-sea bacterium, and Vibrio cholerae to study membrane protein interaction and functionality in proteolioposomes and by the use of in vivo reporter systems, respectively. Both proteins require dimerization in the phospholipid bilayer for their functionality, which was favoured in the liquid crystalline lipid phase with ToxR and LmrA. Whereas LmrA, which resides in liposomes consisting of DMPC, DMPC/cholesterol or natural lipids, lost its ATPase activity above 20 or 40 MPa, it maintained its active dimeric structure in DOPC/DPPC/cholesterol liposomes up to 120 MPa. By using a specific indicator strain in which the dimerisation of ToxR initiates the transcription of lacZ it was demonstrated, that the amino acid sequence of the transmembrane domain influences HHP stability of ToxR dimerization in vivo. Thus, both the lipid structure and the nature of the protein affect membrane protein interaction. It is suggested that the protein structure determines basic functionality, e.g. principle ability or kinetics to dimerize to a functional complex, while the lipid environment modulates this property.

  3. Non invasive in vivo investigation of hepatobiliary structure and function in STII medaka (Oryzias latipes): methodology and applications

    PubMed Central

    Hardman, Ron C; Kullman, Seth W; Hinton, David E

    2008-01-01

    Background A novel transparent stock of medaka (Oryzias latipes; STII), recessive for all pigments found in chromatophores, permits transcutaneous imaging of internal organs and tissues in living individuals. Findings presented describe the development of methodologies for non invasive in vivo investigation in STII medaka, and the successful application of these methodologies to in vivo study of hepatobiliary structure, function, and xenobiotic response, in both 2 and 3 dimensions. Results Using brightfield, and widefield and confocal fluorescence microscopy, coupled with the in vivo application of fluorescent probes, structural and functional features of the hepatobiliary system, and xenobiotic induced toxicity, were imaged at the cellular level, with high resolution (< 1 μm), in living individuals. The findings presented demonstrate; (1) phenotypic response to xenobiotic exposure can be investigated/imaged in vivo with high resolution (< 1 μm), (2) hepatobiliary transport of solutes from blood to bile can be qualitatively and quantitatively studied/imaged in vivo, (3) hepatobiliary architecture in this lower vertebrate liver can be studied in 3 dimensions, and (4) non invasive in vivo imaging/description of hepatobiliary development in this model can be investigated. Conclusion The non-invasive in vivo methodologies described are a unique means by which to investigate biological structure, function and xenobiotic response with high resolution in STII medaka. In vivo methodologies also provide the future opportunity to integrate molecular mechanisms (e.g., genomic, proteomic) of disease and toxicity with phenotypic changes at the cellular and system levels of biological organization. While our focus has been the hepatobiliary system, other organ systems are equally amenable to in vivo study, and we consider the potential for discovery, within the context of in vivo investigation in STII medaka, as significant. PMID:18838008

  4. Warped functional analysis of variance.

    PubMed

    Gervini, Daniel; Carter, Patrick A

    2014-09-01

    This article presents an Analysis of Variance model for functional data that explicitly incorporates phase variability through a time-warping component, allowing for a unified approach to estimation and inference in presence of amplitude and time variability. The focus is on single-random-factor models but the approach can be easily generalized to more complex ANOVA models. The behavior of the estimators is studied by simulation, and an application to the analysis of growth curves of flour beetles is presented. Although the model assumes a smooth latent process behind the observed trajectories, smootheness of the observed data is not required; the method can be applied to irregular time grids, which are common in longitudinal studies.

  5. Applications of nuclear technologies for in-vivo elemental analysis

    SciTech Connect

    Cohn, S.H.; Ellis, K.J.; Vartsky, D.; Wielopolski, L.

    1982-01-01

    Measurement facilities developed, to date, include a unique whole-body-counter, (WBC); a total-body neutron-activation facility (TBNAA); and a partial-body activation facility (PBNAA). A variation of the prompt-gamma neutron-activation technique for measuring total-body nitrogen was developed to study body composition of cancer patients and the effect of nutritional regimens on the composition. These new techniques provide data in numerous clinical studies not previously amenable to investigation. The development and perfection of these techniques provide unique applications of radiation and radioisotopes to the early diagnosis of certain diseases and the evaluation of therapeutic programs. The PBNAA technique has been developed and calibrated for in-vivo measurement of metals. Development has gone forward on prompt-gamma neutron activation for the measurement of cadmium, x-ray fluorescence (XRF) for measurement of iron. Other techniques are being investigated for in-vivo measurement of metals such as silicon and beryllium.

  6. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  7. Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy.

    PubMed

    Gineste, Charlotte; Ottenheijm, Coen; Le Fur, Yann; Banzet, Sébastien; Pecchi, Emilie; Vilmen, Christophe; Cozzone, Patrick J; Koulmann, Nathalie; Hardeman, Edna C; Bendahan, David; Gondin, Julien

    2014-01-01

    Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosin slow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8-9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and in vivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While in vitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, in vivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced in vitro muscle force might be related to alterations occurring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness in vitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function in vivo. These results clearly point out that in vitro alterations are muscle-dependent and do not necessarily translate into similar changes in vivo. PMID:25268244

  8. Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy.

    PubMed

    Gineste, Charlotte; Ottenheijm, Coen; Le Fur, Yann; Banzet, Sébastien; Pecchi, Emilie; Vilmen, Christophe; Cozzone, Patrick J; Koulmann, Nathalie; Hardeman, Edna C; Bendahan, David; Gondin, Julien

    2014-01-01

    Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosin slow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8-9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and in vivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While in vitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, in vivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced in vitro muscle force might be related to alterations occurring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness in vitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function in vivo. These results clearly point out that in vitro alterations are muscle-dependent and do not necessarily translate into similar changes in vivo.

  9. Comprehensive Analysis of in Vivo Phosphoproteome of Mouse Liver Microsomes.

    PubMed

    Kwon, Oh Kwang; Sim, JuHee; Kim, Sun Ju; Sung, Eunji; Kim, Jin Young; Jeong, Tae Cheon; Lee, Sangkyu

    2015-12-01

    Protein phosphorylation at serine, threonine, and tyrosine residues are some of the most widespread reversible post-translational modifications. Microsomes are vesicle-like bodies, not ordinarily present within living cells, which form from pieces of the endoplasmic reticulum (ER), plasma membrane, mitochondria, or Golgi apparatus of broken eukaryotic cells. Here we investigated the total phosphoproteome of mouse liver microsomes (MLMs) using TiO2 enrichment of phosphopeptides coupled to on-line 2D-LC-MS/MS. In total, 699 phosphorylation sites in 527 proteins were identified in MLMs. When compared with the current phosphoSitePlus database, 155 novel phosphoproteins were identified in MLM. The distributions of phosphosites were 89.4, 8.0, and 2.6% for phosphoserine, phosphotheronine, and phosphotyrosine, respectively. By Motif-X analysis, eight Ser motifs and one Thr motif were found, and five acidic, two basophilic-, and two proline-directed motifs were assigned. The potential functions of phosphoproteins in MLM were assigned by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In GO annotation, phosphorylated microsomal proteins were involved in mRNA processing, mRNA metabolic processes, and RNA splicing. In the KEGG pathway analysis, phosphorylated microsomal proteins were highly enriched in ribosome protein processing in ER and ribosomes and in RNA transport. Furthermore, we determined that 52 and 23 phosphoproteins were potential substrates of cAMP-dependent protein kinase A and casein kinase II, respectively, many of which are 40S/60S ribosomal proteins. Overall, our results provide an overview of features of protein phosphorylation in MLMs that should be a valuable resource for the future understanding of protein synthesis or translation involving phosphorylation. PMID:26487105

  10. PET and SPECT Radiotracers to Assess Function and Expression of ABC Transporters in Vivo

    PubMed Central

    Mairinger, Severin; Erker, Thomas; Müller, Markus; Langer, Oliver

    2013-01-01

    Adenosine triphosphate-binding cassette (ABC) transporters, such as P-glycoprotein (Pgp, ABCB1), breast cancer resistance protein (BCRP, ABCG2) and multidrug resistance-associated proteins (MRPs) are expressed in high concentrations at various physiological barriers (e.g. blood-brain barrier, blood-testis barrier, blood-tumor barrier), where they impede the tissue accumulation of various drugs by active efflux transport. Changes in ABC transporter expression and function are thought to be implicated in various diseases, such as cancer, epilepsy, Alzheimer’s and Parkinson’s disease. The availability of a non-invasive imaging method which allows for measuring ABC transporter function or expression in vivo would be of great clinical use in that it could facilitate the identification of those patients that would benefit from treatment with ABC transporter modulating drugs. To date three different kinds of imaging probes have been described to measure ABC transporters in vivo: i) radiolabelled transporter substrates ii) radiolabelled transporter inhibitors and iii) radiolabelled prodrugs which are enzymatically converted into transporter substrates in the organ of interest (e.g. brain). The design of new imaging probes to visualize efflux transporters is inter alia complicated by the overlapping substrate recognition pattern of different ABC transporter types. The present article will describe currently available ABC transporter radiotracers for positron emission tomography (PET) and single-photon emission computed tomography (SPECT) and critically discuss strengths and limitations of individual probes and their potential clinical applications. PMID:21434859

  11. In vitro and in vivo modulation of ABCG2 by functionalized aurones and structurally related analogs

    PubMed Central

    Sim, Hong-May; Wu, Chung-Pu; Ambudkar, Suresh V.; Go, Mei-Lin

    2013-01-01

    Over-expression of ABCG2 is linked to multidrug resistance in cancer chemotherapy. We have previously shown that functionalized aurones effectively reduced the efflux of pheophorbide A (an ABCG2 substrate) from ABCG2 over-expressing MDA-MB-231/R (“R”) cells. In the present report, we investigated the functional relevance of this observation and the mechanisms by which it occurs. Aurones and related analogs were investigated for re-sensitization of R cells to mitoxantrone (MX, a chemotherapeutic substrate of ABCG2) in cell-based assays, accumulation of intracellular MX by cell cytometry, interaction with ABCG2 by biochemical assays and in vivo efficacy in MX resistant nude mice xenografts. We found that methoxylated aurones interacted directly with ABCG2 to inhibit efflux activity, possibly by competing for occupancy of one of the substrate binding sites on ABCG2. The present evidence suggests that they are not transported by ABCG2 although they stimulate ABCG2-ATPase activity. Alteration of ABCG2 protein expression was also discounted. One member was found to re-sensitize R cells to MX in both in vitro and in vivo settings. Our study identified methoxylated aurones as promising compounds associated with low toxicities and potent modulatory effects on the ABCG2 efflux protein. Thus, they warrant further scrutiny as lead templates for development as reversal agents of multidrug resistance. PMID:21855533

  12. Consequences of exposure to ionizing radiation for effector T cell function in vivo

    SciTech Connect

    Rouse, B.T.; Hartley, D.; Doherty, P.C. )

    1989-01-01

    The adoptive transfer of acutely primed and memory virus-immune CD8+ T cells causes enhanced meningitis in both cyclophosphamide (Cy) suppressed, and unsuppressed, recipients infected with lymphocytic choriomeningitis virus (LCMV). The severity of meningitis is assessed by counting cells in cerebrospinal fluid (CSF) obtained from the cisterna magna, which allows measurement of significant inflammatory process ranging from 3 to more than 300 times the background number of cells found in mice injected with virus alone. Exposure of the donor immune population to ionizing radiation prior to transfer has shown that activated T cells from mice primed 7 or 8 days previously with virus may still promote a low level of meningitis in unsuppressed recipients following as much as 800 rads, while this effect is lost totally in Cy-suppressed mice at 600 rads. Memory T cells are more susceptible and show no evidence of in vivo effector function in either recipient population subsequent to 400 rads, a dose level which also greatly reduces the efficacy of acutely-primed T cells. The results are interpreted as indicating that heavily irradiated cells that are already fully functional show evidence of primary localization to the CNS and a limited capacity to cause pathology. Secondary localization, and events that require further proliferation of the T cells in vivo, are greatly inhibited by irradiation.

  13. Bacterial mimetics of endocrine secretory granules as immobilized in vivo depots for functional protein drugs

    PubMed Central

    Céspedes, María Virtudes; Fernández, Yolanda; Unzueta, Ugutz; Mendoza, Rosa; Seras-Franzoso, Joaquin; Sánchez-Chardi, Alejando; Álamo, Patricia; Toledo-Rubio, Verónica; Ferrer-Miralles, Neus; Vázquez, Esther; Schwartz, Simó; Abasolo, Ibane; Corchero, José Luis; Mangues, Ramon; Villaverde, Antonio

    2016-01-01

    In the human endocrine system many protein hormones including urotensin, glucagon, obestatin, bombesin and secretin, among others, are supplied from amyloidal secretory granules. These granules form part of the so called functional amyloids, which within the whole aggregome appear to be more abundant than formerly believed. Bacterial inclusion bodies (IBs) are non-toxic, nanostructured functional amyloids whose biological fabrication can be tailored to render materials with defined biophysical properties. Since under physiological conditions they steadily release their building block protein in a soluble and functional form, IBs are considered as mimetics of endocrine secretory granules. We have explored here if the in vivo implantation of functional IBs in a given tissue would represent a stable local source of functional protein. Upon intratumoral injection of bacterial IBs formed by a potent protein ligand of CXCR4 we have observed high stability and prevalence of the material in absence of toxicity, accompanied by apoptosis of CXCR4+ cells and tumor ablation. Then, the local immobilization of bacterial amyloids formed by therapeutic proteins in tumors or other tissues might represent a promising strategy for a sustained local delivery of protein drugs by mimicking the functional amyloidal architecture of the mammals’ endocrine system. PMID:27775083

  14. Small Molecule Agonists of Cell Adhesion Molecule L1 Mimic L1 Functions In Vivo.

    PubMed

    Kataria, Hardeep; Lutz, David; Chaudhary, Harshita; Schachner, Melitta; Loers, Gabriele

    2016-09-01

    Lack of permissive mechanisms and abundance of inhibitory molecules in the lesioned central nervous system of adult mammals contribute to the failure of functional recovery after injury, leading to severe disabilities in motor functions and pain. Peripheral nerve injury impairs motor, sensory, and autonomic functions, particularly in cases where nerve gaps are large and chronic nerve injury ensues. Previous studies have indicated that the neural cell adhesion molecule L1 constitutes a viable target to promote regeneration after acute injury. We screened libraries of known drugs for small molecule agonists of L1 and evaluated the effect of hit compounds in cell-based assays in vitro and in mice after femoral nerve and spinal cord injuries in vivo. We identified eight small molecule L1 agonists and showed in cell-based assays that they stimulate neuronal survival, neuronal migration, and neurite outgrowth and enhance Schwann cell proliferation and migration and myelination of neurons in an L1-dependent manner. In a femoral nerve injury mouse model, enhanced functional regeneration and remyelination after application of the L1 agonists were observed. In a spinal cord injury mouse model, L1 agonists improved recovery of motor functions, being paralleled by enhanced remyelination, neuronal survival, and monoaminergic innervation, reduced astrogliosis, and activation of microglia. Together, these findings suggest that application of small organic compounds that bind to L1 and stimulate the beneficial homophilic L1 functions may prove to be a valuable addition to treatments of nervous system injuries. PMID:26253722

  15. The synthesis and in vivo assembly of functional antibodies in yeast

    NASA Astrophysics Data System (ADS)

    Wood, Clive R.; Boss, Michael A.; Kenten, John H.; Calvert, Jane E.; Roberts, Nicola A.; Emtage, J. Spencer

    1985-04-01

    The yeast Saccharomyces cerevisiae can synthesize, process and secrete higher eukaryotic proteins1-5. We have investigated the expression of immunoglobulin chains in yeast and demonstrate here (1) the synthesis, processing and secretion of light and heavy chains, (2) the glycosylation of heavy chain, (3) the intracellular localization of these foreign proteins by immunofluorescence, and (4) the detection of functional antibodies in cells co-expressing both chains. This may provide the basis of a microbial fermentation process for the production of monoclonal antibodies. The co-expression of light and heavy chains in Escherichia coli has been reported but functional antibodies were not assembled in vivo6,7. Furthermore, only low-level assembly of these chains was found in vitro.

  16. Occupational Functionality: A Concept Analysis.

    PubMed

    Combs, Bryan; Heaton, Karen

    2016-08-01

    Occupational health nursing has evolved since the late 19th century and, with the inclusion of advanced practice nursing, has become essential to the health and safety of workers. A key component of the knowledge required of advanced practice occupational health nurses is an understanding of what it means for workers to be fit for duty The definition or concept of being fit for duty varies depending on the point-of-view of the health care provider. Health care providers across all professions must have a consistent understanding of what it means to be fit for duty Literature shows that professions and specialties that often collaborate have varying ideas about what it means to be fit for duty These differences highlight the need for a consistent concept that can be used across professions, is holistic, and incorporates other concepts critical to all points of view. To better understand fit for duty, a concept analysis, using the Walker and Avant framework, focused on the concept of occupational functionality (OF). Occupational functionality is best defined as the qualities of being suited to serve an occupational purpose efficiently and effectively within the physical, occupational, environmental, and psychological demands of a unique work setting. This concept analysis offers an initial step in understanding fit for duty and gives health care providers a concept that can be used across disciplines. PMID:27462030

  17. Dynamic in vivo analysis of drug induced actin cytoskeleton degradation by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Schnekenburger, Juergen; Bredebusch, Ilona; Langehanenberg, Patrik; Domschke, Wolfram; von Bally, Gert; Kemper, Björn

    2007-07-01

    The actin cytoskeleton mediates a variety of crucial cellular functions as migration, intracellular transport, exocytosis, endocytosis and force generation. The highly dynamic actin fibers are therefore targets for several drugs and toxins. However the study of actin interfering processes by standard microscopy techniques fails in the detailed resolution of dynamic spatial alterations required for a deeper understanding of toxic effects. Here we applied digital holographic microscopy in the online functional analysis of the actin cytoskeleton disrupting marine toxin Latrunculin B. SEM and fluorescence microscopy showed rapid Latrunculin B induced alterations in cell morphology and actin fiber degradation in pancreas tumor cells. The dynamic digital holographic in vivo analysis of the drug dependent cellular processes demonstrated differences in the actin cytoskeleton stability of highly differentiated and dedifferentiated pancreas tumor cell lines. The spatial resolution of the morphological alterations revealed unequal changes in cell morphology. While cells with a low metastatic potential showed Latrunculin B induced cell collapse within 4 h the metastatic tumor cells were increased in cell volume indicating Latrunculin B effects also on cell water content. These data demonstrate that marker free, non-destructive online analysis of cellular morphology and dynamic spatial processes in living cells by digital holography offers new insights in actin dependent cellular mechanisms. Digital holographic microscopy was shown to be a versatile tool in the screening of toxic drug effects and cancer cell biology.

  18. Increased in vivo effector function of human IgG4 isotype antibodies through afucosylation.

    PubMed

    Gong, Qian; Hazen, Meredith; Marshall, Brett; Crowell, Susan R; Ou, Qinglin; Wong, Athena W; Phung, Wilson; Vernes, Jean-Michel; Meng, Y Gloria; Tejada, Max; Andersen, Dana; Kelley, Robert F

    2016-01-01

    For some antibodies intended for use as human therapeutics, reduced effector function is desired to avoid toxicities that might be associated with depletion of target cells. Since effector function(s), including antibody-dependent cell-mediated cytotoxicity (ADCC), require the Fc portion to be glycosylated, reduced ADCC activity antibodies can be obtained through aglycosylation of the human IgG1 isotype. An alternative is to switch to an IgG4 isotype in which the glycosylated antibody is known to have reduced effector function relative to glycosylated IgG1 antibody. ADCC activity of glycosylated IgG1 antibodies is sensitive to the fucosylation status of the Fc glycan, with both in vitro and in vivo ADCC activity increased upon fucose removal ("afucosylation"). The effect of afucosylation on activity of IgG4 antibodies is less well characterized, but it has been shown to increase the in vitro ADCC activity of an anti-CD20 antibody. Here, we show that both in vitro and in vivo activity of anti-CD20 IgG4 isotype antibodies is increased via afucosylation. Using blends of material made in Chinese hamster ovary (CHO) and Fut8KO-CHO cells, we show that ADCC activity of an IgG4 version of an anti-human CD20 antibody is directly proportional to the fucose content. In mice transgenic for human FcγRIIIa, afucosylation of an IgG4 anti-mouse CD20 antibody increases the B cell depletion activity to a level approaching that of the mIgG2a antibody. PMID:27216702

  19. Functional surface engineering of C-dots for fluorescent biosensing and in vivo bioimaging.

    PubMed

    Ding, Changqin; Zhu, Anwei; Tian, Yang

    2014-01-21

    Nanoparticles are promising scaffolds for applications such as imaging, chemical sensors and biosensors, diagnostics, drug delivery, catalysis, energy, photonics, medicine, and more. Surface functionalization of nanoparticles introduces an additional dimension in controlling nanoparticle interfacial properties and provides an effective bridge to connect nanoparticles to biological systems. With fascinating photoluminescence properties, carbon dots (C-dots), carbon-containing nanoparticles that are attracting considerable attention as a new type of quantum dot, are becoming both an important class of imaging probes and a versatile platform for engineering multifunctional nanosensors. In order to transfer C-dots from proof-of-concept studies toward real world applications such as in vivo bioimaging and biosensing, careful design and engineering of C-dot probes is becoming increasingly important. A comprehensive knowledge of how C-dot surfaces with various properties behave is essential for engineering C-dots with useful imaging properties such as high quantum yield, stability, and low toxicity, and with desirable biosensing properties such as high selectivity, sensitivity, and accuracy. Several reviews in recent years have reported preparation methods and properties of C-dots and described their application in biosensors, catalysis, photovoltatic cells, and more. However, no one has yet systematically summarized the surface engineering of C-dots, nor the use of C-dots as fluorescent nanosensors or probes for in vivo imaging in cells, tissues, and living organisms. In this Account, we discuss the major design principles and criteria for engineering the surface functionality of C-dots for biological applications. These criteria include brightness, long-term stability, and good biocompatibility. We review recent developments in designing C-dot surfaces with various functionalities for use as nanosensors or as fluorescent probes with fascinating analytical performance

  20. Protective effects of Zhuyeqing liquor on the immune function of normal and immunosuppressed mice in vivo

    PubMed Central

    2013-01-01

    Background Zhuyeqing Liquor (ZYQL), a well-known Chinese traditional health liquor, has various biological properties, including anti-oxidant, anti-inflammatory, immunoenhancement and cardiovascular protective effects. Methods The protective effects of Zhuyeqing Liquor (ZYQL) on the immune function was investigated in vivo in normal healthy mice and immunosuppressed mice treated with Cyclophosphamide (Cy, 100 mg/kg) by intraperitoneal injection on days 4, 8 and 12. ZYQL (100, 200 and 400 mg/kg) was administered via gavage daily for 14 days. The phagocytotic function of mononuclear phagocytic system was detected with carbon clearance methods, the levels of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) in serum were detected with Enzyme linked immunosorbent assay (ELISA). Immune organs were weighed and organ indexes (organ weight/body weight) of thymus and spleen were calculated. Meanwhile, the activity of lysozyme (LSZ) in serum and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in spleen tissue were measured. Results ZYQL significantly upgrades the K value for clearance of carbon particles in normal mice treated with ZYQL (400 mg/kg) and immunosuppressed mice treated with ZYQL (100, 200 and 400 mg/kg) together with Cy (100 mg/kg) in vivo. The treatment of ZYQL (100, 200 and 400 mg/kg) effectively increased the activity of serum lysozyme as well as promoted the serum levels of IL-6 and IFN-γ in normal mice and immunosuppressed mice. Furthermore, ZYQL (100, 200 and 400 mg/kg) had an antioxidant effects in immune system by enhancing the antioxidant enzyme activity of SOD, CAT and GSH-Px in vivo. In addition, ZYQL (100, 200 and 400 mg/kg) effectively elevated the Cy-induced decreased organ index (thymus and spleen). Conclusions The present work shows that the dose-dependent administration of ZYQL is capable of influencing immune responses, which implying that its valuable functional health may be attributed

  1. Investigating lung responses with functional hyperpolarized xenon‐129 MRI in an ex vivo rat model of asthma

    PubMed Central

    Lilburn, David M.L.; Tatler, Amanda L.; Six, Joseph S.; Lesbats, Clémentine; Habgood, Anthony; Porte, Joanne; Hughes‐Riley, Theodore; Shaw, Dominick E.; Jenkins, Gisli

    2015-01-01

    Purpose Asthma is a disease of increasing worldwide importance that calls for new investigative methods. Ex vivo lung tissue is being increasingly used to study functional respiratory parameters independent of confounding systemic considerations but also to reduce animal numbers and associated research costs. In this work, a straightforward laboratory method is advanced to probe dynamic changes in gas inhalation patterns by using an ex vivo small animal ovalbumin (OVA) model of human asthma. Methods Hyperpolarized (hp) 129Xe was actively inhaled by the excised lungs exposed to a constant pressure differential that mimicked negative pleural cavity pressure. The method enabled hp 129Xe MRI of airway responsiveness to intravenous methacholine (MCh) and airway challenge reversal through salbutamol. Results Significant differences were demonstrated between control and OVA challenged animals on global lung hp 129Xe gas inhalation with P < 0.05 at MCh dosages above 460 μg. Spatial mapping of the regional hp gas distribution revealed an approximately three‐fold increase in heterogeneity for the asthma model organs. Conclusion The experimental results from this proof of concept work suggest that the ex vivo hp noble gas imaging arrangement and the applied image analysis methodology may be useful as an adjunct to current diagnostic techniques. Magn Reson Med 76:1224–1235, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26507239

  2. In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: anatomical and functional implications.

    PubMed

    Cruz-Montecinos, Carlos; González Blanche, Alberto; López Sánchez, David; Cerda, Mauricio; Sanzana-Cuche, Rodolfo; Cuesta-Vargas, Antonio

    2015-11-01

    Different authors have modelled myofascial tissue connectivity over a distance using cadaveric models, but in vivo models are scarce. The aim of this study was to evaluate the relationship between pelvic motion and deep fascia displacement in the medial gastrocnemius (MG). Deep fascia displacement of the MG was evaluated through automatic tracking with an ultrasound. Angular variation of the pelvis was determined by 2D kinematic analysis. The average maximum fascia displacement and pelvic motion were 1.501 ± 0.78 mm and 6.55 ± 2.47 °, respectively. The result of a simple linear regression between fascia displacement and pelvic motion for three task executions by 17 individuals was r = 0.791 (P < 0.001). Moreover, hamstring flexibility was related to a lower anterior tilt of the pelvis (r = 0.544, P < 0.024) and a lower deep fascia displacement of the MG (r = 0.449, P < 0.042). These results support the concept of myofascial tissue connectivity over a distance in an in vivo model, reinforce the functional concept of force transmission through synergistic muscle groups, and grant new perspectives for the role of fasciae in restricting movement in remote zones.

  3. In vivo relationship between pelvis motion and deep fascia displacement of the medial gastrocnemius: anatomical and functional implications.

    PubMed

    Cruz-Montecinos, Carlos; González Blanche, Alberto; López Sánchez, David; Cerda, Mauricio; Sanzana-Cuche, Rodolfo; Cuesta-Vargas, Antonio

    2015-11-01

    Different authors have modelled myofascial tissue connectivity over a distance using cadaveric models, but in vivo models are scarce. The aim of this study was to evaluate the relationship between pelvic motion and deep fascia displacement in the medial gastrocnemius (MG). Deep fascia displacement of the MG was evaluated through automatic tracking with an ultrasound. Angular variation of the pelvis was determined by 2D kinematic analysis. The average maximum fascia displacement and pelvic motion were 1.501 ± 0.78 mm and 6.55 ± 2.47 °, respectively. The result of a simple linear regression between fascia displacement and pelvic motion for three task executions by 17 individuals was r = 0.791 (P < 0.001). Moreover, hamstring flexibility was related to a lower anterior tilt of the pelvis (r = 0.544, P < 0.024) and a lower deep fascia displacement of the MG (r = 0.449, P < 0.042). These results support the concept of myofascial tissue connectivity over a distance in an in vivo model, reinforce the functional concept of force transmission through synergistic muscle groups, and grant new perspectives for the role of fasciae in restricting movement in remote zones. PMID:26467242

  4. On the origin and functions of the term functional analysis.

    PubMed

    Schlinger, Henry D; Normand, Matthew P

    2013-01-01

    In this essay, we note that although Iwata, Dorsey, Slifer, Bauman, and Richman (1982) established the standard framework for conducting functional analyses of problem behavior, the term functional analysis was probably first used in behavior analysis by B. F. Skinner in 1948. We also remind readers that a functional analysis is really an experimental analysis, words that were contained in the title of Skinner's first book, The Behavior of Organisms: An Experimental Analysis (1938). We further describe how Skinner initially applied the concept of functional analysis to an understanding of verbal behavior, and we suggest that the same tactic be applied to the verbal behavior of behavior analysts, in the present case, to the term functional analysis. PMID:24114100

  5. Mutations in the Bacillus subtilis purine repressor that perturb PRPP effector function in vitro and in vivo.

    PubMed

    Weng, M; Zalkin, H

    2000-07-01

    The Bacillus subtilis pur operon repressor (PurR) has a PRPP (5-phosphoribosyl 1-pyrophosphate) binding motif at residues 199-211. Two PurR PRPP binding region mutations (D203A and D204A) were constructed, and the effects on binding of repressor to the pur operon control site in vitro and on regulation of pur operon expression in vivo were investigated. PRPP significantly inhibited the binding of wild-type but not mutant PurR to pur operon control site DNA. In strains with the D203A and D204A mutations, pur operon expression in vivo was super-repressed by addition of adenine to the growth medium. These results support the role of PRPP in modulating the regulatory function of PurR in vivo. YabJ, the product of the distal gene in the bicistronic purR operon, is also required for PurR function in vivo.

  6. Interpretable functional principal component analysis.

    PubMed

    Lin, Zhenhua; Wang, Liangliang; Cao, Jiguo

    2016-09-01

    Functional principal component analysis (FPCA) is a popular approach to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). The intervals where the values of FPCs are significant are interpreted as where sample curves have major variations. However, these intervals are often hard for naïve users to identify, because of the vague definition of "significant values". In this article, we develop a novel penalty-based method to derive FPCs that are only nonzero precisely in the intervals where the values of FPCs are significant, whence the derived FPCs possess better interpretability than the FPCs derived from existing methods. To compute the proposed FPCs, we devise an efficient algorithm based on projection deflation techniques. We show that the proposed interpretable FPCs are strongly consistent and asymptotically normal under mild conditions. Simulation studies confirm that with a competitive performance in explaining variations of sample curves, the proposed FPCs are more interpretable than the traditional counterparts. This advantage is demonstrated by analyzing two real datasets, namely, electroencephalography data and Canadian weather data.

  7. In vivo ultrasound imaging of the popliteus muscle: investigation of functional characteristics.

    PubMed

    Soda, Naoki; Fujihashi, Yuichiro; Aoki, Takaaki

    2016-03-01

    [Purpose] The aim of this study was to use ultrasound imaging equipment for in vivo observation of the popliteus muscle thickness during rest and exercise to examine its functional characteristics and to establish a training method for this muscle. [Subjects and Methods] The subjects included 30 healthy adults (15 men and 15 women). The measurement tasks, consisting of isometric knee flexion and extension and internal rotation of the lower leg were performed in an arbitrary order. The popliteus muscle thickness was measured using an ultrasound. [Results] The popliteus muscle thickness significantly increased in the internal rotation in 27 subjects (90%), whereas, it remained unchanged in the remaining three subjects (10%). [Conclusion] This study differed from most of the previous studies because it involved in vivo observation of the popliteus muscle. We found that ultrasound was an effective method for the measurement of popliteus muscle thickness. The results suggest that internal rotation of the lower leg is the most effective exercise for working the popliteus muscle.

  8. Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration

    PubMed Central

    Kaiser, Nicholas J; Coulombe, Kareen L K

    2015-01-01

    Tissue engineering is well suited for the treatment of cardiac disease due to the limited regenerative capacity of native cardiac tissue and the loss of function associated with endemic cardiac pathologies, such as myocardial infarction and congenital heart defects. However, the physiological complexity of the myocardium imposes extensive requirements on tissue therapies intended for these applications. In recent years, the field of cardiac tissue engineering has been characterized by great innovation and diversity in the fabrication of engineered tissue scaffolds for cardiac repair and regeneration to address these problems. From early approaches that attempted only to deliver cardiac cells in a hydrogel vessel, significant progress has been made in understanding the role of each major component of cardiac living tissue constructs (namely cells, scaffolds, and signaling mechanisms) as they relate to mechanical, biological, and electrical in vivo performance. This improved insight, accompanied by modern material science techniques, allows for the informed development of complex scaffold materials that are optimally designed for cardiac applications. This review provides a background on cardiac physiology as it relates to critical cardiac scaffold characteristics, the degree to which common cardiac scaffold materials fulfill these criteria, and finally an overview of recent in vivo studies that have employed this type of approach. PMID:25970645

  9. In Vivo Evaluation of Vena Caval Filters: Can Function Be Linked to Design Characteristics?

    SciTech Connect

    Proctor, Mary C.; Cho, Kyung J.; Greenfield, Lazar J.

    2000-11-15

    Purpose: To compare the five vena caval filters marketed in the United States and one investigational vena caval filter and to determine whether there is an association between their design and their in vivo function.Methods: Four of each type of filter-Simon Nitinol (SN), Bird's Nest (BN), Vena Tech (VT), Greenfield stainless steel (PSGF), Greenfield titanium (TGF), and the investigational stent cone filter (NGF)-were studied for 60 days in 12 sheep. Radiographic and pathologic outcomes to be assessed included clot capture and resolution, vena caval penetration, position of the filter, thrombogenicity, and vessel wall reaction.Results: Filters differed with respect to the number of clot-trapping levels and the interdependence of the legs. All devices were successfully placed. Intentionally embolized clot was captured. One VT and two SN filters migrated in response to clot capture. Resolution of thrombus was variable, and related to the design of the device. Fibrin webbing was widely present with the VT, BN, and SN filters but limited in the others. The VT and NGF filters demonstrated the most stable filter base diameter.Conclusions: The performance of vena caval filters differs with respect to clot resolution and mechanical stability. Interdependent filter limbs and single-stage conical capture sites appear to result in more favorable performance in in vivo studies.

  10. MS-based metabolomics facilitates the discovery of in vivo functional small molecules with a diversity of biological contexts.

    PubMed

    Yan, Leyu; Nie, Wenna; Parker, Tony; Upton, Zee; Lu, Haitao

    2013-10-01

    In vivo small molecules as necessary intermediates are involved in numerous critical metabolic pathways and biological processes associated with many essential biological functions and events. There is growing evidence that MS-based metabolomics is emerging as a powerful tool to facilitate the discovery of functional small molecules that can better our understanding of development, infection, nutrition, disease, toxicity, drug therapeutics, gene modifications and host-pathogen interaction from metabolic perspectives. However, further progress must still be made in MS-based metabolomics because of the shortcomings in the current technologies and knowledge. This technique-driven review aims to explore the discovery of in vivo functional small molecules facilitated by MS-based metabolomics and to highlight the analytic capabilities and promising applications of this discovery strategy. Moreover, the biological significance of the discovery of in vivo functional small molecules with different biological contexts is also interrogated at a metabolic perspective. PMID:24175746

  11. Exploring Functional β-Cell Heterogeneity In Vivo Using PSA-NCAM as a Specific Marker

    PubMed Central

    Karaca, Melis; Castel, Julien; Tourrel-Cuzin, Cécile; Brun, Manuel; Géant, Anne; Dubois, Mathilde; Catesson, Sandra; Rodriguez, Marianne; Luquet, Serge; Cattan, Pierre; Lockhart, Brian; Lang, Jochen; Ktorza, Alain

    2009-01-01

    Background The mass of pancreatic β-cells varies according to increases in insulin demand. It is hypothesized that functionally heterogeneous β-cell subpopulations take part in this process. Here we characterized two functionally distinct groups of β-cells and investigated their physiological relevance in increased insulin demand conditions in rats. Methods Two rat β-cell populations were sorted by FACS according to their PSA-NCAM surface expression, i.e. βhigh and βlow-cells. Insulin release, Ca2+ movements, ATP and cAMP contents in response to various secretagogues were analyzed. Gene expression profiles and exocytosis machinery were also investigated. In a second part, βhigh and βlow-cell distribution and functionality were investigated in animal models with decreased or increased β-cell function: the Zucker Diabetic Fatty rat and the 48 h glucose-infused rat. Results We show that β-cells are heterogeneous for PSA-NCAM in rat pancreas. Unlike βlow-cells, βhigh-cells express functional β-cell markers and are highly responsive to various insulin secretagogues. Whereas βlow-cells represent the main population in diabetic pancreas, an increase in βhigh-cells is associated with gain of function that follows sustained glucose overload. Conclusion Our data show that a functional heterogeneity of β-cells, assessed by PSA-NCAM surface expression, exists in vivo. These findings pinpoint new target populations involved in endocrine pancreas plasticity and in β-cell defects in type 2 diabetes. PMID:19440374

  12. Functional Analysis and Treatment of Nail Biting

    ERIC Educational Resources Information Center

    Dufrene, Brad A.; Watson, T. Steuart; Kazmerski, Jennifer S.

    2008-01-01

    This study applied functional analysis methodology to nail biting exhibited by a 24-year-old female graduate student. Results from the brief functional analysis indicated variability in nail biting across assessment conditions. Functional analysis data were then used to guide treatment development and implementation. Treatment included a…

  13. In Vivo Analysis of the Major Exocytosis-sensitive Phosphoprotein in Tetrahymena

    PubMed Central

    Chilcoat, N. Doane; Turkewitz, Aaron P.

    1997-01-01

    Phosphoglucomutase (PGM) is a ubiquitous highly conserved enzyme involved in carbohydrate metabolism. A number of recently discovered PGM-like proteins in a variety of organisms have been proposed to function in processes other than metabolism. In addition, sequence analysis suggests that several of these may lack PGM enzymatic activity. The best studied PGM-like protein is parafusin, a major phosphoprotein in the ciliate Paramecium tetraurelia that undergoes rapid and massive dephosphorylation when cells undergo synchronous exocytosis of their dense-core secretory granules. Indirect genetic and biochemical evidence also supports a role in regulated exocytotic membrane fusion. To examine this matter directly, we have identified and cloned the parafusin homologue in Tetrahymena thermophila, a ciliate in which protein function can be studied in vivo. The unique T. thermophila gene, called PGM1, encodes a protein that is closely related to parafusin by sequence and by characteristic post-translational modifications. Comparison of deduced protein sequences, taking advantage of the known atomic structure of rabbit muscle PGM, suggests that both ciliate enzymes and all other PGM-like proteins have PGM activity. We evaluated the activity and function of PGM1 through gene disruption. Surprisingly, ΔPGM1 cells displayed no detectable defect in exocytosis, but showed a dramatic decrease in PGM activity. Both our results, and reinterpretation of previous data, suggest that any potential role for PGM-like proteins in regulated exocytosis is unlikely to precede membrane fusion. PMID:9382866

  14. In-vivo neutron activation analysis: principles and clinical applications

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress. It seems likely that by the end of this century there will have been significant progress with this research tool, and exciting insights obtained into the nature and dynamics of human body composition.

  15. Analysis of in vivo cell movement using transparent tissue systems.

    PubMed

    Thorogood, P; Wood, A

    1987-01-01

    The embryos of certain teleost species are transparent and cell behaviour within the intact embryo can be observed and recorded using Nomarski microscopy coupled with time-lapse video recording or time-lapse cine filming. In this report we review some of our recent analyses of cell behaviour patterns underlying key morphogenetic events. (1) Contact-guided cell migration through a structurally ordered extracellular matrix during fin development; (2) movement of tissue layers during epibolic overgrowth; and (3) cell 'social' behaviour during the establishment of the body axis (i.e. notochord formation and somitogenesis). These results, on cell behaviour correlated with normal morphogenesis, provide a baseline for further work in which hypotheses concerning subcellular and molecular controls of cell behaviour can be tested by experimental perturbation in vivo.

  16. Clinical applications of in vivo neutron-activation analysis

    SciTech Connect

    Cohn, S.H.

    1982-01-01

    In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into and modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, enhancing uniformity, and reducing the dose required for the measurement. The work presently underway will yield significant data on a variety of environmental contaminants such as Cd. Compositional studies are determining the level of vital constituents such as nitrogen and potassium in both normal subjects and in patients with a variety of metabolic disorders. Therapeutic programs can be assessed while in progress.

  17. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function.

    PubMed

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-09-01

    The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of

  18. Artemisia scoparia Enhances Adipocyte Development and Endocrine Function In Vitro and Enhances Insulin Action In Vivo

    PubMed Central

    Richard, Allison J.; Fuller, Scott; Fedorcenco, Veaceslav; Beyl, Robbie; Burris, Thomas P.; Mynatt, Randall; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Background Failure of adipocytes to expand during periods of energy excess can result in undesirable metabolic consequences such as ectopic fat accumulation and insulin resistance. Blinded screening studies have indicated that Artemisia scoparia (SCO) extracts can enhance adipocyte differentiation and lipid accumulation in cultured adipocytes. The present study tested the hypothesis that SCO treatment modulates fat cell development and function in vitro and insulin sensitivity in adipose tissue in vivo. Methods In vitro experiments utilized a Gal4-PPARγ ligand binding domain (LBD) fusion protein-luciferase reporter assay to examine PPARγ activation. To investigate the ability of SCO to modulate adipogenesis and mature fat cell function in 3T3-L1 cells, neutral lipid accumulation, gene expression, and protein secretion were measured by Oil Red O staining, qRT-PCR, and immunoblotting, respectively. For the in vivo experiments, diet-induced obese (DIO) C57BL/6J mice were fed a high-fat diet (HFD) or HFD containing 1% w/w SCO for four weeks. Body weight and composition, food intake, and fasting glucose and insulin levels were measured. Phospho-activation and expression of insulin-sensitizing proteins in epididymal adipose tissue (eWAT) were measured by immunoblotting. Results Ethanolic extracts of A. scoparia significantly activated the PPARγ LBD and enhanced lipid accumulation in differentiating 3T3-L1 cells. SCO increased the transcription of several PPARγ target genes in differentiating 3T3-L1 cells and rescued the negative effects of tumor necrosis factor α on production and secretion of adiponectin and monocyte chemoattractant protein-1 in fully differentiated fat cells. DIO mice treated with SCO had elevated adiponectin levels and increased phosphorylation of AMPKα in eWAT when compared to control mice. In SCO-treated mice, these changes were also associated with decreased fasting insulin and glucose levels. Conclusion SCO has metabolically beneficial

  19. In Vitro and In Vivo Evaluation of a Novel Ferrocyanide Functionalized Nanopourous Silica Decorporation Agent for Cesium in Rats

    SciTech Connect

    Timchalk, Charles; Creim, Jeffrey A.; Sukwarotwat, Vichaya; Wiacek, Robert J.; Addleman, Raymond S.; Fryxell, Glen E.; Yantasee, Wassana

    2010-09-01

    Novel decorporation agents are being developed to protect against radiological terrorist attacks. These sorbents, known as the self-assembled monolayer on mesoporous supports (SAMMS™), are hybrid materials where differing organic moieties are grafted onto mesoporous silica (SiO2). In vitro experiments focused on the evaluation, and optimization of SAMMS for capturing radiocesium (137Cs); based on these studies, a ferrocyanide copper (FC-Cu-EDA)-SAMMS was advanced for in vivo evaluation. In vivo experiments were conducted comparing the performance of the SAMMS vs. insoluble Prussian blue. Groups of jugular cannulated rats (4/treatment) were evaluated. Group I was administered 137Cs (~40 μgeq/kg) by intravenous (iv) injection and oral gavage; Group II was administered pre-bound 137Cs-SAMMS and sequential 137Cs + SAMMS (~61 ngeq/kg) by oral gavage; and Group III evaluated orally administered 137Cs (~0.06 μgeq/kg) followed by 0.1 g of either SAMMS or Prussian blue. Following dosing the rats were maintained in metabolism cages for 72 hour and blood, urine and fecal samples were collected for 137Cs analysis (gamma counting). Rats were then humanely euthanized, and selected tissues analyzed. Orally administered 137Cs was rapidly and well absorbed (~100% relative to iv dose), and the pharmacokinetics (blood, urine, feces & tissues) were very comparable to the iv dose group. For both exposures the urine and feces accounted for 20 and 3% of the dose, respectively. The prebound 137Cs-SAMMS was retained primarily within the feces (72% of the dose), with ~1.4% detected in the urine, suggesting that the 137Cs remained tightly bound to SAMMS. SAMMS & Prussian blue both effectively captured available 137Cs in the gut with feces accounting for 80-88% of the administered dose, while less than 2% was detected in the urine. This study suggests that the functionalized SAMMS out performs Prussian blue in vitro at low pH, but demonstrates comparable in vivo sequestration efficacy at

  20. Differential Item Functioning Analysis Using Rasch Item Information Functions

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Mapuranga, Raymond

    2009-01-01

    Differential item functioning (DIF) analysis is a statistical technique used for ensuring the equity and fairness of educational assessments. This study formulates a new DIF analysis method using the information similarity index (ISI). ISI compares item information functions when data fits the Rasch model. Through simulations and an international…

  1. In vivo optogenetic tracing of functional corticocortical connections between motor forelimb areas

    PubMed Central

    Hira, Riichiro; Ohkubo, Fuki; Tanaka, Yasuhiro R.; Masamizu, Yoshito; Augustine, George J.; Kasai, Haruo; Matsuzaki, Masanori

    2013-01-01

    Interactions between distinct motor cortical areas are essential for coordinated motor behaviors. In rodents, the motor cortical forelimb areas are divided into at least two distinct areas: the rostral forelimb area (RFA) and the caudal forelimb area (CFA). The RFA is thought to be an equivalent of the premotor cortex (PM) in primates, whereas the CFA is believed to be an equivalent of the primary motor cortex. Although reciprocal connections between the RFA and the CFA have been anatomically identified in rats, it is unknown whether there are functional connections between these areas that can induce postsynaptic spikes. In this study, we used an in vivo Channelrhodopsin-2 (ChR2) photostimulation method to trace the functional connections between the mouse RFA and CFA. Simultaneous electrical recordings were utilized to detect spiking activities induced by synaptic inputs originating from photostimulated areas. This method, in combination with anatomical tracing, demonstrated that the RFA receives strong functional projections from layer 2/3 and/or layer 5a, but not from layer 5b (L5b), of the CFA. Further, the CFA receives strong projections from L5b neurons of the RFA. The onset latency of electrical responses evoked in remote areas upon photostimulation of the other areas was approximately 10 ms, which is consistent with the synaptic connectivity between these areas. Our results suggest that neuronal activities in the RFA and the CFA during movements are formed through asymmetric reciprocal connections. PMID:23554588

  2. Structure predicts function: Combining non-invasive electrophysiology with in-vivo histology

    PubMed Central

    Helbling, Saskia; Teki, Sundeep; Callaghan, Martina F.; Sedley, William; Mohammadi, Siawoosh; Griffiths, Timothy D.; Weiskopf, Nikolaus; Barnes, Gareth R.

    2015-01-01

    We present an approach for combining high resolution MRI-based myelin mapping with functional information from electroencephalography (EEG) or magnetoencephalography (MEG). The main contribution to the primary currents detectable with EEG and MEG comes from ionic currents in the apical dendrites of cortical pyramidal cells, aligned perpendicularly to the local cortical surface. We provide evidence from an in-vivo experiment that the variation in MRI-based myeloarchitecture measures across the cortex predicts the variation of the current density over individuals and thus is of functional relevance. Equivalent current dipole locations and moments due to pitch onset evoked response fields (ERFs) were estimated by means of a variational Bayesian algorithm. The myeloarchitecture was estimated indirectly from individual high resolution quantitative multi-parameter maps (MPMs) acquired at 800 μm isotropic resolution. Myelin estimates across cortical areas correlated positively with dipole magnitude. This correlation was spatially specific: regions of interest in the auditory cortex provided significantly better models than those covering whole hemispheres. Based on the MPM data we identified the auditory cortical area TE1.2 as the most likely origin of the pitch ERFs measured by MEG. We can now proceed to exploit the higher spatial resolution of quantitative MPMs to identify the cortical origin of M/EEG signals, inform M/EEG source reconstruction and explore structure–function relationships at a fine structural level in the living human brain. PMID:25529007

  3. Split invertase polypeptides form functional complexes in the yeast periplasm in vivo.

    PubMed

    Schonberger, O; Knox, C; Bibi, E; Pines, O

    1996-09-01

    The assembly of functional proteins from fragments in vivo has been recently described for several proteins, including the secreted maltose binding protein in Escherichia coli. Here we demonstrate for the first time that split gene products can function within the eukaryotic secretory system. Saccharomyces cerevisiae strains able to use sucrose produce the enzyme invertase, which is targeted by a signal peptide to the central secretory pathway and the periplasmic space. Using this enzyme as a model we find the following: (i) Polypeptide fragments of invertase, each containing a signal peptide, are independently translocated into the endoplasmic reticulum (ER) are modified by glycosylation, and travel the entire secretory pathway reaching the yeast periplasm. (ii) Simultaneous expression of independently translated and translocated overlapping fragments of invertase leads to the formation of an enzymatically active complex, whereas individually expressed fragments exhibit no activity. (iii) An active invertase complex is assembled in the ER, is targeted to the yeast periplasm, and is biologically functional, as judged by its ability to facilitate growth on sucrose as a single carbon source. These observation are discussed in relation to protein folding and assembly in the ER and to the trafficking of proteins through the secretory pathway.

  4. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions.

    PubMed

    Han, Jaeil; van Hoof, Ambro

    2016-09-20

    The RNA exosome is a 3'-5' ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44(ch)), RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44(da)), RNA gains direct access to the active site. Here, we show that the Rrp44(da) exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates.

  5. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    NASA Astrophysics Data System (ADS)

    Liba, Orly; Sorelle, Elliott D.; Sen, Debasish; de La Zerda, Adam

    2016-03-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART.

  6. Contrast-enhanced optical coherence tomography with picomolar sensitivity for functional in vivo imaging

    PubMed Central

    Liba, Orly; SoRelle, Elliott D.; Sen, Debasish; de la Zerda, Adam

    2016-01-01

    Optical Coherence Tomography (OCT) enables real-time imaging of living tissues at cell-scale resolution over millimeters in three dimensions. Despite these advantages, functional biological studies with OCT have been limited by a lack of exogenous contrast agents that can be distinguished from tissue. Here we report an approach to functional OCT imaging that implements custom algorithms to spectrally identify unique contrast agents: large gold nanorods (LGNRs). LGNRs exhibit 110-fold greater spectral signal per particle than conventional GNRs, which enables detection of individual LGNRs in water and concentrations as low as 250 pM in the circulation of living mice. This translates to ~40 particles per imaging voxel in vivo. Unlike previous implementations of OCT spectral detection, the methods described herein adaptively compensate for depth and processing artifacts on a per sample basis. Collectively, these methods enable high-quality noninvasive contrast-enhanced imaging of OCT in living subjects, including detection of tumor microvasculature at twice the depth achievable with conventional OCT. Additionally, multiplexed detection of spectrally-distinct LGNRs was demonstrated to observe discrete patterns of lymphatic drainage and identify individual lymphangions and lymphatic valve functional states. These capabilities provide a powerful platform for molecular imaging and characterization of tissue noninvasively at cellular resolution, called MOZART. PMID:26987475

  7. In Vivo Voltage-Sensitive Dye Imaging of Subcortical Brain Function

    NASA Astrophysics Data System (ADS)

    Tang, Qinggong; Tsytsarev, Vassiliy; Liang, Chia-Pin; Akkentli, Fatih; Erzurumlu, Reha S.; Chen, Yu

    2015-11-01

    The whisker system of rodents is an excellent model to study peripherally evoked neural activity in the brain. Discrete neural modules represent each whisker in the somatosensory cortex (“barrels”), thalamus (“barreloids”), and brain stem (“barrelettes”). Stimulation of a single whisker evokes neural activity sequentially in its corresponding barrelette, barreloid, and barrel. Conventional optical imaging of functional activation in the brain is limited to surface structures such as the cerebral cortex. To access subcortical structures and image sensory-evoked neural activity, we designed a needle-based optical system using gradient-index (GRIN) rod lens. We performed voltage-sensitive dye imaging (VSDi) with GRIN rod lens to visualize neural activity evoked in the thalamic barreloids by deflection of whiskers in vivo. We stimulated several whiskers together to determine the sensitivity of our approach in differentiating between different barreloid responses. We also carried out stimulation of different whiskers at different times. Finally, we used muscimol in the barrel cortex to silence the corticothalamic inputs while imaging in the thalamus. Our results show that it is possible to obtain functional maps of the sensory periphery in deep brain structures such as the thalamic barreloids. Our approach can be broadly applicable to functional imaging of other core brain structures.

  8. In vivo functional human imaging using photoacoustic microscopy: response to ischemic and thermal stimuli

    NASA Astrophysics Data System (ADS)

    Favazza, Christopher; Maslov, Konstantin; Cornelius, Lynn; Wang, Lihong V.

    2010-02-01

    We report results of two in vivo functional human imaging experiments using photoacoustic microscopy. In Experiment 1, the hemodynamic response to an ischemic event was measured. The palm of a volunteer was imaged and a single cross-section was monitored while periodic arterial occlusions were administered using a blood pressure cuff wrapped around the upper arm and inflated to ~280 mmHg. Significant relative decreases in oxygen saturation (sO2) and total hemoglobin (HbT) were observed during periods of ischemia. Upon release of the occlusion, significant relative increases in sO2 and HbT due to post-occlusive reactive hyperemia were recorded. Experiment 2 explored the vascular response to a local, external thermal stimulus. Thermal hyperemia is a common physiological phenomenon and thermoregulation function in which blood flow to the skin is increased to more efficiently exchange heat with the ambient environment. The forearm of a volunteer was imaged and a single cross-section was monitored while the imaged surface was exposed to an elevated temperature of ~46°C. Due to thermal hyperemia, relative increases in sO2 and HbT were measured as the temperature of the surface was raised. These results may contribute as clinically relevant measures of vascular functioning for detection and assessment of vascular related diseases.

  9. Combined diffusion and strain MRI reveals structure and function of human myocardial laminar sheets in vivo.

    PubMed

    Dou, Jiangang; Tseng, Wen-Yih I; Reese, Timothy G; Wedeen, Van J

    2003-07-01

    The mechanism of ventricular thickening in normal humans was investigated using in vivo MRI. The hypothesis that myocardial laminar sheets contribute to ventricular thickening predominantly via sheet shear and sheet extension, as previously found invasively in canine studies at particular ventricular sites, was tested. In normal human subjects, registered images of myocardial sheet architecture and strain at the mid-left ventricle (mid-LV) at mid-systole were acquired with diffusion and strain MRI. Sheet function was analyzed by computing myocardial strain in the local fiber-sheet coordinates. In general, myocardial sheets contribute to ventricular thickening through all three cross-fiber strain components: sheet shear, sheet extension, and sheet-normal thickening (previously undocumented). Each of these components demonstrated substantial spatial heterogeneity, with sheet shear and sheet extension usually predominant in the anterior free wall, and sheet-normal thickening predominant near the right ventricular (RV) insertions. However, considerable intersubject variability was also found. In all cases, the contributions to thickening of fiber strains were small. Sheet function in normal humans was found to be heterogeneous and variable, contrasting with the uniform and symmetric ventricular patterns of fiber shortening and wall thickening. The study demonstrates that noninvasive NMR imaging is a promising tool for investigations of myocardial sheet architecture and function, and is particularly suited to the evident complexity of this field of study.

  10. The RNA Exosome Channeling and Direct Access Conformations Have Distinct In Vivo Functions.

    PubMed

    Han, Jaeil; van Hoof, Ambro

    2016-09-20

    The RNA exosome is a 3'-5' ribonuclease complex that is composed of nine core subunits and an essential catalytic subunit, Rrp44. Two distinct conformations of Rrp44 were revealed in previous structural studies, suggesting that Rrp44 may change its conformation to exert its function. In the channeling conformation, (Rrp44(ch)), RNA accesses the active site after traversing the central channel of the RNA exosome, whereas in the other conformation, (Rrp44(da)), RNA gains direct access to the active site. Here, we show that the Rrp44(da) exosome is important for nuclear function of the RNA exosome. Defects caused by disrupting the direct access conformation are distinct from those caused by channel-occluding mutations, indicating specific functions for each conformation. Our genetic analyses provide in vivo evidence that the RNA exosome employs a direct-access route to recruit specific substrates, indicating that the RNA exosome uses alternative conformations to act on different RNA substrates. PMID:27653695

  11. A comprehensive analysis of microRNA expression during human keratinocyte differentiation in vitro and in vivo.

    PubMed

    Hildebrand, Janosch; Rütze, Martin; Walz, Nicole; Gallinat, Stefan; Wenck, Horst; Deppert, Wolfgang; Grundhoff, Adam; Knott, Anja

    2011-01-01

    Here, we report a comprehensive investigation of changes in microRNA (miRNA) expression profiles on human keratinocyte (HK) differentiation in vitro and in vivo. We have monitored expression patterns of 377 miRNAs during calcium-induced differentiation of primary HKs, and have compared these patterns with miRNA expression profiles of epidermal stem cells, transient amplifying cells, and terminally differentiated HKs from human skin. Apart from the previously described miR-203, we found an additional nine miRNAs (miR-23b, miR-95, miR-210, miR-224, miR-26a, miR-200a, miR-27b, miR-328, and miR-376a) that are associated with HK differentiation in vitro and in vivo. In situ hybridization experiments confirmed miR-23b as a marker of HK differentiation in vivo. Additionally, gene ontology analysis and functional validation of predicted miRNA targets using 3'-untranslated region-luciferase assays suggest that multiple miRNAs that are upregulated on HK differentiation cooperate to regulate gene expression during skin development. Our results thus provide the basis for further analysis of miRNA functions during epidermal differentiation.

  12. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening

    PubMed Central

    Guo, Yongyuan; Hu, Beibei; Tang, Chu; Wu, Yunpeng; Sun, Pengfei; Zhang, Xianlong; Jia, Yuhua

    2015-01-01

    Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application. PMID:26229463

  13. Increased osteoblast function in vitro and in vivo through surface nanostructuring by ultrasonic shot peening.

    PubMed

    Guo, Yongyuan; Hu, Beibei; Tang, Chu; Wu, Yunpeng; Sun, Pengfei; Zhang, Xianlong; Jia, Yuhua

    2015-01-01

    Surface topography has significant influence on good and fast osseointegration of biomedical implants. In this work, ultrasonic shot peening was conducted to modify titanium to produce nanograined (NG) surface. Its ability to induce new bone formation was evaluated using an in vivo animal model. We demonstrated that the NG surface enhanced osteoblast adhesion, proliferation, differentiation, and mineralization in in vitro experiments compared to coarse-grained titanium surface. Push-out test, histological observations, fluorescent labeling, and histomorphometrical analysis consistently indicated that the NG surfaces developed have the higher osseointegration than coarse-grained surfaces. Those results suggest that ultrasonic shot peening has the potential for future use as a surface modification method in biomedical application. PMID:26229463

  14. Structural Motifs Critical for In Vivo Function and Stability of the RecQ-Mediated Genome Instability Protein Rmi1

    PubMed Central

    Kennedy, Jessica A.; Syed, Salahuddin; Schmidt, Kristina H.

    2015-01-01

    Rmi1 is a member of the Sgs1/Top3/Rmi1 (STR) complex of Saccharomyces cerevisiae and has been implicated in binding and catalytic enhancement of Top3 in the dissolution of double Holliday junctions. Deletion of RMI1 results in a severe growth defect resembling that of top3Δ. Despite the importance of Rmi1 for cell viability, little is known about its functional domains, particularly in Rmi1 of S. cerevisiae, which does not have a resolved crystal structure and the primary sequence is poorly conserved. Here, we rationally designed point mutations based on bioinformatics analysis of order/disorder and helical propensity to define three functionally important motifs in yeast Rmi1 outside of the proposed OB-fold core. Replacing residues F63, Y218 and E220 with proline, designed to break predicted N-terminal and C-terminal α-helices, or with lysine, designed to eliminate hydrophobic residues at positions 63 and 218, while maintaining α-helical structure, caused hypersensitivity to hydroxyurea. Further, Y218P and E220P mutations, but not F63P and F63K mutations, led to reduced Rmi1 levels compared to wild type Rmi1, suggesting a role of the C-terminal α-helix in Rmi1 stabilization, most likely by protecting the integrity of the OB-fold core. Our bioinformatics analysis also suggests the presence of a disordered linker between the N-terminal α-helix and the OB fold core; a P88A mutation, designed to increase helicity in this linker, also impaired Rmi1 function in vivo. In conclusion, we propose a model that maps all functionally important structural features for yeast Rmi1 based on biological findings in yeast and structure-prediction-based alignment with the recently established crystal structure of the N-terminus of human Rmi1. PMID:26717309

  15. Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

    PubMed

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  16. Analysis of elastography methods using mathematical and ex vivo data

    NASA Astrophysics Data System (ADS)

    Byram, Brett C.; Wahl, Michael R.; Holmes, David R., III; Lerman, Amir; Robb, Richard A.

    2003-05-01

    Intravascular ultrasound (IVUS) currently has a limited ability to characterize endovascular anatomic properties. IVUS elastography enhances the ability to characterize the biomechanical properties of arterial walls. A mathematical phantom generator was developed based on the characteristics of 30MHz, 64 element IVUS catheter images from excised canine femoral arteries. The difference between high and low-pressure intra-arterial images was modeled using phase shifts. The increase in phase shift occurred randomly, generally at every three pixels in our images. Using mathematical phantoms, different methods for calculating elastograms were quantitatively analyzed. Specifically, the effect of standard cross correlation versus cross correlation of the integral of the inflection characteristics for a given set of data, and the effect of an algorithm utilizing a non-constant kernel, were assessed. The specific methods found to be most accurate on the mathematical phantom data were then applied to ex vivo canine data of a scarred and a healthy artery. The algorithm detected significant differences between these two sets of arterial data. It will be necessary to obtain and analyze several more sets of canine arterial data in order to determine the accuracy and reproducibility of the algorithm.

  17. Improving the signal analysis for in vivo photoacoustic flow cytometry

    NASA Astrophysics Data System (ADS)

    Niu, Zhenyu; Yang, Ping; Wei, Dan; Tang, Shuo; Wei, Xunbin

    2015-03-01

    At early stage of cancer, a small number of circulating tumor cells (CTCs) appear in the blood circulation. Thus, early detection of malignant circulating tumor cells has great significance for timely treatment to reduce the cancer death rate. We have developed an in vivo photoacoustic flow cytometry (PAFC) to monitor the metastatic process of CTCs and record the signals from target cells. Information of target cells which is helpful to the early therapy would be obtained through analyzing and processing the signals. The raw signal detected from target cells often contains some noise caused by electronic devices, such as background noise and thermal noise. We choose the Wavelet denoising method to effectively distinguish the target signal from background noise. Processing in time domain and frequency domain would be combined to analyze the signal after denoising. This algorithm contains time domain filter and frequency transformation. The frequency spectrum image of the signal contains distinctive features that can be used to analyze the property of target cells or particles. The PAFC technique can detect signals from circulating tumor cells or other particles. The processing methods have a great potential for analyzing signals accurately and rapidly.

  18. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    NASA Astrophysics Data System (ADS)

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-08-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

  19. Fiberless multicolor neural optoelectrode for in vivo circuit analysis.

    PubMed

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G; Buzsáki, György; Wise, Kensall D; Yoon, Euisik

    2016-08-03

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets.

  20. Fiberless multicolor neural optoelectrode for in vivo circuit analysis

    PubMed Central

    Kampasi, Komal; Stark, Eran; Seymour, John; Na, Kyounghwan; Winful, Herbert G.; Buzsáki, György; Wise, Kensall D.; Yoon, Euisik

    2016-01-01

    Maximizing the potential of optogenetic approaches in deep brain structures of intact animals requires optical manipulation of neurons at high spatial and temporal resolutions, while simultaneously recording electrical data from those neurons. Here, we present the first fiber-less optoelectrode with a monolithically integrated optical waveguide mixer that can deliver multicolor light at a common waveguide port to achieve multicolor modulation of the same neuronal population in vivo. We demonstrate successful device implementation by achieving efficient coupling between a side-emitting injection laser diode (ILD) and a dielectric optical waveguide mixer via a gradient-index (GRIN) lens. The use of GRIN lenses attains several design features, including high optical coupling and thermal isolation between ILDs and waveguides. We validated the packaged devices in the intact brain of anesthetized mice co-expressing Channelrhodopsin-2 and Archaerhodopsin in pyramidal cells in the hippocampal CA1 region, achieving high quality recording, activation and silencing of the exact same neurons in a given local region. This fully-integrated approach demonstrates the spatial precision and scalability needed to enable independent activation and silencing of the same or different groups of neurons in dense brain regions while simultaneously recording from them, thus considerably advancing the capabilities of currently available optogenetic toolsets. PMID:27485264

  1. Functional Analysis of Transcription Factors in Arabidopsis

    PubMed Central

    Mitsuda, Nobutaka; Ohme-Takagi, Masaru

    2009-01-01

    Transcription factors (TFs) regulate the expression of genes at the transcriptional level. Modification of TF activity dynamically alters the transcriptome, which leads to metabolic and phenotypic changes. Thus, functional analysis of TFs using ‘omics-based’ methodologies is one of the most important areas of the post-genome era. In this mini-review, we present an overview of Arabidopsis TFs and introduce strategies for the functional analysis of plant TFs, which include both traditional and recently developed technologies. These strategies can be assigned to five categories: bioinformatic analysis; analysis of molecular function; expression analysis; phenotype analysis; and network analysis for the description of entire transcriptional regulatory networks. PMID:19478073

  2. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics.

    PubMed

    Liu, Yongjian; Ibricevic, Aida; Cohen, Joel A; Cohen, Jessica L; Gunsten, Sean P; Fréchet, Jean M J; Walter, Michael J; Welch, Michael J; Brody, Steven L

    2009-01-01

    Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well-defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg(9)), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1-5 microm diameter) and nanoparticles (20-40 nm diameter) without and with Arg(9) showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but, unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg(9) and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg(9). Whereas microparticles may be advantageous for short-term applications, nanosized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg(9). Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling.

  3. Functional significance of glutamate-cysteine ligase modifier for erythrocyte survival in vitro and in vivo.

    PubMed

    Föller, M; Harris, I S; Elia, A; John, R; Lang, F; Kavanagh, T J; Mak, T W

    2013-10-01

    Erythrocytes endure constant exposure to oxidative stress. The major oxidative stress scavenger in erythrocytes is glutathione. The rate-limiting enzyme for glutathione synthesis is glutamate-cysteine ligase, which consists of a catalytic subunit (GCLC) and a modifier subunit (GCLM). Here, we examined erythrocyte survival in GCLM-deficient (gclm(-/-)) mice. Erythrocytes from gclm(-/-) mice showed greatly reduced intracellular glutathione. Prolonged incubation resulted in complete lysis of gclm(-/-) erythrocytes, which could be reversed by exogenous delivery of the antioxidant Trolox. To test the importance of GCLM in vivo, mice were treated with phenylhydrazine (PHZ; 0.07 mg/g b.w.) to induce oxidative stress. Gclm(-/-) mice showed dramatically increased hemolysis compared with gclm(+/+) controls. In addition, PHZ-treated gclm(-/-) mice displayed markedly larger accumulations of injured erythrocytes in the spleen than gclm(+/+) mice within 24 h of treatment. Iron staining indicated precipitations of the erythrocyte-derived pigment hemosiderin in kidney tubules of gclm(-/-) mice and none in gclm(+/+) controls. In fact, 24 h after treatment, kidney function began to diminish in gclm(-/-) mice as evident from increased serum creatinine and urea. Consequently, while all PHZ-treated gclm(+/+) mice survived, 90% of PHZ-treated gclm(-/-) mice died within 5 days of treatment. In vitro, upon incubation in the absence or presence of additional oxidative stress, gclm(-/-) erythrocytes exposed significantly more phosphatidylserine, a cell death marker, than gclm(+/+) erythrocytes, an effect at least partially due to increased cytosolic Ca(2+) concentration. Under resting conditions, gclm(-/-) mice exhibited reticulocytosis, indicating that the enhanced erythrocyte death was offset by accelerated erythrocyte generation. GCLM is thus indispensable for erythrocyte survival, in vitro and in vivo, during oxidative stress.

  4. Impact of hydrogel nanoparticle size and functionalization on in vivo behavior for lung imaging and therapeutics.

    PubMed

    Liu, Yongjian; Ibricevic, Aida; Cohen, Joel A; Cohen, Jessica L; Gunsten, Sean P; Fréchet, Jean M J; Walter, Michael J; Welch, Michael J; Brody, Steven L

    2009-01-01

    Polymer chemistry offers the possibility of synthesizing multifunctional nanoparticles which incorporate moieties that enhance diagnostic and therapeutic targeting of cargo delivery to the lung. However, since rules for predicting particle behavior following modification are not well-defined, it is essential that probes for tracking fate in vivo are also included. Accordingly, we designed polyacrylamide-based hydrogel particles of differing sizes, functionalized with a nona-arginine cell-penetrating peptide (Arg(9)), and labeled with imaging components to assess lung retention and cellular uptake after intratracheal administration. Radiolabeled microparticles (1-5 microm diameter) and nanoparticles (20-40 nm diameter) without and with Arg(9) showed diffuse airspace distribution by positron emission tomography imaging. Biodistribution studies revealed that particle clearance and extrapulmonary distribution was, in part, size dependent. Microparticles were rapidly cleared by mucociliary routes but, unexpectedly, also through the circulation. In contrast, nanoparticles had prolonged lung retention enhanced by Arg(9) and were significantly restricted to the lung. For all particle types, uptake was predominant in alveolar macrophages and, to a lesser extent, lung epithelial cells. In general, particles did not induce local inflammatory responses, with the exception of microparticles bearing Arg(9). Whereas microparticles may be advantageous for short-term applications, nanosized particles constitute an efficient high-retention and non-inflammatory vehicle for the delivery of diagnostic imaging agents and therapeutics to lung airspaces and alveolar macrophages that can be enhanced by Arg(9). Importantly, our results show that minor particle modifications may significantly impact in vivo behavior within the complex environments of the lung, underscoring the need for animal modeling. PMID:19852512

  5. Molecular organization and in vivo function of the cytoskeleton of amphibian erythrocytes.

    PubMed

    Lee, Kyeng Gea; Kerr, Louis M; Cohen, William D

    2007-08-01

    One prominent cytoskeletal feature of non-mammalian vertebrate erythrocytes is the marginal band (MB), composed of microtubules. However, there have been several reports of MB-associated F-actin. We have further investigated the function of MB-associated F-actin, using newt erythrocytes having large, thick MBs. Confocal microscopy revealed a distinctive band of F-actin colocalizing point- by-point with MB microtubules. Furthermore, the F-actin band was present in isolated elliptical MBs, but absent in membrane skeletons lacking MBs. F-actin depolymerizing agents did not affect F-actin band integrity in isolated MBs, indicating its non-dynamic state. However, exposure to elastase resulted in F-actin removal and MB circularization. These results provide evidence of a strong association of F-actin with MB microtubules in mature ellipsoidal erythrocytes. To assess the true extent of mechanical stress on the cytoskeleton, erythrocytes were observed by video microscopy during flow in vivo. Moving with long axis parallel to flow direction, cells underwent reversible shape distortion as they collided vigorously with other erythrocytes and vessel walls. In addition, cells twisted into figure-8 shapes, a cytoskeletal property that may provide physiological advantages during flow. Our results, together with those of others, yield a consistent picture in which developing erythrocytes undergo transition from spheroids to immature discoids to mature ellipsoids. The causal step in discoid formation is biogenesis of circular MBs with sufficient flexural rigidity to determine cell shape. F-actin binding to MB microtubules then creates a composite system, enhancing flexural rigidity to produce and maintain ellipsoidal shape during the physical challenges of blood flow in vivo.

  6. In vivo assessment of contractile strength distinguishes differential gene function in skeletal muscle of zebrafish larvae.

    PubMed

    Martin, Brit L; Gallagher, Thomas L; Rastogi, Neha; Davis, Jonathan P; Beattie, Christine E; Amacher, Sharon L; Janssen, Paul M L

    2015-10-01

    The accessible genetics and extensive skeletal musculature of the zebrafish make it a versatile and increasingly used model for studying muscle contraction. We here describe the development of an in vivo assay for measuring the contractile force of intact zebrafish at the larval stage. In addition, as proof of applicability, we have used this assay to quantify contractile strength of zebrafish larvae in a morphant model of deranged rbfox function. Average maximum tetanic (180 Hz) whole body forces produced by wild-type larvae at 2, 3, 4, and 5 days postfertilization amounted to 3.0, 7.2, 9.1, and 10.8 mN, respectively. To compare at potentially different stages of muscle development, we developed an immunohistological assay for empirically determining the cross-sectional area of larval trunk skeletal muscle to quantify muscle-specific force per cross-sectional area. At 4-5 days postfertilization, specific force amounts to ∼ 300 mN/mm(2), which is similar to fully developed adult mammalian skeletal muscle. We used these assays to measure contractile strength in zebrafish singly or doubly deficient for two rbfox paralogs, rbfox1l and rbfox2, which encode RNA-binding factors shown previously to modulate muscle function and muscle-specific splicing. We found rbfox2 morphants produce maximal tetanic forces similar to wild-type larvae, whereas rbfox1l morphants demonstrate significantly impaired function. rbfox1l/rbfox2 morphants are paralyzed, and their lack of contractile force production in our assay suggests that paralysis is a muscle-autonomous defect. These quantitative functional results allow measurement of muscle-specific phenotypes independent of neural input.

  7. Conditional gene deletion reveals functional redundancy of GABAB receptors in peripheral nociceptors in vivo

    PubMed Central

    2009-01-01

    Background γ-aminobutyric acid (GABA) is an important inhibitory neurotransmitter which mainly mediates its effects on neurons via ionotropic (GABAA) and metabotropic (GABAB) receptors. GABAB receptors are widely expressed in the central and the peripheral nervous system. Although there is evidence for a key function of GABAB receptors in the modulation of pain, the relative contribution of peripherally- versus centrally-expressed GABAB receptors is unclear. Results In order to elucidate the functional relevance of GABAB receptors expressed in peripheral nociceptive neurons in pain modulation we generated and analyzed conditional mouse mutants lacking functional GABAB(1) subunit specifically in nociceptors, preserving expression in the spinal cord and brain (SNS-GABAB(1)-/- mice). Lack of the GABAB(1) subunit precludes the assembly of functional GABAB receptor. We analyzed SNS-GABAB(1)-/- mice and their control littermates in several models of acute and neuropathic pain. Electrophysiological studies on peripheral afferents revealed higher firing frequencies in SNS-GABAB(1)-/- mice compared to corresponding control littermates. However no differences were seen in basal nociceptive sensitivity between these groups. The development of neuropathic and chronic inflammatory pain was similar across the two genotypes. The duration of nocifensive responses evoked by intraplantar formalin injection was prolonged in the SNS-GABAB(1)-/- animals as compared to their control littermates. Pharmacological experiments revealed that systemic baclofen-induced inhibition of formalin-induced nociceptive behaviors was not dependent upon GABAB(1) expression in nociceptors. Conclusion This study addressed contribution of GABAB receptors expressed on primary afferent nociceptive fibers to the modulation of pain. We observed that neither the development of acute and chronic pain nor the analgesic effects of a systematically-delivered GABAB agonist was significantly changed upon a specific

  8. Truncated HP1 lacking a functional chromodomain induces heterochromatinization upon in vivo targeting.

    PubMed

    Brink, Maartje C; van der Velden, Yme; de Leeuw, Wim; Mateos-Langerak, Julio; Belmont, Andrew S; van Driel, Roel; Verschure, Pernette J

    2006-01-01

    Packaging of the eukaryotic genome into higher order chromatin structures is tightly related to gene expression. Pericentromeric heterochromatin is typified by accumulations of heterochromatin protein 1 (HP1), methylation of histone H3 at lysine 9 (MeH3K9) and global histone deacetylation. HP1 interacts with chromatin by binding to MeH3K9 through the chromodomain (CD). HP1 dimerizes with itself and binds a variety of proteins through its chromoshadow domain. We have analyzed at the single cell level whether HP1 lacking its functional CD is able to induce heterochromatinization in vivo. We used a lac-operator array-based system in mammalian cells to target EGFP-lac repressor tagged truncated HP1alpha and HP1beta to a lac operator containing gene-amplified chromosome region in living cells. After targeting truncated HP1alpha or HP1beta we observe enhanced tri-MeH3K9 and recruitment of endogenous HP1alpha and HP1beta to the chromosome region. We show that CD-less HP1alpha can induce chromatin condensation, whereas the effect of truncated HP1beta is less pronounced. Our results demonstrate that after lac repressor-mediated targeting, HP1alpha and HP1beta without a functional CD are able to induce heterochromatinization.

  9. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    NASA Technical Reports Server (NTRS)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  10. In Vivo Function of PTEX88 in Malaria Parasite Sequestration and Virulence.

    PubMed

    Matz, Joachim M; Ingmundson, Alyssa; Costa Nunes, Jean; Stenzel, Werner; Matuschewski, Kai; Kooij, Taco W A

    2015-06-01

    Malaria pathology is linked to remodeling of red blood cells by eukaryotic Plasmodium parasites. Central to host cell refurbishment is the trafficking of parasite-encoded virulence factors through the Plasmodium translocon of exported proteins (PTEX). Much of our understanding of its function is based on experimental work with cultured Plasmodium falciparum, yet direct consequences of PTEX impairment during an infection remain poorly defined. Using the murine malaria model parasite Plasmodium berghei, it is shown here that efficient sequestration to the pulmonary, adipose, and brain tissue vasculature is dependent on the PTEX components thioredoxin 2 (TRX2) and PTEX88. While TRX2-deficient parasites remain virulent, PTEX88-deficient parasites no longer sequester in the brain, correlating with abolishment of cerebral complications in infected mice. However, an apparent trade-off for virulence attenuation was spleen enlargement, which correlates with a strongly reduced schizont-to-ring-stage transition. Strikingly, general protein export is unaffected in PTEX88-deficient mutants that mature normally in vitro. Thus, PTEX88 is pivotal for tissue sequestration in vivo, parasite virulence, and preventing exacerbation of spleen pathology, but these functions do not correlate with general protein export to the host erythrocyte. The presented data suggest that the protein export machinery of Plasmodium parasites and their underlying mechanistic features are considerably more complex than previously anticipated and indicate challenges for targeted intervention strategies.

  11. In Vivo Functional Brain Imaging Approach Based on Bioluminescent Calcium Indicator GFP-aequorin.

    PubMed

    Lark, Arianna R; Kitamoto, Toshihiro; Martin, Jean-René

    2016-01-08

    Functional in vivo imaging has become a powerful approach to study the function and physiology of brain cells and structures of interest. Recently a new method of Ca(2+)-imaging using the bioluminescent reporter GFP-aequorin (GA) has been developed. This new technique relies on the fusion of the GFP and aequorin genes, producing a molecule capable of binding calcium and - with the addition of its cofactor coelenterazine - emitting bright light that can be monitored through a photon collector. Transgenic lines carrying the GFP-aequorin gene have been generated for both mice and Drosophila. In Drosophila, the GFP-aequorin gene has been placed under the control of the GAL4/UAS binary expression system allowing for targeted expression and imaging within the brain. This method has subsequently been shown to be capable of detecting both inward Ca(2+)-transients and Ca(2+)-released from inner stores. Most importantly it allows for a greater duration in continuous recording, imaging at greater depths within the brain, and recording at high temporal resolutions (up to 8.3 msec). Here we present the basic method for using bioluminescent imaging to record and analyze Ca(2+)-activity within the mushroom bodies, a structure central to learning and memory in the fly brain.

  12. Polyglycerolsulfate Functionalized Gold Nanorods as Optoacoustic Signal Nanoamplifiers for In Vivo Bioimaging of Rheumatoid Arthritis

    PubMed Central

    Vonnemann, Jonathan; Beziere, Nicolas; Böttcher, Christoph; Riese, Sebastian B.; Kuehne, Christian; Dernedde, Jens; Licha, Kai; von Schacky, Claudio; Kosanke, Yvonne; Kimm, Melanie; Meier, Reinhard; Ntziachristos, Vasilis; Haag, Rainer

    2014-01-01

    We have synthesized a targeted imaging agent for rheumatoid arthritis based on polysulfated gold nanorods. The CTAB layer on gold nanorods was first replaced with PEG-thiol and then with dendritic polyglycerolsulfate at elevated temperature, which resulted in significantly reduced cytotoxicity compared to polyanionic gold nanorods functionalized by non-covalent approaches. In addition to classical characterization methods, we have established a facile UV-VIS based BaCl2 agglomeration assay to confirm a quantitative removal of unbound ligand. With the help of a competitive surface plasmon resonance-based L-selectin binding assay and a leukocyte adhesion-based flow cell assay, we have demonstrated the high inflammation targeting potential of the synthesized gold nanorods in vitro. In combination with the surface plasmon resonance band of AuNRs at 780 nm, these findings permitted the imaging of inflammation in an in vivo mouse model for rheumatoid arthritis with high contrast using multispectral optoacoustic tomography. The study offers a robust method for otherwise difficult to obtain covalently functionalized polyanionic gold nanorods, which are suitable for biological applications as well as a low-cost, actively targeted, and high contrast imaging agent for the diagnosis of rheumatoid arthritis. This paves the way for further research in other inflammation associated pathologies, in particular, when photothermal therapy can be applied. PMID:24723984

  13. Bridging the gap: functional healing of embryonic small intestine ex vivo.

    PubMed

    Coletta, Riccardo; Roberts, Neil A; Oltrabella, Francesca; Khalil, Basem A; Morabito, Antonino; Woolf, Adrian S

    2016-02-01

    The ability to grow embryonic organs ex vivo provides an opportunity to follow their differentiation in a controlled environment, with resulting insights into normal development. Additionally, similar strategies can be used to assess effects on organogenesis of physical and chemical manipulations. This study aimed to create an organ culture model with which to test physical manipulations to enhance healing of gut segments, thus generating a single functional organ. Embryonic mouse jejunum was isolated and cut into 2-3 mm tubes, which were placed in pairs, separated by a small gap, on semi-permeable supports. Each pair was linked by a nylon suture threaded through their lumens. After 3 days in organ culture fed by defined serum-free media, the rudiments differentiated to form tubes of smooth muscle surrounding a core of rudimentary villi. Of 34 such pairs, 74% had touching and well aligned proximate ends. Of these joined structures, 80% (59% of the total pairs) had a continuous lumen, as assessed by observing the trajectories of fluorescent dextrans injected into their distal ends. Fused organ pairs formed a single functional unit, as assessed by spontaneous contraction waves propagated along their lengths. In these healed intestines, peripherin(+) neurons formed a nexus in the zone of fusion, linking the rudiment pairs. In future, this system could be used to test whether growth factors enhance fusion. Such results should in turn inform the design of novel treatments for short bowel syndrome, a potentially fatal condition with a currently limited and imperfect range of therapies.

  14. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development.

  15. Animal Models for Studying the In Vivo Functions of Cell Cycle CDKs.

    PubMed

    Risal, Sanjiv; Adhikari, Deepak; Liu, Kui

    2016-01-01

    Multiple Cdks (Cdk4, Cdk6, and Cdk2) and a mitotic Cdk (Cdk1) are involved in cell cycle progression in mammals. Cyclins, Cdk inhibitors, and phosphorylations (both activating and inhibitory) at different cellular levels tightly modulate the activities of these kinases. Based on the results of biochemical studies, it was long believed that different Cdks functioned at specific stages during cell cycle progression. However, deletion of all three interphase Cdks in mice affected cell cycle entry and progression only in certain specialized cells such as hematopoietic cells, beta cells of the pancreas, pituitary lactotrophs, and cardiomyocytes. These genetic experiments challenged the prevailing biochemical model and established that Cdks function in a cell-specific, but not a stage-specific, manner during cell cycle entry and the progression of mitosis. Recent in vivo studies have further established that Cdk1 is the only Cdk that is both essential and sufficient for driving the resumption of meiosis during mouse oocyte maturation. These genetic studies suggest a minimal-essential cell cycle model in which Cdk1 is the central regulator of cell cycle progression. Cdk1 can compensate for the loss of the interphase Cdks by forming active complexes with A-, B-, E-, and D-type Cyclins in a stepwise manner. Thus, Cdk1 plays an essential role in both mitosis and meiosis in mammals, whereas interphase Cdks are dispensable.

  16. Characterization of in vivo functions of Nicotiana benthamiana RabE1.

    PubMed

    Ahn, Chang Sook; Han, Jeong-A; Pai, Hyun-Sook

    2013-01-01

    We characterized the gene expression, subcellular localization, and in vivo functions of a Nicotiana benthamiana small GTPase belonging to the RabE family, designated NbRabE1. The NbRabE1 promoter drove strong β-glucuronidase reporter expression in young tissues containing actively dividing cells and in stomata guard cells. GFP fusion proteins of NbRabE1 and its dominant-negative and constitutively active mutants were all localized to the Golgi apparatus and the plasma membrane but showed different affinities for membrane attachment. Virus-induced gene silencing of NbRabE1 resulted in pleiotropic phenotypes, including growth arrest, premature senescence, and abnormal leaf development. At the cellular level, the leaves in which NbRabE1 was silenced contained abnormal stomata that lacked pores or contained incomplete ventral walls, suggesting that NbRabE1 deficiency leads to defective guard cell cytokinesis. Ectopic expression of the dominant-negative mutant of NbRabE1 in Arabidopsis thaliana resulted in retardation of shoot and root growth accompanied by defective root hair formation. These developmental defects are discussed in conjunction with proposed functions of RabE GTPases in polarized secretory vesicle trafficking.

  17. Twins, quadruplexes, and more: functional aspects of native and engineered RNA self-assembly in vivo

    PubMed Central

    Lease, Richard A.; Arluison, Véronique; Lavelle, Christophe

    2013-01-01

    The primacy and power of RNA in governing many processes of life has begun to be more fully appreciated in both the discovery and inventive sciences. A variety of RNA interactions regulate gene expression, and structural self-assembly underlies many of these processes. The understanding sparked by these discoveries has inspired and informed the engineering of novel RNA structures, control elements, and genetic circuits in cells. Many of these engineered systems are built up fundamentally from RNA–RNA interactions, often combining modular, rational design with functional selection and screening. It is therefore useful to review the particular class of RNA-based regulatory mechanisms that rely on RNA self-assembly either through homomeric (self–self) or heteromeric (self–nonself) RNA–RNA interactions. Structures and sequence elements within individual RNAs create a basis for the pairing interactions, and in some instances can even lead to the formation of RNA polymers. Example systems of dimers, multimers, and polymers are reviewed in this article in the context of natural systems, wherein the function and impact of self-assemblies are understood. Following this, a brief overview is presented of specific engineered RNA self-assembly systems implemented in vivo, with lessons learned from both discovery and engineering approaches to RNA–RNA self-assembly. PMID:23914307

  18. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy.

    PubMed

    Weber, Michael; Huisken, Jan

    2015-01-01

    Detailed studies of heart development and function are crucial for our understanding of cardiac failures and pave the way for better diagnostics and treatment. However, the constant motion and close incorporation into the cardiovascular system prevent in vivo studies of the living, unperturbed heart. The complementary strengths of the zebrafish model and light sheet microscopy provide a useful platform to fill this gap. High-resolution images of the embryonic vertebrate heart are now recorded from within the living animal: deep inside the unperturbed heart we can follow cardiac contractions and measure action potentials and calcium transients. Three-dimensional reconstructions of the entire beating heart with cellular resolution give new insights into its ever-changing morphology and facilitate studies into how individual cells form the complex cardiac network. In addition, cardiac dynamics and robustness are now examined with targeted optical manipulation. Overall, the combination of zebrafish and light sheet microscopy represents a promising addition for cardiac research and opens the door to a better understanding of heart function and development. PMID:26700795

  19. In vivo analysis of intestinal permeability following hemorrhagic shock

    PubMed Central

    Alsaigh, Tom; Chang, Marisol; Richter, Michael; Mazor, Rafi; Kistler, Erik B

    2015-01-01

    AIM: To determine the time course of intestinal permeability changes to proteolytically-derived bowel peptides in experimental hemorrhagic shock. METHODS: We injected fluorescently-conjugated casein protein into the small bowel of anesthetized Wistar rats prior to induction of experimental hemorrhagic shock. These molecules, which fluoresce when proteolytically cleaved, were used as markers for the ability of proteolytically cleaved intestinal products to access the central circulation. Blood was serially sampled to quantify the relative change in concentration of proteolytically-cleaved particles in the systemic circulation. To provide spatial resolution of their location, particles in the mesenteric microvasculature were imaged using in vivo intravital fluorescent microscopy. The experiments were then repeated using an alternate measurement technique, fluorescein isothiocyanate (FITC)-labeled dextrans 20, to semi-quantitatively verify the ability of bowel-derived low-molecular weight molecules (< 20 kD) to access the central circulation. RESULTS: Results demonstrate a significant increase in systemic permeability to gut-derived peptides within 20 min after induction of hemorrhage (1.11 ± 0.19 vs 0.86 ± 0.07, P < 0.05) compared to control animals. Reperfusion resulted in a second, sustained increase in systemic permeability to gut-derived peptides in hemorrhaged animals compared to controls (1.2 ± 0.18 vs 0.97 ± 0.1, P < 0.05). Intravital microscopy of the mesentery also showed marked accumulation of fluorescent particles in the microcirculation of hemorrhaged animals compared to controls. These results were replicated using FITC dextrans 20 [10.85 ± 6.52 vs 3.38 ± 1.11 fluorescent intensity units (× 105, P < 0.05, hemorrhagic shock vs controls)], confirming that small bowel ischemia in response to experimental hemorrhagic shock results in marked and early increases in gut membrane permeability. CONCLUSION: Increased small bowel permeability in hemorrhagic

  20. Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo.

    PubMed

    Cash, Darian D; Cohen-Zontag, Osnat; Kim, Nak-Kyoon; Shefer, Kinneret; Brown, Yogev; Ulyanov, Nikolai B; Tzfati, Yehuda; Feigon, Juli

    2013-07-01

    Telomerase is a ribonucleoprotein complex that extends the 3' ends of linear chromosomes. The specialized telomerase reverse transcriptase requires a multidomain RNA (telomerase RNA, TER), which includes an integral RNA template and functionally important template-adjacent pseudoknot. The structure of the human TER pseudoknot revealed that the loops interact with the stems to form a triple helix shown to be important for activity in vitro. A similar triple helix has been predicted to form in diverse fungi TER pseudoknots. The solution NMR structure of the Kluyveromyces lactis pseudoknot, presented here, reveals that it contains a long pyrimidine motif triple helix with unexpected features that include three individual bulge nucleotides and a C(+)•G-C triple adjacent to a stem 2-loop 2 junction. Despite significant differences in sequence and base triples, the 3D shape of the human and K. lactis TER pseudoknots are remarkably similar. Analysis of the effects of nucleotide substitutions on cell growth and telomere lengths provides evidence that this conserved structure forms in endogenously assembled telomerase and is essential for telomerase function in vivo.

  1. Stomatin-Like Protein 2 Is Required for In Vivo Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function

    PubMed Central

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D.; Langer, Thomas

    2015-01-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. PMID:25776552

  2. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    PubMed Central

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-01-01

    Abstract Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60–70 or 20–30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I–V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell. Key points The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross

  3. Balanced Hydroxyethylstarch (HES 130/0.4) Impairs Kidney Function In-Vivo without Inflammation

    PubMed Central

    Schick, Martin Alexander; Baar, Wolfgang; Bruno, Raphael Romano; Wollborn, Jakob; Held, Christopher; Schneider, Reinhard; Flemming, Sven; Schlegel, Nicolas; Roewer, Norbert; Neuhaus, Winfried; Wunder, Christian

    2015-01-01

    Volume therapy is a standard procedure in daily perioperative care, and there is an ongoing discussion about the benefits of colloid resuscitation with hydroxyethylstarch (HES). In sepsis HES should be avoided due to a higher risk for acute kidney injury (AKI). Results of the usage of HES in patients without sepsis are controversial. Therefore we conducted an animal study to evaluate the impact of 6% HES 130/0.4 on kidney integrity with sepsis or under healthy conditions Sepsis was induced by standardized Colon Ascendens Stent Peritonitis (sCASP). sCASP-group as well as control group (C) remained untreated for 24 h. After 18 h sCASP+HES group (sCASP+VOL) and control+HES (C+VOL) received 50 ml/KG balanced 6% HES (VOL) 130/0.4 over 6h. After 24h kidney function was measured via Inulin- and PAH-Clearance in re-anesthetized rats, and serum urea, creatinine (crea), cystatin C and Neutrophil gelatinase-associated lipocalin (NGAL) as well as histopathology were analysed. In vitro human proximal tubule cells (PTC) were cultured +/- lipopolysaccharid (LPS) and with 0.1–4.0% VOL. Cell viability was measured with XTT-, cell toxicity with LDH-test. sCASP induced severe septic AKI demonstrated divergent results regarding renal function by clearance or creatinine measure focusing on VOL. Soleley HES (C+VOL) deteriorated renal function without sCASP. Histopathology revealed significantly derangements in all HES groups compared to control. In vitro LPS did not worsen the HES induced reduction of cell viability in PTC cells. For the first time, we demonstrated, that application of 50 ml/KG 6% HES 130/0.4 over 6 hours induced AKI without inflammation in vivo. Severity of sCASP induced septic AKI might be no longer susceptible to the way of volume expansion. PMID:26340751

  4. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions.

    PubMed

    DeJong, Jason T; Soga, Kenichi; Banwart, Steven A; Whalley, W Richard; Ginn, Timothy R; Nelson, Douglas C; Mortensen, Brina M; Martinez, Brian C; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming-these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that 'soil engineering in vivo', wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon-effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized.

  5. Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo

    PubMed Central

    Najm, Fadi J.; Madhavan, Mayur; Zaremba, Anita; Shick, Elizabeth; Karl, Robert T.; Factor, Daniel C.; Miller, Tyler E.; Nevin, Zachary S.; Kantor, Christopher; Sargent, Alex; Quick, Kevin L.; Schlatzer, Daniela M.; Tang, Hong; Papoian, Ruben; Brimacombe, Kyle R.; Shen, Min; Boxer, Matthew B.; Jadhav, Ajit; Robinson, Andrew P.; Podojil, Joseph R.; Miller, Stephen D.; Miller, Robert H.; Tesar, Paul J.

    2015-01-01

    Multiple sclerosis (MS) involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system (CNS). Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells (OPCs) are stem cells in the CNS and the principal source of myelinating oligodendrocytes1. OPCs are abundant in demyelinated regions of MS patients, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention2. To discover therapeutic compounds for enhancing myelination from endogenous OPCs, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem cell (EpiSC)-derived OPCs3–5. We identified seven drugs that functioned at nanomolar doses to selectively enhance the generation of mature oligodendrocytes from OPCs in vitro. Two drugs, miconazole and clobetasol, were effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increased the number of new oligodendrocytes and enhanced remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in the experimental autoimmune encephalomyelitis (EAE) mouse model of chronic progressive MS resulted in striking reversal of disease severity. Immune response assays showed that miconazole functioned directly as a remyelinating drug with no effect on the immune system, whereas clobetasol was a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies showed that miconazole and clobetasol functioned in OPCs through mitogen-activated protein kinase (MAPK) and glucocorticoid receptor (GR) signaling, respectively. Furthermore, both drugs enhanced the generation of human

  6. Construction of Lyapunov functions for some models of infectious diseases in vivo: from simple models to complex models.

    PubMed

    Kajiwara, Tsuyoshi; Sasaki, Toru; Takeuchi, Yasuhiro

    2015-02-01

    We present a constructive method for Lyapunov functions for ordinary differential equation models of infectious diseases in vivo. We consider models derived from the Nowak-Bangham models. We construct Lyapunov functions for complex models using those of simpler models. Especially, we construct Lyapunov functions for models with an immune variable from those for models without an immune variable, a Lyapunov functions of a model with absorption effect from that for a model without absorption effect. We make the construction clear for Lyapunov functions proposed previously, and present new results with our method.

  7. In vivo analysis of human nucleoporin repeat domain interactions

    PubMed Central

    Xu, Songli; Powers, Maureen A.

    2013-01-01

    The nuclear pore complex (NPC), assembled from ∼30 proteins termed nucleoporins (Nups), mediates selective nucleocytoplasmic trafficking. A subset of nucleoporins bear a domain with multiple phenylalanine–glycine (FG) motifs. As binding sites for transport receptors, FG Nups are critical in translocation through the NPC. Certain FG Nups are believed to associate via low-affinity, cohesive interactions to form the permeability barrier of the pore, although the form and composition of this functional barrier are debated. We used green fluorescent protein–Nup98/HoxA9 constructs with various numbers of repeats and also substituted FG domains from other nucleoporins for the Nup98 domain to directly compare cohesive interactions in live cells by fluorescence recovery after photobleaching (FRAP). We find that cohesion is a function of both number and type of FG repeats. Glycine–leucine–FG (GLFG) repeat domains are the most cohesive. FG domains from several human nucleoporins showed no interactions in this assay; however, Nup214, with numerous VFG motifs, displayed measurable cohesion by FRAP. The cohesive nature of a human nucleoporin did not necessarily correlate with that of its yeast orthologue. The Nup98 GLFG domain also functions in pore targeting through binding to Nup93, positioning the GLFG domain in the center of the NPC and supporting a role for this nucleoporin in the permeability barrier. PMID:23427268

  8. Structure and function analysis of protein-nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein-nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  9. Structure and function analysis of protein–nucleic acid complexes

    NASA Astrophysics Data System (ADS)

    Kuznetsova, S. A.; Oretskaya, T. S.

    2016-05-01

    The review summarizes published data on the results and achievements in the field of structure and function analysis of protein–nucleic acid complexes by means of main physical and biochemical methods, including X-ray diffraction, nuclear magnetic resonance spectroscopy, electron and atomic force microscopy, small-angle X-ray and neutron scattering, footprinting and cross-linking. Special attention is given to combined approaches. The advantages and limitations of each method are considered, and the prospects of their application for wide-scale structural studies in vivo are discussed. The bibliography includes 145 references.

  10. Recovery of macular pigment spectrum in vivo using hyperspectral image analysis

    NASA Astrophysics Data System (ADS)

    Fawzi, Amani A.; Lee, Noah; Acton, Jennifer H.; Laine, Andrew F.; Smith, R. Theodore

    2011-10-01

    We investigated the feasibility of a novel method for hyperspectral mapping of macular pigment (MP) in vivo. Six healthy subjects were recruited for noninvasive imaging using a snapshot hyperspectral system. The three-dimensional full spatial-spectral data cube was analyzed using non-negative matrix factorization (NMF), wherein the data was decomposed to give spectral signatures and spatial distribution, in search for the MP absorbance spectrum. The NMF was initialized with the in vitro MP spectrum and rank 4 spectral signature decomposition was used to recover the MP spectrum and optical density in vivo. The recovered MP spectra showed two peaks in the blue spectrum, characteristic of MP, giving a detailed in vivo demonstration of these absorbance peaks. The peak MP optical densities ranged from 0.08 to 0.22 (mean 0.15+/-0.05) and became spatially negligible at diameters 1100 to 1760 μm (4 to 6 deg) in the normal subjects. This objective method was able to exploit prior knowledge (the in vitro MP spectrum) in order to extract an accurate in vivo spectral analysis and full MP spatial profile, while separating the MP spectra from other ocular absorbers. Snapshot hyperspectral imaging in combination with advanced mathematical analysis provides a simple cost-effective approach for MP mapping in vivo.

  11. Randomized Controlled Trial of "Mind Reading" and In Vivo Rehearsal for High-Functioning Children with ASD

    ERIC Educational Resources Information Center

    Thomeer, Marcus L.; Smith, Rachael A.; Lopata, Christopher; Volker, Martin A.; Lipinski, Alanna M.; Rodgers, Jonathan D.; McDonald, Christin A.; Lee, Gloria K.

    2015-01-01

    This randomized controlled trial evaluated the efficacy of a computer software (i.e., "Mind Reading") and in vivo rehearsal treatment on the emotion decoding and encoding skills, autism symptoms, and social skills of 43 children, ages 7-12 years with high-functioning autism spectrum disorder (HFASD). Children in treatment (n = 22)…

  12. Development of Spectral Domain Optical Coherence Tomography for in vivo Functional Imaging of Biological Tissues

    NASA Astrophysics Data System (ADS)

    An, Lin

    Optical coherence tomography is a rapidly developing optical imaging modality capable of noninvasively providing depth resolved information of biological tissue at micrometer scale. In this thesis, we described several OCT technologies that can be used to double the imaging depth, realize functional vasculature imaging of biological tissue and increase the imaging speed of OCT system. Aim 1: Use of a scanner to introduce spatial frequency modulation to OCT spectral interferograms for in vivo full-range Fourier-domain optical coherence tomography. A novel method was developed that could easily introduce a modulation frequency onto the X-direction (i.e., B-scan) of the FDOCT scanning system, enabling full-range Fourier-domain Optical Coherence Tomography (frFDOCT). Compared to the conventional FDOCT system, the newly developed frFDOCT system can provide increased system sensitivity and deeper imaging depth. The previous technology that can achieve frFDOCT either needed multiple steps for data capturing, which is time consuming, or required additional components which increased the system's complexity. The newly developed method generates a modulation spatial frequency in the spectral interferogram by simply offsetting the probe beam at the X-scanner. Aim 2: Using optical micro-angiography to achieve in vivo volumetric imaging of vascular perfusion within human retina and choroids. Optical Micro-Angiography (OMAG) is a functional extension of FDOCT technology. It can achieve visualization of vasculature network of biological tissue. In order to apply the OMAG method to image vasculature map of human retina and choroid, a phase compensation algorithm was developed, which could minimize the motion artifacts generated by the movements of human eye and head. Aim 3: Developing ultrahigh sensitive optical micro-angiography to achieve micro vasculature imaging of biological tissue. To improve the vasculature image quality, we developed ultrahigh sensitive OMAG (UHS

  13. Teacher Praise: A Functional Analysis.

    ERIC Educational Resources Information Center

    Brophy, Jere

    1981-01-01

    Teacher praise typically does not function as a reinforcer. Rather, it is reactive to and under the control of student behavior. Its effects must be understood using concepts from attribution and social learning/reinforcement theories. (Author/GK)

  14. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J...

  15. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J...

  16. 40 CFR 798.5385 - In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT (CONTINUED) HEALTH EFFECTS TESTING GUIDELINES Genetic Toxicity § 798.5385 In vivo mammalian bone marrow cytogenetics tests: Chromosomal analysis. (a... report. In addition to the reporting recommendations as specified under 40 CFR part 792, subpart J...

  17. ANALYSIS OF IN VITRO AND IN VIVO DNA STRAND BREAKS INDUCED BY TRIHALOMETHANES (THMS)

    EPA Science Inventory

    Analysis of In Vitro and In Vivo DNA Strand Breaks Induced by Trihalomethanes (TRMs)

    The THMs are the most widely distributed and the most concentrated of the cWorine disinfection by-products (D BPs) found in finished drinking water. All of the THMs, cWoroform (CHCI3), br...

  18. Functional Techniques for Data Analysis

    NASA Technical Reports Server (NTRS)

    Tomlinson, John R.

    1997-01-01

    This dissertation develops a new general method of solving Prony's problem. Two special cases of this new method have been developed previously. They are the Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they are instances of a more general solution type which allows a wide ranging class of linear functional to be used in the solution of the problem. This class provides a continuum of functionals which provide new methods that can be used to solve Prony's problem.

  19. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. PMID:24445121

  20. In vivo function of Tic22, a protein import component of the intermembrane space of chloroplasts.

    PubMed

    Rudolf, Mareike; Machettira, Anu B; Groß, Lucia E; Weber, Katrin L; Bolte, Kathrin; Bionda, Tihana; Sommer, Maik S; Maier, Uwe G; Weber, Andreas P M; Schleiff, Enrico; Tripp, Joanna

    2013-05-01

    Preprotein import into chloroplasts depends on macromolecular machineries in the outer and inner chloroplast envelope membrane (TOC and TIC). It was suggested that both machineries are interconnected by components of the intermembrane space (IMS). That is, amongst others, Tic22, of which two closely related isoforms exist in Arabidopsis thaliana, namely atTic22-III and atTic22-IV. We investigated the function of Tic22 in vivo by analyzing T-DNA insertion lines of the corresponding genes. While the T-DNA insertion in the individual genes caused only slight defects, a double mutant of both isoforms showed retarded growth, a pale phenotype under high-light conditions, a reduced import rate, and a reduction in the photosynthetic performance of the plants. The latter is supported by changes in the metabolite content of mutant plants when compared to wild-type. Thus, our results support the notion that Tic22 is directly involved in chloroplast preprotein import and might point to a particular importance of Tic22 in chloroplast biogenesis at times of high import rates.

  1. Identification and functional characterization in vivo of a novel splice variant of LDLR in rhesus macaques.

    PubMed

    Kassim, Sadik H; Vandenberghe, Luk H; Hovhannisyan, Ruben; Wilson, James M; Rader, Daniel J

    2011-08-16

    In the course of developing a low-density lipoprotein receptor (LDLR) gene therapy treatment for homozygous familial hypercholesterolemia (HoFH), we planned to examine the efficacy in a nonhuman primate model, the rhesus macaque heterozygous for an LDL receptor mutation fed a high-fat diet. Unexpectedly, our initial cDNA sequencing studies led to the identification of a heretofore unidentified splicing isoform of the rhesus LDLR gene. Compared with the publicly available GenBank reference sequence of rhesus LDLR, the novel isoform contains a 21 bp in frame insertion. This sequence coincides with part of exon 5 and creates a site for the restriction enzyme MscI. Using this site as a marker for the 21 bp in-frame insertion, we conducted a restriction enzyme screen to examine for the prevalence of the novel isoform in rhesus liver tissue cDNA and its homolog in human liver tissue cDNA. We found that the novel isoform is the predominant LDLR cDNA found in rhesus liver and the sole LDLR cDNA found in human liver. Finally, we compared the in vivo functionality of the novel and previously identified rhesus LDLR splicing isoforms in a mouse model of HoFH. PMID:21628398

  2. Identification and functional characterization in vivo of a novel splice variant of LDLR in rhesus macaques

    PubMed Central

    Kassim, Sadik H.; Vandenberghe, Luk H.; Hovhannisyan, Ruben; Rader, Daniel J.

    2011-01-01

    In the course of developing a low-density lipoprotein receptor (LDLR) gene therapy treatment for homozygous familial hypercholesterolemia (HoFH), we planned to examine the efficacy in a nonhuman primate model, the rhesus macaque heterozygous for an LDL receptor mutation fed a high-fat diet. Unexpectedly, our initial cDNA sequencing studies led to the identification of a heretofore unidentified splicing isoform of the rhesus LDLR gene. Compared with the publicly available GenBank reference sequence of rhesus LDLR, the novel isoform contains a 21 bp in frame insertion. This sequence coincides with part of exon 5 and creates a site for the restriction enzyme MscI. Using this site as a marker for the 21 bp in-frame insertion, we conducted a restriction enzyme screen to examine for the prevalence of the novel isoform in rhesus liver tissue cDNA and its homolog in human liver tissue cDNA. We found that the novel isoform is the predominant LDLR cDNA found in rhesus liver and the sole LDLR cDNA found in human liver. Finally, we compared the in vivo functionality of the novel and previously identified rhesus LDLR splicing isoforms in a mouse model of HoFH. PMID:21628398

  3. In vivo effects of Eurycoma longifolia Jack (Tongkat Ali) extract on reproductive functions in the rat.

    PubMed

    Solomon, M C; Erasmus, N; Henkel, R R

    2014-05-01

    An aqueous extract of Eurycoma longifolia (Tongkat Ali; TA) roots is traditionally used to enhance male sexuality. Because previous studies are limited to only few sperm parameters or testosterone concentration, this study investigated the in vivo effects of TA on body and organ weight as well as functional sperm parameters in terms of safety and efficacy in the management of male infertility. Forty-two male rats were divided into a control, low-dose (200 mg kg(-1) BW) and high-dose (800 mg kg(-1) BW) group (n = 14). Rats were force-fed for 14 days and then sacrificed. Total body and organ weights of the prostate, testes, epididymides, gastrocnemius muscle and the omentum were recorded. Moreover, testosterone concentration, sperm concentration, motility, velocity, vitality, acrosome reaction and mitochondrial membrane potential (MMP) were assessed. Whilst TA decreased BW by 5.7% (P = 0.0276) and omentum fat by 31.9% (P = 0.0496), no changes in organ weights were found for the prostate, testes and epididymides. Testosterone concentration increased by 30.2% (P = 0.0544). Muscle weight also increased, yet not significantly. Whilst sperm concentration, total and progressive motility and vitality increased significantly, MMP improved markedly (P = 0.0765) by 25.1%. Because no detrimental effect could be observed, TA appears safe for possible treatment of male infertility and ageing male problems. PMID:23464350

  4. In vivo functional and myeloarchitectonic mapping of human primary auditory areas

    PubMed Central

    Dick, Frederic; Tierney, Adam Taylor; Lutti, Antoine; Josephs, Oliver; Sereno, Martin I.; Weiskopf, Nikolaus

    2012-01-01

    In contrast to vision, where retinotopic mapping alone can define areal borders, primary auditory areas such as A1 are best delineated by combining in vivo tonotopic mapping with post mortem cyto- or myelo-architectonics from the same individual. We combined high-resolution (800 μm) quantitative T1 mapping with phase-encoded tonotopic methods to map primary auditory areas (A1 and R) within the ‘auditory core’ of human volunteers. We first quantitatively characterize the highly myelinated auditory core in terms of shape, area, cortical depth profile, and position, with our data showing considerable correspondence to post-mortem myeloarchitectonic studies, both in cross-participant averages and in individuals. The core region contains two ‘mirror-image‘ tonotopic maps oriented along the same axis as observed in macaque and owl monkey. We suggest that thee two maps within the core are the human analogues of primate auditory areas A1 and R. The core occupies a much smaller portion of tonotopically organized cortex on the superior temporal plane and gyrus than is generally supposed. The multi-modal approach to defining the auditory core will facilitate investigations of structure-function relationships, comparative neuroanatomical studies, and promises new biomarkers for diagnosis and clinical studies. PMID:23152594

  5. Emergence of functional subnetworks in layer 2/3 cortex induced by sequential spikes in vivo

    PubMed Central

    Kim, Taekeun; Oh, Won Chan; Choi, Joon Ho; Kwon, Hyung-Bae

    2016-01-01

    During cortical circuit development in the mammalian brain, groups of excitatory neurons that receive similar sensory information form microcircuits. However, cellular mechanisms underlying cortical microcircuit development remain poorly understood. Here we implemented combined two-photon imaging and photolysis in vivo to monitor and manipulate neuronal activities to study the processes underlying activity-dependent circuit changes. We found that repeated triggering of spike trains in a randomly chosen group of layer 2/3 pyramidal neurons in the somatosensory cortex triggered long-term plasticity of circuits (LTPc), resulting in the increased probability that the selected neurons would fire when action potentials of individual neurons in the group were evoked. Significant firing pattern changes were observed more frequently in the selected group of neurons than in neighboring control neurons, and the induction was dependent on the time interval between spikes, N-methyl-D-aspartate (NMDA) receptor activation, and Calcium/calmodulin-dependent protein kinase II (CaMKII) activation. In addition, LTPc was associated with an increase of activity from a portion of neighboring neurons with different probabilities. Thus, our results demonstrate that the formation of functional microcircuits requires broad network changes and that its directionality is nonrandom, which may be a general feature of cortical circuit assembly in the mammalian cortex. PMID:26903616

  6. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth.

  7. The effects of heat on skin barrier function and in vivo dermal absorption.

    PubMed

    Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E

    2014-04-10

    Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin.

  8. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow

    PubMed Central

    Dyer, Kimberly D.; Moser, Jennifer M.; Czapiga, Meggan; Siegel, Steven J.; Percopo, Caroline M.; Rosenberg, Helene F.

    2009-01-01

    We have devised an ex vivo culture system which generates large numbers of eosinophils at high purity (>90%) from unselected mouse bone marrow progenitors. In response to four days of culture with recombinant mouse (rm)FLT3-L and rmSCF followed by rmIL-5 alone thereafter, the resulting bone-marrow derived eosinophils (bmEos) express immunoreactive major basic protein, Siglec F, IL-5 receptor alpha chain, and transcripts encoding mouse eosinophil peroxidase, CC chemokine receptor 3, the IL-3/IL-5/GMCSF receptor common beta-chain (βc), and the transcription factor GATA-1. BmEos are functionally competent: they undergo chemotaxis toward mouse eotaxin-1 and produce characteristic cytokines, including interferon-γ, IL-4, MIP-1α and IL-6. The rodent pathogen, pneumonia virus of mice (PVM) replicates in bmEos, and elevated levels of IL-6 are detected in supernatants of bmEos cultures in response to active infection. Finally, differentiating bmEos are readily transfected with lentiviral vectors, suggesting a means for rapid production of genetically manipulated cells. PMID:18768855

  9. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo.

    PubMed

    de la Cruz, Jesús; Karbstein, Katrin; Woolford, John L

    2015-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79-80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type-specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  10. Image adaptive point-spread function estimation and deconvolution for in vivo confocal microscopy.

    PubMed

    Von Tiedemann, M; Fridberger, A; Ulfendahl, M; Tomo, I; Boutet de Monvel, J; De Monvel, J Boutet

    2006-01-01

    Visualizing deep inside the tissue of a thick biological sample often poses severe constraints on image conditions. Standard restoration techniques (denoising and deconvolution) can then be very useful, allowing one to increase the signal-to-noise ratio and the resolution of the images. In this paper, we consider the problem of obtaining a good determination of the point-spread function (PSF) of a confocal microscope, a prerequisite for applying deconvolution to three-dimensional image stacks acquired with this system. Because of scattering and optical distortion induced by the sample, the PSF has to be acquired anew for each experiment. To tackle this problem, we used a screening approach to estimate the PSF adaptively and automatically from the images. Small PSF-like structures were detected in the images, and a theoretical PSF model reshaped to match the geometric characteristics of these structures. We used numerical experiments to quantify the sensitivity of our detection method, and we demonstrated its usefulness by deconvolving images of the hearing organ acquired in vitro and in vivo.

  11. Functions of Ribosomal Proteins in Assembly of Eukaryotic Ribosomes In Vivo

    PubMed Central

    2016-01-01

    The proteome of cells is synthesized by ribosomes, complex ribonucleoproteins that in eukaryotes contain 79–80 proteins and four ribosomal RNAs (rRNAs) more than 5,400 nucleotides long. How these molecules assemble together and how their assembly is regulated in concert with the growth and proliferation of cells remain important unanswered questions. Here, we review recently emerging principles to understand how eukaryotic ribosomal proteins drive ribosome assembly in vivo. Most ribosomal proteins assemble with rRNA cotranscriptionally; their association with nascent particles is strengthened as assembly proceeds. Each subunit is assembled hierarchically by sequential stabilization of their subdomains. The active sites of both subunits are constructed last, perhaps to prevent premature engagement of immature ribosomes with active subunits. Late-assembly intermediates undergo quality-control checks for proper function. Mutations in ribosomal proteins that affect mostly late steps lead to ribosomopathies, diseases that include a spectrum of cell type–specific disorders that often transition from hypoproliferative to hyperproliferative growth. PMID:25706898

  12. Exposure to low mercury concentration in vivo impairs myocardial contractile function

    SciTech Connect

    Furieri, Lorena Barros; Fioresi, Mirian; Junior, Rogerio Faustino Ribeiro; Bartolome, Maria Visitacion; Fernandes, Aurelia Araujo; Cachofeiro, Victoria; Lahera, Vicente; Salaices, Mercedes; Stefanon, Ivanita; Vassallo, Dalton Valentim

    2011-09-01

    Increased cardiovascular risk after mercury exposure has been described but cardiac effects resulting from controlled chronic treatment are not yet well explored. We analyzed the effects of chronic exposure to low mercury concentrations on hemodynamic and ventricular function of isolated hearts. Wistar rats were treated with HgCl{sub 2} (1st dose 4.6 {mu}g/kg, subsequent dose 0.07 {mu}g/kg/day, im, 30 days) or vehicle. Mercury treatment did not affect blood pressure (BP) nor produced cardiac hypertrophy or changes of myocyte morphometry and collagen content. This treatment: 1) in vivo increased left ventricle end diastolic pressure (LVEDP) without changing left ventricular systolic pressure (LVSP) and heart rate; 2) in isolated hearts reduced LV isovolumic systolic pressure and time derivatives, and {beta}-adrenergic response; 3) increased myosin ATPase activity; 4) reduced Na{sup +}-K{sup +} ATPase (NKA) activity; 5) reduced protein expression of SERCA and phosphorylated phospholamban on serine 16 while phospholamban expression increased; as a consequence SERCA/phospholamban ratio reduced; 6) reduced sodium/calcium exchanger (NCX) protein expression and {alpha}-1 isoform of NKA, whereas {alpha}-2 isoform of NKA did not change. Chronic exposure for 30 days to low concentrations of mercury does not change BP, heart rate or LVSP but produces small but significant increase of LVEDP. However, in isolated hearts mercury treatment promoted contractility dysfunction as a result of the decreased NKA activity, reduction of NCX and SERCA and increased PLB protein expression. These findings offer further evidence that mercury chronic exposure, even at small concentrations, is an environmental risk factor affecting heart function. - Highlights: > Unchanges blood pressure, heart rate, systolic pressure. > Increases end diastolic pressure. > Promotes cardiac contractility dysfunction. > Decreases NKA activity, NCX and SERCA, increases PLB protein expression. > Small

  13. Nobiletin, a citrus polymethoxyflavonoid, suppresses multiple angiogenesis-related endothelial cell functions and angiogenesis in vivo.

    PubMed

    Kunimasa, Kazuhiro; Ikekita, Masahiko; Sato, Mayumi; Ohta, Toshiro; Yamori, Yukio; Ikeda, Megumi; Kuranuki, Sachi; Oikawa, Tsutomu

    2010-11-01

    Nobiletin is a citrus polymethoxyflavonoid that suppresses tumor growth and metastasis, both of which depend on angiogenesis. We recently identified nobiletin as a cell differentiation modulator. Because cell differentiation is a critical event in angiogenesis, it might be possible that nobiletin could exhibit antiangiogenic activity, resulting in suppression of these tumor malignant properties. To verify this possibility, we examined the antiangiogenic effects of nobiletin in vitro and in vivo. Nobiletin had concentration-dependent inhibitory effects on multiple functions of angiogenesis-related endothelial cells (EC); it suppressed the proliferation, migration and tube formation on matrigel of human umbilical vein EC (HUVEC) stimulated with endothelial cell growth supplement (ECGS), a mixture of acidic and basic fibroblast growth factors (FGFs). Gelatin zymography and northern blotting revealed that nobiletin suppressed pro-matrix metalloproteinase-2 (proMMP-2) production and MMP-2 mRNA expression in ECGS-stimulated HUVEC. Nobiletin also downregulated cell-associated plasminogen activator (PA) activity and urokinase-type PA mRNA expression. Furthermore, nobiletin inhibited angiogenic differentiation induced by vascular endothelial growth factor and FGF, an in vitro angiogenesis model. This inhibition was accompanied by downregulation of angiogenesis-related signaling molecules, such as extracellular signal-regulated kinase 1/2 and c-Jun N-terminal kinase, and transcriptional factors (c-Jun and signal transducer and activator of transcription 3), and activation of the caspase pathway. In a chick embryo chorioallantoic membrane assay, nobiletin showed an antiangiogenic activity, the ID(50) value being 10μg (24.9nmol) per egg. These results indicate that nobiletin is a novel antiangiogenic compound that exhibits its activity through combined inhibition of multiple angiogenic EC functions.

  14. Optimization of data analysis for the in vivo neutron activation analysis of aluminum in bone.

    PubMed

    Mohseni, H K; Matysiak, W; Chettle, D R; Byun, S H; Priest, N; Atanackovic, J; Prestwich, W V

    2016-10-01

    An existing system at McMaster University has been used for the in vivo measurement of aluminum in human bone. Precise and detailed analysis approaches are necessary to determine the aluminum concentration because of the low levels of aluminum found in the bone and the challenges associated with its detection. Phantoms resembling the composition of the human hand with varying concentrations of aluminum were made for testing the system prior to the application to human studies. A spectral decomposition model and a photopeak fitting model involving the inverse-variance weighted mean and a time-dependent analysis were explored to analyze the results and determine the model with the best performance and lowest minimum detection limit. The results showed that the spectral decomposition and the photopeak fitting model with the inverse-variance weighted mean both provided better results compared to the other methods tested. The spectral decomposition method resulted in a marginally lower detection limit (5μg Al/g Ca) compared to the inverse-variance weighted mean (5.2μg Al/g Ca), rendering both equally applicable to human measurements. PMID:27474904

  15. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases.

    PubMed

    Broemer, Meike; Tenev, Tencho; Rigbolt, Kristoffer T G; Hempel, Sophie; Blagoev, Blagoy; Silke, John; Ditzel, Mark; Meier, Pascal

    2010-12-10

    The intimate relationship between mediators of the ubiquitin (Ub)-signaling system and human diseases has sparked profound interest in how Ub influences cell death and survival. While the consequence of Ub attachment is intensely studied, little is known with regards to the effects of other Ub-like proteins (UBLs), and deconjugating enzymes that remove the Ub or UBL adduct. Systematic in vivo RNAi analysis identified three NEDD8-specific isopeptidases that, when knocked down, suppress apoptosis. Consistent with the notion that attachment of NEDD8 prevents cell death, genetic ablation of deneddylase 1 (DEN1) suppresses apoptosis. Unexpectedly, we find that Drosophila and human inhibitor of apoptosis (IAP) proteins can function as E3 ligases of the NEDD8 conjugation pathway, targeting effector caspases for neddylation and inactivation. Finally, we demonstrate that DEN1 reverses this effect by removing the NEDD8 modification. Altogether, our findings indicate that IAPs not only modulate cellular processes via ubiquitylation but also through attachment of NEDD8, thereby extending the complexity of IAP-mediated signaling.

  16. High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo

    PubMed Central

    Koechlein, Claire S.; Harris, Jeffrey R.; Lee, Timothy K.; Weeks, Joi; Fox, Raymond G.; Zimdahl, Bryan; Ito, Takahiro; Blevins, Allen; Jung, Seung-Hye; Chute, John P.; Chourasia, Amit; Covert, Markus W.; Reya, Tannishtha

    2016-01-01

    Although we know a great deal about the phenotype and function of haematopoietic stem/progenitor cells, a major challenge has been mapping their dynamic behaviour within living systems. Here we describe a strategy to image cells in vivo with high spatial and temporal resolution, and quantify their interactions using a high-throughput computational approach. Using these tools, and a new Msi2 reporter model, we show that haematopoietic stem/progenitor cells display preferential spatial affinity for contacting the vascular niche, and a temporal affinity for making stable associations with these cells. These preferences are markedly diminished as cells mature, suggesting that programs that control differentiation state are key determinants of spatiotemporal behaviour, and thus dictate the signals a cell receives from specific microenvironmental domains. These collectively demonstrate that high-resolution imaging coupled with computational analysis can provide new biological insight, and may in the long term enable creation of a dynamic atlas of cells within their native microenvironment. PMID:27425143

  17. In vivo analysis of synaptonemal complex formation during yeast meiosis.

    PubMed Central

    White, Eric J; Cowan, Carrie; Cande, W Zacheus; Kaback, David B

    2004-01-01

    During meiotic prophase a synaptonemal complex (SC) forms between each pair of homologous chromosomes and is believed to be involved in regulating recombination. Studies on SCs usually destroy nuclear architecture, making it impossible to examine the relationship of these structures to the rest of the nucleus. In Saccharomyces cerevisiae the meiosis-specific Zip1 protein is found throughout the entire length of each SC. To analyze the formation and structure of SCs in living cells, a functional ZIP1::GFP fusion was constructed and introduced into yeast. The ZIP1::GFP fusion produced fluorescent SCs and rescued the spore lethality phenotype of zip1 mutants. Optical sectioning and fluorescence deconvolution light microscopy revealed that, at zygotene, SC assembly was initiated at foci that appeared uniformly distributed throughout the nuclear volume. At early pachytene, the full-length SCs were more likely to be localized to the nuclear periphery while at later stages the SCs appeared to redistribute throughout the nuclear volume. These results suggest that SCs undergo dramatic rearrangements during meiotic prophase and that pachytene can be divided into two morphologically distinct substages: pachytene A, when SCs are perinuclear, and pachytene B, when SCs are uniformly distributed throughout the nucleus. ZIP1::GFP also facilitated the enrichment of fluorescent SC and the identification of meiosis-specific proteins by MALDI-TOF mass spectroscopy. PMID:15166136

  18. Detection of low-amplitude in vivo intrinsic signals from an optical imager of retinal function

    NASA Astrophysics Data System (ADS)

    Barriga, Eduardo S.; T'so, Dan; Pattichis, Marios; Kwon, Young; Kardon, Randy; Abramoff, Michael; Soliz, Peter

    2006-02-01

    In the early stages of some retinal diseases, such as glaucoma, loss of retinal activity may be difficult to detect with today's clinical instruments. Many of today's instruments focus on detecting changes in anatomical structures, such as the nerve fiber layer. Our device, which is based on a modified fundus camera, seeks to detect changes in optical signals that reflect functional changes in the retina. The functional imager uses a patterned stimulus at wavelength of 535nm. An intrinsic functional signal is collected at a near infrared wavelength. Measured changes in reflectance in response to the visual stimulus are on the order of 0.1% to 1% of the total reflected intensity level, which makes the functional signal difficult to detect by standard methods because it is masked by other physiological signals and by imaging system noise. In this paper, we analyze the video sequences from a set of 60 experiments with different patterned stimuli from cats. Using a set of statistical techniques known as Independent Component Analysis (ICA), we estimate the signals present in the videos. Through controlled simulation experiments, we quantify the limits of signal strength in order to detect the physiological signal of interest. The results of the analysis show that, in principle, signal levels of 0.1% (-30dB) can be detected. The study found that in 86% of the animal experiments the patterned stimuli effects on the retina can be detected and extracted. The analysis of the different responses extracted from the videos can give an insight of the functional processes present during the stimulation of the retina.

  19. Ex vivo brain tumor analysis using spectroscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Lenz, Marcel; Krug, Robin; Welp, Hubert; Schmieder, Kirsten; Hofmann, Martin R.

    2016-03-01

    A big challenge during neurosurgeries is to distinguish between healthy tissue and cancerous tissue, but currently a suitable non-invasive real time imaging modality is not available. Optical Coherence Tomography (OCT) is a potential technique for such a modality. OCT has a penetration depth of 1-2 mm and a resolution of 1-15 μm which is sufficient to illustrate structural differences between healthy tissue and brain tumor. Therefore, we investigated gray and white matter of healthy central nervous system and meningioma samples with a Spectral Domain OCT System (Thorlabs Callisto). Additional OCT images were generated after paraffin embedding and after the samples were cut into 10 μm thin slices for histological investigation with a bright field microscope. All samples were stained with Hematoxylin and Eosin. In all cases B-scans and 3D images were made. Furthermore, a camera image of the investigated area was made by the built-in video camera of our OCT system. For orientation, the backsides of all samples were marked with blue ink. The structural differences between healthy tissue and meningioma samples were most pronounced directly after removal. After paraffin embedding these differences diminished. A correlation between OCT en face images and microscopy images can be seen. In order to increase contrast, post processing algorithms were applied. Hence we employed Spectroscopic OCT, pattern recognition algorithms and machine learning algorithms such as k-means Clustering and Principal Component Analysis.

  20. Optimized design and analysis of preclinical intervention studies in vivo

    PubMed Central

    Laajala, Teemu D.; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  1. Optimized design and analysis of preclinical intervention studies in vivo.

    PubMed

    Laajala, Teemu D; Jumppanen, Mikael; Huhtaniemi, Riikka; Fey, Vidal; Kaur, Amanpreet; Knuuttila, Matias; Aho, Eija; Oksala, Riikka; Westermarck, Jukka; Mäkelä, Sari; Poutanen, Matti; Aittokallio, Tero

    2016-01-01

    Recent reports have called into question the reproducibility, validity and translatability of the preclinical animal studies due to limitations in their experimental design and statistical analysis. To this end, we implemented a matching-based modelling approach for optimal intervention group allocation, randomization and power calculations, which takes full account of the complex animal characteristics at baseline prior to interventions. In prostate cancer xenograft studies, the method effectively normalized the confounding baseline variability, and resulted in animal allocations which were supported by RNA-seq profiling of the individual tumours. The matching information increased the statistical power to detect true treatment effects at smaller sample sizes in two castration-resistant prostate cancer models, thereby leading to saving of both animal lives and research costs. The novel modelling approach and its open-source and web-based software implementations enable the researchers to conduct adequately-powered and fully-blinded preclinical intervention studies, with the aim to accelerate the discovery of new therapeutic interventions. PMID:27480578

  2. Functional Analysis and Reduction of Inappropriate Spitting

    ERIC Educational Resources Information Center

    Carter, Stacy L.; Wheeler, John J.

    2007-01-01

    Functional analysis was used to determine the possible function of inappropriate spitting behavior of an adult woman who had been diagnosed with profound mental retardation. Results of an initial descriptive assessment indicated a possible attention function and led to an attention-based intervention, which was deemed ineffective at reducing the…

  3. Functional redundancy of promoter elements ensures efficient transcription of the human 7SK gene in vivo.

    PubMed

    Boyd, D C; Turner, P C; Watkins, N J; Gerster, T; Murphy, S

    1995-11-10

    Deletion and mutation studies of the human 7SK gene transfected into HeLa cells have identified three functional regions of the promoter corresponding to the TATA box at -25, the proximal sequence element (PSE) between -49 and -65 and the distal sequence element (DSE) between -243 and -210. These elements show sequence homology to equivalent regions in other snRNA genes and are functionally analogous. Unlike the DSEs of many snRNA genes however, the 7SK DSE does not contain a consensus binding site for the transcription factor Oct-1 but rather, contains two non-consensus Oct-1 binding sites that can function independently of one another to enhance transcription. Unusually, the 7SK PSE can retain function even after extensive mutation and removal of the conserved TGACC of the PSE has little effect in the context of the whole promoter. However, the same mutation abolishes transcription in the absence of the DSE suggesting that protein/protein interactions between DSE and PSE binding factors can compensate for a mutant PSE. Mutation of the 7SK TATA box allows snRNA type transcription by RNA polymerase II to occur and this is enhanced by the DSE, indicating that both the DSE and the PSE can also function with pol II. In addition, mutation of the TATA box does not abolish pol III dependent transcription, suggesting that other sequence elements may also play a role in the determination of polymerase specificity. Although the human 7SK gene is transcribed efficiently in Xenopus oocytes, analysis of the 7SK wild-type gene and mutants in Xenopus oocytes gives significantly different results from the analysis in HeLa cells indicating that the recognition of functional elements is not the same in the two systems.

  4. Rank estimation and the multivariate analysis of in vivo fast-scan cyclic voltammetric data

    PubMed Central

    Keithley, Richard B.; Carelli, Regina M.; Wightman, R. Mark

    2010-01-01

    Principal component regression has been used in the past to separate current contributions from different neuromodulators measured with in vivo fast-scan cyclic voltammetry. Traditionally, a percent cumulative variance approach has been used to determine the rank of the training set voltammetric matrix during model development, however this approach suffers from several disadvantages including the use of arbitrary percentages and the requirement of extreme precision of training sets. Here we propose that Malinowski’s F-test, a method based on a statistical analysis of the variance contained within the training set, can be used to improve factor selection for the analysis of in vivo fast-scan cyclic voltammetric data. These two methods of rank estimation were compared at all steps in the calibration protocol including the number of principal components retained, overall noise levels, model validation as determined using a residual analysis procedure, and predicted concentration information. By analyzing 119 training sets from two different laboratories amassed over several years, we were able to gain insight into the heterogeneity of in vivo fast-scan cyclic voltammetric data and study how differences in factor selection propagate throughout the entire principal component regression analysis procedure. Visualizing cyclic voltammetric representations of the data contained in the retained and discarded principal components showed that using Malinowski’s F-test for rank estimation of in vivo training sets allowed for noise to be more accurately removed. Malinowski’s F-test also improved the robustness of our criterion for judging multivariate model validity, even though signal-to-noise ratios of the data varied. In addition, pH change was the majority noise carrier of in vivo training sets while dopamine prediction was more sensitive to noise. PMID:20527815

  5. Molecular crowding impacts the structure of apolipoprotein A-I with potential implications on in vivo metabolism and function.

    PubMed

    Petrlova, Jitka; Hilt, Silvia; Budamagunta, Madhu; Domingo-Espín, Joan; Voss, John C; Lagerstedt, Jens O

    2016-10-01

    The effect molecular crowding, defined as the volume exclusion exerted by one soluble inert molecule upon another soluble molecule, has on the structure and self-interaction of lipid-free apoA-I were explored. The influence of molecular crowding on lipid-free apoA-I oligomerization and internal dynamics has been analyzed using electron paramagnetic resonance (EPR) spectroscopy measurements of nitroxide spin label at selected positions throughout the protein sequence and at varying concentrations of the crowding agent Ficoll-70. The targeted positions include sites previously shown to be sensitive for detecting intermolecular interaction via spin-spin coupling. Circular dichroism was used to study secondary structural changes in lipid-free apoA-I imposed by increasing concentrations of the crowding agent. Crosslinking and SDS-PAGE gel analysis was employed to further characterize the role molecular crowding plays in inducing apoA-I oligomerization. It was concluded that the dynamic apoA-I structure and oligomeric state was altered in the presence of the crowding agent. It was also found that the C-terminal was slightly more sensitive to molecular crowding. Finally, the data described the region around residue 217 in the C-terminal domain of apoA-I as the most sensitive reporter of the crowding-induced self-association of apoA-I. The implications of this behavior to in vivo functionality are discussed. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 683-692, 2016.

  6. In vivo skin biophysical behaviour and surface topography as a function of ageing.

    PubMed

    Pailler-Mattei, C; Debret, R; Vargiolu, R; Sommer, P; Zahouani, H

    2013-12-01

    Normal skin ageing is characterised by an alteration of the underlying connective tissue with measurable consequences on global skin biophysical properties. The cutis laxa syndrome, a rare genetic disorder, is considered as an accelerated ageing process since patients appear prematurely aged due to alterations of dermal elastic fibres. In the present study, we compared the topography and the biomechanical parameters of normal aged skin with an 17 year old cutis laxa patient. Skin topography analyses were conducted on normal skin at different ages. The results indicate that the skin relief highly changes as a function of ageing. The cutaneous lines change from a relatively isotropic orientation to a highly anisotropic orientation. This reorganisation of the skin relief during the ageing process might be due to a modification of the skin mechanical properties, and particularly to a modification of the dermis mechanical properties. A specific bio-tribometer, based on the indentationtechnique under light load, has been developed to study the biophysical properties of the human skin in vivo through two main parameters: the physico-chemical properties of the skin surface, by measuring the maximum adhesion force between the skin and the bio-tribometer; and the bulk mechanical properties. Our results show that the pull-off force between the skin and the biotribometer as well as the skin Young's modulus decrease with age. In the case of the young cutis laxa patient, the results obtained were similar to those observed for aged individuals. These results are very interesting and encouraging since they would allow the monitoring of the cutis laxa skin in a standardised and non-invasive way to better characterize either the evolution of the disease or the benefit of a treatment.

  7. In vivo administration of histoincompatible lymphocytes leads to rapid functional deletion of cytotoxic T lymphocyte precursors

    PubMed Central

    1989-01-01

    It is well established that a single intravenous injection of F1 lymphocytes can rapidly and specifically reduce the ability of a parental recipient to generate CTL against donor alloantigens in a subsequent MLR. By fluorescently labeling the injected cells, we have been able to identify, and if desired, remove them in cell suspensions prepared from recipient spleen and lymph node. The injected cells, whether F1 or syngeneic, appeared to form part of the normal recirculating pool. Removal of injected F1 cells from responder lymph node or spleen cell suspensions had no effect on the response reduction observed in the 5-d in vitro MLR (typically 80% reduction for responder cells taken 2 d after injection of F1 cells). When the frequency of CTL precursors (CTLp) was measured by limiting dilution, it was reduced to the same degree as the MLR response, implying that response reduction is due to a reduction in the number of activatable CTL in the responder cell suspension. An equal mixture of responder cells from treated (i.e., F1 injected) and control mice gave a measured CTLp frequency equivalent to the average of the separate frequencies, implying the absence of suppressor cells active in vitro. Labeled F1 cells recovered from a first recipient could be used to induce response reduction in a second recipient. The results are discussed in terms of APCs that functionally delete rather than stimulate CTLp that recognize them (i.e., a "veto mechanism"). These experiments appear to rule out a role for in vivo-induced suppressor cells up to 8 d after injection of semiallogeneic cells but do not address the question of whether they are induced at later times. PMID:2527945

  8. Identifying the Functional Flexion-extension Axis of the Knee: An In-Vivo Kinematics Study

    PubMed Central

    Yin, Li; Chen, Kaining; Guo, Lin; Cheng, Liangjun; Wang, Fuyou; Yang, Liu

    2015-01-01

    Purpose This study aimed to calculate the flexion-extension axis (FEA) of the knee through in-vivo knee kinematics data, and then compare it with two major anatomical axes of the femoral condyles: the transepicondylar axis (TEA) defined by connecting the medial sulcus and lateral prominence, and the cylinder axis (CA) defined by connecting the centers of posterior condyles. Methods The knee kinematics data of 20 healthy subjects were acquired under weight-bearing condition using bi-planar x-ray imaging and 3D-2D registration techniques. By tracking the vertical coordinate change of all points on the surface of femur during knee flexion, the FEA was determined as the line connecting the points with the least vertical shift in the medial and lateral condyles respectively. Angular deviation and distance among the TEA, CA and FEA were measured. Results The TEA-FEA angular deviation was significantly larger than that of the CA-FEA in 3D and transverse plane (3.45° vs. 1.98°, p < 0.001; 2.72° vs. 1.19°, p = 0.002), but not in the coronal plane (1.61° vs. 0.83°, p = 0.076). The TEA-FEA distance was significantly greater than that of the CA-FEA in the medial side (6.7 mm vs. 1.9 mm, p < 0.001), but not in the lateral side (3.2 mm vs. 2.0 mm, p = 0.16). Conclusion The CA is closer to the FEA compared with the TEA; it can better serve as an anatomical surrogate for the functional knee axis. PMID:26039711

  9. Impact of RNA Editing on Functions of the Serotonin 2C Receptor in vivo

    PubMed Central

    Olaghere da Silva, Uade B.; Morabito, Michael V.; Canal, Clinton E.; Airey, David C.; Emeson, Ronald B.; Sanders-Bush, Elaine

    2009-01-01

    Transcripts encoding 5-HT2C receptors are modified posttranscriptionally by RNA editing, generating up to 24 protein isoforms. In recombinant cells, the fully edited isoform, 5-HT2C-VGV, exhibits blunted G-protein coupling and reduced constitutive activity. The present studies examine the signal transduction properties of 5-HT2C-VGV receptors in brain to determine the in vivo consequences of altered editing. Using mice solely expressing the 5-HT2C-VGV receptor (VGV/Y), we demonstrate reduced G-protein coupling efficiency and high-affinity agonist binding of brain 5-HT2C-VGV receptors. However, enhanced behavioral sensitivity to a 5-HT2C receptor agonist was also seen in mice expressing 5-HT2C-VGV receptors, an unexpected finding given the blunted G-protein coupling. In addition, mice expressing 5-HT2C-VGV receptors had greater sensitivity to a 5-HT2C inverse agonist/antagonist enhancement of dopamine turnover relative to wild-type mice. These behavioral and biochemical results are most likely explained by increases in 5-HT2C receptor binding sites in the brains of mice solely expressing 5-HT2C-VGV receptors. We conclude that 5-HT2C-VGV receptor signaling in brain is blunted, but this deficiency is masked by a marked increase in 5-HT2C receptor binding site density in mice solely expressing the VGV isoform. These findings suggest that RNA editing may regulate the density of 5-HT2C receptor binding sites in brain. We further caution that the pattern of 5-HT2C receptor RNA isoforms may not reflect the pattern of protein isoforms, and hence the inferred overall function of the receptor. PMID:20582266

  10. Enzymatic characterization and in vivo function of five terminal oxidases in Pseudomonas aeruginosa.

    PubMed

    Arai, Hiroyuki; Kawakami, Takuro; Osamura, Tatsuya; Hirai, Takehiro; Sakai, Yoshiaki; Ishii, Masaharu

    2014-12-01

    The ubiquitous opportunistic pathogen Pseudomonas aeruginosa has five aerobic terminal oxidases: bo(3)-type quinol oxidase (Cyo), cyanide-insensitive oxidase (CIO), aa3-type cytochrome c oxidase (aa3), and two cbb(3)-type cytochrome c oxidases (cbb(3)-1and cbb(3)-2). These terminal oxidases are differentially regulated under various growth conditions and are thought to contribute to the survival of this microorganism in a wide variety of environmental niches. Here, we constructed multiple mutant strains of P. aeruginosa that express only one aerobic terminal oxidase to investigate the enzymatic characteristics and in vivo function of each enzyme. The Km values of Cyo, CIO, and aa3 for oxygen were similar and were 1 order of magnitude higher than those of cbb(3)-1 and cbb(3)-2, indicating that Cyo, CIO, and aa3 are low-affinity enzymes and that cbb(3)-1 and cbb(3)-2 are high-affinity enzymes. Although cbb(3)-1 and cbb(3)-2 exhibited different expression patterns in response to oxygen concentration, they had similar Km values for oxygen. Both cbb(3)-1 and cbb(3)-2 utilized cytochrome c4 as the main electron donor under normal growth conditions. The electron transport chains terminated by cbb(3)-1 and cbb(3)-2 generate a proton gradient across the cell membrane with similar efficiencies. The electron transport chain of aa3 had the highest proton translocation efficiency, whereas that of CIO had the lowest efficiency. The enzymatic properties of the terminal oxidases reported here are partially in agreement with their regulatory patterns and may explain the environmental adaptability and versatility of P. aeruginosa.

  11. An Ex Vivo Model in Human Femoral Heads for Histopathological Study and Resonance Frequency Analysis of Dental Implant Primary Stability

    PubMed Central

    Hernández-Cortés, Pedro; Galindo-Moreno, Pablo; Catena, Andrés; Ortega-Oller, Inmaculada; Salas-Pérez, José; Gómez-Sánchez, Rafael; Aguilar, Mariano; Aguilar, David

    2014-01-01

    Objective. This study was designed to explore relationships of resonance frequency analysis (RFA)—assessed implant stability (ISQ values) with bone morphometric parameters and bone quality in an ex vivo model of dental implants placed in human femoral heads and to evaluate the usefulness of this model for dental implant studies. Material and Methods. This ex vivo study included femoral heads from 17 patients undergoing surgery for femoral neck fracture due to osteoporosis (OP) (n = 7) or for total prosthesis joint replacement due to severe hip osteoarthrosis (OA) (n = 10). Sixty 4.5 × 13 mm Dentsply Astra implants were placed, followed by RFA. CD44 immunohistochemical analysis for osteocytes was also carried out. Results. As expected, the analysis yielded significant effects of femoral head type (OA versus OA) (P < 0.001), but not of the implants (P = 0.455) or of the interaction of the two factors (P = 0.848). Bonferroni post hoc comparisons showed a lower mean ISQ for implants in decalcified (50.33 ± 2.92) heads than in fresh (66.93 ± 1.10) or fixated (70.77 ± 1.32) heads (both P < 0.001). The ISQ score (fresh) was significantly higher for those in OA (73.52 ± 1.92) versus OP (67.13 ± 1.09) heads. However, mixed linear analysis showed no significant association between ISQ scores and morphologic or histomorphometric results (P > 0.5 in all cases), and no significant differences in ISQ values were found as a function of the length or area of the cortical layer (both P > 0.08). Conclusion. Although RFA-determined ISQ values are not correlated with morphometric parameters, they can discriminate bone quality (OP versus OA). This ex vivo model is useful for dental implant studies. PMID:24995307

  12. Sensitivity analysis of near-infrared functional lymphatic imaging

    NASA Astrophysics Data System (ADS)

    Weiler, Michael; Kassis, Timothy; Dixon, J. Brandon

    2012-06-01

    Near-infrared imaging of lymphatic drainage of injected indocyanine green (ICG) has emerged as a new technology for clinical imaging of lymphatic architecture and quantification of vessel function, yet the imaging capabilities of this approach have yet to be quantitatively characterized. We seek to quantify its capabilities as a diagnostic tool for lymphatic disease. Imaging is performed in a tissue phantom for sensitivity analysis and in hairless rats for in vivo testing. To demonstrate the efficacy of this imaging approach to quantifying immediate functional changes in lymphatics, we investigate the effects of a topically applied nitric oxide (NO) donor glyceryl trinitrate ointment. Premixing ICG with albumin induces greater fluorescence intensity, with the ideal concentration being 150 μg/mL ICG and 60 g/L albumin. ICG fluorescence can be detected at a concentration of 150 μg/mL as deep as 6 mm with our system, but spatial resolution deteriorates below 3 mm, skewing measurements of vessel geometry. NO treatment slows lymphatic transport, which is reflected in increased transport time, reduced packet frequency, reduced packet velocity, and reduced effective contraction length. NIR imaging may be an alternative to invasive procedures measuring lymphatic function in vivo in real time.

  13. Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy

    NASA Technical Reports Server (NTRS)

    Koide, M.; Hamawaki, M.; Narishige, T.; Sato, H.; Nemoto, S.; DeFreyte, G.; Zile, M. R.; Cooper G, I. V.; Carabello, B. A.

    2000-01-01

    BACKGROUND: Because initially compensatory myocardial hypertrophy in response to pressure overloading may eventually decompensate to myocardial failure, mechanisms responsible for this transition have long been sought. One such mechanism established in vitro is densification of the cellular microtubule network, which imposes a viscous load that inhibits cardiocyte contraction. METHODS AND RESULTS: In the present study, we extended this in vitro finding to the in vivo level and tested the hypothesis that this cytoskeletal abnormality is important in the in vivo contractile dysfunction that occurs in experimental aortic stenosis in the adult dog. In 8 dogs in which gradual stenosis of the ascending aorta had caused severe left ventricular (LV) pressure overloading (gradient, 152+/-16 mm Hg) with contractile dysfunction, LV function was measured at baseline and 1 hour after the intravenous administration of colchicine. Cardiocytes obtained by biopsy before and after in vivo colchicine administration were examined in tandem. Microtubule depolymerization restored LV contractile function both in vivo and in vitro. CONCLUSIONS: These and additional corroborative data show that increased cardiocyte microtubule network density is an important mechanism for the ventricular contractile dysfunction that develops in large mammals with adult-onset pressure-overload-induced cardiac hypertrophy.

  14. Multivariate Analysis of Functional Metagenomes

    PubMed Central

    Dinsdale, Elizabeth A.; Edwards, Robert A.; Bailey, Barbara A.; Tuba, Imre; Akhter, Sajia; McNair, Katelyn; Schmieder, Robert; Apkarian, Naneh; Creek, Michelle; Guan, Eric; Hernandez, Mayra; Isaacs, Katherine; Peterson, Chris; Regh, Todd; Ponomarenko, Vadim

    2013-01-01

    Metagenomics is a primary tool for the description of microbial and viral communities. The sheer magnitude of the data generated in each metagenome makes identifying key differences in the function and taxonomy between communities difficult to elucidate. Here we discuss the application of seven different data mining and statistical analyses by comparing and contrasting the metabolic functions of 212 microbial metagenomes within and between 10 environments. Not all approaches are appropriate for all questions, and researchers should decide which approach addresses their questions. This work demonstrated the use of each approach: for example, random forests provided a robust and enlightening description of both the clustering of metagenomes and the metabolic processes that were important in separating microbial communities from different environments. All analyses identified that the presence of phage genes within the microbial community was a predictor of whether the microbial community was host-associated or free-living. Several analyses identified the subtle differences that occur with environments, such as those seen in different regions of the marine environment. PMID:23579547

  15. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment. PMID:27086034

  16. Functional testing of topical skin formulations using an optimised ex vivo skin organ culture model.

    PubMed

    Sidgwick, G P; McGeorge, D; Bayat, A

    2016-07-01

    A number of equivalent-skin models are available for investigation of the ex vivo effect of topical application of drugs and cosmaceuticals onto skin, however many have their drawbacks. With the March 2013 ban on animal models for cosmetic testing of products or ingredients for sale in the EU, their utility for testing toxicity and effect on skin becomes more relevant. The aim of this study was to demonstrate proof of principle that altered expression of key gene and protein markers could be quantified in an optimised whole tissue biopsy culture model. Topical formulations containing green tea catechins (GTC) were investigated in a skin biopsy culture model (n = 11). Punch biopsies were harvested at 3, 7 and 10 days, and analysed using qRT-PCR, histology and HPLC to determine gene and protein expression, and transdermal delivery of compounds of interest. Reduced gene expression of α-SMA, fibronectin, mast cell tryptase, mast cell chymase, TGF-β1, CTGF and PAI-1 was observed after 7 and 10 days compared with treated controls (p < 0.05). Histological analysis indicated a reduction in mast cell tryptase and chymase positive cell numbers in treated biopsies compared with untreated controls at day 7 and day 10 (p < 0.05). Determination of transdermal uptake indicated that GTCs were detected in the biopsies. This model could be adapted to study a range of different topical formulations in both normal and diseased skin, negating the requirement for animal models in this context, prior to study in a clinical trial environment.

  17. Preclinical In vivo Imaging for Fat Tissue Identification, Quantification, and Functional Characterization

    PubMed Central

    Marzola, Pasquina; Boschi, Federico; Moneta, Francesco; Sbarbati, Andrea; Zancanaro, Carlo

    2016-01-01

    increasing interest, will be also briefly described. For each technique the physical principles of signal detection will be overviewed and some relevant studies will be summarized. Far from being exhaustive, this review has the purpose to highlight some strategies that can be adopted for the in vivo identification, quantification, and functional characterization of adipose tissues mainly from the point of view of biophysics and physiology. PMID:27725802

  18. Influence of IL-3 functional fragment on cord blood stem cell ex vivo expansion and differentiation

    PubMed Central

    Ren, Zhihua; Zhang, Yu; Zhang, Yanxi; Jiang, Wenhong; Dai, Wei; Ding, Xinxin

    2016-01-01

    Background Recombinant human interleukin-3 (rhIL-3) is a multiple hematopoietic growth factor, which enhances stem cell expansion and hematopoiesis regeneration in vitro and in vivo, when administrated in combination with other cytokines. However, the structure-function study of rhIL-3 remains rarely studied, so far. The purpose of this study was to recognize the short peptide with similar function as rhIL-3, and assess the hematopoietic efficacy in umbilical cord blood (UCB) stem cell culture as well. Methods Two novel monoclonal antibodies (mAb) (C1 and E1) were generated against rhIL-3 using hybridoma technique. Eleven short peptides were depicted and synthesized to overlap covering the full length sequence of rhIL-3. ELISA was employed to distinguish the antibody-binding peptide from the negative peptides. In addition, the multi-potential hematopoiesis capabilities of the positive peptides were evaluated by adding 25 ng/mL of each peptide to the culture medium of hematopoietic stem cells (HSCs) derived from UCB. Total nucleated cell number and the CD34+ cell number from each individual treatment group were calculated on day 7. Correlated antibodies at 0.5 or 2 molar fold to each peptide were also tested in the stem cell expansion experiment, to further confirm the bioactivity of the peptides. Results Two peptides were recognized by the novel generated antibodies, using ELISA. Peptide 3 and 8 exhibited comparable hematopoiesis potentials, with 25.01±0.14 fold, and 19.89±0.12 fold increase of total nucleated cell number on day 7, respectively, compared with the basal medium control (4.93±0.55 fold). These biological effects were neutralized by adding the corresponding mAb at a dose dependent manner. Conclusions Our results identified two specific regions of rhIL-3 responsible for HSC proliferation and differentiation, which were located from 28 to 49 amino acids (P3), and 107 to 127 amino acids (P8), respectively. The short peptide 3 and 8 might act

  19. Characterization of In Vivo Dlg1 Deletion on T Cell Development and Function

    PubMed Central

    Tomassian, Tamar; McMahon, Kerrie-Ann; Humbert, Patrick O.; Silva, Oscar; Round, June L.; Takamiya, Kogo; Huganir, Richard L.

    2012-01-01

    Background The polarized reorganization of the T cell membrane and intracellular signaling molecules in response to T cell receptor (TCR) engagement has been implicated in the modulation of T cell development and effector responses. In siRNA-based studies Dlg1, a MAGUK scaffold protein and member of the Scribble polarity complex, has been shown to play a role in T cell polarity and TCR signal specificity, however the role of Dlg1 in T cell development and function in vivo remains unclear. Methodology/Principal Findings Here we present the combined data from three independently-derived dlg1-knockout mouse models; two germline deficient knockouts and one conditional knockout. While defects were not observed in T cell development, TCR-induced early phospho-signaling, actin-mediated events, or proliferation in any of the models, the acute knockdown of Dlg1 in Jurkat T cells diminished accumulation of actin at the IS. Further, while Th1-type cytokine production appeared unaffected in T cells derived from mice with a dlg1germline-deficiency, altered production of TCR-dependent Th1 and Th2-type cytokines was observed in T cells derived from mice with a conditional loss of dlg1 expression and T cells with acute Dlg1 suppression, suggesting a differential requirement for Dlg1 activity in signaling events leading to Th1 versus Th2 cytokine induction. The observed inconsistencies between these and other knockout models and siRNA strategies suggest that 1) compensatory upregulation of alternate gene(s) may be masking a role for dlg1 in controlling TCR-mediated events in dlg1 deficient mice and 2) the developmental stage during which dlg1 ablation begins may control the degree to which compensatory events occur. Conclusions/Significance These findings provide a potential explanation for the discrepancies observed in various studies using different dlg1-deficient T cell models and underscore the importance of acute dlg1 ablation to avoid the upregulation of compensatory

  20. Development of a fluorescence-based in vivo phagocytosis assay to measure mononuclear phagocyte system function in the rat.

    PubMed

    Tartaro, Karrie; VanVolkenburg, Maria; Wilkie, Dean; Coskran, Timothy M; Kreeger, John M; Kawabata, Thomas T; Casinghino, Sandra

    2015-01-01

    The mononuclear phagocyte system (MPS) which provides protection against infection is made up of phagocytic cells that engulf and digest bacteria or other foreign substances. Suppression of the MPS may lead to decreased clearance of pathogenic microbes. Drug delivery systems and immunomodulatory therapeutics that target phagocytes have a potential to inhibit MPS function. Available methods to measure inhibition of MPS function use uptake of radioactively-labeled cells or labor-intensive semi-quantitative histologic techniques. The objective of this work was to develop a non-radioactive quantitative method to measure MPS function in vivo by administering heat-killed E. coli conjugated to a pH-sensitive fluorescent dye (Bioparticles(®)). Fluorescence of the Bioparticles(®) is increased at low pH when they are in phagocytic lysosomes. The amount of Bioparticles(®) phagocytosed by MPS organs in rats was determined by measuring fluorescence intensity in livers and spleens ex vivo using an IVIS(®) Spectrum Pre-clinical In Vivo Imaging System. Phagocytosis of the particles by peripheral blood neutrophils was measured by flow cytometry. To assess method sensitivity, compounds likely to suppress the MPS [clodronate-containing liposomes, carboxylate-modified latex particles, maleic vinyl ether (MVE) polymer] were administered to rats prior to injection of the Bioparticles(®). The E. coli particles consistently co-localized with macrophage markers in the liver but not in the spleen. All of the compounds tested decreased phagocytosis in the liver, but had no consistent effects on phagocytic activity in the spleen. In addition, administration of clodronate liposomes and MVE polymer increased the percentage of peripheral blood neutrophils that phagocytosed the Bioparticles(®). In conclusion, an in vivo rat model was developed that measures phagocytosis of E. coli particles in the liver and may be used to assess the impact of test compounds on MPS function. Still, the

  1. Improving microbial fitness in the mammalian gut by in vivo temporal functional metagenomics

    SciTech Connect

    Yaung, Stephanie J.; Deng, Luxue; Li, Ning; Braff, Jonathan L.; Church, George M.; Bry, Lynn; Wang, Harris H.; Gerber, Georg K.

    2015-03-11

    Elucidating functions of commensal microbial genes in the mammalian gut is challenging because many commensals are recalcitrant to laboratory cultivation and genetic manipulation. We present Temporal FUnctional Metagenomics sequencing (TFUMseq), a platform to functionally mine bacterial genomes for genes that contribute to fitness of commensal bacteria in vivo. Our approach uses metagenomic DNA to construct large-scale heterologous expression libraries that are tracked over time in vivo by deep sequencing and computational methods. To demonstrate our approach, we built a TFUMseq plasmid library using the gut commensal Bacteroides thetaiotaomicron (Bt) and introduced Escherichia coli carrying this library into germfree mice. Population dynamics of library clones revealed Bt genes conferring significant fitness advantages in E. coli over time, including carbohydrate utilization genes, with a Bt galactokinase central to early colonization, and subsequent dominance by a Bt glycoside hydrolase enabling sucrose metabolism coupled with co-evolution of the plasmid library and E. coli genome driving increased galactose utilization. Here, our findings highlight the utility of functional metagenomics for engineering commensal bacteria with improved properties, including expanded colonization capabilities in vivo.

  2. Set1 and MLL1/2 target distinct sets of functionally different genomic loci in vivo

    PubMed Central

    Duncan, Elizabeth M.; Chitsazan, Alex D.; Seidel, Chris W.; Alvarado, Alejandro Sánchez

    2015-01-01

    SUMMARY Histone H3 lysine 4 trimethylation (H3K4me3) is known to correlate with both active and poised genomic loci, yet many questions remain regarding its functional roles in vivo. We identify functional genomic targets of two H3K4 methyltransferases, Set1 and MLL1/2, in both the stem cells and differentiated tissue of the planarian flatworm Schmidtea mediterranea. We show that, despite their common substrate, these enzymes target distinct genomic loci in vivo, which are distinguishable by the pattern each enzyme leaves on the chromatin template, i.e., the breadth of the H3K4me3 peak. Whereas Set1 targets are largely associated with the maintenance of the stem cell population, MLL1/2 targets are specifically enriched for genes involved in ciliogenesis. These data not only confirm that chromatin regulation is fundamental to planarian stem cell function, but also provide evidence for post-embryonic functional specificity of H3K4me3 methyltransferases in vivo. PMID:26711341

  3. Evidence of Absorptive Function in vivo in a Neo-Formed Bio-Artificial Intestinal Segment Using a Rodent Model.

    PubMed

    Cicalese, Luca; Corsello, Tiziana; Stevenson, Heather L; Damiano, Giuseppe; Tuveri, Massimiliano; Zorzi, Daria; Montalbano, Mauro; Shirafkan, Ali; Rastellini, Cristiana

    2016-01-01

    A promising therapeutic approach for intestinal failure consists in elongating the intestine with a bio-engineered segment of neo-formed autologous intestine. Using an acellular biologic scaffold (ABS), we, and others, have previously developed an autologous bio-artificial intestinal segment (BIS) that is morphologically similar to normal bowel in rodents. This neo-formed BIS is constructed with the intervention of naïve stem cells that repopulate the scaffold in vivo, and over a period of time, are transformed in different cell populations typical of normal intestinal mucosa. However, no studies are available to demonstrate that such BIS possesses functional absorptive characteristics necessary to render this strategy a possible therapeutic application. The aim of this study was to demonstrate that the BIS generated has functional absorptive capacity. Twenty male August × Copenhagen-Irish (ACI) rats were used for the study. Two-centimeter sections of ABS were transplanted in the anti-mesenteric border of the small bowel. Animals were studied at 4, 8, and 12 weeks post-engraftment. Segments of intestine with preserved vascular supply and containing the BIS were isolated and compared to intestinal segments of same length in sham control animals (n = 10). D-Xylose solution was introduced in the lumen of the intestinal segments and after 2 h, urine and blood were collected to evaluate D-Xylose levels. Quantitative analysis was performed using ELISA. Morphologic, ultrastructural, and indirect functional absorption analyses were also performed. We observed neo-formed intestinal tissue with near-normal mucosa post-implantation as expected from our previously developed model. Functional characteristics such as morphologically normal enterocytes (and other cell types) with presence of brush borders and preserved microvilli by electron microscopy, preserved water, and ion transporters/channels (by aquaporin and cystic fibrosis transmembrane conductance regulator

  4. Lipopolysaccharide (LPS) disrupts particle transport, cilia function and sperm motility in an ex vivo oviduct model

    PubMed Central

    O’Doherty, A. M.; Di Fenza, M.; Kölle, S.

    2016-01-01

    The oviduct functions in the transportation of gametes to the site of fertilization (the ampulla) and is the site of early embryonic development. Alterations of this early developmental environment, such as the presence of sexually transmitted pathogens, may affect oviduct function leading to reduced fertilization rates and contribute to compromised embryonic development. In this study, sperm interactions, particle transport speed (PTS) and cilia beat frequency (CBF) in the ampulla following exposure to lipopolysaccharide (LPS), a constituent of the sexually transmitted pathogens Chlamydia trachomatis and Chlamydia abortus, was investigated. Three complementary experiments were performed to analyse; (1) bound sperm motility and cilia function (2) transport velocity in the oviduct and (3) the expression of genes related to immune function and inflammatory response (CASP3, CD14, MYD88, TLR4 and TRAF6). The motility of bound sperm was significantly lower in ampullae that were exposed to LPS. CBF and PTS significantly increased after treatment with LPS for 2 hours. Finally, gene expression analysis revealed that CASP3 and CD14 were significantly upregulated and TLR4 trended towards increased expression following treatment with LPS. These findings provide an insight on the impact of LPS on the oviduct sperm interaction, and have implications for both male and female fertility. PMID:27079521

  5. In vivo and in vitro study of the function of the left and right bovine ovaries.

    PubMed

    Karamishabankareh, Hamed; Hajarian, Hadi; Shahsavari, Mohammadhamed; Moradinejad, Ruhollah

    2015-09-15

    Inequality in function of the left and right bovine ovaries and uterine horns was evaluated in two separate experiments. In the first experiment (in vivo), the relationship between the left and right ovarian activities and reproductive indices was evaluated. Therefore, the total number of 1284 randomly chosen lactating dairy cows were examined from Day 50 to 60 postpartum, and according to the presence of an active CL on the ovaries, they were divided into 502 LCL3-cows and 782 RCL3-cows (cows with an active CL on the left [L] or right [R] ovary, respectively). To induce estrus synchronization and investigate the effects of PGF2α administration on the incidence of estrus in both LCL3-cows and RCL3-cows, the cows were treated with one luteolytic dose of PGF2α and were inseminated after observed estrus (via visual observation lasting at least 30 minutes three times a day). To investigate the effects of side of ovulation at the time of PGF2α administration on reproductive parameters, pregnancy diagnosis was performed 28 days after insemination (using ultrasound) and 42 days after insemination (using transrectal palpation). The results showed that the percentage of the RCL3-cows was greater than the LCL3-cows (60.9% vs. 39.1%, respectively). Furthermore, ovulations switching from the left to right ovary in two successive ovulations were greater than those that switched from the right to left ovary. On the other hand, the sex ratio (male percentage) in the right uterine horn was greater than that of the left one. In the second experiment (in vitro), the developmental potential of bovine oocytes derived from the left (L-oocytes) and right (R-oocytes) ovaries after in vitro embryo production and heterogeneity in the developmental competence of L-oocytes and R-oocytes using the brilliant cresyl blue staining test as a selection criterion were evaluated. Results of the in vitro experiment showed that the percentage of cleavage and blastocyst rate of R-oocytes were

  6. The feasibility of in vivo imaging of infiltrating blood cells for predicting the functional prognosis after spinal cord injury

    PubMed Central

    Yokota, Kazuya; Saito, Takeyuki; Kobayakawa, Kazu; Kubota, Kensuke; Hara, Masamitsu; Murata, Masaharu; Ohkawa, Yasuyuki; Iwamoto, Yukihide; Okada, Seiji

    2016-01-01

    After a spinal cord injury (SCI), a reliable prediction of the potential functional outcome is essential for determining the optimal treatment strategy. Despite recent advances in the field of neurological assessment, there is still no satisfactory methodology for predicting the functional outcome after SCI. We herein describe a novel method to predict the functional outcome at 12 hours after SCI using in vivo bioluminescence imaging. We produced three groups of SCI mice with different functional prognoses: 50 kdyn (mild), 70 kdyn (moderate) and 90 kdyn (severe). Only the locomotor function within 24 hours after SCI was unable to predict subsequent functional recovery. However, both the number of infiltrating neutrophils and the bioluminescence signal intensity from infiltrating blood cells were found to correlate with the severity of the injury at 12 hours after SCI. Furthermore, a strong linear relationship was observed among the number of infiltrating neutrophils, the bioluminescence signal intensity, and the severity of the injury. Our findings thus indicate that in vivo bioluminescence imaging is able to accurately predict the long-term functional outcome in the hyperacute phase of SCI, thereby providing evidence that this imaging modality could positively contribute to the future development of tailored therapeutic approaches for SCI. PMID:27156468

  7. Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

    PubMed Central

    Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos; Pascual, Daniel; Marcos, Susana

    2014-01-01

    Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery. PMID:25121496

  8. Hierarchy of neural organization in the embryonic spinal cord: Granger-causality graph analysis of in vivo calcium imaging data.

    PubMed

    Fallani, Fabrizio De Vico; Corazzol, Martina; Sternberg, Jenna R; Wyart, Claire; Chavez, Mario

    2015-05-01

    The recent development of genetically encoded calcium indicators enables monitoring in vivo the activity of neuronal populations. Most analysis of these calcium transients relies on linear regression analysis based on the sensory stimulus applied or the behavior observed. To estimate the basic properties of the functional neural circuitry, we propose a network approach to calcium imaging recorded at single cell resolution. Differently from previous analysis based on cross-correlation, we used Granger-causality estimates to infer information propagation between the activities of different neurons. The resulting functional network was then modeled as a directed graph and characterized in terms of connectivity and node centralities. We applied our approach to calcium transients recorded at low frequency (4 Hz) in ventral neurons of the zebrafish spinal cord at the embryonic stage when spontaneous coiling of the tail occurs. Our analysis on population calcium imaging data revealed a strong ipsilateral connectivity and a characteristic hierarchical organization of the network hubs that supported established propagation of activity from rostral to caudal spinal cord. Our method could be used for detecting functional defects in neuronal circuitry during development and pathological conditions.

  9. FUNCTIONAL ANALYSIS AND TREATMENT OF COPROPHAGIA

    PubMed Central

    Ing, Anna D; Roane, Henry S; Veenstra, Rebecca A

    2011-01-01

    In the current investigation, functional analysis results suggested that coprophagia, the ingestion of fecal matter, was maintained by automatic reinforcement. Providing noncontingent access to alternative stimuli decreased coprophagia, and the intervention was generalized to two settings. PMID:21541128

  10. Pathway-Based Functional Analysis of Metagenomes

    NASA Astrophysics Data System (ADS)

    Bercovici, Sivan; Sharon, Itai; Pinter, Ron Y.; Shlomi, Tomer

    Metagenomic data enables the study of microbes and viruses through their DNA as retrieved directly from the environment in which they live. Functional analysis of metagenomes explores the abundance of gene families, pathways, and systems, rather than their taxonomy. Through such analysis researchers are able to identify those functional capabilities most important to organisms in the examined environment. Recently, a statistical framework for the functional analysis of metagenomes was described that focuses on gene families. Here we describe two pathway level computational models for functional analysis that take into account important, yet unaddressed issues such as pathway size, gene length and overlap in gene content among pathways. We test our models over carefully designed simulated data and propose novel approaches for performance evaluation. Our models significantly improve over current approach with respect to pathway ranking and the computations of relative abundance of pathways in environments.

  11. In vivo skin analysis (INSA) for quantitative determination of lotion transfer to human skin.

    PubMed

    Ebrahimpour, Arman; Ullman, Alan H

    2009-01-01

    There is a need during the development of cosmetic and skin products for simple, quantitative, noninvasive measurements of product deposition onto skin. In this article we describe INSA (in vivo skin analysis) as such a method for measuring the amount of lotion transferred to the skin from tissue products. Using Fourier transform infrared spectroscopy with an attenuated total reflectance (ATR FT-IR) sampling accessory, we were able to quantify lotion levels on the arms of subjects in minutes.

  12. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  13. Functional principal components analysis of workload capacity functions

    PubMed Central

    Burns, Devin M.; Houpt, Joseph W.; Townsend, James T.; Endres, Michael J.

    2013-01-01

    Workload capacity, an important concept in many areas of psychology, describes processing efficiency across changes in workload. The capacity coefficient is a function across time that provides a useful measure of this construct. Until now, most analyses of the capacity coefficient have focused on the magnitude of this function, and often only in terms of a qualitative comparison (greater than or less than one). This work explains how a functional extension of principal components analysis can capture the time-extended information of these functional data, using a small number of scalar values chosen to emphasize the variance between participants and conditions. This approach provides many possibilities for a more fine-grained study of differences in workload capacity across tasks and individuals. PMID:23475829

  14. Functional analysis and intervention for breath holding.

    PubMed

    Kern, L; Mauk, J E; Marder, T J; Mace, F C

    1995-01-01

    We conducted a functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome. The results showed that breath holding served an operant function, primarily to gain access to attention. The intervention, consisting of extinction, scheduled attention, and use of a picture card communication system, resulted in decreased breath holding.

  15. Antibody-Mediated Targeting of Tau In Vivo Does Not Require Effector Function and Microglial Engagement.

    PubMed

    Lee, Seung-Hye; Le Pichon, Claire E; Adolfsson, Oskar; Gafner, Valérie; Pihlgren, Maria; Lin, Han; Solanoy, Hilda; Brendza, Robert; Ngu, Hai; Foreman, Oded; Chan, Ruby; Ernst, James A; DiCara, Danielle; Hotzel, Isidro; Srinivasan, Karpagam; Hansen, David V; Atwal, Jasvinder; Lu, Yanmei; Bumbaca, Daniela; Pfeifer, Andrea; Watts, Ryan J; Muhs, Andreas; Scearce-Levie, Kimberly; Ayalon, Gai

    2016-08-01

    The spread of tau pathology correlates with cognitive decline in Alzheimer's disease. In vitro, tau antibodies can block cell-to-cell tau spreading. Although mechanisms of anti-tau function in vivo are unknown, effector function might promote microglia-mediated clearance. In this study, we investigated whether antibody effector function is required for targeting tau. We compared efficacy in vivo and in vitro of two versions of the same tau antibody, with and without effector function, measuring tau pathology, neuron health, and microglial function. Both antibodies reduced accumulation of tau pathology in Tau-P301L transgenic mice and protected cultured neurons against extracellular tau-induced toxicity. Only the full-effector antibody enhanced tau uptake in cultured microglia, which promoted release of proinflammatory cytokines. In neuron-microglia co-cultures, only effectorless anti-tau protected neurons, suggesting full-effector tau antibodies can induce indirect toxicity via microglia. We conclude that effector function is not required for efficacy, and effectorless tau antibodies may represent a safer approach to targeting tau. PMID:27475227

  16. Diels-Alder functionalized carbon nanotubes for bone tissue engineering: in vitro/in vivo biocompatibility and biodegradability

    NASA Astrophysics Data System (ADS)

    Mata, D.; Amaral, M.; Fernandes, A. J. S.; Colaço, B.; Gama, A.; Paiva, M. C.; Gomes, P. S.; Silva, R. F.; Fernandes, M. H.

    2015-05-01

    The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT membranes (p,f-CNTs). The in vivo subcutaneously implanted materials showed a higher biological reactivity, thus inducing a slighter intense inflammatory response compared to non-functionalized CNT membranes (p-CNTs), but still showing a reduced cytotoxicity profile. Moreover, the in vivo biodegradation of CNTs was superior for p,f-CNT membranes, likely mediated by the oxidation-induced myeloperoxidase (MPO) in neutrophil and macrophage inflammatory milieus. This proves the biodegradability faculty of functionalized CNTs, which potentially avoids long-term tissue accumulation and triggering of acute toxicity. On the whole, the proposed Diels-Alder functionalization accounts for the improved CNT biological response in terms of the biocompatibility and biodegradability profiles. Therefore, CNTs can be considered for use in bone tissue engineering without notable toxicological threats.The risk-benefit balance for carbon nanotubes (CNTs) dictates their clinical fate. To take a step forward at this crossroad it is compulsory to modulate the CNT in vivo biocompatibility and biodegradability via e.g. chemical functionalization. CNT membranes were functionalised combining a Diels-Alder cycloaddition reaction to generate cyclohexene (-C6H10) followed by a mild oxidisation to yield carboxylic acid groups (-COOH). In vitro proliferation and osteogenic differentiation of human osteoblastic cells were maximized on functionalized CNT

  17. In Vitro and In Vivo Studies of Single-Walled Carbon Nanohorns with Encapsulated Metallofullerenes and Exohedrally Functionalized Quantum Dots

    SciTech Connect

    Zhang, Jianfei; Ge, Jiechao; Shultz, M.D.; Chung, Eunna; Singh, Gurpreet; Shu, Chunying; Deck, Paul; Fatouros, Panos; Henderson, Scott; Corwin, Frank; Geohegan, David B; Rouleau, Christopher M; More, Karren Leslie; Rylander, Nichole M; Rylander, Christopher; Gibson, Harry W; Dorn, Harry C

    2010-07-01

    Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.

  18. In vitro and in vivo studies of single-walled carbon nanohorns with encapsulated metallofullerenes and exohedrally functionalized quantum dots.

    PubMed

    Zhang, Jianfei; Ge, Jiechao; Shultz, Michael D; Chung, Eunna; Singh, Gurpreet; Shu, Chunying; Fatouros, Panos P; Henderson, Scott C; Corwin, Frank D; Geohegan, David B; Puretzky, Alex A; Rouleau, Christopher M; More, Karren; Rylander, Christopher; Rylander, Marissa Nichole; Gibson, Harry W; Dorn, Harry C

    2010-08-11

    Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials.

  19. In Vitro and In Vivo Studies of Single-Walled Carbon Nanohorns with Encapsulated Metallofullerenes and Exohedrally Functionalized Quantum Dots

    PubMed Central

    Zhang, Jianfei; Ge, Jiechao; Shultz, Michael D.; Chung, Eunna; Singh, Gurpreet; Shu, Chunying; Deck, Paul A.; Fatouros, Panos P.; Henderson, Scott C.; Corwin, Frank D.; Geohegan, David B.; Puretzky, Alex A.; Rouleau, Christopher M.; More, Karren; Rylander, Christopher; Rylander, Marissa Nichole; Gibson, Harry W.; Dorn, Harry C.

    2010-01-01

    Single-walled carbon nanohorns (SWNHs) are new carbonaceous materials. In this paper, we report the first successful preparation of SWNHs encapsulating trimetallic nitride template endohedral metallofullerenes (TNT-EMFs). The resultant materials were functionalized by a high-speed vibration milling method and conjugated with CdSe/ZnS quantum dots (QDs). The successful encapsulation of TNT-EMFs and external functionalization with QDs provide a dual diagnostic platform for in vitro and in vivo biomedical applications of these new carbonaceous materials. PMID:20698597

  20. Design and analysis of a novel mechanical loading machine for dynamic in vivo axial loading

    NASA Astrophysics Data System (ADS)

    Macione, James; Nesbitt, Sterling; Pandit, Vaibhav; Kotha, Shiva

    2012-02-01

    This paper describes the construction of a loading machine for performing in vivo, dynamic mechanical loading of the rodent forearm. The loading machine utilizes a unique type of electromagnetic actuator with no mechanically resistive components (servotube), allowing highly accurate loads to be created. A regression analysis of the force created by the actuator with respect to the input voltage demonstrates high linear correlation (R2 = 1). When the linear correlation is used to create dynamic loading waveforms in the frequency (0.5-10 Hz) and load (1-50 N) range used for in vivo loading, less than 1% normalized root mean square error (NRMSE) is computed. Larger NRMSE is found at increased frequencies, with 5%-8% occurring at 40 Hz, and reasons are discussed. Amplifiers (strain gauge, linear voltage displacement transducer (LVDT), and load cell) are constructed, calibrated, and integrated, to allow well-resolved dynamic measurements to be recorded at each program cycle. Each of the amplifiers uses an active filter with cutoff frequency at the maximum in vivo loading frequencies (50 Hz) so that electronic noise generated by the servo drive and actuator are reduced. The LVDT and load cell amplifiers allow evaluation of stress-strain relationships to determine if in vivo bone damage is occurring. The strain gauge amplifier allows dynamic force to strain calibrations to occur for animals of different sex, age, and strain. Unique features are integrated into the loading system, including a weightless mode, which allows the limbs of anesthetized animals to be quickly positioned and removed. Although the device is constructed for in vivo axial bone loading, it can be used within constraints, as a general measurement instrument in a laboratory setting.

  1. In vitro and in vivo analysis of transcription within the replication region of plasmid pIP501.

    PubMed

    Brantl, S; Nuez, B; Behnke, D

    1992-07-01

    Derivatives of the conjugative streptococcal plasmid pIP501 replicate stably in Bacillus subtilis. The region essential for replication of pIP501 has been narrowed down to a 2.2 kb DNA segment, the sequence of which has been determined. This region comprises two genes, copR and repR, proposed to be involved in copy control and replication. By in vitro and in vivo transcriptional analysis we characterized three active promoters, pI, pII and pIII within this region. A putative fourth promoter (pIV) was neither active in vitro nor in vivo. We showed that copR is transcribed from promoter pI while the repR gene is transcribed from promoter pII located just downstream of copR. The pII transcript encompasses a 329 nucleotide (nt) long leader sequence. A counter transcript that was complementary to a major part of this leader was found to originate from a third promoter pIII. The secondary structure of the counter transcript revealed several stem-loop regions. A regulatory function for this antisense RNA in the control of repR expression is proposed. Comparative analysis of the replication regions of pAM beta 1 and pSM19035 suggested a similar organization of transcriptional units, suggesting that an antisense RNA is produced by these plasmids also.

  2. A complementation method for functional analysis of mammalian genes

    PubMed Central

    Gonzalez-Santos, Juana Maria; Cao, Huibi; Wang, Anan; Koehler, David R.; Martin, Bernard; Navab, Roya; Hu, Jim

    2005-01-01

    Our progress in understanding mammalian gene function has lagged behind that of gene identification. New methods for mammalian gene functional analysis are needed to accelerate the process. In yeast, the powerful genetic shuffle system allows deletion of any chromosomal gene by homologous recombination and episomal expression of a mutant allele in the same cell. Here, we report a method for mammalian cells, which employs a helper-dependent adenoviral (HD-Ad) vector to synthesize small hairpin (sh) RNAs to knock-down the expression of an endogenous gene by targeting untranslated regions (UTRs). The vector simultaneously expresses an exogenous version of the same gene (wild-type or mutant allele) lacking the UTRs for functional analysis. We demonstrated the utility of the method by using PRPF3, which encodes the human RNA splicing factor Hprp3p. Recently, missense mutations in PRPF3 were found to cause autosomal-dominant Retinitis Pigmentosa, a form of genetic eye diseases affecting the retina. We knocked-down endogenous PRPF3 in multiple cell lines and rescued the phenotype (cell death) with exogenous PRPF3 cDNA, thereby creating a genetic complementation method. Because Ad vectors can efficiently transduce a wide variety of cell types, and many tissues in vivo, this method could have a wide application for gene function studies. PMID:15944448

  3. FRATS: Functional Regression Analysis of DTI Tract Statistics

    PubMed Central

    Zhu, Hongtu; Styner, Martin; Tang, Niansheng; Liu, Zhexing; Lin, Weili; Gilmore, John H.

    2010-01-01

    Diffusion tensor imaging (DTI) provides important information on the structure of white matter fiber bundles as well as detailed tissue properties along these fiber bundles in vivo. This paper presents a functional regression framework, called FRATS, for the analysis of multiple diffusion properties along fiber bundle as functions in an infinite dimensional space and their association with a set of covariates of interest, such as age, diagnostic status and gender, in real applications. The functional regression framework consists of four integrated components: the local polynomial kernel method for smoothing multiple diffusion properties along individual fiber bundles, a functional linear model for characterizing the association between fiber bundle diffusion properties and a set of covariates, a global test statistic for testing hypotheses of interest, and a resampling method for approximating the p-value of the global test statistic. The proposed methodology is applied to characterizing the development of five diffusion properties including fractional anisotropy, mean diffusivity, and the three eigenvalues of diffusion tensor along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. Significant age and gestational age effects on the five diffusion properties were found in both tracts. The resulting analysis pipeline can be used for understanding normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. PMID:20335089

  4. RNAi-based biosynthetic pathway screens to identify in vivo functions of non-nucleic acid-based metabolites such as lipids.

    PubMed

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Gobel, Verena

    2015-05-01

    The field of metabolomics continues to catalog new compounds, but their functional analysis remains technically challenging, and roles beyond metabolism are largely unknown. Unbiased genetic/RNAi screens are powerful tools to identify the in vivo functions of protein-encoding genes, but not of nonproteinaceous compounds such as lipids. They can, however, identify the biosynthetic enzymes of these compounds-findings that are usually dismissed, as these typically synthesize multiple products. Here, we provide a method using follow-on biosynthetic pathway screens to identify the endpoint biosynthetic enzyme and thus the compound through which they act. The approach is based on the principle that all subsequently identified downstream biosynthetic enzymes contribute to the synthesis of at least this one end product. We describe how to systematically target lipid biosynthetic pathways; optimize targeting conditions; take advantage of pathway branchpoints; and validate results by genetic assays and biochemical analyses. This approach extends the power of unbiased genetic/RNAi screens to identify in vivo functions of non-nucleic acid-based metabolites beyond their metabolic roles. It will typically require several months to identify a metabolic end product by biosynthetic pathway screens, but this time will vary widely depending, among other factors, on the end product's location in the pathway, which determines the number of screens required for its identification.

  5. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210

    PubMed Central

    Sato, Keisuke; Roboti, Peristera; Mironov, Alexander A.; Lowe, Martin

    2015-01-01

    Golgins are extended coiled-coil proteins believed to participate in membrane-tethering events at the Golgi apparatus. However, the importance of golgin-mediated tethering remains poorly defined, and alternative functions for golgins have been proposed. Moreover, although golgins bind to Rab GTPases, the functional significance of Rab binding has yet to be determined. In this study, we show that depletion of the golgin GMAP-210 causes a loss of Golgi cisternae and accumulation of numerous vesicles. GMAP-210 function in vivo is dependent upon its ability to tether membranes, which is mediated exclusively by the amino-terminal ALPS motif. Binding to Rab2 is also important for GMAP-210 function, although it is dispensable for tethering per se. GMAP-210 length is also functionally important in vivo. Together our results indicate a key role for GMAP-210–mediated membrane tethering in maintaining Golgi structure and support a role for Rab2 binding in linking tethering with downstream docking and fusion events at the Golgi apparatus. PMID:25473115

  6. Prostate stem cell antigen-targeted nanoparticles with dual functional properties: in vivo imaging and cancer chemotherapy

    PubMed Central

    Gao, Xin; Luo, Yun; Wang, Yuanyuan; Pang, Jun; Liao, Chengde; Lu, Hanlun; Fang, Youqiang

    2012-01-01

    Background: We designed dual-functional nanoparticles for in vivo application using a modified electrostatic and covalent layer-by-layer assembly strategy to address the challenge of assessment and treatment of hormone-refractory prostate cancer. Methods: Core-shell nanoparticles were formulated by integrating three distinct functional components, ie, a core constituted by poly(D,L-lactic-co-glycolic acid), docetaxel, and hydrophobic superparamagnetic iron oxide nanocrystals (SPIONs), a multilayer shell formed by poly(allylamine hydrochloride) and two different sized poly(ethylene glycol) molecules, and a single-chain prostate stem cell antigen antibody conjugated to the nanoparticle surface for targeted delivery. Results: Drug release profiles indicated that the dual-function nanoparticles had a sustained release pattern over 764 hours, and SPIONs could facilitate the controlled release of the drug in vitro. The nanoparticles showed increased antitumor efficiency and enhanced magnetic resonance imaging in vitro through targeted delivery of docetaxel and SPIONs to PC3M cells. Moreover, in nude mice bearing PC3M xenografts, the nanoparticles provided MRI negative contrast enhancement, as well as halting and even reversing tumor growth during the 76-day study duration, and without significant systemic toxicity. The lifespan of the mice treated with these targeted dual-function nanoparticles was significantly increased (Chi-square = 22.514, P < 0.0001). Conclusion: This dual-function nanomedical platform may be a promising candidate for tumor imaging and targeted delivery of chemotherapeutic agents in vivo. PMID:22888241

  7. Relations among Functional Systems in Behavior Analysis

    PubMed Central

    Thompson, Travis

    2007-01-01

    This paper proposes that an organism's integrated repertoire of operant behavior has the status of a biological system, similar to other biological systems, like the nervous, cardiovascular, or immune systems. Evidence from a number of sources indicates that the distinctions between biological and behavioral events is often misleading, engendering counterproductive explanatory controversy. A good deal of what is viewed as biological (often thought to be inaccessible or hypothetical) can become publicly measurable variables using currently available and developing technologies. Moreover, such endogenous variables can serve as establishing operations, discriminative stimuli, conjoint mediating events, and maintaining consequences within a functional analysis of behavior and need not lead to reductionistic explanation. I suggest that explanatory misunderstandings often arise from conflating different levels of analysis and that behavior analysis can extend its reach by identifying variables operating within a functional analysis that also serve functions in other biological systems. PMID:17575907

  8. In Vitro Matured Oocytes Are More Susceptible than In Vivo Matured Oocytes to Mock ICSI Induced Functional and Genetic Changes

    PubMed Central

    Salian, Sujit Raj; Singh, Vikram Jeet; Kalthur, Guruprasad; Adiga, Satish Kumar

    2015-01-01

    Background Concerns regarding the safety of ICSI have been intensified recently due to increased risk of birth defects in ICSI born children. Although fertilization rate is significantly higher in ICSI cycles, studies have failed to demonstrate the benefits of ICSI in improving the pregnancy rate. Poor technical skill, and suboptimal in vitro conditions may account for the ICSI results however, there is no report on the effects of oocyte manipulations on the ICSI outcome. Objective The present study elucidates the influence of mock ICSI on the functional and genetic integrity of the mouse oocytes. Methods Reactive Oxygen Species (ROS) level, mitochondrial status, and phosphorylation of H2AX were assessed in the in vivo matured and IVM oocytes subjected to mock ICSI. Results A significant increase in ROS level was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P<0.05-0.001) whereas unique mitochondrial distribution pattern was found only in IVM oocytes (P<0.01-0.001). Importantly, differential H2AX phosphorylation was observed in both in vivo matured and IVM oocytes subjected to mock ICSI (P <0.001). Conclusion The data from this study suggests that mock ICSI can alter genetic and functional integrity in oocytes and IVM oocytes are more vulnerable to mock ICSI induced changes. PMID:25786120

  9. Hybrid fusions show that inter-monomer electron transfer robustly supports cytochrome bc{sub 1} function in vivo

    SciTech Connect

    Ekiert, Robert; Czapla, Monika; Sarewicz, Marcin; Osyczka, Artur

    2014-08-22

    Highlights: • We used hybrid fusion bc{sub 1} complex to test inter-monomer electron transfer in vivo. • Cross-inactivated complexes were able to sustain photoheterotrophic growth. • Inter-monomer electron transfer supports catalytic cycle in vivo. • bc{sub 1} dimer is functional even when cytochrome b subunits come from different species. - Abstract: Electronic connection between Q{sub o} and Q{sub i} quinone catalytic sites of dimeric cytochrome bc{sub 1} is a central feature of the energy-conserving Q cycle. While both the intra- and inter-monomer electron transfers were shown to connect the sites in the enzyme, mechanistic and physiological significance of the latter remains unclear. Here, using a series of mutated hybrid cytochrome bc{sub 1}-like complexes, we show that inter-monomer electron transfer robustly sustains the function of the enzyme in vivo, even when the two subunits in a dimer come from different species. This indicates that minimal requirement for bioenergetic efficiency is to provide a chain of cofactors for uncompromised electron flux between the catalytic sites, while the details of protein scaffold are secondary.

  10. A History of In Vivo Neutron Activation Analysis in Measurement of Aluminum in Human Subjects.

    PubMed

    Mohseni, Hedieh K; Chettle, David R

    2016-01-01

    Aluminum, as an abundant metal, has gained widespread use in human life, entering the body predominantly as an additive to various foods and drinking water. Other major sources of exposure to aluminum include medical, cosmetic, and occupational routes. As a common environmental toxin, with well-known roles in several medical conditions such as dialysis encephalopathy, aluminum is considered a potential candidate in the causality of Alzheimer's disease. Aluminum mostly accumulates in the bone, which makes bone an indicator of the body burden of aluminum and an ideal organ as a proxy for the brain. Most of the techniques developed for measuring aluminum include bone biopsy, which requires invasive measures, causing inconvenience for the patients. There has been a considerable effort in developing non-invasive approaches, which allow for monitoring aluminum levels for medical and occupational purposes in larger populations. In vivo neutron activation analysis, a method based on nuclear activation of isotopes of elements in the body and their subsequent detection, has proven to be an invaluable tool for this purpose. There are definite challenges in developing in vivo non-invasive techniques capable of detecting low levels of aluminum in healthy individuals and aluminum-exposed populations. The following review examines the method of in vivo neutron activation analysis in the context of aluminum measurement in humans focusing on different neutron sources, interference from other activation products, and the improvements made in minimum detectable limits and patient dose over the past few decades.

  11. In vivo neutron activation analysis: body composition studies in health and disease

    SciTech Connect

    Ellis, K.J.; Cohn, S.H.

    1984-01-01

    In vivo analysis of body elements by neutron activation is an important tool in medical research. It has provided a direct quantitative measure of body composition of human beings in vivo. Basic physiological differences related to age, sex, race, and body size have been assessed by this noninvasive technique. The diagnosis and management of patients with various metabolic disorders and diseases has also been demonstrated. Two major facilities at Brookhaven are being utilized exclusively for in vivo neutron activation analysis (IVNAA) of calcium, phosphorus, sodium, chlorine, nitrogen, hydrogen, and potassium. These elements serve as the basis for a four compartment model of body composition: protein, water, mineral ash, and fat. Variations in these compartments are demonstrated in clinical research programs investigating obesity, anorexia, cancer, renal failure, osteoporosis, and normal aging. IVNAA continues to provide a unique approach to the evaluation of clinical diagnosis, efficacy of therapeutic regimens, and monitoring of the aging process. Classical balance studies usually require the patient to be admitted to a hospital for extended periods of confinement. IVNAA, however, allows for clinical management of the patient on an out-patient basis, an important aspect for treatment of chronic diseases. 25 references, 3 figures, 5 tables.

  12. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis

    PubMed Central

    2010-01-01

    Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the in vitro network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during host infection compared with

  13. In vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM).

    PubMed

    Ou, Xiang; Pan, Wei; Xiao, Perry

    2014-01-01

    We present our latest work on in vivo skin capacitive imaging analysis by using grey level co-occurrence matrix (GLCM). The in vivo skin capacitive images were taken by a capacitance based fingerprint sensor, the skin capacitive images were then analysed by GLCM. Four different GLCM feature vectors, angular second moment (ASM), entropy (ENT), contrast (CON) and correlation (COR), are selected to describe the skin texture. The results show that angular second moment increases as age increases, and entropy decreases as age increases. The results also suggest that the angular second moment values and the entropy values reflect more about the skin texture, whilst the contrast values and the correlation values reflect more about the topically applied solvents. The overall results shows that the GLCM is an effective way to extract and analyse the skin texture information, which can potentially be a valuable reference for evaluating effects of medical and cosmetic treatments.

  14. Yeast Ribosomal Stalk Heterogeneity In Vivo Shown by Two-Photon FCS and Molecular Brightness Analysis

    PubMed Central

    García-Marcos, Alberto; Sánchez, Susana A.; Parada, Pilar; Eid, John; Jameson, David M.; Remacha, Miguel; Gratton, Enrico; Ballesta, Juan P. G.

    2008-01-01

    The stalk of Saccharomyces cerevisiae ribosomes contains, on average, five distinct proteins, namely P0 and four acidic proteins, P1α, P1β, P2α, and P2β. Each ribosome contains only one copy of P0, but the distribution of the acidic proteins among the ribosome population in vivo has not been determined. Using two-photon fluorescence correlation spectroscopy and scanning FCS, on cells expressing EGFP-tagged P0, P1, and P2 proteins, we show, with brightness analysis, that individual yeast ribosomes in vivo are compositionally heterogeneous in regard to P1α, P1β, P2α, and P2β. These results are relevant to the hypothesis, based on in vitro studies, that the overall cellular pattern of expressed proteins can be determined by the distribution of the stalk proteins among the ribosome population. PMID:18096629

  15. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    PubMed

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential.

  16. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source.

    PubMed

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-02-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential. PMID:24575346

  17. In-Vivo functional optical-resolution photoacoustic microscopy with stimulated Raman scattering fiber-laser source

    PubMed Central

    Hajireza, Parsin; Forbrich, Alexander; Zemp, Roger

    2014-01-01

    In this paper a multi-wavelength optical-resolution photoacoustic microscopy (OR-PAM) system using stimulated Raman scattering is demonstrated for both phantom and in vivo imaging. A 1-ns pulse width ytterbium-doped fiber laser is coupled into a single-mode polarization maintaining fiber. Discrete Raman-shifted wavelength peaks extending to nearly 800 nm are generated with pulse energies sufficient for OR-PAM imaging. Bandpass filters are used to select imaging wavelengths. A dual-mirror galvanometer system was used to scan the focused outputs across samples of carbon fiber networks, 200μm dye-filled tubes, and Swiss Webster mouse ears. Photoacoustic signals were collected in transmission mode and used to create maximum amplitude projection C-scan images. Double dye experiments and in vivo oxygen saturation estimation confirmed functional imaging potential. PMID:24575346

  18. Analysis of in vivo mutation data can inform cancer risk assessment.

    PubMed

    Moore, Martha M; Heflich, Robert H; Haber, Lynne T; Allen, Bruce C; Shipp, Annette M; Kodell, Ralph L

    2008-07-01

    Under the new U.S. Environmental Protection Agency (EPA) Cancer Risk Assessment Guidelines [U.S. EPA, 2005. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001B, March 2005], the quantitative model chosen for cancer risk assessment is based on the mode-of-action (MOA) of the chemical under consideration. In particular, the risk assessment model depends on whether or not the chemical causes tumors through a direct DNA-reactive mechanism. It is assumed that direct DNA-reactive carcinogens initiate carcinogenesis by inducing mutations and have low-dose linear dose-response curves, whereas carcinogens that operate through a nonmutagenic MOA may have nonlinear dose-responses. We are currently evaluating whether the analysis of in vivo gene mutation data can inform the risk assessment process by better defining the MOA for cancer and thus influencing the choice of the low-dose extrapolation model. This assessment includes both a temporal analysis of mutation induction and a dose-response concordance analysis of mutation with tumor incidence. Our analysis of published data on riddelliine in rats and dichloroacetic acid in mice indicates that our approach has merit. We propose an experimental design and graphical analysis that allow for assessing time-to-mutation and dose-response concordance, thereby optimizing the potential for in vivo mutation data to inform the choice of the quantitative model used in cancer risk assessment.

  19. In Vivo Image Analysis of BoHV-4-Based Vector in Mice

    PubMed Central

    Franceschi, Valentina; Stellari, Fabio Franco; Mangia, Carlo; Jacca, Sarah; Lavrentiadou, Sophia; Cavirani, Sandro; Heikenwalder, Mathias; Donofrio, Gaetano

    2014-01-01

    Due to its biological characteristics bovine herpesvirus 4 (BoHV-4) has been considered as an appropriate gene delivery vector. Its genomic clone, modified as a bacterial artificial chromosome (BAC), is better genetically manipulable and can be used as an efficient gene delivery and vaccine vector. Although a large amount of data have been accumulated in vitro on this specific aspect, the same cannot be asserted for the in vivo condition. Therefore, here we investigated the fate of a recombinant BoHV-4 strain expressing luciferase (BoHV-4-A-CMVlucΔTK) after intraperitoneal or intravenous inoculation in mice, by generating a novel recombinant BoHV-4 expressing luciferase (BoHV-4-A-CMVlucΔTK) and by following the virus replication through in vivo imaging analysis. BoHV-4-A-CMVlucΔTK was first characterized in vitro where it was shown, on one hand that its replication properties are identical to those of the parental virus, and on the other that the transduced/infected cells strongly express luciferase. When BoHV-4-A-CMVlucΔTK was inoculated in mice, either intraperitoneally or intravenously, BoHV-4-A-CMVlucΔTK infection/transduction was exclusively localized to the liver, as detected by in vivo image analysis, and in particular almost exclusively in the hepatocytes, as determined by immuno-histochemistry. These data, that add a new insight on the biology of BoHV-4 in vivo, provide the first indication for the potential use of a BoHV-4-based vector in gene-transfer in the liver. PMID:24752229

  20. Biodistribution of amino-functionalized diamond nanoparticles. In vivo studies based on 18F radionuclide emission.

    PubMed

    Rojas, Santiago; Gispert, Juan D; Martín, Roberto; Abad, Sergio; Menchón, Cristina; Pareto, Deborah; Víctor, Víctor M; Alvaro, Mercedes; García, Hermenegildo; Herance, J Raúl

    2011-07-26

    Nanoparticles have been proposed for several biomedical applications; however, in vivo biodistribution studies to confirm their potential are scarce. Nanodiamonds are carbon nanoparticles that have been recently proposed as a promising biomaterial. In this study, we labeled nanodiamonds with (18)F to study their in vivo biodistribution by positron emission tomography. Moreover, the impact on the biodistribution of their kinetic particle size and of the surfactant agents has been evaluated. Radiolabeled diamond nanoparticles accumulated mainly in the lung, spleen, and liver and were excreted into the urinary tract. The addition of surfactant agents did not lead to significant changes in this pattern, with the exception of a slight reduction in the urinary excretion rate. On the other hand, after filtration of the radiolabeled diamond nanoparticles to remove those with a larger kinetic size, the uptake in the lung and spleen was completely inhibited and significantly reduced in the liver.

  1. Global analysis of the eukaryotic pathways and networks regulated by Salmonella typhimurium in mouse intestinal infection in vivo

    PubMed Central

    2010-01-01

    Background Acute enteritis caused by Salmonella is a public health concern. Salmonella infection is also known to increase the risk of inflammatory bowel diseases and cancer. Therefore, it is important to understand how Salmonella works in targeting eukaryotic pathways in intestinal infection. However, the global physiological function of Salmonella typhimurium in intestinal mucosa in vivo is unclear. In this study, a whole genome approach combined with bioinformatics assays was used to investigate the in vivo genetic responses of the mouse colon to Salmonella. We focused on the intestinal responses in the early stage (8 hours) and late stage (4 days) after Salmonella infection. Results Of the 28,000 genes represented on the array, our analysis of mRNA expression in mouse colon mucosa showed that a total of 856 genes were expressed differentially at 8 hours post-infection. At 4 days post-infection, a total of 7558 genes were expressed differentially. 23 differentially expressed genes from the microarray data was further examined by real-time PCR. Ingenuity Pathways Analysis identified that the most significant pathway associated with the differentially expressed genes in 8 hours post-infection is oxidative phosphorylation, which targets the mitochondria. At the late stage of infection, a series of pathways associated with immune and inflammatory response, proliferation, and apoptosis were identified, whereas the oxidative phosphorylation was shut off. Histology analysis confirmed the biological role of Salmonella, which induced a physiological state of inflammation and proliferation in the colon mucosa through the regulation of multiple signaling pathways. Most of the metabolism-related pathways were targeted by down-regulated genes, and a general repression process of metabolic pathways was observed. Network analysis supported IFN-γ and TNF-α function as mediators of the immune/inflammatory response for host defense against pathogen. Conclusion Our study

  2. DynaMod: dynamic functional modularity analysis

    PubMed Central

    Sun, Choong-Hyun; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su

    2010-01-01

    A comprehensive analysis of enriched functional categories in differentially expressed genes is important to extract the underlying biological processes of genome-wide expression profiles. Moreover, identification of the network of significant functional modules in these dynamic processes is an interesting challenge. This study introduces DynaMod, a web-based application that identifies significant functional modules reflecting the change of modularity and differential expressions that are correlated with gene expression profiles under different conditions. DynaMod allows the inspection of a wide variety of functional modules such as the biological pathways, transcriptional factor–target gene groups, microRNA–target gene groups, protein complexes and hub networks involved in protein interactome. The statistical significance of dynamic functional modularity is scored based on Z-statistics from the average of mutual information (MI) changes of involved gene pairs under different conditions. Significantly correlated gene pairs among the functional modules are used to generate a correlated network of functional categories. In addition to these main goals, this scoring strategy supports better performance to detect significant genes in microarray analyses, as the scores of correlated genes show the superior characteristics of the significance analysis compared with those of individual genes. DynaMod also offers cross-comparison between different analysis outputs. DynaMod is freely accessible at http://piech.kaist.ac.kr/dynamod. PMID:20460468

  3. An in Vivo Function for the Transforming Myc Protein: Elicitation of the Angiogenic Phenotype1

    PubMed Central

    Ngo, Cam V.; Gee, Michael; Akhtar, Nasim; Yu, Duonan; Volpert, Olga; Auerbach, Robert; Thomas-Tikhonenko, Andrei

    2006-01-01

    The ability of neoplastic cells to recruit blood vasculature is crucial to their survival in the host organism. However, the evidence linking dominant oncogenes to the angiogenic switch remains incomplete. We demonstrate here that Myc, an oncoprotein implicated in many human malignancies, stimulates neovascularization. As an experimental model, we used Rat-1A fibroblasts that form vascular tumors upon transformation by Myc in immunocompromised mice. Our previous work and the use of neutralizing antibodies reveal that in these cells, the angiogenic switch is achieved via down-modulation of thrombospondin-1, a secreted inhibitor of angiogenesis, whereas the levels of vascular endothelial growth factor, a major activator of angiogenesis, remain high and unaffected by Myc. Consistent with this finding, overexpression of Myc confers upon the conditioned media the ability to promote migration of adjacent endothelial cells in vitro and corneal neovascularization in vivo. Furthermore, mobilization of estrogen-dependent Myc in vivo with the appropriate steroid provokes neovascularization of cell implants embedded in Matrigel. These data suggest that Myc is fully competent to trigger the angiogenic switch in vivo and that secondary events may not be required for neovascularization of Myc-induced tumors. PMID:10775037

  4. The Relationship between Dyslipidemia and Acute Axonal Function in Type 2 Diabetes Mellitus In Vivo

    PubMed Central

    Kwai, Natalie C. G.; Nigole, William; Poynten, Ann M.; Brown, Christopher; Krishnan, Arun V.

    2016-01-01

    Objectives Diabetic peripheral neuropathy (DPN) is a common and debilitating complication of diabetes mellitus. Treatment largely consists of symptom alleviation and there is a need to identify therapeutic targets for prevention and treatment of DPN. The objective of this study was to utilise novel neurophysiological techniques to investigate axonal function in patients with type 2 diabetes and to prospectively determine their relationship to serum lipids in type 2 diabetic patients. Methods Seventy-one patients with type 2 diabetes were consecutively recruited and tested. All patients underwent thorough clinical neurological assessments including nerve conduction studies, and median motor axonal excitability studies. Studies were also undertaken in age matched normal control subjects(n = 42). Biochemical studies, including serum lipid levels were obtained in all patients. Patient excitability data was compared to control data and linear regression analysis was performed to determine the relationship between serum triglycerides and low density lipoproteins and excitability parameters typically abnormal in type 2 diabetic patients. Results Patient mean age was 64.2±2.3 years, mean glycosylated haemoglobin (HbA1c%) was 7.8±0.3%, mean triglyceride concentration was 1.6±0.1 mmol/L and mean cholesterol concentration was 4.1±0.2mmol/L. Compared to age matched controls, median motor axonal excitability studies indicated axonal dysfunction in type 2 diabetic patients as a whole (T2DM) and in a subgroup of the patients without DPN (T2DM-NN). These included reduced percentage threshold change during threshold electrotonus at 10–20ms depolarising currents (TEd10–20ms)(controls 68.4±0.8, T2DM63.9±0.8, T2DM-NN64.8±1.6%,P<0.05) and superexcitability during the recovery cycle (controls-22.5±0.9, T2DM-17.5±0.8, T2DM-NN-17.3±1.6%,P<0.05). Linear regression analysis revealed no associations between changes in axonal function and either serum triglyceride or low density

  5. In vivo analysis of internal ribosome entry at the Hairless locus by genome engineering in Drosophila

    PubMed Central

    Smylla, Thomas K.; Preiss, Anette; Maier, Dieter

    2016-01-01

    Cell communication in metazoans requires the highly conserved Notch signaling pathway, which is subjected to strict regulation of both activation and silencing. In Drosophila melanogaster, silencing involves the assembly of a repressor complex by Hairless (H) on Notch target gene promoters. We previously found an in-frame internal ribosome entry site in the full length H transcript resulting in two H protein isoforms (Hp120 and Hp150). Hence, H may repress Notch signalling activity in situations where cap-dependent translation is inhibited. Here we demonstrate the in vivo importance of both H isoforms for proper fly development. To this end, we replaced the endogenous H locus by constructs specifically affecting translation of either Hp150 or Hp120 isoforms using genome engineering. Our findings indicate the functional relevance of both H proteins. Based on bristle phenotypes, the predominant isoform Hp150 appears to be of particular importance. In contrast, growth regulation and venation of the wing require the concomitant activity of both isoforms. Finally, the IRES dependent production of Hp120 during mitosis was verified in vivo. Together our data confirm IRES mediated translation of H protein in vivo, supporting strict regulation of Notch in different cellular settings. PMID:27713501

  6. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart. PMID:26712849

  7. Nano-imaging of the beating mouse heart in vivo: Importance of sarcomere dynamics, as opposed to sarcomere length per se, in the regulation of cardiac function.

    PubMed

    Kobirumaki-Shimozawa, Fuyu; Oyama, Kotaro; Shimozawa, Togo; Mizuno, Akari; Ohki, Takashi; Terui, Takako; Minamisawa, Susumu; Ishiwata, Shin'ichi; Fukuda, Norio

    2016-01-01

    Sarcomeric contraction in cardiomyocytes serves as the basis for the heart's pump functions in mammals. Although it plays a critical role in the circulatory system, myocardial sarcomere length (SL) change has not been directly measured in vivo under physiological conditions because of technical difficulties. In this study, we developed a high speed (100-frames per second), high resolution (20-nm) imaging system for myocardial sarcomeres in living mice. Using this system, we conducted three-dimensional analysis of sarcomere dynamics in left ventricular myocytes during the cardiac cycle, simultaneously with electrocardiogram and left ventricular pressure measurements. We found that (a) the working range of SL was on the shorter end of the resting distribution, and (b) the left ventricular-developed pressure was positively correlated with the SL change between diastole and systole. The present findings provide the first direct evidence for the tight coupling of sarcomere dynamics and ventricular pump functions in the physiology of the heart.

  8. Multilevel sparse functional principal component analysis.

    PubMed

    Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S

    2014-01-29

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  9. Multilevel sparse functional principal component analysis

    PubMed Central

    Di, Chongzhi; Crainiceanu, Ciprian M.; Jank, Wolfgang S.

    2014-01-01

    We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions. PMID:24872597

  10. Analysis of the Dynein-Dynactin Interaction In Vitro and In Vivo

    PubMed Central

    King, Stephen J.; Brown, Christa L.; Maier, Kerstin C.; Quintyne, Nicholas J.; Schroer, Trina A.

    2003-01-01

    Cytoplasmic dynein and dynactin are megadalton-sized multisubunit molecules that function together as a cytoskeletal motor. In the present study, we explore the mechanism of dynein-dynactin binding in vitro and then extend our findings to an in vivo context. Solution binding assays were used to define binding domains in the dynein intermediate chain (IC) and dynactin p150Glued subunit. Transient overexpression of a series of fragments of the dynein IC was used to determine the importance of this subunit for dynein function in mammalian tissue culture cells. Our results suggest that a functional dynein-dynactin interaction is required for proper microtubule organization and for the transport and localization of centrosomal components and endomembrane compartments. The dynein IC fragments have different effects on endomembrane localization, suggesting that different endomembranes may bind dynein via distinct mechanisms. PMID:14565986

  11. Analysis of Ventricular Function by Computed Tomography

    PubMed Central

    Rizvi, Asim; Deaño, Roderick C.; Bachman, Daniel P.; Xiong, Guanglei; Min, James K.; Truong, Quynh A.

    2014-01-01

    The assessment of ventricular function, cardiac chamber dimensions and ventricular mass is fundamental for clinical diagnosis, risk assessment, therapeutic decisions, and prognosis in patients with cardiac disease. Although cardiac computed tomography (CT) is a noninvasive imaging technique often used for the assessment of coronary artery disease, it can also be utilized to obtain important data about left and right ventricular function and morphology. In this review, we will discuss the clinical indications for the use of cardiac CT for ventricular analysis, review the evidence on the assessment of ventricular function compared to existing imaging modalities such cardiac MRI and echocardiography, provide a typical cardiac CT protocol for image acquisition and post-processing for ventricular analysis, and provide step-by-step instructions to acquire multiplanar cardiac views for ventricular assessment from the standard axial, coronal, and sagittal planes. Furthermore, both qualitative and quantitative assessments of ventricular function as well as sample reporting are detailed. PMID:25576407

  12. Inter-laboratory comparison of the in vivo comet assay including three image analysis systems.

    PubMed

    Plappert-Helbig, Ulla; Guérard, Melanie

    2015-12-01

    To compare the extent of potential inter-laboratory variability and the influence of different comet image analysis systems, in vivo comet experiments were conducted using the genotoxicants ethyl methanesulfonate and methyl methanesulfonate. Tissue samples from the same animals were processed and analyzed-including independent slide evaluation by image analysis-in two laboratories with extensive experience in performing the comet assay. The analysis revealed low inter-laboratory experimental variability. Neither the use of different image analysis systems, nor the staining procedure of DNA (propidium iodide vs. SYBR® Gold), considerably impacted the results or sensitivity of the assay. In addition, relatively high stability of the staining intensity of propidium iodide-stained slides was found in slides that were refrigerated for over 3 months. In conclusion, following a thoroughly defined protocol and standardized routine procedures ensures that the comet assay is robust and generates comparable results between different laboratories.

  13. Hyperspectral wide gap second derivative analysis for in vivo detection of cervical intraepithelial neoplasia

    NASA Astrophysics Data System (ADS)

    Zheng, Wenli; Wang, Chaojian; Chang, Shufang; Zhang, Shiwu; Xu, Ronald X.

    2015-12-01

    Hyperspectral reflectance imaging technique has been used for in vivo detection of cervical intraepithelial neoplasia. However, the clinical outcome of this technique is suboptimal owing to multiple limitations such as nonuniform illumination, high-cost and bulky setup, and time-consuming data acquisition and processing. To overcome these limitations, we acquired the hyperspectral data cube in a wavelength ranging from 600 to 800 nm and processed it by a wide gap second derivative analysis method. This method effectively reduced the image artifacts caused by nonuniform illumination and background absorption. Furthermore, with second derivative analysis, only three specific wavelengths (620, 696, and 772 nm) are needed for tissue classification with optimal separability. Clinical feasibility of the proposed image analysis and classification method was tested in a clinical trial where cervical hyperspectral images from three patients were used for classification analysis. Our proposed method successfully classified the cervix tissue into three categories of normal, inflammation and high-grade lesion. These classification results were coincident with those by an experienced gynecology oncologist after applying acetic acid. Our preliminary clinical study has demonstrated the technical feasibility for in vivo and noninvasive detection of cervical neoplasia without acetic acid. Further clinical research is needed in order to establish a large-scale diagnostic database and optimize the tissue classification technique.

  14. Pineal Function: Impact of Microarray Analysis

    PubMed Central

    Klein, David C.; Bailey, Michael J.; Carter, David A.; Kim, Jong-so; Shi, Qiong; Ho, Anthony; Chik, Constance; Gaildrat, Pascaline; Morin, Fabrice; Ganguly, Surajit; Rath, Martin F.; Møller, Morten; Sugden, David; Rangel, Zoila G.; Munson, Peter J.; Weller, Joan L.; Coon, Steven L.

    2009-01-01

    Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-hour schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function. PMID:19622385

  15. In Vivo Risk Analysis of Pancreatic Cancer Through Optical Characterization of Duodenal Mucosa

    PubMed Central

    Mutyal, Nikhil N.; Radosevich, Andrew J.; Bajaj, Shailesh; Konda, Vani; Siddiqui, Uzma D.; Waxman, Irving; Goldberg, Michael J.; Rogers, Jeremy D.; Gould, Bradley; Eshein, Adam; Upadhye, Sudeep; Koons, Ann; Gonzalez-Haba Ruiz, Mariano; Roy, Hemant K.; Backman, Vadim

    2015-01-01

    Objectives To reduce pancreatic cancer mortality, a paradigm shift in cancer screening is needed. Our group pioneered the use of low-coherence enhanced backscattering (LEBS) spectroscopy to predict the presence of pancreatic cancer by interrogating the duodenal mucosa. A previous ex vivo study (n = 203) demonstrated excellent diagnostic potential: sensitivity, 95%; specificity, 71%; and accuracy, 85%. The objective of the current case-control study was to evaluate this approach in vivo. Methods We developed a novel endoscope-compatible fiber-optic probe to measure LEBS in the periampullary duodenum of 41 patients undergoing upper endoscopy. This approach enables minimally invasive detection of the ultrastructural consequences of pancreatic field carcinogenesis. Results The LEBS parameters and optical properties were significantly altered in patients harboring adenocarcinomas (including early-stage) throughout the pancreas relative to healthy controls. Test performance characteristics were excellent with sensitivity = 78%, specificity = 85%, and accuracy = 81%. Moreover, the LEBS prediction rule was not confounded by patients’ demographics. Conclusion We demonstrate the feasibility of in vivo measurement of histologically normal duodenal mucosa to predict the presence of adenocarcinoma throughout the pancreas. This represents the next step in establishing duodenal LEBS analysis as a prescreening technique that identifies clinically asymptomatic patients who are at elevated risk of PC. PMID:25906443

  16. Quantitative analysis of intrinsic skin aging in dermal papillae by in vivo harmonic generation microscopy

    PubMed Central

    Liao, Yi-Hua; Kuo, Wei-Cheng; Chou, Sin-Yo; Tsai, Cheng-Shiun; Lin, Guan-Liang; Tsai, Ming-Rung; Shih, Yuan-Ta; Lee, Gwo-Giun; Sun, Chi-Kuang

    2014-01-01

    Chronological skin aging is associated with flattening of the dermal-epidermal junction (DEJ), but to date no quantitative analysis focusing on the aging changes in the dermal papillae (DP) has been performed. The aim of the study is to determine the architectural changes and the collagen density related to chronological aging in the dermal papilla zone (DPZ) by in vivo harmonic generation microscopy (HGM) with a sub-femtoliter spatial resolution. We recruited 48 Asian subjects and obtained in vivo images on the sun-protected volar forearm. Six parameters were defined to quantify 3D morphological changes of the DPZ, which we analyzed both manually and computationally to study their correlation with age. The depth of DPZ, the average height of isolated DP, and the 3D interdigitation index decreased with age, while DP number density, DP volume, and the collagen density in DP remained constant over time. In vivo high-resolution HGM technology has uncovered chronological aging-related variations in DP, and sheds light on real-time quantitative skin fragility assessment and disease diagnostics based on collagen density and morphology. PMID:25401037

  17. Chloroplastic thioredoxin m functions as a major regulator of Calvin cycle enzymes during photosynthesis in vivo.

    PubMed

    Okegawa, Yuki; Motohashi, Ken

    2015-12-01

    Thioredoxins (Trxs) regulate the activity of various chloroplastic proteins in a light-dependent manner. Five types of Trxs function in different physiological processes in the chloroplast of Arabidopsis thaliana. Previous in vitro experiments have suggested that the f-type Trx (Trx f) is the main redox regulator of chloroplast enzymes, including Calvin cycle enzymes. To investigate the in vivo contribution of each Trx isoform to the redox regulatory system, we first quantified the protein concentration of each Trx isoform in the chloroplast stroma. The m-type Trx (Trx m), which consists of four isoforms, was the most abundant type. Next, we analyzed several Arabidopsis Trx-m-deficient mutants to elucidate the physiological role of Trx m in vivo. Deficiency of Trx m impaired plant growth and decreased the CO2 assimilation rate. We also determined the redox state of Trx target enzymes to examine their photo-reduction, which is essential for enzyme activation. In the Trx-m-deficient mutants, the reduction level of fructose-1,6-bisphosphatase and sedoheptulose-1,7-bisphosphatase was lower than that in the wild type. Inconsistently with the historical view, our in vivo study suggested that Trx m plays a more important role than Trx f in the activation of Calvin cycle enzymes.

  18. RNA Enrichment Method for Quantitative Transcriptional Analysis of Pathogens In Vivo Applied to the Fungus Candida albicans

    PubMed Central

    Amorim-Vaz, Sara; Tran, Van Du T.; Pradervand, Sylvain; Pagni, Marco; Coste, Alix T.

    2015-01-01

    ABSTRACT In vivo transcriptional analyses of microbial pathogens are often hampered by low proportions of pathogen biomass in host organs, hindering the coverage of full pathogen transcriptome. We aimed to address the transcriptome profiles of Candida albicans, the most prevalent fungal pathogen in systemically infected immunocompromised patients, during systemic infection in different hosts. We developed a strategy for high-resolution quantitative analysis of the C. albicans transcriptome directly from early and late stages of systemic infection in two different host models, mouse and the insect Galleria mellonella. Our results show that transcriptome sequencing (RNA-seq) libraries were enriched for fungal transcripts up to 1,600-fold using biotinylated bait probes to capture C. albicans sequences. This enrichment biased the read counts of only ~3% of the genes, which can be identified and removed based on a priori criteria. This allowed an unprecedented resolution of C. albicans transcriptome in vivo, with detection of over 86% of its genes. The transcriptional response of the fungus was surprisingly similar during infection of the two hosts and at the two time points, although some host- and time point-specific genes could be identified. Genes that were highly induced during infection were involved, for instance, in stress response, adhesion, iron acquisition, and biofilm formation. Of the in vivo-regulated genes, 10% are still of unknown function, and their future study will be of great interest. The fungal RNA enrichment procedure used here will help a better characterization of the C. albicans response in infected hosts and may be applied to other microbial pathogens. PMID:26396240

  19. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation.

    PubMed

    Majumder, Mrinmoyee; Bosmeny, Michael S; Gupta, Ramesh

    2016-10-01

    In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity.

  20. Structure-function relationships of archaeal Cbf5 during in vivo RNA-guided pseudouridylation.

    PubMed

    Majumder, Mrinmoyee; Bosmeny, Michael S; Gupta, Ramesh

    2016-10-01

    In Eukarya and Archaea, in addition to protein-only pseudouridine (Ψ) synthases, complexes containing one guide RNA and four proteins can also produce Ψ. Cbf5 protein is the Ψ synthase in the complex. Previously, we showed that Ψ's at positions 1940, 1942, and 2605 of Haloferax volcanii 23S rRNA are absent in a cbf5-deleted strain, and a plasmid-borne copy of cbf5 can rescue the synthesis of these Ψ's. Based on published reports of the structure of archaeal Cbf5 complexed with other proteins and RNAs, we identified several potential residues and structures in H. volcanii Cbf5, which were expected to play important roles in pseudouridylation. We mutated these structures and determined their effects on Ψ production at the three rRNA positions under in vivo conditions. Mutations of several residues in the catalytic domain and certain residues in the thumb loop either abolished Ψ's or produced partial modification; the latter indicates a slower rate of Ψ formation. The universal catalytic aspartate of Ψ synthases could be replaced by glutamate in Cbf5. A conserved histidine, which is common to Cbf5 and TruB is not needed, but another conserved histidine of Cbf5 is required for the in vivo RNA-guided Ψ formation. We also identified a previously unreported novelty in the pseudouridylation activity of Cbf5 where a single stem-loop of a guide H/ACA RNA is used to produce two closely placed Ψ's and mutations of certain residues of Cbf5 abolished one of these two Ψ's. In summary, this first in vivo study identifies several structures of an archaeal Cbf5 protein that are important for its RNA-guided pseudouridylation activity. PMID:27539785

  1. Regional Homogeneity Changes in Hemodialysis Patients with End Stage Renal Disease: In Vivo Resting-State Functional MRI Study

    PubMed Central

    Qiu, Ying-Wei; Lv, Xiao-Fei; Shen, Sheng; Zhan, Wen-Feng; Tian, Jun-Zhang; Jiang, Gui-Hua

    2014-01-01

    Objective To prospectively investigate and detect early cerebral regional homogeneity (ReHo) changes in neurologically asymptomatic patients with end stage renal disease (ESRD) using in vivo resting-state functional MR imaging (Rs-fMRI). Methods We enrolled 20 patients (15 men, 5 women; meanage, 37.1 years; range, 19–49 years) with ESRD and 20 healthy controls (15 men, 5 women; mean age, 38.3 years; range, 28–49 years). The mean duration of hemodialysis for the patient group was 10.7±6.4 monthes. There was no significant sex or age difference between the ESRD and control groups. Rs-fMRI was performed using a gradient-echo echo-planar imaging sequence. ReHo was calculated using software (DPARSF). Voxel-based analysis of the ReHo maps between ESRD and control groups was performed with a two-samples t test. Statistical maps were set at P value less than 0.05 and were corrected for multiple comparisons. The Mini-Mental State Examination (MMSE) was administered to all participants at imaging. Results ReHo values were increased in the bilateral superior temporal gyrus and left medial frontal gyrus in the ERSD group compared with controls, but a significantly decreased ReHo value was found in the right middle temporal gyrus. There was no significant correlation between ReHo values and the duration of hemodialysis in the ESRD group. Both the patients and control subjects had normal MMSE scores (≥28). Conclusions Our finding revealed that abnormal brain activity was distributed mainly in the memory and cognition related cotices in patients with ESRD. The abnormal spontaneous neuronal activity in those areas provide information on the neural mechanisms underlying cognitive impairment in patients with ESRD, and demonstrate that Rs-fMRI with ReHo analysis is a useful non-invasive imaging tool for the detection of early cerebral ReHo changes in hemodialysis patients with ESRD. PMID:24516545

  2. Medical applications of in vivo neutron inelastic scattering and neutron activation analysis: Technical similarities to detection of explosives and contraband

    NASA Astrophysics Data System (ADS)

    Kehayias, J. J.

    2001-07-01

    Nutritional status of patients can be evaluated by monitoring changes in elemental body composition. Fast neutron activation (for N and P) and neutron inelastic scattering (for C and O) are used in vivo to assess elements characteristic of specific body compartments. There are similarities between the body composition techniques and the detection of hidden explosives and narcotics. All samples have to be examined in depth and the ratio of elements provides a "signature" of the chemical of interest. The N/H and C/O ratios measure protein and fat content in the body. Similarly, a high C/O ratio is characteristic of narcotics and a low C/O together with a strong presence of N is a signature of some explosives. The available time for medical applications is about 20 min—compared to a few seconds for the detection of explosives—but the permitted radiation exposure is limited. In vivo neutron analysis is used to measure H, O, C, N, P, Na, Cl, and Ca for the study of the mechanisms of lean tissue depletion with aging and wasting diseases, and to investigate methods of preserving function and quality of life in the elderly.

  3. Dose-response analysis of heavy metal toxicants in man. Direct in vivo assessment of body burden

    SciTech Connect

    Ellis, K.J.

    1985-06-01

    Differences in uptake, metabolism, and excretion of heavy metals makes selection of a suitable biological media as a monitor of body burden very difficult. Exposure assessments based on body fluid levels can provide, at best, only general population estimates. The most frequently monitored media are blood, urine, nail or hair clippings, sweat, and saliva. Unfortunately each of these tissues can be influenced by recent exposure conditions and are not accurate indices of the total dose or body burden. However, direct in vivo measurements of body burden in humans, have recently been performed. This nuclear technique has focused on the measurements of kidney and liver cadmium (Cd) by neutron activation analysis and bone lead (Pb) determinations using x-ray fluorescence. The dose-response relationship for renal dysfunction based on the direct in vivo body burden for Cd is presented. The most probable Cd value for the kidney associated with renal impairment is approximately 35 mg. Approximately 10% of the subjects with 20 mg Cd in the kidney will have moderately elevated ..beta../sub 2/-microglobulin, an early indicator of potential renal functional changes. 11 refs., 5 figs., 2 tabs.

  4. Measuring stem cell frequency in epidermis: A quantitative in vivo functional assay for long-term repopulating cells

    NASA Astrophysics Data System (ADS)

    Schneider, T. E.; Barland, C.; Alex, A. M.; Mancianti, M. L.; Lu, Y.; Cleaver, J. E.; Lawrence, H. J.; Ghadially, R.

    2003-09-01

    Epidermal stem cells play a central role in tissue homeostasis, wound repair, tumor initiation, and gene therapy. A major impediment to the purification and molecular characterization of epidermal stem cells is the lack of a quantitative assay for cells capable of long-term repopulation in vivo, such as exists for hematopoietic cells. The tremendous strides made in the characterization and purification of hematopoietic stem cells have been critically dependent on the availability of competitive transplantation assays, because these assays permit the accurate quantitation of long-term repopulating cells in vivo. We have developed an analogous functional assay for epidermal stem cells, and have measured the frequency of functional epidermal stem cells in interfollicular epidermis. These studies indicate that cells capable of long-term reconstitution of a squamous epithelium reside in the interfollicular epidermis. We find that the frequency of these long-term repopulating cells is 1 in 35,000 total epidermal cells, or in the order of 1 in 104 basal epidermal cells, similar to that of hematopoietic stem cells in the bone marrow, and much lower than previously estimated in epidermis. Furthermore, these studies establish a novel functional assay that can be used to validate immunophenotypic markers and enrichment strategies for epidermal stem cells, and to quantify epidermal stem cells in various keratinocyte populations. Thus further studies using this type of assay for epidermis should aid in the progress of cutaneous stem cell-targeted gene therapy, and in more basic studies of epidermal stem cell regulation and differentiation.

  5. Surface-Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque.

    PubMed

    Salinas, Beatriz; Ruiz-Cabello, Jesús; Lechuga-Vieco, Ana V; Benito, Marina; Herranz, Fernando

    2015-07-13

    The use of click chemistry reactions for the functionalization of nanoparticles is particularly useful to modify the surface in a well-defined manner and to enhance the targeting properties, thus facilitating clinical translation. Here it is demonstrated that olefin metathesis can be used for the chemoselective functionalization of iron oxide nanoparticles with three different examples. This approach enables, in one step, the synthesis and functionalization of different water-stable magnetite-based particles from oleic acid-coated counterparts. The surface of the nanoparticles was completely characterized showing how the metathesis approach introduces a large number of hydrophilic molecules on their coating layer. As an example of the possible applications of these new nanocomposites, a focus was taken on atherosclerosis plaques. It is also demonstrated how the in vitro properties of one of the probes, particularly its Ca(2+) -binding properties, mediate their final in vivo use; that is, the selective accumulation in atherosclerotic plaques. This opens promising new applications to detect possible microcalcifications associated with plaque vulnerability. The accumulation of the new imaging tracers is demonstrated by in vivo magnetic resonance imaging of carotids and aorta in the ApoE(-/-) mouse model and the results were confirmed by histology. PMID:26096657

  6. Methods: implementation of in vitro and ex vivo phagocytosis and respiratory burst function assessments in safety testing.

    PubMed

    Freebern, Wendy J; Bigwarfe, Tammy J; Price, Karen D; Haggerty, Helen G

    2013-01-01

    Functional innate immune assessments, including phagocytosis and respiratory burst, are at the forefront of immunotoxicology evaluation in pre-clinical animal species. Although in the clinic and in academic science, phagocytosis, and respiratory burst assessments have been reported for over two decades, the implementation of phagocytosis and respiratory burst analyses in toxicology safety programs is just recently gaining publicity. Discussed herein are general methods, both microtiter plate-based and flow cytometric-based, for assessing phagocytosis and respiratory burst in pre-clinical species including mouse, rat, dog, and monkey. This methods-centric discussion includes a review of technologies and descriptions of method applications, with examples of results from analyses testing reported inhibitors (rottlerin, wortmannin, and SB203580) of phagocytosis and respiratory burst. Justification of implementation, strategic experimental design planning, and feasibility aspects of evaluating test article effects on phagocytosis and respiratory burst function are described within the context of a case study. The case study involves investigation of the effects of a small molecule p38 kinase inhibitor, BMS-582949, on phagocytosis and respiratory burst functions in rat and monkey neutrophils and monocytes in vitro, as well as ex vivo in these innate immune cells from monkeys administered BMS-582949 during a 1-week repeat dose investigative study. The results of the in vitro and ex vivo assessments demonstrated that BMS-582949 inhibited phagocytosis and respiratory burst. These findings correlated with incidences of opportunistic infections observed in rat and monkey toxicity studies.

  7. Surface-Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque.

    PubMed

    Salinas, Beatriz; Ruiz-Cabello, Jesús; Lechuga-Vieco, Ana V; Benito, Marina; Herranz, Fernando

    2015-07-13

    The use of click chemistry reactions for the functionalization of nanoparticles is particularly useful to modify the surface in a well-defined manner and to enhance the targeting properties, thus facilitating clinical translation. Here it is demonstrated that olefin metathesis can be used for the chemoselective functionalization of iron oxide nanoparticles with three different examples. This approach enables, in one step, the synthesis and functionalization of different water-stable magnetite-based particles from oleic acid-coated counterparts. The surface of the nanoparticles was completely characterized showing how the metathesis approach introduces a large number of hydrophilic molecules on their coating layer. As an example of the possible applications of these new nanocomposites, a focus was taken on atherosclerosis plaques. It is also demonstrated how the in vitro properties of one of the probes, particularly its Ca(2+) -binding properties, mediate their final in vivo use; that is, the selective accumulation in atherosclerotic plaques. This opens promising new applications to detect possible microcalcifications associated with plaque vulnerability. The accumulation of the new imaging tracers is demonstrated by in vivo magnetic resonance imaging of carotids and aorta in the ApoE(-/-) mouse model and the results were confirmed by histology.

  8. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo.

    PubMed

    Béchir, Nelly; Pecchi, Émilie; Relizani, Karima; Vilmen, Christophe; Le Fur, Yann; Bernard, Monique; Amthor, Helge; Bendahan, David; Giannesini, Benoît

    2016-04-01

    Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.

  9. Enhanced functional integration of human photoreceptor precursors into human and rodent retina in an ex vivo retinal explant model system.

    PubMed

    Yanai, Anat; Laver, Christopher R J; Gregory-Evans, Cheryl Y; Liu, Ran R; Gregory-Evans, Kevin

    2015-06-01

    Retinal disease is the major cause of irreversible blindness in developed countries. Transplantation of photoreceptor precursor cells (PPCs) derived from human embryonic stem cells (hESCs) is a promising and widely applicable approach for the treatment of these blinding conditions. Previously, it has been shown that after transplantation into the degenerating retina, the percentage of PPCs that undergo functional integration is low. The factors that inhibit PPC engraftment remain largely unknown, in part, because so many adverse factors could be at play during in vivo experiments. To advance our knowledge in overcoming potential adverse effects and optimize PPC transplantation, we have developed a novel ex vivo system. Harvested neural retina was placed directly on top of cultured retinal pigment epithelial (RPE) cells from a number of different sources. To mimic PPC transplantation into the subretinal space, hESC-derived PPCs were inserted between the retinal explant and underlying RPE. Explants cocultured with hESC-derived RPE maintained normal gross morphology and viability for up to 2 weeks, whereas the explants cultured on ARPE19 and RPE-J failed by 7 days. Furthermore, the proportion of PPCs expressing ribbon synapse-specific proteins BASSOON and RIBEYE was significantly higher when cocultured with hESC-derived RPE (20% and 10%, respectively), than when cocultured with ARPE19 (only 6% and 2%, respectively). In the presence of the synaptogenic factor thrombospondin-1 (TSP-1), the proportion of BASSOON-positive and RIBEYE-positive PPCs cocultured with hESC-derived RPE increased to ∼30% and 15%, respectively. These data demonstrate the utility of an ex vivo model system to define factors, such as TSP-1, which could influence integration efficiency in future in vivo experiments in models of retinal degeneration.

  10. GPU accelerated dynamic functional connectivity analysis for functional MRI data.

    PubMed

    Akgün, Devrim; Sakoğlu, Ünal; Esquivel, Johnny; Adinoff, Bryon; Mete, Mutlu

    2015-07-01

    Recent advances in multi-core processors and graphics card based computational technologies have paved the way for an improved and dynamic utilization of parallel computing techniques. Numerous applications have been implemented for the acceleration of computationally-intensive problems in various computational science fields including bioinformatics, in which big data problems are prevalent. In neuroimaging, dynamic functional connectivity (DFC) analysis is a computationally demanding method used to investigate dynamic functional interactions among different brain regions or networks identified with functional magnetic resonance imaging (fMRI) data. In this study, we implemented and analyzed a parallel DFC algorithm based on thread-based and block-based approaches. The thread-based approach was designed to parallelize DFC computations and was implemented in both Open Multi-Processing (OpenMP) and Compute Unified Device Architecture (CUDA) programming platforms. Another approach developed in this study to better utilize CUDA architecture is the block-based approach, where parallelization involves smaller parts of fMRI time-courses obtained by sliding-windows. Experimental results showed that the proposed parallel design solutions enabled by the GPUs significantly reduce the computation time for DFC analysis. Multicore implementation using OpenMP on 8-core processor provides up to 7.7× speed-up. GPU implementation using CUDA yielded substantial accelerations ranging from 18.5× to 157× speed-up once thread-based and block-based approaches were combined in the analysis. Proposed parallel programming solutions showed that multi-core processor and CUDA-supported GPU implementations accelerated the DFC analyses significantly. Developed algorithms make the DFC analyses more practical for multi-subject studies with more dynamic analyses. PMID:25805449

  11. In vivo Prompt Gamma Neutron Activation Analysis Facility for Total Body Nitrogen and Cd

    SciTech Connect

    Munive, Marco; Revilla, Angel; Solis, Jose L.

    2007-10-26

    A Prompt Gamma Neutron Activation Analysis (PGNAA) system has been designed and constructed to measure the total body nitrogen and Cd for in vivo studies. An aqueous solution of KNO{sub 3} was used as phantom for system calibration. The facility has been used to monitor total body nitrogen (TBN) of mice and found that is related to their diet. Some mice swallowed diluted water with Cl{sub 2}Cd, and the presence of Cd was detected in the animals. The minimum Cd concentration that the system can detect was 20 ppm.

  12. Spectral analysis of photo-induced delayed luminescence from human skin in vivo

    NASA Astrophysics Data System (ADS)

    Musumeci, Francesco; Lanzanò, Luca; Privitera, Simona; Tudisco, Salvatore; Scordino, Agata

    2007-07-01

    The UVA induced Delayed Luminescence (DL), has been measured in vivo in the forearm skin of some healthy volunteers of different sex and age during several periods of the year. An innovative instrument able to detect, in single photon counting mode, the spectrum and the time trend of the DL emission has been used. The measured differences in the time trends of the spectral components may be related to the sex and the age. The potential development of a new analysis technique based on this phenomenon is discussed.

  13. Using Bayesian analysis in repeated preclinical in vivo studies for a more effective use of animals.

    PubMed

    Walley, Rosalind; Sherington, John; Rastrick, Joe; Detrait, Eric; Hanon, Etienne; Watt, Gillian

    2016-05-01

    Whilst innovative Bayesian approaches are increasingly used in clinical studies, in the preclinical area Bayesian methods appear to be rarely used in the reporting of pharmacology data. This is particularly surprising in the context of regularly repeated in vivo studies where there is a considerable amount of data from historical control groups, which has potential value. This paper describes our experience with introducing Bayesian analysis for such studies using a Bayesian meta-analytic predictive approach. This leads naturally either to an informative prior for a control group as part of a full Bayesian analysis of the next study or using a predictive distribution to replace a control group entirely. We use quality control charts to illustrate study-to-study variation to the scientists and describe informative priors in terms of their approximate effective numbers of animals. We describe two case studies of animal models: the lipopolysaccharide-induced cytokine release model used in inflammation and the novel object recognition model used to screen cognitive enhancers, both of which show the advantage of a Bayesian approach over the standard frequentist analysis. We conclude that using Bayesian methods in stable repeated in vivo studies can result in a more effective use of animals, either by reducing the total number of animals used or by increasing the precision of key treatment differences. This will lead to clearer results and supports the "3Rs initiative" to Refine, Reduce and Replace animals in research. Copyright © 2016 John Wiley & Sons, Ltd.

  14. In vivo dynamics of skeletal muscle Dystrophin in zebrafish embryos revealed by improved FRAP analysis

    PubMed Central

    Bajanca, Fernanda; Gonzalez-Perez, Vinicio; Gillespie, Sean J; Beley, Cyriaque; Garcia, Luis; Theveneau, Eric; Sear, Richard P; Hughes, Simon M

    2015-01-01

    Dystrophin forms an essential link between sarcolemma and cytoskeleton, perturbation of which causes muscular dystrophy. We analysed Dystrophin binding dynamics in vivo for the first time. Within maturing fibres of host zebrafish embryos, our analysis reveals a pool of diffusible Dystrophin and complexes bound at the fibre membrane. Combining modelling, an improved FRAP methodology and direct semi-quantitative analysis of bleaching suggests the existence of two membrane-bound Dystrophin populations with widely differing bound lifetimes: a stable, tightly bound pool, and a dynamic bound pool with high turnover rate that exchanges with the cytoplasmic pool. The three populations were found consistently in human and zebrafish Dystrophins overexpressed in wild-type or dmdta222a/ta222a zebrafish embryos, which lack Dystrophin, and in Gt(dmd-Citrine)ct90a that express endogenously-driven tagged zebrafish Dystrophin. These results lead to a new model for Dystrophin membrane association in developing muscle, and highlight our methodology as a valuable strategy for in vivo analysis of complex protein dynamics. DOI: http://dx.doi.org/10.7554/eLife.06541.001 PMID:26459831

  15. A Functional CT Contrast Agent for In Vivo Imaging of Tumor Hypoxia.

    PubMed

    Shi, Hongyuan; Wang, Zhiming; Huang, Chusen; Gu, Xiaoli; Jia, Ti; Zhang, Amin; Wu, Zhiyuan; Zhu, Lan; Luo, Xianfu; Zhao, Xuesong; Jia, Nengqin; Miao, Fei

    2016-08-01

    Hypoxia, which has been well established as a key feature of the tumor microenvironment, significantly influences tumor behavior and treatment response. Therefore, imaging for tumor hypoxia in vivo is warranted. Although some imaging modalities for detecting tumor hypoxia have been developed, such as magnetic resonance imaging, positron emission tomography, and optical imaging, these technologies still have their own specific limitations. As computed tomography (CT) is one of the most useful imaging tools in terms of availability, efficiency, and convenience, the feasibility of using a hypoxia-sensitive nanoprobe (Au@BSA-NHA) for CT imaging of tumor hypoxia is investigated, with emphasis on identifying different levels of hypoxia in two xenografts. The nanoprobe is composed of Au nanoparticles and nitroimidazole moiety which can be electively reduced by nitroreductase under hypoxic condition. In vitro, Au@BSA-NHA attain the higher cellular uptake under hypoxic condition. Attractively, after in vivo administration, Au@BSA-NHA can not only monitor the tumor hypoxic environment with CT enhancement but also detect the hypoxic status by the degree of enhancement in two xenograft tumors with different hypoxic levels. The results demonstrate that Au@BSA-NHA may potentially be used as a sensitive CT imaging agent for detecting tumor hypoxia. PMID:27345304

  16. Exonuclease I of Saccharomyces cerevisiae functions in mitotic recombination in vivo and in vitro.

    PubMed Central

    Fiorentini, P; Huang, K N; Tishkoff, D X; Kolodner, R D; Symington, L S

    1997-01-01

    We previously described a 5'-3' exonuclease required for recombination in vitro between linear DNA molecules with overlapping homologous ends. This exonuclease, referred to as exonuclease I (Exo I), has been purified more than 300-fold from vegetatively grown cells and copurifies with a 42-kDa polypeptide. The activity is nonprocessive and acts preferentially on double-stranded DNA. The biochemical properties are quite similar to those of Schizosaccharomyces pombe Exo I. Extracts prepared from cells containing a mutation of the Saccharomyces cerevisiae EXO1 gene, a homolog of S. pombe exo1, had decreased in vitro recombination activity and when fractionated were found to lack the peak of activity corresponding to the 5'-3' exonuclease. The role of EXO1 on recombination in vivo was determined by measuring the rate of recombination in an exo1 strain containing a direct duplication of mutant ade2 genes and was reduced sixfold. These results indicate that EXO1 is required for recombination in vivo and in vitro in addition to its previously identified role in mismatch repair. PMID:9111347

  17. In Vitro and In Vivo Tumor Targeted Photothermal Cancer Therapy Using Functionalized Graphene Nanoparticles.

    PubMed

    Kim, Sung Han; Lee, Jung Eun; Sharker, Shazid Md; Jeong, Ji Hoon; In, Insik; Park, Sung Young

    2015-11-01

    Despite the tremendous progress that photothermal therapy (PTT) has recently achieved, it still has a long way to go to gain the effective targeted photothermal ablation of tumor cells. Driven by this need, we describe a new class of targeted photothermal therapeutic agents for cancer cells with pH responsive bioimaging using near-infrared dye (NIR) IR825, conjugated poly(ethylene glycol)-g-poly(dimethylaminoethyl methacrylate) (PEG-g-PDMA, PgP), and hyaluronic acid (HA) anchored reduced graphene oxide (rGO) hybrid nanoparticles. The obtained rGO nanoparticles (PgP/HA-rGO) showed pH-dependent fluorescence emission and excellent near-infrared (NIR) irradiation of cancer cells targeted in vitro to provide cytotoxicity. Using intravenously administered PTT agents, the time-dependent in vivo tumor target accumulation was exactly defined, presenting eminent photothermal conversion at 4 and 8 h post-injection, which was demonstrated from the ex vivo biodistribution of tumors. These tumor environment responsive hybrid nanoparticles generated photothermal heat, which caused dominant suppression of tumor growth. The histopathological studies obtained by H&E staining demonstrated complete healing from malignant tumor. In an area of limited successes in cancer therapy, our translation will pave the road to design stimulus environment responsive targeted PTT agents for the safe eradication of devastating cancer.

  18. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    PubMed

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health.

  19. Circulating angiogenic cell function is inhibited by cortisol in vitro and associated with psychological stress and cortisol in vivo.

    PubMed

    Aschbacher, Kirstin; Derakhshandeh, Ronak; Flores, Abdiel J; Narayan, Shilpa; Mendes, Wendy Berry; Springer, Matthew L

    2016-05-01

    Psychological stress and glucocorticoids are associated with heightened cardiovascular disease risk. We investigated whether stress or cortisol would be associated with reduced circulating angiogenic cell (CAC) function, an index of impaired vascular repair. We hypothesized that minority-race individuals who experience threat in interracial interactions would exhibit reduced CAC function, and that this link might be explained by cortisol. To test this experimentally, we recruited 106 African American participants for a laboratory interracial interaction task, in which they received socially evaluative feedback from Caucasian confederates. On a separate day, a subset of 32 participants (mean age=26years, 47% female) enrolled in a separate biological substudy and provided blood samples for CAC isolation and salivary samples to quantify the morning peak in cortisol (the cortisol awakening response, CAR). CAC function was quantified using cell culture assays of migration to vascular endothelial growth factor (VEGF) and secretion of VEGF into the culture medium. Heightened threat in response to an interracial interaction and trait anxiety in vivo were both associated with poorer CAC migratory function in vitro. Further, threat and poorer sustained attention during the interracial interaction were associated with a higher CAR, which in turn, was related to lower CAC sensitivity to glucocorticoids. In vitro, higher doses of cortisol impaired CAC migratory function and VEGF protein secretion. The glucocorticoid receptor antagonist RU486 reversed this functional impairment. These data identify a novel, neuroendocrine pathway by which psychological stress may reduce CAC function, with potential implications for cardiovascular health. PMID:26925833

  20. Structure-Function Analysis of Yeast Tubulin

    PubMed Central

    Luchniak, Anna; Fukuda, Yusuke; Gupta, Mohan L.

    2014-01-01

    Microtubules play essential roles in a wide variety of cellular processes including cell division, motility, and vesicular transport. Microtubule function depends on the polymerization dynamics of tubulin, and specific interactions between tubulin and diverse microtubule-associated proteins. To date, investigation of the structural and functional properties of tubulin and tubulin mutants has been limited by the inability to obtain functional protein from overexpression systems, and by the heterogeneous mixture of tubulin isotypes typically isolated from higher eukaryotes. The budding yeast, Saccharomyces cerevisiae, has emerged as a leading system for tubulin structure-function analysis. Yeast cells encode a single beta-tubulin gene and can be engineered to express just one, of two, alpha isotypes. Moreover, yeast allows site-directed modification of tubulin genes at the endogenous loci expressed under the native promoter and regulatory elements. These advantageous features provide a homogeneous and controlled environment for analysis of the functional consequences of specific mutations. Here we present techniques to generate site-specific tubulin mutations in diploid and haploid cells, assess the ability of the mutated protein to support cell viability, measure overall microtubule stability, and define changes in the specific parameters of microtubule dynamic instability. We also outline strategies to determine whether mutations disrupt interactions with microtubule-associated proteins. Microtubule-based functions in yeast are well defined, which allows the observed changes in microtubule properties to be related to the role of microtubules in specific cellular processes. PMID:23973083

  1. In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.

    PubMed

    Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat

    2014-11-01

    The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells.

  2. Kinetic Analysis and Quantification of [11C]Martinostat for in vivo HDAC Imaging of the Brain

    PubMed Central

    Wey, Hsiao-Ying; Wang, Changning; Schroeder, Frederick A.; Logan, Jean; Price, Julie C.; Hooker, Jacob M.

    2015-01-01

    Epigenetic mechanisms mediated by histone deacetylases (HDACs) have been implicated in a wide-range of CNS disorders and may offer new therapeutic opportunities. In vivo evaluation of HDAC density and drug occupancy has become possible with [11C]Martinostat, which exhibits selectivity for a subset of class I/IIb HDAC enzymes. In this study, we characterize the kinetic properties of [11C]Martinostat in the nonhuman primate (NHP) brain in preparation for human neuroimaging studies. The goal of this work was to determine whether classic compartmental analysis techniques were appropriate and to further determine if arterial plasma is required for future NHP studies. Using an arterial plasma input function, several analysis approaches were evaluated for robust outcome measurements. [11C]Martinostat showed high baseline distribution volume (VT) ranging from 29.9–54.4 mL/cm3 in the brain and large changes in occupancy (up to 99%) with a blocking dose approaches full enzyme saturation. An averaged nondisplaceable tissue uptake (VND) of 8.6 ± 3.7 mL/cm3 suggests high specific binding of [11C]Martinostat. From a two-tissue compartment model, [11C]Martinostat exhibits a high K1 (averaged K1 of 0.65 mL/cm3/min) and a small k4 (average of 0.0085 min−1). Our study supports that [11C]Martinostat can be used to detect changes in HDAC density and occupancy in vivo and that simplified analysis not using arterial blood could be appropriate. PMID:25768025

  3. Dopamine receptor loss of function is not protective of rd1 rod photoreceptors in vivo

    PubMed Central

    Hakenewerth, Angela M.; Gardner, Rachel R.; Martak, Joshua G.; Maggio, Virginia M.

    2009-01-01

    Purpose The retinal degeneration (rd1) mouse undergoes a rapid loss of rod photoreceptors due to a defect in the cGMP-phosphodiesterase gene. We have previously demonstrated that dopamine (DA) antagonists or DA depletion blocks photoreceptor degeneration and that DA is necessary for photoreceptor degeneration in the rd1 mouse retinal organ culture model. Antagonists for either D1- or D2-family DA receptors are protective in rd1 organ cultures. Methods To determine whether photoreceptor survival can be increased in vivo in the rd1 mouse, we used both a pharmacological and a genetic approach. The pharmacological approach involved three techniques to administer 6-hydroxydopamine (6-OHDA) in an attempt to deplete DA in postnatal mouse retina in vivo. As a genetic alternative, DA receptor signaling was inactivated by crossbreeding rd1 mice to D1, D2, D4, and D5 knockout mice to create four lines of double mutants. Results Pharmacological DA depletion was incomplete due to the limiting size of the postnatal mouse eye and the lethality of systemic inhibition of DA signaling. In all four lines of double mutants, no increase in rod photoreceptor survival was observed. To determine whether protection of rd1 photoreceptors by inhibition of dopaminergic signaling is a result of conditions specific to the organ culture environment, we grew in vitro retinas from the four lines of double mutant mice for four weeks. Again, no increase in photoreceptor survival was seen. Finally, three triple mutants were generated that lacked two DA receptors (D1/D2; D1/D4; and D2/D4) on a rd1 background. In all three cases, rod photoreceptors were not protected from degeneration. Conclusions The dramatic protection of rd1 rod photoreceptors by inhibition of DA signaling in organ culture has not been reproduced in vivo by either a pharmacological approach, due to technical limitations, or by genetic manipulations. The possible role of compensatory effects during retinal development in DA receptor

  4. Functional analysis and treatment of elopement.

    PubMed Central

    Piazza, C C; Hanley, G P; Bowman, L G; Ruyter, J M; Lindauer, S E; Saiontz, D M

    1997-01-01

    Elopement is a dangerous behavior because children who run away may encounter life-threatening situations (e.g., traffic). We conducted functional analyses of the elopement of 3 children who had been diagnosed with developmental disabilities. The results identified a maintaining reinforcer for the elopement of 1 child, but the data were difficult to interpret for 2 of the children. Subsequent reinforcer assessments were used to help to clarify the reinforcers for elopement for these 2 children. Results of the functional analyses and reinforcer assessments then were used to develop successful treatments to reduce elopement. The findings are discussed in terms of (a) the application of functional analysis methodology to elopement, (b) the use of reinforcer assessments to identify potential reinforcers when standard functional analyses are undifferentiated, and (c) the utility of assessment-based treatments for elopement. PMID:9433790

  5. A Comprehensive, CRISPR-based Functional Analysis of Essential Genes in Bacteria.

    PubMed

    Peters, Jason M; Colavin, Alexandre; Shi, Handuo; Czarny, Tomasz L; Larson, Matthew H; Wong, Spencer; Hawkins, John S; Lu, Candy H S; Koo, Byoung-Mo; Marta, Elizabeth; Shiver, Anthony L; Whitehead, Evan H; Weissman, Jonathan S; Brown, Eric D; Qi, Lei S; Huang, Kerwyn Casey; Gross, Carol A

    2016-06-01

    Essential gene functions underpin the core reactions required for cell viability, but their contributions and relationships are poorly studied in vivo. Using CRISPR interference, we created knockdowns of every essential gene in Bacillus subtilis and probed their phenotypes. Our high-confidence essential gene network, established using chemical genomics, showed extensive interconnections among distantly related processes and identified modes of action for uncharacterized antibiotics. Importantly, mild knockdown of essential gene functions significantly reduced stationary-phase survival without affecting maximal growth rate, suggesting that essential protein levels are set to maximize outgrowth from stationary phase. Finally, high-throughput microscopy indicated that cell morphology is relatively insensitive to mild knockdown but profoundly affected by depletion of gene function, revealing intimate connections between cell growth and shape. Our results provide a framework for systematic investigation of essential gene functions in vivo broadly applicable to diverse microorganisms and amenable to comparative analysis. PMID:27238023

  6. Analysis of platelet function and dysfunction.

    PubMed

    Jurk, K

    2015-01-01

    Although platelets act as central players of haemostasis only their cross-talk with other blood cells, plasma factors and the vascular compartment enables the formation of a stable thrombus. Multiple activation processes and complex signalling networks are responsible for appropriate platelet function. Thus, a variety of platelet function tests are available for platelet research and diagnosis of platelet dysfunction. However, universal platelet function tests that are sensitive to all platelet function defects do not exist and therefore diagnostic algorithms for suspected platelet function disorders are still recommended in clinical practice. Based on the current knowledge of human platelet activation this review evaluates point-of-care related screening tests in comparison with specific platelet function assays and focuses on their diagnostic utility in relation to severity of platelet dysfunction. Further, systems biology-based platelet function methods that integrate global and specific analysis of platelet vessel wall interaction (advanced flow chamber devices) and post-translational modifications (platelet proteomics) are presented and their diagnostic potential is addressed.

  7. Sensitivity analysis of volume scattering phase functions.

    PubMed

    Tuchow, Noah; Broughton, Jennifer; Kudela, Raphael

    2016-08-01

    To solve the radiative transfer equation and relate inherent optical properties (IOPs) to apparent optical properties (AOPs), knowledge of the volume scattering phase function is required. Due to the difficulty of measuring the phase function, it is frequently approximated. We explore the sensitivity of derived AOPs to the phase function parameterization, and compare measured and modeled values of both the AOPs and estimated phase functions using data from Monterey Bay, California during an extreme "red tide" bloom event. Using in situ measurements of absorption and attenuation coefficients, as well as two sets of measurements of the volume scattering function (VSF), we compared output from the Hydrolight radiative transfer model to direct measurements. We found that several common assumptions used in parameterizing the radiative transfer model consistently introduced overestimates of modeled versus measured remote-sensing reflectance values. Phase functions from VSF data derived from measurements at multiple wavelengths and a single scattering single angle significantly overestimated reflectances when using the manufacturer-supplied corrections, but were substantially improved using newly published corrections; phase functions calculated from VSF measurements using three angles and three wavelengths and processed using manufacture-supplied corrections were comparable, demonstrating that reasonable predictions can be made using two commercially available instruments. While other studies have reached similar conclusions, our work extends the analysis to coastal waters dominated by an extreme algal bloom with surface chlorophyll concentrations in excess of 100 mg m-3. PMID:27505819

  8. Targeting Stat3 in the myeloid compartment drastically improves the in vivo antitumor functions of adoptively transferred T cells

    PubMed Central

    Herrmann, Andreas; Kortylewski, Marcin; Kujawski, Maciej; Zhang, Chunyan; Reckamp, Karen; Armstrong, Brian; Wang, Lin; Kowolik, Claudia; Deng, Jiehui; Robert, Figlin; Yu, Hua

    2010-01-01

    Improving effector T cell functions is highly desirable for preventive or therapeutic interventions of diverse diseases. Stat3 in the myeloid compartment constrains Th-1 type immunity, dampening natural and induced antitumor immune responses. We have recently developed an in vivo siRNA delivery platform by conjugating a TLR9 agonist with siRNA that efficiently targets myeloid and B cells. Here we show that either ablating the Stat3 alleles in the myeloid compartment and B cells combined with CpG triggering or administrating the CpG-Stat3siRNA conjugates drastically augments effector functions of adoptively transferred CD8+ T cells. Specifically, we demonstrate that both approaches are capable of increasing dendritic cell and CD8+ T cell engagement in tumor draining lymph nodes. Furthermore, both approaches can significantly activate the transferred CD8+ T cells in vivo, upregulating effector molecules such as perforin, granzyme B and IFN-γ. Intravital multiphoton microscopy reveals that Stat3 silencing combined with CpG triggering greatly increases killing activity and tumor infiltration of transferred T cells. These results suggest the use of CpG-Stat3siRNA, and possibly other Stat3 inhibitors, as a potent adjuvant to improve T cell therapies. PMID:20841481

  9. The rare DAT coding variant Val559 perturbs DA neuron function, changes behavior, and alters in vivo responses to psychostimulants.

    PubMed

    Mergy, Marc A; Gowrishankar, Raajaram; Gresch, Paul J; Gantz, Stephanie C; Williams, John; Davis, Gwynne L; Wheeler, C Austin; Stanwood, Gregg D; Hahn, Maureen K; Blakely, Randy D

    2014-11-01

    Despite the critical role of the presynaptic dopamine (DA) transporter (DAT, SLC6A3) in DA clearance and psychostimulant responses, evidence that DAT dysfunction supports risk for mental illness is indirect. Recently, we identified a rare, nonsynonymous Slc6a3 variant that produces the DAT substitution Ala559Val in two male siblings who share a diagnosis of attention-deficit hyperactivity disorder (ADHD), with other studies identifying the variant in subjects with bipolar disorder (BPD) and autism spectrum disorder (ASD). Previously, using transfected cell studies, we observed that although DAT Val559 displays normal total and surface DAT protein levels, and normal DA recognition and uptake, the variant transporter exhibits anomalous DA efflux (ADE) and lacks capacity for amphetamine (AMPH)-stimulated DA release. To pursue the significance of these findings in vivo, we engineered DAT Val559 knock-in mice, and here we demonstrate in this model the presence of elevated extracellular DA levels, altered somatodendritic and presynaptic D2 DA receptor (D2R) function, a blunted ability of DA terminals to support depolarization and AMPH-evoked DA release, and disruptions in basal and psychostimulant-evoked locomotor behavior. Together, our studies demonstrate an in vivo functional impact of the DAT Val559 variant, providing support for the ability of DAT dysfunction to impact risk for mental illness.

  10. Genetic analysis of glutamatergic function in Drosophila

    SciTech Connect

    Chase, B.A.; Kankel, D.R.

    1987-01-01

    Neurotransmitters are essential for communication between neurons and hence are vital in the overall integrative functioning of the nervous system. Previous work on acetylcholine metabolism in the fruit fly, Drosophila melanogaster, has also raised the possibility that transmitter metabolism may play a prominent role in either the achievement or maintenance of the normal structure of the central nervous system in this species. Unfortunately, acetylcholine is rather poorly characterized as a neurotransmitter in Drosophila; consequently, we have begun an analysis of the role of glutamate (probably the best characterized transmitter in this organism) in the formation and/or maintenance of nervous system structure. We present here the results of a series of preliminary analyses. To suggest where glutamatergic function may be localized, an examination of the spatial distribution of high affinity (/sup 3/H)-glutamate binding sites are presented. We present the results of an analysis of the spatial and temporal distribution of enzymatic activities thought to be important in the regulation of transmitter-glutamate pools (i.e., glutamate oxaloacetic transaminase, glutaminase, and glutamate dehydrogenase). To begin to examine whether mutations in any of these functions are capable of affecting glutamatergic activity, we present the results of an initial genetic analysis of one enzymatic function, glutamate oxaloacetic transaminase (GOT), chosen because of its differential distribution within the adult central nervous system and musculature.

  11. Functional analysis of an Orc6 mutant in Drosophila.

    PubMed

    Balasov, Maxim; Huijbregts, Richard P H; Chesnokov, Igor

    2009-06-30

    The origin recognition complex (ORC) is a 6-subunit complex required for the initiation of DNA replication in eukaryotic organisms. ORC is also involved in other cell functions. The smallest Drosophila ORC subunit, Orc6, is important for both DNA replication and cytokinesis. To study the role of Orc6 in vivo, the orc6 gene was deleted by imprecise excision of P element. Lethal alleles of orc6 are defective in DNA replication and also show abnormal chromosome condensation and segregation. The analysis of cells containing the orc6 deletion revealed that they arrest in both the G(1) and mitotic stages of the cell cycle. Orc6 deletion can be rescued to viability by a full-length Orc6 transgene. The expression of mutant transgenes of Orc6 with deleted or mutated C-terminal domain results in a release of mutant cells from G(1) arrest and restoration of DNA replication, indicating that the DNA replication function of Orc6 is associated with its N-terminal domain. However, these mutant cells accumulate at mitosis, suggesting that the C-terminal domain of Orc6 is important for the passage through the M phase. In a cross-species complementation experiment, the expression of human Orc6 in Drosophila Orc6 mutant cells rescued DNA replication, suggesting that this function of the protein is conserved among metazoans. PMID:19541634

  12. Structure-function analysis of the trypanosomatid spliced leader RNA.

    PubMed Central

    Goncharov, I; Xu, Y X; Zimmer, Y; Sherman, K; Michaeli, S

    1998-01-01

    In trypanosomes, all mRNAs possess a spliced leader (SL) at their 5' end. SL is added to pre-mRNA via trans -splicing from a small RNA, the SL RNA. To examine structure-function aspects of the trypanosomatid SL RNA, an in vivo system was developed in the monogenetic trypanosomatid Leptomonas collosoma to analyze the function of chimeric and site-directed SL RNA mutants in trans -splicing. Stable cell lines expressing chimeric and mutated SL RNA from the authentic SL RNA regulatory unit were obtained. The chimeric RNA was expressed and assembled into an SL RNP particle, but could not serve as a substrate in splicing. Mutations in loop II and III of L.collosoma SL RNA formed the Y structure intermediate. In addition, a double SL RNA mutant in loop II, and positions 7 and 8 of the intron, also formed the Y structure intermediate, suggesting that these intron positions, although proposed to participate in the interaction of SL RNA with U5, may not be crucial for the first step of the trans -splicing reaction. A mutation in the exon located in loop I was not utilized in splicing, suggesting the importance of exon sequences for trans -splicing in trypanosomes. However, a double SL RNA mutant in loop II and exon position 31 was utilized in both steps of splicing; the mutant thus provides a model molecule for further analysis of positions essential for the function of the SL RNA. PMID:9547281

  13. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking.

    PubMed

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie

    2016-01-01

    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics.

  14. Stochastic precision analysis of 2D cardiac strain estimation in vivo

    NASA Astrophysics Data System (ADS)

    Bunting, E. A.; Provost, J.; Konofagou, E. E.

    2014-11-01

    Ultrasonic strain imaging has been applied to echocardiography and carries great potential to be used as a tool in the clinical setting. Two-dimensional (2D) strain estimation may be useful when studying the heart due to the complex, 3D deformation of the cardiac tissue. Increasing the framerate used for motion estimation, i.e. motion estimation rate (MER), has been shown to improve the precision of the strain estimation, although maintaining the spatial resolution necessary to view the entire heart structure in a single heartbeat remains challenging at high MERs. Two previously developed methods, the temporally unequispaced acquisition sequence (TUAS) and the diverging beam sequence (DBS), have been used in the past to successfully estimate in vivo axial strain at high MERs without compromising spatial resolution. In this study, a stochastic assessment of 2D strain estimation precision is performed in vivo for both sequences at varying MERs (65, 272, 544, 815 Hz for TUAS; 250, 500, 1000, 2000 Hz for DBS). 2D incremental strains were estimated during left ventricular contraction in five healthy volunteers using a normalized cross-correlation function and a least-squares strain estimator. Both sequences were shown capable of estimating 2D incremental strains in vivo. The conditional expected value of the elastographic signal-to-noise ratio (E(SNRe|ɛ)) was used to compare strain estimation precision of both sequences at multiple MERs over a wide range of clinical strain values. The results here indicate that axial strain estimation precision is much more dependent on MER than lateral strain estimation, while lateral estimation is more affected by strain magnitude. MER should be increased at least above 544 Hz to avoid suboptimal axial strain estimation. Radial and circumferential strain estimations were influenced by the axial and lateral strain in different ways. Furthermore, the TUAS and DBS were found to be of comparable precision at similar MERs.

  15. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking.

    PubMed

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie

    2016-01-01

    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term "in vivo behavioral tracking," we track individuals' movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants' tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants' gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants' proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics. PMID:27007952

  16. Incipient Social Groups: An Analysis via In-Vivo Behavioral Tracking

    PubMed Central

    Halberstadt, Jamin; Jackson, Joshua Conrad; Bilkey, David; Jong, Jonathan; Whitehouse, Harvey; McNaughton, Craig; Zollmann, Stefanie

    2016-01-01

    Social psychology is fundamentally the study of individuals in groups, yet there remain basic unanswered questions about group formation, structure, and change. We argue that the problem is methodological. Until recently, there was no way to track who was interacting with whom with anything approximating valid resolution and scale. In the current study we describe a new method that applies recent advances in image-based tracking to study incipient group formation and evolution with experimental precision and control. In this method, which we term “in vivo behavioral tracking,” we track individuals’ movements with a high definition video camera mounted atop a large field laboratory. We report results of an initial study that quantifies the composition, structure, and size of the incipient groups. We also apply in-vivo spatial tracking to study participants’ tendency to cooperate as a function of their embeddedness in those crowds. We find that participants form groups of seven on average, are more likely to approach others of similar attractiveness and (to a lesser extent) gender, and that participants’ gender and attractiveness are both associated with their proximity to the spatial center of groups (such that women and attractive individuals are more likely than men and unattractive individuals to end up in the center of their groups). Furthermore, participants’ proximity to others early in the study predicted the effort they exerted in a subsequent cooperative task, suggesting that submergence in a crowd may predict social loafing. We conclude that in vivo behavioral tracking is a uniquely powerful new tool for answering longstanding, fundamental questions about group dynamics. PMID:27007952

  17. Dispersion analysis with inverse dielectric function modelling.

    PubMed

    Mayerhöfer, Thomas G; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals.

  18. Dispersion analysis with inverse dielectric function modelling

    NASA Astrophysics Data System (ADS)

    Mayerhöfer, Thomas G.; Ivanovski, Vladimir; Popp, Jürgen

    2016-11-01

    We investigate how dispersion analysis can profit from the use of a Lorentz-type description of the inverse dielectric function. In particular at higher angles of incidence, reflectance spectra using p-polarized light are dominated by bands from modes that have their transition moments perpendicular to the surface. Accordingly, the spectra increasingly resemble inverse dielectric functions. A corresponding description can therefore eliminate the complex dependencies of the dispersion parameters, allow their determination and facilitate a more accurate description of the optical properties of single crystals.

  19. Lipopolysaccharide enhances FcγR-dependent functions in vivo through CD11b/CD18 up-regulation

    PubMed Central

    Rubel, C; Miliani De Marval, P; Vermeulen, M; Isturiz, M A; Palermo, M S

    1999-01-01

    Fc receptors for immunoglobulin G (IgG) (FcγR) mediate several defence mechanisms in the course of inflammatory and infectious diseases. In Gram-negative infections, cellular wall lipopolysaccharides (LPS) modulate different immune responses. We have recently demonstrated that murine LPS in vivo treatment significantly increases FcγR-dependent clearance of immune complexes (IC). In addition, we and others have reported the induction of adhesion molecules on macrophages and neutrophils by LPS in vivo and by tumour necrosis factor-α (TNF-α) in vitro. The aim of this paper was to investigate CD11b/CD18 participation in LPS enhancing effects on Fcγ-dependent functionality of tissue macrophages. Our results have demonstrated that LPS can enhance antibody-dependent cellular cytotoxicity (ADCC) and IC-triggered cytotoxicity (IC-Ctx), two reactions which involve the Fcγ-receptor but different lytic mechanisms. In vitro incubation of splenocytes from LPS-treated mice with anti-CD11b/CD18 abrogated ADCC and IC-Ctx enhancement, without affecting FcγR expression. Similar results were obtained with physiological concentrations of fibrinogen. In this way cytotoxic values of LPS-splenocytes decreased to the basal levels of control mice. Time and temperature requirements for such inhibition strongly suggested that anti-CD11b/CD18 could modulate intracellular signals leading to downregulation of FcγR functionality. Data presented herein support the hypothesis that functional and/or physical associations between integrins and FcγR could be critical for the modulation of effector functions during an inflammatory response. PMID:10447764

  20. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    PubMed Central

    Xu, Guan; Meng, Zhuo-xian; Lin, Jian-die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-01-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver. PMID:26842459

  1. High resolution Physio-chemical Tissue Analysis: Towards Non-invasive In Vivo Biopsy

    NASA Astrophysics Data System (ADS)

    Xu, Guan; Meng, Zhuo-Xian; Lin, Jian-Die; Deng, Cheri X.; Carson, Paul L.; Fowlkes, J. Brian; Tao, Chao; Liu, Xiaojun; Wang, Xueding

    2016-02-01

    Conventional gold standard histopathologic diagnosis requires information of both high resolution structural and chemical changes in tissue. Providing optical information at ultrasonic resolution, photoacoustic (PA) technique could provide highly sensitive and highly accurate tissue characterization noninvasively in the authentic in vivo environment, offering a replacement for histopathology. A two-dimensional (2D) physio-chemical spectrogram (PCS) combining micrometer to centimeter morphology and chemical composition simultaneously can be generated for each biological sample with PA measurements at multiple optical wavelengths. This spectrogram presents a unique 2D “physio-chemical signature” for any specific type of tissue. Comprehensive analysis of PCS, termed PA physio-chemical analysis (PAPCA), can lead to very rich diagnostic information, including the contents of all relevant molecular and chemical components along with their corresponding histological microfeatures, comparable to those accessible by conventional histology. PAPCA could contribute to the diagnosis of many diseases involving diffusive patterns such as fatty liver.

  2. Cocoa flavanols and platelet and leukocyte function: recent in vitro and ex vivo studies in healthy adults.

    PubMed

    Heptinstall, Stan; May, Jane; Fox, Sue; Kwik-Uribe, Catherine; Zhao, Lian

    2006-01-01

    There is growing interest in possible beneficial effects of specific dietary components on cardiovascular health. Platelets and leukocytes contribute to arterial thrombosis and to inflammatory processes. Previous studies performed in vitro have demonstrated inhibition of platelet function by (-)-epicatechin and (+)-catechin, flavan-3-ols (flavanols) that are present in several foods including some cocoas. Also, some modest inhibition of platelet function has been observed ex vivo after the consumption of flavanol-containing cocoa products by healthy adults. So far there are no reports of effects of cocoa flavanols on leukocytes. This paper summarizes 2 recent investigations. The first was a study of the effects of cocoa flavanols on platelet and leukocyte function in vitro. The second was a study of the effects of consumption of a flavanol-rich cocoa beverage by healthy adults on platelet and leukocyte function ex vivo. Measurements were made of platelet aggregation, platelet-monocyte conjugate formation (P/M), platelet-neutrophil conjugate formation (P/N), platelet activation (CD62P on monocytes and neutrophils), and leukocyte activation (CD11b on monocytes and neutrophils) in response to collagen and/or arachidonic acid. In the in vitro study several cocoa flavanols and their metabolites were shown to inhibit platelet aggregation, P/M, P/N, and platelet activation. Their effects were similar to those of aspirin and the effects of a cocoa flavanol and aspirin did not seem to be additive. There was also inhibition of monocyte and neutrophil activation by flavanols, but this was not replicated by aspirin. 4'-O-methyl-epicatechin, 1 of the known metabolites of the cocoa flavanol (-)-epicatechin, was consistently effective as an inhibitor of platelet and leukocyte activation. The consumption of a flavanol-rich cocoa beverage also resulted in significant inhibition of platelet aggregation, P/M and P/N, and platelet activation induced by collagen. The inhibitory effects

  3. Integrity of prokaryotic mRNA isolated from complex samples for in vivo bacterial transcriptome analysis.

    PubMed

    Ferreira-Machado, A B; Freitas, M C R; Saji, G R Q; Rezende, A B; Almeida, P E; Cesar, D E; Resende, J A; Nicólas, M F; Silva, V L; Diniz, C G

    2015-01-01

    Even though several in vitro studies have focused on bacterial biology, the extent of such knowledge is not complete when considering an actual infection. As culture-independent microbiology methods such as high-throughput sequencing became available, important aspects of host-bacterium interactions will be elucidated. Based on microbiological relevance, we considered Bacteroides fragilis in a murine experimental infection as a model system to evaluate the in vivo bacterial transcriptome in host exudates. A disproportionate number of reads belonging to the host genome were retrieved in the first round of pyrosequencing, even after depletion of ribosomal RNA; the average number of reads related to the eukaryotic genome was 71.924-67.7%, whereas prokaryotic reads represented 34.338-32.3% in host exudates. Thus, different treatments were used to improve the prokaryotic RNA yield: i) centrifugation; ii) ultrasonic treatment; and iii) ultrasonic treatment followed by centrifugation. The latter treatment was found to be the most efficient in generating bacterial yields, as it resulted in a higher number of Bacteroides cells. However, the RNA extracted after this treatment was not of sufficient quality to be used in cDNA synthesis. Our results suggest that the methodology routinely used for RNA extraction in transcriptional analysis is not appropriate for in vivo studies in complex samples. Furthermore, the most efficient treatment for generating good bacterial cell yields was not suitable to retrieve high-quality RNA. Therefore, as an alternative methodological approach to enable in vivo studies on host-bacterium interactions, we advise increasing the sequencing depth despite the high costs.

  4. Evaluation of hybrid algorithm for analysis of scattered light using ex vivo nuclear morphology measurements of cervical epithelium.

    PubMed

    Ho, Derek; Drake, Tyler K; Bentley, Rex C; Valea, Fidel A; Wax, Adam

    2015-08-01

    We evaluate a new hybrid algorithm for determining nuclear morphology using angle-resolved low coherence interferometry (a/LCI) measurements in ex vivo cervical tissue. The algorithm combines Mie theory based and continuous wavelet transform inverse light scattering analysis. The hybrid algorithm was validated and compared to traditional Mie theory based analysis using an ex vivo tissue data set. The hybrid algorithm achieved 100% agreement with pathology in distinguishing dysplastic and non-dysplastic biopsy sites in the pilot study. Significantly, the new algorithm performed over four times faster than traditional Mie theory based analysis. PMID:26309741

  5. Biosensors for functional food safety and analysis.

    PubMed

    Lavecchia, Teresa; Tibuzzi, Arianna; Giardi, Maria Teresa

    2010-01-01

    The importance of safety and functionality analysis of foodstuffs and raw materials is supported by national legislations and European Union (EU) directives concerning not only the amount of residues of pollutants and pathogens but also the activity and content of food additives and the health claims stated on their labels. In addition, consumers' awareness of the impact of functional foods' on their well-being and their desire for daily healthcare without the intake pharmaceuticals has immensely in recent years. Within this picture, the availability of fast, reliable, low cost control systems to measure the content and the quality of food additives and nutrients with health claims becomes mandatory, to be used by producers, consumers and the governmental bodies in charge of the legal supervision of such matters. This review aims at describing the most important methods and tools used for food analysis, starting with the classical methods (e.g., gas-chromatography GC, high performance liquid chromatography HPLC) and moving to the use of biosensors-novel biological material-based equipments. Four types of bio-sensors, among others, the novel photosynthetic proteins-based devices which are more promising and common in food analysis applications, are reviewed. A particular highlight on biosensors for the emerging market of functional foods is given and the most widely applied functional components are reviewed with a comprehensive analysis of papers published in the last three years; this report discusses recent trends for sensitive, fast, repeatable and cheap measurements, focused on the detection of vitamins, folate (folic acid), zinc (Zn), iron (Fe), calcium (Ca), fatty acids (in particular Omega 3), phytosterols and phytochemicals. A final market overview emphasizes some practical aspects ofbiosensor applications.

  6. Fracture Analysis of Functionally Graded Materials

    SciTech Connect

    Zhang, Ch.; Gao, X. W.; Sladek, J.; Sladek, V.

    2010-05-21

    This paper reports our recent research works on crack analysis in continuously non-homogeneous and linear elastic functionally graded materials. A meshless boundary element method is developed for this purpose. Numerical examples are presented and discussed to demonstrate the efficiency and the accuracy of the present numerical method, and to show the effects of the material gradation on the crack-opening-displacements and the stress intensity factors.

  7. Medial Cochlear Efferent Function: A Theoretical Analysis

    NASA Astrophysics Data System (ADS)

    Mountain, David C.

    2011-11-01

    Since the discovery of the cochlear efferent system, many hypotheses have been put forth for its function. These hypotheses for its function range from protecting the cochlea from over stimulation to improving the detection of sounds in noise. It is known that the medial efferent system innervates the outer hair cells and that stimulation of this system reduces basilar membrane and auditory nerve sensitivity which suggests that this system acts to decrease the gain of the cochlear amplifier. Here I present modeling results as well as analysis of published experimental data that suggest that the function of the medial efferent reflex is to decrease the cochlear amplifier gain by just the right amount so that the nonlinearity in the basilar membrane response lines up perfectly with the inner hair cell nonlinear transduction process to produce a hair cell receptor potential that is proportional to the logarithm of the sound pressure level.

  8. Optical properties of neonatal skin measured in vivo as a function of age and skin pigmentation

    NASA Astrophysics Data System (ADS)

    Bosschaart, Nienke; Mentink, Rosaline; Kok, Joke H.; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-09-01

    Knowledge of the optical properties of neonatal skin is invaluable when developing new, or improving existing optical techniques for use at the neonatal intensive care. In this article, we present in vivo measurements of the absorption μa and reduced scattering coefficient μs' of neonatal skin between 450 and 600 nm and assess the influence of age and skin pigmentation on the optical properties. The optical properties were measured using a spatially resolved, steady state diffuse reflectance spectroscopy setup, combined with a modified spatially resolved diffusion model. The method was validated on phantoms with known values for the absorption and reduced scattering coefficient. Values of μa and μs' were obtained from the skin at four different body locations (forehead, sternum, hand, and foot) of 60 neonates with varying gestational age, postnatal age, and skin pigmentation. We found that μa ranged from 0.02 to 1.25 mm-1 and μs' was in the range of 1 to 2.8 mm-1 (5th to 95th percentile of the patient population), independent of body location. In contrast to previous studies, no to very weak correlation was observed between the optical properties and gestational maturity, but a strong dependency of the absorption coefficient on postnatal age was found for dark skinned patients.

  9. Genome-scale functional characterization of Drosophila developmental enhancers in vivo.

    PubMed

    Kvon, Evgeny Z; Kazmar, Tomas; Stampfel, Gerald; Yáñez-Cuna, J Omar; Pagani, Michaela; Schernhuber, Katharina; Dickson, Barry J; Stark, Alexander

    2014-08-01

    Transcriptional enhancers are crucial regulators of gene expression and animal development and the characterization of their genomic organization, spatiotemporal activities and sequence properties is a key goal in modern biology. Here we characterize the in vivo activity of 7,705 Drosophila melanogaster enhancer candidates covering 13.5% of the non-coding non-repetitive genome throughout embryogenesis. 3,557 (46%) candidates are active, suggesting a high density with 50,000 to 100,000 developmental enhancers genome-wide. The vast majority of enhancers display specific spatial patterns that are highly dynamic during development. Most appear to regulate their neighbouring genes, suggesting that the cis-regulatory genome is organized locally into domains, which are supported by chromosomal domains, insulator binding and genome evolution. However, 12 to 21 per cent of enhancers appear to skip non-expressed neighbours and regulate a more distal gene. Finally, we computationally identify cis-regulatory motifs that are predictive and required for enhancer activity, as we validate experimentally. This work provides global insights into the organization of an animal regulatory genome and the make-up of enhancer sequences and confirms and generalizes principles from previous studies. All enhancer patterns are annotated manually with a controlled vocabulary and all results are available through a web interface (http://enhancers.starklab.org), including the raw images of all microscopy slides for manual inspection at arbitrary zoom levels.

  10. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance.

    PubMed

    Steinman, Ralph M; Hawiger, Daniel; Liu, Kang; Bonifaz, Laura; Bonnyay, David; Mahnke, Karsten; Iyoda, Tomonori; Ravetch, Jeffrey; Dhodapkar, Madhav; Inaba, Kayo; Nussenzweig, Michel

    2003-04-01

    The avoidance of autoimmunity requires mechanisms to actively silence or tolerize self reactive T cells in the periphery. During infection, dendritic cells are not only capturing microbial antigens, but also are processing self antigens from dying cells as well as innocuous environmental proteins. Since the dendritic cells are maturing in response to microbial and other stimuli, peptides will be presented from both noxious and innocuous antigens. Therefore it would be valuable to have mechanisms whereby dendritic cells, prior to infection, establish tolerance to those self and environmental antigens that can be processed upon pathogen encounter. In the steady state, prior to acute infection and inflammation, dendritic cells are in an immature state and not fully differentiated to carry out their known roles as inducers of immunity. These immature cells are not inactive, however. They continuously circulate through tissues and into lymphoid organs, capturing self antigens as well as innocuous environmental proteins. Recent experiments have provided direct evidence that antigen-loaded immature dendritic in vivo silence T cells either by deleting them or by expanding regulatory T cells. In this way, it is proposed that the immune system overcomes at least some of the risk of developing autoimmunity and chronic inflammation. It is proposed that dendritic cells play a major role in defining immunologic self, not only centrally in the thymus but also in the periphery.

  11. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism

    PubMed Central

    Hasbi, Ahmed; Perreault, Melissa L.; Shen, Maurice Y. F.; Zhang, Lucia; To, Ryan; Fan, Theresa; Nguyen, Tuan; Ji, Xiaodong; O'Dowd, Brian F.; George, Susan R.

    2014-01-01

    Although the dopamine D1-D2 receptor heteromer has emerging physiological relevance and a postulated role in different neuropsychiatric disorders, such as drug addiction, depression, and schizophrenia, there is a need for pharmacological tools that selectively target such receptor complexes in order to analyze their biological and pathophysiological functions. Since no selective antagonists for the D1-D2 heteromer are available, serial deletions and point mutations were used to precisely identify the amino acids involved in an interaction interface between the receptors, residing within the carboxyl tail of the D1 receptor that interacted with the D2 receptor to form the D1-D2 receptor heteromer. It was determined that D1 receptor carboxyl tail residues 404Glu and 405Glu were critical in mediating the interaction with the D2 receptor. Isolated mutation of these residues in the D1 receptor resulted in the loss of agonist activation of the calcium signaling pathway mediated through the D1-D2 receptor heteromer. The physical interaction between the D1 and D2 receptor could be disrupted, as shown by coimmunoprecipitation and BRET analysis, by a small peptide generated from the D1 receptor sequence that contained these amino acids, leading to a switch in G-protein affinities and loss of calcium signaling, resulting in the inhibition of D1-D2 heteromer function. The use of the D1-D2 heteromer-disrupting peptide in vivo revealed a pathophysiological role for the D1-D2 heteromer in the modulation of behavioral despair. This peptide may represent a novel pharmacological tool with potential therapeutic benefits in depression treatment.—Hasbi, A., Perreault, M. L., Shen, M. Y. F., Zhang, L., To, R., Fan, T., Nguyen, T., Ji, X., O'Dowd, B. F., George, S. R. A peptide targeting an interaction interface disrupts the dopamine D1-D2 receptor heteromer to block signaling and function in vitro and in vivo: effective selective antagonism. PMID:25063849

  12. Identification of the in vivo function of the high-efficiency D-mannonate dehydratase in Caulobacter crescentus NA1000 from the enolase superfamily.

    PubMed

    Wichelecki, Daniel J; Graff, Dylan C; Al-Obaidi, Nawar; Almo, Steven C; Gerlt, John A

    2014-07-01

    The d-mannonate dehydratase (ManD) subgroup of the enolase superfamily contains members with varying catalytic activities (high-efficiency, low-efficiency, or no activity) that dehydrate d-mannonate and/or d-gluconate to 2-keto-3-deoxy-d-gluconate [Wichelecki, D. J., et al. (2014) Biochemistry 53, 2722-2731]. Despite extensive in vitro characterization, the in vivo physiological role of a ManD has yet to be established. In this study, we report the in vivo functional characterization of a high-efficiency ManD from Caulobacter crescentus NA1000 (UniProt entry B8GZZ7) by in vivo discovery of its essential role in d-glucuronate metabolism. This in vivo functional annotation may be extended to ~50 additional proteins.

  13. Statistical strategies to reveal potential vibrational markers for in vivo analysis by confocal Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliveira Mendes, Thiago de; Pinto, Liliane Pereira; Santos, Laurita dos; Tippavajhala, Vamshi Krishna; Téllez Soto, Claudio Alberto; Martin, Airton Abrahão

    2016-07-01

    The analysis of biological systems by spectroscopic techniques involves the evaluation of hundreds to thousands of variables. Hence, different statistical approaches are used to elucidate regions that discriminate classes of samples and to propose new vibrational markers for explaining various phenomena like disease monitoring, mechanisms of action of drugs, food, and so on. However, the technical statistics are not always widely discussed in applied sciences. In this context, this work presents a detailed discussion including the various steps necessary for proper statistical analysis. It includes univariate parametric and nonparametric tests, as well as multivariate unsupervised and supervised approaches. The main objective of this study is to promote proper understanding of the application of various statistical tools in these spectroscopic methods used for the analysis of biological samples. The discussion of these methods is performed on a set of in vivo confocal Raman spectra of human skin analysis that aims to identify skin aging markers. In the Appendix, a complete routine of data analysis is executed in a free software that can be used by the scientific community involved in these studies.

  14. Melanopsin Phototransduction Contributes to Light-Evoked Choroidal Expansion and Rod L-Type Calcium Channel Function In Vivo

    PubMed Central

    Berkowitz, Bruce A.; Schmidt, Tiffany; Podolsky, Robert H.; Roberts, Robin

    2016-01-01

    Purpose In humans, rodents, and pigeons, the dark → light transition signals nonretinal brain tissue to increase choroidal thickness, a major control element of choroidal blood flow, and thus of photoreceptor and retinal pigment epithelium function. However, it is unclear which photopigments in the retina relay the light signal to the brain. Here, we test the hypothesis that melanopsin (Opn4)-regulated phototransduction modulates light-evoked choroidal thickness expansion in mice. Methods Two-month-old C57Bl/6 wild-type (B6), 4- to 5-month-old C57Bl/6/129S6 wild-type (B6 + S6), and 2-month-old melanopsin knockout (Opn4−/−) on a B6 + S6 background were studied. Retinal anatomy was evaluated in vivo by optical coherence tomography and MRI. Choroidal thickness in dark and light were measured by diffusion-weighted MRI. Rod cell L-type calcium channel (LTCC) function in dark and light (manganese-enhanced MRI [MEMRI]) was also measured. Results Opn4−/− mice did not show the light-evoked expansion of choroidal thickness observed in B6 and B6 + S6 controls. Additionally, Opn4−/− mice had lower than normal rod cell and inner retinal LTCC function in the dark but not in the light. These deficits were not due to structural abnormalities because retinal laminar architecture and thickness, and choroidal thickness in the Opn4−/− mice were similar to controls. Conclusions First time evidence is provided that melanopsin phototransduction contributes to dark → light control of murine choroidal thickness. The data also highlight a contribution in vivo of melanopsin phototransduction to rod cell and inner retinal depolarization in the dark. PMID:27727394

  15. Pharmacokinetic and toxicological evaluation of multi-functional thiol-6-fluoro-6-deoxy-d-glucose gold nanoparticles in vivo

    NASA Astrophysics Data System (ADS)

    Roa, Wilson; Xiong, Yeping; Chen, Jie; Yang, Xiaoyan; Song, Kun; Yang, Xiaohong; Kong, Beihua; Wilson, John; Xing, James Z.

    2012-09-01

    We synthesized a novel, multi-functional, radiosensitizing agent by covalently linking 6-fluoro-6-deoxy-d-glucose (6-FDG) to gold nanoparticles (6-FDG-GNPs) via a thiol functional group. We then assessed the bio-distribution and pharmacokinetic properties of 6-FDG-GNPs in vivo using a murine model. At 2 h, following intravenous injection of 6-FDG-GNPs into the murine model, approximately 30% of the 6-FDG-GNPs were distributed to three major organs: the liver, the spleen and the kidney. PEGylation of the 6-FDG-GNPs was found to significantly improve the bio-distribution of 6-FDG-GNPs by avoiding unintentional uptake into these organs, while simultaneously doubling the cellular uptake of GNPs in implanted breast MCF-7 adenocarcinoma. When combined with radiation, PEG-6-FDG-GNPs were found to increase the apoptosis of the MCF-7 breast adenocarinoma cells by radiation both in vitro and in vivo. Pharmacokinetic data indicate that GNPs reach their maximal concentrations at a time window of two to four hours post-injection, during which optimal radiation efficiency can be achieved. PEG-6-FDG-GNPs are thus novel nanoparticles that preferentially accumulate in targeted cancer cells where they act as potent radiosensitizing agents. Future research will aim to substitute the 18F atom into the 6-FDG molecule so that the PEG-6-FDG-GNPs can also function as radiotracers for use in positron emission tomography scanning to aid cancer diagnosis and image guided radiation therapy planning.

  16. Analysis of the in vivo confocal Raman spectral variability in human skin

    NASA Astrophysics Data System (ADS)

    Mogilevych, Borys; dos Santos, Laurita; Rangel, Joao L.; Grancianinov, Karen J. S.; Sousa, Mariane P.; Martin, Airton A.

    2015-06-01

    Biochemical composition of the skin changes in each layer and, therefore, the skin spectral profile vary with the depth. In this work, in vivo Confocal Raman spectroscopy studies were performed at different skin regions and depth profile (from the surface down to 10 μm) of the stratum corneum, to verify the variability and reproducibility of the intra- and interindividual Raman data. The Raman spectra were collected from seven healthy female study participants using a confocal Raman system from Rivers Diagnostic, with 785 nm excitation line and a CCD detector. Measurements were performed in the volar forearm region, at three different points at different depth, with the step of 2 μm. For each depth point, three spectra were acquired. Data analysis included the descriptive statistics (mean, standard deviation and residual) and Pearson's correlation coefficient calculation. Our results show that inter-individual variability is higher than intraindividual variability, and variability inside the SC is higher than on the skin surface. In all these cases we obtained r values, higher than 0.94, which correspond to high correlation between Raman spectra. It reinforces the possibility of the data reproducibility and direct comparison of in vivo results obtained with different study participants of the same age group and phototype.

  17. In vivo micro-CT analysis of bone remodeling in a rat calvarial defect model

    NASA Astrophysics Data System (ADS)

    Umoh, Joseph U.; Sampaio, Arthur V.; Welch, Ian; Pitelka, Vasek; Goldberg, Harvey A.; Underhill, T. Michael; Holdsworth, David W.

    2009-04-01

    The rodent calvarial defect model is commonly used to investigate bone regeneration and wound healing. This study presents a micro-computed tomography (micro-CT) methodology for measuring the bone mineral content (BMC) in a rat calvarial defect and validates it by estimating its precision error. Two defect models were implemented. A single 6 mm diameter defect was created in 20 rats, which were imaged in vivo for longitudinal experiments. Three 5 mm diameter defects were created in three additional rats, which were repeatedly imaged ex vivo to determine precision. Four control rats and four rats treated with bone morphogenetic protein were imaged at 3, 6, 9 and 12 weeks post-surgery. Scan parameters were 80 kVp, 0.45 mA and 180 mAs. Images were reconstructed with an isotropic resolution of 45 µm. At 6 weeks, the BMC in control animals (4.37 ± 0.66 mg) was significantly lower (p < 0.05) than that in treated rats (11.29 ± 1.01 mg). Linear regression between the BMC and bone fractional area, from 20 rats, showed a strong correlation (r2 = 0.70, p < 0.0001), indicating that the BMC can be used, in place of previous destructive analysis techniques, to characterize bone growth. The high precision (2.5%) of the micro-CT methodology indicates its utility in detecting small BMC changes in animals.

  18. Delayed near-infrared analysis permits visualization of rodent retinal pigment epithelium layer in vivo

    NASA Astrophysics Data System (ADS)

    Pankova, Natalie; Zhao, Xu; Liang, Huiyuan; Baek, David Sung Hyeon; Wang, Hai; Boyd, Shelley

    2014-07-01

    Patches of atrophy of the retinal pigment epithelium (RPE) have not been described in rodent models of retinal degeneration, as they have the clinical setting using fundus autofluorescence. We hypothesize that prelabeling the RPE would increase contrast and allow for improved visualization of RPE loss in vivo. Here, we demonstrate a new technique termed "delayed near-infrared analysis (DNIRA)" that permits ready detection of rat RPE, using optical imaging in the near-infrared (IR) spectrum with aid of indocyanine green (ICG) dye. Using DNIRA, we demonstrate a fluorescent RPE signal that is detected using confocal scanning laser ophthalmoscopy up to 28 days following ICG injection. This signal is apparent only after ICG injection, is dose dependent, requires the presence of the ICG filters (795/810 nm excitation/emission), does not appear in the IR reflectance channel, and is eliminated in the presence of sodium iodate, a toxin that causes RPE loss. Rat RPE explants confirm internalization of ICG dye. Together with normal retinal electrophysiology, these findings demonstrate that DNIRA is a new and safe noninvasive optical imaging technique for in vivo visualization of the RPE in models of retinal disease.

  19. In-vivo high resolution corneal imaging and analysis on animal models for clinical applications

    NASA Astrophysics Data System (ADS)

    Hong, Jesmond; Shinoj, V. K.; Murukeshan, V. M.; Baskaran, M.; Aung, Tin

    2015-07-01

    A simple and low cost optical probe system for the high resolution imaging of the cornea is proposed, based on a Gaussian beam epi-illumination configuration. Corneal topography is obtained by moving the scanning spot across the eye in a raster fashion whereas pachymetry data is achieved by reconstructing the images obtained at different depths. The proposed prototype has been successfully tested on porcine eye samples ex vivo and subsequently on laboratory animals, such as the New Zealand White Rabbit, in vivo. This proposed system and methodology pave the way for realizing a simple and inexpensive optical configuration for pachymetry and keratometry readings, with achievable resolution up to the cellular level. This novel and non-contact high resolution imaging modality demonstrates high intraobserver reproducibility and repeatability. Together with its sophisticated data analysis strategies and safety profile, it is believed to complement existing imaging modalities in the assessment and evaluation of corneal diseases, which enable a decrease in morbidity and improvement in the effectiveness of subsequent treatment.

  20. In vivo confocal microscopic analysis of normal human anterior limbal stroma

    PubMed Central

    Mathews, Saumi; Chidambaram, Jaya Devi; Lanjewar, Shruti; Mascarenhas, Jeena; Prajna, Namperumalsamy Venkatesh; Muthukkaruppan, Veerappan; Chidambaranathan, Gowri Priya

    2015-01-01

    Purpose To characterize the microarchitecture of the anterior limbal stroma in healthy individuals using in vivo confocal microscopy (IVCM) and to correlate it with mesenchymal stem cells (MSCs), a component of the limbal-niche. Methods The corneal side of the superior limbus was scanned in 30 eyes of 17 normal subjects beyond the basal epithelium, deep into the stroma using a HRT III laser scanning microscope. The IVCM findings were correlated with the immunohistochemical features of MSCs in the anterior limbal stroma. Results Clusters of hyperreflective structures were observed in the anterior limbal stroma, subjacent to the basal epithelium (depth: 50.2±8.7 - 98±12.8 μm), but not in the corneal stroma. The structures showed unique morphology compared to epithelial cells, keratocytes, neurons and dendritic cells. In parallel, confocal analysis of immunostained sections showed clusters of cells, double positive for MSC specific markers (CD90 and CD105) in the anterior limbal stroma at a depth of 55.3±12.7 μm to 72±37.6 μm. The organization and distribution of the MSC clusters locates them within the hyperreflective region in the anterior limbal stroma. Conclusions The hyperreflective structures, demonstrated for the first time in the human anterior limbal stroma, probably represent an important component of the limbal-niche. Our approach of in vivo imaging may pave the way for assessing the limbal stromal health. PMID:25742388

  1. A critical analysis of current in vitro and in vivo angiogenesis assays

    PubMed Central

    Staton, Carolyn A; Reed, Malcolm W R; Brown, Nicola J

    2009-01-01

    The study of angiogenesis has grown exponentially over the past 40 years with the recognition that angiogenesis is essential for numerous pathologies and, more recently, with the advent of successful drugs to inhibit angiogenesis in tumours. The main problem with angiogenesis research remains the choice of appropriate assays to evaluate the efficacy of potential new drugs and to identify potential targets within the angiogenic process. This selection is made more complex by the recognition that heterogeneity occurs, not only within the endothelial cells themselves, but also within the specific microenvironment to be studied. Thus, it is essential to choose the assay conditions and cell types that most closely resemble the angiogenic disease being studied. This is especially important when aiming to translate data from in vitro to in vivo and from preclinical to the clinic. Here we critically review and highlight recent advances in the principle assays in common use including those for endothelial cell proliferation, migration, differentiation and co-culture with fibroblasts and mural cells in vitro, vessel outgrowth from organ cultures and in vivo assays such as chick chorioallantoic membrane (CAM), zebrafish, sponge implantation, corneal, dorsal air sac, chamber and tumour angiogenesis models. Finally, we briefly discuss the direction likely to be taken in future studies, which include the use of increasingly sophisticated imaging analysis systems for data acquisition. PMID:19563606

  2. Principal components analysis of FT-Raman spectra of ex vivo basal cell carcinoma

    NASA Astrophysics Data System (ADS)

    Martin, Airton A.; Bitar Carter, Renata A.; de Oliveira Nunes, Lilian; Loschiavo Arisawa, Emilia A.; Silveira, Landulfo, Jr.

    2004-07-01

    FT-Raman spectroscopy is a modern analytical tool and it is believed that its use for skin cancer diagnosis will lead to several advantages for patients, e.g., faster results and a minimization of invasivity. This article reports results of an ex Vivo study of the FT-Raman spectra regarding differentiation between non-diseased and malignant human skin lesions, Basal Cell Carcinoma (BCC). A Nd: YAG laser at 1064nm was used as the excitation source in the FT-Raman, RFS 100/S Spectrometer, Bruker. Thirty-nine sets of human skin samples, 18 histopathologically diagnosed as non-diseased, and 21 as BCC, were obtained during routine therapeutic procedures required by the primary disease. No sample preparation was needed to promote the FT-Raman spectra collection. The main spectral features, which may differentiate the sample, were found in the shift region of Amide I (1640 to 1680 cm-1), Amide III (1220 to 1330cm-1), proteins and lipids (1400 to 1500 cm-1), amino acids (939 to 940 cm-1) and deoxyribonucleic acid (1600 to 1620cm-1). Principal Components Analysis (PCA) was applied to FT-Raman spectra of Basal Cell Carcinoma. Analysis was performed on mean-normalized and mean-centered data of the non-diseased skin and BCC spectra. The dynamic loading of PCA was expanded into 2D contour by calculating a variance-covariance matrix. PCA was used to verify the statistical differences in the sample. This technique applied over all samples identified tissue type within 83% of sensitivity and 100% specificity. The PCA technique proved efficient for analysis in skin tissue ex vivo, results were significant and coherent.

  3. Isolation and phenotypic characterization of mucosal nasal lymphocytes by direct ex vivo analysis.

    PubMed

    Wolfram, Christin; Rasche, Claudia; Audring, Heike; Wahls, Michael; Worm, Margitta

    2009-05-01

    Cellular inflammation of the nasal mucosa demonstrates a local immune response which plays an important role in allergic rhinitis. The aim of the present study was to characterize nasal mucosal lymphocytes regarding their activation and differentiation state by direct ex vivo flowcytometric analysis. Lymphocytes from the inferior turbinates were isolated by a mechanical method of preparation and, for comparison, from peripheral blood by Ficoll gradient centrifugation. Patients suffering from rhinitis or difficulty in nasal breathing were divided into an allergic (pollen-allergy, n = 13) and non-allergic group (n = 24). Expression of different T- and B-cell markers was determined by flowcytometric analysis. CD4+ T-cells from the nasal mucosa exhibited a memory phenotype (CD45RO+, 97%), were highly activated (CD69+, 43-73%), and showed low expression of the cutaneous lymphocyte antigen (CLA+, 5%). Nasal CD20+ B-lymphocytes expressed significantly higher levels of mIgE and lower levels of CD23 and CD80 than peripheral B-cells. Subsets of CD80+ (4%) and CD86+ (6%) CD20+ B-lymphocytes were identified in the nasal mucosa. No significant differences between allergic and non-allergic individuals were determined. As expected, the data show profound phenotypical differences between circulating peripheral blood and nasal mucosal lymphocytes. Activated memory lymphocytes are present in the nasal mucosa from allergic, but also non-allergic patients and may indicate to a significant role of a local inflammatory state without systemic criteria for allergy. In our study, we show that direct ex vivo isolation of lymphocytes is practicable method and offers a new technique to examine the local nasal allergic immune response using a multiparametric phenotypical analysis. PMID:18766360

  4. Automated volumetric stent analysis of in-vivo intracoronary optical coherence tomography three-dimensional datasets

    NASA Astrophysics Data System (ADS)

    Ughi, Giovanni J.; Adriaenssens, Tom; Onsea, Kevin; Dubois, Christophe; Coosemans, Mark; Sinnaeve, Peter; Desmet, Walter; D'hooge, Jan

    2011-06-01

    Intra-vascular Optical Coherence Tomography (IV-OCT) is an appropriate imaging modality for the evaluation of stent struts apposition and coverage in the coronary arteries. Most often, image analysis is performed by a time-consuming manual contour tracing process. Recently, we proposed an algorithm for fully automated lumen morphology and individual stent struts apposition/coverage quantification. In this manuscript further developments allowing for automatic segmentation of the stent contour are presented. As such, quantification of in-stent area, malapposition cross-sectional area (i.e. the area representing the space from the stent surface to the vessel wall) and coverage cross-sectional area (i.e. the area of the tissue covering the stent surface) are automatically obtained. Volumetric measurements of malapposition and coverage are then achieved through the analysis of equally-spaced consecutive IV-OCT cross-sectional images. In addition, uncovered and malapposed struts are automatically clustered through consecutive slices according to their three-dimensional spatial position. Finally, properties of each cluster (e.g. malapposition/coverage volumes and struts spatial location and distribution) are quantified allowing for a volumetric analysis of the implanted device. Validation of the algorithm was obtained taking as a reference manual measurements performed by an expert cardiologist. 102 in-vivo images, taken at random from 8 different patients, were both automatically and manually analyzed quantifying lumen and stent area. High Pearson's correlation coefficients (Rarea = 0.99) and Bland-Altman statistics, showing no significant bias and good limits of agreement, proved that the presented algorithm provides a robust and fast tool to automatically estimate apposition and coverage of stent through an entire in-vivo IV-OCT pullback. Such a tool will be important for the integration of this technology in clinical routine and large clinical trials.

  5. Detection and Analysis of SUMOylation Substrates In Vitro and In Vivo.

    PubMed

    Cedeño, Cesyen; La Monaca, Esther; Esposito, Mara; Gutierrez, Gustavo J

    2016-01-01

    SUMOylation is a widely used protein posttranslational mechanism capable of regulating substrates localization, stability, and/or activity. Identification and characterization of bona fide SUMO substrates is a laborious task but its discovery can shed light to exquisite and crucial regulatory signaling events occurring within the cell. Experiments performed in the SUMOylation field often demand a good understanding of the putative substrate's function and necessitate a solid knowledge regarding both in vitro and in vivo approaches. This contribution offers a simplified view into some of the most common experiments performed in biochemical and cell biological research of the SUMO pathway in mammalian systems. It also summarizes and updates well established protocols and tricks in order to improve the likelihood to obtain reliable and reproducible results. PMID:27613042

  6. Chemical analysis in vivo and in vitro by Raman spectroscopy – from single cells to humans

    PubMed Central

    Wachsmann-Hogiu, Sebastian; Weeks, Tyler

    2009-01-01

    Summary The gold standard for clinical diagnostics of tissues is immunofluorescence staining. Toxicity of many fluorescent dyes precludes their application in vivo. Raman spectroscopy, a chemically specific, label-free diagnostic technique, is rapidly gaining in acceptance as a powerful alternative. It has the ability to probe the chemical composition of biological materials in a nondestructive and mostly non-perturbing manner. We review the most recent developments in Raman spectroscopy in the life sciences, detailing advances in technology that have improved the ability to screen for diseases. Its role in the monitoring of biological function and mapping the intracellular chemical microenvironment will be discussed. Applications including endoscopy, surface-enhanced Raman scattering (SERS), and coherent Raman scattering (CRS) will be reviewed. PMID:19268566

  7. Analysis of body calcium (regional changes in body calcium by in vivo neutron activation analysis)

    NASA Technical Reports Server (NTRS)

    Suki, W.; Johnson, P. C.; Leblanc, A.; Evans, H. J.

    1981-01-01

    The effect of space flight on urine and fecal calcium loss was documented during the three long-term Skylab flights. Neutron activation analysis was used to determine regional calcium loss. Various designs for regional analysis were investigated.

  8. In vivo assessment of corneal barrier function through non-invasive impedance measurements using a flexible probe

    NASA Astrophysics Data System (ADS)

    Guimera, A.; Illa, X.; Traver, E.; Marchan, S.; Herrero, C.; Lagunas, C.; Maldonado, M. J.; Ivorra, A.; Villa, R.

    2013-04-01

    The cornea is a transparent structure composed of three layers: the epithelium, the stroma and the endothelium. To maintain its ransparency the stroma remains in a constant state of dehydration. Consequently, any ion flow disorder through the covering layers can compromise the barrier function and, therefore the corneal homeostasis. Since ionic permeability has a fundamental impact on the passive electrical properties of living tissues, in this work it is proposed and demonstrated a diagnosis method based on tetrapolar impedance measurements performed by electrodes placed on the corneal surface. The contribution of each cornea layer to the total measured impedance has been analysed over a frequency range. Following the obtained guidelines, a flexible probe with integrated electrodes has been developed and manufactured using SU-8 photoresin. The feasibility of the proposed method has been evaluated in vivo by monitoring corneal epithelium wound healing. Obtained impedance measurements have been compared with measurements of permeability to sodium fluorescein from different excised corneas. Successful results demonstrate the feasibility of this novel flexible sensor and its capability to quantify corneal permeability in vivo in a noninvasive way.

  9. Structure-function studies of STAR family Quaking proteins bound to their in vivo RNA target sites

    SciTech Connect

    Teplova, Marianna; Hafner, Markus; Teplov, Dmitri; Essig, Katharina; Tuschl, Thomas; Patel, Dinshaw J.

    2013-09-27

    Mammalian Quaking (QKI) and its Caenorhabditis elegans homolog, GLD-1 (defective in germ line development), are evolutionarily conserved RNA-binding proteins, which post-transcriptionally regulate target genes essential for developmental processes and myelination. We present X-ray structures of the STAR (signal transduction and activation of RNA) domain, composed of Qua1, K homology (KH), and Qua2 motifs of QKI and GLD-1 bound to high-affinity in vivo RNA targets containing YUAAY RNA recognition elements (RREs). The KH and Qua2 motifs of the STAR domain synergize to specifically interact with bases and sugar-phosphate backbones of the bound RRE. Qua1-mediated homodimerization generates a scaffold that enables concurrent recognition of two RREs, thereby plausibly targeting tandem RREs present in many QKI-targeted transcripts. Structure-guided mutations reduced QKI RNA-binding affinity in vitro and in vivo, and expression of QKI mutants in human embryonic kidney cells (HEK293) significantly decreased the abundance of QKI target mRNAs. Overall, our studies define principles underlying RNA target selection by STAR homodimers and provide insights into the post-transcriptional regulatory function of mammalian QKI proteins.

  10. Toll-like receptor 3 regulates cord blood-derived endothelial cell function in vitro and in vivo.

    PubMed

    Grelier, Aurore; Cras, Audrey; Balitrand, Nicole; Delmau, Catherine; Lecourt, Séverine; Lepelletier, Yves; Riesterer, Hélène; Freida, Delphine; Lataillade, Jean-Jacques; Lebousse-Kerdiles, Marie-Caroline; Cuccini, Wendy; Peffault de Latour, Regis; Marolleau, Jean-Pierre; Uzan, Georges; Larghero, Jérôme; Vanneaux, Valérie

    2013-10-01

    Circulating endothelial progenitor cells (cEPC) are capable of homing to neovascularisation sites, in which they proliferate and differentiate into endothelial cells. Transplantation of cEPC-derived cells, in particular those isolated from umbilical cord blood (UCB), has emerged as a promising approach in the treatment of cardio-vascular diseases. After in vivo transplantation, these cells may be exposed to local or systemic inflammation or pathogens, of which they are a common target. Because Toll-like receptors (TLR) are critical in detecting pathogens and in initiating inflammatory responses, we hypothesized that TLR may govern UCB cEPC-derived cells function. While these cells expressed almost all TLR, we found that only TLR3 dramatically impaired cell properties. TLR3 activation inhibited cell proliferation, modified cell cycle entry, impaired the in vitro angiogenic properties and induced pro-inflammatory cytokines production. The anti-angiogenic effect of TLR3 activation was confirmed in vivo in a hind-limb ischemic mice model. Moreover, TLR3 activation consistently leads to an upregulation of miR-29b, -146a and -155 and to a deregulation of cytoskeleton and cell cycle regulator. Hence, TLR3 activation is likely to be a key regulator of cEPC-derived cells properties.

  11. Optimization of a Model Corrected Blood Input Function from Dynamic FDG-PET Images of Small Animal Heart In Vivo

    PubMed Central

    Zhong, Min; Kundu, Bijoy K.

    2013-01-01

    Quantitative evaluation of dynamic Positron Emission Tomography (PET) of mouse heart in vivo is challenging due to the small size of the heart and limited intrinsic spatial resolution of the PET scanner. Here, we optimized a compartment model which can simultaneously correct for spill over and partial volume effects for both blood pool and the myocardium, compute kinetic rate parameters and generate model corrected blood input function (MCBIF) from ordered subset expectation maximization – maximum a posteriori (OSEM-MAP) cardiac and respiratory gated 18F-FDG PET images of mouse heart with attenuation correction in vivo, without any invasive blood sampling. Arterial blood samples were collected from a single mouse to indicate the feasibility of the proposed method. In order to establish statistical significance, venous blood samples from n=6 mice were obtained at 2 late time points, when SP contamination from the tissue to the blood is maximum. We observed that correct bounds and initial guesses for the PV and SP coefficients accurately model the wash-in and wash-out dynamics of the tracer from mouse blood. The residual plot indicated an average difference of about 1.7% between the blood samples and MCBIF. The downstream rate of myocardial FDG influx constant, Ki (0.15±0.03 min−1), compared well with Ki obtained from arterial blood samples (P=0.716). In conclusion, the proposed methodology is not only quantitative but also reproducible. PMID:24741130

  12. Mouse and zebrafish Hoxa3 orthologues have nonequivalent in vivo protein function.

    PubMed

    Chen, Lizhen; Zhao, Peng; Wells, Lance; Amemiya, Chris T; Condie, Brian G; Manley, Nancy R

    2010-06-01

    Hox genes play evolutionarily conserved roles in specifying axial position during embryogenesis. A prevailing paradigm is that changes in Hox gene expression drive evolution of metazoan body plans. Conservation of Hox function across species, and among paralogous Hox genes within a species, supports a model of functional equivalence. In this report, we demonstrate that zebrafish hoxa3a (zfhoxa3a) expressed from the mouse Hoxa3 locus can substitute for mouse Hoxa3 in some tissues, but has distinct or null phenotypes in others. We further show, by using an allele encoding a chimeric protein, that this difference maps primarily to the zfhoxa3a C-terminal domain. Our data imply that the mouse and zebrafish proteins have diverged considerably since their last common ancestor, and that the major difference between them resides in the C-terminal domain. Our data further show that Hox protein function can evolve independently in different cell types or for specific functions. The inability of zfhoxa3a to perform all of the normal roles of mouse Hoxa3 illustrates that Hox orthologues are not always functionally interchangeable. PMID:20498049

  13. Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo.

    PubMed

    Boussadia, Baddreddine; Gangarossa, Giuseppe; Mselli-Lakhal, Laila; Rousset, Marie-Claude; de Bock, Frederic; Lassere, Frederic; Ghosh, Chaitali; Pascussi, Jean-Marc; Janigro, Damir; Marchi, Nicola

    2016-09-01

    Nuclear receptors (NRs) are a group of transcription factors emerging as players in normal and pathological CNS development. Clinically, an association between the constitutive androstane NR (CAR) and cognitive impairment was proposed, however never experimentally investigated. We wished to test the hypothesis that the impact of CAR on neurophysiology and behavior is underlined by cerebrovascular-neuronal modifications. We have used CAR(-/-) C57BL/6 and wild type mice and performed a battery of behavioral tests (recognition, memory, motor coordination, learning and anxiety) as well as longitudinal video-electroencephalographic recordings (EEG). Brain cell morphology was assessed using 2-photon or electron microscopy and fluorescent immunohistochemistry. We observed recognition memory impairment and increased anxiety-like behavior in CAR(-/-) mice, while locomotor activity was not affected. Concomitantly to memory deficits, EEG monitoring revealed a decrease in 3.5-7Hz waves during the awake/exploration and sleep periods. Behavioral and EEG abnormalities in CAR(-/-) mice mirrored structural changes, including tortuous fronto-parietal penetrating vessels. At the cellular level we found reduced ZO-1, but not CLDN5, tight junction protein expression in cortical and hippocampal isolated microvessel preparations. Interestingly, the neurotoxin kainic acid, when injected peripherally, provoked a rapid onset of generalized convulsions in CAR(-/-) as compared to WT mice, supporting the hypothesis of vascular permeability. The morphological phenotype of CAR(-/-) mice also included some modifications of GFAP/IBA1 glial cells in the parenchymal or adjacent to collagen-IV(+) or FITC(+) microvessels. Neuronal defects were also observed including increased cortical NEUN(+) cell density, hippocampal granule cell dispersion and increased NPY immunoreactivity in the CA1 region in CAR(-/-) mice. The latter may contribute to the in vivo phenotype. Our results indicate that behavioral

  14. Functionalized carbon nanotube reinforced scaffolds for bone regenerative engineering: fabrication, in vitro and in vivo evaluation.

    PubMed

    Mikael, Paiyz E; Amini, Ami R; Basu, Joysurya; Josefina Arellano-Jimenez, M; Laurencin, Cato T; Sanders, Mary M; Barry Carter, C; Nukavarapu, Syam P

    2014-06-01

    Designing biodegradable scaffolds with bone-compatible mechanical properties has been a significant challenge in the field of bone tissue engineering and regenerative engineering. The objective of this work is to improve the polymeric scaffold's mechanical strength by compositing it with mechanically superior carbon nanotubes. Poly(lactide-co-glycolide) (PLGA) microsphere scaffolds exhibit mechanical properties in the range of human cancellous bone. On the other hand, carbon nanotubes have outstanding mechanical properties. The aim of this study is to improve further the mechanical strength of PLGA scaffolds such that they may be applicable for a wide range of load-bearing repair and regeneration applications. We have formed composite microspheres of PLGA containing pristine and modified (with hydroxyl (OH), carboxylic acid (COOH)) multi-walled carbon nanotubes (MWCNTs), and fabricated them into three-dimensional porous scaffolds. Results show that by adding only 3% MWCNTs, the compressive strength and modulus was significantly increased (35 MPa, 510.99 MPa) compared to pure PLGA scaffolds (19 MPa and 166.38 MPa). Scanning electron microscopy images showed excellent cell adhesion and proliferation. In vitro studies exhibited good cell viability, proliferation and mineralization. The in vivo study, however, indicated differences in inflammatory response throughout the 12 weeks of implantation, with OH-modified MWCNTs having the least response, followed by unmodified and COOH-modified exhibiting a more pronounced response. Overall, our results show that PLGA scaffolds containing water-dispersible MWCNTs are mechanically stronger and display good cellular and tissue compatibility, and hence are potential candidates for load-bearing bone tissue engineering. PMID:24687391

  15. Lack of CAR impacts neuronal function and cerebrovascular integrity in vivo.

    PubMed

    Boussadia, Baddreddine; Gangarossa, Giuseppe; Mselli-Lakhal, Laila; Rousset, Marie-Claude; de Bock, Frederic; Lassere, Frederic; Ghosh, Chaitali; Pascussi, Jean-Marc; Janigro, Damir; Marchi, Nicola

    2016-09-01

    Nuclear receptors (NRs) are a group of transcription factors emerging as players in normal and pathological CNS development. Clinically, an association between the constitutive androstane NR (CAR) and cognitive impairment was proposed, however never experimentally investigated. We wished to test the hypothesis that the impact of CAR on neurophysiology and behavior is underlined by cerebrovascular-neuronal modifications. We have used CAR(-/-) C57BL/6 and wild type mice and performed a battery of behavioral tests (recognition, memory, motor coordination, learning and anxiety) as well as longitudinal video-electroencephalographic recordings (EEG). Brain cell morphology was assessed using 2-photon or electron microscopy and fluorescent immunohistochemistry. We observed recognition memory impairment and increased anxiety-like behavior in CAR(-/-) mice, while locomotor activity was not affected. Concomitantly to memory deficits, EEG monitoring revealed a decrease in 3.5-7Hz waves during the awake/exploration and sleep periods. Behavioral and EEG abnormalities in CAR(-/-) mice mirrored structural changes, including tortuous fronto-parietal penetrating vessels. At the cellular level we found reduced ZO-1, but not CLDN5, tight junction protein expression in cortical and hippocampal isolated microvessel preparations. Interestingly, the neurotoxin kainic acid, when injected peripherally, provoked a rapid onset of generalized convulsions in CAR(-/-) as compared to WT mice, supporting the hypothesis of vascular permeability. The morphological phenotype of CAR(-/-) mice also included some modifications of GFAP/IBA1 glial cells in the parenchymal or adjacent to collagen-IV(+) or FITC(+) microvessels. Neuronal defects were also observed including increased cortical NEUN(+) cell density, hippocampal granule cell dispersion and increased NPY immunoreactivity in the CA1 region in CAR(-/-) mice. The latter may contribute to the in vivo phenotype. Our results indicate that behavioral

  16. BEN domain protein Elba2 can functionally substitute for linker histone H1 in Drosophila in vivo

    PubMed Central

    Xu, Na; Lu, Xingwu; Kavi, Harsh; Emelyanov, Alexander V.; Bernardo, Travis J.; Vershilova, Elena; Skoultchi, Arthur I.; Fyodorov, Dmitry V.

    2016-01-01

    Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D. melanogaster, except for an embryo-specific, distantly related dBigH1. Here we show that Drosophila BEN domain protein Elba2, which is expressed in early embryos and was hypothesized to have insulator-specific functions, can compensate for the loss of H1 in vivo. Although the Elba2 gene is not essential, its mutation causes a disruption of normal internucleosomal spacing of chromatin and reduced nuclear compaction in syncytial embryos. Elba2 protein is distributed ubiquitously in polytene chromosomes and strongly colocalizes with H1. In H1-depleted animals, ectopic expression of Elba2 rescues the increased lethality and ameliorates abnormalities of chromosome architecture and heterochromatin functions. We also demonstrate that ectopic expression of BigH1 similarly complements the deficiency of H1 protein. Thus, in organisms that do not express redundant H1 isoforms, the structural and biological functions performed by canonical linker histones in later development, may be shared in early embryos by weakly homologous proteins, such as BigH1, or even unrelated, non-homologous proteins, such as Elba2. PMID:27687115

  17. Proliferation of Functional Hair Cells in Vivo in the Absence of the Retinoblastoma Protein

    NASA Astrophysics Data System (ADS)

    Sage, Cyrille; Huang, Mingqian; Karimi, Kambiz; Gutierrez, Gabriel; Vollrath, Melissa A.; Zhang, Duan-Sun; García-Añoveros, Jaime; Hinds, Philip W.; Corwin, Jeffrey T.; Corey, David P.; Chen, Zheng-Yi

    2005-02-01

    In mammals, hair cell loss causes irreversible hearing and balance impairment because hair cells are terminally differentiated and do not regenerate spontaneously. By profiling gene expression in developing mouse vestibular organs, we identified the retinoblastoma protein (pRb) as a candidate regulator of cell cycle exit in hair cells. Differentiated and functional mouse hair cells with a targeted deletion of Rb1 undergo mitosis, divide, and cycle, yet continue to become highly differentiated and functional. Moreover, acute loss of Rb1 in postnatal hair cells caused cell cycle reentry. Manipulation of the pRb pathway may ultimately lead to mammalian hair cell regeneration.

  18. Measurements of fluorine in contemporary urban Canadians: a comparison of the levels found in human bone using in vivo and ex vivo neutron activation analysis.

    PubMed

    Mostafaei, F; McNeill, F E; Chettle, D R; Wainman, B C; Pidruczny, A E; Prestwich, W V

    2015-03-01

    Non-invasive in vivo neutron activation analysis (NAA) was used to measure the fluorine concentration in 35 people in Hamilton, Ontario, Canada. Measurement and precision data of this second generation NAA system were determined in 2013, and the results were compared with the performance of a first generation system used in a pilot study of 33 participants from the Hamilton area in 2008. Improvements in precision in line with those predicted by phantom studies were observed, but the use of fewer technicians during measurement seemed adversely to affect performance. We compared the levels of fluorine observed in people between the two studies and found them to be comparable. The average fluorine concentration in bone was found to be 3  ±  0.3 mg and 3.5  ±  0.4 mg F/g Ca for 2013 and 2008 measurements respectively. Ten people were measured in both studies; the observed average change in bone fluorine in this subgroup was consistent with that predicted by the observation of the relationship between bone fluorine and age in the wider group. In addition, we observed differences in the relationship between bone fluorine level and age between men and women, which may be attributable either to sex or gender differences. The rate of increase in fluorine content for men was found to be 0.096  ±  0.022 mg F/g Ca per year while the rate of increase for women was found to be slightly less than half that of men, 0.041  ±  0.017 mg F/g Ca per year. A discontinuity in the rate of increase in fluorine content with age was observed in women at around age 50. Bone fluorine content was significantly lower ([Formula: see text]) in women age 50 to 59 than in women age 40 to 49, which we suggest may be attributable to bone metabolism changes associated with menopause. We also observed increased fluorine levels in tea drinkers as compared to non-tea drinkers, suggesting tea may be a significant source of exposure in Canada. The rate of increase in fluorine

  19. In vivo and in vitro analyses of recombinant baculoviruses lacking a functional cg30 gene.

    PubMed

    Passarelli, A L; Miller, L K

    1994-02-01

    The cg30 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) encodes two sequence motifs, a zinc finger-like motif and a leucine zipper, found in other polypeptides known to be involved in gene regulation. To gain insight into the function of the cg30 product, CG30, we constructed and characterized recombinant viruses lacking a functional cg30 gene. We found that cg30 mutants had no striking phenotype in cell lines derived from Spodoptera frugiperda or Trichoplusia ni or in T. ni larvae. Although cg30 is known to be transcribed as an early monocistronic RNA and as the second cistron of an abundant late bicistronic RNA, production of a CG30-beta-galactosidase fusion protein was observed mainly at early times postinfection. Viruses containing cg30 had a subtle growth advantage over those lacking cg30 after several viral passages in cell culture. We employed transient expression assays to determine whether cg30 and pe-38, an AcMNPV gene that encodes a polypeptide with zinc finger-like and leucine zipper motifs similar to those of cg30, have redundant functions. Although pe-38 may have a role in AcMNPV gene expression, there was no indication that cg30 and pe-38 are functionally redundant.

  20. Functional analysis of inappropriate mealtime behaviors.

    PubMed

    Piazza, Cathleen C; Fisher, Wayne W; Brown, Kimberly A; Shore, Bridget A; Patel, Meeta R; Katz, Richard M; Sevin, Bart M; Gulotta, Charles S; Blakely-Smith, Audrey

    2003-01-01

    The purpose of the current investigation was to apply the functional analysis described by Iwata, Dorsey, Slifer, Bauman, and Richman (1982/1994) to the inappropriate mealtime behaviors of 15 children who had been referred to an intensive program for the assessment and treatment of severe feeding disorders. During Study 1, we conducted descriptive assessments of children and parents during meals. The results of Study 1 showed that parents used the following consequences for inappropriate mealtime behaviors: coaxing and reprimanding, allowing the child to periodically take a break from or avoid eating, and giving the child preferred food or toys following inappropriate behavior. The effects of these consequences were tested systematically in Study 2 when we conducted analogue functional analyses with the children. During alternating meals, one of the consequences typically used by parents consistently followed inappropriate child behavior. Results indicated that these consequences actually worsened behavior for 10 of the 15 children (67%). These results suggested that the analogue functional analysis described by Iwata et al. may be useful in identifying the environmental events that play a role in feeding disorders.

  1. In vivo deuteration strategies for neutron scattering analysis of bacterial polyhydroxyoctanoate.

    PubMed

    Russell, Robert A; Holden, Peter J; Wilde, Karyn L; Garvey, Christopher J; Hammerton, Kerie M; Foster, L John R

    2008-06-01

    The cultivation of microorganisms on deuterated substrates has allowed us to control deuterium incorporation into biopolymer systems which is important for characterisation using neutron scattering techniques. Bacterial polyhydroxyoctanoate (PHO) is a polyester formed within inclusions inside bacterial cells and was deuterated in vivo under various conditions to characterise the formation of these inclusions by neutron scattering. Manipulation of deuterated media during microbial growth and PHO production phases resulted in polymer with partial or complete substitution of hydrogen by deuterium, as shown by gas chromatography. Sequential feeding of hydrogenated and deuterated forms of the same precursor was used to demonstrate that neutron scattering analysis could be used to differentiate between chemically similar phases in these polymer inclusions. PMID:18481053

  2. A feasibility study of the in vivo prompt gamma activation analysis using a mobile nuclear reactor.

    PubMed

    Chung, C; Yuan, L J; Chen, K B; Weng, P S; Chang, P S; Ho, Y H

    1985-05-01

    A facility for in vivo prompt gamma activation analysis using moderated neutron beams from a 0.1 W mobile nuclear reactor is described. The low-power nuclear reactor provides total neutron flux of 3.3 X 10(4)n cm-2 s-1 on the surface of a vertical beam tube to which a liquid phantom is positioned. The capability of such a partial-body irradiation facility is demonstrated by measuring trace amounts of toxic cadmium in kidney. The detection limit of Cd in kidney for a skin dose of 1.66 mSv (166 mrem) is 1.34 mg under 500 s irradiation. This facility therefore combines the advantages of mobility with high sensitivity of detection of a toxic element under low neutron and gamma doses.

  3. Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming.

    PubMed

    Islam, Mohammed M; Smith, Derek K; Niu, Wenze; Fang, Sanhua; Iqbal, Nida; Sun, Guoqiang; Shi, Yanhong; Zhang, Chun-Li

    2015-11-10

    The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. PMID:26607952

  4. Enhancer Analysis Unveils Genetic Interactions between TLX and SOX2 in Neural Stem Cells and In Vivo Reprogramming

    PubMed Central

    Islam, Mohammed M.; Smith, Derek K.; Niu, Wenze; Fang, Sanhua; Iqbal, Nida; Sun, Guoqiang; Shi, Yanhong; Zhang, Chun-Li

    2015-01-01

    Summary The orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo. Knockdown experiments further reveal that SOX2 dominantly controls endogenous expression of TLX, whereas MYT1 only plays a modulatory role. Importantly, TLX is essential for SOX2-mediated in vivo reprogramming of astrocytes and itself is also sufficient to induce neurogenesis in the adult striatum. Together, these findings unveil functional genetic interactions among transcription factors that are critical to NSCs and in vivo cell reprogramming. PMID:26607952

  5. Synthesis, in vitro, and in vivo evaluation of novel functionalized quaternary ammonium curcuminoids as potential anti-cancer agents.

    PubMed

    Solano, Lucas N; Nelson, Grady L; Ronayne, Conor T; Lueth, Erica A; Foxley, Melissa A; Jonnalagadda, Sravan K; Gurrapu, Shirisha; Mereddy, Venkatram R

    2015-12-15

    Novel functionalized quaternary ammonium curcuminoids have been synthesized from piperazinyl curcuminoids and Baylis-Hillman reaction derived allyl bromides. These molecules are found to be highly water soluble with increased cytotoxicity compared to native curcumin against three cancer cell lines MIAPaCa-2, MDA-MB-231, and 4T1. Preliminary in vivo toxicity evaluation of a representative curcuminoid 5a in healthy mice indicates that this molecule is well tolerated based on normal body weight gains compared to control group. Furthermore, the efficacy of 5a has been tested in a pancreatic cancer xenograft model of MIAPaCa-2 and has been found to exhibit good tumor growth inhibition as a single agent and also in combination with clinical pancreatic cancer drug gemcitabine. PMID:26561365

  6. Functional Identification of Tumor Suppressor Genes Through an in vivo RNA Interference Screen in a Mouse Lymphoma Model

    PubMed Central

    Bric, Anka; Miething, Cornelius; Bialucha, Carl Uli; Scuoppo, Claudio; Zender, Lars; Krasnitz, Alexander; Xuan, Zhenyu; Zuber, Johannes; Wigler, Michael; Hicks, James; McCombie, Richard W.; Hemann, Michael T.; Hannon, Gregory J.; Powers, Scott; Lowe, Scott W.

    2009-01-01

    SUMMARY Short hairpin RNAs (shRNAs) capable of stably suppressing gene function by RNA interference (RNAi) can mimic tumor suppressor gene loss in mice. By selecting for shRNAs capable of accelerating lymphomagenesis in a well-characterized mouse lymphoma model, we identified over ten candidate tumor suppressors, including Sfrp1, Numb, Mek1, and Angiopoietin 2. Several components of the DNA damage response machinery were also identified, including Rad17, which acts as a haploinsufficient tumor suppressor that responds to oncogenic stress and whose loss is associated with poor prognosis in human patients. Our results emphasize the utility of in vivo RNAi screens, identify and validate a diverse set of tumor suppressors, and have therapeutic implications. PMID:19800577

  7. Functional Analysis of Arabidopsis Sucrose Transporters

    SciTech Connect

    John M. Ward

    2009-03-31

    Sucrose is the main photosynthetic product that is transported in the vasculature of plants. The long-distance transport of carbohydrates is required to support the growth and development of net-importing (sink) tissues such as fruit, seeds and roots. This project is focused on understanding the transport mechanism sucrose transporters (SUTs). These are proton-coupled sucrose uptake transporters (membrane proteins) that are required for transport of sucrose in the vasculature and uptake into sink tissues. The accomplishments of this project included: 1) the first analysis of substrate specificity for any SUT. This was accomplished using electrophysiology to analyze AtSUC2, a sucrose transporter from companion cells in Arabidopsis. 2) the first analysis of the transport activity for a monocot SUT. The transport kinetics and substrate specificity of HvSUT1 from barley were studied. 3) the first analysis of a sucrose transporter from sugarcane. and 4) the first analysis of transport activity of a sugar alcohol transporter homolog from plants, AtPLT5. During this period four primary research papers, funded directly by the project, were published in refereed journals. The characterization of several sucrose transporters was essential for the current effort in the analysis of structure/function for this gene family. In particular, the demonstration of strong differences in substrate specificity between type I and II SUTs was important to identify targets for site-directed mutagenesis.

  8. Enhanced Control of In Vivo Bone Formation with Surface Functionalized Alginate Microbeads Incorporating Heparin and Human Bone Morphogenetic Protein-2

    PubMed Central

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong

    2013-01-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this “naive carriers” into “mini-reservoirs” for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C2C12 cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to

  9. Enhanced control of in vivo bone formation with surface functionalized alginate microbeads incorporating heparin and human bone morphogenetic protein-2.

    PubMed

    Abbah, Sunny Akogwu; Liu, Jing; Goh, James Cho Hong; Wong, Hee-Kit

    2013-02-01

    In this study, we tested the hypothesis that a surface functionalization delivery platform incorporating heparin onto strontium alginate microbeads surfaces would convert this "naive carriers" into "mini-reservoirs" for localized in vivo delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2) that will induce functional bone regeneration. In vitro evaluation confirmed that (1) heparin incorporation could immobilize and prolong rhBMP-2 release for approximately 3 weeks; (2) a significant decrease (p<0.01) in rhBMP-2 burst release is attainable depending on initial protein load; and (3) rhBMP-2 released from surface functionalized microbeads retained bioactivity and stimulated higher alkaline phosphatase activity in cultured C(2)C(12) cells when compared with daily administration of fresh bolus rhBMP-2. Subsequently, surface functionalized microbeads were used for in vivo delivery of rhBMP-2 at local sites of posterolateral spinal fusion surgery in rats. The microbeads were loaded into the pores of medical-grade polyepsilone caprolactone-tricalcium phosphate scaffolds before implantation. Results revealed robust bone formation and a biomechanically solid fusion after 6 weeks. When compared with a control group consisting of an equivalent amount of rhBMP-2 that was directly adsorbed onto bare-surfaced microbeads with no heparin, a 5.3-fold increase in bone volume fraction and a 2.6-fold increase in bending stiffness (flexion/extension) were observed. When compared with collagen sponge carriers of rhBMP-2, a 1.5-fold and a 1.3-fold increase in bone volume fraction and bending stiffness were observed, respectively. More importantly, 3D micro-computed tomography images enabled the visualization of a well-contained newly formed bone at ipsilateral implant sites with surface functionalized rhBMP-2 delivery. This was absent with collagen sponge carriers where newly formed bone tissue was poorly contained and crossed over the posterior midline to contralateral

  10. In Vivo Maturation of Functional Renal Organoids Formed from Embryonic Cell Suspensions

    PubMed Central

    Benedetti, Valentina; Rizzo, Paola; Abbate, Mauro; Corna, Daniela; Azzollini, Nadia; Conti, Sara; Unbekandt, Mathieu; Davies, Jamie A.; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2012-01-01

    The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney. PMID:23085631

  11. In vivo maturation of functional renal organoids formed from embryonic cell suspensions.

    PubMed

    Xinaris, Christodoulos; Benedetti, Valentina; Rizzo, Paola; Abbate, Mauro; Corna, Daniela; Azzollini, Nadia; Conti, Sara; Unbekandt, Mathieu; Davies, Jamie A; Morigi, Marina; Benigni, Ariela; Remuzzi, Giuseppe

    2012-11-01

    The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.

  12. Macrophage functions measured by magnetic microparticles in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Möller, Winfried; Kreyling, Wolfgang G.; Kohlhäufl, Martin; Häussinger, Karl; Heyder, Joachim

    2001-01-01

    Monodisperse ferrimagnetic iron-oxide particles of 1.4 μm geometric diameter were used to study alveolar macrophage functions (phagocytosis, phagosome transport) and cytoskeletal integrity in healthy subjects and in patients with idiopathic pulmonary fibrosis as well as in cultured macrophages. Dysfunctions in phagocytosis, in phagosome transport and cytoskeletal integrity correlated with an impaired alveolar clearance and could be induced in vitro by cytoskeletal drugs.

  13. Effects of TAK-637, a novel neurokinin-1 receptor antagonist, on colonic function in vivo.

    PubMed

    Okano, S; Nagaya, H; Ikeura, Y; Natsugari, H; Inatomi, N

    2001-08-01

    Substance P (SP) is an important neurotransmitter that mediates various gut functions; however, its precise pathophysiological role remains unclear. In this study, we investigated the effect of SP on colonic function and the effect of TAK-637 [(aR,9R)-7-[3,5-bis(trifluoromethyl)benzyl]-8,9,10,11-tetrahydro-9-methyl-5-(4-methylphenyl)-7H-[1,4]diazocino[2,1-g][1,7]naphthyridine-6,13-dione] a new neurokinin-1 (NK1) receptor antagonist, on colonic responses to SP or stress in Mongolian gerbils. SP and the selective NK1 agonist [pGlu6]SP6-11 significantly increased fecal pellet output. TAK-637 reduced [pGlu6]SP6-11-induced defecation, but did not significantly affect neurokinin A-, 5-hydroxytryptamine- or carbachol-stimulated defecation. Oral TAK-637 decreased restraint stress-stimulated fecal pellet output with an ID50 value of 0.33 mg/kg. Ondansetron and atropine, but not the peripheral kappa-receptor agonist trimebutine, also reduced restraint stress-stimulated defecation. TAK-637 inhibited the increase in fecal pellet output stimulated by intracerebroventricular injection of corticotropin-releasing factor, but did not affect the stress-induced increase in plasma adrenocorticotropic hormone levels. Denervation of the sensory neurons with capsaicin did not affect stress-stimulated defecation. These results suggest that NK1 receptors in the enteric plexus play an important role in stress-induced changes in colonic function, and that TAK-637 may be useful in the treatment of functional bowel diseases such as irritable bowel syndrome. PMID:11454917

  14. Context-Dependent Functional Divergence of the Notch Ligands DLL1 and DLL4 In Vivo

    PubMed Central

    Preuße, Kristina; Tveriakhina, Lena; Schuster-Gossler, Karin; Gaspar, Cláudia; Rosa, Alexandra Isabel; Henrique, Domingos; Gossler, Achim; Stauber, Michael

    2015-01-01

    Notch signalling is a fundamental pathway that shapes the developing embryo and sustains adult tissues by direct communication between ligand and receptor molecules on adjacent cells. Among the ligands are two Delta paralogues, DLL1 and DLL4, that are conserved in mammals and share a similar structure and sequence. They activate the Notch receptor partly in overlapping expression domains where they fulfil redundant functions in some processes (e.g. maintenance of the crypt cell progenitor pool). In other processes, however, they appear to act differently (e.g. maintenance of foetal arterial identity) raising the questions of how similar DLL1 and DLL4 really are and which mechanism causes the apparent context-dependent divergence. By analysing mice that conditionally overexpress DLL1 or DLL4 from the same genomic locus (Hprt) and mice that express DLL4 instead of DLL1 from the endogenous Dll1 locus (Dll1Dll4ki), we found functional differences that are tissue-specific: while DLL1 and DLL4 act redundantly during the maintenance of retinal progenitors, their function varies in the presomitic mesoderm (PSM) where somites form in a Notch-dependent process. In the anterior PSM, every cell expresses both Notch receptors and ligands, and DLL1 is the only activator of Notch while DLL4 is not endogenously expressed. Transgenic DLL4 cannot replace DLL1 during somitogenesis and in heterozygous Dll1Dll4ki/+ mice, the Dll1Dll4ki allele causes a dominant segmentation phenotype. Testing several aspects of the complex Notch signalling system in vitro, we found that both ligands have a similar trans-activation potential but that only DLL4 is an efficient cis-inhibitor of Notch signalling, causing a reduced net activation of Notch. These differential cis-inhibitory properties are likely to contribute to the functional divergence of DLL1 and DLL4. PMID:26114479

  15. Functional characterization of dopamine transporter in vivo using Drosophila melanogaster behavioral assays.

    PubMed

    Ueno, Taro; Kume, Kazuhiko

    2014-01-01

    Dopamine mediates diverse functions such as motivation, reward, attention, learning/memory and sleep/arousal. Recent studies using model organisms including the fruit fly, have elucidated various physiological functions of dopamine, and identified specific neural circuits for these functions. Flies with mutations in the Drosophila dopamine transporter (dDAT) gene show enhanced dopamine signaling, and short sleep and memory impairment phenotypes. However, understanding the mechanism by which dopamine signaling causes these phenotypes requires an understanding of the dynamics of dopamine release. Here we report the effects of dDAT expression on behavioral traits. We show that dDAT expression in a subset of dopaminergic neurons is sufficient for normal sleep. dDAT expression in other cell types such as Kenyon cells and glial cells can also rescue the short sleep phenotype of dDAT mutants. dDAT mutants also show a down-regulation of the D1-like dopamine receptor dDA1, and this phenotype is rescued when dDAT is expressed in the same cell types in which it rescues sleep. On the other hand, dDAT overexpression in mushroom bodies, which are the target of memory forming dopamine neurons, abolishes olfactory aversive memory. Our data demonstrate that expression of extrasynaptic dopamine transporters can rescue some aspects of dopamine signaling in dopamine transporter mutants. These results provide novel insights into regulatory systems that modulate dopamine signaling. PMID:25232310

  16. FFTF Plant transition function analysis report

    SciTech Connect

    Lund, D.P.; FFTF Working Group

    1995-09-01

    The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and function hierarchy charts that describe what needs to be performed to deactivate FFTF.

  17. Selective Delivery of an Anticancer Drug with Aptamer-Functionalized Liposomes to Breast Cancer Cells in Vitro and in Vivo

    PubMed Central

    Xing, Hang; Tang, Li; Yang, Xujuan; Hwang, Kevin; Wang, Wendan; Yin, Qian; Wong, Ngo Yin; Dobrucki, Lawrence W.; Yasui, Norio; Katzenellenbogen, John A.; Helferich, William G.; Cheng, Jianjun; Lu, Yi

    2013-01-01

    Selective targeting of cancer cells is a critical step in cancer diagnosis and therapy. To address this need, DNA aptamers have attracted significant attention as possible targeting ligands. However, while their use in targeting cancer cells in vitro has been reported, their effectiveness has rarely been established in vivo. Here we report the development of a liposomal drug delivery system for targeted anticancer chemotherapy. Liposomes were prepared containing doxorubicin as a payload, and functionalized with AS1411, a DNA aptamer with strong binding affinity for nucleolin. AS1411 aptamer-functionalized liposomes increased cellular internalization and cytotoxicity to MCF-7 breast cancer cells as compared to non-targeting liposomes. Furthermore, targeted liposomal doxorubicin improved antitumor efficacy against xenograft MCF-7 breast tumors in athymic nude mice, attributable to their enhanced tumor tissue penetration. This study suggests that AS1411 aptamer-functionalized liposomes can recognize nucleolin overexpressed on MCF-7 cell surface, and therefore enable drug delivery with high specificity and selectivity. PMID:24159374

  18. The Alterations in the Expression and Function of P-Glycoprotein in Vitamin A-Deficient Rats as well as the Effect of Drug Disposition in Vivo.

    PubMed

    Wang, Yubang; Qin, Heng; Zhang, Chengxiang; Huan, Fei; Yan, Ting; Zhang, Lulu

    2015-12-29

    This study was aimed to investigate whether vitamin A deficiency could alter P-GP expression and function in tissues of rats and whether such effects affected the drug distribution in vivo of vitamin A-deficient rats. We induced vitamin A-deficient rats by giving them a vitamin A-free diet for 12 weeks. Then, Abcb1/P-GP expression was evaluated by qRT-PCR and Western blot. qRT-PCR analysis revealed that Abcb1a mRNA levels were increased in hippocampus and liver. In kidney, it only showed an upward trend. Abcb1b mRNA levels were increased in hippocampus, but decreased in cerebral cortex, liver and kidney. Western blot results were in good accordance with the alterations of Abcb1b mRNA levels. P-GP function was investigated through tissue distribution and body fluid excretion of rhodamine 123 (Rho123), and the results proclaimed that P-GP activities were also in good accordance with P-GP expression in cerebral cortex, liver and kidney. The change of drug distribution was also investigated through the tissue distribution of vincristine, and the results showed a significantly upward trend in all indicated tissues of vitamin A-deficient rats. In conclusion, vitamin A deficiency may alter Abcb1/P-GP expression and function in rat tissues, and the alterations may increase drug activity/toxicity through the increase of tissue accumulation.

  19. Functional analysis of abscisic acid 8'-hydroxylase.

    PubMed

    Endo, Akira; Kimura, Mitsuhiro; Kawakami, Naoto; Nambara, Eiji

    2011-01-01

    Abscisic acid (ABA) plays an important role in the control of seed dormancy and germination. Identification of hormone metabolism genes from a particular plant species of interest is an essential step in hormone research. The function of these gene products is validated by biochemical analysis using heterologous expression systems, such as E. coli and yeast. ABA 8'-hydroxylase is a subfamily of P450 monooxygenases and is encoded by CYP707A genes. CYP707A catalyzes the committed step in the major ABA catabolic pathway. In this chapter, we describe the methods for RNA extraction from seeds, cloning the CYP707A cDNAs, protein expression in yeast, and biochemical analysis of their gene products.

  20. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy.

    PubMed

    Littlejohn, George R; Mansfield, Jessica C; Parker, David; Lind, Rob; Perfect, Sarah; Seymour, Mark; Smirnoff, Nicholas; Love, John; Moger, Julian

    2015-05-01

    The cuticle is a ubiquitous, predominantly waxy layer on the aerial parts of higher plants that fulfils a number of essential physiological roles, including regulating evapotranspiration, light reflection, and heat tolerance, control of development, and providing an essential barrier between the organism and environmental agents such as chemicals or some pathogens. The structure and composition of the cuticle are closely associated but are typically investigated separately using a combination of structural imaging and biochemical analysis of extracted waxes. Recently, techniques that combine stain-free imaging and biochemical analysis, including Fourier transform infrared spectroscopy microscopy and coherent anti-Stokes Raman spectroscopy microscopy, have been used to investigate the cuticle, but the detection sensitivity is severely limited by the background signals from plant pigments. We present a new method for label-free, in vivo structural and biochemical analysis of plant cuticles based on stimulated Raman scattering (SRS) microscopy. As a proof of principle, we used SRS microscopy to analyze the cuticles from a variety of plants at different times in development. We demonstrate that the SRS virtually eliminates the background interference compared with coherent anti-Stokes Raman spectroscopy imaging and results in label-free, chemically specific confocal images of cuticle architecture with simultaneous characterization of cuticle composition. This innovative use of the SRS spectroscopy may find applications in agrochemical research and development or in studies of wax deposition during leaf development and, as such, represents an important step in the study of higher plant cuticles.

  1. In-vivo motion analysis of bi-ventricular hearts from tagged MR images

    NASA Astrophysics Data System (ADS)

    Park, Kyoungju; Axel, Leon; Metaxas, Dimitris N.

    2005-04-01

    We conduct experiments to look at the in-vivo cardiac motion during systole, to visualize heart contraction, and to examine the clinical usefulness. Our model-based technique incorporates subject-specific modeling, motion analysis and the extraction of clinically relevant parameters within one framework. Previous bi-ventricular model based method could only handle up to the mid-ventricles and have a few test-subjects. Our parameterized model includes the LV, RV and up to the basal area for full ventricular motion study. Finite element methods capture cardiac motion by tracking the material points from tagged Magnetic Resonance (MR) images. A number of experiments from ten subjects are evaluated and analyzed. We tested subject several times and compared the resulting parameters to ensure the reproducibility and deviations. The resulting parameters can be used to describe the cardiac motion of normal subjects. The patterns of normal subjects were derived from experiments. While significant shape and motion variations were apparent in normal subjects, the quantitative analysis show typical patterns. Generally, the basal area moves downwards and the apical area contracts towards the cavity. The principal strain analysis describes the directions and magnitudes of maximum shortening, and maximum thickening.

  2. Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions

    PubMed Central

    DeJong, Jason T.; Soga, Kenichi; Banwart, Steven A.; Whalley, W. Richard; Ginn, Timothy R.; Nelson, Douglas C.; Mortensen, Brina M.; Martinez, Brian C.; Barkouki, Tammer

    2011-01-01

    Carbon sequestration, infrastructure rehabilitation, brownfields clean-up, hazardous waste disposal, water resources protection and global warming—these twenty-first century challenges can neither be solved by the high-energy consumptive practices that hallmark industry today, nor by minor tweaking or optimization of these processes. A more radical, holistic approach is required to develop the sustainable solutions society needs. Most of the above challenges occur within, are supported on, are enabled by or grown from soil. Soil, contrary to conventional civil engineering thought, is a living system host to multiple simultaneous processes. It is proposed herein that ‘soil engineering in vivo’, wherein the natural capacity of soil as a living ecosystem is used to provide multiple solutions simultaneously, may provide new, innovative, sustainable solutions to some of these great challenges of the twenty-first century. This requires a multi-disciplinary perspective that embraces the science of biology, chemistry and physics and applies this knowledge to provide multi-functional civil and environmental engineering designs for the soil environment. For example, can native soil bacterial species moderate the carbonate cycle in soils to simultaneously solidify liquefiable soil, immobilize reactive heavy metals and sequester carbon—effectively providing civil engineering functionality while clarifying the ground water and removing carbon from the atmosphere? Exploration of these ideas has begun in earnest in recent years. This paper explores the potential, challenges and opportunities of this new field, and highlights one biogeochemical function of soil that has shown promise and is developing rapidly as a new technology. The example is used to propose a generalized approach in which the potential of this new field can be fully realized. PMID:20829246

  3. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model

    PubMed Central

    Das, Nanditha Mohan; Hatsell, Sarah; Nannuru, Kalyan; Huang, Lily; Wen, Xialing; Wang, Lili; Wang, Li-Hsien; Idone, Vincent; Meganck, Jeffrey A.; Murphy, Andrew; Economides, Aris; Xie, LiQin

    2016-01-01

    Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models. PMID:26910759

  4. In vivo functional mapping of the conserved protein domains within murine Themis1.

    PubMed

    Zvezdova, Ekaterina; Lee, Jan; El-Khoury, Dalal; Barr, Valarie; Akpan, Itoro; Samelson, Lawrence; Love, Paul E

    2014-09-01

    Thymocyte development requires the coordinated input of signals that originate from numerous cell surface molecules. Although the majority of thymocyte signal-initiating receptors are lineage-specific, most trigger 'ubiquitous' downstream signaling pathways. T-lineage-specific receptors are coupled to these signaling pathways by lymphocyte-restricted adapter molecules. We and others recently identified a new putative adapter protein, Themis1, whose expression is largely restricted to the T lineage. Mice lacking Themis1 exhibit a severe block in thymocyte development and a striking paucity of mature T cells revealing a critical role for Themis1 in T-cell maturation. Themis1 orthologs contain three conserved domains: a proline-rich region (PRR) that binds to the ubiquitous cytosolic adapter Grb2, a nuclear localization sequence (NLS), and two copies of a novel cysteine-containing globular (CABIT) domain. In the present study, we evaluated the functional importance of each of these motifs by retroviral reconstitution of Themis1(-/-) progenitor cells. The results demonstrate an essential requirement for the PRR and NLS motifs but not the conserved CABIT cysteines for Themis1 function.

  5. A USPL functional system with articulated mirror arm for in-vivo applications in dentistry

    NASA Astrophysics Data System (ADS)

    Schelle, Florian; Meister, Jörg; Dehn, Claudia; Oehme, Bernd; Bourauel, Christoph; Frentzen, Mathias

    Ultra-short pulsed laser (USPL) systems for dental application have overcome many of their initial disadvantages. However, a problem that has not yet been addressed and solved is the beam delivery into the oral cavity. The functional system that is introduced in this study includes an articulated mirror arm, a scanning system as well as a handpiece, allowing for freehand preparations with ultra-short laser pulses. As laser source an Nd:YVO4 laser is employed, emitting pulses with a duration of tp < 10 ps at a repetition rate of up to 500 kHz. The centre wavelength is at 1064 nm and the average output power can be tuned up to 9 W. The delivery system consists of an articulated mirror arm, to which a scanning system and a custom made handpiece are connected, including a 75 mm focussing lens. The whole functional system is compact in size and moveable. General characteristics like optical losses and ablation rate are determined and compared to results employing a fixed setup on an optical table. Furthermore classical treatment procedures like cavity preparation are being demonstrated on mammoth ivory. This study indicates that freehand preparation employing an USPL system is possible but challenging, and accompanied by a variety of side-effects. The ablation rate with fixed handpiece is about 10 mm3/min. Factors like defocussing and blinding affect treatment efficiency. Laser sources with higher average output powers might be needed in order to reach sufficient preparation speeds.

  6. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.

    PubMed

    Ruiz, Mario; Ganfornina, Maria D; Correnti, Colin; Strong, Roland K; Sanchez, Diego

    2014-04-01

    Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket. PMID:24361577

  7. Ligand binding-dependent functions of the lipocalin NLaz: an in vivo study in Drosophila.

    PubMed

    Ruiz, Mario; Ganfornina, Maria D; Correnti, Colin; Strong, Roland K; Sanchez, Diego

    2014-04-01

    Lipocalins are small extracellular proteins mostly described as lipid carriers. The Drosophila lipocalin NLaz (neural Lazarillo) modulates the IIS pathway and regulates longevity, stress resistance, and behavior. Here, we test whether a native hydrophobic pocket structure is required for NLaz to perform its functions. We use a point mutation altering the binding pocket (NLaz(L130R)) and control mutations outside NLaz binding pocket. Tryptophan fluorescence titration reveals that NLaz(L130R) loses its ability to bind ergosterol and the pheromone 7(z)-tricosene but retains retinoic acid binding. Using site-directed transgenesis in Drosophila, we test the functionality of the ligand binding-altered lipocalin at the organism level. NLaz-dependent life span reduction, oxidative stress and starvation sensitivity, aging markers accumulation, and deficient courtship are rescued by overexpression of NLaz(WT), but not of NLaz(L130R). Transcriptional responses to aging and oxidative stress show a large set of age-responsive genes dependent on the integrity of NLaz binding pocket. Inhibition of IIS activity and modulation of oxidative stress and infection-responsive genes are binding pocket-dependent processes. Control of energy metabolites on starvation appears to be, however, insensitive to the modification of the NLaz binding pocket.

  8. In vivo effects of Aspalathus linearis (rooibos) on male rat reproductive functions.

    PubMed

    Opuwari, C S; Monsees, T K

    2014-10-01

    Aspalathus linearis (rooibos tea) may improve sperm function owing to its antioxidant properties. To test this hypothesis, male rats were given 2% or 5% rooibos tea for 52 days. No significant alterations were observed in body and reproductive organs weight, serum antioxidant capacity and testosterone level. Seminiferous tubules displayed complete spermatogenesis. However, a significant (P < 0.05) decrease in tubule diameter and germinal epithelial height was observed. Epithelial height of caput epididymides showed a significant increase. Unfermented rooibos significantly enhanced sperm concentration, viability and motility. Fermented rooibos also significantly improved sperm vitality (P < 0.01), but caused a significant increase in spontaneous acrosome reaction (P < 0.05), whereas unfermented did not. Creatinine was significantly enhanced in all treated rats, consistent with significant higher kidney weights. Rooibos significantly reduced alanine transaminase level, while 2% fermented rooibos significantly decreased aspartate transaminase level (P < 0.01). In conclusion, treatment with rooibos improved sperm concentration, viability and motility, which might be attributed to its high level of antioxidants. However, prolonged exposure of rooibos might result in subtle structural changes in the male reproductive system and may induce acrosome reaction, which can impair fertility. Intake of large amounts of rooibos may also harm liver and kidney function.

  9. Ultrathin sP(EO-stat-PO) hydrogel coatings are biocompatible and preserve functionality of surface bound growth factors in vivo.

    PubMed

    Neuerburg, Carl; Recknagel, Stefan; Fiedler, Jörg; Groll, Jürgen; Moeller, Martin; Bruellhoff, Kristina; Reichel, Heiko; Ignatius, Anita; Brenner, Rolf E

    2013-10-01

    Hydrogel coatings prepared from reactive star shaped polyethylene oxide based prepolymers (NCO-sP(EO-stat-PO)) minimize unspecific protein adsorption in vitro, while proteins immobilized on NCO-sP(EO-stat-PO) coatings retain their structure and biological function. The aim of the present study was to assess biocompatibility and the effect on early osseointegrative properties of a NCO-sP(EO-stat-PO) coating with additional RGD-peptides and augmentation with bone morphogenetic protein-4 (BMP) used on a medical grade high-density polyethylene (HDPE) base under in vivo circumstances. For testing of biocompatibility dishes with large amounts of bulk NCO-sP(EO-stat-PO) were implanted subcutaneously into 14 Wistar rats. In a second set-up functionalization of implants with ultrathin surface layers by coating ammonia-plasma treated HDPE with NCO-sP(EO-stat-PO), functionalization with linear RGD-peptides, and augmentation with RGD and BMP-4 was analyzed. Therefore, implants were placed subcutaneously in the paravertebral tissue and transcortically in the distal femur of another 14 Wistar rats. Both tests revealed no signs of enhanced inflammation of the surrounding tissue analyzed by CD68, IL-1ß-/TNF-α-antibody staining, nor systemic toxic reactions according to histological analysis of various organs. The mean thickness of the fibrous tissue surrounding the femoral implants was highest in native HDPE-implants and tended to be lower in all NCO-sP(EO-stat-PO) modified implants. Micro-CT analysis revealed a significant increase of peri-implant bone volume in RGD/BMP-4 coated samples. These results demonstrate that even very low amounts of surface bound growth factors do have significant effects when immobilized in an environment that retains their biological function. Hence, NCO-sP(EO-stat-PO)-coatings could offer an attractive platform to improve integration of orthopedic implants.

  10. Biosignals analysis for kidney function effect analysis of fennel aromatherapy.

    PubMed

    Kim, Bong-Hyun; Cho, Dong-Uk; Seo, Ssang-Hee

    2015-01-01

    Human effort in order to enjoy a healthy life is diverse. IT technology to these analyzes, the results of development efforts, it has been applied. Therefore, I use the care and maintenance diagnostic health management and prevention than treatment. In particular, the aromatherapy treatment easy to use without the side effects there is no irritation, are widely used in modern society. In this paper, we measured the aroma effect by applying a biosignal analysis techniques; an experiment was performed to analyze. In particular, we design methods and processes of research based on the theory aroma that affect renal function. Therefore, in this paper, measuring the biosignals and after fennel aromatherapy treatment prior to the enforcement of the mutual comparison, through the analysis, studies were carried out to analyze the effect of fennel aromatherapy therapy on kidney function.

  11. Biosignals analysis for kidney function effect analysis of fennel aromatherapy.

    PubMed

    Kim, Bong-Hyun; Cho, Dong-Uk; Seo, Ssang-Hee

    2015-01-01

    Human effort in order to enjoy a healthy life is diverse. IT technology to these analyzes, the results of development efforts, it has been applied. Therefore, I use the care and maintenance diagnostic health management and prevention than treatment. In particular, the aromatherapy treatment easy to use without the side effects there is no irritation, are widely used in modern society. In this paper, we measured the aroma effect by applying a biosignal analysis techniques; an experiment was performed to analyze. In particular, we design methods and processes of research based on the theory aroma that affect renal function. Therefore, in this paper, measuring the biosignals and after fennel aromatherapy treatment prior to the enforcement of the mutual comparison, through the analysis, studies were carried out to analyze the effect of fennel aromatherapy therapy on kidney function. PMID:25977696

  12. In Vitro and In Vivo Characterizations of Pichinde Viral Nucleoprotein Exoribonuclease Functions

    PubMed Central

    Huang, Qinfeng; Shao, Junjie; Lan, Shuiyun; Zhou, Yanqin; Xing, Junji; Dong, Changjiang

    2015-01-01

    ABSTRACT Arenaviruses cause severe hemorrhagic fever diseases in humans, and there are limited preventative and therapeutic measures against these diseases. Previous structural and functional analyses of arenavirus nucleoproteins (NPs) revealed a conserved DEDDH exoribonuclease (RNase) domain that is important for type I interferon (IFN) suppression, but the biological roles of the NP RNase in viral replication and host immune suppression have not been well characterized. Infection of guinea pigs with Pichinde virus (PICV), a prototype arenavirus, can serve as a surrogate small animal model for arenavirus hemorrhagic fevers. In this report, we show that mutation of each of the five RNase catalytic residues of PICV NP diminishes the IFN suppression activity and slightly reduces the viral RNA replication activity. Recombinant PICVs with RNase catalytic mutations can induce high levels of IFNs and barely grow in IFN-competent A549 cells, in sharp contrast to the wild-type (WT) virus, while in IFN-deficient Vero cells, both WT and mutant viruses can replicate at relatively high levels. Upon infection of guinea pigs, the RNase mutant viruses stimulate strong IFN responses, fail to replicate productively, and can become WT revertants. Serial passages of the RNase mutants in vitro can also generate WT revertants. Thus, the NP RNase function is essential for the innate immune suppression that allows the establishment of a productive early viral infection, and it may be partly involved in the process of viral RNA replication. IMPORTANCE Arenaviruses, such as Lassa, Lujo, and Machupo viruses, can cause severe and deadly hemorrhagic fever diseases in humans, and there are limited preventative and treatment options against these diseases. Development of broad-spectrum antiviral drugs depends on a better mechanistic understanding of the conserved arenavirus proteins in viral infection. The nucleoprotein (NPs) of all arenaviruses carry a unique exoribonuclease (RNase) domain

  13. Microarray analysis in rat liver slices correctly predicts in vivo hepatotoxicity

    SciTech Connect

    Elferink, M.G.L. Olinga, P.; Draaisma, A.L.; Merema, M.T.; Bauerschmidt, S.; Polman, J.; Schoonen, W.G.; Groothuis, G.M.M.

    2008-06-15

    The microarray technology, developed for the simultaneous analysis of a large number of genes, may be useful for the detection of toxicity in an early stage of the development of new drugs. The effect of different hepatotoxins was analyzed at the gene expression level in the rat liver both in vivo and in vitro. As in vitro model system the precision-cut liver slice model was used, in which all liver cell types are present in their natural architecture. This is important since drug-induced toxicity often is a multi-cellular process involving not only hepatocytes but also other cell types such as Kupffer and stellate cells. As model toxic compounds lipopolysaccharide (LPS, inducing inflammation), paracetamol (necrosis), carbon tetrachloride (CCl{sub 4}, fibrosis and necrosis) and gliotoxin (apoptosis) were used. The aim of this study was to validate the rat liver slice system as in vitro model system for drug-induced toxicity studies. The results of the microarray studies show that the in vitro profiles of gene expression cluster per compound and incubation time, and when analyzed in a commercial gene expression database, can predict the toxicity and pathology observed in vivo. Each toxic compound induces a specific pattern of gene expression changes. In addition, some common genes were up- or down-regulated with all toxic compounds. These data show that the rat liver slice system can be an appropriate tool for the prediction of multi-cellular liver toxicity. The same experiments and analyses are currently performed for the prediction of human specific toxicity using human liver slices.

  14. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.

  15. Functional Optical Coherence Tomography Enables In Vivo Physiological Assessment of Retinal Rod and Cone Photoreceptors

    NASA Astrophysics Data System (ADS)

    Zhang, Qiuxiang; Lu, Rongwen; Wang, Benquan; Messinger, Jeffrey D.; Curcio, Christine A.; Yao, Xincheng

    2015-04-01

    Transient intrinsic optical signal (IOS) changes have been observed in retinal photoreceptors, suggesting a unique biomarker for eye disease detection. However, clinical deployment of IOS imaging is challenging due to unclear IOS sources and limited signal-to-noise ratios (SNRs). Here, by developing high spatiotemporal resolution optical coherence tomography (OCT) and applying an adaptive algorithm for IOS processing, we were able to record robust IOSs from single-pass measurements. Transient IOSs, which might reflect an early stage of light phototransduction, are consistently observed in the photoreceptor outer segment almost immediately (<4 ms) after retinal stimulation. Comparative studies of dark- and light-adapted retinas have demonstrated the feasibility of functional OCT mapping of rod and cone photoreceptors, promising a new method for early disease detection and improved treatment of diseases such as age-related macular degeneration (AMD) and other eye diseases that can cause photoreceptor damage.

  16. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy.

    PubMed

    Nelson, Christopher E; Hakim, Chady H; Ousterout, David G; Thakore, Pratiksha I; Moreb, Eirik A; Castellanos Rivera, Ruth M; Madhavan, Sarina; Pan, Xiufang; Ran, F Ann; Yan, Winston X; Asokan, Aravind; Zhang, Feng; Duan, Dongsheng; Gersbach, Charles A

    2016-01-22

    Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD. PMID:26721684

  17. Development of optical neuroimaging to detect drug-induced brain functional changes in vivo

    NASA Astrophysics Data System (ADS)

    Du, Congwu; Pan, Yingtian

    2014-03-01

    Deficits in prefrontal function play a crucial role in compulsive cocaine use, which is a hallmark of addiction. Dysfunction of the prefrontal cortex might result from effects of cocaine on neurons as well as from disruption of cerebral blood vessels. However, the mechanisms underlying cocaine's neurotoxic effects are not fully understood, partially due to technical limitations of current imaging techniques (e.g., PET, fMRI) to differentiate vascular from neuronal effects at sufficiently high temporal and spatial resolutions. We have recently developed a multimodal imaging platform which can simultaneously characterize the changes in cerebrovascular hemodynamics, hemoglobin oxygenation and intracellular calcium fluorescence for monitoring the effects of cocaine on the brain. Such a multimodality imaging technique (OFI) provides several uniquely important merits, including: 1) a large field-of-view, 2) high spatiotemporal resolutions, 3) quantitative 3D imaging of the cerebral blood flow (CBF) networks, 4) label-free imaging of hemodynamic changes, 5) separation of vascular compartments (e.g., arterial and venous vessels) and monitoring of cortical brain metabolic changes, 6) discrimination of cellular (neuronal) from vascular responses. These imaging features have been further advanced in combination with microprobes to form micro-OFI that allows quantification of drug effects on subcortical brain. In addition, our ultrahigh-resolution ODT (μODT) enables 3D microangiography and quantitative imaging of capillary CBF networks. These optical strategies have been used to investigate the effects of cocaine on brain physiology to facilitate the studies of brain functional changes induced by addictive substance to provide new insights into neurobiological effects of the drug on the brain.

  18. Methanandamide allosterically inhibits in vivo the function of peripheral nicotinic acetylcholine receptors containing the alpha 7-subunit.

    PubMed

    Baranowska, Urszula; Göthert, Manfred; Rudz, Radoslaw; Malinowska, Barbara

    2008-09-01

    Methanandamide (MAEA), the stable analog of the endocannabinoid anandamide, has been proven in Xenopus oocytes to allosterically inhibit the function of the alpha7-nicotinic acetylcholine receptors (nAChRs) in a cannabinoid (CB) receptor-independent manner. The present study aimed at demonstrating that this mechanism can be activated in vivo. In anesthetized and vagotomized pithed rats treated with atropine, we determined the tachycardic response to electrical stimulation of preganglionic sympathetic nerves via the pithing rod or to i.v. nicotine (0.7 micromol/kg) activating nAChRs on the cardiac postganglionic sympathetic neurons. MAEA (3 and 10 micromol/kg) inhibited the electrically induced tachycardia (maximally by 15-20%; abolished by the CB(1) receptor antagonist AM 251 [N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide]; 3 micromol/kg) in pentobarbitone-anesthetized pithed rats, but not in urethane-anesthetized pithed rats, which, thus, are suitable to study the CB(1) receptor-independent inhibition of nicotine-evoked tachycardia. The subunit-nonselective nAChR antagonist hexamethonium (100 micromol/kg) and the selective alpha7-subunit antagonist methyllycaconitine (MLA; 3 and 10 micromol/kg) decreased the nicotine-induced tachycardia by 100 and 40%, respectively (maximal effects), suggesting that nAChRs containing the alpha7-subunit account for 40% of the nicotine-induced tachycardia. MAEA (3 micromol/kg) produced an AM 251-insensitive inhibition (maximum again by 40%) of the nicotine-induced tachycardia. Simultaneous or sequential coadministration of MLA and MAEA inhibited the nicotine-induced tachycardia to the same extent (maximally by 40%) as each of the drugs alone. In conclusion, according to nonadditivity of the effects, MAEA mediates in vivo inhibition by the same receptors as MLA, namely alpha7-subunit-containing nAChRs, although at an allosteric instead of the orthosteric site.

  19. Transfer function analysis of thermospheric perturbations

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Varosi, F.; Herrero, F. A.; Spencer, N. W.

    1986-01-01

    Applying perturbation theory, a spectral model in terms of vectors spherical harmonics (Legendre polynomials) is used to describe the short term thermospheric perturbations originating in the auroral regions. The source may be Joule heating, particle precipitation or ExB ion drift-momentum coupling. A multiconstituent atmosphere is considered, allowing for the collisional momentum exchange between species including Ar, O2, N2, O, He and H. The coupled equations of energy, mass and momentum conservation are solved simultaneously for the major species N2 and O. Applying homogeneous boundary conditions, the integration is carred out from the Earth's surface up to 700 km. In the analysis, the spherical harmonics are treated as eigenfunctions, assuming that the Earth's rotation (and prevailing circulation) do not significantly affect perturbations with periods which are typically much less than one day. Under these simplifying assumptions, and given a particular source distribution in the vertical, a two dimensional transfer function is constructed to describe the three dimensional response of the atmosphere. In the order of increasing horizontal wave numbers (order of polynomials), this transfer function reveals five components. To compile the transfer function, the numerical computations are very time consuming (about 100 hours on a VAX for one particular vertical source distribution). However, given the transfer function, the atmospheric response in space and time (using Fourier integral representation) can be constructed with a few seconds of a central processing unit. This model is applied in a case study of wind and temperature measurements on the Dynamics Explorer B, which show features characteristic of a ringlike excitation source in the auroral oval. The data can be interpreted as gravity waves which are focused (and amplified) in the polar region and then are reflected to propagate toward lower latitudes.

  20. A functional genomics approach using radiation-induced changes in gene expression to study low dose radiation effects in vitro and in vivo

    SciTech Connect

    Fornace, Jr, A J

    2007-03-03

    Abstract for final report for project entitled A functional genomics approach using radiation-induced changes in gene expression to study low dose radiation effects in vitro and in vivo which has been supported by the DOE Low Dose Radiation Research Program for approximately 7 years. This project has encompassed two sequential awards, ER62683 and then ER63308, in the Gene Response Section in the Center for Cancer Research at the National Cancer Institute. The project was temporarily suspended during the relocation of the Principal Investigators laboratory to the Dept. of Genetics and Complex Diseases at Harvard School of Public Health at the end of 2004. Remaining support for the final year was transferred to this new site later in 2005 and was assigned the DOE Award Number ER64065. The major aims of this project have been 1) to characterize changes in gene expression in response to low-dose radiation responses; this includes responses in human cells lines, peripheral blood lymphocytes (PBL), and in vivo after human or murine exposures, as well as the effect of dose-rate on gene responses; 2) to characterize changes in gene expression that may be involved in bystander effects, such as may be mediated by cytokines and other intercellular signaling proteins; and 3) to characterize responses in transgenic mouse models with relevance to genomic stability. A variety of approaches have been used to study transcriptional events including microarray hybridization, quantitative single-probe hybridization which was developed in this laboratory, quantitative RT-PCR, and promoter microarray analysis using genomic regulatory motifs. Considering the frequent responsiveness of genes encoding cytokines and related signaling proteins that can affect cellular metabolism, initial efforts were initiated to study radiation responses at the metabolomic level and to correlate with radiation-responsive gene expression. Productivity includes twenty-four published and in press manuscripts

  1. VEGF ameliorates cognitive impairment in in vivo and in vitro ischemia via improving neuronal viability and function.

    PubMed

    Yang, Jiajia; Yao, Yang; Chen, Ting; Zhang, Tao

    2014-06-01

    Vascular endothelial growth factor (VEGF) has recently been proved to be a potential therapeutic drug in ischemic disorders depending on the dose, route and time of administration, especially in focal cerebral ischemia. Whether VEGF could exert protection in a long-term total cerebral ischemic model is still uncertain, and the cellular mechanism has not been clarified so far. In order to answer the above issue, an experiment was performed in non-invasively giving exogenous VEGF to a total cerebral ischemic model rats and examining their spatial cognitive function by performing Morris water maze and long-term potential test. Moreover, we performed in vitro experiment to explore the cellular mechanism of VEGF protection effect. In an in vitro ischemia model oxygen-glucose deprivation (OGD), whole-cell patch-clamp recording was employed to examine neuronal function. Additionally, hematoxylin-eosin and propidium iodide staining were applied in vivo and in vitro in the neuropathological and viability study, separately. Our results showed that intranasal administration of VEGF could improve the cognitive function, synaptic plasticity and damaged hippocampal neurons in a global cerebral ischemia model. In addition, VEGF could retain the membrane potential, neuronal excitability and spontaneous excitatory postsynaptic currents in the early stage of ischemia, which further demonstrated that there was an acute effect of VEGF in OGD-induced pyramidal neurons. Simultaneously, it was also found that the death of CA1 pyramidal neuronal was significantly reduced by VEGF, but there was no similar effect in VEGF coexists with SU5416 group. These results indicated that VEGF could ameliorate cognitive impairment and synaptic plasticity via improving neuronal viability and function through acting on VEGFR-2. PMID:24338641

  2. In Vivo Transplantation of Enteric Neural Crest Cells into Mouse Gut; Engraftment, Functional Integration and Long-Term Safety

    PubMed Central

    Cooper, Julie E.; McCann, Conor J.; Natarajan, Dipa; Choudhury, Shanas; Boesmans, Werend; Delalande, Jean-Marie; Vanden Berghe, Pieter; Burns, Alan J.; Thapar, Nikhil

    2016-01-01

    Objectives Enteric neuropathies are severe gastrointestinal disorders with unsatisfactory outcomes. We aimed to investigate the potential of enteric neural stem cell therapy approaches for such disorders by transplanting mouse enteric neural crest cells (ENCCs) into ganglionic and aganglionic mouse gut in vivo and analysing functional integration and long-term safety. Design Neurospheres generated from yellow fluorescent protein (YFP) expressing ENCCs selected from postnatal Wnt1-cre;R26R-YFP/YFP murine gut were transplanted into ganglionic hindgut of wild-type littermates or aganglionic hindgut of Ednrbtm1Ywa mice (lacking functional endothelin receptor type-B). Intestines were then assessed for ENCC integration and differentiation using immunohistochemistry, cell function using calcium imaging, and long-term safety using PCR to detect off-target YFP expression. Results YFP+ ENCCs engrafted, proliferated and differentiated into enteric neurons and glia within recipient ganglionic gut. Transplanted cells and their projections spread along the endogenous myenteric plexus to form branching networks. Electrical point stimulation of endogenous nerve fibres resulted in calcium transients (F/F0 = 1.16±0.01;43 cells, n = 6) in YFP+ transplanted ENCCs (abolished with TTX). Long-term follow-up (24 months) showed transplanted ENCCs did not give rise to tumours or spread to other organs (PCR negative in extraintestinal sites). In aganglionic gut ENCCs similarly spread and differentiated to form neuronal and glial networks with projections closely associated with endogenous neural networks of the transition zone. Conclusions Transplanted ENCCs successfully engrafted into recipient ganglionic and aganglionic gut showing appropriate spread, localisation and, importantly, functional integration without any long-term safety issues. This study provides key support for the development and use of enteric neural stem cell therapies. PMID:26824433

  3. In Vivo Functional Requirement of the Mouse Ifitm1 Gene for Germ Cell Development, Interferon Mediated Immune Response and Somitogenesis

    PubMed Central

    Klymiuk, Ingeborg; Kenner, Lukas; Adler, Thure; Busch, Dirk H.; Boersma, Auke; Irmler, Martin; Gailus-Durner, Valérie; Fuchs, Helmut; Leitner, Nicole; Müller, Mathias; Kühn, Ralf; Schlederer, Michaela; Treise, Irina; de Angelis, Martin Hrabě; Beckers, Johannes

    2012-01-01

    The mammalian Interferon induced transmembrane protein 1 (Ifitm1) gene was originally identified as a member of a gene family highly inducible by type I and type II interferons. Based on expression analyses, it was suggested to be required for normal primordial germ cell migration. The knockdown of Ifitm1 in mouse embryos provided evidence for a role in somitogenesis. We generated the first targeted knockin allele of the Ifitm1 gene to systematically reassess all inferred functions. Sperm motility and the fertility of male and female mutant mice are as in wild type littermates. Embryonic somites and the adult vertebral column appear normal in homozygous Ifitm1 knockout mice, demonstrating that Ifitm1 is not essential for normal segmentation of the paraxial mesoderm. Proportions of leucocyte subsets, including granulocytes, monocytes, B-cells, T-cells, NK-cells, and NKT-cells, are unchanged in mutant mice. Based on a normal immune response to Listeria monocytogenes infection, there is no evidence for a dysfunction in downstream IFNγ signaling in Ifitm1 mutant mice. Expression from the Ifitm1 locus from E8.5 to E14.5 is highly dynamic. In contrast, in adult mice, Ifitm1 expression is highly restricted and strong in the bronchial epithelium. Intriguingly, IFITM1 is highly overexpressed in tumor epithelia cells of human squamous cell carcinomas and in adenocarcinomas of NSCLC patients. These analyses underline the general importance of targeted in vivo studies for the functional annotation of the mammalian genome. The first comprehensive description of the Ifitm1 expression pattern provides a rational basis for the further examination of Ifitm1 gene functions. Based on our data, the fact that IFITM1 can function as a negative regulator of cell proliferation, and because the gene maps to chromosome band 11p15.5, previously associated with NSCLC, it is likely that IFITM1 in man has a key role in tumor formation. PMID:23115618

  4. Effect of in vivo infusion of granulocyte colony-stimulating factor on immune function.

    PubMed

    Valente, John F; Alexander, J Wesley; Li, Bing-Guo; Noel, J Gregory; Custer, David A; Ogle, James D; Ogle, Cora K

    2002-01-01

    As the applications of hematopoietic growth factors increase, their complex impact on host defense and immune responses continues to unfold. The effect of the administration of granulocyte colony-stimulating factor (G-CSF) on bacterial defense, proliferation of lymphocytes, and cytokine production by lymphocytes and peripheral blood mononuclear cells (PBMC) was studied. The effect of G-CSF administration on the phenotype of the cells in the major hematopoietic organs was studied as well. ACI rats were given 10 mg/kg/day G-CSF or vehicle daily for 4 days. Isolated bone marrow neutrophils and enterocytes from treated animals showed a greater bactericidal activity than controls. Proliferation of mitogen-stimulated lymphocytes and PBMC was reduced in G-CSF-treated animals. The production of proinflammatory cytokines, tumor necrosis factor (TNF), and interleukin 6 (IL-6) by lymphocytes and PBMC was reduced by G-CSF pretreatment. G-CSF administration caused an increase in IL-4 (Th2 cytokine) release and a decrease in interferon-gamma (IFNgamma, Th1 cytokine) release by mitogen-stimulated lymphocytes. Cytometric analysis of cells in the progenitor cell region indicated a large increase in immature cells in the bone marrow of G-CSF-treated animals compared with sham along with an increase in B cells and a decrease in polymorphonuclear leukocytes (PMNs). In addition, cytometric analysis showed a large increase in PMNs in blood and splenocytes of the treated animals compared with sham. This study confirms and extends previous observations that G-CSF administration has a number of effects that might simultaneously enhance host defense while reducing the risk of developing uncontrolled systemic inflammation. This may also be efficacious in prolonging graft survival and reducing graft vs. host disease.

  5. Monitoring for potential adverse effects of prenatal gene therapy: genotoxicity analysis in vitro and on small animal models ex vivo and in vivo.

    PubMed

    Themis, Michael

    2012-01-01

    Gene delivery by integrating vectors has the potential to cause genotoxicity in the host by insertional mutagenesis (IM). Previously, the risk of IM by replication incompetent retroviral vectors was believed to be small. However, the recent observation of leukaemic events due to gamma retroviral vector insertion and activation of the LMO-2 proto-oncogene in patients enrolled in the French and British gene therapy trials for X-SCID demonstrates the need to understand vector associated genotoxicity in greater detail. These findings have led to the development of in vitro, ex vivo, and in vivo assays designed to predict genotoxic risk and to further our mechanistic understanding of this process at the molecular level. In vitro assays include transformation of murine haematopoietic stem cells by integrating retroviral (RV) or lentiviral (LV) vectors and measurement of cell survival resulting from transformation due to integration mainly into the Evi1 oncogene. Ex vivo assays involve harvesting haematopoietic stem cells from mice followed by gene transfer and re-infusion of RV or LV infected cells to reconstitute the immune system. Insertional mutagenesis is then determined by analysis of clonally dominant populations of cells. The latter model has also been made highly sensitive using cells from mice predisposed to oncogenesis by lack of the P53 and Rb pathways. Our investigations on fetal gene therapy discovered a high incidence of liver tumour development that appears to be associated with vector insertions into cancer-related genes. Many genes involved in growth and differentiation are actively transcribed in early developmental and are therefore in an open chromatin configuration, which favours provirus insertion. Some of these genes are known oncogenes or anti-oncogenes and are not usually active during adulthood. We found that in utero injection of primate HIV-1, HR'SIN-cPPT-S-FIX-W does not result in oncogenesis as opposed to administration of non-primate equine

  6. A yeast mitochondrial leader peptide functions in vivo as a dual targeting signal for both chloroplasts and mitochondria.

    PubMed

    Huang, J; Hack, E; Thornburg, R W; Myers, A M

    1990-12-01

    A fusion protein was expressed in transgenic tobacco and yeast cells to examine the functional conservation of mechanisms for importing precursor proteins from the cytosol into mitochondria and chloroplasts. The test protein consisted of the mitochondrial leader peptide from the yeast precursor to cytochrome oxidase subunit Va (prC5) fused to the reporter protein chloramphenicol acetyltransferase. This protein, denoted prC5/CAT, was transported into the mitochondrial interior in yeast and tobacco cells. In both organisms, the mitochondrial form of prC5/CAT was smaller than the primary translation product, suggesting that proteolytic processing occurred during the transport process. prC5/CAT also was translocated into chloroplasts in vivo, accumulating to approximately the same levels as in plant mitochondria. However, accumulation of prC5/CAT in chloroplasts relative to mitochondria varied with the conditions under which plants were grown. The chloroplast form of prC5/CAT also appeared to have been proteolytically processed, yielding a mature protein of the same apparent size as that seen in mitochondria of either tobacco or yeast. Chloramphenicol acetyltransferase lacking a mitochondrial targeting peptide did not associate with either chloroplasts or mitochondria. The results demonstrated that in plant cells a single leader peptide can interact functionally with the protein translocation systems of both chloroplasts and mitochondria, and raised the possibility that certain native proteins might be shared between these two organelles.

  7. In vivo functional protein-protein interaction: nuclear targeted hsp90 shifts cytoplasmic steroid receptor mutants into the nucleus.

    PubMed Central

    Kang, K I; Devin, J; Cadepond, F; Jibard, N; Guiochon-Mantel, A; Baulieu, E E; Catelli, M G

    1994-01-01

    In target tissue extracts, heat shock protein hsp90 has been found associated to all unliganded steroid receptors. Modulation of important functions of these receptors, including prevention of DNA binding and optimization of transcriptional activity, has been attributed to hsp90. However no unequivocal in vivo demonstration of interaction between receptors and hsp90 has been presented. We targeted chicken hsp90, a mainly cytoplasmic protein, with the nucleoplasmin nuclear localization signal (90NLS). After transfection into COS-7 cells, 90NLS was found in the nucleus with specific immunofluorescence and confocal microscopy techniques. A human glucocorticosteroid receptor mutant devoid of NLS sequence was also expressed in COS-7 cells and found exclusively cytoplasmic. Coexpression of 90NLS and of the cytoplasmic human glucocorticosteroid receptor mutant led to complete nuclear localization of the receptor, indicating its piggyback transport by 90NLS and thus physical and functional interaction between the two proteins in the absence of hormone. The same nuclear localization was obtained after cotransfection of 90NLS and a cytoplasmic rabbit progesterone receptor mutant. Finally, coexpression of wild-type rabbit progesterone receptor (nuclear) and wildtype hsp90 (cytoplasmic) into COS-7 cells provoked partial relocalization of hsp90 into the nucleus. These experiments lay the groundwork on which to study hsp90 as a chaperone, regulating activities of steroid receptors and possibly participating in their nuclear-cytoplasmic shuttling. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8278390

  8. beta -Neuregulin-1 is required for the in vivo development of functional Ca2+-activated K+ channels in parasympathetic neurons.

    PubMed

    Cameron, J S; Dryer, L; Dryer, S E

    2001-02-27

    The development of functional Ca(2+)-activated K(+) channels (K(Ca)) in chick ciliary ganglion (CG) neurons requires interactions with afferent preganglionic nerve terminals. Here we show that the essential preganglionic differentiation factor is an isoform of beta-neuregulin-1. beta-Neuregulin-1 transcripts are expressed in the midbrain preganglionic Edinger-Westphal nucleus at developmental stages that coincide with or precede the normal onset of macroscopic K(Ca) in CG neurons. Injection of beta-neuregulin-1 peptide into the brains of developing embryos evoked a robust stimulation of functional K(Ca) channels at stages before the normal appearance of these channels in CG neurons developing in vivo. Conversely, injection of a neutralizing antiserum specific for beta-neuregulin-1 inhibited the development of K(Ca) channels in CG neurons. Low concentrations of beta-neuregulin-1 evoked a robust increase in whole-cell K(Ca) in CG neurons cocultured with iris target tissues. By contrast, culturing CG neurons with iris cells or low concentrations of beta-neuregulin-1 by themselves was insufficient to stimulate K(Ca). These data suggest that the preganglionic factor required for the development of K(Ca) in ciliary ganglion neurons is an isoform of beta-neuregulin-1, and that this factor acts in concert with target-derived trophic molecules to regulate the differentiation of excitability.

  9. Functional assessment of glioma pathogenesis by in vivo multi-parametric magnetic resonance imaging and in vitro analyses

    PubMed Central

    Yao, Nai-Wei; Chang, Chen; Lin, Hsiu-Ting; Yen, Chen-Tung; Chen, Jeou-Yuan

    2016-01-01

    Gliomas are aggressive brain tumors with poor prognosis. In this study, we report a novel approach combining both in vivo multi-parametric MRI and in vitro cell culture assessments to evaluate the pathogenic development of gliomas. Osteopontin (OPN), a pleiotropic factor, has been implicated in the formation and progression of various human cancers, including gliomas, through its functions in regulating cell proliferation, survival, angiogenesis, and migration. Using rat C6 glioma model, the combined approach successfully monitors the acquisition and decrease of cancer hallmarks. We show that knockdown of the expression of OPN reduces C6 cell proliferation, survival, viability and clonogenicity in vitro, and reduces tumor burden and prolongs animal survival in syngeneic rats. OPN depletion is associated with reduced tumor growth, decreased angiogenesis, and an increase of tumor-associated metabolites, as revealed by T2-weighted images, diffusion-weighted images, Ktrans maps, and 1H-MRS, respectively. These strategies allow us to define an important role of OPN in conferring cancer hallmarks, which can be further applied to assess the functional roles of other candidate genes in glioma. In particular, the non-invasive multi-parametric MRI measurement of cancer hallmarks related to proliferation, angiogenesis and altered metabolism may serve as a useful tool for diagnosis and for patient management. PMID:27198662

  10. Blockade of cannabinoid CB(1) receptor function protects against in vivo disseminating brain damage following NMDA-induced excitotoxicity.

    PubMed

    Hansen, Henrik H; Azcoitia, Iñigo; Pons, Sebastián; Romero, Julián; García-Segura, Luis Miguel; Ramos, José Antonio; Hansen, Harald S; Fernández-Ruiz, Javier

    2002-07-01

    The ability of cannabinoid CB(1) receptors to influence glutamatergic excitatory neurotransmission has fueled interest in how these receptors and their endogenous ligands may interact in conditions of excitotoxic insults. The present study characterized the impact of stimulated and inhibited CB(1) receptor function on NMDA-induced excitotoxicity. Neonatal (6-day-old) rat pups received a systemic injection of a mixed CB(1) /CB(2) receptor agonist (WIN55,212-2) or their respective antagonists (SR141716A for CB(1) and SR144528 for CB(2) ) prior to an unilateral intrastriatal microinjection of NMDA. The NMDA-induced excitotoxic damage in the ipsilateral forebrain was not influenced by agonist-stimulated CB(1) receptor function. In contrast, blockade of CB(1), but not CB(2), receptor activity evoked a robust neuroprotective response by reducing the infarct area and the number of cortical degenerating neurons. These results suggest a critical involvement of CB(1) receptor tonus on neuronal survival following NMDA receptor-induced excitotoxicity in vivo.

  11. In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography

    PubMed Central

    van Deel, Elza; Ridwan, Yanto; van Vliet, J. Nicole; Belenkov, Sasha; Essers, Jeroen

    2016-01-01

    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD). PMID:26967592

  12. Functional Assessment of Disease-Associated Regulatory Variants In Vivo Using a Versatile Dual Colour Transgenesis Strategy in Zebrafish

    PubMed Central

    Bhatia, Shipra; Gordon, Christopher T.; Foster, Robert G.; Melin, Lucie; Abadie, Véronique; Baujat, Geneviève; Vazquez, Marie-Paule; Amiel, Jeanne; Lyonnet, Stanislas; van Heyningen, Veronica; Kleinjan, Dirk A.

    2015-01-01

    Disruption of gene regulation by sequence variation in non-coding regions of the genome is now recognised as a significant cause of human disease and disease susceptibility. Sequence variants in cis-regulatory elements (CREs), the primary determinants of spatio-temporal gene regulation, can alter transcription factor binding sites. While technological advances have led to easy identification of disease-associated CRE variants, robust methods for discerning functional CRE variants from background variation are lacking. Here we describe an efficient dual-colour reporter transgenesis approach in zebrafish, simultaneously allowing detailed in vivo comparison of spatio-temporal differences in regulatory activity between putative CRE variants and assessment of altered transcription factor binding potential of the variant. We validate the method on known disease-associated elements regulating SHH, PAX6 and IRF6 and subsequently characterise novel, ultra-long-range SOX9 enhancers implicated in the craniofacial abnormality Pierre Robin Sequence. The method provides a highly cost-effective, fast and robust approach for simultaneously unravelling in a single assay whether, where and when in embryonic development a disease-associated CRE-variant is affecting its regulatory function. PMID:26030420

  13. In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography.

    PubMed

    van Deel, Elza; Ridwan, Yanto; van Vliet, J Nicole; Belenkov, Sasha; Essers, Jeroen

    2016-01-01

    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD). PMID:26967592

  14. Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo.

    PubMed

    Pi, Chia-Chen; Chu, Ching-Liang; Lu, Chu-Ying; Zhuang, Yu-Jing; Wang, Cheng-Li; Yu, Yao-Hsuan; Wang, Hui-Yi; Lin, Chih-Chung; Chen, Chun-Jen

    2014-01-01

    The fungus of Ganoderma is a basidiomycete that possesses a variety of pharmacological effects and has been used in traditional Asian medicine for centuries. Ganoderma formosanum is a native Ganoderma species isolated in Taiwan, and we have previously demonstrated that PS-F2, a polysaccharide fraction purified from the submerged culture broth of G. formosanum, exhibits immunostimulatory properties in macrophages. In this study, we further characterized the adjuvant functions of PS-F2. In vitro, PS-F2 stimulated dendritic cells (DCs) to produce proinflammatory cytokines, including TNF-α, interleukin (IL)-6, and IL-12/IL-23 p40. PS-F2 also stimulated DCs to express the maturation markers CD40, CD80, CD86, and MHC class II. In a murine splenocyte culture, PS-F2 treatment resulted in elevated expression of T-bet and interferon (IFN)-γ in T lymphocytes. When used as an adjuvant in vivo with the ovalbumin (OVA) antigen, PS-F2 stimulated OVA-specific antibody production and primed IFN-γ production in OVA-specific T lymphocytes. PS-F2-adjuvated immunization also induced OVA-specific CTLs, which protected mice from a challenge with tumor cells expressing OVA. Collectively, our data show that PS-F2 functions as an adjuvant capable of inducing a Th1-polarized adaptive immune response, which would be useful in vaccines against viruses and tumors.

  15. An in vivo molecular response analysis of colorectal cancer treated with Astragalus membranaceus extract

    PubMed Central

    TSENG, AILUN; YANG, CHIH-HSUEH; CHEN, CHIH-HAO; CHEN, CHANG-HAN; HSU, SHIH-LAN; LEE, MEI-HSIEN; LEE, HOONG-CHIEN; SU, LI-JEN

    2016-01-01

    The fact that many chemotherapeutic drugs cause chemoresistance and side effects during the course of colorectal cancer treatment necessitates development of novel cytotoxic agents aiming to attenuate new molecular targets. Here, we show that Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao (AM), a traditional Chinese medicine, can inhibit tumor growth in vivo and elucidate the underlying molecular mechanisms. The antitumor effect of AM was assessed on the subcutaneous tumors of human colorectal cancer cell line HCT116 grafted into nude mice. The mice were treated with either water or 500 mg/kg AM once per day, before being sacrificed for extraction of tumors, which were then subjected to microarray expression profiling. The gene expression of the extraction was then profiled using microarray analysis. The identified genes differentially expressed between treated mice and controls reveal that administration of AM suppresses chromosome organization, histone modification, and regulation of macromolecule metabolic process. A separate analysis focused on differentially expressed microRNAs reve