Sample records for vivo hepatoprotective activity

  1. Hepatoprotective potential of antioxidant potent fraction from Urtica dioica Linn. (whole plant) in CCl4 challenged rats.

    PubMed

    Joshi, Bhuwan Chandra; Prakash, Atish; Kalia, Ajudhia N

    2015-01-01

    The aim of the present study was to isolate hepatoprotective component from Urtica dioica Linn. (whole plant) against CCl 4 -induced hepatotoxicity in-vitro (HepG2 cells) and in-vivo (rats) model. Antioxidant activity of hydro alcoholic extract and its fractions petroleum ether fraction (PEF), ethyl acetate fraction (EAF), n -butanol fraction (NBF) and aqueous fraction (AF) were determined by DPPH and NO radicals scavenging assay. Fractions were subjected to in-vitro HepG2 cell line study. Further, the most potent fraction (EAF) was subjected to in-vivo hepatoprotective potential against CCl 4 challenged rats. The in-vivo hepatoprotective active fraction was chromatographed on silica column to isolate the bioactive constituent(s). Structure elucidation was done by using various spectrophotometric techniques like UV, IR, 1 H NMR, 13 C NMR and MS spectroscopy. Ethyl acetate fraction (EAF) of hydro-alcoholic extract of U. dioica possessed the potent antioxidant activity viz. DPPH (IC 50 78.99 ± 0.17 μg/ml) and NO (IC 50 101.39 ± 0.30 μg/ml). The in-vitro HepG2 cell line study showed that the EAF prevented the cell damage. The EAF significantly attenuated the increased liver enzymes activities in serum and oxidative parameters in tissue of CCl 4 -induced rats, suggesting hepatoprotective and anti-oxidant action respectively. Column chromatography of most potent antioxidant fraction (EAF) lead to the isolation of 4-hydroxy-3-methoxy cinnamic acid (ferulic acid) which is responsible for its hepatoprotective potential. Hence, the present study suggests that EAF of hydro-alcoholic extract has significant antioxidant and hepatoprotective potential on CCl 4 induced hepatotoxicity in-vitro and in-vivo .

  2. Improved hepatoprotective activity of silymarin via encapsulation in the novel vesicular nanosystem bilosomes.

    PubMed

    Mohsen, Amira Mohamed; Asfour, Marwa Hasanein; Salama, Abeer A A

    2017-12-01

    The main objective of the present work was to formulate, characterize, and evaluate silymarin (SM)-loaded bilosomes, compared to conventional liposomes, aiming at increasing the hepatoprotective activity of the drug. SM-loaded bilosomes were prepared by thin film hydration technique employing soybean phosphatidyl choline (SPC) and different bile salts. After being subjected to different methods of characterization, SM-loaded bilosomes were investigated for their hepatoprotective activity, in CCl 4 hepatointoxicated rat model. The developed SM dispersions exhibited an entrapment efficiency ranging from 21.80 ± 2.01 to 84.54 ± 2.51% and a particle size diameter in the nanometric dimensions (413 ± 96.9 to 686.9 ± 62.38 nm), with a negative zeta potential values (<-45 mV). In vitro release study revealed a lower cumulative amount of drug released from the developed formulae, compared to free drug. Ex vivo intestinal uptake study, performed using confocal laser scanning calorimetry, revealed the superiority of bilosomal uptake compared to that of liposomes. In vivo studies revealed an enhanced hepatoprotective effect of SM-loaded bilosomes/liposomes compared to free drug. These results were in good correlation with histopathological examination. These findings support the potential use of bilosomes for improving the hepatoprotective activity of SM via oral administration.

  3. Soya phospholipid complex of mangiferin enhances its hepatoprotectivity by improving its bioavailability and pharmacokinetics.

    PubMed

    Bhattacharyya, Sauvik; Ahmmed, Sk Milan; Saha, Bishnu Pada; Mukherjee, Pulok K

    2014-05-01

    Mangiferin is a xanthonoid present in Mangifera indica. It has been reported for a variety of pharmacological activities, including hepatoprotection. However, the major disadvantage of mangiferin is its reduced biological activity due to poor absorption, low bioavailability and rapid elimination from the body after administration. The aim of this study was to prepare a phospholipid complex of mangiferin to overcome these limitations and to investigate the impact of the complex on hepatoprotective activity and bioavailability. The results showed that the complex has an enhanced hepatoprotective and in vivo antioxidant activity as compared to pure mangiferin at the same dose level (30 and 60 mg kg⁻¹). The complex restored the levels of serum hepatic marker enzymes and liver antioxidant enzymes with respect to carbon tetrachloride-treated animals. The complex also increased the bioavailability of mangiferin in rat serum by 9.75-fold compared to pure mangiferin at the same dose level and enhanced the elimination half-life (t(1/2 el)) from 1.71 ± 0.12 h⁻¹ to 3.52 ± 0.27 h⁻¹. The results suggested that the complexation of mangiferin with soya phospholipid enhanced the hepatoprotection and in vivo antioxidant activity, which may be due to the improved bioavailability and pharmacokinetics of mangiferin in rat serum. © 2013 Society of Chemical Industry.

  4. Hepatoprotective activity of Amaranthus spinosus in experimental animals.

    PubMed

    Zeashan, Hussain; Amresh, G; Singh, Satyawan; Rao, Chandana Venkateswara

    2008-11-01

    The hepatoprotective and antioxidant activity of 50% ethanolic extract of whole plant of Amaranthus spinosus (ASE) was evaluated against carbon tetrachloride (CCl4) induced hepatic damage in rats. The ASE at dose of 100, 200 and 400 mg/kg were administered orally once daily for fourteen days. The substantially elevated serum enzymatic levels of serum glutamate oxaloacetate transaminase (AST), serum glutamate pyruvate transaminase (ALT), serum alkaline phosphatase (SALP) and total bilirubin were restored towards normalization significantly by the ASE in a dose dependent manner. Higher dose exhibited significant hepatoprotective activity against carbon tetrachloride induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. Meanwhile, in vivo antioxidant activities as malondialdehyde (MDA), hydroperoxides, reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were also screened which were also found significantly positive in a dose dependent manner. The results of this study strongly indicate that whole plants of A. spinosus have potent hepatoprotective activity against carbon tetrachloride induced hepatic damage in experimental animals. This study suggests that possible mechanism of this activity may be due to the presence of flavonoids and phenolics compound in the ASE which may be responsible to hepatoprotective activity.

  5. Hepatoprotective and antioxidant activity of Phaseolus trilobus, Ait on bile duct ligation induced liver fibrosis in rats.

    PubMed

    Fursule, R A; Patil, S D

    2010-06-16

    Phaseolus trilobus Ait (Fabaceae) is extensively used by tribal people of Nandurbar district (Maharashtra, India) in the treatment of Jaundice and other liver disorders. of the present study was to assess the medicinal claim of Phaseolus trilobus as hepatoprotective and antioxidant. The hepatoprotective activity of methanol and aqueous extract of Phaseolus trilobus was evaluated by bile duct ligation induced liver fibrosis and antioxidant activity was evaluated using in vitro and in vivo antioxidant models viz anti-lipid peroxidation assay, super oxide radical scavenging assay and glutathione estimation in liver. Liver function tests were carried out to detect hepatoprotective activity, which was further supported by histopathological examination. Methanol and aqueous extracts of Phaseolus trilobus reduced elevated level of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH), bilirubin and hydroxyproline significantly (p<0.01) in bile duct ligated Wistar rats, proving hepatoprotective activity comparable with Silymarin. Both the extracts were found to reduce the elevated levels of serum thiobarbituric acid reactive substance (TBARS) and elevate superoxide scavenging radical activity proving antioxidant activity comparable with ascorbic acid. The reduced level of glutathione was found to be elevated in liver proving antioxidant activity comparable with Silymarin. Phaseolus trilobus posses hepatoprotective property and is effective in oxidative stress induced cholestatic hepatic injury. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  6. Cuscuta arvensis Beyr "Dodder": In Vivo Hepatoprotective Effects Against Acetaminophen-Induced Hepatotoxicity in Rats.

    PubMed

    Koca-Caliskan, Ufuk; Yilmaz, Ismet; Taslidere, Asli; Yalcin, Funda N; Aka, Ceylan; Sekeroglu, Nazim

    2018-05-02

    Cuscuta arvensis Beyr. is a parasitic plant, and commonly known as "dodder" in Europe, in the United States, and "tu si zi shu" in China. It is one of the preferred spices used in sweet and savory dishes. Also, it is used as a folk medicine for the treatment particularly of liver problems, knee pains, and physiological hepatitis, which occur notably in newborns and their mothers in the southeastern part of Turkey. The purpose of this study was to investigate the hepatoprotective effects and antioxidant activities of aqueous and methanolic extracts of C. arvensis Beyr. on acetaminophen (APAP)-induced acute hepatotoxicity in rats. The results were supported by subsequent histopathological studies. The hepatoprotective activity of both the aqueous and methanolic extracts at an oral dose of 125 and 250 mg/kg was investigated by observing the reduction levels or the activity of alkaline phosphatase, alkaline transaminase, aspartate aminotransferase, blood urine nitrogen, and total bilirubin content. In vivo antioxidant activity was determined by analyzing the serum superoxide dismutase, malondialdehyde, glutathione, and catalase levels. Chromatographic methods were used to isolate biologically active compounds from the extract, and spectroscopic methods were used for structure elucidation. Both the methanolic and aqueous extracts exerted noticable hepatoprotective and antioxidant effects supporting the folkloric usage of dodder. One of the bioactive compounds was kaempferol-3-O-rhamnoside, isolated and identified from the methanolic extract.

  7. Hepatoprotective effect of collagen peptides from cod skin against liver oxidative damage in vitro and in vivo.

    PubMed

    Han, Yantao; Xie, Jing; Gao, Hui; Xia, Yunqiu; Chen, Xuehong; Wang, Chunbo

    2015-03-01

    The objective of this study was to investigate the hepatoprotective effect of cod skin collagen peptides (CSCP), isolated from fishing industrial by-products, in vitro and in vivo. Effect of CSCP on cell proliferation of normal and H2O2-damaged Chang liver cells was determined by MTT assay in vitro. Two animal models, CCl4-induced and acetaminophenum-induced acute hepatotoxicity, were established to assess the hepatoprotective effect of CSCP. Liver weight index, serum ALT and AST, antioxidant enzymes, and lipid peroxidation product were used as the markers of liver toxicity. The cell viability in the H2O2-treated Chang liver cells was remarkably increased when pretreated with CSCP from 100 to 1,000 µg/ml in a dose-dependent manner. CSCP pretreatment also alleviated the CCL4-induced liver index loss, while no marked changes were found in acetaminophenum-treated mice. Furthermore, CSCP pulled down serum ALT and AST level, increased the activities of SOD and CAT, and decreased MDA in both murine models of acute liver toxicity. Pretreatment with CSCP protected liver tissue against oxidative injure in vivo and in vitro. The underlying mechanism might involve enhancement in the activities of antioxidant enzymes and reduction in the lipid peroxidation.

  8. New aspects on the hepatoprotective potential associated with the antioxidant, hypocholesterolemic and anti-inflammatory activities of Vernonia condensata Baker.

    PubMed

    Silva, Jucélia Barbosa da; Mendes, Renata de Freitas; Tomasco, Vívian; Pinto, Nícolas de Castro Campos; de Oliveira, Luiz Gustavo; Rodrigues, Matheus Nehrer; Aragão, Danielle Maria de Oliveira; Aguiar, Jair Adriano Kopke de; Alves, Maria Silvana; Castañon, Maria Christina Nogueira Marques; Ribeiro, Antônia; Scio, Elita

    2017-02-23

    Vernonia condensata Baker (Asteraceae) is traditionally used in South American Countries as an anti-inflammatory, analgesic and hepatoprotective. This study aimed to investigate the in vivo hepatoprotective and antioxidant, and the in vitro anti-inflammatory activities of the ethyl acetate partition (EAP) from the ethanolic extract of this medicinal plant leaves. For the in vivo hepatoprotective activity, rats were pretreated orally for seven days with vehicle, silymarin 100mg/kg or EAP 50, 100 and 200mg/kg. Then, acetaminophen 3g/kg was also orally administrated. Animals were euthanatized 24h after the damage inducement. The levels of the serum enzymes ALT, AST and ALP were determined, as well as the triglycerides, total cholesterol and fractions. The antioxidant activity was evaluated by TBARS assay and by the measurement of glutathione reductase, superoxide dismutase and catalase activities in the rats liver tissue. The in vitro anti-inflammatory assay using Raw 264.7 cell line induced by lipopolysaccharide was conducted to verify EAP ability to inhibit pro-inflammatory cytokines. EAP was able to inhibit all the acute biochemical alterations caused by acetaminophen overdose. EAP inhibited malondialdehyde formation, maintained the catalase and increased the glutathione reductase activities. Also, EAP decreased NO, IL-6 and TNF-α levels at concentrations from 10 to 20µg/mL. 1,5-dicaffeoylquinic acid was isolated and identified as the major compound in EAP. Apigenin, luteolin, chlorogenic acid were also identified. EAP anti-inflammatory action may be due to its antioxidant activity or its capacity to inhibit the pro-inflammatory cytokines. These results strongly suggested that V. condensata may be useful as a possible therapy against liver damage. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  9. Pharmacological evaluation of mangiferin herbosomes for antioxidant and hepatoprotection potential against ethanol induced hepatic damage.

    PubMed

    Jain, Pushpendra Kumar; Kharya, Murlidhar; Gajbhiye, Asmita

    2013-11-01

    Fatty liver is the first stage of alcoholic damage which is reversible with abstinence from alcohol. Mangiferin (MF) showed potent scavenging activity on diphenyl-1-picrylhydrazyl radicals which stimulate liver regeneration in various liver injuries. Although, MF shows hepatoprotection against various liver disorders but due to rapid clearance and limited solubility in lipoid environment, there is problem of its poor absorption from intestine hence poor bioavailability. Owing to which there is a need to develop MF herbosomes to resolve the problem of poor bioavailability to enhance the therapeutic potential. Successfully prepared MF herbosomes through complexation with phospholipids were characterized by physicochemical, chromatography, spectroscopy (differential scanning calorimetry (DSC), infrared (IR), and nuclear magnetic resonance (NMR)), ex vivo absorption using everted small intestine sac technique and in vivo studies using ethanol inducing hepatotoxicity in albino rats and comparing the results against plain MF. Ex vivo study showed significant increased absorption of MF from prepared MF herbosomes as compared to plain MF. The hepatoprotective potential of MF herbosomes evaluated by in vivo study revealed significantly decreased levels of serum glutamate oxaloacetate transminase (SGOT), serum glutamate pyruvate transminase (SGPT), total bilirubin, and alkaline phosphatase (ALP) in MF herbosomes as compared to plain MF. MF herbosomes also showed significantly decreased level of malonyl dehydrogenase along with increased levels of reduced glutathione, superoxide dismutase (SOD) and catalase as compared to plain MF which was also comparable to the standard drug, silymarin (SL). The above mentioned results showed that hepatoprotective and antioxidant potency of MF enhanced due to the preparation of its herbosomes.

  10. Antioxidant Activity and Hepatoprotective Potential of Quercetin 7-Rhamnoside In Vitro and In Vivo.

    PubMed

    Huang, Zhi-Qiang; Chen, Pan; Su, Wei-Wei; Wang, Yong-Gang; Wu, Hao; Peng, Wei; Li, Pei-Bo

    2018-05-16

    Hypericum japonicum is traditionally used as a folk medicine to treat cholestasis and hepatitis. Quercetin 7-rhamnoside (Q7R) is one of the main flavonoid components of Hypericum japonicum and has been rarely studied. The aim of the present study was to evaluate the antioxidant activity and hepatoprotective potential of Q7R. In the in vitro experiments, DPPH, ABTS and ferric reducing antioxidant power (FRAP) assays were first performed to assess the antioxidant properties of Q7R, and then a H₂O₂-induced oxidative damage cellular model was used to determine the cytoprotective and antioxidant properties of Q7R in human liver L-02 cells. In the in vivo experiment, the hepatoprotective activity of Q7R was evaluated by carbon tetrachloride (CCl₄)-induced liver damage model in mice. The results of the three in vitro assays (DPPH, ABTS and FRAP) demonstrated that Q7R significantly exhibited antioxidant activity. The cell experiment results showed that Q7R possessed cytoprotective and antioxidant effects on H₂O₂-treated L-02 cells. In the in vivo experiments, Q7R suppressed the up-regulation of serum activities of ALT, AST, LDH and triglyceride (TG) levels with dose-dependency. Q7R down-regulated the production of MDA and increased the hepatic GSH content and antioxidant enzymes CAT activities. Hepatic morphological analysis was also performed to confirm the biochemical changes. In summary, these results suggested that Q7R could be considered as a potential source of natural antioxidants, and may become a promising candidate for the treatment of liver injury in the future.

  11. Oral bioavailability enhancement and hepatoprotective effects of thymoquinone by self-nanoemulsifying drug delivery system.

    PubMed

    Kalam, Mohd Abul; Raish, Mohammad; Ahmed, Ajaz; Alkharfy, Khalid M; Mohsin, Kazi; Alshamsan, Aws; Al-Jenoobi, Fahad I; Al-Mohizea, Abdullah M; Shakeel, Faiyaz

    2017-07-01

    Thymoquinone (TQ) is a poorly water soluble bioactive compound which shows poor oral bioavailability upon oral administration. Due to poor aqueous solubility and bioavailability of TQ, various self-nanoemulsifying drug delivery systems (SNEDDS) of TQ were developed and evaluated for enhancement of its hepatoprotective effects and oral bioavailability. Hepatoprotective and pharmacokinetic studies of TQ suspension and TQ-SNEDDS were carried out in rat models. Different SNEDDS formulations of TQ were developed and thermodynamically stable TQ-SNEDDS were characterized for physicochemical parameters and evaluated for drug release studies via dialysis membrane. Optimized SNEDDS formulation of TQ was selected for further evaluation of in vivo evaluation. In vivo hepatoprotective investigations showed significant hepatoprotective effects for optimized TQ-SNEDDS in comparison with TQ suspension. The oral administration of optimized SNEDDS showed significant improvement in in vivo absorption of TQ in comparison with TQ suspension. The relatively bioavailability of TQ was enhanced 3.87-fold by optimized SNEDDS in comparison with TQ suspension. The results of this research work indicated the potential of SNEDDS in enhancing relative bioavailability and therapeutic effects of natural bioactive compounds such as TQ. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vitro antioxidant and in vivo hepatoprotective activity of leave extract of Raphanus sativus in rats using CCL4 model.

    PubMed

    Syed, Shariq Naeem; Rizvi, Waseem; Kumar, Anil; Khan, Aijaz Ahmad; Moin, Shagufta; Ahsan, Akif

    2014-01-01

    Raphanus sativus is reported to have a variety of biological activities. This work screened the hepato-protective and antioxidant activity of ethanol (ERS), and aqueous (ARS), extracts of leaves of Raphanus sativus in Carbon tetrachloride (CCl4), model in rats. The extracts were subjected to antioxidant tests (Total reducing power and Total phenolic content), and preliminary phytochemical screening. A pilot study was done on 100 and 300 mg/kg extracts, form which 300 mg was chosen for further experiments. The albino rats (200-250 grams), were divided into 5 groups of 6 animals each (n=6). There were three control groups comprising of normal control (normal saline -1ml/kg), negative control group (CCl4 1ml/kg in olive oil in a ratio of 1:1 v/v), and positive control group (Silymarin 50mg/kg). The Test drugs were given in a dose of 300 mg/kg for both ERS and ARS extract for 7 days. Biochemical parameters (AST, ALT, Alkaline phosphatase, Total Bilirubin), histo-pathological examination of liver and in vivo antioxidant tests [CAT, GSH and MDA] were done. The phytochemical study showed the presence of flavanoids, terpenoids, alkaloids, saponins and sterols. A dose dependent increase in the oxidative potential was observed in both the extracts with total phenolic content 70.1 and 44.4 GAE/g extract for ERS and ARS respectively. ERS 300mg/kg showed a significant (p<0.001) increase in levels of AST, ALT and alkaline phosphatase as compared to negative control (percentage hepatoprotection =45.3%) while ARS 300 mg/kg (p<.01) group showed 30% hepatoprotection. The GSH (p<0.001) and CAT (p<0.05) in ERS and ARS were significantly increased while MDA levels were decreased (P< 0.01), as compared negative control. The findings were confirmed histo-pathological examination. The ethanol and aqueous extract of Raphanus sativus have partial hepatoprotection against CCl4 toxicity.

  13. Hepatoprotective amide constituents from the fruit of Piper chaba: Structural requirements, mode of action, and new amides.

    PubMed

    Matsuda, Hisashi; Ninomiya, Kiyofumi; Morikawa, Toshio; Yasuda, Daisuke; Yamaguchi, Itadaki; Yoshikawa, Masayuki

    2009-10-15

    The 80% aqueous acetone extract from the fruit of Piper chaba (Piperaceae) was found to have hepatoprotective effects on D-galactosamine (D-GalN)/lipopolysaccharide-induced liver injury in mice. From the ethyl acetate-soluble fraction, three new amides, piperchabamides E, G, and H, 33 amides, and four aromatic constituents were isolated. Among the isolates, several amide constituents inhibited D-GalN/tumor necrosis factor-alpha (TNF-alpha)-induced death of hepatocytes, and the following structural requirements were suggested: (i) the amide moiety is essential for potent activity; and (ii) the 1,9-decadiene structure between the benzene ring and the amide moiety tended to enhance the activity. Moreover, a principal constituent, piperine, exhibited strong in vivo hepatoprotective effects at doses of 5 and 10 mg/kg, po and its mode of action was suggested to depend on the reduced sensitivity of hepatocytes to TNF-alpha.

  14. Silymarin-Loaded Eudragit Nanoparticles: Formulation, Characterization, and Hepatoprotective and Toxicity Evaluation.

    PubMed

    El-Nahas, Amira E; Allam, Ahmed N; Abdelmonsif, Doaa A; El-Kamel, Amal H

    2017-11-01

    The objectives of this study were to formulate, characterize silymarin-loaded Eudragit nanoparticles (SNPs) and evaluate their hepatoprotective and cytotoxic effects after oral administration. SNPs were prepared by nanoprecipitation technique and were evaluated for particle size, entrapment efficiency, TEM, solid-state characterization, and in vitro drug release. The hepatoprotective activity was evaluated after oral administration of selected SNPs in carbon tetrachloride-intoxicated rats. Potential in vivo acute cytotoxicity study was also assessed. The selected SNPs contained 50 mg silymarin and 50 mg Eudragit polymers (1:1 w/w Eudragit RS 100 & Eudragit LS 100). Morphology of the selected SNPs (particle size of 84.70 nm and entrapment efficiency of 83.45% with 100% drug release after 12 h) revealed spherical and uniformly distributed nanoparticles. DSC and FT-IR studies suggested the presence of silymarin in an amorphous state and absence of chemical interaction. The hepatoprotective evaluation of the selected SNPs in CCl 4 -intoxicated rats revealed significant improvement in the activities of different biochemical parameters (P ≤ 0.01) compared to the marketed product. The histopathological studies suggested that the selected SNPs produced better hepatoprotective effect in CCl 4 -intoxicated rats compared with the commercially marketed product. Toxicity study revealed no evident toxic effect for blank or silymarin-loaded nanoparticles at the dose level of 50 mg/kg body weight. The obtained results suggested that the selected SNPs were safe and potentially offered enhancement in the pharmacological hepatoprotective properties of silymarin.

  15. Protective effect of polysaccharide from maca (Lepidium meyenii) on Hep-G2 cells and alcoholic liver oxidative injury in mice.

    PubMed

    Zhang, Lijun; Zhao, Qingsheng; Wang, Liwei; Zhao, Mingxia; Zhao, Bing

    2017-06-01

    To study the characterization and hepatoprotective activity of polysaccharide from maca (Lepidium meyenii), the main polysaccharide from maca (MP-1) was obtained by DEAE-52 cellulose column. The average molecular weight of MP-1 was 1067.3kDa and the polysaccharide purity was 91.63%. In order to assess the antioxidant activities of MP-1, four kinds of methods were used, including scavenging hydroxyl radical, DPPH, superoxide anion radical, and FRAP, and the results indicated high antioxidant activities. Furthermore, hepatoprotective activity of MP-1 was studied both in vitro and vivo. In vitro, the alcohol induced Hep-G2 cells model was established to evaluate the protective effect of MP-1, which demonstrated MP-1 can alleviate alcohol damage in Hep-G2 cells. In vivo, the Institute of Cancer Researcch (ICR) mice were used to evaluate hepatoprotecive effects of MP-1 on alcoholic liver disease (ALD). Supplement with MP-1 supressed the triglyceride level both in serum and in hepatic tissue. In addition, MP-1 ameliorated serous transaminases increase induced by alcohol, including aspartate transaminase, alanine aminotransferase, and γ-glutamyl transpeptidase. Moreover, MP-1 also dramatically increased the superoxide dismutase, glutathione peroxidase, and glutathione s-transferase levels in alcoholic mice. Meantime, histopathologic results MP-1 lighten inflammation induced by alcohol. These results indicate that MP-1 possesses hepatoprotective activity against hepatic injury induced by alcohol. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hepatoprotective effect of chitosan-caffeic acid conjugate against ethanol-treated mice.

    PubMed

    Park, Soo Yeon; Ahn, Ginnae; Um, Ju Hyung; Han, Eui Jeong; Ahn, Chang-Bum; Yoon, Na Young; Je, Jae-Young

    2017-10-02

    The chitosan-caffeic acid (CCA) conjugate shows a hepatoprotective effect against oxidative stress-induced hepatic damage in cultured hepatocytes. The objective of this study is the verification of the hepatoprotective effect of the CCA in vivo against ethanol-induced liver injury in mice. The administration of ethanol resulted in the increase of the serum-aminotransferase activities (AST and ALT), triglycerides, total cholesterol, and lipid peroxidation. The CCA co-administration, however, significantly (p<0.05) ameliorated these serum biomarkers. The antioxidant-enzyme activities in the liver tissue, including those of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), were significantly decreased by a chronic ethanol administration, whereas the hepatic lipid-peroxidation level was increased. Moreover, the chronic ethanol administration elevated the gene expression of pro-inflammatory cytokines such as tumor-necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in the liver tissue. The CCA co-administration, however, significantly (p<0.05) increased the activities of the SOD, CAT, and GPx and caused the down-regulation of the TNF-α- and IL-6-gene expressions in the liver tissue. An histopathologic evaluation also supported the hepatoprotective effect of the CCA against ethanol-induced hepatotoxicity in the mice. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Hepatoprotective effect of Solanum xanthocarpum fruit extract against CCl4 induced acute liver toxicity in experimental animals.

    PubMed

    Gupta, Ramesh K; Hussain, Talib; Panigrahi, G; Das, Avik; Singh, Gireesh Narayan; Sweety, K; Faiyazuddin, Md; Rao, Chandana Venkateswara

    2011-12-01

    To investigate the hepatoprotective potential of Solanum xanthocarpum (Solanaceae) (S. xanthocarpum) in experimental rats to validate its traditional claim. 50% ethanolic fruit extract of S. xanthocarpum (SXE, 100, 200 or 400 mg/kg body weight) was administered daily for 14 days in experimental animals. Liver injury was induced chemically, by CCl(4) administration (1 mL/kg i. p.). The hepatoprotective activity was assessed using various biochemical parameters like aspartate aminotransferase (AST), alanine aminotransferase (ALT), Serum alkaline phosphatise (SALP) and total bilirubin. Meanwhile, in vivo antioxidant activities as lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD) and catalase (CAT) were screened along with histopathological studies. Obtained results demonstrated that the treatment with SXE significantly (P<0.05-<0.001) and dose-dependently prevented chemically induced increase in serum levels of hepatic enzymes. Furthermore, SXE significantly (up to P<0.001) reduced the lipid peroxidation in the liver tissue and restored activities of defence antioxidant enzymes GSH, SOD and catalase towards normal levels. Histopathology of the liver tissue showed that SXE attenuated the hepatocellular necrosis and led to reduction of inflammatory cells inflltration. The results of this study strongly indicate the protective effect of SXE against acute liver injury which may be attributed to its hepatoprotective activity, and there by scientifically support its traditional use. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. NF-κB activation and proinflammatory cytokines mediated protective effect of Indigofera caerulea Roxb. on CCl4 induced liver damage in rats.

    PubMed

    Ponmari, Guruvaiah; Annamalai, Arunachalam; Gopalakrishnan, Velliyur Kanniappan; Lakshmi, P T V; Guruvayoorappan, C

    2014-12-01

    Indigofera caerulea Roxb. is a well known shrub among native medical practitioners in folk medicine used for the treatment of jaundice, epilepsy, night blindness and snake bites. It is also reported to have antioxidant and antimicrobial properties. However its actual efficacy and hepatoprotective mechanism in particular is uncertain. Thus the present study investigates the hepatoprotective effect of the methanolic extract of I. caerulea Roxb. leaves (MIL) and elucidation of its mode of action against carbon tetrachloride (CCl4) induced liver injury in rats. HPLC analysis of MIL when carried out showed peaks close to standard ferulic acid and quercetin. Intragastric administration of MIL up to 2000 mg/kg bw, didn't show any toxicity and mortality in acute toxicity studies. During "in-vivo" study, hepatic injury was established by intraperitoneal administration of CCl4 3 ml/kg bw (30% CCl4 in olive oil; v/v) twice a week for 4 weeks in Sprague-Dawley rats. Further, hepatoprotective activity of MIL assessed using two different doses (100 and 200mg/kg bw) showed that intra-gastric administration of MIL (200mg/kg bw) significantly attenuates liver injury. Investigation of the underlying mechanism revealed that MIL treatment was capable of reducing inflammation by an antioxidant defense mechanism that blocks the activation of NF-κB as well as inhibits the release of proinflammatory cytokine TNF-α and IL-1β. The results suggest that MIL has a significant hepatoprotective activity which might be due to the presence of phytochemicals namely analogues of ferulic acid and other phytochemicals which together may suppress the inflammatory signaling pathways and promote hepatoprotective activity against CCl4 intoxicated liver damage. Copyright © 2014. Published by Elsevier B.V.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MadanKumar, Perumal; NaveenKumar, Perumal; Manikandan, Samidurai

    The anti-fibrotic effect of morin was examined in LX-2 cells (culture-activated human hepatic stellate cells) and in diethylnitrosamine induced rat model of liver fibrosis. The in vitro study was designed to determine whether morin affects the survival of cultured LX-2 cells, while the in vivo study was designed to evaluate the antioxidant and anti-fibrotic efficacy of morin on diethylnitrosamine induced liver fibrosis in male albino Wistar rat. The activities of liver function enzymes in serum, liver lipid peroxide levels, activities of serum antioxidant enzymes and liver architecture were monitored to cast light on the antioxidant and hepatoprotective nature of morin.more » To establish the anti-fibrotic effects of morin, the levels of key Wnt signaling molecules which are strongly associated with the signal transduction pathway of HSC activation were measured. Overall, from the in vitro results, it was observed that morin at 50 μM concentration inhibited the proliferation of cultured LX-2 cells, inhibited Wnt signaling and induced G1 cell cycle arrest. The in vivo results further confirmed that morin by downregulating the expressions of GSK-3β, β-catenin and cyclin D1 ameliorated DEN-induced liver fibrosis. Hence morin could be employed as a promising chemopreventive natural supplement for liver fibrosis. - Highlights: • In vivo and in vitro results revealed the active participation of Wnt signaling. • Morin at 50 μM inhibited LX-2 cell proliferation by suppressing Wnt signaling. • Morin exhibited hepatoprotective effects against DEN induced liver fibrosis. • Morin inhibited HSC activation in vivo by downregulating Wnt/β-catenin signaling.« less

  20. In vitro and in vivo antioxidative and hepatoprotective activity of aqueous extract of Cortex Dictamni

    PubMed Central

    Li, Lin; Zhou, Yun-Feng; Li, Yan-Lin; Wang, Li-Li; Arai, Hiderori; Xu, Yang

    2017-01-01

    AIM To investigate the antioxidant and hepatoprotective effects of Cortex Dictamni aqueous extract (CDAE) in carbon tetrachloride (CCl4)-induced liver damage in rats. METHODS The in vitro antioxidant effect of CDAE was investigated using α,α-diphenyl-β-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), β-carotene bleaching, reducing power, and thiobarbituric acid reactive substance assays. A linoleic acid system, including ferric thiocyanate (FTC) and thiobarbituric acid (TBA) assays, was used to evaluate the inhibition of lipid peroxidation. The in vivo hepatoprotective and antioxidant effects of CDAE against CCl4-induced liver damage were evaluated in Sprague-Dawley rats. Silymarin was used as a positive control. Liver damage was assessed by determining hepatic histopathology and liver marker enzymes in serum. Enzyme and non-enzyme antioxidant levels and lipid peroxide content were measured in the liver. Cytochrome P450 2E1 (CYP2E1) protein expression was measured via immunohistochemical staining. Nuclear factor E2-related factor (Nrf2), heme oxygenase-1 (HO-1), NAD(P)H quinine oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase catalytic subunit (γ-GCSc) protein expression was measured by Western blot. RESULTS Our results showed that CDAE exhibited a strong antioxidant activity in vitro. CDAE scavenged DPPH and ABTS radicals in a dose-dependent manner. CDAE inhibited lipid peroxidation with a lipid peroxide inhibition rate of 40.6% ± 5.2%. In the FTC and TBA assays, CDAE significantly inhibited lipid peroxidation (P < 0.01). In vivo histopathological studies indicated that CCl4-induced liver injury was alleviated following CDAE treatment in rats of both sexes. CDAE (160 and 320 mg/kg) significantly prevented CCl4-induced elevations of alkaline phosphatase, glutamate pyruvate transaminase, aspartate aminotransferase, and total bilirubin levels in rats of both sexes (P < 0.05, 0.01, or 0.001). Moreover, CDAE restored the decreased activities of hepatic antioxidant enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, as well as non-enzyme antioxidant glutathione, which were induced by CCl4 treatment. CDAE significantly suppressed the up-regulation of CYP2E1 and promoted Nrf2, HO-1, NQO1, and γ-GCSc protein expression. CONCLUSION CDAE exhibits good antioxidant performance in vitro, with marked radical-scavenging and anti-lipid peroxidation activities. CDAE is effective in preventing CCl4-induced hepatic damage in rats of both sexes. The hepatoprotective activity of CDAE may be attributable to its antioxidant activity, which may involve Keap1-Nrf2-mediated antioxidant regulation. PMID:28522909

  1. Radical Scavenging Activities of Lagerstroemia speciosa (L.) Pers. Petal Extracts and its hepato-protection in CCl4-intoxicated mice.

    PubMed

    Tiwary, Bipransh Kumar; Dutta, Somit; Dey, Priyankar; Hossain, Mossaraf; Kumar, Anoop; Bihani, Sony; Nanda, Ashis Kumar; Chaudhuri, Tapas Kumar; Chakraborty, Ranadhir

    2017-01-18

    Lagerstroemia speciosa (L.) Pers. has medicinal importance. Bioactive phytochemicals isolated from different parts of L. speciosa, have revealed hypoglycemic, antibacterial, anti-inflammatory, antioxidant and hepato protective properties. Despite one report from Philippines detailing the use of L. speciosa as curative for fever and as well as diuretic, there is no experimental evidence about the hepatoprotective activity of the flower extracts. Several spectroscopic methods, including GC-MS, were used to characterize phytochemicals present in the petal extract of L. speciosa. Ethanol extract of petals was evaluated for anti-oxidant and free radical scavenging properties by using methods related to hydrogen atom transfer, single electron transfer, reducing power, and metal chelation. This study has also revealed the in vitro antioxidant and in vivo hepatoprotective properties of petal extract against carbon tetra chloride (CCl 4 )-induced liver toxicity in Swiss albino mice. Hepatoprotection in CCl 4 -intoxicated mice was studied with the aid of histology and different enzymatic and non-enzymatic markers of liver damage. Cytotoxicity tests were done using murein spleenocytes and cancareous cell lines, MCF7 and HepG2. GCMS of the extract has revealed the presence of several potential antioxidant compounds, of them γ-Sitosterol and 1,2,3-Benzenetriol (Pyrogallol) were the predominant ones. The antioxidants activities of the flower-extract were significantly higher than curcumin (in terms of Nitric oxide scavenging activity; p = 0.0028) or ascorbic acid (in terms of 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) assay; p = 0.0022). The damage control by the flower extract can be attributed to the reduction in lipid peroxidation and restoration of catalase activity. In vitro cytotoxicity tests have shown that the flower extract did not affect growth and survivability of the cell lines. It left beyond doubt that a flower of L. speciosa is a reservoir of antioxidant and hepatoprotective agents capable of reversing the damage inflicted by CCl 4 -intoxication. Results from the present study may be used in developing a potential hepato-protective health drink enriched with antioxidants from Lagerstroemia speciosa (L.) Pers.

  2. Hepatoprotective effects of Auricularia cornea var. Li. polysaccharides against the alcoholic liver diseases through different metabolic pathways.

    PubMed

    Wang, Xiuxiu; Lan, Yufei; Zhu, Yongfa; Li, Shangshang; Liu, Min; Song, Xinling; Zhao, Huajie; Liu, Weiru; Zhang, Jianjun; Wang, Shouxian; Jia, Le

    2018-05-15

    The present work was designed to evaluate the antioxidation and hepatoprotective effects of Auricularia cornea var. Li. polysaccharides (APS) and enzymatic-extractable APS (EAPS) on the acute alcohol-induced alcoholic liver diseases (ALD). The in vitro antioxidant activities demonstrated that both APS and EAPS had strong reducing power and potential effects on scavenging reactive oxygen species. The in vivo mice experiments showed that the pretreatment with APS or EAPS showed potential hepatoprotective effects on the ALD possibly by increasing the antioxidant activities, reducing the lipid peroxidation, improving the alcohol metabolism, inhibiting the expression levels of inflammatory mediators and preventing the alcohol-induced histopathological alterations. In addition, the fourier-transform infrared (FT-IR), 1 H and 13 C nuclear magnetic resonance spectroscopy (NMR) and gas chromatography (GC) had been analyzed to obtained the primarily characteristics. The results indicated that abundant xylose and glucose contents probably had potential effects on possessing the bioactivities. The findings suggested that the A. cornea var. Li. might be considered as promising natural resource on exploring clinical drugs for the prevention and treatment with ALD and its complications.

  3. In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury In Vivo.

    PubMed

    Cai, Xixi; Yan, Ana; Fu, Nanyan; Wang, Shaoyun

    2017-04-10

    Schizochytrium protein hydrolysate (SPH) was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW) of SPH was principally concentrated at 180-3000 Da (52.29%). SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa) and SPH-II (MW > 3 kDa). Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC 50 of 350 μg/mL and 17.5 μg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW) to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA) level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body.

  4. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar

    PubMed Central

    Mekky, Reham H.; Fayed, Mostafa R.; El-Gindi, Mohamed R.; Abdel-Monem, Azza R.; Contreras, María del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea (Cicer arietinum) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, ‘Giza 1’ seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of ‘Giza 1’ seeds in vivo, the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl4-induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract. PMID:27733831

  5. Hepatoprotective Effect and Chemical Assessment of a Selected Egyptian Chickpea Cultivar.

    PubMed

    Mekky, Reham H; Fayed, Mostafa R; El-Gindi, Mohamed R; Abdel-Monem, Azza R; Contreras, María Del Mar; Segura-Carretero, Antonio; Abdel-Sattar, Essam

    2016-01-01

    Chickpea ( Cicer arietinum ) is a legume of the family Fabaceae, subfamily Faboideae. In Egypt, chickpea seeds are usually consumed at raw green and tender stage, or in the form of mature dry seeds. In our previous study, 'Giza 1' seeds exhibited stronger antioxidant activity and higher total phenol content than those from other Egyptian cultivars. In order to assess the biological potential of 'Giza 1' seeds in vivo , the extraction procedure was reproduced here. The extract was standardized using liquid chromatography coupled to diode array detector and tandem mass spectrometry (MS/MS) to evaluate their hepatoprotective effect on carbon tetrachloride (CCl 4 )-induced hepatotoxicity in rats and acute toxicity. Administration of the extract to rats in doses up to 2 g/Kg) did not cause any mortalities or observable signs of toxicity. Further, the plant extract showed a strong hepatoprotective activity based on assessing serum alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase and levels of albumen, globulin, total protein, total cholesterol, high density lipoprotein, triglycerides, and low density lipoprotein. The antioxidative activity was evaluated by assessing hepatic catalase and superoxide dismutase activity as well as reduced glutathione, and malondialdehyde levels. Additionally, anti-inflammatory activity was observed as the extract significantly lowered the hepatic tumor necrosis factor α content. Histopathological examination of liver tissues indicated that the extract-treated animals showed almost normal hepatic architecture with fewer pathological changes. In conclusion, the current results suggest that the chickpea extract possesses an excellent safety profile with very low acute toxicity. Also, it exhibits a significant hepatoprotective effect against CCl 4 -induced liver injury in rats. This can be attributed, at least partly, to the antioxidant and anti-inflammatory activity of the isoflavones and phenolic acids content of the extract.

  6. Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models.

    PubMed

    Obogwu, Mercy B; Akindele, Abidemi J; Adeyemi, Olufunmilayo O

    2014-04-01

    Hepatotoxicity is a significantly increasing health problem worldwide, and the extent of the problem has stimulated interest in the search for hepatotherapeutic agents from plants. This study investigated the hepatoprotective and in vivo antioxidant activities of the hydroethanolic extract of Mucuna pruriens leaves in antitubercular and alcohol-induced hepatotoxicity assays in rats. In each of the models used, seven groups were allotted. The different groups received normal saline (10 mL·kg(-1), p.o.); hepatotoxicant (isoniazid-rifampicin, INH-RIF, 100 mg·kg(-1), i.p. or 20% ethanol 5 g·kg(-1), p.o.) and normal saline (10 mL·kg(-1), p.o.); hepatotoxicant and extract at doses of 100, 200, and 400 mg·kg(-1) p.o.; hepatotoxicant and silymarin 50 mg·kg(-1) p.o.; and extract at 400 mg·kg(-1) p.o. On the 21(st) day of treatment, blood was collected for assessment of serum biochemical parameters and harvested liver samples were assessed for antioxidants. The hepatotoxicants significantly (P < 0.05-0.001) increased the levels of alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), bilirubin, and malondialdehyde (MDA); and reduced the levels of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and reduced glutathione GSH compared to control. M. pruriens significantly reversed (P < 0.05-0.001) the elevation in the level of ALT, AST, ALP, and bilirubin caused by the hepatotoxicants. The extract (200 and 400 mg·kg(-1)) significantly reversed (P < 0.05) the diminution in the level of in vivo antioxidants and increased the level of MDA produced by INH-RIF. M. pruriens (100-400 mg·kg(-1)) elicited significant reduction (P < 0.001) in the level of MDA compared to the alcohol group. Silymarin also reversed the deleterious effects of the hepatotoxicants. The hydroethanolic extract of Mucuna pruriens leaves possesses hepatoprotective activity with enhancement of in vivo antioxidants as a possible mechanism of action. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  7. Antioxidant and hepatoprotective effects of silymarin phytosomes compared to milk thistle extract in CCl4 induced hepatotoxicity in rats.

    PubMed

    El-Gazayerly, O N; Makhlouf, A I A; Soelm, A M A; Mohmoud, M A

    2014-01-01

    Milk thistle extract is a well-known hepatoprotectant with low bioavailability (20-50%). The objective of the present study is to prepare and characterize silymarin phytosomes and to test the hepatoprotective effect of the phytosomes in CCl4 induced liver injury in rats compared to milk thistle extract. Phytosomes were prepared using lecithin from soybeans and from egg yolk. The prepared phytosomes were examined using scanning electron microscopy, transmission electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy (H(1)NMR). The loading efficiency was >85% in all phytosomal formulations. Formula P2 (with the molar ratio of soybean lecithin to silybin 1:1) and P4 (with the molar ratio of egg-yolk lecithin to silybin 0.25:1) exhibited significantly (p < 0.05) faster release than milk thistle extract. The in vivo study revealed that phytosomes significantly (p < 0.05) decreased glutamic pyruvic transaminase and super oxide dismutase activities compared to milk thistle extract.

  8. PASS-Predicted Hepatoprotective Activity of Caesalpinia sappan in Thioacetamide-Induced Liver Fibrosis in Rats

    PubMed Central

    Kadir, Farkaad A.; Kassim, Normadiah M.; Abdulla, Mahmood Ameen; Ahmadipour, Fatemeh; Yehye, Wageeh A.

    2014-01-01

    The antifibrotic effects of traditional medicinal herb Caesalpinia sappan (CS) extract on liver fibrosis induced by thioacetamide (TAA) and the expression of transforming growth factor β1 (TGF-β1), α-smooth muscle actin (αSMA), and proliferating cell nuclear antigen (PCNA) in rats were studied. A computer-aided prediction of antioxidant and hepatoprotective activities was primarily performed with the Prediction Activity Spectra of the Substance (PASS) Program. Liver fibrosis was induced in male Sprague Dawley rats by TAA administration (0.03% w/v) in drinking water for a period of 12 weeks. Rats were divided into seven groups: control, TAA, Silymarin (SY), and CS 300 mg/kg body weight and 100 mg/kg groups. The effect of CS on liver fibrogenesis was determined by Masson's trichrome staining, immunohistochemical analysis, and western blotting. In vivo determination of hepatic antioxidant activities, cytochrome P450 2E1 (CYP2E1), and matrix metalloproteinases (MPPS) was employed. CS treatment had significantly increased hepatic antioxidant enzymes activity in the TAA-treated rats. Liver fibrosis was greatly alleviated in rats when treated with CS extract. CS treatment was noted to normalize the expression of TGF-β1, αSMA, PCNA, MMPs, and TIMP1 proteins. PASS-predicted plant activity could efficiently guide in selecting a promising pharmaceutical lead with high accuracy and required antioxidant and hepatoprotective properties. PMID:24701154

  9. Chemical composition and hepatoprotective activity of ethanolic root extract of Taraxacum Syriacum Boiss against acetaminophen intoxication in rats.

    PubMed

    Nazari, A; Fanaei, H; Dehpour, A R; Hassanzadeh, G; Jafari, M; Salehi, M; Mohammadi, M

    2015-01-01

    In the present study, the role of ethanol extract of root of Taraxacum Syriacum Boiss (TSBE) against hepatotoxicity caused by acetaminophen (APAP) was studied. The chemical composition of roots of Taraxacum Syriacum Boiss was analyzed by SPME-GC/MS method. Hepatocellular injuries induced by acetaminophen (APAP) were assessed by liver histology, serum aminotransferase activities, antioxidant enzymes activity and lipid peroxidation in liver tissue. TSBE was observed to exhibit hepatoprotective effect as demonstrated by significant decrease in serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), and alkaline phosphatase (ALP) concentration, and by preventing liver histopathologic changes in rats with APAP hepatotoxicity. Administration of APAP, significantly increased, lactate dehydrogenase (LDH) and catalase (CAT) activity in liver tissue and pretreatment with TSBE returned these parameters to control group, moreover TSBE reduces APAP-induced hepatic Glutathione (GSH) depletion. Carvacrol (6.7 %) was the main polyphenolic compound of plant sample. Our results demonstrated hepatoprotective activity of TSBE in rat in vivo. We believe that the mechanism by which the extract was able to protect the liver from the oxidative stress generated by APAP is due to its antioxidant activity. These phenolic compounds of the extract act as antioxidants and free radical scavengers and reduce or inhibit the oxidative stress induced by APAP administration (Tab. 3, Fig. 3, Ref. 39).

  10. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity.

    PubMed

    Tzankova, Virginia; Aluani, Denitsa; Kondeva-Burdina, Magdalena; Yordanov, Yordan; Odzhakov, Feodor; Apostolov, Alexandar; Yoncheva, Krassimira

    2017-08-01

    The toxic liver impairment caused by free radical injury or excessive reactive oxigen species (ROS) formation could be effectivelly attenuated by natural antioxidants. The present study aimed to explore and compare the hepatoprotective and antioxidant effects of free and encapsulated quercetin in in vitro and in vivo models of hepatotoxicity. Thus, quercetin was encapsulated in chitosan/alginate nanoparticles by gelation method. Both empty and quercetin-loaded nanoparticles revealed good safety profile in vitro, determined by the lack of cytotoxicity in human hepatoma HepG2 cells. The pretreatment of HepG2 cells with encapsulated quercetin (10μg/ml) significantly attenuated the decrease in cell viability in H 2 О 2 -induced oxidative stress (0.1mM H 2 О 2 ) , thus showing an effective in vitro protection. In vivo evaluation of the antioxidant and hepatoprotective potential of free and encapsulated quercetin was performed in a model of paracetamol - induced liver injury in male Wistar rats. The oral pretreatment with encapsulated quercetin (0.18mg/kg b.w., 7days) significantly diminished the increased levels of serum transaminases ALT and AST, attenuated the lipid peroxidation and restored the levels of gluthation (a marker of cell antioxidant defence system). The protective effects of quercetin encapsulated in chitosan-based nanoformulation were superior to those of free quercetin. The results of the study suggest that the encapsulation of quercetin in chitosan/alginate nanoformulations might represent an effective therapeutic approach against oxidative stress induced liver injury. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. The antioxidative and hepatoprotective effects comparison of Chinese angelica polysaccharide(CAP)and selenizing CAP (sCAP) in CCl4 induced hepatic injury mice.

    PubMed

    Gao, Zhenzhen; Zhang, Chao; Tian, Weijun; Liu, Kuanhui; Hou, Ranran; Yue, Chanjuan; Wu, Yi; Wang, Deyun; Liu, Jiaguo; Hu, Yuanliang; Yang, Ying

    2017-04-01

    Chinese angelica polysaccharides (CAP) and selenizing CAP (sCAP) were prepared and identified through FTIR and SEM observation. Their antioxidant activities in vitro and hepatoprotective effects in vivo were compared by free radical-scavenging tests or with CCl 4 -induced hepatic injury model mice. The results showed that for DPPH radical, superoxide anion and hydroxyl radical, the scavenging capabilities of sCAP were significantly stronger than those of CAP . In hepatic injury model mice, sCAP could significantly reduce ALT, AST and ALP contents and raised TP content in serum, significantly reduce MDA and ROS contents and raised SOD and T-AOC activities in liver homogenate in comparison with CAP; obviously relieve the pathological changes of liver and significantly inhibit the expressions of p-ERK, p-JNK and p-p38 protein as compared with those in model control group. These results indicate that selenylation modification can enhance the antioxidant and hepatoprotective actions of Chinese angelica polysaccharide. A action mechanism of sCAP is suppressing the protein expression of MAPK signaling pathway. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In Vitro Antioxidant Activities of Enzymatic Hydrolysate from Schizochytrium sp. and Its Hepatoprotective Effects on Acute Alcohol-Induced Liver Injury In Vivo

    PubMed Central

    Cai, Xixi; Yan, Ana; Fu, Nanyan; Wang, Shaoyun

    2017-01-01

    Schizochytrium protein hydrolysate (SPH) was prepared through stepwise enzymatic hydrolysis by alcalase and flavourzyme sequentially. The proportion of hydrophobic amino acids of SPH was 34.71%. The molecular weight (MW) of SPH was principally concentrated at 180–3000 Da (52.29%). SPH was divided into two fractions by ultrafiltration: SPH-I (MW < 3 kDa) and SPH-II (MW > 3 kDa). Besides showing lipid peroxidation inhibitory activity in vitro, SPH-I exhibited high DPPH and ABTS radicals scavenging activities with IC50 of 350 μg/mL and 17.5 μg/mL, respectively. In addition, the antioxidant activity of SPH-I was estimated in vivo using the model of acute alcohol-induced liver injury in mice. For the hepatoprotective effects, oral administration of SPH-I at different concentrations (100, 300 mg/kg BW) to the mice subjected to alcohol significantly decreased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and hepatic malondialdehyde (MDA) level compared to the untreated mice. Besides, SPH-I could effectively restore the hepatic superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities and glutathione (GSH) level. Results suggested that SPH was rich in biopeptides that could be exploited as antioxidant molecules against oxidative stress in human body. PMID:28394291

  13. Antioxidant and Hepatoprotective Activities of Crude Polysaccharide Extracts from Lingzhi or Reishi Medicinal Mushroom, Ganoderma lucidum (Agaricomycetes), by Ultrasonic-Circulating Extraction.

    PubMed

    Chen, Ti Qiang; Wu, Jian-Guo; Kan, Yong-Jun; Yang, Chi; Wu, Yan-Bin; Wu, Jin-Zhong

    2018-01-01

    We recently proposed, and successfully applied, a novel and efficient technique-ultrasonic-circulating extraction (UCE) integrating superfine pulverization-to extract and prepare antioxidant crude polysaccharides other natural active substances from Ganoderma lucidum. The aim of this study was to evaluate the antioxidant and hepatoprotective activities and active ingredients in the powder from UCE (UCEP) through comparison with powder from hot water extraction (HWEP). The DPPH radical, ABTS radical, superoxide anion, total antioxidant activity, and ferric-reducing antioxidant power assay results showed that the UCEP exhibited stronger (P < 0.01) in vitro antioxidant activity than the HWEP. The hepatoprotective activity of the extracts was evaluated against CCl4-induced oxidative damage in the liver. Measurements of reduced glutathione, superoxide dismutase, and malondialdehyde in rat liver; measurements of alanine transaminase, aspartate transaminase, and lactate dehydrogenase in rat blood; and Western blotting for antioxidant proteins of transforming growth factor-β1, heme-oxygenase 1, and glutathione per-oxidase showed that the UCEP had antioxidant activity in vivo either similar to or slightly stronger than (P < 0.1) the HWEP. Further analysis of the active ingredients revealed that the UCEP and HWEP have similar mean yield and total triterpenoid content, but the former has significantly higher (P < 0.05) mean yield and total polysaccharide content than the latter. Our results suggest that the UCEP displays stronger antioxidant activities because of the larger amount of total polysaccharides; the UCEP may be able to be used as an antioxidant and liver protectant.

  14. Gentiana manshurica Kitagawa prevents acetaminophen-induced acute hepatic injury in mice via inhibiting JNK/ERK MAPK pathway

    PubMed Central

    Wang, Ai-Yan; Lian, Li-Hua; Jiang, Ying-Zi; Wu, Yan-Ling; Nan, Ji-Xing

    2010-01-01

    AIM: To investigate the in vivo hepatoprotective effects and mechanisms of Gentiana manshurica Kitagawa (GM) in acetaminophen (APAP)-induced liver injury in mice. METHODS: GM (200, 150 or 50 mg/kg body weight) or N-acetyl-L-cysteine (NAC; 300 mg/kg body weight) was administrated orally with a single dose 2 h prior to APAP (300 mg/kg body weight) injection in mice. RESULTS: APAP treatment significantly depleted hepatic glutathione (GSH), increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT) and malonyldialdehyde (MDA) and 4-hydroxynonenal levels, and decreased hepatic activity of glutathione peroxidase (GSH-px) and superoxide dismutase (SOD). However, the pretreatment of GM significantly alleviated APAP-induced oxidative stress by increasing GSH content, decreasing serum ALT, AST and MDA, and retaining the activity of GSH-px and SOD in the liver. Furthermore, GM pretreatment can inhibit caspase-3 activation and phosphorylation of c-Jun-NH2-terminal protein kinase 2 (JNK1/2) and extracellular signal-regulated kinase (ERK). GM also remarkably attenuated hepatocyte apoptosis confirmed by the terminal deoxynucleotidyl transferase mediated dUTP nick end-labeling method. CONCLUSION: Hepatoprotective effects of GM against APAP-induced acute toxicity are mediated either by preventing the decline of hepatic antioxidant status or its direct anti-apoptosis capacity. These results support that GM is a potent hepatoprotective agent. PMID:20082487

  15. Chemical composition, antioxidant properties and hepatoprotective effects of chamomile (Matricaria recutita L.) decoction extract against alcohol-induced oxidative stress in rat.

    PubMed

    Sebai, Hichem; Jabri, Mohamed-Amine; Souli, Abdelaziz; Hosni, Karim; Rtibi, Kais; Tebourbi, Olfa; El-Benna, Jamel; Sakly, Mohsen

    2015-07-01

    The present study assessed the chemical composition, antioxidant properties, and hepatoprotective effects of subacute pre-treatment with chamomile (Matricaria recutita L.) decoction extract (CDE) against ethanol (EtOH)-induced oxidative stress in rats. The colorimetric analysis demonstrated that the CDE is rich in total polyphenols, total flavonoids and condensed tannins, and exhibited an important in vitro antioxidant activity. The use of LC/MS technique allowed us to identify 10 phenolic compounds in CDE. We found that CDE pretreatment, in vivo, protected against EtOH-induced liver injury evident by plasma transaminases activity and preservation of the hepatic tissue structure. The CDE counteracted EtOH-induced liver lipoperoxidation, preserved thiol -SH groups and prevented the depletion of antioxidant enzyme activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). We also showed that acute alcohol administration increased tissue and plasma hydrogen peroxide (H(2)O(2)), calcium and free iron levels. More importantly, CDE pre-treatment reversed all EtOH-induced disturbances in intracellular mediators. In conclusion, our data suggest that CDE exerted a potential hepatoprotective effect against EtOH-induced oxidative stress in rat, at least in part, by negatively regulating Fenton reaction components such as H(2)O(2) and free iron, which are known to lead to cytotoxicity mediated by intracellular calcium deregulation.

  16. Maltol, a Food Flavoring Agent, Attenuates Acute Alcohol-Induced Oxidative Damage in Mice

    PubMed Central

    Han, Ye; Xu, Qi; Hu, Jiang-ning; Han, Xin-yue; Li, Wei; Zhao, Li-chun

    2015-01-01

    The purpose of this study was to evaluate the hepatoprotective effect of maltol, a food-flavoring agent, on alcohol-induced acute oxidative damage in mice. Maltol used in this study was isolated from red ginseng (Panax ginseng C.A Meyer) and analyzed by high performance liquid chromatography (HPLC) and mass spectrometry. For hepatoprotective activity in vivo, pretreatment with maltol (12.5, 25 and 50 mg/kg; 15 days) drastically prevented the elevated activities of aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP) and triglyceride (TG) in serum and the levels of malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) in liver tissue (p < 0.05). Meanwhile, the levels of hepatic antioxidant, such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) were elevated by maltol pretreatment, compared to the alcohol group (p < 0.05). Histopathological examination revealed that maltol pretreatment significantly inhibited alcohol-induced hepatocyte apoptosis and fatty degeneration. Interestingly, pretreatment of maltol effectively relieved alcohol-induced oxidative damage in a dose-dependent manner. Maltol appeared to possess promising anti-oxidative and anti-inflammatory capacities. It was suggested that the hepatoprotective effect exhibited by maltol on alcohol-induced liver oxidative injury may be due to its potent antioxidant properties. PMID:25608939

  17. The comparison of antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide (CP) and sulfated CP.

    PubMed

    Liu, Cui; Chen, Jin; Li, Entao; Fan, Qiang; Wang, Deyun; Li, Peng; Li, Xiuping; Chen, Xingying; Qiu, Shulei; Gao, Zhenzhen; Li, Hongquan; Hu, Yuanliang

    2015-02-01

    Codonopsis pilosula polysaccharide (CP) was extracted, purified and modified by chlorosulfonic acid-pyridine method to obtain a sulfated CP (sCP). Their antioxidative activities in vitro were compared through the free radical-scavenging test. The results demonstrated that the scavenging capabilities of sCP were significantly stronger than those of CP. In vivo test, the mice hepatic injury model was prepared by BCG/LPS method, then administrated respectively with sCP and CP at three dosages, the biochemical indexes in serum, antioxidative indexes in liver homogenate and histopathological change in liver of the mice were compared. The results showed that in high (200mg/kg) and middle (150mg/kg) dosages of sCP groups, the contents of ALT, AST and TNF-α in serum and MDA in liver homogenate were significantly lower than those in the model group and numerically lower than those in the CP groups, the activities of SOD and GSH-Px in liver homogenate were significantly higher than those in the model group and numerically higher than those in the CP groups. In the model group there were obvious pathological changes in the liver, while in the sCP groups were near normal. These results indicate that sCP and CP possess antioxidative activity in vitro and in vivo, the activity of sCP is stronger than that of CP and sulfation modification can enhance the antioxidative and hepatoprotective activities of Codonopsis pilosula polysaccharide. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Amelioration of CCl4 induced liver injury in swiss albino mice by antioxidant rich leaf extract of Croton bonplandianus Baill.

    PubMed

    Dutta, Somit; Chakraborty, Arnab Kumar; Dey, Priyankar; Kar, Pallab; Guha, Pokhraj; Sen, Subhajit; Kumar, Anoop; Sen, Arnab; Chaudhuri, Tapas Kumar

    2018-01-01

    The progress in industrialization has blessed mankind with a technologically superior lifestyle but poor management of industrial waste has in turn poisoned nature. One such chemical is carbon tetra chloride (CCl4), which is a potent environmental toxin emitted from chemical industries and its presence in the atmosphere is increasing at an alarming rate. Presence of CCl4 in human body is reported to cause liver damage through free radical mediated inflammatory processes. Kupffer cells present in the liver are potentially more sensitive to oxidative stress than hepatocytes. Kuffer cells produced tumor necrosis factor-α (TNF-α) in response to reactive oxygen species (ROS), that might further cause inflammation or apoptosis. In this study hepatoprotective capacity of antioxidant rich extract of Croton bonplandianus Baill. (CBL) was evaluated on CCl4 induced acute hepatotoxicity in murine model. Hydro-methanolic extract of C. bonplandianus leaf was used for evaluation of free radical scavenging activity. Liver cells of experimental mice were damaged using CCl4 and subsequently hepatoprotective potential of the plant extract was evaluated using series of in-vivo and in-vitro studies. In the hepatoprotective study, silymarin was used as a positive control. Antioxidant enzymes, pro-inflammatory markers, liver enzymatic and biochemical parameters were studied to evaluate hepatoprotective activity of Croton bonplandianus leaf extract. Free radical scavenging activity of CBL extract was also observed in WRL-68 cell line. The phytochemicals identified by GCMS analysis were scrutinized using in-silico molecular docking procedure. The results showed that CBL extract have potent free radical scavenging capacity. The biochemical parameters were over expressed due to CCl4 administration, which were significantly normalized by CBL extract treatment. This finding was also supported by histopathological evidences showing less hepatocellularnecrosis, inflammation and fibrosis in CBL and silymarin treated group, compared to CCl4 group. ROS generated due to H2O2 in WRL-68 cell line were normalize in the highest group (200 μg/ml) when compared with control and negative control (CCl4) group. After molecular docking analysis, it was observed that the compound α-amyrin present in the leaf extract of C. bonplandianus has better potentiality to protect hepatocellular damages than the standard drug Silymarin. The present study provided supportive evidence that CBL extract possesses potent hepatoprotective capacity by ameliorating haloalkane induced liver injury in the murine model. The antioxidant and anti-inflammatory activities also affirm the same. The synergistic effects of the phytochemicals present in CBL are to be credited for all the hepatoprotective activity claimed above.

  19. Amelioration of CCl4 induced liver injury in swiss albino mice by antioxidant rich leaf extract of Croton bonplandianus Baill.

    PubMed Central

    Dutta, Somit; Chakraborty, Arnab Kumar; Dey, Priyankar; Kar, Pallab; Guha, Pokhraj; Sen, Subhajit; Kumar, Anoop; Sen, Arnab

    2018-01-01

    The progress in industrialization has blessed mankind with a technologically superior lifestyle but poor management of industrial waste has in turn poisoned nature. One such chemical is carbon tetra chloride (CCl4), which is a potent environmental toxin emitted from chemical industries and its presence in the atmosphere is increasing at an alarming rate. Presence of CCl4 in human body is reported to cause liver damage through free radical mediated inflammatory processes. Kupffer cells present in the liver are potentially more sensitive to oxidative stress than hepatocytes. Kuffer cells produced tumor necrosis factor-α (TNF-α) in response to reactive oxygen species (ROS), that might further cause inflammation or apoptosis. In this study hepatoprotective capacity of antioxidant rich extract of Croton bonplandianus Baill. (CBL) was evaluated on CCl4 induced acute hepatotoxicity in murine model. Hydro-methanolic extract of C. bonplandianus leaf was used for evaluation of free radical scavenging activity. Liver cells of experimental mice were damaged using CCl4 and subsequently hepatoprotective potential of the plant extract was evaluated using series of in-vivo and in-vitro studies. In the hepatoprotective study, silymarin was used as a positive control. Antioxidant enzymes, pro-inflammatory markers, liver enzymatic and biochemical parameters were studied to evaluate hepatoprotective activity of Croton bonplandianus leaf extract. Free radical scavenging activity of CBL extract was also observed in WRL-68 cell line. The phytochemicals identified by GCMS analysis were scrutinized using in-silico molecular docking procedure. The results showed that CBL extract have potent free radical scavenging capacity. The biochemical parameters were over expressed due to CCl4 administration, which were significantly normalized by CBL extract treatment. This finding was also supported by histopathological evidences showing less hepatocellularnecrosis, inflammation and fibrosis in CBL and silymarin treated group, compared to CCl4 group. ROS generated due to H2O2 in WRL-68 cell line were normalize in the highest group (200 μg/ml) when compared with control and negative control (CCl4) group. After molecular docking analysis, it was observed that the compound α-amyrin present in the leaf extract of C. bonplandianus has better potentiality to protect hepatocellular damages than the standard drug Silymarin. The present study provided supportive evidence that CBL extract possesses potent hepatoprotective capacity by ameliorating haloalkane induced liver injury in the murine model. The antioxidant and anti-inflammatory activities also affirm the same. The synergistic effects of the phytochemicals present in CBL are to be credited for all the hepatoprotective activity claimed above. PMID:29709010

  20. Hepatoprotective activity of Rhus oxyacantha root cortex extract against DDT-induced liver injury in rats.

    PubMed

    Ben Miled, Hanène; Barka, Zaineb Ben; Hallègue, Dorsaf; Lahbib, Karima; Ladjimi, Mohamed; Tlili, Mounira; Sakly, Mohsen; Rhouma, Khémais Ben; Ksouri, Riadh; Tebourbi, Olfa

    2017-06-01

    The present investigation aimed to study the antioxidant activity and hepatoprotective effects of ethyl acetate extract of R. oxyacantha root cortex (RE) against DDT-induced liver injury in male rats. The RE exhibited high total phenolic, flavonoid and condensed tannins contents. The antioxidant activity in vitro systems showed a significant potent free radical scavenging activity of the extract. The HPLC finger print of R. oxyacantha active extract showed the presence of five phenolic compounds with higher amounts of catechol and gallic acid. The in vivo results showed that a single intraperitoneal administration of DDT enhanced levels of hepatic markers (ALT, AST and LDH) in serum of experimental animals. It also increased the oxidative stress markers resulting in increased levels of the lipid peroxidation with a significant induction of SOD and GPx, metallothioneins (MTs) and a concomitant decrease of non protein thiols (NPSH) in liver. However, pretreatment of rats with RE at a dose of 150 and 300mg/kg body weight significantly lowered serum transaminases and LDH in treated rats. A significant reduction in hepatic thiobarbituric reactive substances and a decrease in antioxidant enzymes activities and hepatic MTs levels by treatment with plant extract against DDT, were observed. These biochemical changes were consistent with histopathological observations, suggesting marked hepatoprotective effect of RE with the two doses used. These results strongly suggest that treatment with ethyl acetate extract normalizes various biochemical parameters and protects the liver against DDT-induced oxidative damage in rats and thus help in evaluation of traditional claim on this plant. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Bioavailability enhancement of curcumin by complexation with phosphatidyl choline.

    PubMed

    Gupta, Nishant Kumar; Dixit, Vinod Kumar

    2011-05-01

    Curcumin is a major constituent of rhizomes of Curcuma longa. Pharmacokinetic studies of curcumin reveal its poor absorption through intestine. Objective of the present study was to enhance bioavailability of curcumin by its complexation with phosphatidyl choline (PC). Complex of curcumin was prepared with PC and characterized on the basis of solubility, melting point, differential scanning calorimetry, thin layer chromatography, and infrared spectroscopic analysis. Everted intestine sac technique was used to study ex vivo drug absorption of curcumin-PC (CU-PC) complex and plain curcumin. Pharmacokinetic studies were performed in rats, and hepatoprotective activity of CU-PC complex was also compared with curcumin and CU-PC physical mixture in isolated rat hepatocytes. Analytical reports along with spectroscopic data revealed the formation of complex. The results of ex vivo study show that CU-PC complex has significantly increased absorption compared with curcumin, when given in equimolar doses. Complex showed enhanced bioavailability, improved pharmacokinetics, and increased hepatoprotective activity as compared with curcumin or CU-PC physical mixture. Enhanced bioavailability of CU-PC complex may be due to the amphiphilic nature of the complex, which greatly enhance the water and lipid solubility of the curcumin. The present study clearly indicates the superiority of complex over curcumin, in terms of better absorption, enhanced bioavailability, and improved pharmacokinetics. Copyright © 2010 Wiley-Liss, Inc.

  2. Hepatoprotective activities of Antrodia camphorata and its triterpenoid compounds against CCl4-induced liver injury in mice.

    PubMed

    Li, Zi-Wei; Kuang, Yi; Tang, Shu-Nan; Li, Kai; Huang, Yun; Qiao, Xue; Yu, Si-Wang; Tzeng, Yew-Min; Lo, Jen-Yu; Ye, Min

    2017-07-12

    Antrodia camphorata (AC) is a rare and precious fungus indigenous to Taiwan used as a traditional medicine for the treatment of liver injury. Triterpenoids are the major bioactive constituents of A. camphorata and have been reported to possess hepatoprotective activities. To meet the increasing demand, artificial cultivation techniques have been developed. This study aims to evaluate the hepatoprotective activities of AC samples derived from different cultivation techniques and to dissect the main active triterpenoid compounds. The ethanol extracts of five batches of AC samples, including wild growing fruiting bodies, cutting wood culture fruiting bodies, dish cultures, cutting wood culture mycelia, and submerged fermentation mycelia were orally administered (50mg/kg or 200mg/kg) to ICR mice for 7 days. On the last day, CCl 4 (0.2%, 7mL/kg, i.p.) was used to induce liver injury, and the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were determined 24h after the injection. Moreover, a HepG2 cell model treated with CCl 4 (0.35%) was used to screen the protective activities of 29 AC triterpenoids. After incubation for 6h, viabilities of the cells were tested using MTS assay. The in vivo hepatoprotective activities of antcin B and antcin K were further studied on the mice model by ALT and AST tests and histopathologic examinations. To elucidate the mechanisms, the mRNA levels of iNOS, COX2, TNF-α and IL-1β, and the protein levels of NF-κB (p65/p-p65), iNOS and COX2 in liver tissues were determined. The wild growing or cutting wood culture fruiting bodies, and the dish cultures of AC showed more potent activities than the mycelia (P<0.001). At 20μM, 16 of 29 triterpenoids showed significant protective activities, increasing HepG2 cell viability from 46% of the CCl 4 group to >90%. Antcin B and antcin K could dose-dependently (10 or 50mg/kg, 7 days, i.g.) decrease the serum levels of ALT and AST, and decrease the incidence of liver necrosis. The effects of 50mg/kg of antcin K or antcin B were almost identical to those of 100mg/kg silymarin. Furthermore, qRT-PCR and Western blotting analyses revealed they could down-regulate IL-1β, TNF-α, iNOS, COX-2 and NF-κB in liver tissues at both transcriptional and translational levels. The results indicate that cultivation techniques remarkably affect the hepatoprotective activities of AC. Antcin K and antcin B are the major hepatoprotective compounds of A. camphorata, and the mechanism is related with anti-inflammation. Given its high natural abundance and good oral absorption, antcin K could be a promising drug candidate for liver injury. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. UPLC/QTOF/MS profiling of two Psidium species and the in-vivo hepatoprotective activity of their nano-formulated liposomes.

    PubMed

    Saber, Fatema R; Abdelbary, Ghada A; Salama, Maha M; Saleh, Dalia O; Fathy, Magda M; Soliman, Fathy M

    2018-03-01

    Liver diseases are major health problem in Egypt influencing lifestyle and economy. The demand for nutraceutical hepatoprotective agents is crucial to ameliorate the side effects of synthetic drugs. The present study aims to evaluate antioxidant and hepatoprotective activities of extracts of Psidium guajava L. and Psidium cattleianum Sabine leaves and their nano-formulated liposomes against paracetamol-induced liver damage in rats. Secondary metabolites profile of P. guajava and P. cattleianum leaves was investigated using UPLC-PDA-ESI-qTOF-MSn. The nano-liposomes containing Psidium extracts were prepared using thin film hydration method. Biochemical analysis was based on monitoring serum levels of AST, ALT, ALP and total bilirubin. The liver homogenate was used for determination of GSH and MDA. Histopathological alterations were also studied. Metabolic profiling revealed qualitative differences between the two investigated species providing a comprehensive map for the metabolites present in P. guajava and P. cattleianum leaves cultivated in Egypt. The identified metabolites belong to different phytochemical classes; polyphenolics, flavonoids, triterpenes and meroterpenoids. Significant hepatoprotective effects were observed as evident from the decreased levels of AST, ALT, ALP, MDA and total bilirubin as well as restoration of decreased GSH level in the two studied Psidium extracts (250, 500mg/kg b. wt) and their respective nano-liposomes (500mg/kg b. wt), when compared to the diseased group. Nano-liposomes of Psidium guajava leaves (500mg/kg b. wt) greatly restored the normal architecture of the liver in the histopathological study, as regards to standard silymarin. The present study verified the effectiveness of Psidium guajava and Psidium cattleianum leaves extracts and their nano-liposomes in ameliorating the paracetamol-induced hepatotoxicity in rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Hepatoprotective effects of Micromeria croatica ethanolic extract against CCl4-induced liver injury in mice.

    PubMed

    Vladimir-Knežević, Sanda; Cvijanović, Olga; Blažeković, Biljana; Kindl, Marija; Štefan, Maja Bival; Domitrović, Robert

    2015-07-15

    Micromeria croatica (Pers.) Schott is an aromatic plant from Lamiaceae family previously found to possess potent in vitro antioxidant activity which is mainly attributed to the high level of polyphenolic substances. The aim of this study was to investigate the hepatoprotective activity and possible underlying mechanisms of Micromeria croatica ethanolic extract (MC) using a model of carbon tetrachloride (CCl4)-induced liver injury in mice. Male BALB/cN mice were randomly divided into seven groups: control group received saline, MC group received ethanolic extract of M. croatica in 5% DMSO (100 mg/kg b.w., p.o.), and CCl4 group was administered CCl4 dissolved in corn oil (2 mL/kg, 10% v/v, ip). MC50, MC200 and MC400 groups were treated with MC orally at doses of 50, 200 and 400 mg/kg once daily for 2 consecutive days, respectively, 6 h after CCl4 intoxication. The reference group received silymarin at dose of 400 mg/kg. At the end of experiment, blood and liver samples were collected for biochemical, histopathological, immunohistochemical and Western blot analyses. In addition, major phenolic compounds in MC were quantified by HPLC-DAD. CCl4 intoxication resulted in liver cells damage and oxidative stress and triggered inflammatory response in mice livers. MC treatment decreased ALT activity and prevented liver necrosis. Improved hepatic antioxidant status was evident by increased Cu/Zn SOD activity and decreased 4-hydroxynonenal (4-HNE) formation in the livers. Concomitantly, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were overexpressed. The hepatoprotective activity of MC was accompanied by the increase in nuclear factor-kappaB (NF-κB) activation and tumor necrosis factor-alpha (TNF-α) expression, indicating amelioration of hepatic inflammation. Additionally, MC prevented tumor growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) expression, suggesting the potential for suppression of hepatic fibrogenesis. These results of the present study demonstrated that MC possesses in vivo antioxidant and anti-inflammatory activity and exhibits antifibrotic potential, which are comparable to those of standard hepatoprotective compound silymarin.

  5. Identification of a hepatoprotective peptide in wheat gluten hydrolysate against D-galactosamine-induced acute hepatitis in rats.

    PubMed

    Sato, Kenji; Egashira, Yukari; Ono, Shin; Mochizuki, Satoshi; Shimmura, Yuki; Suzuki, Yoshio; Nagata, Megumi; Hashimoto, Kaori; Kiyono, Tamami; Park, Eun Young; Nakamura, Yasushi; Itabashi, Mariko; Sakata, Yuka; Furuta, Seigo; Sanada, Hiroo

    2013-07-03

    A hepatoprotective peptide, pyroglutamyl leucine (pyroGlu-Leu), was identified in wheat gluten hydrolysate through an in vivo activity-guided fractionation approach based on D-galactosamine-induced acute hepatitis in rats and fractionation of peptides with large-scale preparative ampholine-free isoelectric focusing. The active acidic fraction predominantly consisted of pyroglutamyl peptides and free pyroglutamic acid. Pyroglutamyl peptides were derivatized with phenyl isothiocyanate after removal of a pyroglutamyl residue by pyroglutamate aminopeptidase. The derivatives were purified by reversed-phase HPLC and subjected to sequence analysis. The active fraction contained pyroGlu-Ile, pyroGlu-Leu, pyroGlu-Gln, pyroGlu-Gln-Gln, and free pyroGlu. Ingestion of pyroGlu-Leu at 20 mg/kg body weight significantly decreased serum aspartate and alanine aminotransferases to approximately 30% and 20% of those values of the vehicle group, respectively, which were near the normal levels. Thirty minutes after ingestion of pyroGlu-Leu at 20 mg/kg, the concentration of pyroGlu-Leu in portal blood plasma increased to approximately 2 μM.

  6. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells.

    PubMed

    Kumar, Nitesh; Rai, Amita; Reddy, Neetinkumar D; Raj, P Vasanth; Jain, Prateek; Deshpande, Praful; Mathew, Geetha; Kutty, N Gopalan; Udupa, Nayanabhirama; Rao, C Mallikarjuna

    2014-10-01

    Silymarin, a hepatoprotective agent, has poor oral bioavailability. However, the current dosage form of the drug does not target the liver and inflammatory cells selectively. The aim of the present study was to develop lecithin-based carrier system of silymarin by incorporating phytosomal-liposomal approach to increase its oral bioavailability and to make it target-specific to the liver for enhanced hepatoprotection. The formulation was prepared by film hydration method. Release of drug was assessed at pH 1.2 and 7.4. Formulation was assessed for in vitro hepatoprotection on Chang liver cells, lipopolysaccharide-induced reactive oxygen species (ROS) production by RAW 267.4 (murine macrophages), in vivo efficacy against paracetamol-induced hepatotoxicity and pharmacokinetic study by oral route in Wistar rat. The formulation showed maximum entrapment (55%) for a lecithin-cholesterol ratio of 6:1. Comparative release profile of formulation was better than silymarin at pH 1.2 and pH 7.4. In vitro studies showed a better hepatoprotection efficacy for formulation (one and half times) and better prevention of ROS production (ten times) compared to silymarin. In in vivo model, paracetamol showed significant hepatotoxicity in Wistar rats assessed through LFT, antioxidant markers and inflammatory markers. The formulation was found more efficacious than silymarin suspension in protecting the liver against paracetamol toxicity and the associated inflammatory conditions. The liposomal formulation yielded a three and half fold higher bioavailability of silymarin as compared with silymarin suspension. Incorporating the phytosomal form of silymarin in liposomal carrier system increased the oral bioavailability and showed better hepatoprotection and better anti-inflammatory effects compared with silymarin suspension. Copyright © 2014 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat

    PubMed Central

    Chiu, Huan-Wen; Hua, Kuo-Feng

    2016-01-01

    Antrodia cinnamomea (A. cinnamomea) is an indigenous medical fungus in Taiwan and has multiple biological functions, including hepatoprotective and immune-modulatory effects. Currently, the commercially available A. cinnamomea are mainly liquid- and solid-state fermented A. cinnamomea. However, the hepatoprotective effect of solid-state fermented A. cinnamomea has never been reported. Here we evaluate the ability of air-dried, ground and non-extracted wheat-based solid-state fermented A. cinnamomea (WFAC) to protect against carbon tetrachloride (CCl4)-induced hepatic injury in vivo. The results showed that oral administration of WFAC dose dependently (180, 540 and 1080 mg/kg) ameliorated the increase in plasma aspartate aminotransferase and alanine aminotransferase levels caused by chronic repeated CCl4 intoxication in rats. WFAC significantly reduced the CCl4-induced increase in hepatic lipid peroxidation levels and hydroxyproline contents, as well as reducing the spleen weight and water content of the liver. WFAC also restored the hepatic soluble protein synthesis and plasma albumin concentration in CCl4-intoxicated rats, but it did not affect the activities of superoxide dismutase, catalase, or glutathione peroxidase. In addition, a hepatic morphological analysis showed that the hepatic fibrosis and necrosis induced by CCl4 were significantly ameliorated by WFAC. Furthermore, the body weights of control rats and WFAC-administered rats were not significantly different, and no adverse effects were observed in WFAC-administered rats. These results indicate that WFAC is a nontoxic hepatoprotective agent against chronic CCl4-induced hepatic injury. PMID:27046059

  8. A comprehensive overview of hepatoprotective natural compounds: mechanism of action and clinical perspectives.

    PubMed

    Domitrović, Robert; Potočnjak, Iva

    2016-01-01

    Hepatoprotective effects of natural compounds have been frequently attributed to their antioxidant properties and the ability to mobilize endogenous antioxidant defense system. Because of involvement of oxidative stress in virtually all mechanisms of liver injury, it is a reasonable presumption that antioxidant properties of these compounds may play a key role in the mechanism of their hepatoprotective activity. Nevertheless, growing evidence suggests that other pharmacological activities of natural compounds distinct from antioxidant are responsible for their therapeutic effects. In this review, we discussed currently known molecular mechanisms of the hepatoprotective activity of 27 most intensively studied phytochemicals. These compounds have been shown to possess anti-inflammatory, antisteatotic, antiapoptotic, cell survival and antiviral activity through interference with multiple molecular targets and signaling pathways. Additionally, antifibrotic properties of phytochemicals have been closely associated with apoptosis of hepatic stellate cells and stimulation of extracellular matrix degradation. However, although these compounds exhibit a pronounced hepatoprotective effects in animal and cell culture models, the lack of clinical studies remains a bottleneck for their official acceptance by medical experts and physicians. Therefore, controlled clinical trials have an imperative in confirmation of the therapeutic activity of potentially hepatoprotective compounds. Understanding the principles of the hepatoprotective activity of phytochemicals could guide future drug development and help prevention of clinical trial failure. Also, the use of new delivery systems that enhances bioavailability of poorly water soluble compounds may improve the results already obtained. Most importantly, available data suggest that phytochemicals possess a various degree of modulation of specific signaling pathways, pointing out a need for usage of combinations of several hepatoprotective compounds in both experimental studies and clinical trials.

  9. Protective effects of phenolics rich extract of ginger against Aflatoxin B1-induced oxidative stress and hepatotoxicity.

    PubMed

    A V, Vipin; K, Raksha Rao; Kurrey, Nawneet Kumar; K A, Anu Appaiah; G, Venkateswaran

    2017-07-01

    Aflatoxin B 1 (AFB 1 ) is one of the predominant mycotoxin contaminant in food and feed, causing oxidative stress and hepatotoxicity. Ginger phenolics have been reported for its antioxidant potential and hepatoprotective activity. The present study investigated the protective effects of phenolics rich ginger extract (GE) against AFB 1 induced oxidative stress and hepatotoxicity, in vitro and in vivo. The phenolic acid profiles of GE showed 6-gingerol and 6-shogaol as predominant components. Pretreatment of HepG2 cells with GE significantly inhibited the production of intracellular reactive oxygen species (ROS), DNA strand break, and cytotoxicity induced by AFB 1 . A comparable effect was observed in in vivo. Male Wistar rats were orally treated with GE (100 and 250mg/kg) daily, with the administration of AFB 1 (200μg/kg) every alternative day for 28days. Treatment with GE significantly reduced AFB 1 induced toxicity on the serum markers of liver damage. In addition, GE also showed significant hepatoprotective effect by reducing the lipid peroxidation and by enhancing the antioxidant enzymes activities. These results combined with liver histopathological observations indicated that GE has potential protective effect against AFB 1 induced hepatotoxicity. Additionally, administration of GE up-regulated Nrf2/HO-1 pathway, which further proved the efficiency of GE to inhibit AFB 1 induced hepatotoxicity. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. In vitro enzyme-mimic activity and in vivo therapeutic potential of HSJ-0017, a novel Mn porphyrin-based antioxidant enzyme mimic.

    PubMed

    Li, Bao-qiu; Dong, Xin; Li, Na; Gao, Ji-you; Yuan, Qiang; Fang, Shi-hong; Gong, Xian-chang; Wang, Shu-juan; Wang, Feng-shan

    2014-10-01

    Manganese (III) 5, 10, 15, 20-tetrakis [3-(2-(2-methoxy)-ethoxy) ethoxy] phenyl porphyrin chloride, designated HSJ-0017, is a novel antioxidant enzyme mimic. The aim of the present study was to investigate the enzyme-mimic activity and the therapeutic potential of HSJ-0017 in free radical-related diseases. Superoxide dismutase (SOD) mimic activity was measured by the nitroblue tetrazolium chloride monohydrate reduction assay. Catalase (CAT) mimic activity was measured based on the decomposition of hydrogen peroxide. The antitumor, radioprotective and chemoprotective effects of HSJ-0017 were evaluated in H22 or S180 tumor-bearing Kunming mice. The anti-inflammatory and hepatoprotective effects were, respectively, evaluated in histamine-induced edema model and CCl4-induced hepatic damage model in Wistar rats. HSJ-0017 over a concentration range of 0.001-10 µmol/L significantly inhibited the generation of superoxide anion. Significant hydrogen peroxide scavenging activity was observed when the concentration of HSJ-0017 was higher than 0.01 µmol/L. HSJ-0017 at a dose of 3.0 mg/kg exhibited significant antitumor effect on S180 tumor xenografts, whereas no significant antitumor effect was observed in H22 tumor xenografts. HSJ-0017 at a dose of 3.0 mg/kg enhanced the antitumor effects of radiotherapy and chemotherapy, and reduced their toxicity. However, HSJ-0017 counteracted the antitumor effects of radiotherapy when administered simultaneously with radiotherapy. HSJ-0017 showed significant anti-inflammatory and hepatoprotective effects. Our results demonstrate that HSJ-0017 exhibits antioxidant, antitumor, anti-inflammatory, radioprotective, chemoprotective, and hepatoprotective effects. It is a potent dual SOD/CAT mimic. © 2014 by the Society for Experimental Biology and Medicine.

  11. Review on liver inflammation and antiinflammatory activity of Andrographis paniculata for hepatoprotection.

    PubMed

    Chua, Lee Suan

    2014-11-01

    Till to date, the advancement of medical science and technology is still unable to provide inclusive treatment to liver inflammation caused by neither microbial invasion nor antibiotics nor environmental toxins. Therefore, this article provides the basic knowledge of liver inflammation up to the cellular level and its current medical treatment for inflammatory symptom suppression. Because of the adverse effects of drug treatment, people start looking for comprehensive alternative nowadays. Herbal medicine is believed to be the best of choice because it is being practiced until now for centuries. Although numerous herbal plants have been reported for their efficacies in liver protection, Andrographis paniculata is the most widely used herb for hepatoprotection, particularly in Ayurveda and traditional Chinese medicine. This review covers the significant observation on the biochemical responses due to the experimental induction of liver damage in vitro and in vivo using the marker compound of the herb, namely andrographolide and its derivatives. The standardized extract of A. paniculata with the right phytochemical composition of diterpenic labdanes is likely to have tremendous potential for the development of hepatoprotective medicine. This standardized herbal medicine may not provide immediate remedy, but it can be considered as a comprehensive therapy for liver inflammation. Copyright © 2014 John Wiley & Sons, Ltd.

  12. The metabolism of berberine and its contribution to the pharmacological effects.

    PubMed

    Wang, Kun; Feng, Xinchi; Chai, Liwei; Cao, Shijie; Qiu, Feng

    2017-05-01

    Berberine, a bioactive alkaloid isolated from several herbal substances, possesses multiple pharmacological effects, including antimicrobial, antidiabetic, anticancer activities. Meanwhile, berberine undergoes extensive metabolism after oral administration which results in its extremely low plasma exposure. Therefore, it is believed that the metabolites of berberine also contribute a lot to its pharmacological effects. Along these lines, this review covers the metabolism studies of berberine in terms of its metabolic pathways and metabolic organs based on the identified metabolites, and it also covers the pharmacological activities of its active metabolites. In brief, the predominant metabolic pathways of berberine are demethylation, demethylenation, reduction, hydroxylation and subsequent conjugation in vivo. Active metabolites such as columbamine, berberrubine and demethyleneberberine also exhibit similar pharmacological effects by comparison with berberine, such as antioxidant, anti-inflammatory, antitumor, antimicrobial, hepatoprotective, neuroprotective, hypolipidemic and hypoglycemic effects. Overall, berberine together with its metabolites formed the material basis of berberine in vivo.

  13. Protective effect of Anoectochilus roxburghii polysaccharide against CCl4-induced oxidative liver damage in mice.

    PubMed

    Yang, Zhenguo; Zhang, Xiaohui; Yang, Lawei; Pan, Qunwen; Li, Juan; Wu, Yongfu; Chen, Meizhen; Cui, Shichao; Yu, Jie

    2017-03-01

    This study investigated the isolation and characterization of Anoectochilus roxburghii polysaccharides (ARP), and further evaluated whether ARP possessed hepatoprotective activities against CCl 4 -induced oxidative liver damage in mice. ARP is comprised of glucose and galactose in a 1.9:1 molar ratio, and the molecular weight is 19.5kDa. ARP displayed significant scavenging effects against hydroxyl radical, superoxide anion radical, DPPH radical and a strong reducing power. In vivo experiment demonstrated ARP (150mg/kg) administrated to mice for 7days prior to carbon tetrachloride treatment, attenuated the elevated expression levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), triglyceride (TG) in serum and inhibited the formation of hepatic malondialdehyde (MDA). ARP pretreatment also increased antioxidant enzyme activities such as glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) in the liver of CCl 4 -induced mice. Furthermore, hepatic histopathological changes induced by CCl 4 were significantly normalized by ARP pretreatment. These findings demonstrated that ARP possessed hepatoprotective effect against acute CCl 4 -induced liver damage by reducing lipid oxidation. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extract of Citrus maxima (pummelo) leaves improve hepatoprotective activity in Wistar rats submitted to the induction of non-alcoholic hepatic steatosis.

    PubMed

    Feksa, Denise Lima; Coelho, Ritiéle Pinto; Aparecida da Costa Güllich, Angélica; Dal Ponte, Emanuelle S; da Costa Escobar Piccoli, Jacqueline; Manfredini, Vanusa

    2018-02-01

    Non-alcoholic fatty liver disease is a spectrum of liver changes, ranging from hepatic steatosis to hepatocellular carcinoma. The Citrus maxima (CM) has been shown to be beneficial to the organism, and these activities are attributed to the presence of phytochemical compounds. The objective of this study was to evaluate the n vitro antioxidant potential of the CM leaves extract and on Wistar rats submitted to hepatic steatosis induction by fructose-associated hyperlipid diet (FHD). For the evaluation of in vivo effects, the animals were distributed in G1 (normal diet - ND), G2 (FHD), G3 (ND + extract 50mg/kg) and G4 (FHD + extract 50 mg/kg). All the parameters were determined through classical methodologies. The extract showed a significant antioxidant potential in vitro. In the in vivo analysis, the diet used was able to induce the development of metabolic abnormalities that favored the formation of hepatic steatosis (G2). Changes in inflammatory markers, increase in markers of oxidative damage, and reduction of antioxidant defenses were also observed. In addition, the extract did not cause changes in the animals' weight gain and acted as an anti-inflammatory, since G4 animals exhibited significantly reduced levels of the inflammatory markers. In the liver, the extract significantly decreased the content of fat, cholesterol and triglycerides compared to G2. The extract also showed antioxidant activity (G4) when compared to G2. The results suggest that the extract of CM leaf showed hepatoprotective, hypolipidemic, anti-inflammatory and antioxidant activities and the presence of phenolic compounds is a probable cause for such activities. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Hepatoprotective activity of Phyllanthus reticulatus.

    PubMed

    Das, Biplab K; Bepary, Sukumar; Datta, Bidyut K; Chowdhury, Ak Azad; Ali, Mohammad Shawkat; Rouf, Abu Shara Shamsur

    2008-10-01

    Two partially purified organic fractions designated by PR1 and PR2 of the fat free ethanol (95%) extract of aerial parts of Phyllanthus reticulatus were tested for the hepatoprotective activity in rats against CCl(4)-induced liver damage. The rats receiving the fractions showed promising hepatoprotective activity as evident from significant changes of pentobarbital-induced sleeping time, changes in serum levels of sGPT, sGOT, sALP and bilirubin and also from histopathological changes as compared to CCl(4)-intoxicated rats.

  16. Hepatoprotective effects of ethanol extracts from Folium Syringae against acetaminophen-induced hepatotoxicity in vitro and in vivo.

    PubMed

    Shi, Chen-Xi; Lin, Yue-Xia; Liu, Fang-Ping; Chang, Yi-Cong; Li, Rui; Li, Chang-Wen; Li, Ying; He, Jing-Shan; Ma, Xin; Li, Zhi

    2017-10-01

    The leaves of Folium Syringae (FS) have been long used as a traditional Chinese folk medicine for their anti-inflammatory effect, utilized as an antibacterial and antiviral treatment. The purpose of this study was to investigate the potential hepatoprotective effects of FS on acetaminophen-induced hepatic injury in primary hepatocytes and mice. Hepatocytes obtained by the inverse perfusion method were divided randomly into five groups. Prior to acetaminophen exposure, 3 different doses of FS ethanol extracts were given to hepatocytes and mice, respectively. Thereafter, transaminases, glutathione S-transferase A1 (GSTA1) and some hepatic indices were determined. FS ethanol extracts (200 μg/mL) pretreatment prevented all of the alterations, returning their levels to nearly those levels observed in the control group in vitro. Treatment with FS ethanol extracts (200 mg/kg) significantly reduced the toxicity induced by acetaminophen in vivo, which manifested as a decrease in transaminases, and the hepatoprotective effects of FS were similar to Silymarin (positive group). GSTA1 represented the same change trend as transaminases and hepatic indices, and at a dose of 100 μg/mL FS ethanol extracts in vitro and 100 mg/kg in vivo, GSTA1 content changed significantly (p < 0.01), but transaminases were insignificant (p > 0.05). The results of our investigation suggested that FS ethanol extracts possess significant protective effects against hepatotoxicity induced by acetaminophen both in vitro and in vivo. In addition, GSTA1 could be used as an indicator assessing the extents of hepatic injury, which is more sensitive than transaminases. Copyright © 2017. Published by Elsevier Taiwan LLC.

  17. Hepatoprotective natural triterpenoids.

    PubMed

    Xu, Guo-Bo; Xiao, Yao-Hua; Zhang, Qing-Yan; Zhou, Meng; Liao, Shang-Gao

    2018-02-10

    Liver diseases are one of the leading causes of death in the world. In spite of tremendous advances in modern drug research, effective and safe hepatoprotective agents are still in urgent demand. Natural products are undoubtedly valuable sources for drug leads. A number of natural triterpenoids were reported to possess pronounced hepatoprotective effects, and triterpenoids have become one of the most important classes of natural products for hepatoprotective agents. However, the significance of natural triterpenoids has been underestimated in the hepatoprotective drug discovery, with only very limited triterpenoids being covered in the reviews of hepatoprotective natural products. In this paper, ca 350 natural triterpenoids with reported hepatoprotective effects in ca 120 references between 1975 and 2016 will be reviewed, and the structure-activity relationships of certain types of natural triterpenoids, if available, will be discussed. Patents are not included. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  18. Hepatoprotective effects of aqueous extract from Lingzhi or Reishi medicinal mushroom Ganoderma lucidum (higher basidiomycetes) on α-amanitin-induced liver injury in mice.

    PubMed

    Wu, Xin; Zeng, Jun; Hu, Jinsong; Liao, Qiong; Zhou, Rong; Zhang, Ping; Chen, Zuohong

    2013-01-01

    The Lingzhi or Reishi mushroom Ganoderma lucidum is a well-known traditional medicinal mushroom that has been shown to have obvious hepatoprotective effects. The aim of this study was to evaluate the hepatoprotective effects of G. lucidum aqueous extracts (GLEs) on liver injury induced by α-amanitin (α-AMA) in mice and to analyze the possible hepatoprotective mechanisms related to radical scavenging activity. Mice were treated with α-AMA prepared from Amanita exitialis and then administrated with GLE after the α-AMA injection. The hepatoprotective activity of the GLE was compared with the reference drug silibinin (SIL). α-AMA induced a significant elevation in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and provoked a significant reduction of superoxide dismutase (SOD) and catalase (CAT) activities and a significant increment of malondialdehyde (MDA) content in liver homogenate. Treatment with GLE or SIL significantly decreased serum ALT and AST levels, significantly increased SOD and CAT activities, and decreased MDA content in liver compared with the α-AMA control group. The histopathological examination of liver sections was consistent with that of biochemical parameters. The results demonstrated that GLE induces hepatoprotective effects on acute liver injury induced by α-AMA; these protective effects may be related in part to the antioxidant properties of GLE.

  19. Hepatoprotective activity of Psidium guajava Linn. leaf extract.

    PubMed

    Roy, Chanchal K; Kamath, Jagadish V; Asad, Mohammed

    2006-04-01

    The study was designed to evaluate the hepatoprotective activity of P. guajava in acute experimental liver injury induced by carbon tetrachloride, paracetamol or thioacetamide and chronic liver damage induced by carbon tetrachloride. The effects observed were compared with a known hepatoprotective agent, silymarin. In the acute liver damage induced by different hepatotoxins, P. guajava leaf extracts (250 and 500mg/kg, po) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin. The higher dose of the extract (500 mg/kg, po) prevented the increase in liver weight when compared to hepatoxin treated control, while the lower dose was ineffective except in the paracetamol induced liver damage. In the chronic liver injury induced by carbon tetrachloride, the higher dose (500 mg/kg, po) of P. guajava leaf extract was found to be more effective than the lower dose (250 mg/kg, po). Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the aqueous extract of leaves of guava plant possesses good hepatoprotective activity.

  20. Hepatoprotective effect of fucoidan isolated from the seaweed Turbinaria decurrens in ethanol intoxicated rats.

    PubMed

    Meenakshi, Selvaraju; Umayaparvathi, Shanmugam; Saravanan, Ravichandran; Manivasagam, Tamilarasan; Balasubramanian, Thangavel

    2014-06-01

    Fucoidan is the sulfated polysaccharide which is present in the cell wall of the brown seaweeds with high nutritive value. It is widely known for its pharmacological activity and hence it is added as a main ingredient in the food supplements. A water soluble crude polysaccharide was extracted from Turbinaria decurrens. Ethanol has been used as a hepatotoxin in vivo and its administration increased oxidative stress, decreased antioxidant defence and liver injury. Fucoidan treatment increased the body weight, food intake and serum protein levels, it decreases the level of hepatic markers. Fucoidan improved the antioxidant status of alcoholic rats, which is evaluated by the decreased levels of lipid peroxidation markers and increased level of enzymatic antioxidants were observed in liver. Histopathological observations and protein expression were also in correlation with the biochemical parameters. The hepatoprotective effect of fucoidan is probably due to its antioxidant effect. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Protective effects of calycosin against CCl4-induced liver injury with activation of FXR and STAT3 in mice.

    PubMed

    Chen, Xinli; Meng, Qiang; Wang, Changyuan; Liu, Qi; Sun, Huijun; Huo, Xiaokui; Sun, Pengyuan; Yang, Xiaobo; Peng, Jinyong; Liu, Kexin

    2015-02-01

    Investigating the hepatoprotective effect of calycosin against acute liver injury in association with FXR activation and STAT3 phosphorylation. The acute liver injury model was established by intraperitoneal injection of CCl4 in C57BL/6 mice. Serum alanine aminotransferase, aspartate aminotransferase, HE staining and TUNEL assay were used to identify the amelioration of the liver histopathological changes and hepatocytes apoptosis after calycosin treatment. ELISA kit and 5-bromo-2-deoxyuridine immunohistochemistry were used to measure the liver bile acid concentration and hepatocyte mitotic rate in vivo. The relation between calycosin and activation of FXR and STAT3 was comfirmed using the Luciferase assay, Molecular docking, Real-time PCR and Western Blot in vitro. The liver histopathological changes, hepatocytes apoptosis, liver bile acid overload and hepatocyte mitosis showed significant changes after calycosin treatment. Calycosin promoted the expression of FXR target genes such as FoxM1B and SHP but the effect was reversed by FXR suppressor guggulsterone. Molecular docking results indicated that calycosin could be embedded into the binding pocket of FXR, thereby increasing the expressions of STAT3 tyrosine phosphorylation and its target genes, Bcl-xl and SOCS3. Calycosin plays a critical role in hepatoprotection against liver injury in association with FXR activation and STAT3 phosphorylation.

  2. Antioxidant and hepatoprotective activities of polysaccharides from Anoectochilus roxburghii.

    PubMed

    Zeng, Biyu; Su, Minghua; Chen, Qingxi; Chang, Qiang; Wang, Wei; Li, Huihua

    2016-11-20

    The physicochemical properties (molecular weights and monosaccharide compositions), antioxidant and hepatoprotective activities of polysaccharides (ARPPs: ARPP30, ARPP60 and ARPP80) isolated from Anoectochilus roxburghii were investigated. ARPP80 exhibited relatively strong antioxidant activities in a concentration-dependent manner. In mice subjected to carbon tetrachloride-induced hepatotoxicity, ARPP80 pretreatment significantly (p<0.01) reduced the levels of aspartate and alanine amino transferases and malonyldialdehyde, prominently (p<0.01) restored the levels of superoxide dismutase, catalase, glutathione peroxidase and reduced glutathione in serum or liver homogenate. These hepatoprotective effects were comparable to those of the standard drug silymarin at the same dose (200mg/kg). The study clearly demonstrated that ARPPs, especially ARPP80, might be suitable as functional foods or hepatoprotective drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Protective Effects of Silymarin, Alone or in Combination with Chlorogenic Acid and/or Melatonin, Against Carbon Tetrachloride-induced Hepatotoxicity

    PubMed Central

    Al-Rasheed, Nouf; Faddah, Laila; Al-Rasheed, Nawal; Bassiouni, Yieldez A.; Hasan, Iman H.; Mahmoud, Ayman M.; Mohamad, Raeesa A.; Yacoub, Hazar I.

    2016-01-01

    Objective: The aim of this study was to evaluate the hepatoprotective effects of silymarin (SIL), alone and combined with chlorogenic acid (CA) and/or melatonin (ME), using a rat model of carbon tetrachloride (CCl4)-induced injury. Materials and Methods: Hepatotoxicity was induced by a single dose of CCl4 (1 ml/kg, IP). One day after, rats were received SIL (200 mg/kg) alone or in combination with CA (60 mg/kg) and/or ME (20 mg/kg) for 21 days. Results: SIL significantly decreased serum alanine aminotransferase, inflammatory cytokines, and vascular endothelial growth factor levels. Histological alterations, fibrogenesis, oxidative DNA damage, inflammatory mediators, and caspase-3 activity were significantly attenuated in SIL treated CCl4-intoxicated rats. On the other hand, cytochrome P450 2E1 activity showed a significant decrease in the liver of CCl4-intoxicated rats, an effect that was reversed following treatment with SIL. All beneficial effects of SIL were markedly potentiated when combined with CA and/or ME. Conclusions: These data indicate that SIL, alone and combined with CA and/or ME, protected the liver against CCl4-induced hepatotoxicity via attenuating inflammation, oxidative DNA damage, apoptosis, and fibrotic changes. The significantly intensified hepatoprotective effects of SIL when combined with both CA and ME suggest a possible synergism. These synergistic effects need to be further confirmed using detailed studies. SUMMARY Silymarin, chlorogenic acid and melatonin possess in vivo hepatoprotective activitySilymarin, chlorogenic acid and melatonin attenuate fibrogenesis, oxidative DNA damage, inflammation and apoptosisChlorogenic acid and melatonin enhance the hepatoprotective effect of silymarin. Abbreviations used: SIL: silymarin, CA: chlorogenic acid, ME: melatonin, CCl4: carbon tetrachloride, CYP2E1, cytochrome P450 2E1, ALT: alanine aminotransferase, IL-6: interleukin 6, IFN-γ: interferon gamma, VEGF: vascular endothelial growth factor, TNF-α: tumor necrosis factor alpha, CRP: C-reactive protein, 8-OxodG: 8-Oxo-2’-deoxyguanosine, TGF-B1: transforming growth factor beta 1, HSCs: hepatic stellate cells. PMID:27563222

  4. Hepatoprotective Effects and Mechanisms of Action of Triterpenoids from Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) on α-Amanitin-Induced Liver Injury in Mice.

    PubMed

    Wu, Huihui; Tang, Shanshan; Huang, Zhaoqin; Zhou, Qian; Zhang, Ping; Chen, Zuohong

    2016-01-01

    Most fatal mushroom poisonings are caused by species of the genus Amanita; the amatoxins are responsible for acute liver failure and death in humans. Ganoderma lucidum is a well-known traditional medicinal mushroom that has been shown to have obvious hepatoprotective effects. This study evaluated the hepatoprotective effects of triterpenoids from G. lucidum on liver injury induced by a-amanitin (α-AMA) in mice and the mechanisms of action of these triterpenoids, including radical scavenging and antiapoptosis activities. Mice were treated with α-AMA, followed by G. lucidum total triterpenoids or individual triterpenoids, and their hepatoprotective effects were compared with those of the reference drug silibinin (SIL). Treatment with SIL, G. lucidum total triterpenoids, and each of the 5 individual triterpenoids significantly reduced serum alanine aminotransaminase and aspartate ami- notransaminase concentrations and reduced mortality rates 20-40%. Moreover, triterpenoids and SIL significantly enhanced superoxide dismutase and catalase activity and reduced malondialdehyde content in livers. Treatment with ganoderic acid C2 significantly inhibited DNA fragmentation and decreased caspase-3, -8, and -9 activities. The results demonstrated that triterpenoids have hepatoprotective effects on α-AMA-induced liver injury and that their hepatoprotective mechanisms may be the result of their antioxidative and radical scavenging activities and their inhibition of apoptosis.

  5. Hypolipidemic and hepatoprotective seeds mixture diet rich in omega-3 and omega-6 fatty acids.

    PubMed

    Makni, Mohamed; Fetoui, Hamadi; Garoui, El Mouldi; Gargouri, Nabil K; Jaber, Hazem; Makni, Jamel; Boudawara, Tahia; Zeghal, Najiba

    2010-01-01

    In vitro physicochemical and antioxidant properties of mixture of Flax/Sesame (LS) and Flax/Peanut (LA) and in vivo hypolipidemic, antioxidant and hepatoprotective activities were carried out to ascertain the claim of its utilisation against diseases. The seeds mixture rich in unsaturated fatty acids were prepared with 5/1 ratio of omega-6/omega-3 fatty acids and were orally administered ad libitum to rats by standard diet for 30 days. High cholesterol fed diet rats (CD-chol) exhibited a significant increase in total plasma and liver lipid parameters and atherogenicity and a significant decrease in high-density lipoproteins (HDL) and HDL/TC ratio (HTR). Administration of (LS) or (LA) seeds mixture to hypercholesterolemic rats (MS-LSchol and MS-LAchol groups respectively) significantly ameliorated lipid parameters and showed an increase of PUFAs (ALA and LA) and MUFAs and a decrease of SFAs in plasma and liver of MS-LSchol and MS-LAchol groups. Furthermore, malondialdehyde levels decreased and the efficiency of antioxidant defense system was improved compared to CD-chol group. Liver histological sections showed lipid storage in hepatocytes of CD-chol group and an improvement was noted in both supplemented groups. Our results suggested that seeds mixtures of Flax/Sesame and Flax/Peanut have anti-atherogenic and hepatoprotective effects. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. Hepatoprotective properties of aqueous leaf extract of Persea Americana, Mill (Lauraceae) 'avocado' against CCL4-induced damage in rats.

    PubMed

    Brai, Bartholomew I C; Adisa, Rahmat A; Odetola, Adebimpe A

    2014-01-01

    Natural products from plants have received considerable attention in recent years due to their diverse pharmacological properties, including antioxidants and hepatoprotective activities. The protective effects of aqueous extract of Persea americana (AEPA) against carbon tetrachloride (CCl4)-induced hepatotoxicity in male albino rats was investigated. Liver damage was induced in rats by administering a 1:1 (v/v) mixture of CCl4 and olive oil [3 ml/kg, subcutaneously (sc)] after pre-treatment for 7 days with AEPA. Hepatoprotective effects of AEPA was evaluated by estimating the activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and levels of total bilirubin (TBL). The effects of AEPA on biomarkers of oxidative damage (lipid peroxidation) and antioxidant enzymes namely, catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione S-transferase (GST) were measured in liver post mitochondrial fraction. AEPA and Reducdyn® showed significant (p<0.05) hepatoprotective activity by decreasing the activities of ALT, AST, ALP and reducing the levels of TBL. The activities of antioxidant enzymes, levels of malondialdehyde and protein carbonyls were also decreased dose-dependently in the AEPA-treated rats. Pre-treatment with AEPA also decreased the serum levels of glutathione significantly. These data revealed that AEPA possesses significant hepatoprotective effects against CCl4-induced toxicity attributable to its constituent phytochemicals. The mechanism of hepatoprotection seems to be through modulation of antioxidant enzyme system.

  7. Hepatoprotective and antioxidant activities of the aqueous extract from the rhizome of Phragmites australis.

    PubMed

    Chen, Song; Ju, Minli; Luo, Yin; Chen, Zhongjian; Zhao, Changpo; Zhou, Yang; Fu, Jie

    2013-01-01

    The rhizome of Phragmites australis has long been used for the treatment of hepatitis in traditional Chinese medicine. In this study, the hepatoprotective and antioxidant activities of an aqueous extract from the rhizome of P. australis (AE-PA) were evaluated. The acute toxicity test in mice showed that AE-PA was nontoxic since a dose of 2000 mg/kg body weight (b.w.) did not cause toxic symptoms or mortality. The prolongation of hexobarbital-induced sleeping time by carbon tetrachloride (CCl4) administration to mice was significantly reduced after pretreatment with AE-PA at 500 mg/kg b.w., proving the protective effect of the extract on microsomal drug-metabolizing enzyme. The oral administration of AE-PA to rats for 5 days before CCl4 intoxication caused a significant decrease in the CCl4-induced elevation of hepatic enzymes activities in serum, such as aspartate aminotransferase, alanine aminotransferase, and lactic acid dehydrogenase. This suggested that AE-PA had good hepatoprotective activity against CCl4-induced liver injury, which was confirmed by pathomorphological examination of the liver. Through evaluation of hydroxyl radical and superoxide anion radical scavenging activities, respectively, it was demonstrated that AE-PA had good antioxidant activity, which possibly contributed to its hepatoprotective activity. More research is needed to study the bio-active compounds in P. australis and to identify the potential hepatoprotective and antioxidant agents.

  8. In vitro and in vivo evaluation of an oral sustained release hepatoprotective caffeine loaded w/o Pickering emulsion formula - containing wheat germ oil and stabilized by magnesium oxide nanoparticles.

    PubMed

    Elmotasem, Heba; Farag, Hala K; Salama, Abeer A A

    2018-05-16

    The objective of this study was to innovate an effective oral sustained release hepatoprotective formula for - the water soluble drug - caffeine. Caffeine is rapidly absorbed and eliminated which dictates frequent administration to achieve adequate therapeutic effect. A w/o Pickering emulsion incorporating caffeine in the internal phase was primed. It contained wheat germ oil and was stabilized by synthesized magnesium oxide nanoparticles (MgO NPs). Components selection was based on their antioxidant, hepatoprotective and anticarcinogenic effects. The MgO NPs were prepared via sol-gel method, and then were characterized using X-ray diffractometry, transmission electron microscopy, contact angle and cytotoxicity. The Pickering emulsion formula stabilized by MgO NPs (F1) was compared to another stabilized by conventional MgO particles (F2). Both were evaluated regarding droplet size, stability and caffeine release. F1 was stable against phase separation for a 2 months period. Its droplets mean size was 665.9 ± 90 nm. F1 afforded sustained release for caffeine that reached 70% within 48 h that followed zero order kinetics. 100 ppm of F1 showed nearly 36% growth inhibition of hepatocellular carcinoma (HEPG2). In vivo and histopathalogical evaluations were conducted on CCl 4 intoxicated rats. Biochemical analysis for liver enzymes - (ALT and AST), oxidative stress biomarkers and the inflammation marker (protein kinase C) - revealed that the selected formula elicited significant hepatoprotection. This formula acted as an economical approach to multiple therapy and afforded safe effective sustained level for caffeine. Copyright © 2018. Published by Elsevier B.V.

  9. Hepatoprotective triterpenoids and lignans from the stems of Schisandra pubescens.

    PubMed

    Wang, Guo-Wei; Deng, Li-Qing; Luo, You-Ping; Liao, Zhi-Hua; Chen, Min

    2017-08-01

    One new triterpenoid (1) and 13 known compounds (2-14) were isolated from Schisandra pubescens stems. The structure of the new compound was established on the basis of 1D/2D NMR and HRESIMS spectroscopic analyses. The isolated compounds were evaluated for their hepatoprotective activities against D-GalN-induced cell injury in QSG7701 cells. Compounds 1, 13 and 14 at 10 μM showed hepatoprotective activities, with survival rates of 60.5, 50.4 and 48.9%, respectively.

  10. Hepatoprotective and antioxidant capacity of Melochia corchorifolia extracts.

    PubMed

    Rao, B Ganga; Rao, Y Venkateswara; Rao, T Mallikarjuna

    2013-07-01

    To evaluate hepato protective and antioxidant capacity of Melochia corchorifolia (M. corchorifolia) aerial part extracts. Antioxidant activity was evaluated by using three free radicals (Superoxide, Hydroxyl and DPPH) and hepatoprotective activity was assessed against CCl4 induced liver intoxication in rats. The extracts produced concentration dependent percentage protection in decrease of serum enzymes and percentage inhibition on free radicals. Among all extracts methanol extract showed better activity with percentage protection of SGOT (78.98%), SGPT (79.65%), ALP (82.48%) and total bilirubin (80.0%) levels against CCl4 liver intoxication and also methanolic extract showed better activity with IC50 values on superoxide, hydroxyl and DPPH radicals were 127 μ g, 240 μ g and 179 μ g. From the results obtained during the study it could be concluded that M. corchorifolia aerial part extracts have antioxidant and hepatoprotective components. Further study is necessary for isolation and characterization of bioactive molecules which are responsible for hepatoprotective and antioxidant activity. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  11. Antioxidant and hepatoprotective activity of Cordia macleodii leaves

    PubMed Central

    Qureshi, Naseem N.; Kuchekar, Bhanudansh S.; Logade, Nadeem A.; Haleem, Majid A.

    2009-01-01

    This investigation was undertaken to evaluate ethanolic extract of Cordia macleodii leaves for possible antioxidant and hepatoprotective potential. Antioxidant activity of the extracts was evaluated by four established, in vitro methods viz. 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging method, nitric oxide (NO) radical scavenging method, iron chelation method and reducing power method. The extract demonstrated a significant dose dependent antioxidant activity comparable with ascorbic acid. The extract was also evaluated for hepatoprotective activity by carbon tetrachloride (CCl4) induced liver damage model in rats. CCl4 produced a significant increase in levels of serum glutamate pyruvate transaminase (GPT), serum glutamate oxaloacetate transaminase (GOT), Alkaline Phosphatase (ALP) and total bilirubin. Pretreatment of the rats with ethanolic extract of C. macleodii (100, 200 and 400 mg/kg po) inhibited the increase in levels of GPT, GOT, ALP and total bilirubin and the inhibition was comparable with Silymarin (100 mg/kg po). The present study revealed that C. macleodii leaves have significant radical scavenging and hepatoprotective activities. PMID:23960714

  12. Diallyl Polysulfides from Allium sativum as Immunomodulators, Hepatoprotectors, and Antimycobacterial Agents.

    PubMed

    Oosthuizen, Carel; Arbach, Miriam; Meyer, Debra; Hamilton, Chris; Lall, Namrita

    2017-07-01

    Mycobacterium tuberculosis remains one of the world's deadliest killers, with an annual death rate of ∼1.5 million. The medicinal effects of garlic have been well documented, and natural products have been shown to have antimycobacterial activity. The current study evaluated the efficacy of six Allium sativum L. polysulfide mixtures as antimycobacterial agents together with their cytotoxic, immunomodulatory, and hepatoprotective activities. The microtitre PrestoBlue assay was used to determine the minimum inhibitory concentrations (MIC). Cytotoxicity was evaluated by using peripheral blood mononuclear cells (PBMC). Excreted cytokine levels were determined by utilizing an enzyme-linked immunosorbent assay (ELISA), by exposing isolated PBMCs to varying concentrations of polysulfide mixtures. Human C3A liver cells were utilized in the hepatoprotective study, to assess the protective effect against the toxicity induced by acetaminophen. Samples with higher amounts of diallyl trisulfide (Sample G4) showed the highest antimycobacterial activity, exhibiting an MIC of 2.5 μg/mL against M. tuberculosis H37Rv. Five samples showed moderate toxicity in PBMC, with G1 showing no toxicity. The selective index of G4 was the highest, with a selectivity index close to one. Two samples, G3 and G6 containing higher amounts of diallyl tetrasulfide and lower amounts of diallyl trisulfide, showed >50% hepatoprotection. This is comparable to a hepatoprotective agent, Silymarin, which showed a hepatoprotective effect of 30% at the tested concentration. Diallyl tetrasulfide showed significant antimycobacterial activity. A combination of higher diallyl tetrasulfide and lower diallyl trisulfide was indicative of hepatoprotective activity.

  13. Glycyrrhizin, silymarin, and ursodeoxycholic acid regulate a common hepatoprotective pathway in HepG2 cells.

    PubMed

    Hsiang, Chien-Yun; Lin, Li-Jen; Kao, Shung-Te; Lo, Hsin-Yi; Chou, Shun-Ting; Ho, Tin-Yun

    2015-07-15

    Glycyrrhizin, silymarin, and ursodeoxycholic acid are widely used hepatoprotectants for the treatment of liver disorders, such as hepatitis C virus infection, primary biliary cirrhosis, and hepatocellular carcinoma. The gene expression profiles of HepG2 cells responsive to glycyrrhizin, silymarin, and ursodeoxycholic acid were analyzed in this study. HepG2 cells were treated with 25 µM hepatoprotectants for 24 h. Gene expression profiles of hepatoprotectants-treated cells were analyzed by oligonucleotide microarray in triplicates. Nuclear factor-κB (NF-κB) activities were assessed by luciferase assay. Among a total of 30,968 genes, 252 genes were commonly regulated by glycyrrhizin, silymarin, and ursodeoxycholic acid. These compounds affected the expression of genes relevant various biological pathways, such as neurotransmission, and glucose and lipid metabolism. Genes involved in hepatocarcinogenesis, apoptosis, and anti-oxidative pathways were differentially regulated by all compounds. Moreover, interaction networks showed that NF-κB might play a central role in the regulation of gene expression. Further analysis revealed that these hepatoprotectants inhibited NF-κB activities in a dose-dependent manner. Our data suggested that glycyrrhizin, silymarin, and ursodeoxycholic acid regulated the expression of genes relevant to apoptosis and oxidative stress in HepG2 cells. Moreover, the regulation by these hepatoprotectants might be relevant to the suppression of NF-κB activities. Copyright © 2015 Elsevier GmbH. All rights reserved.

  14. The lipid lowering drug lovastatin protects against doxorubicin-induced hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henninger, Christian; Institute of Toxicology, University Duesseldorf, Medical Faculty, Universitätsstrasse 1, D-40225 Duesseldorf; Huelsenbeck, Johannes

    2012-05-15

    Liver is the main detoxifying organ and therefore the target of high concentrations of genotoxic compounds, such as environmental carcinogens and anticancer drugs. Here, we investigated the usefulness of lovastatin, which is nowadays widely used for lipid lowering purpose, as a hepatoprotective drug following the administration of the anthracycline derivative doxorubicin in vivo. To this end, BALB/c mice were exposed to either a single high dose or three consecutive low doses of doxorubicin. Acute and subacute hepatotoxicities were analyzed with or without lovastatin co-treatment. Lovastatin protected the liver against doxorubicin-induced acute pro-inflammatory and pro-fibrotic stress responses as indicated by anmore » attenuated mRNA expression of tumor necrosis factor alpha (TNFα) and connective tissue growth factor (CTGF), respectively. Hepatoprotection by lovastatin was due to a reduced induction of DNA damage following doxorubicin treatment. The statin also mitigated subacute anthracycline-provoked hepatotoxicity as shown on the level of doxorubicin- and epirubicin-stimulated CTGF mRNA expression as well as histopathologically detectable fibrosis and serum concentration of marker enzymes of hepatotoxicity (GPT/GLDH). Kidney damage following doxorubicin exposure was not detectable under our experimental conditions. Moreover, lovastatin showed multiple inhibitory effects on doxorubicin-triggered hepatic expression of genes involved in oxidative stress response, drug transport, DNA repair, cell cycle progression and cell death. Doxorubicin also stimulated the formation of ceramides. Ceramide production, however, was not blocked by lovastatin, indicating that hepatoprotection by lovastatin is independent of the sphingolipid metabolism. Overall, the data show that lovastatin is hepatoprotective following genotoxic stress induced by anthracyclines. Based on the data, we hypothesize that statins might be suitable to lower hepatic injury following anthracycline-based anticancer therapy. -- Highlights: ► Normal tissue damage is the therapy limiting side effect of anthracyclines. ► The effect of lovastatin on doxorubicin-induced hepatic damage was analyzed in vivo. ► Lovastatin protects the liver against DNA damage induced by doxorubicin. ► Lovastatin protects against acute and subacute doxorubicin-induced hepatotoxicity. ► Hepatoprotection by lovastatin is independent of the shingolipid metabolism.« less

  15. Hepatoprotective and antioxidant effects of Hygrophila auriculata (K. Schum) Heine Acanthaceae root extract.

    PubMed

    Shanmugasundaram, P; Venkataraman, S

    2006-03-08

    Hygrophila auriculata (K. Schum) Heine (syn. Asteracantha longifolia Nees, Acanthaceae) was widely used in the Indian systems of medicine for the treatment of various liver ailments. The hepatoprotective activity of the aqueous extract of the roots was studied on CCl(4)-induced liver toxicity in rats. The activity was assessed by monitoring the various liver function tests, viz. alanine transaminase, aspartate transaminase (AST), alkaline phosphatase (ALP), total protein and total bilirubin. Furthermore, hepatic tissues were subjected to histopathological studies. The root extract was also studied for its in vitro antioxidant activity using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods. The extract exhibited significant hepatoprotective and antioxidant activities.

  16. Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice.

    PubMed

    Peng, Wen-Huang; Chen, Yi-Wen; Lee, Meng-Shiou; Chang, Wen-Te; Tsai, Jen-Chieh; Lin, Ying-Chih; Lin, Ming-Kuem

    2016-12-07

    Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CC EtOH ). The hepatoprotective effect of CC EtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl₄)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CC EtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl₄ were significantly reduced by CC EtOH . In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CC EtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury.

  17. Hepatoprotective Effect of Cuscuta campestris Yunck. Whole Plant on Carbon Tetrachloride Induced Chronic Liver Injury in Mice

    PubMed Central

    Peng, Wen-Huang; Chen, Yi-Wen; Lee, Meng-Shiou; Chang, Wen-Te; Tsai, Jen-Chieh; Lin, Ying-Chih; Lin, Ming-Kuem

    2016-01-01

    Cuscuta seeds and whole plant have been used to nourish the liver and kidney. This study was aimed to investigate the hepatoprotective activity of the ethanol extract of Cuscuta campestris Yunck. whole plant (CCEtOH). The hepatoprotective effect of CCEtOH (20, 100 and 500 mg/kg) was evaluated on carbon tetrachloride (CCl4)-induced chronic liver injury. Serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol were measured and the fibrosis was histologically examined. CCEtOH exhibited a significant inhibition of the increase of serum alanine aminotransferase, aspartate aminotransferase, triglyceride and cholesterol. Histological analyses showed that fibrosis of liver induced by CCl4 were significantly reduced by CCEtOH. In addition, 20, 100 and 500 mg/kg of the extract decreased the level of malondialdehyde (MDA) and enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx) and glutathione reductase (GRd) in the liver. We demonstrate that the hepatoprotective mechanisms of CCEtOH were likely to be associated to the decrease in MDA level by increasing the activities of antioxidant enzymes such as SOD, GPx and GRd. In addition, our findings provide evidence that C. campestris Yunck. whole plant possesses a hepatoprotective activity to ameliorate chronic liver injury. PMID:27941627

  18. Hepatoprotective effects of litchi (Litchi chinensis) procyanidin A2 on carbon tetrachloride-induced liver injury in ICR mice

    PubMed Central

    Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun

    2017-01-01

    Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl4)-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H2O in CCl4-intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl4-intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl4-intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro. The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration. PMID:28587348

  19. Hepatoprotective effects of litchi (Litchi chinensis) procyanidin A2 on carbon tetrachloride-induced liver injury in ICR mice.

    PubMed

    Chen, Lih-Geeng; Chang, Cheng-Wei; Tsay, Jwu-Guh; Weng, Brian Bor-Chun

    2017-06-01

    Drug tolerance, lacking liver regenerative activity and inconclusive inhibition of steatosis and cirrhosis by silymarin treatment during chronic liver injury have increased the demand for novel alternative or synergistic treatments for liver damage. Litchi fruit is abundant in polyphenolic compounds and is used in traditional Chinese medicine for treatments that include the strengthening of hepatic and pancreatic functions. Unique polyphenolic compounds obtained from litchi pericarp extract (LPE) were studied in vitro and in vivo for hepatoprotection. Epicatechin (EC) and procyanidin A2 (PA2) of LPE were obtained by fractionated-extraction from pulverized litchi pericarps. All fractions, including LPE, were screened against silymarin in carbon tetrachloride (CCl 4 )-treated murine embryonic liver cell line (BNL). The effects of daily gavage-feeding of LPE, silymarin (200 mg/kg body weight) or H 2 O in CCl 4 -intoxicated male ICR mice were evaluated by studying serum chemicals, liver pathology and glutathione antioxidative enzymes. The effects of EC and PA2 on liver cell regenerative activity were investigated using a scratch wound healing assay and flow cytometric cell cycle analysis; the results of which demonstrated that LPE protected BNL from CCl 4 -intoxication. Gavage-feeding of LPE decreased serum glutamic oxaloacetate transaminase and glutamic pyruvic transaminase levels, and exhibited superior retention of the hexagonal structure of hepatocytes and reduced necrotic cells following liver histopathological examinations in CCl 4- intoxicated ICR mice. Glutathione peroxidise and glutathione reductase activities were preserved as the normal control level in LPE groups. EC and PA2 were principle components of LPE. PA2 demonstrated liver cell regenerative activity in scratch wound healing assays and alcohol-induced liver cell injury in vitro . The present findings suggest that litchi pericarp polyphenolic extracts, including EC and PA2, may be a synergistic alternative to silymarin in hepatoprotection and liver cell regeneration.

  20. Phytochemical analysis, hepatoprotective and antioxidant activity of Alchornea cordifolia methanol leaf extract on carbon tetrachloride-induced hepatic damage in rats.

    PubMed

    Osadebe, Patience O; Okoye, Festus B C; Uzor, Philip F; Nnamani, Nneka R; Adiele, Ijeoma E; Obiano, Nkemakonam C

    2012-04-01

    To investigate the hepatoprotective and antioxidant activities of Alchornea cordifolia (A. cordifolia) leaf extract. Various solvent fractions of the methanol extract of the leaf of the plant A. cordifolia Mull. Arg (Fam: Euphorbiaceae) were evaluated for hepatoprotective activity by carbon tetrachloride-induced liver damage in rats. The degree of protection was measured by using biochemical parameters such as serum glutamate oxalate transaminase (SGOT/AST), serum glutamate pyruvate transaminase (SGPT/ALT), alkaline phosphatase (ALP) and total bilirubin. The in vitro antioxidant activity of the extract was also evaluated by the 1, 1-diphenyl- 2-picrylhydrazyl (DPPH) free radical scavenging assay. The extract was subjected to preliminary phytochemical screening. The ethyl acetate and chloroform fractions, at a dose of 300 mg/kg, produced significant (P<0.05) hepatoprotection by decreasing the activities of the serum enzymes and bilirubin while there were marked scavenging of the DPPH free radicals by the fractions. The effects were comparable to those of the standard drugs used for the respective experiments, silymarin and ascorbic acid. Alkaloids, flavonoids, saponins and tannins were detected in the phytochemical screening. From this study, it was concluded that the plant of A. cordifolia possesses hepatoprotective as well as antioxidant activities and these activities reside mainly in the ethyl acetate and acetone fractions of methanol leaf extract. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  1. Hepatoprotective and hypoglycemic effects of a tannin rich extract from Ximenia americana var. caffra root.

    PubMed

    Sobeh, Mansour; Mahmoud, Mona F; Abdelfattah, Mohamed A O; El-Beshbishy, Hesham A; El-Shazly, Assem M; Wink, Michael

    2017-09-15

    Liver diseases and diabetes are serious health disorders associated with oxidative stress and ageing. Some plant polyphenols can lower the risk of these diseases. We investigated the phytochemical profiling of a root extract from Ximenia americana var. caffra using HPLC-PDA-ESI-MS/MS. The antioxidant activities in vitro were investigated. The hepatoprotective activities were studied in rat models with d-galactosamine (d-GaIN)-induced hepatotoxicity and the antidiabetic activities in STZ-diabetic rats were also investigated. HPLC-PDA-ESI-MS/MS was used to identify plant phenolics. The antioxidant activities in vitro were determined using DPPH and FRAP assays. The in vivo hepatoprotective activities were determined for d-GaIN-induced hepatotoxicity in rats. We determined the liver markers alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyltransferase (GGT), liver peroxidation product malondialdehyde (MDA), glutathione content (GSH), albumin and total bilirubin concentration. The histopathological changes in rat liver were also studied. The antidiabetic activities were also investigated in STZ-diabetic rats and serum glucose, serum insulin hormone, and lipid peroxides were determined. The root extract is rich in tannins with 20 compounds including a series of stereoisomers of (epi)catechin, (epi)catechin-(epi)catechin, (epi)catechin-(epi)catechin-(epi)catechin, and their galloyl esters. Promising antioxidant potential was observed in vitro in DPPH assay with EC 50 of 6.5 µg extract / 26 µg raw material and in FRAP assay with 19.54 mM FeSO 4 compared with ascorbic acid (EC 50 of 2.92 µg/ml) and quercetin (FeSO 4 24.04 mM/mg), respectively. Significant reduction of serologic enzymatic markers and hepatic oxidative stress markers such as ALT, AST, MDA, GGT, and total bilirubin, as well as elevation of GSH and albumin were observed in rats with d-galactosamine-induced liver damage treated with the extract. These findings agree with a histopathological examination suggesting a hepatoprotective potential for the root extract. The root extract can mediate an antidiabetic effect by reducing elevated blood glucose and serum lipid peroxides levels and by increasing insulin in STZ-diabetic rats by -107, -31.1, +11.3%, respectively. The results of this study suggest that the tannin-rich extract from Ximenia americana var. caffra could be an interesting candidate for the treatment of several health disorders associated with oxidative stress such as hepatocellular injury and diabetes. Copyright © 2017. Published by Elsevier GmbH.

  2. Antioxidant and anti-hyperlipidemic effects of mycelia zinc polysaccharides by Pleurotus eryngii var. tuoliensis.

    PubMed

    Xu, Nuo; Ren, Zhenzhen; Zhang, Jianjun; Song, Xinling; Gao, Zheng; Jing, Huijuan; Li, Shangshang; Wang, Shouxian; Jia, Le

    2017-02-01

    The aims of this work were designed to investigate the hepatoprotective and antioxidant effects of acidic- and alkali-extractable mycelia zinc polysaccharides (AcMZPS, AlMZPS) from Pleurotus eryngii var. tuoliensis on high-fat-high-cholesterol emulsion-induced hyperlipidemic mice. The in vivo experiments demonstrated that both AcMZPS and AlMZPS had potential hepatoprotective effects by significantly decreasing the levels of LDL-C, VLDL-C, TC, TG, ALT, AST, ALP, MDA and LPO, and remarkably increasing the HDL-C, SOD, GSH-Px, and CAT in serum lipid/liver homogenate, respectively. In addition, four polysaccharide fractions of AcMZPS-1, AcMZPS-2, AlMZPS-1, and AlMZPS-2, purified from AcMZPS and AlMZPS using DEAE chromatography, respectively, were subjected to monosaccharide composition analysis and valuated for the in vitro antioxidant activity. The results obtained in present study suggested that AcMZPS, AlMZPS and their purified fractions could be used as functional foods and natural drugs in preventing the hyperlipidemia and non-alcoholic fatty liver. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Antioxidant and Hepatoprotective Potential of Phenol-Rich Fraction of Juniperus communis Linn. Leaves.

    PubMed

    Ved, Akash; Gupta, Amresh; Rawat, Ajay Kumar Singh

    2017-01-01

    Juniperus communis Linn. is an important plant in India traditional system of medicine which is widely used by different tribes in many countries. In the present study, the antioxidant, cytotoxic and hepatoprotective activities of Juniperus communis leaves were investigated against various models. ethanolic extract (70% v/v) of J. communis leaves was successively extracted using hexane and ethyl acetate to prepare various fractions. Total phenol content was resolute by the Folin-Ciocalteau's process. The antioxidant properties of the different fractions/extract of leaves of J. communis were examined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and Fe 2+ chelating ability. Cytotoxic activity was examined by cell viability assay on HepG2 cells. Hepatoprotective activity of ethyl acetate fraction (EAF) evaluated against PCM-Paracetamol-induced hepatic damage in Wistar albino rats. Total phenol content was found maximum 315.33 mg/GAE/g in EAF. Significant scavenging activity were found for EAF (IC 50 = 177 μg/ml) as compared to standard BHT (IC 50 = 138 μg/ml), while EAF showed good Fe 2+ chelating ability having an IC 50 value of 261 mg/ML compared to standard ethylenediaminetetraacetic acid (7.7 mg/mL). It was found that EAF treated group shows remarkable decrease in serum Aspartate aminotransferase, serum Alanine aminotransferase, total bilirubin, direct bilirubin, and alkaline phosphatase level in treatment group as compared to the hepatotoxic group. EAF of J. communis leaves is found to be potent antioxidant and hepatoprotective without any cytotoxicity and it can also be included in nutraceuticals with notable benefits for mankind or animal health. Phenol-rich fraction (PRF) and other fractions/extract of Juniperus communis leaves were screened for antioxidant, cytotoxic, and hepatoprotective activity.Significant antioxidant and hepatoprotective activity without any cytotoxicity were found while treating with ethyl acetate fraction (EAF). Abbreviations used: HepG2: Liver hepatocellular carcinoma, BHT: Butylated hydroxytoluene, PCM: Paracetamol, IC50: Half maximal inhibitory concentration, RSA: Radical Scavenging Activity, WST: Water-soluble tetrazolium.

  4. Chenopodium bonus-henricus L. - A source of hepatoprotective flavonoids.

    PubMed

    Kokanova-Nedialkova, Zlatina; Nedialkov, Paraskev; Kondeva-Burdina, Magdalena; Simeonova, Rumyana; Tzankova, Virginia; Aluani, Denitsa

    2017-04-01

    Three new flavonoid glycosides (7-9) named patuletin-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl(1→2)[β-d-glucopyranosyl (1→6)]-β-d-glucopyranoside (7), spinacetin-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl (1→2)[β-d-glucopyranosyl(1→6)]-β-d-glucopyranoside (8) and 6-methoxykaempferol-3-O-(5″'-О-Е-feruloyl)-β-d-apiofuranosyl(1→2)[β-d-glucopyranosyl (1→6)]-β-d-glucopyranoside (9) together with six known flavonoid glycosides of patuletin, spinacetin and 6-methoxykaempferol (1-6) were isolated from the aerial parts of C. bonus-henricus and identified with spectroscopic methods (1D and 2D NMR, UV, IR, HRESIMS). The MeOH extract exerts hepatoprotective and antioxidant activities comparable to those of flavonoid complex silymarin in in vitro (60μg/mL) and in vivo (100mg/kg/daily for 7days) models of hepatotoxicity, induced by CCl 4 . Flavonoids (1-9) (100μM), compared to silybin, significantly reduced the cellular damage caused by CCl 4 in rat hepatocytes, preserved cell viability and GSH level, decreased LDH leakage and reduced lipid damage. High concentrations of compounds (1-9) showed marginal or no cytotoxicity on HepG2 cell line. The experiment data suggest that the glycosides of 6-methoxykaempferol, spinacetin and patuletin are a promising and safe class of hepatoprotective agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice

    PubMed Central

    Brandon-Warner, Elizabeth; Eheim, Ashley L; Foureau, David M; Walling, Tracy L; Schrum, Laura W; McKillop, Iain H

    2012-01-01

    Hepatocellular carcinoma (HCC) is a global health burden with limited treatment options and poor prognosis. Silibinin, an antioxidant derived from the Milk Thistle plant (Silybum marianum), is reported to exert hepatoprotective and antitumorigenic effects in vitro and in vivo by suppressing oxidative stress and proliferation. Using a DEN-initiated mouse model of HCC, this study examined the effects of dietary silibinin supplementation alone, or in combination with chronic ethanol consumption on HCC progression. Our data demonstrate silibinin exerted marginal hepatoprotective effects in early stages of hepatocarcinogenesis but, when co-administered with ethanol, exacerbated the promotional effects of ethanol in HCC bearing mice, but only in males. PMID:22863537

  6. Silibinin (Milk Thistle) potentiates ethanol-dependent hepatocellular carcinoma progression in male mice.

    PubMed

    Brandon-Warner, Elizabeth; Eheim, Ashley L; Foureau, David M; Walling, Tracy L; Schrum, Laura W; McKillop, Iain H

    2012-12-29

    Hepatocellular carcinoma (HCC) is a global health burden with limited treatment options and poor prognosis. Silibinin, an antioxidant derived from the Milk Thistle plant (Silybum marianum), is reported to exert hepatoprotective and antitumorigenic effects in vitro and in vivo by suppressing oxidative stress and proliferation. Using a DEN-initiated mouse model of HCC, this study examined the effects of dietary silibinin supplementation alone, or in combination with chronic ethanol consumption on HCC progression. Our data demonstrate silibinin exerted marginal hepatoprotective effects in early stages of hepatocarcinogenesis but, when co-administered with ethanol, exacerbated the promotional effects of ethanol in HCC bearing mice, but only in males. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Protective effects of Lycium barbarum polysaccharides against carbon tetrachloride-induced hepatotoxicity in precision-cut liver slices in vitro and in vivo in common carp (Cyprinus carpio L.).

    PubMed

    Liu, Yingjuan; Cao, Liping; Du, Jinliang; Jia, Rui; Wang, Jiahao; Xu, Pao; Yin, Guojun

    2015-03-01

    The protective effects of Lycium barbarum polysaccharides (LBPs) against carbon tetrachloride-induced hepatotoxicity in common carp were investigated in vitro and in vivo. Precision-cut liver slices (PCLSs) were employed as an in vitro model system. LBPs (0.1, 0.3 and 0.6 mg/ml) was added to PCLSs culture system before (pre-treatment), after (post-treatment) and both before and after (pre- and post-treatment) the exposure of PCLSs to 12 mM CCl4. The supernatants and PCLSs were collected for biochemical analyses. Results showed that LBPs inhibited the elevations of the marker enzymes (GOT, GPT, LDH and AKP) and MDA induced by CCl4 in all LBPs treatments and it also enhanced the suppressed antioxidant enzymes (SOD, CAT, GSH-Px, GST) and GSH, in the pre-treatment and pre- and post-treatment. In vivo, fish were fed diets containing LBPs at 0.1, 0.5 and 1% for 60 d before an intraperitoneal injection of 30% CCl4 in olive oil at a volume of 0.05 ml/10 g body weight. At 72 h post-injection, blood and liver samples were taken for biochemical analyses. Results showed that LBPs at 0.5 and 1% significantly reduced the levels of GOT, GPT and LDH in the serum; the decreases of the antioxidant enzymes and the increase of MDA in the liver tissue were inhibited markedly. Moreover, LBPs even at lower concentration exerted a potent DPPH scavenging activity. Overall results prove the hepatoprotective and antioxidant effects of LBPs and support the use of LBPs as a hepatoprotective agent in fish. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats.

    PubMed

    El-Hosseiny, L S; Alqurashy, N N; Sheweita, S A

    2016-06-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats' liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes' activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition.

  9. Oxidative Stress Alleviation by Sage Essential Oil in Co-amoxiclav induced Hepatotoxicity in Rats

    PubMed Central

    El-Hosseiny, L. S.; Alqurashy, N. N.; Sheweita, S. A.

    2016-01-01

    Clinical studies have shown that several classes of antibiotics are evidenced in drug induced liver injury. The combination of amoxicillin with clavulanic acid is commonly cited in such cases. Accordingly, the present study investigated the potential hepatoprotective and in vivo antioxidant efficacy of sage essential oil in Co-amoxiclav induced hepatotoxicity in rats. Sage essential oil was hydrodistilled from the aerial parts of Salvia officinalis L. and its compositional analysis was characterized by Gas chromatography-Mass spectroscopy. Rats were treated singly or concomitantly with Co-amoxiclav and sage essential oil for a period of seven days. The major components of sage oil as identified by GC-MS were 1,8-cineole, β-pinene, camphor, β-caryophyllene, α-pinene and α-caryophyllene comprising 26.3%, 14.4%, 10.9%, 7.8%, 6% and 2.5% respectively. The in vivo exposure of rats to Co-amoxiclav resulted in hepatotoxicity biochemically evidenced by the significant elevation of serum AST, ALT, ALP, γ-GT, total bilirubin and histologically conveyed by hydropic, inflammatory and cholestatic changes in rats’ liver. Oxidative stress mediated the hepatic injury as indicated by the significant escalation in lipid peroxidation, as well as, the significant depletion of both glutathione level and glutathione dependent enzymes’ activities. The concomitant administration of sage essential oil with Co-amoxiclav exerted a hepatoprotective effect via inducing an in vivo antioxidant defense response eventually regressing, to some extent, the hepatoarchitectural changes induced by Co-amoxiclav. Results suggest that sage essential oil is a potential candidate for counteracting hepatic injury associating Co-amoxiclav and this effect is in part related to the complexity of its chemical composition. PMID:27493593

  10. Comparative phytochemical, hepatoprotective and antioxidant activities of various samples of Swertia Chirayita collected from various cities of Pakistan.

    PubMed

    Mahmood, Sidra; Hussain, Shahzad; Tabassum, Sobia; Malik, Farnaz; Riaz, Humayun

    2014-11-01

    Medicinal plants are crucial for about 80% of the world population in developing and developed countries for their primary and basic health care needs owing to better tolerability, superior compatibility with human body and having lesser side effects. The present study was conducted on various solvent extracts of three plant samples of Indian and Nepali origin Swertia Chirayita (Roxb.) Buch-ham (Chiratia) collected from various places to establish their comparative phytochemical analysis, chromatographic profile, hepatoprotective and antioxidant activities. Nepali Swertia Chirayita was found to have finest Chromatographic profile (TLC). Phytochemical analysis revealed Alkaloids, flavonoids, saponins, ascorbic acid, glycosides, steroids and triterpenoids in all samples. Different solvent fractions of the methanolic plant extracts of Swertia chirayita were assessed for hepatoprotective activity by carbon tetrachloride-induced liver damage in rats. The grade of protection was measured by using biochemical parameters such as serum glutamate oxalate transaminase (SGOT/AST), alkaline phosphatase (ALP), serum glutamate pyruvate transaminase (SGPT/ALT) and total bilirubin. The in-vitro antioxidant activity of the extracts was also evaluated by the 1, 1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The methanolic and aqueous extracts, at a dose of 200mg/kg and 300mg/kg, produced significant (p<0.05) hepatoprotection by decreasing the activities of the serum enzymes and bilirubin while there were marked scavenging of the DPPH free radicals by the fractions. Decreased observed in the biochemical parameters suggests that the plant extracts possesses hepatoprotective as well as antioxidant activities without any significant variation amongst them. These activities reside mainly in the methanolic extract of whole plant.

  11. Hepatoprotective activity of Musa paradisiaca on experimental animal models

    PubMed Central

    Nirmala, M; Girija, K; Lakshman, K; Divya, T

    2012-01-01

    Objective To investigate the hepatoprotective activity of stem of Musa paradisiaca (M. paradisiaca) in CCl4 and paracetamol induced hepatotoxicity models in rats. Methods Hepatoprotective activity of alcoholic and aqueous extracts of stem of M. paradisiaca was demonstrated by using two experimentally induced hepatotoxicity models. Results Administration of hepatotoxins (CCl4 and paracetamol) showed significant biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with alcoholic extract (500 mg/kg), more significantly and to a lesser extent the alcoholic extract (250 mg/kg) and aqueous extract (500 mg/kg), reduced the elevated levels of the serum enzymes like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin levels and alcoholic and aqueous extracts reversed the hepatic damage towards the normal, which further evidenced the hepatoprotective activity of stem of M. paradisiaca. Conclusions The alcoholic extract at doses of 250 and 500 mg/kg, p.o. and aqueous extract at a dose of 500 mg/kg, p.o. of stem of M. paradisiaca have significant effect on the liver of CCl4 and paracetamol induced hepatotoxicity animal models. PMID:23569826

  12. Hepatoprotective activity of Musa paradisiaca on experimental animal models.

    PubMed

    Nirmala, M; Girija, K; Lakshman, K; Divya, T

    2012-01-01

    To investigate the hepatoprotective activity of stem of Musa paradisiaca (M. paradisiaca) in CCl4 and paracetamol induced hepatotoxicity models in rats. Hepatoprotective activity of alcoholic and aqueous extracts of stem of M. paradisiaca was demonstrated by using two experimentally induced hepatotoxicity models. Administration of hepatotoxins (CCl4 and paracetamol) showed significant biochemical and histological deteriorations in the liver of experimental animals. Pretreatment with alcoholic extract (500 mg/kg), more significantly and to a lesser extent the alcoholic extract (250 mg/kg) and aqueous extract (500 mg/kg), reduced the elevated levels of the serum enzymes like serum glutamic-oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin levels and alcoholic and aqueous extracts reversed the hepatic damage towards the normal, which further evidenced the hepatoprotective activity of stem of M. paradisiaca. The alcoholic extract at doses of 250 and 500 mg/kg, p.o. and aqueous extract at a dose of 500 mg/kg, p.o. of stem of M. paradisiaca have significant effect on the liver of CCl4 and paracetamol induced hepatotoxicity animal models.

  13. Anti-fatty liver effects of oils from Zingiber officinale and Curcuma longa on ethanol-induced fatty liver in rats.

    PubMed

    Nwozo, Sarah Onyenibe; Osunmadewa, Damilola Adeola; Oyinloye, Babatunji Emmanuel

    2014-01-01

    The present study is aimed at evaluating the protective effects of oils from Zingiber officinale (ginger) and Curcuma longa (turmeric) on acute ethanol-induced fatty liver in male Wistar rats. Ferric reducing antioxidant power activity and oxygen radical absorbance capacity of the oils were evaluated ex vivo. Rats were pretreated for 28 d with standard drug (Livolin Forte) and oils from Z. officinale and C. longa before they were exposed to 45% ethanol (4.8 g/kg) to induce acute fatty liver. Histological changes were observed and the degree of protection was measured by using biochemical parameters such as alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase activities. Serum triglyceride (TG) level, total cholesterol (TC) level and the effects of both oils on reduced gluthatione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD) and hepatic malondialdehyde (MDA) levels were estimated. Oils from Z. officinale and C. longa at a dose of 200 mg/kg showed hepatoprotection by decreasing the activities of serum enzymes, serum TG, serum TC and hepatic MDA, while they significantly restored the level of GSH as well as GST and SOD activities. Histological examination of rats tissues was related to the obtained results. From the results it may be concluded that oils from Z. officinale and C. longa (200 mg/kg) exhibited hepatoprotective activity in acute ethanol-induced fatty liver and Z. officinale oil was identified to have better effects than C. longa oil.

  14. Anti-cholesterol activity in vivo test of multifunction herbs extract in the water using in vivo method in mice (Mus musculus L.) DDY-strain

    NASA Astrophysics Data System (ADS)

    Tristantini, Dewi; Christina, Diana

    2018-02-01

    Atherosclerosis is the hardening of the arteries due to cholesterol accumulation in the blood vessels. The occurrence of cardiovascular disease can be reduced by lowering cholesterol levels in the blood. Nevertheless, using some pharmaceutical synthetic medicine for lowering the cholesterol has several side effects that dangerous for human body. There are 3 plants, tanjung leaf (Mimusops elengi L.), star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.), which are combined empirically believed would serve as multifunction herbs. Tanjung leaf has been known to have antioxidant, anti-cholesterol, and anti-platelet activity, also star fruit leaf have anti-hyperglycemia activity. Furthermore, curcuma has been known as a hepatoprotection agent. In this study, the combination of all three simplicias were used as anti-cholesterol. Anti-cholesterol activity test by in vivo method using mice (Mus muculus L.) result in decreased cholesterol as much as 47% for 250 mL human dosage in 7 days. This performance equals to 73% of simvastatin activity in decreased cholesterol. In this study, we can conclude the multifunction herbs that were combination of tanjung (M. elengi) leaf, star fruit leaf (Averrhoa carambola L.), and curcuma (Curcuma xanthorrhiza L.) extract can be used as cholesterol decreasing medicine.

  15. Antitumor Activity of Ethanolic Extract of Dendrobium formosum in T-Cell Lymphoma: An In Vitro and In Vivo Study

    PubMed Central

    Prasad, Ritika; Koch, Biplob

    2014-01-01

    Dendrobium, a genus of orchid, was found to possess useful therapeutic activities like anticancer, hypoglycaemic, antimicrobial, immunomodulatory, hepatoprotective, antioxidant, and neuroprotective activities. The study was aimed to evaluate the anticancer property of the ethanolic extract of Dendrobium formosum on Dalton's lymphoma. In vitro cytotoxicity was determined by MTT assay, apoptosis was determined by fluorescence microscopy, and cell cycle progression was analysed using flow cytometry; in vivo antitumor activity was performed in Dalton's lymphoma bearing mice. The IC50 value of ethanolic extract was obtained at 350 μg/mL in Dalton's lymphoma cells. Fluorescence microscopy analysis showed significant increase in apoptotic cell death in dose- and time-dependent manner which was further confirmed through the resulting DNA fragmentation. Further, flow cytometry analysis showed that the ethanolic extract arrests the cells in G2/M phase of the cell cycle. The in vivo anticancer activity study illustrates significant increase in the survival time of Dalton's lymphoma bearing mice on treatment with ethanolic extract when compared to control. These results substantiate the antitumor properties of ethanolic extract of Dendrobium formosum and suggest an alternative in treatment of cancer. Further studies are required regarding the isolation and characterization of bioactive components along with the analysis of molecular mechanism involved. PMID:24959588

  16. In vivo evaluation of ethanolic extract of Zingiber officinale rhizomes for its protective effect against liver cirrhosis.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham; Hajrezaie, Maryam; Abdulla, Mahmood Ameen

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2-5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38-60 μ g/mL). This study showed hepatoprotective effect of ERZO.

  17. Comparative evaluation of different extracts of leaves of Psidium guajava Linn. for hepatoprotective activity.

    PubMed

    Roy, Chanchal K; Das, Amit Kumar

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of different extracts (petroleum ether, chloroform, ethyl acetate, methanol and aqueous) of P. guajava in acute experimental liver injury induced by carbon tetrachloride and paracetamol. The effects observed were compared with a known hepatoprotective agent, silymarin (100 mg/kg p.o.). In the acute liver damage induced by different hepatotoxins, P. guajava methanolic leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bilirubin in carbon tetrachloride and paracetamol induced hepatotoxicity. P. guajava ethyl acetate leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase, alanine aminotransferase and bilirubin in carbon tetrachloride induced hepatotoxicity whereas P. guajava aqueous leaf extract (200 mg/kg, p.o.) significantly reduced the elevated serum levels of alkaline phosphatase, alanine aminotransferase and bilirubin in carbon tetrachloride induced hepatotoxicity. P. guajava ethyl acetate and aqueous leaf extracts (200 mg/kg, p.o.) significantly reduced the elevated serum levels of aspartate aminotransferase in paracetamol induced hepatotoxicity. Histological examination of the liver tissues supported the hepatoprotection. It is concluded that the methanolic extract of leaves of Psidium guajava plant possesses better hepatoprotective activity compared to other extracts.

  18. Methanol extract of Melastoma malabathricum leaves exerted antioxidant and liver protective activity in rats

    PubMed Central

    2013-01-01

    Background Melastoma malabathricum L. (Melastomaceae) is a small shrub with various medicinal uses. The present study was carried out to determine the hepatoprotective activity of methanol extract of M. malabathricum leaves (MEMM) against the paracetamol-induced liver toxicity in rats model. Methods The respective chemicals and herbal solutions (10% DMSO, 200 mg/kg silymarin or MEMM (50, 250 and 500 mg/kg)) were administered orally to rats once everyday for 7 days followed by the hepatotoxicity assay. The blood samples and livers were collected and subjected to biochemical and microscopical analysis. Prior to the hepatoprotective study, MEMM was subjected to determination of the total phenolic content (TPC) and the antioxidant properties using several standard assays (e.g. 2, 2-diphenyl-1-picrylhydrazyl- and superoxide anion- radical scavenging assay, and oxygen radical absorbance capacity assay). Results MEMM exerted significant (p < 0.05) and high antioxidant activity in which high TPC was recorded; while in the hepatotoxicity study, the extract exhibited significant hepatoprotective effects against the paracetamol-induced hepatotoxic model. The results observed for serum liver enzymes (ALT, ALP and AST) as well as the microscopic observations and microscopic scoring supported the hepatoprotective potential of MEMM. The phytochemical and HPLC analysis of MEMM demonstrated the presence of flavonoids as its major constituents. Conclusions The MEMM-induced hepatoprotective activity could be allied partly to its antioxidant activity and the presence of flavonoids. PMID:24267313

  19. Monascus-fermented red mold dioscorea protects mice against alcohol-induced liver injury, whereas its metabolites ankaflavin and monascin regulate ethanol-induced peroxisome proliferator-activated receptor-γ and sterol regulatory element-binding transcription factor-1 expression in HepG2 cells.

    PubMed

    Cheng, Chih-Fu; Pan, Tzu-Ming

    2018-03-01

    Alcoholic hepatitis is a necroinflammatory process that is associated with fibrosis and leads to cirrhosis in 40% of cases. The hepatoprotective effects of red mold dioscorea (RMD) from Monascus purpureus NTU 568 were evaluated in vivo using a mouse model of chronic alcohol-induced liver disease (ALD). ALD mice were orally administered vehicle (ALD group) or vehicle plus 307.5, 615.0 or 1537.5 mg kg -1 (1 ×, 2 × and 5 ×) RMD for 5 weeks. RMD lowered serum leptin, hepatic total cholesterol, free fatty acid and hepatic triglyceride levels and increased serum adiponectin, hepatic alcohol dehydrogenase and antioxidant enzyme levels. Furthermore, ankaflavin (AK) and monascin (MS), metabolites of RMD fermented with M. purpureus 568, induced peroxisome proliferator-activated receptor-γ expression and the concomitant suppression of ethanol-induced elevation of sterol regulatory element-binding transcription factor-1 and TG in HepG2 cells. These results indicate the hepatoprotective effect of Monascus-fermented RMD. Moreover, AK and MS were identified as the active constituents of RMD for the first time and were shown to protect against ethanol-induced liver damage. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats.

    PubMed

    Menon, B Rajalakshmy; Rathi, M A; Thirumoorthi, L; Gopalakrishnan, V K

    2010-10-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity.

  1. Antioxidant and Hepatoprotective Potential of Phenol-Rich Fraction of Juniperus communis Linn. Leaves

    PubMed Central

    Ved, Akash; Gupta, Amresh; Rawat, Ajay Kumar Singh

    2017-01-01

    Background: Juniperus communis Linn. is an important plant in India traditional system of medicine which is widely used by different tribes in many countries. Objective: In the present study, the antioxidant, cytotoxic and hepatoprotective activities of Juniperus communis leaves were investigated against various models. Materials and Methods: ethanolic extract (70% v/v) of J. communis leaves was successively extracted using hexane and ethyl acetate to prepare various fractions. Total phenol content was resolute by the Folin-Ciocalteau's process. The antioxidant properties of the different fractions/extract of leaves of J. communis were examined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity and Fe2+ chelating ability. Cytotoxic activity was examined by cell viability assay on HepG2 cells. Hepatoprotective activity of ethyl acetate fraction (EAF) evaluated against PCM-Paracetamol-induced hepatic damage in Wistar albino rats. Results: Total phenol content was found maximum 315.33 mg/GAE/g in EAF. Significant scavenging activity were found for EAF (IC50 = 177 μg/ml) as compared to standard BHT (IC50 = 138 μg/ml), while EAF showed good Fe2+ chelating ability having an IC50 value of 261 mg/ML compared to standard ethylenediaminetetraacetic acid (7.7 mg/mL). It was found that EAF treated group shows remarkable decrease in serum Aspartate aminotransferase, serum Alanine aminotransferase, total bilirubin, direct bilirubin, and alkaline phosphatase level in treatment group as compared to the hepatotoxic group. Conclusion: EAF of J. communis leaves is found to be potent antioxidant and hepatoprotective without any cytotoxicity and it can also be included in nutraceuticals with notable benefits for mankind or animal health. SUMMARY Phenol-rich fraction (PRF) and other fractions/extract of Juniperus communis leaves were screened for antioxidant, cytotoxic, and hepatoprotective activity.Significant antioxidant and hepatoprotective activity without any cytotoxicity were found while treating with ethyl acetate fraction (EAF). Abbreviations used: HepG2: Liver hepatocellular carcinoma, BHT: Butylated hydroxytoluene, PCM: Paracetamol, IC50: Half maximal inhibitory concentration, RSA: Radical Scavenging Activity, WST: Water-soluble tetrazolium. PMID:28216892

  2. Ameliorative effect of methanol extract of Rumex vesicarius on CCl4-induced liver damage in Wistar albino rats.

    PubMed

    Ganaie, Majid Ahmad; Khan, Tajdar Husain; Siddiqui, Nasir Ali; Ansari, Mohd Nazam

    2015-08-01

    Rumex vesicarius L. (Polygonaceae), an edible plant, is reported to have many bioactive phytochemicals, especially flavonoids and anthraquinones with antioxidant and detoxifying properties. This study evaluated the methanolic extract of R. vasicarius (MERV) for hepatoprotective activity in rats against CCl4-induced liver damage. The whole plant extract was prepared and investigated for its hepatoprotective activity. Rats were pretreated with MERV (100 and 200 mg/kg, p.o.) for 7 d prior to the induction of liver damage by CCl4. Animals were then sacrificed 24 h after CCl4 administration for the biochemical (AST, ALT, and ALP activity in serum; lipid peroxidation (LPO) and glutathione (GSH) levels in liver tissue) and histological analyses. CCl4-induced hepatotoxicity was confirmed by an increase (p < 0.05) in serum AST (4.55-fold), ALT (3.51-fold), and ALP (1.82-fold) activities. CCl4-induced hepatotoxicity was also manifested by an increase (p < 0.05) in LPO (3.88-fold) and depletion of reduced glutathione (3.14-fold) activity in liver tissue. The multiple dose MERV administration at 200 mg/kg showed promising hepatoprotective activity as evident from significant decrease levels of serum AST (230.01 ± 13.21), serum ALT (82.15 ± 5.01), serum ALP (504.75 ± 19.72), hepatic LPO (3.38 ± 0.33), and increased levels of hepatic glutathione (0.34 ± 0.04) towards near normal. Further, biochemical results were confirmed by histopathological changes as compared with CCl4-intoxicated rats. The results obtained from this study indicate hepatoprotective activity of Rumex plant against CCl4-induced liver toxicity; hence, it can be used as a hepatoprotective agent.

  3. Hepatoprotective effect against CCl4-induced acute liver damage in mice and High-performance liquid chromatography mass spectrometric method for analysis of the constituents of extract of Rubus crataegifolius.

    PubMed

    Sun, Yongjiao; Jia, Lingyun; Huang, Zhanbo; Wang, Jing; Lu, Jincai; Li, Jing

    2017-11-01

    This study is an attempt to evaluate the hepatoprotective activity of Rubus Crataegifolius against carbon tetrachloride-induced liver injury in mice. 70% ethanolic, ethyl acetate and n-BuOH extract of R. crataegifolius were administered daily for 14 days in experimental animals before they were treated with CCl 4 . The hepatoprotective activity of the extracts in this study was compared with the reference drug silymarin. A high-performance liquid chromatography mass spectrometric (HPLC-EIS-MS/MS) method was developed for the determination of the constituents of the extracts. According to the data of HPLC-EIS-MS/MS, the chemical structures of the largely 14 constituents of R. crataegifolius were identified online without time-consuming isolation. Ethyl acetate extracts of R. crataegifolius showed strong antioxidant activities and significant protective effect against acute hepatotoxicity induced by CCl 4 . According to the data of HPLC-EIS-MS/MS, Oleanic acid, Phlorizin dehydrate and Quercetin-3-rhamnoside are considered as the main hepatoprotective factor in ethyl acetate extract.

  4. Hepatoprotective activity of punarnavashtak kwath, an Ayurvedic formulation, against CCl4-induced hepatotoxicity in rats and on the HepG2 cell line.

    PubMed

    Shah, Vaishali N; Shah, Mamta B; Bhatt, Parloop A

    2011-04-01

    Punarnavashtak kwath (PNK) is a classical Ayurvedic formulation, mentioned in Ayurvedic literature Bhaishajya Ratnavali, for hepatic disorders and asthma. This study investigated the hepatoprotective activity of PNK to validate the traditional use of this formulation. PNK was prepared in the laboratory according to the method given in Ayurvedic literature. Phytochemical screening was performed to determine the presence of phytoconstituents. Hepatoprotective activity was evaluated against CCl(4)-induced hepatotoxicity in rats and by its effect on the HepG2 cell line. Preliminary phytochemical screening revealed the presence of alkaloids, tannins, flavonoids, saponins, and a bitter principle in PNK. Administration of PNK produced significant hepatoprotective effect as demonstrated by decreased levels of serum liver marker enzymes such as aspartate transaminase, serum alanine transaminase, serum alkaline phosphatase, and serum bilirubin and an increase in protein level. Thiopentone-induced sleeping time was also decreased in the PNK-treated animals compared with the CCl(4)-treated group. It also showed antioxidant activity by increase in activity of glutathione, superoxide dismutase, and catalase and by a decrease in thiobarbituric acid reactive substance level compared with the CCl(4)-treated group. Results of a histopathological study also support the hepatoprotective activity of PNK. Investigation carried out on the HepG2 cell line depicted significant increase in viability of cells exposed to PNK as compared with CCl(4)-treated cells. It can be concluded that PNK protects hepatocytes from CCl(4)-induced liver damages due to its antioxidant effect on hepatocytes. An in vitro study on HepG2 cell lines also supports its protective effect.

  5. Potential Effect of Bacopa monnieri on Nitrobenzene Induced Liver Damage in Rats

    PubMed Central

    Menon, B. Rajalakshmy; Rathi, M. A.; Thirumoorthi, L.

    2010-01-01

    The study was designed to evaluate the hepatoprotective activity of ethanolic extract of Bacopa monnieri in acute experimental liver injury induced by Nitrobenzene in rats. The extract at the dose of 200 mg/kg body weight was administered orally once every day for 10 days. The increased serum marker enzymes, Aspartate transaminase, Alanine transaminase and alkaline phosphatase were restored towards normalization significantly by the extract. Significant increase in SOD, CAT and GPx was observed in extract treated liver injured experimental rats. Histopathological examination of the liver tissues supported the hepatoprotection. It is concluded that the ethanolic extract of Bacopa monieri plant possess good hepatoprotective activity. PMID:21966114

  6. Hepatoprotective evaluation of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic: In vitro and in vivo studies.

    PubMed

    Ai, Guo; Liu, Qingchuan; Hua, Wei; Huang, Zhengming; Wang, Dewen

    2013-04-19

    The decoction of the flowers of Abelmoschus manihot (L.) Medic is traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China. Phytochemical studies have indicated that total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic (TFA) were the major constituents of the flowers. The present study was designed to investigate the hepatoprotective effect of the plant extracts against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. In the in vitro studies, freshly isolated rat hepatocytes were exposed to CCl4 (1%) along with/without various concentrations of TFA (4.5-72mg/L). Cell damage was assessed by the trypan blue exclusion method and alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP) in the medium were analyzed. In the in vivo studies, the hepatoprotective activity of TFA (125, 250 and 500mg/kg) were investigated on CCl4-induced liver damages in mice. The levels of ALT, AST and ALP, gamma glutamyltransferase (γ-GT), tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β) and nitric oxide (NO) were determined in serum. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT) and glutathione transferase (GST) were measured in the liver homogenates. Cytokine transcript levels of TNF-α, IL-1β and inducible nitric oxide synthase (iNOS) in the liver tissues of mice were measured using reverse transcription-polymerase chain reaction (RT-PCR). Livers were dissected out and evaluated for histomorphological changes. A concentration-dependent increase in the percentage viability was observed when CCl4-exposed hepatocytes were treated with different concentrations of TFA. Levels of ALT, AST and ALP in the medium were significantly decreased. In the animal studies, TFA showed significant protection with the depletion of ALT, AST, ALP and γ-GT in serum as was raised by the induction of CCl4. Moreover, TFA decreased the MDA level and elevated the content of GSH in the liver as compared to those in the CCl4 group. Furthermore, activities of antioxidative enzymes, including SOD, GPx, CAT and GST, were enhanced dose dependently with TFA. Meanwhile, the inflammatory mediators (e.g., TNF-α, IL-1β and NO) were inhibited by TFA treatment both at the serum and mRNA levels. Additionally, histological analyses also showed that TFA reduced the extent of liver lesions induced by CCl4. These results suggested that TFA protected mice against CCl4-induced liver injury through antioxidant stress and antiinflammatory effects. This finding justified the use of this plant in traditional medicine for the treatment of liver disease. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. A New Octadecenoic Acid Derivative from Caesalpinia gilliesii Flowers with Potent Hepatoprotective Activity

    PubMed Central

    Osman, Samir M.; El-Haddad, Alaadin E.; El-Raey, Mohamed A.; Abd El-Khalik, Soad M.; Koheil, Mahmoud A.; Wink, Michael

    2016-01-01

    Background: Caesalpinia gilliesii Hook is an ornamental shrub with showy yellow flowers. It was used in folk medicine due to its contents of different classes of secondary metabolites. In our previous study, dichloromethane extract of C. gilliesii flowers showed a good antioxidant activity. Aim of the Study: Isolation and identification of bioactive hepatoprotective compounds from C. gilliesii flowers dichloromethane fraction. Materials and Methods: The hepatoprotective activity of dichloromethane fraction and isolated compounds were studied in CCl4-intoxicated rat liver slices by measuring liver injury markers (alanine aminotransferase, aspartate aminotransferase and glutathione [GSH]). All compounds were structurally elucidated on the basis of electron ionization-mass spectrometry, one- and two-dimensional nuclear magnetic resonance. Results: A new 12,13,16-trihydroxy-14(Z)-octadecenoic acid was identified in addition to the known β-sitosterol-3-O-butyl, daucosterol, isorhamnetin, isorhamnetin-3-O-rhamnoside, luteolin-7,4’-dimethyl ether, genistein-5-methyl ether, luteolin-7-O-rhamnoside, isovanillic acid, and p-methoxybenzoic acid. Dichloromethane fraction and isorhamnetin were able to significantly protect the liver against intoxication. Moreover, the dichloromethane fraction and the isolated phytosterols induced GSH above the normal level. Conclusion: The hepatoprotective activity of C. gilliesii may be attributed to its high content of phytosterols and phenolic compounds. SUMMARY Bioactive Hepatoprotective phytosterols and phenolics from chloroform extract of Caesalpinia gilliesii Abbreviations used: ALT: Alanine Aminotransferase; AST: Aspartate aminotransferase; GSH: Glutathione; SC50: Scavenging Capacity 50 (SC 50); COSY: Correlation spectroscopy; NMR: Nuclear Magnetic Resonance; CC: Column chromatography; EI-MS: Electron-impact mass spectrometry; HSQC: Heteronuclear single-quantum correlation. PMID:27563221

  8. Shiitake Culinary-Medicinal Mushroom, Lentinus edodes (Agaricomycetes): A Species with Antioxidant, Immunomodulatory, and Hepatoprotective Activities in Hypercholesterolemic Rats.

    PubMed

    Nisar, Jaweria; Mustafa, Imtiaz; Anwar, Haseeb; Sohail, Muhammad Umar; Hussain, Ghulam; Ullah, Muhammad Irfan; Faisal, Muhammad Naeem; Bukhari, Shazia Anwer; Basit, Abdul

    2017-01-01

    Lentinus edodes is a culinary-medicinal mushroom that has an established history of use in Asian therapies. The mushroom offers well-documented beneficial health effects such as antihypercholesterolemic, antitumor, and antibacterial activities. In this study, dried powder of L. edodes fruiting bodies was used to evaluate immunomodulatory, hepatoprotective, and antioxidant effects in hypercholesterolemic rats. Albino rats (n = 24) were divided into 3 groups: the control (CON) group, the hypercholesterolemia-only group (HCG), and the L. edodes group (LEG). Hypercholesterolemia was induced in rats in the HCG and LEG by feeding cholesterol and cholic acid in a chow maintenance diet (CMD) for 24 days. The CON group was fed the CMD throughout the experiment. The HCG continued on the high-cholesterol diet without any L. edodes supplement. The LEG was fed the high-cholesterol diet supplemented with L. edodes for an additional 42 days. Various biological health biomarkers, such as total antioxidant capacity, total oxidant status, arylesterase, paraoxonase activity, and liver enzymes in serum were studied to evaluate antioxidant and hepatoprotective responses. Cell-mediated immunity was evaluated in each group through a delayed type of hypersensitivity reaction. The total oxidant status decreased significantly (P ≤ 0.05) after administration of L. edodes in the diet. The cell-mediated immune response significantly increased (P ≤ 0.05) in the LEG. The significant decrease in liver enzymes supports the hepatoprotective effect of L. edodes. In conclusion, the results show the immunomodulatory, hepatoprotective, and antioxidant activities of L. edodes supplementation in hypercholesterolemic rats.

  9. Silymarin for hepatitis C virus infection

    PubMed Central

    Polyak, Stephen J; Oberlies, Nicholas H; Pécheur, Eve-Isabelle; Dahari, Harel; Ferenci, Peter; Pawlotsky, Jean-Michel

    2014-01-01

    Silymarin, an extract of milk thistle seeds, and silymarin-derived compounds have been considered hepatoprotective since the plant was first described in ancient times. Hepatoprotection is defined as several non-mutually exclusive biological activities including antiviral, antioxidant, anti-inflammatory and immunomodulatory functions. Despite clear evidence for silymarin-induced hepatoprotection in cell culture and animal models, evidence for beneficial effects in humans has been equivocal. This review will summarize the current state of knowledge on silymarin in the context of hepatitis C virus infection. The information was collated from a recent workshop on silibinin in Germany. PMID:23011959

  10. Phytoextract of Indian mustard seeds acts by suppressing the generation of ROS against acetaminophen-induced hepatotoxicity in HepG2 cells.

    PubMed

    Parikh, Harita; Pandita, Nancy; Khanna, Aparna

    2015-07-01

    Indian mustard [Brassica juncea (L.) Czern. & Coss. (Brassicaceae)] is reported to possess diverse pharmacological properties. However, limited information is available concerning its hepatoprotective activity and mechanism of action. To study the protective mechanism of mustard seed extract against acetaminophen (APAP) toxicity in a hepatocellular carcinoma (HepG2) cell line. Hepatotoxicity models were established using APAP (2.5-22.5 mM) based on the cytotoxicity profile. An antioxidant-rich fraction from mustard seeds was extracted and evaluated for its hepatoprotective potential. The mechanism of action was elucidated using various in vitro antioxidant assays, the detection of intracellular generation of reactive oxygen species (ROS), and cell cycle analysis. The phytoconstituents isolated via HPLC-DAD were also evaluated for hepatoprotective activity. Hydromethanolic seed extract exhibited hepatoprotective activity in post- and pre-treatment models of 20 mM APAP toxicity and restored the elevated levels of liver indices to normal values (p < 0.05). Post-treatment suppressed the generation of ROS by 58.37% and pre-treatment effectively prevented the generation of ROS by 90.5%. The mechanism of ROS suppression was further supported by antioxidant activity (IC50) data from DPPH (103.37 ± 4.2 µg AAE/mg), FRAP (83.26 ± 1.1 µg AAE/mg), ORAC (1115 µM GAE/ml), ABTS (83.05 µg GAE/ml), and superoxide (345.22 ± 5.15 µg AAE/mg) scavenging assays and by the restoration of cell cycle alterations. HPLC-DAD analysis revealed the presence quercetin, vitamin E, and catechin, which exhibited hepatoprotective activity. A phytoextract of mustard seeds acts by suppressing the generation of ROS in response to APAP toxicity.

  11. Palm kernel cake extract exerts hepatoprotective activity in heat-induced oxidative stress in chicken hepatocytes.

    PubMed

    Oskoueian, Ehsan; Abdullah, Norhani; Idrus, Zulkifli; Ebrahimi, Mahdi; Goh, Yong Meng; Shakeri, Majid; Oskoueian, Armin

    2014-10-02

    Palm kernel cake (PKC), the most abundant by-product of oil palm industry is believed to contain bioactive compounds with hepatoprotective potential. These compounds may serve as hepatoprotective agents which could help the poultry industry to alleviate adverse effects of heat stress on liver function in chickens. This study was performed to evaluate the hepatoprotective potential of PKC extract in heat-induced oxidative stress in chicken hepatocytes. The nature of the active metabolites and elucidation of the possible mechanism involved were also investigated. The PKC extract possessed free radical scavenging activity with values significantly (p < 0.05) lower than silymarin as the reference antioxidant. Heat-induced oxidative stress in chicken hepatocyte impaired the total protein, lipid peroxidation and antioxidant enzymes activity significantly (p < 0.05). Treatment of heat-induced hepatocytes with PKC extract (125 μg/ml) and silymarin as positive control increased these values significantly (p < 0.05). The real time PCR and western blot analyses revealed the significant (p < 0.05) up-regulation of oxidative stress biomarkers including TNF-like, IFN-γ and IL-1β genes; NF-κB, COX-2, iNOS and Hsp70 proteins expression upon heat stress in chicken hepatocytes. The PKC extract and silymarin were able to alleviate the expression of all of these biomarkers in heat-induced chicken hepatocytes. The gas chromatography-mass spectrometry analysis of PKC extract showed the presence of fatty acids, phenolic compounds, sugar derivatives and other organic compounds such as furfural which could be responsible for the observed hepatoprotective activity. Palm kernel cake extract could be a potential agent to protect hepatocytes function under heat induced oxidative stress.

  12. Recent Advances in Momordica charantia: Functional Components and Biological Activities.

    PubMed

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-11-28

    Momordica charantia L. ( M. charantia ), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia .

  13. Recent Advances in Momordica charantia: Functional Components and Biological Activities

    PubMed Central

    Jia, Shuo; Shen, Mingyue; Zhang, Fan; Xie, Jianhua

    2017-01-01

    Momordica charantia L. (M. charantia), a member of the Cucurbitaceae family, is widely distributed in tropical and subtropical regions of the world. It has been used in folk medicine for the treatment of diabetes mellitus, and its fruit has been used as a vegetable for thousands of years. Phytochemicals including proteins, polysaccharides, flavonoids, triterpenes, saponins, ascorbic acid and steroids have been found in this plant. Various biological activities of M. charantia have been reported, such as antihyperglycemic, antibacterial, antiviral, antitumor, immunomodulation, antioxidant, antidiabetic, anthelmintic, antimutagenic, antiulcer, antilipolytic, antifertility, hepatoprotective, anticancer and anti-inflammatory activities. However, both in vitro and in vivo studies have also demonstrated that M. charantia may also exert toxic or adverse effects under different conditions. This review addresses the chemical constituents of M. charantia and discusses their pharmacological activities as well as their adverse effects, aimed at providing a comprehensive overview of the phytochemistry and biological activities of M. charantia. PMID:29182587

  14. Ethanol extract and its dichloromethane fraction of Alpinia oxyphylla Miquel exhibited hepatoprotective effects against CCl4-induced oxidative damage in vitro and in vivo with the involvement of Nrf2.

    PubMed

    Zhang, Qiao; Hu, Xiaolong; Hui, Fuhai; Song, Qi; Cui, Can; Wang, Changli; Zhao, Qingchun

    2017-07-01

    Alpinia oxyphylla Miq. (A. oxyphylla), as a kind of medicine which also be used as food, is widely used in East Asian for the treatment of dyspepsia, diarrhea, abdominal pain and deficiency cold of spleen and stomach. This study aimed to investigate the protective effects of ethanol extract (EE) and its dichloromethane fraction (DM) of A. oxyphylla, which are rich in phenolic compounds, against CCl 4 -induced hepatic injury in vitro and in vivo. EE, DM and silymarin ameliorated CCl 4 -induced decrease of cell viability and increase of reactive oxygen species (ROS) in HepG2 cells. The CCl 4 -induced changes of glutathione (GSH) and methane dicarboxylic aldehyde (MDA) levels, and the decrease of superoxide dismutase (SOD) and catalase (CAT) activities were all restored with the pretreatment of EE, DM and silymarin. The results in liver injury model in rats showed that EE, DM and silymarin could significant decrease the levels of serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and total bilirubin than the model group. Liver histopathology revealed that EE and DM attenuated the incidence of liver lesions triggered by CCl 4 intoxication. They also effectively relieved CCl 4 -induced oxidative damage. Western blot analysis indicated NF-E2-related factor (Nrf2) pathway played an critical role in the protection of EE and DM against CCl 4 -induced oxidative stress. In conclusion, the extracts from A. oxyphylla might be used as hepatoprotective agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Hepatoprotective properties in the rat of Mitracarpus scaber (Rubiaceae).

    PubMed

    Germanò, M P; Sanogo, R; Costa, C; Fulco, R; D'Angelo, V; Torre, E A; Viscomi, M G; De Pasquale, R

    1999-06-01

    The effect of Mitracarpus scaber on carbon tetrachloride-induced acute liver damage in the rat has been evaluated. Results showed that treatment with Mitracarpus scaber decoction resulted in significant hepatoprotection against CCl4-induced liver injury both in-vivo and in-vitro. In-vivo, Mitracarpus scaber pretreatment reduced levels of serum glutamate-oxalate-transaminase (P < 0.01 for 250, 500 and 1000 mg kg(-1)) and serum glutamate-pyruvate-transaminase (P < 0.05 for 250 mg kg(-1) and P < 0.01 for 1000 mg kg(-1)) previously increased by administration of CCl4. In-vitro results indicated that addition to the culture medium of Mitracarpus scaber extracts significantly reduced glutamate-oxalate-transaminase (P < 0.05 for 100 microg mL(-1) and P < 0.01 for 10 and 1000 microg mL(-1)) and lactate dehydrogenase activity (P < 0.05 for 10 microg mL(-1)). Mitracarpus treatment also resulted in a good ( > 93%) survival rate for the CCl4-intoxicated hepatocytes as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay. Moreover, as in the in-vitro assay, Mitracarpus scaber had radical-scavenging properties, shown by its reaction with the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical (EC50, the extract concentration resulting in a 50% reduction in the absorbance of DPPH blank solution, = 41.64+/-1.5 microg mL(-1)). The results of this study showed that Mitracarpus scaber had antihepatotoxic potential, a finding which supports the validity of traditional usage of this drug in Mali for the treatment of liver diseases.

  16. Hepatoprotective effects of pecan nut shells on ethanol-induced liver damage.

    PubMed

    Müller, Liz Girardi; Pase, Camila Simonetti; Reckziegel, Patrícia; Barcelos, Raquel C S; Boufleur, Nardeli; Prado, Ana Cristina P; Fett, Roseane; Block, Jane Mara; Pavanato, Maria Amália; Bauermann, Liliane F; da Rocha, João Batista Teixeira; Burger, Marilise Escobar

    2013-01-01

    The hepatoprotective activity of the aqueous extract of the shells of pecan nut was investigated against ethanol-induced liver damage. This by-product of the food industry is popularly used to treat toxicological diseases. We evaluated the phytochemical properties of pecan shell aqueous extract (AE) and its in vitro and ex vivo antioxidant activity. The AE was found to have a high content of total polyphenols (192.4±1.9 mg GAE/g), condensed tannins (58.4±2.2 mg CE/g), and antioxidant capacity, and it inhibited Fe(2+)-induced lipid peroxidation (LP) in vitro. Rats chronically treated with ethanol (Et) had increased plasmatic transaminases (ALT, AST) and gamma glutamyl transpeptidase (GGT) levels (96%, 59.13% and 465.9%, respectively), which were effectively prevented (87; 41 and 383%) by the extract (1:40, w/v). In liver, ethanol consumption increased the LP (121%) and decreased such antioxidant defenses as glutathione (GSH) (33%) and superoxide dismutase (SOD) (47%) levels, causing genotoxicity in erythrocytes. Treatment with pecan shell AE prevented the development of LP (43%), GSH and SOD depletion (33% and 109%, respectively) and ethanol-induced erythrocyte genotoxicity. Catalase activity in the liver was unchanged by ethanol but was increased by the extract (47% and 73% in AE and AE+Et, respectively). Therefore, pecan shells may be an economic agent to treat liver diseases related to ethanol consumption. Copyright © 2011 Elsevier GmbH. All rights reserved.

  17. Antioxidant and hepatoprotective actions of medicinal herb, Terminalia catappa L. from Okinawa Island and its tannin corilagin.

    PubMed

    Kinoshita, S; Inoue, Y; Nakama, S; Ichiba, T; Aniya, Y

    2007-11-01

    The antioxidant and hepatoprotective actions of Terminalia catappa L. collected from Okinawa Island were evaluated in vitro and in vivo using leaves extract and isolated antioxidants. A water extract of the leaves of T. catappa showed a strong radical scavenging action for 1,1-diphenyl-2-picrylhydrazyl and superoxide (O(2)(.-)) anion. Chebulagic acid and corilagin were isolated as the active components from T. catappa. Both antioxidants showed a strong scavenging action for O(2)(.-) and peroxyl radicals and also inhibited reactive oxygen species production from leukocytes stimulated by phorbol-12-myristate acetate. Galactosamine (GalN, 600 mg/kg, s.c.,) and lipopolysaccharide (LPS, 0.5 microg/kg, i.p.)-induced hepatotoxicity of rats as seen by an elevation of serum alanine aminotransferase, aspartate aminotransferase and glutathione S-transferase (GST) activities was significantly reduced when the herb extract or corilagin was given intraperitoneally to rats prior to GalN/LPS treatment. Increase of free radical formation and lipid peroxidation in mitochondria caused by GalN/LPS treatment were also decreased by pretreatment with the herb/corilagin. In addition, apoptotic events such as DNA fragmentation and the increase in caspase-3 activity in the liver observed with GalN/LPS treatment were prevented by the pretreatment with the herb/corilagin. These results show that the extract of T. catappa and its antioxidant, corilagin are protective against GalN/LPS-induced liver injury through suppression of oxidative stress and apoptosis.

  18. Molecular Bases Underlying the Hepatoprotective Effects of Coffee

    PubMed Central

    Salomone, Federico; Galvano, Fabio; Li Volti, Giovanni

    2017-01-01

    Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation. PMID:28124992

  19. Molecular Bases Underlying the Hepatoprotective Effects of Coffee.

    PubMed

    Salomone, Federico; Galvano, Fabio; Li Volti, Giovanni

    2017-01-23

    Coffee is the most consumed beverage worldwide. Epidemiological studies with prospective cohorts showed that coffee intake is associated with reduced cardiovascular and all-cause mortality independently of caffeine content. Cohort and case-control studies reported an inverse association between coffee consumption and the degree of liver fibrosis as well as the development of liver cancer. Furthermore, the beneficial effects of coffee have been recently confirmed by large meta-analyses. In the last two decades, various in vitro and in vivo studies evaluated the molecular determinants for the hepatoprotective effects of coffee. In the present article, we aimed to critically review experimental evidence regarding the active components and the molecular bases underlying the beneficial role of coffee against chronic liver diseases. Almost all studies highlighted the beneficial effects of this beverage against liver fibrosis with the most solid results indicating a pivot role for both caffeine and chlorogenic acids. In particular, in experimental models of fibrosis, caffeine was shown to inhibit hepatic stellate cell activation by blocking adenosine receptors, and emerging evidence indicated that caffeine may also favorably impact angiogenesis and hepatic hemodynamics. On the other side, chlorogenic acids, potent phenolic antioxidants, suppress liver fibrogenesis and carcinogenesis by reducing oxidative stress and counteract steatogenesis through the modulation of glucose and lipid homeostasis in the liver. Overall, these molecular insights may have translational significance and suggest that coffee components need clinical evaluation.

  20. In Vivo Evaluation of Ethanolic Extract of Zingiber officinale Rhizomes for Its Protective Effect against Liver Cirrhosis

    PubMed Central

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Abdullah, Nor Azizan; Rouhollahi, Elham

    2013-01-01

    Zingiber officinale is a traditional medicine against various disorders including liver diseases.The aim of this study was to assess the hepatoprotective activity of the ethanolic extract of rhizomes of Z. officinale (ERZO) against thioacetamide-induced hepatotoxicity in rats. Five groups of male Sprague Dawley have been used. In group 1 rats received intraperitoneal (i.p.) injection of normal saline while groups 2–5 received thioacetamide (TAA, 200 mg/kg; i.p.) for induction of liver cirrhosis, thrice weekly for eight weeks. Group 3 received 50 mg/kg of silymarin. The rats in groups 4 and 5 received 250 and 500 mg/kg of ERZO (dissolved in 10% Tween), respectively. Hepatic damage was assessed grossly and microscopically for all of the groups. Results confirmed the induction of liver cirrhosis in group 2 whilst administration of silymarin or ERZO significantly reduced the impact of thioacetamide toxicity. These groups decreased fibrosis of the liver tissues. Immunohistochemistry assessment against proliferating cell nuclear antigen did not show remarkable proliferation in the ERZO-treated rats when compared with group 2. Moreover, factions of the ERZO extract were tested on Hep-G2 cells and showed antiproliferative activity (IC50 38–60 μg/mL). This study showed hepatoprotective effect of ERZO. PMID:24396831

  1. Hepatoprotective activity of Leptadenia reticulata stems against carbon tetrachloride-induced hepatotoxicity in rats

    PubMed Central

    Nema, Amit Kumar; Agarwal, Abhinav; Kashaw, Varsha

    2011-01-01

    Objective: To evaluate the hepatoprotective activity of ethanolic and aqueous extract of stems of Leptadenia reticulata (Retz.) Wight. and Arn. in carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Materials and Methods: The toxicant CCl4 was used to induce hepatotoxicity at a dose of 1.25 ml/kg as 1 : 1 mixture with olive oil. Ethanolic and aqueous extracts of L. reticulata stems were administered in the doses of 250 and 500 mg/kg/day orally for 7 days. Silymarin (50 mg/kg) was used as standard drug. The hepatoprotective effect of these extracts was evaluated by the assessment of biochemical parameters such as serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, alkaline phosphatase, total bilirubin, serum protein, and histopathological studies of the liver. Results: Treatment of animals with ethanolic and aqueous extracts significantly reduced the liver damage and the symptoms of liver injury by restoration of architecture of liver as indicated by lower levels of serum bilirubin and protein as compared with the normal and silymarin-treated groups. Histology of the liver sections confirmed that the extracts prevented hepatic damage induced by CCl4 showing the presence of normal hepatic cords, absence of necrosis, and fatty infiltration. Conclusion: The ethanolic and aqueous extracts of stems of L. reticulata showed significant hepatoprotective activity. The ethanolic extract is more potent in hepatoprotection in CCl4-indiced liver injury model as compared with aqueous extract. PMID:21713086

  2. Pharmacological screening of Coriandrum sativum Linn. for hepatoprotective activity

    PubMed Central

    Pandey, A.; Bigoniya, P.; Raj, V.; Patel, K. K.

    2011-01-01

    Objective: Coriandrum sativum (Linn.), a glabrous, aromatic, herbaceous annual plant, is well known for its use in jaundice. Essential oil, flavonoids, fatty acids, and sterols have been isolated from different parts of C. sativum. The plant has a very effective antioxidant profile showing 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, lipoxygenase inhibition, phospholipid peroxidation inhibition, iron chelating activity, hydroxyl radical scavenging activity, superoxide dismutation, glutathione reduction and antilipid peroxidation due to its high total phenolic content with the presence of constituents like pyrogallol, caffeic acid, glycitin, etc. Materials and Methods: This study was aimed at investigating the hepatoprotective activity of C. sativum against carbon tetrachloride (CCl4), with estimation of serum serum glutamyl oxaloacetic acid transaminase (SGOT), serum glutamyl pyruvate transaminase (SGPT), alkaine phosphatase (ALP) and bilirubin, and with liver histopathology. Results: Ethanolic extract was found to be rich in alkaloids, phenolic compounds and flavonoids, and high performance liquid chromatography (HPLC) fingerprinting showed the presence of iso-quercetin and quercetin. C. sativum signifies hepatoprotection by reducing the liver weight, activities of SGOT, SGPT, and ALP, and direct bilirubin of CCl4 intoxicated animals. Administration of C. sativum extract at 300 mg/kg dose resulted in disappearance of fatty deposit, ballooning degeneration and necrosis, indicating antihepatotoxic activity. Conclusion: The results of this study have led to the conclusion that ethanolic extract of C. sativum possesses hepatoprotective activity which may be due to the antioxidant potential of phenolic compounds. PMID:21966166

  3. Hepatoprotectant Ursodeoxycholyl Lysophosphatidylethanolamide Increasing Phosphatidylcholine Levels as a Potential Therapy of Acute Liver Injury

    PubMed Central

    Chamulitrat, Walee; Zhang, Wujuan; Xu, Weihong; Pathil, Anita; Setchell, Kenneth; Stremmel, Wolfgang

    2012-01-01

    It has been long known that hepatic synthesis of phosphatidylcholine (PC) is depressed during acute such as carbon tetrachloride-induced liver injury. Anti-hepatotoxic properties of PC as liposomes have been recognized for treatment of acute liver damage. Ursodeoxycholate (UDCA) is a known hepatoprotectant in stabilizing cellular membrane. For therapeutic management of liver injury, we coupled UDCA with a phospholipid known as ursodeoxycholyl lysophosphatidylethanolamide (UDCA-LPE). UDCA-LPE has been shown to first-in-class hepatoprotectant being superior to UDCA or PC. It inhibits mitochondrial damage and apoptosis, elicits survival signaling pathway, and promotes regeneration of hepatocytes. We herein report that a unique contribution of UDCA-LPE in increasing concentrations of PC in vitro and in vivo. UDCA-LPE-treated hepatocytes contained significantly increased PC levels. UDCA-LPE underwent the hydrolysis to LPE which was not the precursor of the increased PC. The levels of PC in the liver and blood were increased rapidly after intraperitoneally administration UDCA-LPE, and were found to be sustained even after 24 h. Among PC synthesis genes tested, UDCA-LPE treatment of mouse hepatocytes increased transcription of CDP-diacylglycerol synthase 1 which is an enzyme catalyzing phosphatidic acid to generate intermediates for PC synthesis. Thus, UDCA-LPE as a hepatoprotectant was able to induce synthesis of protective PC which would supplement for the loss of PC occurring during acute liver injury. This property has placed UDCA-LPE as a candidate agent for therapy of acute hepatotoxicity such as acetaminophen poisoning. PMID:22363296

  4. Hepatoprotective activity of aqueous extract of Portulaca oleracea in combination with lycopene in rats

    PubMed Central

    Anusha, M.; Venkateswarlu, M.; Prabhakaran, V.; Taj, S. Shareen; Kumari, B. Pushpa; Ranganayakulu, D.

    2011-01-01

    Objective: To investigate the hepatoprotective activity of the aqueous extract of the aerial parts of Portulaca oleracea (P. oleracea) in combination with lycopene against carbon tetrachloride induced hepatotoxicity in rats. Materials and Methods: Hepatotoxicity was induced in male Wistar rats by intraperitoneal injection of carbon tetrachloride (0.1 ml/kg b.w for 14 days). The aqueous extract of P. oleracea in combination with lycopene (50 mg/kg b.w) was administered to the experimental animals at two selected doses for 14 days. The hepatoprotective activity of the combination was evaluated by the liver function marker enzymes in the serum [aspartate transaminases (AST), alanine transaminases (ALT), alkaline phosphatase (Alk.P), total bilirubin (TB), total protein (TP) and total cholesterol (TC)], pentobarbitone induced sleeping time (PST) and histopathological studies of liver. Results: Both the treatment groups showed hepatoprotective effect against carbon tetrachloride induced hepatotoxicity by significantly restoring the levels of serum enzymes to normal which was comparable to that of silymarin group. Besides, the results obtained from PST and histopathological results also support the study. Conclusions: The oral administration of P. oleracea in combination with lycopene significantly ameliorates CCl4 hepatotoxicity in rats. PMID:22022001

  5. Enhanced oral bioavailability and in vivo antioxidant activity of chlorogenic acid via liposomal formulation.

    PubMed

    Feng, Yingshu; Sun, Congyong; Yuan, Yangyang; Zhu, Yuan; Wan, Jinyi; Firempong, Caleb Kesse; Omari-Siaw, Emmanuel; Xu, Yang; Pu, Zunqin; Yu, Jiangnan; Xu, Ximing

    2016-03-30

    In the present study, a formulation system consisting of cholesterol and phosphatidyl choline was used to prepare an effective chlorogenic acid-loaded liposome (CAL) with an improved oral bioavailability and an increased antioxidant activity. The developed liposomal formulation produced regular, spherical and multilamellar-shaped distribution nanoparticles. The pharmacokinetic analysis of CAL compared with chlorogenic acid (CA), showed a higher value of Cmax(6.42 ± 1.49 min versus 3.97 ± 0.39 min) and a delayed Tmax(15 min versus 10 min), with 1.29-fold increase in relative oral bioavailability. The tissue distribution in mice also demonstrated that CAL predominantly accumulated in the liver which indicated hepatic targeting potential of the drug. The increased activities of antioxidant enzymes (Total Superoxide Dismutase (T-SOD) and Glutathione Peroxidase (GSH-Px)) and total antioxidant capacity (T-AOC), in addition to decreased level of malondialdehyde (MDA) in CCl4-induced hepatotoxicity study further revealed that CAL exhibited significant hepatoprotective and antioxidant effects. Collectively, these findings present a liposomal formulation with significantly improved oral bioavailability and an increased in vivo antioxidant activity of CA. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Hepatoprotective and Antioxidant Effect of Bauhinia hookeri Extract against Carbon Tetrachloride-Induced Hepatotoxicity in Mice and Characterization of Its Bioactive Compounds by HPLC-PDA-ESI-MS/MS

    PubMed Central

    Al-Sayed, Eman; Seif el-Din, Sayed H.; Sabra, Abdel-Nasser A.; Hammam, Olfat A.; El-Lakkany, Naglaa M.; Abdel-Daim, Mohamed M.

    2014-01-01

    The hepatoprotective and antioxidant activity of Bauhinia hookeri ethanol extract (BHE) against CCl4-induced liver injury was investigated in mice. BHE was administered (500 and 1000 mg/kg/day) along with CCl4 for 6 weeks. The hepatic marker enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were determined in the serum. The antioxidant parameters: glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), and malondialdehyde (MDA) were estimated in the liver homogenate. BHE treatment significantly inhibited the CCl4-induced increase in ALT (44 and 64%), AST (36 and 46%), ALP (28 and 42%), and MDA (39 and 51%) levels at the tested doses, respectively. Moreover, BHE treatment markedly increased the activity of antioxidant parameters GSH, GPx, GR, GST, and SOD. Histological observations confirmed the strong hepatoprotective activity. These results suggest that a dietary supplement of BHE could exert a beneficial effect against oxidative stress and various liver diseases by enhancing the antioxidant defense status, reducing lipid peroxidation, and protecting against the pathological changes of the liver. The hepatoprotective activity of BHE is mediated, at least in part, by the antioxidant effect of its constituents. The active constituents of BHE were identified by HPLC-PDA-ESI/MS/MS. PMID:24955350

  7. Hepatoprotective and antioxidant effect of Bauhinia hookeri extract against carbon tetrachloride-induced hepatotoxicity in mice and characterization of its bioactive compounds by HPLC-PDA-ESI-MS/MS.

    PubMed

    Al-Sayed, Eman; Martiskainen, Olli; Seif el-Din, Sayed H; Sabra, Abdel-Nasser A; Hammam, Olfat A; El-Lakkany, Naglaa M; Abdel-Daim, Mohamed M

    2014-01-01

    The hepatoprotective and antioxidant activity of Bauhinia hookeri ethanol extract (BHE) against CCl4-induced liver injury was investigated in mice. BHE was administered (500 and 1000 mg/kg/day) along with CCl4 for 6 weeks. The hepatic marker enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) were determined in the serum. The antioxidant parameters: glutathione (GSH), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione transferase (GST), and malondialdehyde (MDA) were estimated in the liver homogenate. BHE treatment significantly inhibited the CCl4-induced increase in ALT (44 and 64%), AST (36 and 46%), ALP (28 and 42%), and MDA (39 and 51%) levels at the tested doses, respectively. Moreover, BHE treatment markedly increased the activity of antioxidant parameters GSH, GPx, GR, GST, and SOD. Histological observations confirmed the strong hepatoprotective activity. These results suggest that a dietary supplement of BHE could exert a beneficial effect against oxidative stress and various liver diseases by enhancing the antioxidant defense status, reducing lipid peroxidation, and protecting against the pathological changes of the liver. The hepatoprotective activity of BHE is mediated, at least in part, by the antioxidant effect of its constituents. The active constituents of BHE were identified by HPLC-PDA-ESI/MS/MS.

  8. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats.

    PubMed

    Kasote, D M; Badhe, Y S; Zanwar, A A; Hegde, M V; Deshmukh, K K

    2012-07-01

    to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl(4) -induced liver damage in rats. Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl(4) in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl(4) intoxication. Hepatic lipid peroxidation elevated by CCl(4) intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl(4) -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl(4) -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). EPC-BF possesses the significant hepatoprotective activity against CCl(4) induced liver damage, which could be mediated through increase in antioxidant defenses.

  9. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice.

    PubMed

    Praveen, T K; Dharmaraj, S; Bajaj, Jitendra; Dhanabal, S P; Manimaran, S; Nanjan, M J; Razdan, Rema

    2009-06-01

    The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P < 0.05) and changes in liver histopathology. The above results are comparable to standard, silymarin (100 mg/kg, p.o.). In the in vitro 1, 1-diphenyl-2-picrylhydrazyl scavenging assay, the extract showed good free radical scavenging potential (IC 50 38.9 +/- 1.0 mug/ml). The results of the study indicate that the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents.

  10. Bioassay-guided fractionation of a hepatoprotective and antioxidant extract of pea by-product.

    PubMed

    Seida, Ahmed A; El Tanbouly, Nebal D; Islam, Wafaa T; Eid, Hanaa H; El Maraghy, Shohda A; El Senousy, Amira S

    2015-01-01

    The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-β-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.

  11. Antioxidant and hepatoprotective effects of Crataegus songarica methanol extract.

    PubMed

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Zargar, Bilal; Hamid, Rabia; Zargar, Ovais; Dar, Parvaiz Ahmad; Abeer, Shayaq Ul; Masood, Akbar; Amin, Shajrul; Zargar, Mohammad Afzal

    2014-01-01

    The protective activity of the methanolic extract of the Crataegus songarica leaves was investigated against CCl4- and paracetamol-induced liver damage. On folklore levels, this plant is popularly used to treat various toxicological diseases. We evaluated both in vitro and ex vivo antioxidant activity of C. songarica. At higher concentration of plant extract (700 µg/ml), 88.106% inhibition on DPPH radical scavenging activity was observed and reducing power of extract was increased in a concentration-dependent manner. We also observed its inhibition on Fe2+/ascorbic acid-induced lipid peroxidation on rat liver microsomes in vitro. In addition, C. songarica extract exhibited antioxidant effects on calf thymus DNA damage induced by Fenton reaction. Hepatotoxicity was induced by challenging the animals with CCl4 (1 ml/kg body weight, i.p.) and paracetamol (500 mg/kg body weight) and the extract was administered at three concentrations (100, 200, and 300 mg/kg body weight). Hepatoprotection was evaluated by determining the activities of liver function marker enzymes and antioxidant status of liver. Administration of CCl4 elevated the levels of liver function enzymes, SGOT, SGPT, and LDH. We also observed a dramatic increase in ALT, AST, bilirubin, and alkaline phosphatase levels in rats administered 500 mg/kg body weight of paracetamol. Decreased antioxidant defense system as glutathione (GSH), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), glutathione-S-transferase (GST), and superoxide dismutase (SOD) were observed in rats treated with CCl4 and paracetamol. Pretreatment with the extract decreased the elevated serum GOT, GPT, LDH, bilirubin, and alkaline phosphatase activities and increased the antioxidant enzymes in a dose-dependent manner. Therefore, C. songarica methanol extract may be an effective hepatic protective agent and viable candidate for treating hepatic disorders and other oxidative stress-related diseases.

  12. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes.

    PubMed

    Kim, Jung Wha; Kim, Tae Bum; Kim, Hyun Woo; Park, Sang Wook; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). The extract of O. ficus-indica fruits was fractionated into methylene chloride and n -butanol. The n -butanol fraction was isolated by HSCCC separation (methylene chloride-methanol- n -butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-P x ) enzymes and the GSH content were measured. Two flavonoids, quercetin 3- O -methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3- O -β- d -glucoside (3) and narcissin (4), were isolated from the n -butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-P x . OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC).

  13. The hepatoprotective effect of Phyllanthus emblica L. fruit on high fat diet-induced non-alcoholic fatty liver disease (NAFLD) in SD rats.

    PubMed

    Huang, Cheng-Ze; Tung, Yu-Tang; Hsia, Shih-Min; Wu, Chi-Hao; Yen, Gow-Chin

    2017-02-22

    Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is closely associated with metabolic syndrome and refers to the accumulation of hepatic steatosis not due to excess alcohol consumption. Phyllanthus emblica L. is a rich source of gallic acid and many known medicinally phytochemicals such as tannins, lignans, flavonoids, alkaloids, vitamin C, mucic acid, and ellagic acid. Our previous study has revealed that P. emblica exhibits inhibitory effects on hepatic steatosis and liver fibrosis in vitro, as well as gallic acid improves high fat diet (HFD)-induced dyslipidaemia, hepatosteatosis, and oxidative stress in vivo. Therefore, the aim of this study was to investigate the hepatoprotective effect of the water extract of P. emblica L. fruit (WEPE) on NAFLD in an animal model. The results showed that WEPE could significantly decrease body weight, peritoneal fat and epididymal fat, enhance the antioxidant enzyme activities, and improve steatosis through elevating adiponectin in adipocytes and PPAR-α in the liver as well as lowering SREBP-1c in the liver of rats fed with a high fat diet (HFD). This might be an explanation for the hepatic fat deposition-lowering effect of WEPE. These results demonstrate that WEPE could be beneficial for the amelioration of HFD-induced steatosis.

  14. Senna singueana: Antioxidant, Hepatoprotective, Antiapoptotic Properties and Phytochemical Profiling of a Methanol Bark Extract.

    PubMed

    Sobeh, Mansour; Mahmoud, Mona F; Hasan, Rehab A; Cheng, Haroan; El-Shazly, Assem M; Wink, Michael

    2017-09-08

    Natural products are considered as an important source for the discovery of new drugs to treat aging-related degenerative diseases and liver injury. The present study profiled the chemical constituents of a methanol extract from Senna singueana bark using HPLC-PDA-ESI-MS/MS and 36 secondary metabolites were identified. Proanthocyanidins dominated the extract. Monomers, dimers, trimers of (epi)catechin, (epi)gallocatechin, (epi)guibourtinidol, (ent)cassiaflavan, and (epi)afzelechin represented the major constituents. The extract demonstrated notable antioxidant activities in vitro: In DPPH (EC 50 of 20.8 µg/mL), FRAP (18.16 mM FeSO₄/mg extract) assays, and total phenolic content amounted 474 mg gallic acid equivalent (GAE)/g extract determined with the Folin-Ciocalteu method. Also, in an in vivo model, the extract increased the survival rate of Caenorhabditis elegans worms pretreated with the pro-oxidant juglone from 43 to 64%, decreased intracellular ROS inside the wild-type nematodes by 47.90%, and induced nuclear translocation of the transcription factor DAF-16 in the transgenic strain TJ356. Additionally, the extract showed a remarkable hepatoprotective activity against d-galactosamine (d-GalN) induced hepatic injury in rats. It significantly reduced elevated AST (aspartate aminotransferase), and total bilirubin. Moreover, the extract induced a strong cytoplasmic Bcl-2 expression indicating suppression of apoptosis. In conclusion, the bark extract of S. sengueana represents an interesting candidate for further research in antioxidants and liver protection.

  15. Hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats

    PubMed Central

    Kasote, D. M.; Badhe, Y. S.; Zanwar, A. A.; Hegde, M. V.; Deshmukh, K. K.

    2012-01-01

    Objective: to investigate the hepatoprotective potential of ether insoluble phenolic components of n-butanol fraction (EPC-BF) of flaxseed against CCl4 -induced liver damage in rats. Materials and Methods: Hepatotoxicity was induced to Wistar rats by administration of 0.2% CCl4 in olive oil (8 mL/kg, i.p.) on the seventh day of treatment. Hepatoprotective potential of EPC-BF at doses, 250 and 500 mg/kg, p.o. was assessed through biochemical and histological parameters. Results: EPC-BF and silymarin pretreated animal groups showed significantly decreased activities of Aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and level of total bilirubin, elevated by CCl4 intoxication. Hepatic lipid peroxidation elevated by CCl4 intoxication were also found to be alleviated at almost normal level in the EPC-BF and silymarin pretreated groups. Histological studies supported the biochemical findings and treatment of EPC-BF at doses 250 and 500 mg/kg, p.o. was found to be effective in restoring CCl4 -induced hepatic damage. However, EPC-BF did not show dose-dependent hepatoprotective potential. EPC-BF depicted maximum protection against CCl4 -induced hepatic damage at lower dose 250 mg/kg than higher dose (500 mg/ kg). Conclusion: EPC-BF possesses the significant hepatoprotective activity against CCl4 induced liver damage, which could be mediated through increase in antioxidant defenses. PMID:22923966

  16. Hepatoprotective activity of petroleum ether, diethyl ether, and methanol extract of Scoparia dulcis L. against CCl4-induced acute liver injury in mice

    PubMed Central

    Praveen, T.K.; Dharmaraj, S.; Bajaj, Jitendra; Dhanabal, S.P.; Manimaran, S.; Nanjan, M.J.; Razdan, Rema

    2009-01-01

    Objectives: The present study was aimed at assessing the hepatoprotective activity of 1:1:1 petroleum ether, diethyl ether, and methanol (PDM) extract of Scoparia dulcis L. against carbon tetrachloride-induced acute liver injury in mice. Materials and Methods: The PDM extract (50, 200, and 800 mg/kg, p.o.) and standard, silymarin (100 mg/kg, p.o) were tested for their antihepatotoxic activity against CCl4-induced acute liver injury in mice. The hepatoprotective activity was evaluated by measuring aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and total proteins in serum, glycogen, lipid peroxides, superoxide dismutase, and glutathione reductase levels in liver homogenate and by histopathological analysis of the liver tissue. In addition, the extract was also evaluated for its in vitro antioxidant activity using 1, 1-Diphenyl-2-picrylhydrazyl scavenging assay. Results: The extract at the dose of 800 mg/kg, p.o., significantly prevented CCl4-induced changes in the serum and liver biochemistry (P < 0.05) and changes in liver histopathology. The above results are comparable to standard, silymarin (100 mg/kg, p.o.). In the in vitro 1, 1-diphenyl-2-picrylhydrazyl scavenging assay, the extract showed good free radical scavenging potential (IC 50 38.9 ± 1.0 μg/ml). Conclusions: The results of the study indicate that the PDM extract of Scoparia dulcis L. possesses potential hepatoprotective activity, which may be attributed to its free radical scavenging potential, due to the terpenoid constituents. PMID:20442817

  17. Hepatoprotective activity of twelve novel 7'-hydroxy lignan glucosides from Arctii Fructus.

    PubMed

    Yang, Ya-Nan; Huang, Xiao-Ying; Feng, Zi-Ming; Jiang, Jian-Shuang; Zhang, Pei-Cheng

    2014-09-17

    Twelve novel 7'-hydroxy lignan glucosides (1-12), including two benzofuran-type neolignans, two 8-O-4' neolignans, two dibenzylbutyrolactone lignans, and six tetrahydrofuranoid lignans, together with six known lignan glucosides (13-18), were isolated from the fruit of Arctium lappa L. (Asteraceae), commonly known as Arctii Fructus. Their structures were elucidated using spectroscopy (1D and 2D NMR, MS, IR, ORD, and UV) and on the basis of chemical evidence. The absolute configurations of compounds 1-12 were confirmed using rotating frame nuclear overhauser effect spectroscopy (ROESY), the circular dichroic (CD) exciton chirality method, and Rh2(OCOCF3)4-induced CD spectrum analysis. All of the isolated compounds were tested for hepatoprotective effects against D-galactosamine-induced cytotoxicity in HL-7702 hepatic cells. Compounds 1, 2, 7-12, and 17 showed significantly stronger hepatoprotective activity than the positive control bicyclol at a concentration of 1 × 10(-5) M.

  18. Hepatoprotective Flavonoids in Opuntia ficus-indica Fruits by Reducing Oxidative Stress in Primary Rat Hepatocytes

    PubMed Central

    Kim, Jung Wha; Kim, Tae Bum; Kim, Hyun Woo; Park, Sang Wook; Kim, Hong Pyo; Sung, Sang Hyun

    2017-01-01

    Background: Liver disorder was associated with alcohol consumption caused by hepatic cellular damages. Opuntia ficus-indica fruit extracts (OFIEs), which contain betalain pigments and polyphenols including flavonoids, have been introduced as reducing hangover symptoms and liver protective activity. Objective: To evaluate hepatoprotective activity of OFIEs and isolated compounds by high-speed countercurrent chromatography (HSCCC). Materials and Methods: The extract of O. ficus-indica fruits was fractionated into methylene chloride and n-butanol. The n-butanol fraction was isolated by HSCCC separation (methylene chloride-methanol-n-butanol-water, 5:4:3:5, v/v/v/v). The hepatoprotective activity of OFIEs and isolated compounds was evaluated on rat primary hepatocytes against ethanol-induced toxicity. Antioxidative parameters such as glutathione reductase and glutathione peroxidase (GSH-Px) enzymes and the GSH content were measured. Results: Two flavonoids, quercetin 3-O-methyl ester (1) and (+)-taxifolin, and two flavonoid glycosides, isorhamnetin 3-O-β-d-glucoside (3) and narcissin (4), were isolated from the n-butanol fraction by HSCCC separation. Among them, compound 2 significantly protected rat primary hepatocytes against ethanol exposure by preserving antioxidative properties of GR and GSH-Px. Conclusions: OFIEs and (+)-taxifolin were suggested to reduce hepatic damage by alcoholic oxidative stress. SUMMARY Hepatoprotective Flavonoids were isolated from Opuntia ficus-indica by high -speed countercurrent chromatography (HSCCC). PMID:28839374

  19. Hepatoprotective effect of Scoparia dulcis on carbon tetrachloride induced acute liver injury in mice.

    PubMed

    Tsai, Jen-Chieh; Peng, Wen-Huang; Chiu, Tai-Hui; Huang, Shun-Chieh; Huang, Tai-Hung; Lai, Shang-Chih; Lai, Zhen-Rung; Lee, Chao-Ying

    2010-01-01

    This study aims to investigate the hepatoprotective activity and active constituents of the ethanol extract of Scoparia dulcis (SDE). The hepatoprotective effect of SDE (0.1, 0.5 and 1 g/kg) was evaluated on the carbon tetrachloride (CCl(4))-induced acute liver injury. The active constituents were detected by high performance liquid chromatography (HPLC). Mice pretreated orally with SDE (0.5 and 1.0 g/kg) and silymarin (200 mg/kg) for five consecutive days before the administering of a single dose of 0.2% CCl(4) (10 ml/kg of bw, ip) showed a significant inhibition of the increase of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Histological analyses also showed that SDE (0.5 and 1.0 g/kg) and silymarin reduced the extent of liver lesions induced by CCl(4), including vacuole formation, neutrophil infiltration and necrosis. Moreover, SDE decreased the malondialdehyde (MDA) level and elevated the content of reduced glutathione (GSH) in the liver as compared to those in the CCl(4) group. Furthermore, SDE (0.5 and 1.0 g/kg) enhanced the activities of anti-oxidative enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GRd) and glutathione-S-transferase (GST). The quantities of active constituents in SDE were about 3.1 mg luteolin/g extract and 1.1 mg apigenin/g extract. The hepatoprotective mechanisms of SDE were likely associated to the decrease in MDA level and increase in GSH level by increasing the activities of antioxidant enzymes such as SOD, GPx, GRd and GST. These results demonstrated that SDE could alleviate CCl(4)-induced acute liver injury in mice.

  20. Antioxidant and hepatoprotective activity of vitex honey against paracetamol induced liver damage in mice.

    PubMed

    Wang, Yuan; Li, Dan; Cheng, Ni; Gao, Hui; Xue, Xiaofeng; Cao, Wei; Sun, Liping

    2015-07-01

    Fourteen vitex honeys from China were investigated to evaluate its antioxidant and hepatoprotective activity against paracetamol-induced liver damage. All honey samples exhibited high total phenolic content (344-520 mg GAE per kg), total flavonoid content (19-31 mg Rutin per kg), and strong antioxidant activity in DPPH radical scavenging, ferric reducing antioxidant power and Ferrous ion-chelating ability. Nine phenolic acids were detected in vitex honey samples, in which caffeic acid was the main compound. Honey from Heibei Zanhuang (S2) ranked the highest antioxidant activity was orally administered to mice (5 g kg(-1), 20 g kg(-1)) for 70 days. In high-dose (20 g kg(-1)), vitex honey pretreatment resulting in significant increase in serum oxygen radical absorbance capacity (15.07%) and decrease in Cu(2+)-mediate lipoprotein oxidation (80.07%), and suppression in alanine aminotransferase (75.79%) and aspartate aminotransferase (74.52%), enhancement in the superoxide dismutase and glutathione peroxidase activities and reduction in malondialdehyde (36.15%) and 8-hydroxy-2'-deoxyguanosine (19.6%) formation compared with paracetamol-intoxicated group. The results demonstrated the hepatoprotection of vitex honey against paracetamol-induced liver damage might attribute to its antioxidant and/or perhaps pro-oxidative property.

  1. Pharmacological safety evaluation of a traditional herbal medicine "Zereshk-e-Saghir" and assessment of its hepatoprotective effects on carbon tetrachloride induced hepatic damage in rats.

    PubMed

    Sarhadynejad, Zarrin; Sharififar, Fariba; Pardakhty, Abbas; Nematollahi, Mohammad-Hadi; Sattaie-Mokhtari, Saeedeh; Mandegary, Ali

    2016-08-22

    "Zereshk-e-Saghir" (ZES), one of the traditional herbal medicines in old manuscripts of Persian hakims, has been used for the treatment of liver disorders. This current study is aimed to evaluate ZES effects on animal model to investigate its safety and hepatoprotective activity. ZES was prepared according to a traditional method by blending aqueous extracts of Berberis vulgaris L., with fine particles of other plants including Rosa damascene Mill, Cichorium intybus L., Cucumis sativus L., Portulaca oleracea L., Rheum palmatum L., and Nardostachys jatamansi DC.. The lethality of ZES was determined in male NMRI mice. Acute organ toxicity of ZES (750 and 1500mg/kg for 15 days, orally) was evaluated by measuring the cell blood count, liver marker enzymes, creatinine, antioxidant status and histopathological examinations in rats. CCl4-induced liver toxicity was used to examine the hepatoprotective effects of the preparation. The rats were pretreated with 250, 500, 750 and 1500mg/kg ZES by gavage for 15 days. At day 16, the rats were intraperitoneally injected 1ml/kg CCl4 in olive oil. Forty-eight hours after CCl4 injection, the animals were sacrificed and their liver samples and blood were collected for determination of alanine aminotransferase, aspartate aminotransferase and alkaline phosphatase (ALT, AST, and ALP), histopathological examinations and antioxidant status. Treatment of the mice with a single dose of ZES up to 2g/kg did not cause mortality. Treatment of the rats with doses of 750 and 1500mg/kg for 15 days showed no significant hematotoxicity and hepatotoxicity. Treatment of the rats with ZES reduced the increased serum levels of ALT, AST, and ALP induced by CCl4 at the doses of 250, 500, and 750mg/kg. This was almost confirmed by histopathological examinations. Pretreatment with ZES also decreased lipid peroxidation and maintained the levels of glutathione and total antioxidant capacity. The present in vivo study revealed that the long term usage of ZES was safe for organs in laboratory animals. Meanwhile, prescribing the traditionally-recommended dose of ZES can be probably used against the liver injuries induced by xenobiotics. Further studies in other models of liver injuries are recommended for finding the exact hepatoprotective mechanism of ZES. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Osthole: A Review on Its Bioactivities, Pharmacological Properties, and Potential as Alternative Medicine

    PubMed Central

    Zhang, Zhong-Rong; Leung, Wing Nang; Cheung, Ho Yee; Chan, Chun Wai

    2015-01-01

    This paper reviews the latest understanding of biological and pharmacological properties of osthole (7-methoxy-8-(3-methyl-2-butenyl)-2H-1-benzopyran-2-one), a natural product found in several medicinal plants such as Cnidium monnieri and Angelica pubescens. In vitro and in vivo experimental results have revealed that osthole demonstrates multiple pharmacological actions including neuroprotective, osteogenic, immunomodulatory, anticancer, hepatoprotective, cardiovascular protective, and antimicrobial activities. In addition, pharmacokinetic studies showed osthole uptake and utilization are fast and efficient in body. Moreover, the mechanisms of multiple pharmacological activities of osthole are very likely related to the modulatory effect on cyclic adenosine monophosphate (cAMP) and cyclic adenosine monophosphate (cGMP) level, though some mechanisms remain unclear. This review aims to summarize the pharmacological properties of osthole and give an overview of the underlying mechanisms, which showcase its potential as a multitarget alternative medicine. PMID:26246843

  3. Acanthopanax senticosus: review of botany, chemistry and pharmacology.

    PubMed

    Huang, Linzhang; Zhao, Hongfang; Huang, Baokang; Zheng, Chengjian; Peng, Wei; Qin, Luping

    2011-02-01

    Acanthopanax senticosus (Rupr. et Maxim) Harms (Araliaceae), also called Siberian Ginseng, Eleutherococcus senticosus, and Ciwujia in Chinese, is a widely used traditional Chinese herb that could invigorate qi, strengthen the spleen, and nourish kidney in the theory of Traditional Chinese Medicine. With high medicinal value, Acanthopanax senticosus (AS, thereafter) is popularly used as an "adaptogen" like Panax ginseng. In recent decades, a great number of chemical, pharmacological, and clinical studies on AS have been carried out worldwide. Several kinds of chemical compounds have been reported, including triterpenoid saponins, lignans, coumarins, and flavones, among which, phenolic compounds such as syringin and eleutheroside E, were considered to be the most active components. Considerable pharmacological experiments both in vitro and in vivo have persuasively demonstrated that AS possessed anti-stress, antiulcer, anti-irradiation, anticancer, anti-inflammatory and hepatoprotective activities, etc. The present review is an up-to-date and comprehensive analysis of the botany, chemistry, pharmacology, toxicity and clinical trials of AS.

  4. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects.

    PubMed

    Wang, Mei; Xie, Tingting; Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin's poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets.

  5. A New Type of Liquid Silymarin Proliposome Containing Bile Salts: Its Preparation and Improved Hepatoprotective Effects

    PubMed Central

    Chang, Zhanying; Wang, Ling; Xie, Xiangyun; Kou, Yaohong; Xu, Hongxia; Gao, Xiaoli

    2015-01-01

    Silymarin, a known extract, is used in the treatment of liver diseases with various origins, but its current administration form cannot target the liver because of its poor oral bioavailability. A new type of oral silymarin proliposome aimed at improving silymarin’s poor bioavailability and hepatoprotective effects, is introduced in this work. Silymarin-loaded liquid proliposome were prepared using a simple dissolving process. The morphology, particle size, zeta potential, and entrapment efficiency of the silymarin liposomes were analysed. The everted gut sac transport model was used to measure the intestinal transport of liposomes. The liposomal hepatoprotective activity was evaluated in three types of experimental hepatitis animal models. After staining with haematoxylin and eosin, the livers were microscopically examined to analyse any pathological changes. The prepared silymarin proliposome formed silymarin liposomes with a multilayer liposome structure and improved intestinal transport. In an injured liver, the silymarin liposomes produced a stronger hepatoprotective effect through a significant decrease in both the aminotransferase and MDA levels and a significant increase in the SOD and GSH-PX levels compared to orally administered silymarin tablets. This effect was also confirmed histopathologically. In a word, incorporation of silymarin into a liposomal carrier system increased intestinal absorption and showed better hepatoprotective effects compared to silymarin tablets. PMID:26674103

  6. Antioxidant and Hepatoprotective Effect of Aqueous Extract of Germinated and Fermented Mung Bean on Ethanol-Mediated Liver Damage

    PubMed Central

    Mohd Ali, Norlaily; Mohd Yusof, Hamidah; Long, Kamariah; Yeap, Swee Keong; Ho, Wan Yong; Beh, Boon Kee; Koh, Soo Peng; Abdullah, Mohd Puad; Alitheen, Noorjahan Banu

    2013-01-01

    Mung bean is a hepatoprotective agent in dietary supplements. Fermentation and germination processes are well recognized to enhance the nutritional values especially the concentration of active compounds such as amino acids and GABA of various foods. In this study, antioxidant and hepatoprotective effects of freeze-dried mung bean and amino-acid- and GABA-enriched germinated and fermented mung bean aqueous extracts were compared. Liver superoxide dismutase (SOD), malondialdehyde (MDA), ferric reducing antioxidant power (FRAP), nitric oxide (NO) levels, and serum biochemical profile such as aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), and cholesterol and histopathological changes were examined for the antioxidant and hepatoprotective effects of these treatments. Germinated and fermented mung bean have recorded an increase of 27.9 and 7.3 times of GABA and 8.7 and 13.2 times of amino acid improvement, respectively, as compared to normal mung bean. Besides, improvement of antioxidant levels, serum markers, and NO level associated with better histopathological evaluation indicated that these extracts could promote effective recovery from hepatocyte damage. These results suggested that freeze-dried, germinated, and fermented mung bean aqueous extracts enriched with amino acids and GABA possessed better hepatoprotective effect as compared to normal mung bean. PMID:23484140

  7. Hepatoprotective activity of dried- and fermented-processed virgin coconut oil.

    PubMed

    Zakaria, Z A; Rofiee, M S; Somchit, M N; Zuraini, A; Sulaiman, M R; Teh, L K; Salleh, M Z; Long, K

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.

  8. Hepatoprotective Activity of Dried- and Fermented-Processed Virgin Coconut Oil

    PubMed Central

    Zakaria, Z. A.; Rofiee, M. S.; Somchit, M. N.; Zuraini, A.; Sulaiman, M. R.; Teh, L. K.; Salleh, M. Z.; Long, K.

    2011-01-01

    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study. PMID:21318140

  9. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Lin, Chun-Ching

    2007-04-20

    Tu-Si-Zi, the seeds of Cuscuta chinensis Lam. (Convolvulaceae), is a traditional Chinese medicine that is commonly used to nourish and improve the liver and kidney conditions in China and other Asian countries. As oxidative stress promotes the development of acetaminophen (APAP)-induced hepatotoxicity, the aim of the present study was to evaluate and compare the hepatoprotective effect and antioxidant activities of the aqueous and ethanolic extracts of C chinensis on APAP-induced hepatotoxicity in rats. The C chinensis ethanolic extract at an oral dose of both 125 and 250mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), and alkaline phosphatase (ALP). In addition, the same ethanolic extract prevented the hepatotoxicity induced by APAP-intoxicated treatment as observed when assessing the liver histopathology. Regarding the antioxidant activity, C chinensis ethanolic extract exhibited a significant effect (P<0.05) by increasing levels of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), and by reducing malondialdehyde (MDA) levels. In contrast, the same doses of the aqueous extract of C chinensis did not present any hepatoprotective effect as seen in the ethanolic extract, and resulted in further liver deterioration. In conclusion, these data suggest that the ethanolic extract of Cuscuta chinensis can prevent hepatic injuries from APAP-induced hepatotoxicity in rats and this is likely mediated through its antioxidant activities.

  10. Anti-HCV effect of Lentinula edodes mycelia solid culture extracts and low-molecular-weight lignin.

    PubMed

    Matsuhisa, Koji; Yamane, Seiji; Okamoto, Toru; Watari, Akihiro; Kondoh, Masuo; Matsuura, Yoshiharu; Yagi, Kiyohito

    2015-06-19

    Lentinula edodes mycelia solid culture extract (MSCE) contains several bioactive molecules, including some polyphenolic compounds, which exert immunomodulatory, antitumor, and hepatoprotective effects. In this study, we examined the anti-hepatitis C virus (HCV) activity of MSCE and low-molecular-weight lignin (LM-lignin), which is the active component responsible for the hepatoprotective effect of MSCE. Both MSCE and LM-lignin inhibited the entry of two HCV pseudovirus (HCVpv) types into Huh7.5.1 cells. LM-lignin inhibited HCVpv entry at a lower concentration than MSCE and inhibited the entry of HCV particles in cell culture (HCVcc). MSCE also inhibited HCV subgenome replication. LM-lignin had no effect on HCV replication, suggesting that MSCE contains additional active substances. We demonstrate here for the first time the anti-HCV effects of plant-derived LM-lignin and MSCE. The hepatoprotective effect of LM-lignin suggests that lignin derivatives, which can be produced in abundance from existing plant resources, may be effective in the treatment of HCV-related diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. [Influence of antitumor system rhenium-platinum on biochemical state of the liver].

    PubMed

    Ivchuk, V V; Polishko, T M; Golichenko, O A; Shtemenko, O V; Shtemenko, N I

    2011-01-01

    Influence of the antitumour rhenium-platinum system on biochemical liver characteristics in the model of tumor growth (Guerin carcinoma) was studied and possible hepatoprotective activity of rhenium cluster compounds when introducing them in different forms was shown, that was confirmed by decreasing of diagnostic enzymes activity in blood (aminotransferase--AST 6 times and ALT 5.6 times, lactatedehydrogenase 4.9 times, gamma-glutamyltranspeptidase 3.6 times) and normalization of morphological state of the liver cells. The hepatoprotective activity of the cluster rhenium compound with adamanthyl ligands was confirmed in the model of acute toxic hepatitis. Introduction of this compound led to reduction of the concentration of MDA in homogenates of liver tissue (2 times), and in blood plasma (3.8 times); to reduction of levels of diagnostic liver enzymes in blood--AST and ALT 5.8 and 5.5 times respectively in comparison with control group. Some aspects of the mechanism of hepatoprotection were discussed, that included the presence of conjugated systems around the quadrupol rhenium-rhenium bond and alkyl radicals with significant positive inductive effects.

  12. Hepatoprotective Effect of Wedelolactone against Concanavalin A-Induced Liver Injury in Mice.

    PubMed

    Luo, Qingqiong; Ding, Jieying; Zhu, Liping; Chen, Fuxiang; Xu, Lili

    2018-05-08

    Eclipta prostrata L. is a traditional Chinese herbal medicine that has been used in the treatment of liver diseases. However, its biological mechanisms remain elusive. The current study aimed to investigate the hepatoprotective effect of wedelolactone, a major coumarin ingredient of Eclipta prostrata L., on immune-mediated liver injury. Using the well-established animal model of Concanavalin A (ConA)-induced hepatitis (CIH), we found that pretreatment of mice with wedelolactone markedly reduced both the serum levels of transaminases and the severity of liver damage. We further investigated the mechanisms of the protective effect of wedelolactone. In mice treated with wedelolactone prior to the induction of CIH, increases of serum concentrations of tumor necrosis factor (TNF)-[Formula: see text], interferon (IFN)-[Formula: see text], and interleukin (IL)-6 were dramatically attenuated. Additionally, expressions of the interferon-inducible chemokine (C-X-C motif) ligand 10 gene CXCL10 and intercellular adhesion molecule 1 gene ICAM1 were lower in livers of the treated mice. Moreover, wedelolactone-treated CIH mice exhibited reduced leukocyte infiltration and T-cell activation in liver. Furthermore, wedelolactone suppressed the activity of nuclear factor-kappa B (NF-[Formula: see text]B), a critical transcriptional factor of the above-mentioned inflammatory cytokines by limiting the phosphorylation of I kappa B alpha (I[Formula: see text]B[Formula: see text] and p65. In conclusion, these findings demonstrate the inhibitory potential of wedelolactone in immune-mediated liver injury in vivo, and show that this protection is associated with modulation of the NF-[Formula: see text]B signaling pathway.

  13. Decursin attenuates hepatic fibrogenesis through interrupting TGF-beta-mediated NAD(P)H oxidase activation and Smad signaling in vivo and in vitro.

    PubMed

    Choi, Young Ji; Kim, Da Hye; Kim, Sang Jun; Kim, Ju; Jeong, Seung-Il; Chung, Chang Ho; Yu, Kang-Yeol; Kim, Seon-Young

    2014-07-17

    We studied that a potent antifibrotic effect of decursin on in vivo liver damage model and the mechanism in inhibiting which transforming growth factor (TGF)-β1-induced human hepatic stellate cells (HSCs) activation. Liver injury was induced in vivo by intraperitoneal injection of carbon tetrachloride (CCl4) with or without decursin for 4weeks in mice. Human hepatic stellate cell line, an immortalized human HSC line, was used in in vitro assay system. The effects of decursin on HSC activation were measured by analyzing the expression of α-smooth muscle actin (α-SMA) and collagen I in liver tissue and human HSCs. Decursin treatment significantly reduced the ratio of liver/body weight, α-SMA activation, and type I collagen overexpression in CCl4 treated mice liver. The elevated serum levels, including ALT, AST, and ALP, were also decreased by decursin treatment. Treatment of decursin markedly proved the generation of reactive oxygen species, NAD(P)H oxidase (NOX) protein (1, 2, and 4) upregulation, NOX activity, and superoxide anion production in HSCs by TGF-β1. It also significantly reduced TGF-β1-induced Smad 2/3 phosphorylation, nuclear translocation of Smad 4, and association of Smad 2/3-Smad 4 complex. Consistent with in vitro results, decursin treatment effectively blocked the levels of NOX protein, and Smad 2/3 phosphorylation in injured mice liver. Decursin blocked CCl4-induced liver fibrosis and inhibited TGF-β1-mediated HSC activation in vitro. These data demonstrated that decursin exhibited hepatoprotective effects on experimental fibrosis, potentially by inhibiting the TGF-β1 induced NOX activation and Smad signaling. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Hepatoprotective Potential of Some Local Medicinal Plants against 2-Acetylaminoflourene-Induced Damage in Rat.

    PubMed

    Adetutu, Adewale; Olorunnisola, Olubukola S

    2013-01-01

    The in vivo micronucleus assay was used to examine the anticlastogenic effects of crude extracts of Bridelia ferruginea, Vernonia amygdalina, Tridax procumbens, Ocimum gratissimum, and Lawsonia inermis in Wistar albino rats. Extracts of doses of 100 mg/kg body weight were given to rats in five groups for seven consecutive days followed by a single dose of 2-AAF (0.5 mmol/kg body weight). The rats were sacrificed after 24 hours and their bone marrow smears were prepared on glass slides stained with Giemsa. The micronucleated polychromatic erythrocyte cells (mPCEs) were thereafter recorded. The hepatoprotective effects of the plant extracts against 2-AAF-induced liver toxicity in rats were evaluated by monitoring the levels of alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), and histopathological analysis. The results of the 2-AAF-induced liver toxicity experiments showed that rats treated with the plant extracts (100 mg/kg) showed a significant decrease in mPCEs as compared with the positive control. The rats treated with the plant extracts did not show any significant change in the concentration of ALP and GGT in comparison with the negative control group whereas the 2-AAF group showed a significant increase (P < 0.05) in these parameters. Some of the leaf extracts also showed protective effects against histopathological alterations. This study suggests that the leaf extracts have hepatoprotective potential, thereby justifying their ethnopharmacological uses.

  15. Antioxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury.

    PubMed

    Liu, Jun; Lu, Jian-feng; Wen, Xiao-yuan; Kan, Juan; Jin, Chang-hai

    2015-01-01

    In this study, the antioxidant activity and hepatoprotective effect of inulin and catechin grafted inulin (catechin-g-inulin) against carbon tetrachloride (CCl4)-induced acute liver injury were investigated. Results showed that both inulin and catechin-g-inulin had moderate scavenging activity on superoxide radical, hydroxyl radical and H2O2, as well as lipid peroxidation inhibition effect. The antioxidant activity decreased in the order of Vc > catechin >catechin-g-inulin > inulin. Administration of inulin and catechin-g-inulin could significantly reduce the elevated levels of serum aspartate transaminase, alanine transaminase and alkaline phosphatase as compared to CCl4 treatment group. Moreover, inulin and catechin-g-inulin significantly increased the levels of hepatic superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione and total antioxidant capacity, whereas markedly decreased the malondialdehyde level when compared with CCl4 treatment group. Notably, catechin-g-inulin showed higher hepatoprotective effect than inulin. In addition, the hepatoprotective effect of catechin-g-inulin was comparable to positive standard of silymarin. Our results suggested that catechin-g-inulin had potent antioxidant activity and potential protective effect against CCl4-induced acute liver injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Hepatoprotective effect of Ginkgoselect Phytosome in rifampicin induced liver injury in rats: evidence of antioxidant activity.

    PubMed

    Naik, Suresh R; Panda, Vandana S

    2008-09-01

    The protective effects of Ginkgoselect Phytosome (GBP) on Rifampicin (RMP) induced hepatotoxicity and the probable mechanism(s) involved in this protection were investigated in rats. Liver damage was induced in Wistar rats by administering rifampicin (500 mg/kg, p.o.) daily for 30 days. Simultaneously, GBP at 25 mg/kg and 50 mg/kg, and the reference drug silymarin (100 mg/kg) were administered orally for 30 days/daily to RMP treated rats. Levels of marker enzymes (SGOT, SGPT and SALP), albaumin (Alb) and total proteins (TP) were assessed in serum. The effects of GBP on lipid peroxidation (LPO), reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and glutathione reductase (GR) were assayed in liver homogenates to evaluate antioxidant activity. GBP (25 and 50 mg/kg) and silymarin elicited a significant hepatoprotective activity by lowering the levels of serum marker enzymes and lipid peroxidation and elevated the levels of GSH, SOD, CAT, GPX, GR, Alb and TP in a dose dependant manner. The present findings suggest that the hepatoprotective effect of GBP in RMP induced oxidative damage may be related to its antioxidant and free radical scavenging activity.

  17. Chemical characterisation and hepatoprotective potential of Cosmos sulphureus Cav. and Cosmos bipinnatus Cav.

    PubMed

    Saleem, Mohammad; Ali, Hafiz Akbar; Akhtar, Muhammad Furqan; Saleem, Uzma; Saleem, Ammara; Irshad, Iram

    2017-12-11

    This study was conducted to validate the hepatoprotective activity of Cosmos sulphureus and Cosmos bipinnatus. Aqua-methanolic extracts of both plants were evaluated for the presence of various phyto-constituents through HPLC. Different doses of both plant extracts were administered to rats for nine days. Standard control was silymarin 100 mg/kg. Paracetamol 1 gm/kg was administered 3 h post treatment on 9th day for induction of hepatotoxicity. Blood was collected for the evaluation of liver biochemical markers and livers were removed for histopathological evaluation 24 h post-paracetamol treatment. HPLC analysis revealed the presence of quercetin, gallic acid, caffeic acid and chlorogenic acid in both plant extracts. The extracts of both plants decreased the level of alanine aminotransaminase and total bilirubin significantly (p < 0.05), dose dependently and protected hepatocytes from paracetamol-induced hepatotoxicity. It can be concluded that both plants may possess hepatoprotective activity possibly due to the presence of quercetin and phenolic compounds.

  18. Triterpenoids of Ganoderma theaecolum and their hepatoprotective activities.

    PubMed

    Liu, Li-Ying; Chen, Hui; Liu, Chao; Wang, Hong-Qing; Kang, Jie; Li, Yan; Chen, Ruo-Yun

    2014-10-01

    Five new lanostane triterpenoids, ganoderic acid XL1 (1), ganoderic acid XL2 (2), 20-hydroxy-ganoderic acid AM1 (3), ganoderenic acid AM1 (4) and ganoderesin C (5), together with five known triterpenoids (6-10) were isolated from the fruiting bodies of Ganoderma theaecolum. Chemical structures were elucidated on the basis of spectroscopic evidence, including 1D, 2D NMR, mass spectrometric data and circular dichroism spectra. Compounds 1, 4, 5, 8, 9 and 10 (10 μM) exhibited hepatoprotective activities against DL-galactosamine-induced cell damage in HL-7702 cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Physicochemical Properties, Biological Activity, Health Benefits, and General Limitations of Aged Black Garlic: A Review.

    PubMed

    Ryu, Ji Hyeon; Kang, Dawon

    2017-06-01

    Garlic (Allium sativum) has been used as a medicinal food since ancient times. However, some people are reluctant to ingest raw garlic due to its unpleasant odor and taste. Therefore, many types of garlic preparations have been developed to reduce these attributes without losing biological functions. Aged black garlic (ABG) is a garlic preparation with a sweet and sour taste and no strong odor. It has recently been introduced to Asian markets as a functional food. Extensive in vitro and in vivo studies have demonstrated that ABG has a variety of biological functions such as antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-allergic, cardioprotective, and hepatoprotective effects. Recent studies have compared the biological activity and function of ABG to those of raw garlic. ABG shows lower anti-inflammatory, anti-coagulation, immunomodulatory, and anti-allergic effects compared to raw garlic. This paper reviews the physicochemical properties, biological activity, health benefits, adverse effects, and general limitations of ABG.

  20. Hepatoprotective action of various partitions of methanol extract of Bauhinia purpurea leaves against paracetamol-induced liver toxicity: involvement of the antioxidant mechanisms.

    PubMed

    Zakaria, Zainul Amiruddin; Yahya, Farhana; Mamat, Siti Syariah; Mahmood, Nur Diyana; Mohtarrudin, Nurhafizah; Taher, Muhammad; Hamid, Siti Selina Abdul; Teh, Lay Kek; Salleh, Mohd Zaki

    2016-06-11

    Methanol extract of Bauhinia purpurea L. (family Fabaceae) (MEBP) possesses high antioxidant and anti-inflammatory activities and recently reported to exert hepatoprotection against paracetamol (PCM)-induced liver injury in rats. In an attempt to identify the hepatoprotective bioactive compounds in MEBP, the extract was prepared in different partitions and subjected to the PCM-induced liver injury model in rats. Dried MEBP was partitioned successively to obtain petroleum ether (PEBP), ethylacetate (EABP) and aqueous (AQBP) partitions, respectively. All partitions were subjected to in vitro antioxidant (i.e. total phenolic content (TPC), 2,2-diphenyl-1-picrylhydrazyl (DPPH)- and superoxide-radicals scavenging assay, and oxygen radical absorbance capacity (ORAC) assay) and anti-inflammatory (i.e. lipooxygenase (LOX) and xanthine oxidase (XO) assay) analysis. The partitions, prepared in the dose range of 50, 250 and 500 mg/kg, together with a vehicle (10 % DMSO) and standard drug (200 mg/kg silymarin) were administered orally for 7 consecutive days prior to subjection to the 3 mg/kg PCM-induced liver injury model in rats. Following the hepatic injury induction, blood samples and liver were collected for the respective biochemical parameter and histopathological studies. Body weight changes and liver weight were also recorded. The partitions were also subjected to the phytochemical screening and HPLC analysis. Of all partitions, EABP possessed high TPC value and demonstrated remarkable antioxidant activity when assessed using the DPPH- and superoxide-radical scavenging assay, as well as ORAC assay, which was followed by AQBP and PEBP. All partitions also showed low anti-inflammatory activity via the LOX and XO pathways. In the hepatoprotective study, the effectiveness of the partitions is in the order of EABP>AQBP>PEBP, which is supported by the microscopic analysis and histopathological scoring. In the biochemical analysis, EABP also exerted the most effective effect by reducing the serum level of alanine transaminase (ALT) and aspartate transaminase (AST) at all doses tested in comparison to the other partitions. Phytochemical screening and HPLC analysis suggested the presence of: flavonoids, condensed tannins and triterpenes in EABP; flavonoids, condensed tannins and saponins in PEBP and; only saponins in AQBP. EABP demonstrates the most effective hepatoprotection against PCM-induced liver injury in rats. This observation could be attributed to its remarkable antioxidant activity and the presence of flavonoids that might probably act synergistically with other biocompounds to cause the hepatoprotection.

  1. Active chemical fractions of stem bark extract of Khaya grandifoliola C.DC and Entada africana Guill. et Perr. synergistically protect primary rat hepatocytes against paracetamol-induced damage.

    PubMed

    Njayou, Frédéric Nico; Kouam, Arnaud Fondjo; Simo, Brice Fredy Nemg; Tchana, Angèle Nkouatchoua; Moundipa, Paul Fewou

    2016-07-07

    Khaya grandifoliola (Meliaceae) and Entada africana (Fabaceae) are traditionally used in Bamun (a western tribe of Cameroon) traditional medicine for the treatment of liver related diseases. In this study, the synergistic hepatoprotective effect of respective active fractions of the plants were investigated against paracetamol-induced toxicity in primary cultures of rat hepatocytes. Paracetamol conferred hepatocyte toxicity, as determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay, alanine aminotransferase (ALT), superoxide dismutase (SOD), catalase (CAT) activities, malondialdehyde (MDA) and glutathione (GSH) content assays. The crude extracts were fractionated by flash chromatography and fractions were tested for hepato-(protective and curative) activities. The most active fractions of both plants were tested individually, and in combination based on their respective half effective concentration (EC50). The methylene chloride/methanol fractions of K. grandifoliola (75:25 v/v) (KgF25) and E. africana (90:10 v/v) (EaF10) were found to be the most hepato-protective with EC50 values of 10.30 ± 1.66 μg/ml and 13.47 ± 2.06 μg/ml respectively, comparable with that of silymarin (13.71 ± 3.87 μg/ml). These fractions and their combination significantly (P <0.05) improved cell viability, inhibited ALT leakage and MDA formation, and restored cellular CAT, SOD activities and GSH content. The combination was more effective in restoring biochemical parameters with coefficients of drugs interaction (CDI) less than 1. These findings demonstrate that the active fractions have synergistic action in the protection of rat hepatocytes against paracetamol-induced damage and suggest that their hepatoprotective properties may be maximized by using them in combination.

  2. Hepatoprotective Effect of Low Doses of Caffeine on CCl4-Induced Liver Damage in Rats.

    PubMed

    Cachón, Andrés Uc; Quintal-Novelo, Carlos; Medina-Escobedo, Gilberto; Castro-Aguilar, Gaspar; Moo-Puc, Rosa E

    2017-03-04

    Several studies have shown the hepatoprotective effect of the consumption of coffee and tea, which is mainly attributed to caffeine. Many experimental studies have demonstrated this effect; however, these studies used high caffeine doses that are not related to human consumption. The aim of this study was to evaluate the hepatoprotective effect of low doses of caffeine on carbon tetrachloride (CCl 4 )-treated rats. Low doses of caffeine (CAFF) 5 and 10 mg/kg (CAFF5 and CAFF10) were evaluated in chronic liver damage induced by CCl 4 (0.75 mL/kg) in rats. CAFF treatment was administered once a day and CCl 4 administration was twice weekly for 10 weeks. Liver function tests (biochemical markers) and functional (sleeping time) and histological (hematoxylin-eosin and Masson trichrome stains) parameters were carried out at the end of damage treatment. Daily treatments of CAFF5 and CAFF10 exhibited a hepatoprotective effect supported by a decrease of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (AP) serum activities and bilirubin serum levels compared with control and also restored serum albumin levels and liver glutathione (GSH). Moreover, CAFF prevented CCl 4 -induced prolongation in pentobarbital sleeping time and a decrease of liver fibrosis and cell death. Our results demonstrated that low doses of CAFF exert a hepatoprotective effect against CCl 4 -induced liver damage in rats.

  3. Hepatoprotective activity of Annona muricata Linn. and Polyalthia cerasoides bedd.

    PubMed Central

    Padma, P.; Chansouria, J.P.N.; Khosa, R.L.

    1999-01-01

    The hepatoprotective effect of Annona muricata and Polyalthia cerasoides (Annonaceae) were monitored by estimating the serum transaminases (SGOT and SGPT), serum alkaline phosphatase (SALP), liver and brain lipid peroxidation (LOP) and their total protein content. Both drugs at a dose of 100 μg/kg significantly prevented the increase in serum transaminases, SALP, liver and brain LOP and decrease in liver and brain total protein content following carbontetrachloride (CCl) induced hepatoxicity in albino rats. PMID:22556909

  4. Hepatoprotective effect of 2'-O-galloylhyperin against oxidative stress-induced liver damage through induction of Nrf2/ARE-mediated antioxidant pathway.

    PubMed

    Wang, Peng; Gao, Yi-Meng; Sun, Xing; Guo, Na; Li, Ji; Wang, Wei; Yao, Li-Ping; Fu, Yu-Jie

    2017-04-01

    2'-O-galloylhyperin (2'-O-GH), an active compound isolated from Pyrola calliantha, possesses remarkable antioxidant activity. The aims of this study were to investigate the hepatoprotective effect of 2'-O-GH against oxidative stress and elucidate the underlying mechanistic signaling pathways in HepG2 cells as well as in an animal model. Results showed that 2'-O-GH significantly inhibited hydrogen peroxide (H 2 O 2 )-induced HepG2 cell death in a dose dependent manner. The mitogen-activated protein kinase activation, ROS production, mitochondrial membrane potential, intracellular calcium level and subsequent apoptotic protein activation in H 2 O 2 -stimulated HepG2 cells were remarkably inhibited by 2'-O-GH. Furthermore, 2'-O-GH stimulation resulted in a fast and dramatic activation of Akt and nuclear translocation of the NF-E2-related factor 2 (Nrf2), along with the increased expression of heme oxygenase-1 (HO-1) and levels of glutathione (GSH). Meanwhile, histopathological evaluation of the liver also revealed that 2'-O-GH effectively ameliorated CCl 4 -induced the hepatic damage by reducing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Therefore, these results suggested the hepatoprotective effect of 2'-O-GH might be correlated with its antioxidant and free radical scavenger effect. Copyright © 2017. Published by Elsevier Ltd.

  5. Alisol B 23-acetate protects against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes involved in bile acid homeostasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qiang; Chen, Xin-li; Wang, Chang-yuan

    2015-03-15

    Intrahepatic cholestasis is a clinical syndrome with systemic and intrahepatic accumulation of excessive toxic bile acids that ultimately cause hepatobiliary injury. Appropriate regulation of bile acids in hepatocytes is critically important for protection against liver injury. In the present study, we characterized the protective effect of alisol B 23-acetate (AB23A), a natural triterpenoid, on alpha-naphthylisothiocyanate (ANIT)-induced liver injury and intrahepatic cholestasis in mice and further elucidated the mechanisms in vivo and in vitro. AB23A treatment dose-dependently protected against liver injury induced by ANIT through reducing hepatic uptake and increasing efflux of bile acid via down-regulation of hepatic uptake transporters (Ntcp)more » and up-regulation of efflux transporter (Bsep, Mrp2 and Mdr2) expression. Furthermore, AB23A reduced bile acid synthesis through repressing Cyp7a1 and Cyp8b1, increased bile acid conjugation through inducing Bal, Baat and bile acid metabolism through an induction in gene expression of Sult2a1. We further demonstrate the involvement of farnesoid X receptor (FXR) in the hepatoprotective effect of AB23A. The changes in transporters and enzymes, as well as ameliorative liver histology in AB23A-treated mice were abrogated by FXR antagonist guggulsterone in vivo. In vitro evidences also directly demonstrated the effect of AB23A on FXR activation in a dose-dependent manner using luciferase reporter assay in HepG2 cells. In conclusion, AB23A produces protective effect against ANIT-induced hepatotoxity and cholestasis, due to FXR-mediated regulation of transporters and enzymes. - Highlights: • AB23A has at least three roles in protection against ANIT-induced liver injury. • AB23A decreases Ntcp, and increases Bsep, Mrp2 and Mdr2 expression. • AB23A represses Cyp7a1 and Cyp8b1 through inducing Shp and Fgf15 expression. • AB23A increases bile acid metabolism through inducing Sult2a1 expression. • FXR activation is involved in the hepatoprotective effect of AB23A.« less

  6. Antinociceptive Activity of Borreria verticillata: In vivo and In silico Studies

    PubMed Central

    Silva, Rosa H. M.; Lima, Nathália de Fátima M.; Lopes, Alberto J. O.; Vasconcelos, Cleydlenne C.; de Mesquita, José W. C.; de Mesquita, Ludmilla S. S.; Lima, Fernando C. V. M.; Ribeiro, Maria N. de S.; Ramos, Ricardo M.; Cartágenes, Maria do Socorro de S.; Garcia, João B. S.

    2017-01-01

    Borreria verticillata (L.) G. Mey. known vassourinha has antibacterial, antimalarial, hepatoprotective, antioxidative, analgesic, and anti-inflammatory, however, its antinociceptive action requires further studies. Aim of the study evaluated the antinociceptive activity of B. verticillata hydroalcoholic extract (EHBv) and ethyl acetate fraction (FAc) by in vivo and in silico studies. In vivo assessment included the paw edema test, writhing test, formalin test and tail flick test. Wistar rats and Swiss mice were divided into 6 groups and given the following treatments oral: 0.9% NaCl control group (CTRL), 10 mg/kg memantine (MEM), 10 mg/kg indomethacin (INDO), 500 mg/kg EHBv (EHBv 500), 25 mg/kg FAc (FAc 25) and 50 mg/kg FAc (FAc 50). EHBv, FAc 25 and 50 treatments exhibited anti-edematous and peripheral antinociceptive effects. For in silico assessment, compounds identified in FAc were subjected to molecular docking with COX-2, GluN1a and GluN2B. Ursolic acid (UA) was the compound with best affinity parameters (binding energy and inhibition constant) for COX-2, GluN1a, GluN2B, and was selected for further analysis with molecular dynamics (MD) simulations. In MD simulations, UA exhibited highly frequent interactions with residues Arg120 and Glu524 in the COX-2 active site and NMDA, whereby it might prevent COX-2 and NMDA receptor activation. Treatment with UA 10 mg/Kg showed peripheral and central antinociceptive effect. The antinociceptive effect of B. verticillata might be predominantly attributed to peripheral actions, including the participation of anti-inflammatory components. Ursolic acid is the main active component and seems to be a promising source of COX-2 inhibitors and NMDA receptor antagonists. PMID:28588488

  7. Dietary Aloe vera improves plasma lipid profile, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia (Oreochromis niloticus) after Streptococcus iniae challenge.

    PubMed

    Gabriel, Ndakalimwe Naftal; Qiang, Jun; Ma, Xin Yu; He, Jie; Xu, Pao; Liu, Kai

    2015-10-01

    The current study investigated the effects of dietary Aloe vera on plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities of GIFT-tilapia juveniles under Streptococcus iniae challenge. Five dietary groups were designed including a control and 100 % Aloe powder incorporated into a tilapia feed at 0.5, 1, 2, and 4 %/kg feed, which were administered for 8 weeks. Fish fed dietary Aloe at 4 %/kg feed significantly reduced in total cholesterol, while triacylglycerol reduced (P < 0.05) in those fed 0.5, 2, and 4 % Aloe/kg feed compared to unsupplemented ones. High-density lipoprotein was significantly elevated in fish fed 0.5 and 1 % Aloe/kg feed compared to unsupplemented ones, and no significant changes (P > 0.05) were noted in low-density lipoprotein among test groups. Furthermore, high activities of superoxide dismutase, catalase, and glutathione peroxide in liver tissues were observed in Aloe-supplemented fish compared to unsupplemented ones, before and after S. iniae challenge (7.7 × 10(6) CFU cells/mL). Variations were also noted in malondialdehyde activity throughout the trial, but no significant difference (P > 0.05) was observed between groups. Meanwhile, Aloe-supplemented fish reduced serum aspartate and alanine aminotransferase (AST and ALT) activities before and after challenge. Based on the second-order polynomial regression analysis, dietary Aloe inclusion levels less than or equal to 1.88, 1.86, and 2.79 %/kg feed were determined to be suitable in improving plasma lipid profile status, antioxidant, and hepatoprotective enzyme activities in GIFT-tilapia in this study, respectively. Thus, A. vera extracts may be recommended as a tilapia feed supplement to enhance fish antioxidant and hepatoprotective capacities, especially during disease outbreaks.

  8. Characterizations and hepatoprotective effect of polysaccharides from Mori Fructus in rats with alcoholic-induced liver injury.

    PubMed

    Zhou, Xin; Deng, Qingfang; Chen, Huaguo; Hu, Enming; Zhao, Chao; Gong, Xiaojian

    2017-09-01

    Crude polysaccharides of Mori Fructus (MFPs) were found to have anti-inflammatory antioxidant, and immuno-enhancing activities. However, the structure of the polysaccharides was ambiguous and its holistic hepatic protection evaluation was defective. This study was conducted to illustrate the characterization of MFPs, and evaluate its hepatoprotective activities. The results found that MFPs contained 67.93±1.18% carbohydrates, 31.03±0.54% uronic acid, and little protein and sulfate. The average molecular weight was ranging from 112.2kDa to 181.9kDa. Monosaccharide component analysis indicated that MFPs was mainly composed of glucose, galacturonic acid, rhamnose and galactose. Both the acute and subacute alcoholic-induced liver injury animal models were adopted to evaluate the MFPs's hepatoprotective activity. After administration of MFPs, both serological indexes (aspartate aminotransferase and alanine aminotransferase) and hepatic indicators (glutathione, superoxide dismutase, glutathione peroxidase and malondialdehyde) were improved by comparing with the non-MFPs group. The hepatic histopathology results also showed a prominent lipid degeneration and microvesicular steatosis attenuation in the MFPs groups. These outstanding hepatic protecting activities of MFPs might be related to its activation of ethanol dehydrogenase, elimination of free radicals and/or inhibition of lipid peroxidation capacities. MFPs could be important active substances for preventing and remedying liver injury. Copyright © 2017. Published by Elsevier B.V.

  9. Hepatoprotective glycosides from the rhizomes of Imperata cylindrical.

    PubMed

    Ma, Jie; Sun, Hua; Liu, Hui; Shi, Gao-Na; Zang, Ying-Da; Li, Chuang-Jun; Yang, Jing-Zhi; Chen, Fang-You; Huang, Ji-Wu; Zhang, Dan; Zhang, Dong-Ming

    2018-05-01

    Three new C-methylated phenylpropanoid glycosides (1, 2), a new 8-4'-oxyneolignan (3), together with two known analogs (4, 5), were isolated from the rhizomes of Imperata cylindrical Beauv. var. major (Nees) C. E. Hubb. Their structures were determined by spectroscopic and chemical methods. Compounds 1, 2, and 5 (10 μM) exhibited pronounced hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced HepG2 cell damage in vitro assays. Furthermore, their antioxidant activities against Fe 2+ -cysteine-induced rat liver microsomal lipid peroxidation and the effects on the secretion of TNF-α in murine peritoneal macrophages (RAW264.7) induced by lipopolysaccharides were evaluated.

  10. Hepatoprotective activity of Tribulus terrestris extract against acetaminophen-induced toxicity in a freshwater fish (Oreochromis mossambicus).

    PubMed

    Kavitha, P; Ramesh, R; Bupesh, G; Stalin, A; Subramanian, P

    2011-12-01

    The potential protective role of Tribulus terrestris in acetaminophen-induced hepatotoxicity in Oreochromis mossambicus was investigated. The effect of oral exposure of acetaminophen (500 mg/kg) in O. mossambicus at 24-h duration was evaluated. The plant extract (250 mg/kg) showed a remarkable hepatoprotective activity against acetaminophen-induced hepatotoxicity. It was judged from the tissue-damaging level and antioxidant levels in liver, gill, muscle and kidney tissues. Further acetaminophen impact induced a significant rise in the tissue-damaging level, and the antioxidant level was discernible from the enzyme activity modulations such as glutamate oxaloacetic transaminase, glutamate pyruvic transaminase, alkaline phosphatase, acid phosphatase, glucose-6-phosphate dehydrogenase, lactate dehydrogenase, superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione S-transferase, lipid peroxidase and reduced glutathione. The levels of all these enzymes have significantly (p < 0.05) increased in acetaminophen-treated fish tissues. The elevated levels of these enzymes were significantly controlled by the treatment of T. terrestris extract (250 kg/mg). Histopathological changes of liver, gill and muscle samples were compared with respective controls. The results of the present study specify the hepatoprotective and antioxidant properties of T. terrestris against acetaminophen-induced toxicity in freshwater fish, O. mossambicus.

  11. Genoprotective and hepatoprotective effects of Guarana (Paullinia cupana Mart. var. sorbilis) on CCl4-induced liver damage in rats.

    PubMed

    Kober, Helena; Tatsch, Etiane; Torbitz, Vanessa Dorneles; Cargnin, Lara Peruzzolo; Sangoi, Manuela Borges; Bochi, Guilherme Vargas; da Silva, Andreia Regina Haas; Barbisan, Fernanda; Ribeiro, Euler Esteves; da Cruz, Ivana Beatrice Mânica; Moresco, Rafael Noal

    2016-01-01

    Several biological effects of Paullinia cupana (guarana) have been demonstrated, but little information is available on its effects on the liver. The current study was designed to evaluate the hepatoprotective and genoprotective effects of powder seeds from guarana on CCl4-induced liver injury in rats. Male Wistar rats were pretreated with guarana powder (100, 300 and 600 mg/kg) or silymarin 100 mg/kg daily for 14 days before treatment with a single dose of CCl4 (50% CCl4, 1 mL/kg, intraperitoneally). The treatment with CCl4 significantly increased the serum activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). In addition, CCl4 increased the DNA damage index in hepatocytes. Guarana in all concentrations was effective in decreasing the ALT and AST activities when compared with the CCl4-treated group. The treatment with guarana decreased DNA damage index when compared with the CCl4-treated group. In addition, the DNA damage index showed a significant positive correlation with AST and ALT. These results indicate that the guarana has hepatoprotective activity and prevents the DNA strand breakage in the CCl4-induced liver damage in rats.

  12. Protective effect of chitosan from Sepia kobiensis (Hoyle 1885) cuttlebone against CCl4 induced hepatic injury.

    PubMed

    Ramasamy, Pasiyappazham; Subhapradha, Namasivayam; Shanmugam, Vairamani; Shanmugam, Annaian

    2014-04-01

    Carbon tetrachloride (CCl4) is a potent hepatotoxic agent causing hepatic necrosis and it is widely used in animal models for induction of acute and chronic liver damage. The antioxidative and hepatoprotective effects of chitosan from Sepia kobiensis against CCl4 induced liver toxicity in Wistar rats was studied by measuring the activity of lipid peroxidation (TBARS, lipid hydroperoxides), non enzymatic antioxidant (GSH), antioxidant enzyme activities (SOD, CAT and GPx), liver marker enzymes (ALT and AST), lipid profile (FFA, TG, cholesterol and HDL cholesterol) and histopathological changes. Rats treated with chitosan against CCl4 toxicity showed significantly decreased levels of ALT and AST activities, total cholesterol, triglyceride and free fatty acid in plasma and tissue. Whereas the treatment with chitosan along with CCl4 showed markedly increased level of hepatic and circulatory in SOD, CAT, GPx and reduced glutathione and decreased the malondialdehyde level. Histopathological observations proved the marked hepatoprotective effect of chitosan. The CCl4 induced alterations in circulatory and hepatic antioxidant defense system were normalized by chitosan and it could be concluded that the hepatoprotective effect of chitosan may be due to its antioxidant and antilipidemic properties. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. An Antioxidant Extract of the Insectivorous Plant Drosera burmannii Vahl. Alleviates Iron-Induced Oxidative Stress and Hepatic Injury in Mice

    PubMed Central

    Das, Abhishek; Panja, Sourav; Mandal, Nripendranath

    2015-01-01

    Free iron typically leads to the formation of excess free radicals, and additional iron deposition in the liver contributes to the oxidative pathologic processes of liver disease. Many pharmacological properties of the insectivorous plant Drosera burmannii Vahl. have been reported in previous studies; however, there is no evidence of its antioxidant or hepatoprotective potential against iron overload. The antioxidant activity of 70% methanolic extract of D. burmannii (DBME) was evaluated. DBME showed excellent DPPH, hydroxyl, hypochlorous, superoxide, singlet oxygen, nitric oxide, peroxynitrite radical and hydrogen peroxide scavenging activity. A substantial iron chelation (IC50 = 40.90 ± 0.31 μg/ml) and supercoiled DNA protection ([P]50 = 50.41 ± 0.55 μg) were observed. DBME also displayed excellent in vivo hepatoprotective activity in iron-overloaded Swiss albino mice compared to the standard desirox treatment. Administration of DBME significantly normalized serum enzyme levels and restored liver antioxidant enzymes levels. DBME lowered the raised levels of liver damage parameters, also reflected from the morphological analysis of the liver sections. DBME also reduced liver iron content by 115.90% which is also seen by Perls’ staining. A phytochemical analysis of DBME confirms the presence of various phytoconstituents, including phenols, flavonoids, carbohydrates, tannins, alkaloids and ascorbic acid. Alkaloids, phenols and flavonoids were abundantly found in DBME. An HPLC analysis of DBME revealed the presence of purpurin, catechin, tannic acid, reserpine, methyl gallate and rutin. Purpurin, tannic acid, methyl gallate and rutin displayed excellent iron chelation but exhibited cytotoxicity toward normal (WI-38) cells; while DBME found to be non-toxic to the normal cells. These findings suggest that the constituents present in DBME contributed to its iron chelation activity. Additional studies are needed to determine if DBME can be used as a treatment for iron overload diseases. PMID:26010614

  14. Pharmacokinetics in Vitro and in Vivo of Two Novel Prodrugs of Oleanolic Acid in Rats and Its Hepatoprotective Effects against Liver Injury Induced by CCl4.

    PubMed

    Yu, Zongjiang; Sun, Weizhi; Peng, Weibing; Yu, Rilei; Li, Guoqiang; Jiang, Tao

    2016-05-02

    Oleanolic acid (OA) is a well-known pentacyclic triterpenoid compound, which has been used as a dietary supplement and is supplied as an over-the-counter drug for the treatment of human liver diseases. These are reasons for the low bioavailability of OA which have restricted its wider application. In this study, two OA prodrugs (1,3-cyclic propanyl phosphate esters of OA) were designed and synthesized. The hepatoprotective effects of these prodrugs were evaluated against carbon tetrachloride (CCl4) induced liver injury in mice; the levels of alanine aminotransferase (ALT), lactic dehydrogenase (LDH), and aspartate aminotransferase (AST) were significantly increased, and the level of the hepatic malondialdehyde (MDA) was increased. The metabolism, in vitro, of the prodrugs was studied by incubation in rat liver microsome; the plasma pharmacokinetics and the biodistribution in vivo after intravenous (iv) injection to six rats were investigated, respectively. The prodrugs diminished gradually with time; most of the parent drugs were released within 30 min in vitro, and the presumed mechanism of the in vitro metabolism was confirmed. The plasma-concentration data in vivo was analyzed by a compartmental method: both the prodrugs and the corresponding released parent drugs existed at up to 48 h in rats. The t1/2 improved after intravenous administration in rats compared with direct injection of the parent drugs. All analyte concentrations were highest in the liver, and most of the prodrugs were excreted in feces (>47.11%). Therefore, 1,3-cyclic propanyl phosphate esters of OA can serve as a promising lead candidate for drugs.

  15. Hepatoprotective Potential of Some Local Medicinal Plants against 2-Acetylaminoflourene-Induced Damage in Rat

    PubMed Central

    Adetutu, Adewale; Olorunnisola, Olubukola S.

    2013-01-01

    The in vivo micronucleus assay was used to examine the anticlastogenic effects of crude extracts of Bridelia ferruginea, Vernonia amygdalina, Tridax procumbens, Ocimum gratissimum, and Lawsonia inermis in Wistar albino rats. Extracts of doses of 100 mg/kg body weight were given to rats in five groups for seven consecutive days followed by a single dose of 2-AAF (0.5 mmol/kg body weight). The rats were sacrificed after 24 hours and their bone marrow smears were prepared on glass slides stained with Giemsa. The micronucleated polychromatic erythrocyte cells (mPCEs) were thereafter recorded. The hepatoprotective effects of the plant extracts against 2-AAF-induced liver toxicity in rats were evaluated by monitoring the levels of alkaline phosphatase (ALP), gamma glutamyl transferase (GGT), and histopathological analysis. The results of the 2-AAF-induced liver toxicity experiments showed that rats treated with the plant extracts (100 mg/kg) showed a significant decrease in mPCEs as compared with the positive control. The rats treated with the plant extracts did not show any significant change in the concentration of ALP and GGT in comparison with the negative control group whereas the 2-AAF group showed a significant increase (P < 0.05) in these parameters. Some of the leaf extracts also showed protective effects against histopathological alterations. This study suggests that the leaf extracts have hepatoprotective potential, thereby justifying their ethnopharmacological uses. PMID:24163694

  16. Hepatoprotective effects of Spirulina maxima in patients with non-alcoholic fatty liver disease: a case series

    PubMed Central

    2010-01-01

    Introduction Non-alcoholic fatty liver diseases range from simple steatosis to non-alcoholic steatohepatitis. The "two hits" hypothesis is widely accepted for its pathogenesis: the first hit is an increased fat flux to the liver, which predisposes our patient to a second hit where increasing free fatty acid oxidation into the mitochondria leads to oxidative stress, lipoperoxidation and a chain reaction with increased ROS. Clinical indications include abdominal cramps, meteorism and fatigue. Most patients, however, are asymptomatic, and diagnosis is based on aminotransferase elevation and ultrasonography (or "brilliant liver"). Spirulina maxima has been experimentally proven to possess in vivo and in vitro hepatoprotective properties by maintaining the liver lipid profile. This case report evaluates the hepatoprotective effects of orally supplied Spirulina maxima. Case presentation Three Hispanic Mexican patients (a 43-year-old man, a 77-year-old man and a 44-year-old woman) underwent ultrasonography and were treated with 4.5 g/day of Spirulina maxima for three months. Their blood samples before and after the treatment determined triacylglycerols, total cholesterol, high-density lipoprotein cholesterol, alanine aminotransferase and low-density lipoprotein cholesterol levels. The results were assessed using ultrasound. Conclusion Treatment had therapeutic effects as evidenced by ultrasonography and the aminotransferase data. Hypolipidemic effects were also shown. We conclude that Spirulina maxima may be considered an alternative treatment for patients with non-alcoholic fatty liver diseases and dyslipidemic disorder. PMID:20370930

  17. 20(R)-ginsenoside Rg3, a rare saponin from red ginseng, ameliorates acetaminophen-induced hepatotoxicity by suppressing PI3K/AKT pathway-mediated inflammation and apoptosis.

    PubMed

    Zhou, Yan-Dan; Hou, Jin-Gang; Liu, Wei; Ren, Shen; Wang, Ying-Ping; Zhang, Rui; Chen, Chen; Wang, Zi; Li, Wei

    2018-06-01

    Although ginsenoside Rg3 was isolated as a major component of Korea red ginseng and confirmed to exert potential hepatoprotective effect on acetaminophen (APAP)-induced liver injury via induction of glutathione S-transferase (GST) in vitro, thein vivo hepatoprotective effect of Rg3 and the underlying molecular mechanism of action remain unclear. The current study was aimed to explore whether 20(R)-Ginsenoside Rg3 (20(R)-Rg3) could alleviate acetaminophen-induced liver injury in mice and to determine the involvement of PI3K/AKT signaling pathway. Our findings demonstrated that a single injection of APAP (250 mg/kg) increased the levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); such increases were attenuated by pretreatment of mice with 20(R)-Rg3 for seven days. The depletion of glutathione (GSH), generation of malondialdehyde (MDA) and the over expression of cytochrome P450 E1 (CYP2E1) and 4-hydroxynonenal (4-HNE) caused by APAP exposure were also inhibited by 20(R)-Rg3 pretreatment. Moreover, 20(R)-Rg3 pretreatment significantly alleviated APAP-induced apoptosis, necrosis, and inflammatory infiltration in liver tissues. Importantly, 20(R)-Rg3 effectively attenuated APAP-induced liver injury in part via activating PI3K/AKT signaling pathway. In summary, 20(R)-Rg3 exerted liver protection against APAP-caused hepatotoxicity evidenced by inhibition of oxidative stress and inflammatory response, alleviation of hepatocellular necrosis and apoptosis via activation of PI3K/AKT signaling pathway, showing potential as a novel therapeutic agent to prevent liver damage. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. 6-gingerol, an active ingredient of ginger, protects acetaminophen-induced hepatotoxicity in mice.

    PubMed

    Sabina, Evan Prince; Pragasam, Samuel Joshua; Kumar, Suresh; Rasool, Mahaboobkhan

    2011-11-01

    To investigate the hepatoprotective efficacy of 6-gingerol against acetaminophen-induced hepatotoxicity in mice. Mice were injected with a single dose of acetaminophen (900 mg/kg) to induce hepatotoxicity, while 6-gingerol (30 mg/kg) or the standard drug silymarin (25 mg/kg) was given 30 min after the acetaminophen administration. The mice were sacrificed 4 h after acetaminophen injection to determine the activities of liver marker enzymes such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), total bilirubin in serum, and lipid peroxidation and antioxidant status (superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione transferase and glutathione) in liver homogenate. The treatment of 6-gingerol and silymarin to acetaminophen-induced hepatotoxicity showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, and ALP) and total bilirubin in serum (P<0.05). In addition, 6-gingerol and silymarin treatment prevented the elevation of hepatic malondialdehyde formation and the depletion of antioxidant status in the liver of acetaminophen-intoxicated mice (P<0.05). The results evidently demonstrate that 6-gingerol has promising hepatoprotective effect which is comparable to the standard drug silymarin.

  19. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    PubMed

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  20. Hepatoprotective Effect of Houttuynia cordata Thunb Extract against Carbon Tetrachloride-induced Hepatic Damage in Mice

    PubMed Central

    Kang, H.; Koppula, S.

    2014-01-01

    Houttuynia cordata Thunb (Saururaceae) is a traditional medicinal herb used to treat several disease symptoms. The present study was focused on the hepatoprotective effects of H. cordata ethyl acetate extract in experimental mice. Further the antioxidant potential of the extract was also evaluated to substantiate its hepatoprotective properties. Carbon tetrachloride-induced hepatic damage in mice was used to measure the serum biochemical parameters. Morphological changes in hepatocyte architecture were studied by haematoxylin and eosin staining. In vitro alkyl and hydroxyl free radical scavenging assays were performed to evaluate the antioxidant effect. Administration of H. cordata extract significantly reduced the elevated serum levels and regulated the altered levels of serum cholesterol in carbon tetrachloride-treated mice (P<0.05). The morphological changes in hepatocyte architecture were also reversed by H. cordata treatment. Further, the extract showed significant antioxidant actions by scavenging the alkyl and hydroxyl free radicals. The concentration of the extract necessary for 50% scavenging of alkyl and hydroxyl radicals was 15.5 and 410 μg/ml, respectively. H. cordata extract exhibited significant hepatoprotective property in carbon tetrachloride-induced hepatotoxicity in mice. The strong antioxidant activities possessed by the extract might be responsible for such actions. PMID:25284923

  1. Hepatoprotective Effect of Houttuynia cordata Thunb Extract against Carbon Tetrachloride-induced Hepatic Damage in Mice.

    PubMed

    Kang, H; Koppula, S

    2014-07-01

    Houttuynia cordata Thunb (Saururaceae) is a traditional medicinal herb used to treat several disease symptoms. The present study was focused on the hepatoprotective effects of H. cordata ethyl acetate extract in experimental mice. Further the antioxidant potential of the extract was also evaluated to substantiate its hepatoprotective properties. Carbon tetrachloride-induced hepatic damage in mice was used to measure the serum biochemical parameters. Morphological changes in hepatocyte architecture were studied by haematoxylin and eosin staining. In vitro alkyl and hydroxyl free radical scavenging assays were performed to evaluate the antioxidant effect. Administration of H. cordata extract significantly reduced the elevated serum levels and regulated the altered levels of serum cholesterol in carbon tetrachloride-treated mice (P<0.05). The morphological changes in hepatocyte architecture were also reversed by H. cordata treatment. Further, the extract showed significant antioxidant actions by scavenging the alkyl and hydroxyl free radicals. The concentration of the extract necessary for 50% scavenging of alkyl and hydroxyl radicals was 15.5 and 410 μg/ml, respectively. H. cordata extract exhibited significant hepatoprotective property in carbon tetrachloride-induced hepatotoxicity in mice. The strong antioxidant activities possessed by the extract might be responsible for such actions.

  2. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways

    PubMed Central

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways. PMID:29385192

  3. Anti-influenza A virus activity of rhein through regulating oxidative stress, TLR4, Akt, MAPK, and NF-κB signal pathways.

    PubMed

    Wang, Qian-Wen; Su, Yun; Sheng, Jiang-Tao; Gu, Li-Ming; Zhao, Ying; Chen, Xiao-Xuan; Chen, Cheng; Li, Wei-Zhong; Li, Kang-Sheng; Dai, Jian-Ping

    2018-01-01

    Rhein, an anthraquinone compound existing in many traditional herbal medicines, has anti-inflammatory, antioxidant, antitumor, antiviral, hepatoprotective, and nephroprotective activities, but its anti-influenza A virus (IAV) activity is ambiguous. In the present study, through plaque inhibition assay, time-of-addition assay, antioxidant assay, qRT-PCR, ELISA, and western blotting assays, we investigated the anti-IAV effect and mechanism of action of rhein in vitro and in vivo. The results showed that rhein could significantly inhibit IAV adsorption and replication, decrease IAV-induced oxidative stress, activations of TLR4, Akt, p38, JNK MAPK, and NF-κB pathways, and production of inflammatory cytokines and matrix metalloproteinases in vitro. Oxidant H2O2 and agonists of TLR4, Akt, p38/JNK and IKK/NF-κB could significantly antagonize the inhibitory effects of rhein on IAV-induced cytopathic effect (CPE) and IAV replication. Through an in vivo test in mice, we also found that rhein could significantly improve the survival rate, lung index, pulmonary cytokines, and pulmonary histopathological changes. Rhein also significantly decreased pulmonary viral load at a high dose. In conclusion, rhein can inhibit IAV adsorption and replication, and the mechanism of action to inhibit IAV replication may be due to its ability to suppress IAV-induced oxidative stress and activations of TLR4, Akt, p38, JNK MAPK, and NF-κB signal pathways.

  4. Hepatoprotective and antioxidant activity of aqueous extract of Hybanthus enneaspermus against CCl4-induced liver injury in rats.

    PubMed

    Vuda, Madhusudanarao; D'Souza, Roshan; Upadhya, Suhas; Kumar, Vijay; Rao, Namita; Kumar, Vasanth; Boillat, Colette; Mungli, Prakash

    2012-11-01

    The hepatoprotective, curative and anti-oxidant properties of aqueous extract of Hybanthus enneaspermus (Violaceae) used against CCl4-induced liver damage in rats were investigated in the present study. Liver damage was induced by CCl4 (1 ml/kg i.p.), and silymarin was used as a standard drug to compare hepatoprotective, curative and antioxidant effects of the extract. Rats were treated with aqueous extract of H. enneaspermus at a dose of either 200 or 400 mg/kg after division into pre-treatment (once daily for 14 days before CCl4 intoxication) and post-treatment (2, 6, 24 and 48 h after CCl4 intoxication) groups. Pre-treatment and post-treatment with aqueous extract of H. enneaspermus showed significant hepatoprotection by reducing the aspartate transaminase, alanine transaminase, and alkaline phosphatase enzymatic activities and total bilirubin levels which had been raised by CCl4 administration. Pre- and post-treatment with aqueous extract significantly decreased hepatic lipid peroxidation as well as producing a corresponding increase in tissue total thiols. Post-treatment with aqueous extract improved ceruloplasmin levels. The histopathological examination of rat liver sections treated with aqueous extract confirms the serum biochemical observations. The present study results demonstrate the protective, curative and anti-oxidant effects of H. enneaspermus aqueous extract used against CCl4-induced hepatotoxicity in rats, and suggest a potential therapeutic use of H. enneaspermus as an alternative for patients with acute liver diseases. Copyright © 2011 Elsevier GmbH. All rights reserved.

  5. Alleviation of Carbon-Tetrachloride-Induced Liver Injury and Fibrosis by Betaine Supplementation in Chickens

    PubMed Central

    Tsai, Meng-Tsz; Chen, Ching-Yi; Pan, Yu-Hui; Wang, Siou-Huei; Mersmann, Harry J.; Ding, Shih-Torng

    2015-01-01

    Betaine is a food component with well-reported hepatoprotection effects. However, the effects and mechanisms of betaine on liver fibrosis development are still insufficient. Because metabolic functions of chicken and human liver is similar, we established a chicken model with carbon Tetrachloride- (CCl4-) induced fibrosis for studying antifibrotic effect of betaine in vivo and in vitro. Two-week-old male chicks were supplemented with betaine (1%, w/v) in drinking water for 2 weeks prior to the initiation of CCl4 treatment (i.p.) until sacrifice. Primary chicken hepatocytes were treated with CCl4 and betaine to mimic the in vivo supplementation. The supplementation of betaine significantly alleviated liver fibrosis development along with the inhibition of lipid peroxidation, hepatic inflammation cytokine, and transforming growth factor-β1 expression levels. These inhibitive effects were also accompanied with the attenuation of hepatic stellate cell activation. Furthermore, our in vitro studies confirmed that betaine provides antioxidant capacity for attenuating the hepatocyte necrosis by CCl4. Altogether, our results highlight the antioxidant ability of betaine, which alleviates CCl4-induced fibrogenesis process along with the suppression of hepatic stellate cells activation. Since betaine is a natural compound without toxicity, we suggest betaine can be used as a potent nutritional or therapeutic factor for reducing liver fibrosis. PMID:26491462

  6. Hepatoprotective and Antioxidant Activity of Dunaliella salina in Paracetamol-induced Acute Toxicity in Rats

    PubMed Central

    Madkour, Fedekar F.; Abdel-Daim, M. M.

    2013-01-01

    Paracetamol has a reasonable safety profile when taken in therapeutic doses. However, it could induce hepatotoxicity and even more severe fatal acute hepatic damage when taken in an overdose. The green alga, Dunaliella salina was investigated for hepatoprotective and antioxidant activity against paracetamol-induced liver damage in rats. Male albino Wistar rats overdosed with paracetamol showed liver damage and oxidative stress as indicated by significantly (P<0.05) increased serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide. At the same time, there were decreased activities of serum superoxide dismutase and total antioxidant capacity compared with the control group. Treatment with D. salina methanol extract at doses of 500 and 1000 mg/kg body weight or silymarin could significantly (P<0.05) decrease the liver damage marker enzymes, total and direct bilirubin, malondialdehyde, cholesterol and nitric oxide levels and increase the activities of superoxide dismutase and total antioxidant capacity in serum when compared with paracetamol intoxicated group. Liver histopathology also showed that D. salina reduced the centrilobular necrosis, congestion and inflammatory cell infiltration evoked by paracetamol overdose. These results suggest that D. salina exhibits a potent hepatoprotective effect on paracetamol-induced liver damage in rats, which may be due to both the increase of antioxidant enzymes activity and inhibition of lipid peroxidation. PMID:24591738

  7. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver

    PubMed Central

    Iwo, Maria Immaculata; Sjahlim, Sergia Louisa; Rahmawati, Siti Farah

    2017-01-01

    Vernonia amygdalina has been shown to have antioxidant activity, and is also expected to have hepatoprotective activity. This study was conducted to study the effect of V. amygdalina ethanol extracts on intoxicated rat livers. Fresh leaves were extracted in ethanol, and the hepatoprotective activity was tested on male Wistar rats induced with a combination of isoniazid (INH) and rifampicin. Parameters observed were the activity of the enzyme alanine transferase (ALT), serum albumin levels, liver index, and histopathological of the rat liver. The results showed that 50 and 100 mg/kg rat body weight of V. amygdalina ethanol extracts could prevent liver intoxication, starting on day 14. Based on serum albumin concentrations and ALT activity, the high dose extract (100 mg/kg) was more potent as a hepatoprotective agent compared to the extract at a low dose (50 mg/kg). The group of rats treated with a high dose extract showed normal liver index compared to the positive control. Through histology examination, the liver of rats treated with a high dose extract (100 mg/kg) showed minimal liver cell structure damage, and showed similar patterns to the normal rat. Based on these results, it can be concluded that V. amygdalina ethanol extracts can be used to protect the liver in a combination of INH and rifampicin as antituberculosis treatment. PMID:28333116

  8. Effect of Vernonia amygdalina Del. Leaf Ethanolic Extract on Intoxicated Male Wistar Rats Liver.

    PubMed

    Iwo, Maria Immaculata; Sjahlim, Sergia Louisa; Rahmawati, Siti Farah

    2017-03-23

    Vernonia amygdalina has been shown to have antioxidant activity, and is also expected to have hepatoprotective activity. This study was conducted to study the effect of V. amygdalina ethanol extracts on intoxicated rat livers. Fresh leaves were extracted in ethanol, and the hepatoprotective activity was tested on male Wistar rats induced with a combination of isoniazid (INH) and rifampicin. Parameters observed were the activity of the enzyme alanine transferase (ALT), serum albumin levels, liver index, and histopathological of the rat liver. The results showed that 50 and 100 mg/kg rat body weight of V. amygdalina ethanol extracts could prevent liver intoxication, starting on day 14. Based on serum albumin concentrations and ALT activity, the high dose extract (100 mg/kg) was more potent as a hepatoprotective agent compared to the extract at a low dose (50 mg/kg). The group of rats treated with a high dose extract showed normal liver index compared to the positive control. Through histology examination, the liver of rats treated with a high dose extract (100 mg/kg) showed minimal liver cell structure damage, and showed similar patterns to the normal rat. Based on these results, it can be concluded that V. amygdalina ethanol extracts can be used to protect the liver in a combination of INH and rifampicin as antituberculosis treatment.

  9. Hepatoprotective role of Nicotiana plumbaginifolia Linn. against carbon tetrachloride-induced injuries.

    PubMed

    Shah, Abdus Saboor; Khan, Rahmat Ali; Ahmed, Mushtaq; Muhammad, Nawshad

    2016-02-01

    Nicotiana plumbignifolia (Linn) is used as folk medicine in the treatment of liver dysfunction in Pakistan. The present study was designed to investigate the hepatoprotective role of N. plumbignifolia methanolice extract (NPME) against carbon tetrachloride (CCl4)-induced oxidative damage in liver of chicks. Methanolic extract of N. plumbignifolia was obtained and was further evaluated as a hepatoprotective agent against CCl4-induced oxidative damage in liver of chicks. For this study, 60-day-old 50 male chicks were divided into five groups. Chicks of group 1 (control) had free access to food and water. Group II received 1 mL/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route thrice a week for 4 weeks. Group III received 100 mg/kg body weight (b.w.) of silymarin via gavage after 48 h of CCl4 treatment, whereas group IV were given 200 mg/kg b.w. NPME after 48 h of CCl4 treatment. Hepatoprotective activity was assessed by measuring the activities of the antioxidant enzymes: catalase, peroxidase, superoxide dismutase, glutathione peroxidase, glutathione reductase, and lipid peroxidation (thiobarbituric acid reactive substances (TBARS)). Serum was analyzed for various biochemical parameters. The results revealed that CCl4 induced oxidative stress as evidenced by the significant decrease in the activity levels of antioxidant enzymes, while an increase in the levels of TBARS in liver samples is compared with the control group. Serum levels lactate dehydrogenase, triglycerides, total cholesterol, and low-density lipoprotein was elevated while reducing high-density lipoprotein compared to controls. Cotreatment of NPME treatment reversed these alterations, which seems likely that NPME can protect the liver tissues against CCl4-mediated oxidative damage. © The Author(s) 2013.

  10. Hepatoprotective effect of Bacoside-A, a major constituent of Bacopa monniera Linn.

    PubMed

    Sumathi, T; Nongbri, A

    2008-10-01

    Bacoside-A (B-A) was evaluated for its hepatoprotective activity against d-GalN induced liver injury in rats. B-A is a major constituent isolated from the plant Bacopa monniera Linn. B-A (10mg/kg of body weight) was administered orally once daily for 21 days and then d-GalN (300 mg/kg of body weight) was injected on 21st day after final administration of B-A. B-A reduces the elevated levels of serum alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (gamma-GT), lactate dehydrogenase (LDH), 5'nucleotidase (5'ND). In addition B-A also significantly restored towards normalization of the decreased levels of Vit-C, and Vit-E induced by d-GalN both in liver and plasma. These results suggest that B-A has hepatoprotective effect against d-GalN induced hepatotoxicity in rats.

  11. The gap junction inhibitor 2-aminoethoxy-diphenyl-borate protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes and c-jun N-terminal kinase activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kuo; Williams, C. David; McGill, Mitchell R.

    2013-12-15

    Acetaminophen (APAP) hepatotoxicity is the leading cause of acute liver failure in the US. Although many aspects of the mechanism are known, recent publications suggest that gap junctions composed of connexin32 function as critical intercellular communication channels which transfer cytotoxic mediators into neighboring hepatocytes and aggravate liver injury. However, these studies did not consider off-target effects of reagents used in these experiments, especially the gap junction inhibitor 2-aminoethoxy-diphenyl-borate (2-APB). In order to assess the mechanisms of protection of 2-APB in vivo, male C56Bl/6 mice were treated with 400 mg/kg APAP to cause extensive liver injury. This injury was prevented whenmore » animals were co-treated with 20 mg/kg 2-APB and was attenuated when 2-APB was administered 1.5 h after APAP. However, the protection was completely lost when 2-APB was given 4–6 h after APAP. Measurement of protein adducts and c-jun-N-terminal kinase (JNK) activation indicated that 2-APB reduced both protein binding and JNK activation, which correlated with hepatoprotection. Although some of the protection was due to the solvent dimethyl sulfoxide (DMSO), in vitro experiments clearly demonstrated that 2-APB directly inhibits cytochrome P450 activities. In addition, JNK activation induced by phorone and tert-butylhydroperoxide in vivo was inhibited by 2-APB. The effects against APAP toxicity in vivo were reproduced in primary cultured hepatocytes without use of DMSO and in the absence of functional gap junctions. We conclude that the protective effect of 2-APB was caused by inhibition of metabolic activation of APAP and inhibition of the JNK signaling pathway and not by blocking connexin32-based gap junctions. - Highlights: • 2-APB protected against APAP-induced liver injury in mice in vivo and in vitro • 2-APB protected by inhibiting APAP metabolic activation and JNK signaling pathway • DMSO inhibited APAP metabolic activation as the solvent of 2-APB • Off-target effects of connexin32 gene knock-out mice need to be considered.« less

  12. Nrf2 activators from Glycyrrhiza inflata and their hepatoprotective activities against CCl4-induced liver injury in mice.

    PubMed

    Lin, Yan; Kuang, Yi; Li, Kai; Wang, Shuang; Ji, Shuai; Chen, Kuan; Song, Wei; Qiao, Xue; Ye, Min

    2017-10-15

    Glycyrrhiza inflata (licorice) has been used to treat liver diseases for a long history. However, the bioactive compounds are still not clear. In this work, 77 compounds, including 9 new ones, were isolated from the EtOAc extract of the roots and rhizomes of G. inflata. The Nrf2 activation activities of all compounds were screened using ARE-luciferase reporter assay on HepG2C8 cells. The results indicated a number of chalcones were potent Nrf2 activators, including 11 (licochalcone A, 4.07-fold), 12 (licochalcone B, 5.17-fold), and 19 (echinatin, 4.09-fold). Further studies indicated that 11, 12 and 19 remarkably attenuated CCl 4 -induced acute liver injury in mice (10 or 50mg/kg, 7days, ig.). These compounds could be promising hepatoprotective natural agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Hepatoprotective effect of ethanolic extract of Curcuma longa on thioacetamide induced liver cirrhosis in rats

    PubMed Central

    2013-01-01

    Background Hepatology research has focused on developing traditional therapies as pharmacological medicines to treat liver cirrhosis. Thus, this study evaluated mechanisms of the hepatoprotective activity of Curcuma longa rhizome ethanolic extract (CLRE) on thioacetamide-induced liver cirrhosis in rats. Methods The hepatoprotective effect of CLRE was measured in a rat model of thioacetamide-induced liver cirrhosis over 8 weeks. Hepatic cytochrome P450 2E1 and serum levels of TGF-β1 and TNF-α were evaluated. Oxidative stress was measured by malondialdehyde, urinary 8-hydroxyguanosine and nitrotyrosine levels. The protective activity of CLRE free-radical scavenging mechanisms were evaluated through antioxidant enzymes. Protein expression of pro-apoptotic Bax and anti-apoptotic Bcl-2 proteins in animal blood sera was studied and confirmed by immunohistochemistry of Bax, Bcl2 proteins and proliferating cell nuclear antigen. Results Histopathology, immunohistochemistry and liver biochemistry were significantly lower in the Curcuma longa-treated groups compared with controls. CLRE induced apoptosis, inhibited hepatocytes proliferation but had no effect on hepatic CYP2E1 levels. Conclusion The progression of liver cirrhosis could be inhibited by the antioxidant and anti-inflammatory activities of CLRE and the normal status of the liver could be preserved. PMID:23496995

  14. Synthetic and Medicinal Prospective of Structurally Modified Curcumins.

    PubMed

    Kumar, Bhupinder; Singh, Virender; Shankar, Ravi; Kumar, Kapil; Rawal, Ravindra K

    2017-01-01

    Curcumin, a natural yellow phenolic compound, is present in various types of herbs, particularly in Turmeric, Curcuma longa Linn. (Zingiberaceae family) rhizomes. Curcumin is a polyphenolic natural compound with diverse and attractive biological activities. In the last decade curcumine and its various synthetic analogues have been prepared and evaluated for various pharmacological activities that prove it as a lead molecule against several biological targets. It is a natural antioxidant and exhibited many pharmacological activities such as anti-inflammatory, anti-microbial, anticancer, anti-Alzheimer in both preclinical and clinical studies. Moreover, Curcumin and its analogues have anti-tubercular, cardioprotective, anti-diabetic, hepatoprotective, neuroprotective, nephroprotective, antirheumatic and anti-viral activities. The substitutions of 1,6-heptadiene linkage moiety via carbonyl group sustituion and addition of heterocyclic linker; isoxazole, 1H-pyrazole, cyclopentanone, piperidin-4-one, N-methylpiperidin-4-one enhance biological activities. The structure activity relationship of various curcumin analogues is studied for medicinal purposes and it reveals that monocarbonyl linkage analogues have anticancer properties. The current review gives an insight of the history, chemistry, analogues and most interesting in vitro and in vivo studies on the biological effects of Curcumin and its analogues.

  15. Antioxidant properties of Taraxacum officinale leaf extract are involved in the protective effect against hepatoxicity induced by acetaminophen in mice.

    PubMed

    Colle, Dirleise; Arantes, Leticia Priscilla; Gubert, Priscila; da Luz, Sônia Cristina Almeida; Athayde, Margareth Linde; Teixeira Rocha, João Batista; Soares, Félix Alexandre Antunes

    2012-06-01

    Acetaminophen (APAP) hepatotoxicity has been related to several cases of hepatitis, cirrhosis, and hepatic transplant. As APAP hepatotoxicity is related to reactive oxygen species (ROS) formation and excessive oxidative stress, natural antioxidant compounds have been tested as an alternative therapy to diminish the hepatic dysfunction induced by APAP. Taraxacum officinale Weber (Family Asteraceae), commonly known as dandelion, is used for medicinal purposes because of its choleretic, diuretic, antioxidant, anti-inflammatory, and hepatoprotective properties. This study evaluated the hepatoprotective activity of T. officinale leaf extract against APAP-induced hepatotoxicity. T. officinale was able to decrease thiobarbituric acid-reactive substance levels induced by 200 mg/kg APAP (p.o.), as well as prevent the decrease in sulfhydryl levels caused by APAP treatment. Furthermore, histopathological alterations, as well as the increased levels of serum aspartate and alanine aminotransferases caused by APAP, were prevented by T. officinale (0.1 and 0.5 mg/mL). In addition, T. officinale extract also demonstrated antioxidant activity in vitro, as well as scavenger activity against 2,2-diphenyl-1-picrylhydrazyl and nitric oxide radicals. Our results clearly demonstrate the hepatoprotective effect of T. officinale against the toxicity induced by APAP. The possible mechanisms involved include its scavenger activities against ROS and reactive nitrogen species, which are attributed to the content of phenolic compounds in the extract.

  16. Synergistic hepatoprotective potential of ethanolic extract of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver injury in rats.

    PubMed

    Singh, Hem; Prakash, Atish; Kalia, A N; Majeed, Abu Bakar Abdul

    2016-10-01

    Previously explored combination therapies mostly involved the use of bioactive molecules. It is believed that herbal compounds containing multiple plant products have synergistic hepatoprotective effects and could enhance the desired actions. To investigate the combination of ethanolic fruits extract of Solanum xanthocarpum (SX) and Juniperus communis (JC) against Paracetamol (PCM) and Azithromycin (AZM) induced liver toxicity in rats. Liver toxicity was induced by combine oral administration of PCM (250 mg/kg) and AZM (200 mg/kg) for 7 days in Wistar rats. Fruit extract of SX (200 and 400 mg/kg) and JC (200 and 400 mg/kg) were administered daily for 14 days. The hepatoprotective activity was assessed using liver functional test, oxidative parameters and histopathological examination. The results demonstrated that combine administration of AZM and PCM significantly produced liver toxicity by increasing the serum level of hepatic enzymes and oxidative parameters in liver of rats. Histopathological examination also indicated that AZM and PCM produced liver damage in rats. Chronic treatment of SX and JC extract significantly and dose-dependently attenuated the liver toxicity by normalizing the biochemical factors and no gross histopathological changes were observed in liver of rats. Furthermore, combine administration of lower dose of SX and JC significantly potentiated their hepatoprotective effect which was significant as compared to their effect per se. The results clearly indicated that SX and JC extract has hepatoprotective potential against AZM and PCM induced liver toxicity due to their synergistic anti-oxidant properties.

  17. Hepatoprotective effect of Cirsium arisanense Kitamura in tacrine-treated hepatoma Hep 3B cells and C57BL mice.

    PubMed

    Ku, Kuo-Lung; Tsai, Chu-Tsai; Chang, Wei-Min; Shen, Mei-Lin; Wu, Chia-Tien; Liao, Hui-Fen

    2008-01-01

    Cirsium arisanense Kitamura (Compositae) has been used for hundreds of years in Taiwan as a folk medicine for hepatoprotection. However, no scientific research has demonstrated this effect. In the present study, we extracted the phenol-containing aqueous components of C. arisanense roots (CaR) and leaves/stem (CaL), and then assessed their hepatoprotective activities in both human hepatocellular carcinoma Hep 3B cells and C57BL/6 mice strain. High performance liquid chromatography (HPLC) analysis revealed that the components of CaR and CaL differed from those of the positive control silymarin. CaR exhibited a higher phenolic content and antioxidant capacity than CaL. Hep 3B cells treated with silymarin (0-200 microg/ml) demonstrated a concentration-dependent decrease in viability; however, both CaR and CaL did not exhibit any apparent cytotoxicity. Silymarin at 100 microg/ml, as well as CaR and CaL, not only protect Hep 3B cells from tacrine-induced hepatotoxicity but also decrease the expression of hepatitis B surface antigen (HBsAg). Moreover, an animal experiment demonstrated that CaR, CaL, and silymarin have hepatoprotective effects in C57BL/6 mice injected with tacrine, and they significantly decrease the levels of plasma alanine aminotransferase (ALT) and aspartate aminotransferase (AST). These effects of CaR and silymarin, but not of CaL, may occur via an increase in the hepatic glutathione level and the elimination of the nitric oxide production. In conclusion, the phenol-containing aqueous components from C. arisanense have potential in hepatoprotection.

  18. Caspase-1 Is Hepatoprotective during Trauma and Hemorrhagic Shock by Reducing Liver Injury and Inflammation

    PubMed Central

    Menzel, Christoph L; Sun, Qian; Loughran, Patricia A; Pape, Hans-Christoph; Billiar, Timothy R; Scott, Melanie J

    2011-01-01

    Adaptive immune responses are induced in liver after major stresses such as hemorrhagic shock (HS) and trauma. There is emerging evidence that the inflammasome, the multiprotein platform that induces caspase-1 activation and promotes interleukin (IL)-1β and IL-18 processing, is activated in response to cellular oxidative stress, such as after hypoxia, ischemia and HS. Additionally, damage-associated molecular patterns, such as those released after injury, have been shown to activate the inflammasome and caspase-1 through the NOD-like receptor (NLR) NLRP3. However, the role of the inflammasome in organ injury after HS and trauma is unknown. We therefore investigated inflammatory responses and end-organ injury in wild-type (WT) and caspase-1−/−mice in our model of HS with bilateral femur fracture (HS/BFF). We found that caspase-1−/− mice had higher levels of systemic inflammatory cytokines than WT mice. This result corresponded to higher levels of liver damage, cell death and neutrophil influx in caspase-1−/− liver compared with WT, although there was no difference in lung damage between experimental groups. To determine if hepatoprotection also depended on NLRP3, we subjected NLRP3−/− mice to HS/BFF, but found inflammatory responses and liver damage in these mice was similar to WT. Hepatoprotection was also not due to caspase-1–dependent cytokines, IL-1β and IL-18. Altogether, these data suggest that caspase-1 is hepatoprotective, in part through regulation of cell death pathways in the liver after major trauma, and that caspase-1 activation after HS/BFF does not depend on NLRP3. These findings may have implications for the treatment of trauma patients and may lead to progress in prevention or treatment of multiple organ failure (MOF). PMID:21666957

  19. Comparative Hepatoprotective Effect of Vitamins A and E Against Gasoline Vapor Toxicity in Male and Female Rats

    PubMed Central

    Uboh, Friday Effiong; Ebong, Patrick E.; Umoh, Ime B.

    2009-01-01

    Background Plasma alanine transferase(ALT), aspartate transferase(AST), α-glutamyl transferase(GGT), and alkaline phosphatase(ALP) activities are known biomarkers in assessing hepatic functional integrity. A remarkable rise in the activities of these enzymes normally signifies hepatotoxicity of chemical agent(s) in the biological system. Exposure to 17.8 cm3h-1m-3 of PMS blend unleaded gasoline vapors (UGV) for 6 hr/day, 5 days/week for 20 weeks have been reported to cause hepatotoxicity in rats. Methods In this study, the comparative hepatoprotective effect of vitamins A (retinol) and E (α-tocopherol) against UGV-induced toxicity was assessed in male and female rats. Retinol and α-tocopherol at prophylactic dosage (400 and 200 IU/kg/day, respectively) were separately administered orally to the test rats concomitant with exposure to UGV in the last two weeks of the experiment. Results The results of this study indicated that exposure to UGV caused significant increase (P < 0.05) in the activities of serum ALT, AST, ALP, GGT and bilirubin in male and female rats. Oral administration of prophylactic doses of retinol and α-tocopherol produced a significant decrease (P < 0.05) in the activities of these parameters in male and female test rats, compared with the non-treated test rats; but insignificant increase(P ≥ 0.05), compared with the control. However, the hepatoprotective effect of α-tocopherol was observed to be more potent than that of retinol. Conclusions The result of this study demonstrated that the hepatoprotective potency of α-tocopherol against gasoline vapors toxicity was higher than that of retinol in male and female rats, although the female gender of the animal model responded to treatment with both vitamins better than the males. Hence, the work suggested the beneficial effects of both vitamins against hepatotoxicity in individuals frequently exposed to gasoline vapors. PMID:27956974

  20. Momordica charantia: a popular health-promoting vegetable with multifunctionality.

    PubMed

    Wang, Shuzhen; Li, Zhiliang; Yang, Guliang; Ho, Chi-Tang; Li, Shiming

    2017-05-24

    Products derived from edible medicinal plants have been used for centuries to prevent, treat, and even cure multiple diseases. Momordica charantia L., widely cultivated around the world, is a typical one bred for vegetables and medicinal usage. All parts of M. charantia possess important medicinal properties, including antidiabetic, anticancer, hypotensive, anti-obesity, antimicrobial, antihyperlipidemic, antioxidant, anti-inflammatory, immuno-modulatory, anthelmintic, neuro-protective, as well as hepato-protective properties both in vitro and in vivo. This review summarizes the active components and medicinal properties of M. charantia, especially the activities and mechanisms of its anti-diabetic and anti-cancer properties. The anti-diabetic properties involve inhibiting intestinal α-glucosidase and glucose transport, protecting islet β-cells, enhancing insulin secretion, increasing hepatic glucose disposal, decreasing gluconeogenesis, and even ameliorating insulin resistance. Moreover, the expressions of PPARs could also be activated and up-regulated. Meanwhile, its anticancer properties are mostly due to apoptosis, cell cycle arrest, and expression of serum factors associated with immunity. In this review, we aim to provide an overview of M. charantia and its benefits for development as a functional food.

  1. Protective role of polyphenols from Bauhinia hookeri against carbon tetrachloride-induced hepato- and nephrotoxicity in mice.

    PubMed

    Al-Sayed, Eman; Abdel-Daim, Mohamed M; Kilany, Omnia E; Karonen, Maarit; Sinkkonen, Jari

    2015-08-01

    The hepatoprotective and nephroprotective activity of a polyphenol-rich fraction (BHPF) obtained from Bauhinia hookeri was investigated against CCl4-induced acute hepatorenal toxicity in mice. BHPF was administered (100, 200 and 400 mg/kg/day) for 5 days, then CCl4 was administered. BHPF pretreatment significantly (p < 0.001) inhibited the CCl4-induced increase in ALT, AST, ALP, LDH, total bilirubin, cholesterol, creatinine, uric acid, urea and malondialdehyde in a dose-dependent manner. In contrast, BHPF pretreatment markedly increased the contents of glutathione and superoxide dismutase in the liver and kidney tissues, indicating the strong in vivo antioxidant activity of BHPF. Pretreatment with BHPF preserved the hepatic architecture and conferred marked protection against necrosis and ballooning degeneration. Pretreatment with BHPF reduced the inflammatory cell aggregation and degenerative changes in the lining epithelium of the kidney tubules. It can be concluded that BHPF has a remarkable hepato- and nephroprotective activity by enhancing the antioxidant defense status, reducing lipid peroxidation and protecting against the histopathological changes induced by CCl4 in the liver and kidney tissues.

  2. Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats.

    PubMed

    S, Latha; Chaudhary, Sheetal; R S, Ray

    2017-11-01

    Oxidative stress and hepatic inflammatory response is primarily implicated in the pathogenesis of LPS induced acute liver injury. Stevioside, a diterpenoidal glycoside isolated from the Stevia rebaudiana leaves, exerts potent anti-oxidant, anti-inflammatory and immunomodulatory activities. The present study was aimed to investigate the hepatoprotective effect of hydroalcoholic extract of Stevia rebaudiana leaves (STE EXT) and its major phytochemical constituent, stevioside (STE) in LPS induced acute liver injury. The hepatoprotective activity of STE EXT (500mg/kg p.o) and STE (250mg/kg p.o) was investigated in lipopolysaccharide (LPS 5mg/kg i.p.) induced acute liver injury in male wistar rats. Our results revealed that both STE EXT and STE treatment ameliorated LPS induced hepatic oxidative stress, evident from altered levels of reduced SOD, Catalase, GSH, MDA, NO. Histopathological observations revealed that both STE EXT and STE attenuated LPS induced structural changes and hepatocellular apoptosis providing additional evidence for its hepatoprotective effect. Further, STE EXT and STE significantly restored the elevated serum and tissue levels of AST and ALT in LPS treated rats. Furthermore, both STE EXT and STE rescued hepatocellular dysfunctions to normal by altering the level of proinflammatory cytokines such as TNF-α, IL-1β and IL-6 exhibiting its anti-inflammatory potential. In conclusion, both STE EXT and STE demonstrated excellent hepatoprotective effects against endotoxemia induced acute liver injury possibly through suppression of hepatic inflammatory response and oxidative stress, attributing to its medicinal importance in treating various liver ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Enhancement of absorption and hepatoprotective potential through soya-phosphatidylcholine-andrographolide vesicular system.

    PubMed

    Jain, Pushpendra Kumar; Khurana, Navneet; Pounikar, Yogesh; Gajbhiye, Asmita; Kharya, Murli Dhar

    2013-06-01

    Andrographis paniculata is a medicinal herb used extensively for various ailments and contains therapeutically active phytoconstituent, andrographolide (AN). Although hepatoprotective activity of AN is established, but their bioavailability is restricted due to its rapid clearance. The aim of this study, therefore, was to formulate AN herbosomes (ANH) through complexation with naturally occurring soya-phosphatidylcholine (SPC), in order to enhance absorption. Prepared andrographolide-soy phosphatidylcholine (AN-SPC) complex prepared was subjected for characterisation of complex and formation of vesicular system known as ANH using rotary evaporation techniques. This complex was subjected to in vitro study using everted small intestine sac technique which showed significantly increased absorption of AN from the ANH as compared to the plain AN. The hepatoprotective potential of ANH and plain AN was evaluated using carbon tetrachloride inducing hepatotoxicity rat model and compared, in which ANH equivalent to 50 mg/kg of plain AN significantly restore serum glutamate oxalacetate transaminase (112.4 ± 9.67 for AN whereas 90.2 ± 4.23 for ANH) and serum glutamate pyruvate transaminase (109.3 ± 7.89 for AN whereas 90.6 ± 4.34 for ANH) level as compared to control group. The ANH showed significantly better absorption than plain AN and this effect of ANH was also comparable to the standard drug (Silymarin). The findings of present study reveal that ANH has better bioavailability as shown by in vitro absorption study and hence improved hepatoprotection as compared to plain AN at equivalent dose.

  4. Protective Effect of Flavonoids from Ziziphus jujuba cv. Jinsixiaozao against Acetaminophen-Induced Liver Injury by Inhibiting Oxidative Stress and Inflammation in Mice.

    PubMed

    Huang, Weizhen; Wang, Yongjie; Jiang, Xiaoyan; Sun, Yueyue; Zhao, Zhongxi; Li, Siying

    2017-10-20

    This study was aimed to investigate the chemical composition, antioxidant activities and hepatoprotective effect of flavonoids from Ziziphus jujub a cv. Jinsixiaozao (ZJF). The composition of ZJF was analyzed by high performance liquid chromatography (HPLC) and Liquid chromatography-mass spectrometry (LC-MS), and antioxidant properties were investigated by biological assays in vitro. The hepatoprotective activity of ZJF was evaluated in acetaminophen (APAP)-treated BALB/c mice. Results indicate that ZJF displayed significant antioxidant capacity. Pretreatment with ZJF significantly decreased APAP-elevated serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and total bilirubin (TB). Activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were enhanced with ZJF administration, while malondialdehyde (MDA) level and glutathione (GSH) depletion were reduced. Meanwhile, ZJF reversed the suppression of nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, and up-regulated the protein expression of NAD(P)H: quinone oxidoreductase 1(NQO1) in liver damage mice. Furthermore, ZJF attenuated APAP-induced inflammatory mediator production, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β). Expression of p65 showed that ZJF dampened nuclear factor-κB (NF-κB) activation. The results strongly indicate that the hepatoprotective role of ZJF in APAP-induced hepatotoxicity might result from its induction of antioxidant defense via activation of Nrf2 and reduction of inflammation via inhibition of NF-κB.

  5. Hepatoprotective Effect of Polyphenol-Enriched Fraction from Folium Microcos on Oxidative Stress and Apoptosis in Acetaminophen-Induced Liver Injury in Mice.

    PubMed

    Wu, Hongtan; Zhang, Gang; Huang, Lisen; Pang, Haiyue; Zhang, Na; Chen, Yupei; Wang, Gueyhorng

    2017-01-01

    Folium Microcos (FM), the leaves of Microcos paniculata L., shows various biological functions including antioxidant activity and α -glucosidase inhibitory effect. However, its therapeutic potential in acute liver injury is still unknown. This study investigated the hepatoprotective effect and underlying mechanisms of the polyphenol-enriched fraction (FMF) from Folium Microcos . FMF exhibited strong free radical scavenging activities and prevented HepG2/Hepa1-6 cells from hydrogen peroxide- (H 2 O 2 -) induced ROS production and apoptosis in vitro. Antioxidant activity and cytoprotective effects were further verified by alleviating APAP-induced hepatotoxicity in mice. Western blot analysis revealed that FMF pretreatment significantly abrogated APAP-mediated phosphorylation of MAPKs, activation of proapoptotic protein caspase-3/9 and Bax, and restored expression of antiapoptotic protein Bcl2. APAP-intoxicated mice pretreated with FMF showed increased nuclear accumulation of nuclear factor erythroid 2-related factor (Nrf2) and elevated hepatic expression of its target genes, NAD(P)H:quinine oxidoreductase 1 (NQO1) and hemeoxygenase-1(HO-1). HPLC analysis revealed the four predominantly phenolic compounds present in FMF: narcissin, isorhamnetin-3-O- β -D-glucoside, isovitexin, and vitexin. Consequently, these findings indicate that FMF possesses a hepatoprotective effect against APAP-induced hepatotoxicity mainly through dual modification of ROS/MAPKs/apoptosis axis and Nrf2-mediated antioxidant response, which may be attributed to the strong antioxidant activity of phenolic components.

  6. Potential antioxidant properties and hepatoprotective effects of an aqueous extract formula derived from three Chinese medicinal herbs against CCl(4)-induced liver injury in rats.

    PubMed

    Yang, Chi-Ching; Fang, Jong-Yi; Hong, Tuan-Liang; Wang, Tzu-Ching; Zhou, Ya-En; Lin, Ta-Chen

    2013-01-01

    The hepatoprotective effects of an aqueous extract formula (AEF) derived from Artemisia capillaris, Lonicera japonica and Silybum marianum (ratio 1:1:1) were evaluated by its antioxidant properties and its attenuation of carbon tetrachloride (CCl(4))-induced liver damage in rats. The antioxidant analyses revealed that the AEF showed higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and superoxide anion radical scavenging activities as well as ferric reducing antioxidant potential (FRAP) and Trolox equivalent antioxidant capacity (TEAC) compared with the individual herbs, suggesting a synergism in antioxidation between the three herbs. The animal experiments showed that the CCl(4) treatment increased serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities, but decreased triglyceride (TG) and glutathione (GSH) levels as well as glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT) activities. However, AEF administration can successfully lower serum ALT and AST activities, restore the GSH level, ameliorate or restore GPx and CAT activities as well as improve SOD action depending on AEF dosage. Histological examination of liver showed that CCl(4) increased the extent of bile duct proliferation, necrosis, fibrosis and fatty vacuolation throughout the liver, but AEF can improve bile duct proliferation, vacuolation and fibrosis, and restore necrosis. The present study demonstrated the hepatoprotective potential of AEF as an alternative to the traditional silymarin. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Extraction, identification, fractionation and isolation of phenolic compounds in plants with hepatoprotective effects.

    PubMed

    Pereira, Carla; Barros, Lillian; Ferreira, Isabel C F R

    2016-03-15

    The liver is one of the most important organs of human body, being involved in several vital functions and regulation of physiological processes. Given its pivotal role in the excretion of waste metabolites and drugs detoxification, the liver is often subjected to oxidative stress that leads to lipid peroxidation and severe cellular damage. The conventional treatments of liver diseases such as cirrhosis, fatty liver and chronic hepatitis are frequently inadequate due to side effects caused by hepatotoxic chemical drugs. To overcome this problematic paradox, medicinal plants, owing to their natural richness in phenolic compounds, have been intensively exploited concerning their extracts and fraction composition in order to find bioactive compounds that could be isolated and applied in the treatment of liver ailments. The present review aimed to collect the main results of recent studies carried out in this field and systematize the information for a better understanding of the hepatoprotective capacity of medicinal plants in in vitro and in vivo systems. Generally, the assessed plant extracts revealed good hepatoprotective properties, justifying the fractionation and further isolation of phenolic compounds from different parts of the plant. Twenty-five phenolic compounds, including flavonoids, lignan compounds, phenolic acids and other phenolic compounds, have been isolated and identified, and proved to be effective in the prevention and/or treatment of chemically induced liver damage. In this perspective, the use of medicinal plant extracts, fractions and phenolic compounds seems to be a promising strategy to avoid side effects caused by hepatotoxic chemicals. © 2015 Society of Chemical Industry.

  8. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in D-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Xinru

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100 mg/kg) 1 h before lipopolysaccharide (LPS)/D-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, westernmore » blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. - Highlights: • Glycyrrhetinic acid protected from LPS/D-GalN-induced liver injury in mice. • Glycyrrhetinic acid inhibited LPS-induced TNF-α production in vivo and in vitro. • Glycyrrhetinic acid alleviated LPS-activated TLR4 signal pathway in vivo and in vitro. • Glycyrrhetinic acid upregulated the expression of IRAK-M in vivo and in vitro. • IRAK-M mediated the protective effect of Glycyrrhetinic acid on LPS-induced inflammation.« less

  9. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice

    PubMed Central

    Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Bersani-Amado, Ciomar Aparecida

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase (γGT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γGT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP. PMID:28717379

  10. Hepatoprotective Effect of Citral on Acetaminophen-Induced Liver Toxicity in Mice.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Cardia, Gabriel Fernando Esteves; Cremer, Edivaldo; Silva-Comar, Francielli Maria de Souza; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    High doses of acetaminophen (APAP) lead to acute liver damage. In this study, we evaluated the effects of citral in a murine model of hepatotoxicity induced by APAP. The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and gamma-glutamyl transferase ( γ GT) were determined to evaluate the hepatoprotective effects of citral. The livers were used to determine myeloperoxidase (MPO) activity and nitric oxide (NO) production and in histological analysis. The effect of citral on leukocyte migration and antioxidant activity was evaluated in vitro. Citral pretreatment decreased significantly the levels of ALT, AST, ALP, and γ GT, MPO activity, and NO production. The histopathological analysis showed an improvement of hepatic lesions in mice after citral pretreatment. Citral inhibited neutrophil migration and exhibited antioxidant activity. Our results suggest that citral protects the liver against liver toxicity induced by APAP.

  11. Ginseng for Liver Injury: Friend or Foe?

    PubMed Central

    Kim, Tae-Woo

    2016-01-01

    Panax sp., including Panax ginseng Meyer, Panax quiquifolius L., or Panax notoginseng (Burk.) FH Chen, have been used as functional foods or for traditional Chinese medicine for diabetes, inflammation, stress, aging, hepatic injury, and cancer. In recent decades, a number of both in vitro and in vivo experiments as well as human studies have been conducted to investigate the efficacy and safety of various types of ginseng samples and their components. Of these, the hepatoprotective and hepatotoxic effects of ginseng and their ginsenosides and polysaccharides are reviewed and summarized. PMID:28930143

  12. Hepatoprotective activity of Tridax procumbens against d-galactosamine/lipopolysaccharide-induced hepatitis in rats.

    PubMed

    Ravikumar, Vilwanathan; Shivashangari, Kanchi Subramanian; Devaki, Thiruvengadam

    2005-10-03

    The hepatoprotective activity of aerial parts of Tridax procumbens was investigated against d-Galactosamine/Lipopolysaccharide (d-GalN/LPS) induced hepatitis in rats. d-GalN/LPS (300 mg/kg body weight/30 microg/kg body weight)-induced hepatic damage was manifested by a significant increase in the activities of marker enzymes (aspartate transaminase, alanine transaminase, alkaline phosphatase, lactate dehydrogenase and gamma glutamyl transferase) and bilirubin level in serum and lipids both in serum and liver. Pretreatment of rats with a chloroform insoluble fraction from ethanolic extract of Tridax procumbens reversed these altered parameters to normal values. The biochemical observations were supplemented by histopathological examination of liver sections. Results of this study revealed that Tridax procumbens could afford a significant protection in the alleviation of d-GalN/LPS-induced hepatocellular injury.

  13. The use of marine-derived bioactive compounds as potential hepatoprotective agents

    PubMed Central

    Nair, Dileep G; Weiskirchen, Ralf; Al-Musharafi, Salma K

    2015-01-01

    The marine environment may be explored as a rich source for novel drugs. A number of marine-derived compounds have been isolated and identified, and their therapeutic effects and pharmacological profiles are characterized. In the present review, we highlight the recent studies using marine compounds as potential hepatoprotective agents for the treatment of liver fibrotic diseases and discuss the proposed mechanisms of their activities. In addition, we discuss the significance of similar studies in Oman, where the rich marine life provides a potential for the isolation of novel natural, bioactive products that display therapeutic effects on liver diseases. PMID:25500871

  14. Anti-malarial activities of Andrographis paniculata and Hedyotis corymbosa extracts and their combination with curcumin

    PubMed Central

    Mishra, Kirti; Dash, Aditya P; Swain, Bijay K; Dey, Nrisingha

    2009-01-01

    Background Herbal extracts of Andrographis paniculata (AP) and Hedyotis corymbosa (HC) are known as hepato-protective and fever-reducing drugs since ancient time and they have been used regularly by the people in the south Asian sub-continent. Methanolic extracts of these two plants were tested in vitro on choloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum for their anti-malarial activity. Methods Growth inhibition was determined using different concentrations of these plant extracts on synchronized P. falciparum cultures at the ring stage. The interactions between these two plant extracts and individually with curcumin were studied in vitro. The performance of these two herbal extracts in isolation and combination were further evaluated in vivo on Balb/c mice infected with Plasmodium berghei ANKA and their efficacy was compared with that of curcumin. The in vivo toxicity of the plant derived compounds as well as their parasite stage-specificity was studied. Results The 50% inhibitory concentration (IC50) of AP (7.2 μg/ml) was found better than HC (10.8 μg/ml). Combination of these two herbal drugs showed substantial enhancement in their anti-malarial activity. Combinatorial effect of each of these with curcumin also revealed anti-malarial effect. Additive interaction between the plant extracts (AP + HC) and their individual synergism with curcumin (AP+CUR, HC+CUR) were evident from this study. Increased in vivo potency was also observed with the combination of plant extracts over the individual extracts and curcumin. Both the plant extracts were found to inhibit the ring stage of the parasite and did not show any in vivo toxicity, whether used in isolation or in combination. Conclusion Both these two plant extracts in combination with curcumin could be an effective, alternative source of herbal anti-malarial drugs. PMID:19216765

  15. Effects of mastic gum Pistacia lentiscus var. Chia on innate cellular immune effectors.

    PubMed

    Kottakis, Filippos; Kouzi-Koliakou, Kokona; Pendas, Stefanos; Kountouras, Jannis; Choli-Papadopoulou, Theodora

    2009-02-01

    The essential oil and Chios mastic gum (CMG) are natural antimicrobial agents currently broadly used in medicine owing to their antimicrobial, antioxidant, and hepatoprotective properties. The aim of this study was to investigate the effect of CMG-extracted arabinogalactan proteins (AGPs/CMG) both in vitro and in vivo, under the presence of Helicobacter pylori neutrophil-activating protein (HP-NAP), on the innate cellular immune effectors (neutrophils activations) comparing H. pylori-infected patients and healthy controls. The in-vivo effect of AGPs/CMG under the presence of HP-NAP in neutrophil activation was investigated in five H. pylori-infected patients and three healthy volunteers who received 1 g daily consumption of CMG for 2 months. All participants did not receive any immunosuppressive medication before or during the trial; patients with infectious diseases that could modify their immunologic status were excluded. In-vitro studies with pull-down experiments to assess the effect of AGPs/CMG under the presence of HP-NAP on the neutrophil activation were also carried out. Neutrophil activation was estimated by nicotinamide adenine dinucleotide phosphate-oxidase assays and optical microscopy methods by measurement of cytochrome C reduction. Neutrophil activation was reduced when incubated in vitro with HP-NAP (P=0.0027) and AGP plus HP-NAP (P=0.0004) in H. pylori-positive patients who consumed AGP for 2 months. Similar results were also obtained when neutrophils were incubated with AGP plus HP-NAP (P=0.0038) in controls. Pull-down experiments showed a specific binding of AGPs to two membrane proteins of neutrophils, possibly suggesting inhibition of neutrophil activation. AGPs/CMG inhibit neutrophil activation in the presence of HP-NAP, playing a crucial role in H. pylori-associated pathologies in gastric mucosa.

  16. Hepatoprotective activity of the neem-based constituent azadirachtin-A in carbon tetrachloride intoxicated Wistar rats.

    PubMed

    Baligar, N S; Aladakatti, R H; Ahmed, Mukhtar; Hiremath, M B

    2014-04-01

    The aim of this study was to investigate the hepatoprotective role of azadirachtin-A in carbon tetrachloride (CCl4) induced hepatotoxicity in rats. The group allotment for the animals used in the hepatoprotective study included a vehicle treatment group, CCl4 (1 mL · (kg body mass)(-1)) treatment group, silymarin (100 μg · (kg body mass)(-1) · day(-1)) + CCl4 treatment group, and groups treated with different doses of azadirachtin-A (100 or 200 μg · (kg body mass)(-1) · day(-1)) + CCl4. On the 9th day, blood was obtained for measuring the biochemical parameters, and liver tissue was obtained for pathological examination. The acute toxicity test with azadirachtin-A (500, 1000, or 2000 μg · (kg body mass)(-1)) indicated no mortality after 14 days of treatment; further, there was no change in behavior, food consumption, or organ mass. However with the higher dose, some hematological parameters showed changes. Hepatoprotective studies revealed that the CCl4 treatment group exhibited a decrease in total protein and albumin levels, whereas a significant increase in BUN, AST, ALT, and ALP levels were noticed compared with the vehicle-treated control, indicating that there was liver damage caused by CCl4. Histology and ultrastructure study confirmed that pretreatment with azadirachtin-A dose-dependently reduced hepatocellular necrosis and, therefore, protected the liver against toxicity caused by CCl4. The results from this study indicate that pretreatment with azadirachtin-A at the higher dose levels, moderately restores the rat liver to normal. This study confirms that azadirachtin-A possesses greater hepatoprotective action; however, the effective concentration needs to be determined.

  17. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential

    PubMed Central

    2014-01-01

    Background Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Methods Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. Results In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride - induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride - induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Conclusions Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms. PMID:25002023

  18. Antioxidant activity of rosemary (Rosmarinus officinalis L.) essential oil and its hepatoprotective potential.

    PubMed

    Rašković, Aleksandar; Milanović, Isidora; Pavlović, Nebojša; Ćebović, Tatjana; Vukmirović, Saša; Mikov, Momir

    2014-07-07

    Natural antioxidant products are increasingly being used to treat various pathological liver conditions considering the role of oxidative stress in their pathogenesis. Rosemary essential oil has already being used as a preservative in food industry due to its antioxidant and antimicrobial activities, but it was shown to possess additional health benefits. The aim of our study was to evaluate the protective effect of rosemary essential oil on carbon tetrachloride - induced liver injury in rats and to explore whether its mechanism of action is associated with modulation of hepatic oxidative status. Chemical composition of isolated rosemary essential oil was determined by gas chromatography and mass spectrometry. Antioxidant activity was determined in vitro using DPPH assay. Activities of enzyme markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured using the kinetic spectrophotometric methods. In this research, we identified 29 chemical compounds of the studied rosemary essential oil, and the main constituents were 1,8-cineole (43.77%), camphor (12.53%), and α-pinene (11.51%). Investigated essential oil was found to exert hepatoprotective effects in the doses of 5 mg/kg and 10 mg/kg by diminishing AST and ALT activities up to 2-fold in serum of rats with carbon tetrachloride-induced acute liver damage. Rosemary essential oil prevented carbon tetrachloride-induced increase of lipid peroxidation in liver homogenates. Furthermore, pre-treatment with studied essential oil during 7 days significantly reversed the activities of antioxidant enzymes catalase, peroxidase, glutathione peroxidase and glutathione reductase in liver homogenates, especially in the dose of 10 mg/kg. Our results demonstrate that rosemary essential oil, beside exhibiting free radical scavenging activity determined by DPPH assay, mediates its hepatoprotective effects also through activation of physiological defense mechanisms.

  19. Amelioration of Alcoholic Liver Steatosis by Dihydroquercetin through the Modulation of AMPK-Dependent Lipogenesis Mediated by P2X7R-NLRP3-Inflammasome Activation.

    PubMed

    Zhang, Yu; Jin, Quan; Li, Xia; Jiang, Min; Cui, Ben-Wen; Xia, Kai-Li; Wu, Yan-Ling; Lian, Li-Hua; Nan, Ji-Xing

    2018-05-16

    Dihydroquercetin (TAX) is the most abundant dihydroflavone found in onions, milk thistle, and Douglas fir bark. We investigated whether TAX could inhibit lipid accumulation in alcoholic liver steatosis in vivo and in vitro. An in vivo model was established by intragastrically treating mice with ethanol, and an in vitro model was created by treating HepG2 cells with ethanol. TAX regulated SREBP1 and ACC expression by elevating LKB1 and AMPK phosphorylation. Also, TAX upregulated SIRT1 expression, which was suppressed by ethanol intake. Decreased expression of P2X7R and NLRP3 and suppressed cleavage of caspase-1 by TAX resulted in the inhibition of IL-1β production and release. Additionally, TAX reduced lipogenesis and promoted lipid oxidation via the regulation of AMPK and ACC in ethanol-treated steatotic HepG2 cells. TAX downregulated IL-1β cleavage responses to LPS and ATP stimulation in HepG2 cells. P2X7R deficiency attenuated lipid accumulation, characterized by increased AMPK activity and decreased SREBP1 expression in ethanol-treated HepG2 cells. Our data showed that TAX exhibited the ability to inhibit lipogenesis and a hepatoprotective capacity, indicating that TAX has therapeutic potential for preventing alcoholic liver steatosis.

  20. Hepatoprotective Effects of Chinese Medicinal Herbs: A Focus on Anti-Inflammatory and Anti-Oxidative Activities

    PubMed Central

    Lam, Puiyan; Cheung, Fan; Tan, Hor Yue; Wang, Ning; Yuen, Man Fung; Feng, Yibin

    2016-01-01

    The liver is intimately connected to inflammation, which is the innate defense system of the body for removing harmful stimuli and participates in the hepatic wound-healing response. Sustained inflammation and the corresponding regenerative wound-healing response can induce the development of fibrosis, cirrhosis and eventually hepatocellular carcinoma. Oxidative stress is associated with the activation of inflammatory pathways, while chronic inflammation is found associated with some human cancers. Inflammation and cancer may be connected by the effect of the inflammation-fibrosis-cancer (IFC) axis. Chinese medicinal herbs display abilities in protecting the liver compared to conventional therapies, as many herbal medicines have been shown as effective anti-inflammatory and anti-oxidative agents. We review the relationship between oxidative stress and inflammation, the development of hepatic diseases, and the hepatoprotective effects of Chinese medicinal herbs via anti-inflammatory and anti-oxidative mechanisms. Moreover, several Chinese medicinal herbs and composite formulae, which have been commonly used for preventing and treating hepatic diseases, including Andrographis Herba, Glycyrrhizae Radix et Rhizoma, Ginseng Radix et Rhizoma, Lycii Fructus, Coptidis Rhizoma, curcumin, xiao-cha-hu-tang and shi-quan-da-bu-tang, were selected for reviewing their hepatoprotective effects with focus on their anti-oxidative and ant-inflammatory activities. This review aims to provide new insight into how Chinese medicinal herbs work in therapeutic strategies for liver diseases. PMID:27043533

  1. Studies on toxicity, anti-stress and hepato-protective properties of Kombucha tea.

    PubMed

    Pauline, T; Dipti, P; Anju, B; Kavimani, S; Sharma, S K; Kain, A K; Sarada, S K; Sairam, M; Ilavazhagan, G; Devendra, K; Selvamurthy, W

    2001-09-01

    The objective of the study was to evaluate toxicity, anti-stress activity and hepato-protective properties of Kombucha tea. Kombucha tea was fed orally for 15 days using three different doses i.e. normal dose, five and ten times the dose. Rats were then sacrificed and various biochemical, and histological parameters were estimated. Anti-stress activity was evaluated either by 1) by exposing animals to cold and hypoxia and estimating the levels of malondialdehyde and reduced glutathione in plasma/blood or 2) by subjecting the animals to restraint stress and recording faecal output. Hepato-toxicity was induced by challenging the animals to an acute dose of paracetamol (1 gm/kg) orally and determining the plasma levels of SGPT, SGOT and MDA. The effect of oral administration of different doses of K-tea to albino rats was examined and the results indicate that K-tea has no significant toxicity as revealed by various biochemical and histopathological parameters. K-tea has been found to prevent lipid peroxidation and fall in reduced glutathione level when rats were exposed to cold and hypoxia in simulated chamber. Further, K-tea has also been found to decrease the Wrap-restraint faecal pellet output in rats. K-tea has also been found to decrease paracetamol induced hepatotoxicity significantly. The study shows that K-tea has anti-stress and hepato-protective activities.

  2. Antioxidant and Hepatoprotective Effects of Procyanidins from Wild Grape (Vitis amurensis) Seeds in Ethanol-Induced Cells and Rats

    PubMed Central

    Bak, Min Ji; Truong, Van-Long; Ko, Se-Yeon; Nguyen, Xuan Ngan Giang; Ingkasupart, Pajaree; Jun, Mira; Shin, Jin Young; Jeong, Woo-Sik

    2016-01-01

    In the present study, we characterized the antioxidant and hepatoprotective mechanisms underlying of wild grape seed procyanidins (WGP) against oxidative stress damage in ethanol-treated HepG2 cell and Sprague-Dawley (SD)-rat models. In HepG2 cells, WGP not only diminished the ethanol (EtOH, 100 mM)-induced reactive oxygen species (ROS) formation and cytochrome P450 2E1 (CYP2E1) expression, but also renovated both the activity and expression of antioxidant enzymes including catalase, superoxide dismutase, and glutathione peroxidase. Additionally, to investigate the hepatoprotective effect of WGP, rats were orally administered 10 or 50 mg/kg WGP once daily for seven days prior to the single oral administration of EtOH (6 g/kg). The results show that WGP administration decreased the EtOH-induced augment of the levels of serum aspartate transaminase and alanine transaminase as well as serum alcohol and acetaldehyde. WGP treatment upregulated the activities and protein levels of hepatic alcohol dehydrogenase, aldehyde dehydrogenase, and antioxidant enzymes but downregulated the protein expression level of liver CYP2E1 in EtOH-treated rats. Moreover, the decreased phosphorylation levels of mitogen activated protein kinases (MAPKs) by ethanol were induced in both HepG2 cell and rat models. Overall, pretreatment of WGP displayed the protective activity against EtOH-mediated toxicity through the regulation of antioxidant enzymes and alcohol metabolism systems via MAPKs pathways. PMID:27213339

  3. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models

    PubMed Central

    Verma, Neeraj; Singh, Anil P.; Amresh, G.; Sahu, P. K.; Rao, Ch. V.

    2011-01-01

    Objective: To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl4)-induced liver damage in preventive and curative models. Materials and Methods: Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl4-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. Result and Discussion: The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl4 treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl4-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl4-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl4-induced hepatic damage in rats. PMID:21713093

  4. Protective effect of ethyl acetate fraction of Rhododendron arboreum flowers against carbon tetrachloride-induced hepatotoxicity in experimental models.

    PubMed

    Verma, Neeraj; Singh, Anil P; Amresh, G; Sahu, P K; Rao, Ch V

    2011-05-01

    To evaluate the hepatoprotective potential of ethyl acetate fraction of Rhododendron arboreum (Family: Ericaceae) in Wistar rats against carbon tetrachloride (CCl(4))-induced liver damage in preventive and curative models. Fraction at a dose of 100, 200, and 400 mg/kg was administered orally once daily for 14 days in CCl(4)-treated groups (II, III, IV, V and VI). The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), γ-glutamyltransferase (γ -GT), and bilirubin were estimated along with activities of glutathione S-transferase (GST), glutathione reductase, hepatic malondialdehyde formation, and glutathione content. The substantially elevated serum enzymatic activities of SGOT, SGPT, SALP, γ-GT, and bilirubin due to CCl(4) treatment were restored toward normal in a dose-dependent manner. Meanwhile, the decreased activities of GST and glutathione reductase were also restored toward normal. In addition, ethyl acetate fraction also significantly prevented the elevation of hepatic malondialdehyde formation and depletion of reduced glutathione content in the liver of CCl(4)-intoxicated rats in a dose-dependent manner. Silymarin used as standard reference also exhibited significant hepatoprotective activity on post-treatment against CCl(4)-induced hepatotoxicity in rats. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethyl acetate fraction has a potent hepatoprotective action against CCl(4)-induced hepatic damage in rats.

  5. Hepatoprotective standardized EtOH-water extract from the seeds of Fraxinus rhynchophylla Hance.

    PubMed

    Guo, Sen; Guo, Tiantian; Cheng, Ni; Liu, Qingchao; Zhang, Yunting; Bai, Lu; Zhang, Li; Cao, Wei; Ho, Chi-Tang; Bai, Naisheng

    2017-04-01

    Fraxinus rhynchophylla Hance (Oleaceae), its stem barks are known as Cortex fraxini ( qín pí) listed in Chinese Pharmacopoeia. Phytochemical study has indicated that methanol extracts from Qinpi has protective effect on acute liver injury. The present study investigates the hepatoprotective activity of EtOH-water extract from the seeds of F. rhynchophylla Hance against carbon tetrachloride-induced liver injury in mice. The EtOH-water extract significantly alleviated liver damage as indicated by the decreased levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the malondialdehyde (MDA) content, and increased the levels of superoxide dismutase (SOD), glutathione (GSH) and glutathione peroxidase (GSH-Px), and reduced the pathological tissue injury induced by CCl 4 . Quantitative analysis of seven major constituents ( 1-7 ) in EtOH-water extract (EWE) was developed by high performance liquid chromatography-diode-array detector (HPLC-DAD). The current research indicates that the EWE from the seeds of F. rhynchophylla Hance decreased liver index, inhibited the increase of serum aminotransferase induced by CCl 4 , and decreased hepatic MDA content, SOD and GSH-Px activities. These results suggested that the pretreatment with EWE protected mice against CCl 4 -induced liver injuries. Based on the results, the EtOH-water extract from the seeds of F. rhynchophylla Hance is efficacious for prevention and treatment of CCl 4 -induced hepatic injury in mice. Secoiridoid and tyrosol glucosides might be the active ingredients responsible for the biological and pharmacological activities of hepatoprotection.

  6. Hepatoprotective studies on Sida acuta Burm. f.

    PubMed

    Sreedevi, C D; Latha, P G; Ancy, P; Suja, S R; Shyamal, S; Shine, V J; Sini, S; Anuja, G I; Rajasekharan, S

    2009-07-15

    Sida acuta Burm. f. (Malvaceae) is used in Indian traditional medicine to treat liver disorders and is useful in treating nervous and urinary diseases and also disorders of the blood and bile. Evaluation of the hepatoprotective properties of the methanolic extract of the root of Sida acuta (SA) and the phytochemical analysis of SA. The model of paracetamol-induced hepatotoxicity in Wistar rats, liver histopathological observations, hexobarbitone-induced narcosis and in vitro anti-lipid peroxidation studies were employed to assess the hepatoprotective efficacy of SA. Phytochemical assay of SA was conducted following standard protocols. Significant hepatoprotective effects were obtained against liver damage induced by paracetamol overdose as evident from decreased serum levels of glutamate pyruvate transaminase, glutamate oxaloacetate transaminase, alkaline phosphatase and bilirubin in the SA treated groups (50, 100, 200mg/kg) compared to the intoxicated controls. The hepatoprotective effect was further verified by histopathology of the liver. Pretreatment with Sida acuta extract significantly shortened the duration of hexobarbitone-induced narcosis in mice indicating its hepatoprotective potential. Phytochemical studies confirmed the presence of the phenolic compound, ferulic acid in the root of Sida acuta, which accounts for the significant hepatoprotective effects observed in the present study. The present study thus provides a scientific rationale for the traditional use of this plant in the management of liver disorders.

  7. Hepatoprotective activity of Sonchus asper against carbon tetrachloride-induced injuries in male rats: a randomized controlled trial

    PubMed Central

    2012-01-01

    Abstract Background Sonchus asper (SAME) is used as a folk medicine in hepatic disorders. In this study, the hepatoprotective effects of the methanol extract of SAME was evaluated against carbon tetrachloride (CCl4)-induced liver injuries in rats. Methods To evaluate the hepatoprotective effects of SAME, 36 male Sprague–Dawley rats were equally divided into 6 groups. Rats of Group I (control) were given free access to approved feed and water. Rats of Group II were injected intraperitoneally with CCl4 (3 ml/kg) as a 30% solution in olive oil (v/v) twice a week for 4 weeks. Animals of Groups III (100 mg/kg) and IV (200 mg/kg) received SAME, whereas those of Group V were given silymarin via gavage (100 mg/kg) after 48 h of CCl4 treatment. Group VI received SAME (200 mg/kg) twice a week for 4 weeks without CCl4 treatment. Various parameters, such as the serum enzyme levels, serum biochemical marker levels, antioxidant enzyme activities, and liver histopathology were used to estimate the hepatoprotective efficacy of SAME. Results The administration of SAME and silymarin significantly lowered the CCl4-induced serum levels of hepatic marker enzymes (aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase), cholesterol, low-density lipoprotein, and triglycerides while elevating high-density lipoprotein levels. The hepatic contents of glutathione and activities of catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione reductase were reduced. The levels of thiobarbituric acid-reactive substances that were increased by CCl4 were brought back to control levels by the administration of SAME and silymarin. Liver histopathology showed that SAME reduced the incidence of hepatic lesions induced by CCl4 in rats. Conclusion SAME may protect the liver against CCl4-induced oxidative damage in rats. PMID:22776436

  8. Hepatoprotective effect of Leucophyllum frutescens on Wistar albino rats intoxicated with carbon tetrachloride.

    PubMed

    Balderas-Renteria, Isaías; Camacho-Corona, Maria Del Rayo; Carranza-Rosales, Pilar; Lozano-Garza, Hector G; Castillo-Nava, Dalila; Alvarez-Mendoza, Francisco J; Tamez-Cantú, Elsa M

    2007-01-01

    Many hepatoprotective herbal preparations have been recommended in alternative systems of medicine for the treatment of hepatic disorders. No systematic study has been done on protective efficacy of Leucophyllum frutescens to treat hepatic diseases. Protective action of L. frutescens methanol extract (obtained by maceration) was evaluated in an animal model of hepatotoxicity induced by carbon tetrachloride (CCl(4)). Wistar albino rats were divided into five groups. Group I was normal control group; Groups II-V received CCl(4). After inducing hepatic damage, Group II served as control CCl(4); Group III was given silymarin as reference hepatoprotective; and Groups IV and V received different doses of plant extract. Liver marker enzymes were assayed in serum. Samples of livers were observed under microscope for the histopathological changes. Levels of marker enzymes such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased significantly in CCl(4) treated rats (Group II). Groups IV and V intoxicated with CCl(4) and treated with L. frutescens methanol extract significant decreased the activities of these two enzymes. Also these groups resulted in less pronounced destruction of the liver architecture, there is not fibrosis and have moderate inflammation compared with Group II. The present study scientifically validated the traditional use of L. frutescens for liver disorders. In conclusion the methanol extract of L. frutescens aerial parts could be an important source of hepatoprotective compounds.

  9. Liver metabolomics study reveals protective function of Phyllanthus urinaria against CCl4-induced liver injury.

    PubMed

    Guo, Qing; Zhang, Qian-Qian; Chen, Jia-Qing; Zhang, Wei; Qiu, Hong-Cong; Zhang, Zun-Jian; Liu, Bu-Ming; Xu, Feng-Guo

    2017-07-01

    Phyllanthus Urinaria L. (PUL) is a traditional Chinese medicine used to treat hepatic and renal disorders. However, the mechanism of its hepatoprotective action is not fully understood. In the present study, blood biochemical indexes and liver histopathological changes were used to estimate the extent of hepatic injury. GC/MS and LC/MS-based untargeted metabolomics were used in combination to characterize the potential biomarkers associated with the protective activity of PUL against CCl 4 -induced liver injury in rats. PUL treatment could reverse the increase in ALT, AST and ALP induced by CCl 4 and attenuate the pathological changes in rat liver. Significant changes in liver metabolic profiling were observed in PUL-treated group compared with liver injury model group. Seventeen biomarkers related to the hepatoprotective effects of PUL against CCl 4 -induced liver injury were screened out using nonparametric test and Pearson's correlation analysis (OPLS-DA). The results suggested that the potential hepatoprotective effects of PUL in attenuating CCl 4 -induced hepatotoxicity could be partially attributed to regulating L-carnitine, taurocholic acid, and amino acids metabolism, which may become promising targets for treatment of liver toxicity. In conclusion, this study provides new insights into the mechanism of the hepatoprotection of Phyllanthus Urinaria. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  10. Hepatoprotective and inhibiting HBV effects of polysaccharides from roots of Sophora flavescens.

    PubMed

    Yang, Hua; Zhou, Zhenhua; He, Lifang; Ma, Hao; Qu, Wensheng; Yin, Jiye; Jia, Mengfan; Zhao, Xiunan; Shan, Junjie; Gao, Yueqiu

    2018-03-01

    Roots of Sophora flavescens is an important herbal medicine for treatment of HBV and hepatic carcinoma in China. Alkaloids in the root were well known for exhibiting good hepato-protective and anti-HBV effects. However, polysaccharides as main components in the root remained unknown. In the studies, we investigated the chemical features and hepatoprotective effects of Sophora flavescens polysaccharides (SFP-100 and its active fractions) with ConA-induced hepatitis mice, human liver LO2 cells and HepG2.2.15 cells. The results showed that SFP-100 was composed of arabinose, glucose, galactose and galacturonic acid, SFP-100-A mainly contained glucose. SFP-100-B and SFP-100-C were acidic polysaccharides. SFP-100 significantly decreased hepatocytes apoptosis, inhibited the infiltration of neutrophils and macrophages into liver, and improved the production of IFN-γ and IL-6 of splenocytes in ConA-induced hepatitis mice. SFP-100 and its two sugar fractions increased LO2 cell proliferation and reduced cell apoptosis induced by ConA. SFP-100, SFP-100-A and SFP-100-C remarkedly inhibited the secretion of HBsAg and HBeAg by HepG2.2.15 cells.These results suggested Sophora flavescens polysaccharides exerts significant hepatoprotective and anti-HBV roles, and further is used for treatment of immune-mediated liver disease in the future. Copyright © 2017. Published by Elsevier B.V.

  11. New Apigenin Glycoside, Polyphenolic Constituents, Anti-inflammatory and Hepatoprotective Activities of Gaillardia grandiflora and Gaillardia pulchella Aerial Parts.

    PubMed

    Moharram, Fatma A; El Dib, Rabab Abd El Moneim; Marzouk, Mohamed S; El-Shenawy, Siham M; Ibrahim, Haitham A

    2017-07-01

    Gaillardia grandiflora Hort. ex Van Houte and Gaillardia pulchella Foug are flowering plants widely cultivated in Egypt for their ornamental value. Previous reports demonstrated that sesquiterpene derivatives represent the major compounds in both species. Moreover, only few flavones were identified from genus Gaillardia and few studies on the cytotoxicity of G. pulchella were found. Investigation of the phenolic constituents of the aerial parts of both species and evaluation of their anti-inflammatory and hepatoprotective activities. The 80% aqueous methanol extracts (AME) were prepared for both plants and evaluated for their biological activities. Phytochemical investigation of both extracts resulted in isolation of twelve compounds, which have been identified on the basis of ultraviolet, 1D and 2D nuclear magnetic resonance spectroscopy and negative ESI-MS. The new 8-hydroxyapigenin 6- O -β-D-apiofuranosyl-(1'''→6'')- C -β-D- 4 C 1 -glucopyranoside was isolated from G. grandiflora for the first time in nature, along with schaftoside, luteolin 6-C-β-D- 4 C 1 -glucopyranoside 8-methyl ether, apigenin 6- C -β-D- 4 C 1 -glucopyranoside 8-methyl ether, isoorientin, isovitexin, 6-methoxyluteolin and hispidulin, as well as vicenin-2, vitexin, luteolin and apigenin, which were isolated from G. pulchella together with 6-methoxyluteolin. Furthermore, the AME of both species were found to be nontoxic to mice and exhibited significant anti-inflammatory and hepatoprotective activities in dose dependent manner. Current results shed light on the phenolic constituents of G. grandiflora and G. pulchella aerial parts and the safety of the AME of both species, in addition to their significant anti-inflammatory and hepatoprotective activities. Both plant species may be promising candidates for natural anti-inflammatory and hepatoprotective drugs. Phytochemical investigation of Gaillardia grandiflora and Gaillardia pulchella 80% aqueous methanol extracts of the aerial parts led to the isolation of twelve compoundsThe new compound 8-hydroxyapigenin 6- O -β-D-apiofuranosyl-(1''''→6'')- C -β-D-4C1-glucopyranoside was isolated from G. grandiflora for the first time in natureSchaftoside, luteolin 6- C -β-D-4C1-glucopyranoside 8-methyl ether, apigenin 6- C -β-D-4C1-glucopyranoside 8-methyl ether, isoorientin, isovitexin, 6-methoxyluteolin and hispidulin were isolated from G. grandiflora Vicenin-2, vitexin, luteolin, apigenin and 6-methoxyluteolin were isolated from G. pulchella The extracts of both species were nontoxic to mice up to 5 g/kg body weightBoth extracts exhibited significant anti-inflammatory and hepatoprotective activities in dose dependent manner Abbreviations used: ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AME: The 80% aqueous methanol extract of G. grandiflora or G. pulchella aerial parts; AST: Aspartate aminotransferase; br d: Broad doublet; Comp-PC: Comparative paper chromatography; d: Doublet; 2D-PC: Two-dimensional paper chromatography; DMSO-d6: Deuterated dimethyl sulfoxide; G.: Gaillardia ; GPx: Glutathione peroxidase; GRd: Glutathione reductase; GSH: glutathione; GST: Glutathione-S-transferase; J : Nuclear spin-spin coupling constant; m: Multiplet; [M-H]-: Molecular ion peak; MDA: Malondialdehyde; m / z : Mass/charge ratio; NO: Nitric oxide; p: Probability; PC: Paper chromatography; Rf: Retention flow; rpm: Rotation per minute; s: Singlet; SDE: The ethanol extract of Scoparia dulcis ; SE: Standard error; SOD: Superoxide dismutase; TMS: Tetramethylsilane; λmax: Maximum fluorescence emission wavelength.

  12. New Apigenin Glycoside, Polyphenolic Constituents, Anti-inflammatory and Hepatoprotective Activities of Gaillardia grandiflora and Gaillardia pulchella Aerial Parts

    PubMed Central

    Moharram, Fatma A.; El Dib, Rabab Abd El Moneim; Marzouk, Mohamed S.; El-Shenawy, Siham M.; Ibrahim, Haitham A.

    2017-01-01

    Background: Gaillardia grandiflora Hort. ex Van Houte and Gaillardia pulchella Foug are flowering plants widely cultivated in Egypt for their ornamental value. Previous reports demonstrated that sesquiterpene derivatives represent the major compounds in both species. Moreover, only few flavones were identified from genus Gaillardia and few studies on the cytotoxicity of G. pulchella were found. Aim of the Study: Investigation of the phenolic constituents of the aerial parts of both species and evaluation of their anti-inflammatory and hepatoprotective activities. Materials and Methods: The 80% aqueous methanol extracts (AME) were prepared for both plants and evaluated for their biological activities. Phytochemical investigation of both extracts resulted in isolation of twelve compounds, which have been identified on the basis of ultraviolet, 1D and 2D nuclear magnetic resonance spectroscopy and negative ESI-MS. Results: The new 8-hydroxyapigenin 6-O-β-D-apiofuranosyl-(1’’’→6’’)-C-β-D-4C1-glucopyranoside was isolated from G. grandiflora for the first time in nature, along with schaftoside, luteolin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, apigenin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, isoorientin, isovitexin, 6-methoxyluteolin and hispidulin, as well as vicenin-2, vitexin, luteolin and apigenin, which were isolated from G. pulchella together with 6-methoxyluteolin. Furthermore, the AME of both species were found to be nontoxic to mice and exhibited significant anti-inflammatory and hepatoprotective activities in dose dependent manner. Conclusion: Current results shed light on the phenolic constituents of G. grandiflora and G. pulchella aerial parts and the safety of the AME of both species, in addition to their significant anti-inflammatory and hepatoprotective activities. Both plant species may be promising candidates for natural anti-inflammatory and hepatoprotective drugs. SUMMARY Phytochemical investigation of Gaillardia grandiflora and Gaillardia pulchella 80% aqueous methanol extracts of the aerial parts led to the isolation of twelve compoundsThe new compound 8-hydroxyapigenin 6-O-β-D-apiofuranosyl-(1’’’’→6’’)-C-β-D-4C1-glucopyranoside was isolated from G. grandiflora for the first time in natureSchaftoside, luteolin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, apigenin 6-C-β-D-4C1-glucopyranoside 8-methyl ether, isoorientin, isovitexin, 6-methoxyluteolin and hispidulin were isolated from G. grandifloraVicenin-2, vitexin, luteolin, apigenin and 6-methoxyluteolin were isolated from G. pulchellaThe extracts of both species were nontoxic to mice up to 5 g/kg body weightBoth extracts exhibited significant anti-inflammatory and hepatoprotective activities in dose dependent manner Abbreviations used: ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AME: The 80% aqueous methanol extract of G. grandiflora or G. pulchella aerial parts; AST: Aspartate aminotransferase; br d: Broad doublet; Comp-PC: Comparative paper chromatography; d: Doublet; 2D-PC: Two-dimensional paper chromatography; DMSO-d6: Deuterated dimethyl sulfoxide; G.: Gaillardia; GPx: Glutathione peroxidase; GRd: Glutathione reductase; GSH: glutathione; GST: Glutathione-S-transferase; J: Nuclear spin-spin coupling constant; m: Multiplet; [M-H]−: Molecular ion peak; MDA: Malondialdehyde; m/z: Mass/charge ratio; NO: Nitric oxide; p: Probability; PC: Paper chromatography; Rf: Retention flow; rpm: Rotation per minute; s: Singlet; SDE: The ethanol extract of Scoparia dulcis; SE: Standard error; SOD: Superoxide dismutase; TMS: Tetramethylsilane; λmax: Maximum fluorescence emission wavelength. PMID:28808387

  13. Hepatoprotective Herbs, Avicenna Viewpoint

    PubMed Central

    Shamsi-Baghbanan, Hamid; Sharifian, Afsaneh; Esmaeili, Somayeh; Minaei, Bagher

    2014-01-01

    Background: Liver injury or dysfunction is considered as a serious health problem. The available synthetic drugs to treat liver disorders are expensive and cause further damage. Hence, hepatoprotective effects of some herbal drugs have been investigated, and one of the methods to choose herbs in order to study their biological effects is to search in ancient medical texts. Avicenna who is known as the prince of physicians had collected and classified Greek, Persian and Islamic medicine in the best possible way in the book of Canon in Arabic. Objectives: Avicenna’s book of The Canon of Medicine was reviewed to find the hepatoprotective herbs. Patients and Methods: Three different versions of the Canon were prepared and utilized. To find scientific names of plants we took advantage of three botany references. All of the herbs were investigated on the basis of scientific data from hepatoprotective effects point of view. The searched term was “hepatoprotective” without narrowing and limiting. The searched databases included Cochrane library, Web of science, SID, Irandoc and IranMedex. Results: 18 plants were found. 85% of the presented species, genus or families of plants were reported to have hepatoprotective properties and in the remaining 15% there were no reports of hepatoprotective effect. Flowers and fruits were the most used part of the plants. Most of the plants had simultaneous protective effects on multiple organs but the protective effect on the liver was mostly accompanied by protective effect on the stomach (83%). The average temperament of these herbs is "hot" in the 2nd phase of the 2nd grade, and "dry" in the 3rd phase of the 2nd grade. Hepatoprotective herbs mostly prescribed as a part of hepatoprotective compound drugs formula or other formula for liver diseases are Crocus sativus, Pistacia lentiscus, and Cinnamomum spp. Conclusions: Maybe there is common mechanism for protecting both liver and stomach. Aquilaria agallocha, Aquilaria malaccensis, and Ruscus aculeatus whose hepatoprotective effects have not yet been reported are considered as good candidates for future investigations. Given that Crocus sativus, and Cinnamomum spp are used as flavors in most countries, they will be introduced for more investigation in order to produce hepatoprotective drugs. PMID:24719702

  14. Advance on the Flavonoid C-glycosides and Health Benefits.

    PubMed

    Xiao, Jianbo; Capanoglu, Esra; Jassbi, Amir Reza; Miron, Anca

    2016-07-29

    The dietary flavonoids, especially their glycosides, are the most vital phytochemicals in diets and are of great general interest due to their diverse bioactivity. Almost all natural flavonoids exist as their O-glycoside or C-glycoside forms in plants. The dietary flavonoid C-glycosides have received less attention than their corresponding O-glycosides. This review summarizes current knowledge regarding flavonoid C-glycosides and their influence on human health. Among the flavonoid C-glycosides, flavone C-glycosides, especially vitexin, isoorientin, orientin, isovitexin and their multiglycosides are more frequently mentioned than others. Flavonoid C-monoglycosides are poorly absorbed in human beings with very few metabolites in urine and blood and are deglycosylated and degraded by human intestinal bacteria in colon. However, flavonoid C-multiglycosides are absorbed unchanged in the intestine and distributed to other tissues. Flavonoid C-glycosides showed significant antioxidant activity, anticancer and antitumor activity, hepatoprotective activity, anti-inflammatory activity, anti-diabetes activity, antiviral activity, antibacterial and antifungal activity, and other biological effects. It looks like that the C-glycosylflavonoids in most cases showed higher antioxidant and anti-diabetes potential than their corresponding O-glycosylflavonoids and aglycones. However, there is a lack of in vivo data on the biological benefits of flavonoid C-glycosides. It is necessary to investigate more on how flavonoid C-glycosides prevent and handle the diseases.

  15. Hepatoprotective, antinociceptive and antioxidant activities of cimetidine, ranitidine and famotidine as histamine H2 receptor antagonists.

    PubMed

    Ahmadi, Amirhossein; Ebrahimzadeh, Mohammad Ali; Ahmad-Ashrafi, Saeb; Karami, Mohammad; Mahdavi, Mohammad Reza; Saravi, Seyed Soheil Saeedi

    2011-02-01

    The antioxidant, antinociceptive and hepatoprotective effects of H(2) receptor blockers were examined with different experimental models. Antioxidant activities were determined by employing various in vitro assay systems such as 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical-scavenging activity assays, reducing power determination assays, nitric oxide-scavenging activity assays and hydrogen peroxide-scavenging activity assays. Antinociceptive effects were determined using the hot plate test in mice. The hepatoprotective effects of cimetidine, ranitidine and famotidine against hepatotoxicity induced by carbon tetrachloride (CCl(4) ) were determined by measuring the levels of serum enzymes alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities in mice. We found that the IC(50) values of cimetidine, ranitidine and famotidine on DPPH radical-scavenging activity were 671±28, 538±21 and 955±43 μg/mL, respectively. Famotidine showed very strong nitric oxide-scavenging activity. All three compounds showed very weak hydrogen peroxide-scavenging activity. Moreover, the compounds did not exhibit any reducing power activity until concentrations of 1.6 mg/mL. All compounds also showed a dose-dependent and marked analgesic activity in mice relative to controls. Pretreatment of mice with cimetidine, ranitidine or famotidine for three consecutive days reduced CCl(4)-induced hepatotoxicity in mice. Treatment with 200 mg/kg ranitidine reduced AST, AST and ALP serum levels, while 200 and 40 mg/kg of cimetidine and famotidine, respectively, reduced AST and ALP serum levels. H(2) blockers exhibited varying levels of antioxidant activities in various assays. Our results indicate that the antioxidant activities of H(2) blockers have an analgesic activity and protective effect on CCl(4)-induced hepatotoxicity in mice. These effects were greater with ranitidine than with the other compounds. © 2010 The Authors Fundamental and Clinical Pharmacology © 2010 Société Française de Pharmacologie et de Thérapeutique.

  16. Hepatoprotective potential of Fumaria indica Pugsley whole plant extracts, fractions and an isolated alkaloid protopine.

    PubMed

    Rathi, Anshu; Srivastava, Arvind Kumar; Shirwaikar, Annie; Singh Rawat, Ajay Kumar; Mehrotra, Shanta

    2008-06-01

    The present investigation demonstrates the hepatoprotective potential of 50% ethanolic water extract of whole plant of Fumaria indica and its three fractions viz., hexane, chloroform and butanol against d-galactosamine induced hepatotoxicity in rats. The hepatoprotection was assessed in terms reduction in histological damage, changes in serum enzymes (SGOT, SGPT, ALP) and metabolites bilirubin, reduced glutathione (GSH) and lipid peroxidation (MDA content). Among fractions more than 90% protection was found with butanol fraction in which alkaloid protopine was quantified as highest i.e. about 0.2mg/g by HPTLC. The isolated protopine in doses of 10-20mg p.o. also proved equally effective hepatoprotectants as standard drug silymarine (single dose 25mg p.o.). In general all treatments excluding hexane fraction proved hepatoprotective at par with silymarine (p

  17. Assessment of the hepatoprotective activity of the seeds of Hunteria umbellata (Hallier F.) on carbon tetrachloride (CCl4) induced liver damage in Wistar albino rats

    NASA Astrophysics Data System (ADS)

    Ogunlana, Olubanke Olujoke; Ogunlana, Oluseyi Ebenezer; Adelani, Isaacson Bababode; Adebayo, Angie Osariem Igbinoba; David, Opetoritse Laju; Adeleye, Oluwaseye Joseph; Udeogu, Stephanie Adaora; Adeyemi, Alaba Oladipupo; Akinyele, Julie Oluranti

    2018-04-01

    This study was designed to evaluate the hepatoprotective activity of the seeds of Hunteria umbellata (HU) on carbon tetrachloride (CCl4) induced rats. Rats of groups 1 (normal control), 3 and 5 were not treated with CCl4 while rats of groups 2 (negative control), 4 and 6 rats were treated with single dose of CCl4 (2 ml/kg) by intraperitoneal administration. Normal control group 1 rats were given distilled water, groups 3 and 4 rats were given 50 mg/kg of silymarin while groups 5 and 6 rats were given 500 mg/kg of HU. Treatment was administered orally for 28 days and sacrificed on the 29th day after an overnight fast. The weights of the rats were taken before and after the treatment. Blood samples were collected in heparinized tubes and biochemical analysis of liver functions and lipid profile tests were carried out on plasma. There was a significant change (p<0.05) in the levels of alanine aminotransferase, alkaline phosphatase, high density lipoprotein and triglycerides of the CCl4 induced group treated with HU compared to the CCl4 untreated group 2 animals. The results obtained showed that the ethanolic extract of HU has hepatoprotective property.

  18. Ameliorative Influence of Green Tea Extract on Copper Nanoparticle-Induced Hepatotoxicity in Rats

    NASA Astrophysics Data System (ADS)

    Ibrahim, Marwa A.; Khalaf, A. A.; Galal, Mona K.; Ogaly, Hanan A.; H. M. Hassan, Azza

    2015-09-01

    The potential toxicity of copper nanoparticles (CNPs) to the human health and environment remains a critical issue. In the present study, we investigated the protective influence of an aqueous extract of green tea leaves (GTE) against CNPs-induced (20-30 nm) hepatotoxicity. Four different groups of rats were used: group I was the control, group II received CNPs (40 mg/kg BW), group III received CNPs plus GTE, and group IV received GTE alone. We highlighted the hepatoprotective effect of GTE against CNPs toxicity through monitoring the alteration of liver enzyme activity, antioxidant defense mechanism, histopathological alterations, and DNA damage evaluation. The rats that were given CNPs only had a highly significant elevation in liver enzymes, alteration in oxidant-antioxidant balance, and severe pathological changes. In addition, we detected a significant elevation of DNA fragmentation percentage, marked DNA laddering, and significance over expression of both caspase-3 and Bax proteins. The findings for group III clarify the efficacy of GTE as a hepatoprotectant on CNPs through improving the liver enzyme activity, antioxidant status, as well as suppressing DNA fragmentation and the expression of the caspase-3 and Bax proteins. In conclusion, GTE was proved to be a potential hepatoprotective additive as it significantly ameliorates the hepatotoxicity and apoptosis induced by CNPs.

  19. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum.

    PubMed

    Lau, Kit-Man; He, Zhen-Dan; Dong, Hui; Fung, Kwok-Pui; But, Paul Pui-Hay

    2002-11-01

    Aqueous extract of processed leaves of Ligustrum robustum could dose-dependently scavenge superoxide radicals, inhibit lipid peroxidation, and prevent AAPH-induced hemolysis of red blood cells. In comparison with green tea, oolong tea and black tea, processed leaves of L. robustum exhibited comparable antioxidant potency in scavenging superoxide radicals and in preventing red blood cell hemolysis. By activity-guided fractionation, a glycoside-rich fraction named fraction B2 was separated and demonstrated to possess strong antioxidant effect. It was evaluated for its anti-inflammatory and hepato-protective activities. A single oral dose of fraction B2 at 0.5 g/kg could provide 51.5% inhibition on the vascular permeability change induced by intraperitoneal injection of acetic acid, but it could not inhibit croton oil-induced ear edema. On the other hand, fraction B2 exhibited moderate hepato-protective effect. Intragastric application of fraction B2 at 1.25, 2.5 or 5 g/kg 6 h after carbon tetrachloride administration could reduce the elevations of serum levels of aminotransferases (AST and ALT). Also, liver integrity was preserved, as liver sections from rats post-treated with fraction B2 showed a milder degree of fatty accumulation and necrosis. These results offer partial support to the traditional uses of the leaves of L. robustum as Ku-Ding-Cha.

  20. Short-term therapy with peroxisome proliferation-activator receptor-alpha agonist Wy-14,643 protects murine fatty liver against ischemia-reperfusion injury.

    PubMed

    Teoh, Narci C; Williams, Jacqueline; Hartley, Jennifer; Yu, Jun; McCuskey, Robert S; Farrell, Geoffrey C

    2010-03-01

    Steatosis increases operative morbidity/mortality from ischemia-reperfusion injury (IRI); few pharmacological approaches have been protective. Using novel genetic/dietary models of nonalcoholic steatohepatitis (NASH) and simple steatosis (SS) in Alms1 mutant (foz/foz) mice, we characterized severity of IRI in NASH versus SS and lean liver and tested our hypothesis that the lipid-lowering effects of the peroxisome proliferation-activator receptor (PPAR)-alpha agonist Wy-14,643 would be hepatoprotective. Mice were subjected to 60-minute partial hepatic IRI. Microvascular changes were assessed at 15-minute reperfusion by in vivo microscopy, injury at 24 hours by serum alanine aminotransferase (ALT), and hepatic necrosis area. Injury and inflammation mediators were determined by way of immunoblotting for intercellular cellular adhesion molecule, vascular cellular adhesion molecule, p38, c-jun N-terminal kinase, IkappaB-alpha, interleukin (IL)-1a, IL-12, tumor necrosis factor-alpha (TNF-alpha) and IL-6, cell cycle by cyclin D1 and proliferating cell nuclear antigen immunohistochemistry. In foz/foz mice fed a high-fat diet (HFD) to cause NASH or chow (SS), IRI was exacerbated compared with HFD-fed or chow-fed wild-type littermates by ALT release; corresponding necrotic areas were 60 +/- 22% NASH, 29 +/- 9% SS versus 7 +/- 1% lean. Microvasculature of NASH or SS livers was narrowed by enormous lipid-filled hepatocytes, significantly reducing numbers of perfused sinusoids, all exacerbated by IRI. Wy-14,643 reduced steatosis in NASH and SS livers, whereas PPAR-alpha stimulation conferred substantial hepatoprotection against IRI by ALT release, with reductions in vascular cellular adhesion molecule-1, IL-1a, TNF-alpha, IL-12, activated nuclear factor-kappaB (NF-kappaB), p38, IL-6 production and cell cycle entry. NASH and SS livers are both more susceptible to IRI. Mechanisms include possible distortion of the microvasculature by swollen fat-laden hepatocytes, and enhanced production of several cytokines. The beneficial effects of Wy-14,643 may be exerted by dampening adhesion molecule and cytokine responses, and activating NF-kappaB, IL-6 production, and p38 kinase to effect cell cycle entry.

  1. Cistanches Herba: A Neuropharmacology Review

    PubMed Central

    Gu, Caimei; Yang, Xianying; Huang, Linfang

    2016-01-01

    Cistanches Herba (family Orobanchaceae), commonly known as “desert ginseng” or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer’s disease and Parkinson’s disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba. PMID:27703431

  2. Cistanches Herba: A Neuropharmacology Review.

    PubMed

    Gu, Caimei; Yang, Xianying; Huang, Linfang

    2016-01-01

    Cistanches Herba (family Orobanchaceae), commonly known as "desert ginseng" or Rou Cong Rong, is a global genus and commonly used for its neuroprotective, immunomodulatory, anti-oxidative, kidney impotence, laxative, anti-inflammatory, hepatoprotective, anti-bacterial, anti-viral, and anti-tumor effects in traditional herbal formulations in North Africa, Arabic, and Asian countries. The major bioactive compound present in this plant is phenylethanoid glycosides. In recent years, there has been great important in scientific investigation of the neuropharmacological effects of the bioactive compounds. The in vitro and in vivo studies suggests these compounds demonstrate neuropharmacological activities against a wide range of complex nervous system diseases which occurs through different mechanisms include improving immunity function and kidney aging, anti-lipid peroxidation, scavenging free radical, inducing the activation of caspase-3 and caspase-8. This review aims to summaries the various neuropharmacological effects and mechanisms of Cistanches Herba extracts and related compounds, including its efficacy as a cure for Alzheimer's disease and Parkinson's disease with reference to the published literature. Which provides guidance for further research on the clinical application of Cistanches Herba .

  3. Isopropyl Caffeate: A Caffeic Acid Derivative—Antioxidant Potential and Toxicity

    PubMed Central

    Montenegro, Camila de Albuquerque; de Oliveira, Kardilandia Mendes; de Oliveira Filho, Abrahão Alves; da Paz, Alexandre Rolim; de Araújo, Marianna Oliveira; Lima, Caliandra Maria Bezerra Luna; Diniz, Margareth de Fátima Formiga Melo; Pessôa, Hilzeth de Luna Freire

    2018-01-01

    Phenolic compounds, among them isopropyl caffeate, possess antioxidant potential, but not without toxicity and/or adverse effects. The present study aimed to evaluate the antioxidant activity and toxicity of isopropyl caffeate through in silico, in vitro and in vivo testing. The results showed that isopropyl caffeate presents no significant theoretical risk of toxicity, with likely moderate bioactivity: GPCR binding, ion channel modulation, nuclear receptor binding, and enzyme inhibition. Isopropyl caffeate induced hemolysis only at the concentrations of 500 and 1000 μg/ml. We observed types A and O erythrocyte protection from osmotic stress, no oxidation of erythrocytes, and even sequestrator and antioxidant behavior. However, moderate toxicity, according to the classification of GHS, was demonstrated through depressant effects on the central nervous system, though there was no influence on water and food consumption or on weight gain, and it did present possible hepatoprotection. We conclude that the effects induced by isopropyl caffeate are due to its antioxidant activity, capable of preventing production of free radicals and oxidative stress, a promising molecule with pharmacological potential. PMID:29849905

  4. Hepatoprotective Effects of Grape Seed Procyanidin B2 in Rats With Carbon Tetrachloride-induced Hepatic Fibrosis.

    PubMed

    Wang, Zhenli; Zhang, Zemin; Du, Ning; Wang, Kai; Li, Lei

    2015-01-01

    Infectious hepatitis is a serious problem affecting millions of people worldwide, particularly in China and other developing countries, and it is the major risk factor for hepatic cirrhosis. To date, the pathogenesis of hepatic cirrhosis is complex and unclear. Traditional Chinese medicine (TCM) has long been used in its treatment; however, little is known to date about the effects of grape seed procyanidin B2 (GSPB2) on liver fibrosis. Using a rat model of carbon tetrachloride (CCl4)-induced hepatic fibrosis, the study intended to investigate the hepatoprotective effects of GSPB2 and to determine the possible pathway by which GSPB2 exerts its activities. Design • Thirty-six male, Sprague-Dawley rats were used in the study. Rats in a model (CCl4 only) group and the GSPB2 group were given CCl4 to induce hepatic fibrosis. Simultaneously, animals in the GSPB2 group were treated with GSPB2 by intragastric administration for 12 wk. In addition, the rat's Kupffer cells were cultured with CCl4 and GSPB2. The study took place at the central laboratory of Qilu Hospital at Shandong University in Jinan, China. The following parameters were investigated: (1) hepatic function; (2) the liver fibrosis index-serum hyaluronic acid (HA), laminin (LN), type 3 procollagen (PC-3), collagen 4, and hepatic hydroxyproline; (3) the expression in the liver of transforming growth factor β-1 (TGF-β1); (4) inflammatory cytokines in the liver and cell culture medium-tumor necrosis factor α (TNF-α), interleukin (IL) 1-β (IL-1β), IL-6, and IL-17; (5) oxidative stress markers in the liver and cell culture medium-malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine (8-OHdG), total superoxide dismutase (T-SOD), and total antioxidant capacity (T-AOC); and (6) levels of angiotensin 2 (Ang 2) in the liver. The CCl4 induced (1) significant hepatic-function damage; (2) elevated levels of the measures of the liver fibrosis index, TGF-β1, inflammatory cytokines, MDA, and 8-OHdG; (3) a reduction in the activities of T-SOD and T-AOC; and (4) no effect on the level of expression of hepatic Ang 2. GSPB2 treatment partially reversed the changes induced by CCl4. The cell culture also showed that CCl4 elevated the levels of inflammatory cytokines and MDA in the Kupffer cell culture medium, whereas it reduced the activities of T-SOD and T-AOC in the medium. GSPB2 treatment partially reversed the changes induced by CCl4. GSPB2 had hepatoprotective effects on CCl4-induced hepatic fibrosis in Sprague-Dawley rats and inhibited the inflammatory response and oxidative stress in vivo and in vitro.

  5. The Pharmacological Potential of Mushrooms

    PubMed Central

    2005-01-01

    This review describes pharmacologically active compounds from mushrooms. Compounds and complex substances with antimicrobial, antiviral, antitumor, antiallergic, immunomodulating, anti-inflammatory, antiatherogenic, hypoglycemic, hepatoprotective and central activities are covered, focusing on the review of recent literature. The production of mushrooms or mushroom compounds is discussed briefly. PMID:16136207

  6. Hepatoprotective effects of Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] on alcohol-damaged primary rat hepatocyte culture in vitro.

    PubMed

    Jiang, Wenhua; Bian, Yuzhu; Wang, Zhenghui; Chang, Thomas Ming Swi

    2017-02-01

    We have prepared a novel nanobiotherapeutic, Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase], which not only transports both oxygen and carbon dioxide but also a therapeutic antioxidant. Our previous study in a severe sustained 90 min hemorrhagic shock rat model shows that it has a hepatoprotective effect. We investigate its hepatoprotective effect further in this present report using an alcohol-damaged primary hepatocyte culture model. Results show that it significantly reduced ethanol-induced AST release, lipid peroxidation, and ROS production in rat primary hepatocytes culture. It also significantly enhanced the viability of ethanol-treated hepatocytes. Thus, the result shows that Poly-[hemoglobin-superoxide dismutase-catalase-carbonic anhydrase] also has some hepatoprotective effects against alcohol-induced injury in in vitro rat primary hepatocytes cell culture. This collaborate our previous observation of its hepatoprotective effect in a severe sustained 90-min hemorrhagic shock rat model.

  7. Andrographis paniculata Leaf Extract Prevents Thioacetamide-Induced Liver Cirrhosis in Rats

    PubMed Central

    Bardi, Daleya Abdulaziz; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson’s Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells. PMID:25280007

  8. Andrographis paniculata leaf extract prevents thioacetamide-induced liver cirrhosis in rats.

    PubMed

    Abdulaziz Bardi, Daleya; Halabi, Mohammed Farouq; Hassandarvish, Pouya; Rouhollahi, Elham; Paydar, Mohammadjavad; Moghadamtousi, Soheil Zorofchian; Al-Wajeeh, Nahla Saeed; Ablat, Abdulwali; Abdullah, Nor Azizan; Abdulla, Mahmood Ameen

    2014-01-01

    This study investigated the hepatoprotective effects of ethanolic Andrographis paniculata leaf extract (ELAP) on thioacetamide-induced hepatotoxicity in rats. An acute toxicity study proved that ELAP is not toxic in rats. To examine the effects of ELAP in vivo, male Sprague Dawley rats were given intraperitoneal injections of vehicle 10% Tween-20, 5 mL/kg (normal control) or 200 mg/kg TAA thioacetamide (to induce liver cirrhosis) three times per week. Three additional groups were treated with thioacetamide plus daily oral silymarin (50 mg/kg) or ELAP (250 or 500 mg/kg). Liver injury was assessed using biochemical tests, macroscopic and microscopic tissue analysis, histopathology, and immunohistochemistry. In addition, HepG2 and WRL-68 cells were treated in vitro with ELAP fractions to test cytotoxicity. Rats treated with ELAP exhibited significantly lower liver/body weight ratios and smoother, more normal liver surfaces compared with the cirrhosis group. Histopathology using Hematoxylin and Eosin along with Masson's Trichrome stain showed minimal disruption of hepatic cellular structure, minor fibrotic septa, a low degree of lymphocyte infiltration, and minimal collagen deposition after ELAP treatment. Immunohistochemistry indicated that ELAP induced down regulation of proliferating cell nuclear antigen. Also, hepatic antioxidant enzymes and oxidative stress parameters in ELAP-treated rats were comparable to silymarin-treated rats. ELAP administration reduced levels of altered serum liver biomarkers. ELAP fractions were non-cytotoxic to WRL-68 cells, but possessed anti-proliferative activity on HepG2 cells, which was confirmed by a significant elevation of lactate dehydrogenase, reactive oxygen species, cell membrane permeability, cytochrome c, and caspase-8,-9, and, -3/7 activity in HepG2 cells. A reduction of mitochondrial membrane potential was also detected in ELAP-treated HepG2 cells. The hepatoprotective effect of 500 mg/kg of ELAP is proposed to result from the reduction of thioacetamide-induced toxicity, normalizing reactive oxygen species levels, inhibiting cellular proliferation, and inducing apoptosis in HepG2 cells.

  9. Hepatoprotective role of Ricinus communis leaf extract against d-galactosamine induced acute hepatitis in albino rats.

    PubMed

    Babu, Pappithi Ramesh; Bhuvaneswar, Cherukupalle; Sandeep, Gandham; Ramaiah, Chintha Venkata; Rajendra, Wudayagiri

    2017-04-01

    Ricinus communis (RC) is a traditional medicinal plant which has been used by Chenchu and Yerukula tribes for treating their liver ailments. The present work is aimed to explore the hepatoprotective efficacy of Ricinus communis against d-galactosamine (D-GalN) induced hepatitis rat model and its therapeutic potential compared with standard drug, silymarin (100mg/kg.bw). In vitro antioxidant activity of Methanolic extract of Ricinus communis leaves (MERCL) was assayed through DPPH and H 2 O 2 free radical scavenging activity. Qualitative and quantitative analysis of MERCL using HPLC, demonstrated that Rutin was found to be predominant bioactive compound in the extract. Hepatitis was induced by treating the rats with D-GalN at a single intraperitoneal dose of 800mg/kg.bw. Serum markers viz, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP) and Malondialdehyde (MDA) levels were significantly increased and the activity levels of antioxidant enzymes such as Superoxide dismutase (SOD),Catalase (CAT), Glutathione reductase (GR), Glutathione peroxidase (GPx), non-enzymatic antioxidant Glutathione (GSH) levels were decreased in the liver of hepatitis induced rats when compared to controls. Pre and post treatment with MERCL significantly altered the enzyme activities, GSH and MDA to normal levels. Histopathological observations also showed protective and curative effects of MERCL against D-GalN intoxication. These results demonstrated that MERCL significantly protected the liver from d-galactosamine induced hepatitis, improved the curative effect in the liver and hence, MERCL can be used as a potent hepatoprotective drug in future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Potential protective effect of honey against paracetamol-induced hepatotoxicity.

    PubMed

    Galal, Reem M; Zaki, Hala F; Seif El-Nasr, Mona M; Agha, Azza M

    2012-11-01

    Paracetamol overdose causes severe hepatotoxicity that leads to liver failure in both humans and experimental animals. The present study investigates the protective effect of honey against paracetamol-induced hepatotoxicity in Wistar albino rats. We have used silymarin as a standard reference hepatoprotective drug. Hepatoprotective activity was assessed by measuring biochemical parameters such as the liver function enzymes, serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST). Equally, comparative effects of honey on oxidative stress biomarkers such as malondialdyhyde (MDA), reduced glutathione (GSH) and glutathione peroxidase (GPx) were also evaluated in the rat liver homogenates.  We estimated the effect of honey on serum levels and hepatic content of interleukin-1beta (IL-1β) because the initial event in paracetamol-induced hepatotoxicity has been shown to be a toxic-metabolic injury that leads to hepatocyte death, activation of the innate immune response and upregulation of inflammatory cytokines. Paracetamol caused marked liver damage as noted by significant increased activities of serum AST and ALT as well as the level of Il-1β. Paracetamol also resulted in a significant decrease in liver GSH content and GPx activity which paralleled an increase in Il-1β and MDA levels. Pretreatment with honey and silymarin prior to the administration of paracetamol significantly prevented the increase in the serum levels of hepatic enzyme markers, and reduced both oxidative stress and inflammatory cytokines. Histopathological evaluation of the livers also revealed that honey reduced the incidence of paracetamol-induced liver lesions. Honey can be used as an effective hepatoprotective agent against paracetamol-induced liver damage.

  11. Antimalarial and hepatoprotective effects of crude ethanolic extract of Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P.Karst. (higher Basidiomycetes), in Plasmodium berghei-infected mice.

    PubMed

    Oluba, Olarewaju M; Olusola, Augustine O; Fagbohunka, Bamidele S; Onyeneke, E

    2012-01-01

    This study was aimed at investigating the in vivo antimalarial activity (using some biochemical indices) of crude aqueous extracts of the fruiting bodies of Ganoderma lucidum, a mushroom with well-established medicinal properties. A rodent malaria parasite, Plasmodium berghei (1 × 107), was inoculated intraperitoneally into Swiss albino mice. The test groups were administered G. lucidum extract and chloroquine (CQ, as standard drug), while the control groups were administered the same amount of distilled water by an intragastric tube once daily. The antimalarial activity of the extract was investigated from the suppressive, curative, and prophylactic effects of the extract on parasite growth. Serum aminotransferases (AST and ALT), alkaline phosphatase (ALP), and gamma glutamine transpeptidase (γ-GT) levels monitored following the 4-day suppressive test were significantly reduced, with a corresponding significant increase in the livers of mice treated with the extract compared with infected untreated mice. The results obtained from this study provide scientific justification in an animal model of malaria that an ethanolic extract of G. lucidum possesses potent antimalarial activity and also could help ameliorate the attendant Plasmodium-induced liver damage due to malarial infection.

  12. Medicinal and therapeutic potential of Sea buckthorn (Hippophae rhamnoides L.).

    PubMed

    Suryakumar, Geetha; Gupta, Asheesh

    2011-11-18

    ETHNOPHARMACOLOGICAL CONTEXT: This review explores the medicinal and therapeutic applications of Sea buckthorn (Hippophae rhamnoides L.) in curtailing different types of acute as well as chronic maladies. The plant is being used in different parts of the world for its nutritional and medicinal properties. Sea buckthorn based preparations have been extensively exploited in folklore treatment of slow digestion, stomach malfunctioning, cardiovascular problems, liver injury, tendon and ligament injuries, skin diseases and ulcers. In the recent years, medicinal and pharmacological activities of Sea buckthorn have been well investigated using various in vitro and in vivo models as well as limited clinical trials. Sea buckthorn has been scientifically analyzed and many of its traditional uses have been established using several biochemical and pharmacological studies. Various pharmacological activities such as cytoprotective, anti-stress, immunomodulatory, hepatoprotective, radioprotective, anti-atherogenic, anti-tumor, anti-microbial and tissue regeneration have been reported. It is clear that Sea buckthorn is an important plant because of its immense medicinal and therapeutic potential. However, several knowledge gaps identified in this paper would give impetus to new academic and R&D activities especially for the development of Sea buckthorn based herbal medicine and nutraceuticals. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  13. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis.

    PubMed

    Pamunuwa, Geethi; Karunaratne, D Nedra; Waisundara, Viduranga Y

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means.

  14. Antidiabetic Properties, Bioactive Constituents, and Other Therapeutic Effects of Scoparia dulcis

    PubMed Central

    Karunaratne, D. Nedra

    2016-01-01

    This review discusses the antidiabetic activities of Scoparia dulcis as well as its antioxidant and anti-inflammatory properties in relation to the diabetes and its complications. Ethnomedical applications of the herb have been identified as treatment for jaundice, stomach problems, skin disease, fever, and kidney stones, reproductory issues, and piles. Evidence has been demonstrated through scientific studies as to the antidiabetic effects of crude extracts of S. dulcis as well as its bioactive constituents. The primary mechanisms of action of antidiabetic activity of the plant and its bioactive constituents are through α-glucosidase inhibition, curbing of PPAR-γ and increased secretion of insulin. Scoparic acid A, scoparic acid D, scutellarein, apigenin, luteolin, coixol, and glutinol are some of the compounds which have been identified as responsible for these mechanisms of action. S. dulcis has also been shown to exhibit analgesic, antimalarial, hepatoprotective, sedative, hypnotic, antiulcer, antisickling, and antimicrobial activities. Given this evidence, it may be concluded that S. dulcis could be promoted among the masses as an alternative and complementary therapy for diabetes, provided further scientific studies on the toxicological and pharmacological aspects are carried out through either in vivo or clinical means. PMID:27594892

  15. The effect of five Taraxacum species on in vitro and in vivo antioxidant and antiproliferative activity.

    PubMed

    Mingarro, D Muñoz; Plaza, A; Galán, A; Vicente, J A; Martínez, M P; Acero, N

    2015-08-01

    Plants belonging to the genus Taraxacum are considered a nutritious food, being consumed raw or cooked. Additionally, these plants have long been used in folk medicine due to their choleretic, diuretic, antitumor, antioxidant, antiinflammatory, and hepatoprotective properties. This genus, with its complex taxonomy, includes several species that are difficult to distinguish. Its traditional use must be related not only to T. officinale F.H. Wigg., the most studied species, but also to others. The aim of this work is to compare five different common South European species of Taraxacum (T. obovatum (Willd.) DC., T. marginellum H. Lindb., T. hispanicum H. Lindb., T. lambinonii Soest and T. lacistrum Sahlin), in order to find differences between antioxidant and cytotoxic activities among them. Dissimilarities between species in LC/MS patterns, in in vitro and intracellular antioxidant activity and also in the cytotoxicity assay were found. T. marginellum was the most efficient extract reducing intracellular ROS levels although in in vitro assays, T. obovatum was the best free radical scavenger. A relevant cytotoxic effect was found in T. lacistrum extract over HeLa and HepG2 cell lines.

  16. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property.

    PubMed

    Fu, Zhifei; Fan, Xiang; Wang, Xiaoying; Gao, Xiumei

    2018-06-12

    Cistanches Herba is an Orobanchaceae parasitic plant. As a commonly used Traditional Chinese Medicine (TCM), its traditional functions include treating kidney deficiency, impotence, female infertility and senile constipation. Chemical analysis of Cistanches Herba revealed that phenylethanoid glycosides, iridoids, lignans, oligosaccharides, and polysaccharides were the main constituents. Pharmacological studies demonstrated that Cistanches Herba exhibited neuroprotective, immunomodulatory, hormonal balancing, anti-fatigue, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, anti-viral, and anti-tumor effects, etc. The aim of this review is to provide updated, comprehensive and categorized information on the phytochemistry, pharmacological research and pharmacokinetics studies of the major constituents of Cistanches Herba. The literature search was conducted by systematic searching multiple electronic databases including SciFinder, ISI Web of Science, PubMed, Google Scholar and CNKI. Information was also collected from journals, local magazines, books, monographs. To date, more than 100 compounds have been isolated from this genus, include phenylethanoid glycosides, carbohydrates, lignans, iridoids, etc. The crude extracts and isolated compounds have exhibited a wide range of in vitro and in vivo pharmacologic effects, such as neuroprotective, immunomodulatory, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, and anti-tumor effects. The phenylethanoid glycosides, echinacoside and acteoside have attracted the most attention for their significantly neuropharmacology effects. Pharmacokinetic studies of echinacoside and acteoside also have also been summarized. Phenylethanoid glycosides have demonstrated wide pharmacological actions and have great clinical value if challenges such as poor bioavailability, fast and extensive metabolism are addressed. Apart from phenylethanoid glycosides, other constituents of Cistanches Herba, their pharmacological activities and underlying mechanisms are also need to be studied further. Copyright © 2017. Published by Elsevier B.V.

  17. An Indian Desert Shrub 'Hiran Chabba', Farsetia Hamiltonii Royle, Exhibits Potent Antioxidant and Hepatoprotective Effect Against Iron-Overload Induced Liver Toxicity in Swiss Albino Mice.

    PubMed

    Basu, Tapasree; Kumar, Bipul; Shendge, Anil Khushalrao; Panja, Sourav; Chugh, Heerak; Gautam, Hemant K; Mandal, Nripendranath

    2018-04-18

    Farsetia hamiltonii Royle, also known as Hiran Chabba grows in desert regions. It is widely used as folk medicine to treat joint pains, diarrhea and diabetes. However, its antioxidant and iron chelation abilities both in vitro and in vivo have not yet been investigated. The 70% methanolic extract of F.hamiltonii (FHME) was investigated for its free radical scavenging and iron chelation potential, in vitro. An iron-overload situation was established by intraperitoneal injection of iron-dextran in Swiss albino mice, followed by oral administration of FHME. Liver damage and serum parameters due to iron-overload were measured biochemically and histopathologically to test iron-overload remediation and hepatoprotective potential of FHME. Phytochemical analyses were performed to determine its probable bioactive components. FHME showed promising antioxidant activity, scavenged various reactive oxygen and nitrogen species and chelated iron in vitro. FHME reduced liver iron, serum ferritin, normalized serum parameters, reduced oxidative stress in liver, serum and improved liver antioxidant status in iron-overloaded mice. It also alleviated liver damage and fibrosis as evident from biochemical parameters and morphological analysis of liver sections. The phytochemical analyses of FHME reflected the presence of alkaloids, phenols, flavonoids and tannins. HPLC analysis indicated presence of tannic acid, quercetin, methyl gallate, catechin, reserpine, ascorbic acid and gallic acid. Based on the experimental outcome, FHME, an ethnologically important plant can be envisaged as excellent antioxidant and iron chelator drug capable of remediating iron-overload induced hepatotoxicity and the bioactive compounds present in FHME might be responsible for its efficacy. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    PubMed Central

    Yim, Yun-Kyoung; Lee, Hyun; Hong, Kwon-Eui; Kim, Young-Il; Lee, Byung-Ryul; Kim, Tae-Han; Yi, Ji-Young

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats. METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34 (Yanglingquan) 3 times a week for 10 wk. A non-acupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index, biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted. RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes. CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats. PMID:16610030

  19. Hepatoprotective effect of manganese chloride against CCl4-induced liver injury in rats.

    PubMed

    Eidi, Akram; Mortazavi, Pejman; Behzadi, Khodabakhsh; Rohani, Ali Haeri; Safi, Shahabeddin

    2013-11-01

    The aim of the present study is to evaluate the protective effect of manganese chloride against carbon tetrachloride (CCl4)-induced liver injury in rats. Manganese chloride (0.001, 0.01, 0.05 and 0.1 g/kg bw) was administered intragastrically for 28 consecutive days to male CCl4-treated rats. The hepatoprotective activity was assessed using various biochemical parameters such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), γ-glutamyltransferase (GGT) and superoxide dismutase (SOD). Histopathological changes in the liver of different groups were also studied. Administration of CCl4 increased the serum ALT, AST, ALP and GGT but decreased SOD levels in rats. Treatment with manganese chloride significantly attenuated these changes to nearly normal levels. The animals treated with manganese chloride have shown decreased necrotic zones and hepatocellular degeneration when compared to the liver exposed to CCl4 intoxication alone. Thus, the histopathological studies also supported the protective effect of manganese chloride. Therefore, the results of this study suggest that manganese chloride exerts hepatoprotection via promoting antioxidative properties against CCl4-induced oxidative liver damage.

  20. Bioactive compounds, antioxidant potential, and hepatoprotective activity of sea cucumber (Holothuria atra) against thioacetamide intoxication in rats.

    PubMed

    Esmat, Amr Y; Said, Mahmoud M; Soliman, Amel A; El-Masry, Khaled S H; Badiea, Elham Abdel

    2013-01-01

    The identification of the active phenolic compounds in the mixed extract of sea cucumber (Holothuria atra) body wall by high-performance liquid chromatography and an assessment of its hepatoprotective activity against thioacetamide-induced liver fibrosis in rats. Female Swiss albino rats were divided into four groups: normal controls; oral administration of a sea cucumber mixed extract (14.4 mg/kg of body weight) on days 2, 4, and 6 weekly for 8 consecutive weeks; intoxication with thioacetamide (200 mg/kg of body weight, intraperitoneally) on days 2 and 6 weekly for 8 wk; and oral administration of a sea cucumber extract and then intoxication with thioacetamide 2 h later for 8 wk. High-performance liquid chromatographic analysis of the sea cucumber mixed extract revealed the presence of some phenolic components, such as chlorogenic acid, pyrogallol, rutin, coumaric acid, catechin, and ascorbic acid. In vitro studies have shown that the extract has a high scavenging activity for the nitric oxide radical, a moderate iron-chelating activity, and a weak inhibitory effect of lipid peroxidation. The subchronic oral administration of sea cucumber extract to the rats did not show any toxic side effects but increased hepatic superoxide dismutase and glutathione peroxidase activities. The coadministration of sea cucumber extract and thioacetamide (protection modality) normalized serum direct bilirubin, alanine and aspartate aminotransferases, hepatic malondialdehyde, and hydroxyproline concentrations and antioxidant enzyme activities. In addition, the histologic examination of liver sections from the protection group that were stained with hematoxylin and eosin showed substantial attenuation of the degenerative cellular changes and regressions in liver fibrosis and necrosis induced by the thioacetamide intoxication. Sea cucumber mixed extract contains physiologically active phenolic compounds with antioxidant activity, which afforded a potential hepatoprotective activity against thioacetamide-induced liver injury in a rat model. Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Rectification of impaired adipose tissue methylation status and lipolytic response contributes to hepatoprotective effect of betaine in a mouse model of alcoholic liver disease

    PubMed Central

    Dou, Xiaobing; Xia, Yongliang; Chen, Jing; Qian, Ying; Li, Songtao; Zhang, Ximei; Song, Zhenyuan

    2014-01-01

    Background and Purpose Overactive lipolysis in adipose tissue contributes to the pathogenesis of alcoholic liver disease (ALD); however, the mechanisms involved have not been elucidated. We previously reported that chronic alcohol consumption produces a hypomethylation state in adipose tissue. In this study we investigated the role of hypomethylation in adipose tissue in alcohol-induced lipolysis and whether its correction contributes to the well-established hepatoprotective effect of betaine in ALD. Experimental Approach Male C57BL/6 mice were divided into four groups and started on one of four treatments for 5 weeks: isocaloric pair-fed (PF), alcohol-fed (AF), PF supplemented with betaine (BT/AF) and AF supplemented with betaine (BT/AF). Betaine, 0.5% (w v−1), was added to the liquid diet. Both primary adipocytes and mature 3T3-L1 adipocytes were exposed to demethylation reagents and their lipolytic responses determined. Key Results Betaine alleviated alcohol-induced pathological changes in the liver and rectified the impaired methylation status in adipose tissue, concomitant with attenuating lipolysis. In adipocytes, inducing hypomethylation activated lipolysis through a mechanism involving suppression of protein phosphatase 2A (PP2A), due to hypomethylation of its catalytic subunit, leading to increased activation of hormone-sensitive lipase (HSL). In line with in vitro observations, reduced PP2A catalytic subunit methylation and activity, and enhanced HSL activation, were observed in adipose tissue of alcohol-fed mice. Betaine attenuated this alcohol-induced PP2A suppression and HSL activation. Conclusions and Implications In adipose tissue, a hypomethylation state contributes to its alcohol-induced dysfunction and an improvement in its function may contribute to the hepatoprotective effects of betaine in ALD. PMID:24819676

  2. Antioxidant and hepatoprotective effect of Garcinia indica fruit rind in ethanol-induced hepatic damage in rodents

    PubMed Central

    Ashar, Hardik; Srinath, Sudhamani

    2012-01-01

    The protective effects of aqueous extracts of the fruit rind of Garcinia indica (GIE) on ethanol-induced hepatotoxicity and the probable mechanisms involved in this protection were investigated in rats. Liver damage was induced in rats by administering ethanol (5 g/kg, 20% w/v p.o.) once daily for 21 days. GIE at 400 mg/kg and 800 mg/kg and the reference drug silymarin (200 mg/kg) were administered orally for 28 days to ethanol treated rats, this treatment beginning 7 days prior to the commencement of ethanol administration. Levels of marker enzymes (aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP)), triglyceride (sTG), albumin (Alb) and total protein (TP) were evaluated in serum. Antioxidant parameters (reduced glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)), hepatic triglycerides (hTG) and the lipid peroxidation marker malondialdehyde (MDA) were determined in liver. GIE and silymarin elicited significant hepatoprotective activity by attenuating the ethanol–elevated levels of AST, ALT, ALP, sTG, hTG and MDA and restored the ethanol-depleted levels of GSH, SOD, CAT, GPx, GR, Alb and TP. GIE 800 mg/kg demonstrated greater hepatoprotection than GIE 400 mg/kg. The present findings indicate that hepatoprotective effects of GIE in ethanol-induced oxidative damage may be due to an augmentation of the endogenous antioxidants and inhibition of lipid peroxidation in liver. PMID:23554565

  3. Quercetin protects liver injury induced by bile duct ligation via attenuation of Rac1 and NADPH oxidase1 expression in rats.

    PubMed

    Kabirifar, Razieh; Ghoreshi, Zohreh-Al-Sadat; Safari, Fatemeh; Karimollah, Alireza; Moradi, Ali; Eskandari-Nasab, Ebrahim

    2017-02-01

    Bile duct ligation (BDL) and subsequent cholestasis are correlated with oxidative stress, hepatocellular injury and fibrosis. Quercetin is a flavonoid with antifibrotic, and hepatoprotective properties. However, the molecular mechanism underlying quercetin-mediated hepatoprotection is not fully understood. The current study was to evaluate mechanisms of hepatoprotective effect of quercetin in BDL rat model. We divided male Wistar rats into 4 groups (n=8 for each): sham, sham+quercetin (30 mg/kg per day), BDL, and BDL+quercetin (30 mg/kg per day). Four weeks later, the rats were sacrificed, the blood was collected for liver enzyme measurements and liver for the measurement of Rac1, Rac1-GTP and NOX1 mRNA and protein levels by quantitative PCR and Western blotting, respectively. Quercetin significantly alleviated liver injury in BDL rats as evidenced by histology and reduced liver enzymes. Furthermore, the mRNA and protein expression of Rac1, Rac1-GTP and NOX1 were significantly increased in BDL rats compared with those in the sham group (P<0.05); quercetin treatment reversed these variables back toward normal (P<0.05). Another interesting finding was that the antioxidant markers e.g. superoxide dismutase and catalase were elevated in quercetin-treated BDL rats compared to BDL rats (P<0.05). Quercetin demonstrated hepatoprotective activity against BDL-induced liver injury through increasing antioxidant capacity of the liver tissue, while preventing the production of Rac1, Rac1-GTP and NOX1 proteins.

  4. Hepatoprotective and toxicological studies of Salvia bucharica methanolic extract in rabbits.

    PubMed

    Ahmad, Mansoor; Muhammed, Shafi; Mehjabeen, -; Jahan, Noor

    2014-11-01

    Most of the species of genus Salvia are famous for having medicinal properties due to their chemical constituents. Salvia bucharica (Lamiacea) is found in Balochistan near Quetta in Hannaurak and Kalat. It is used in traditional system of medicine and claims to cure liver ailments. In current study crude methanolic extract (CME) of Salvia bucharica was obtained from the leaves and tested for hepatoprotective activity and possible toxicity in rabbits. Liver toxicity was induced in rabbits by administration of carbon tetra chloride (CCl4) and evaluated by biochemical tests and histopathology of tissues. In this study rabbits were divided in to 3 groups (5 rabbit in each group). Rabbits of group I (control) were administered only vehicle (0.9% sodium chloride) orally. Rabbits of group II were given CCl4 and group III were treated with CCl4 and S. bucharica CME orally. For hepatoprotective effect serum enzyme level and total protein level were calculated. Histopathology of liver sections of rabbits was also carried out to observe protective effect. Biochemical, hematological and histoptahological parameters were studied on rabbits for toxicological studies. S. bucharica CME showed significant liver protection with reduction in total bilirubin, direct bilirubin, Alanine aminotransferase (ALT), Aspartate aminotransferase (AST), Alkaline phosphatase (ALP), gamma glutamyl transpeptidase (γ-GT). And decrease in Albumin and globulin. In toxicological studies, biochemical and histoptahological parameters showed no significant toxicity in liver, heart and kidneys. It is concluded that S. bucharica CME showed hepatoprotective effects with nontoxic profile.

  5. Hepatoprotective effect of methyl ferulic acid against carbon tetrachloride-induced acute liver injury in rats

    PubMed Central

    Yang, Chengfang; Li, Li; Ma, Zuheng; Zhong, Yujuan; Pang, Wenxiao; Xiong, Meili; Fang, Shuping; Li, Yongwen

    2018-01-01

    The present study aimed to investigate the hepatoprotective effects of methyl ferulic acid (MFA) against oxidative stress and apoptosis in acute liver injury induced by carbon tetrachloride (CCl4) in rats, as well as the underlying mechanisms. Sprague Dawley rats were treated with CCl4 after oral administration of MFA (25, 50, and 100 mg/kg) or dimethyl diphenyl bicarboxylate (200 mg/kg) for 7 days. The hepatoprotective effects of MFA were determined by analyzing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities as well as changes of oxidant parameters. Histopathological analysis was performed to determine the degree of hepatic injury. The mechanisms were investigated by detecting the levels of NADPH oxidase (NOX) trans-membrane subunit NOX4, its ligand p22phox, as well as caspase3, cleaved caspase3, B-cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), tumor necrosis factor (TNF)-α, interleukin (IL)-1, reactive oxygen species (ROS), thiobarbituric acid-reactive substances (TBARS), total anti-oxidant capacity (TAC), phosphorylated J-Jun N-terminal kinase (p-JNK) and p-p38 mitogen-activated protein kinase (MAPK) using semi-quantitative polymerase chain reaction, western blot analysis and colorimetric assays. MFA treatment significantly decreased serum enzymatic activities of ALT and AST. MFA markedly increased activities of liver superoxide dismutase, catalase and glutathione peroxidase, and reduced the malondialdehyde concentration. Histopathological examination demonstrated that MFA reduced lipid degeneration, cytoplasmic vacuolization, necrosis and inflammatory cell infiltration in the liversof CCl4-treated rats. MFA treatment markedly inhibited the expression of inflammatory factors TNF-α and IL-1β. Mechanistic study revealed that MFA decreased the TAC and the levels of ROS and TBARS. Furthermore, MFA treatment led to a reduction of the mRNA and protein expression of NOX4 and p22phox, as well as the protein levels of caspase3, cleaved caspase-3 and Bax, and an upregulation of p-JNK, p-p38 MAPK and Bcl-2 proteins in the liver. The present study demonstrated that MFA has hepatoprotective effects against CCl4-induced acute liver damage. MFA has anti-oxidant, anti-inflammatory and anti-apoptotic activities and was able to modulate the NOX4/p22phox/ROS-JNK/p38 MAPK signaling pathway. PMID:29467841

  6. Clerodendrum serratum (L.) Moon. - a review on traditional uses, phytochemistry and pharmacological activities.

    PubMed

    Patel, Jagruti J; Acharya, Sanjeev R; Acharya, Niyati S

    2014-06-11

    Clerodendrum serratum (L.) Moon. (Verbenaceae) is an important medicinal plant growing in the tropical and warm temperate regions like Africa, Southern Asia; Malaysia and distributed throughout in forests of India and Sri Lanka. It is traditionally valued and reported for treating pain, inflammation, rheumatism, respiratory disorders, fever and malarial fever in India with a long history. To provide a comprehensive overview of the traditional and ethno medicinal uses, phytochemistry and biological activities of C. serratum with clinical and toxicity data and possibly make recommendations for further research. All relevant worldwide accepted databases were searched for the terms "Clerodendrum", "Clerodendrum serratum", "Bharangi" and "Cheruthekku" along with the other literature from Indian classical texts and pharmacopoeias. There was no specific timeline set for the search. The accessible literatures available on C. serratum were collected via electronic search using Pubmed, Scopus, Science Direct and traditional books reports on ethnopharmacology and traditional medicines. C. serratum has played an important role in Indian system of medicine. In addition to the common local use in respiratory diseases, other ethnomedicinal uses include treatment of pain, inflammation, rheumatism and fever especially malarial fever. Scientific studies on extracts and formulations revealed anti-asthmatic, mast cell stabilization and anti-allergic effects of roots of C. serratum. Reported data on pharmacological activities also includes hepatoprotective, anti-oxidant, anti-inflammatory and anticancer potential of the drug. Saponins (terpenoids and steroids), flavonoids and phenolics isolated from roots have been the focus of phytochemical investigations as the biological activity has been ascribed to the saponins, which are known to possess anti-inflammatory and anti-cancer activity. Isolated bioactives from roots like icosahydropicenic acid and ursolic acid have been claimed to offer anti-allergic and hepatoprotective activity. Therapeutic potential of roots and leaves of C. serratum has been demonstrated in the conditions like asthma, allergy, fever, inflammation and liver disorders attributed to the presence of various flavonoids, phenolics and saponins present in the drug. Many ethnobotanical claims have been confirmed through modern in-vitro and in-vivo pharmacological studies of different extracts and isolates from plant; however, additional studies on the biomarkers are needed to establish mechanism of action and to validate the traditional use of this drug in clinical practices after proper safety assessment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  7. A Review on the Taxonomy, Ethnobotany, Chemistry and Pharmacology of Oroxylum indicum Vent

    PubMed Central

    Harminder; Singh, V.; Chaudhary, A. K.

    2011-01-01

    Oroxylum indicum Vent. (O. indicum) is a tree commonly called Indian trumpet tree found in tropical countries, such as India, Japan, China, Sri Lanka, Malaysia. The chemical constituents obtained from different parts of plant include baicalein-7-O-diglucoside (Oroxylin B), baicalein-7-O-glucoside, chrysin, apegenin, prunetin, sitosterol, oroxindin, biochanin-A, ellagic acid, baicalein and its 6- and 7-glucuronides, scutellarein, tetuin, antraquinone and aloe-emodin. Various parts of the plant are used in Ayurveda and folk medicine for the treatment of different ailments such as cancer, diarrhea, fever, ulcer and jaundice. Recent in vivo and in vitro studies have indicated its antiinflammatory, antiulcer, hepatoprotective, anticancer, antioxidant, photocytotoxic, antiproliferative, antiarthritic, antimicrobial, antimutagenic and immunostimulant properties. Exhaustive literature survey reveals that there are some activities which are still not proven scientifically. This article is an attempt to compile an up-to-date and comprehensive review on O. indicum covering its traditional and folk medicinal uses, phytochemistry and pharmacology. PMID:22923859

  8. Hibiscus sabdariffa L. - a phytochemical and pharmacological review.

    PubMed

    Da-Costa-Rocha, Inês; Bonnlaender, Bernd; Sievers, Hartwig; Pischel, Ivo; Heinrich, Michael

    2014-12-15

    Hibiscus sabdariffa L. (Hs, roselle; Malvaceae) has been used traditionally as a food, in herbal drinks, in hot and cold beverages, as a flavouring agent in the food industry and as a herbal medicine. In vitro and in vivo studies as well as some clinical trials provide some evidence mostly for phytochemically poorly characterised Hs extracts. Extracts showed antibacterial, anti-oxidant, nephro- and hepato-protective, renal/diuretic effect, effects on lipid metabolism (anti-cholesterol), anti-diabetic and anti-hypertensive effects among others. This might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, inhibition of angiotensin-converting enzymes (ACE), and direct vaso-relaxant effect or calcium channel modulation. Phenolic acids (esp. protocatechuic acid), organic acid (hydroxycitric acid and hibiscus acid) and anthocyanins (delphinidin-3-sambubioside and cyanidin-3-sambubioside) are likely to contribute to the reported effects. More well designed controlled clinical trials are needed which use phytochemically characterised preparations. Hs has an excellent safety and tolerability record. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. The hepatoprotective effect of sea buckthorn (Hippophae rhamnoides) berries on induced aflatoxin B1 poisoning in chickens 1.

    PubMed

    Solcan, Carmen; Gogu, Mihaela; Floristean, Viorel; Oprisan, Bogdan; Solcan, Gheorghe

    2013-04-01

    The leaves and berries of sea buckthorn (SB; Hippophae rhamnoides; family Elaeagnaceae) are medically claimed as having phytoantioxidant, antiinflammatory, and anticancerous properties in humans. This study evaluated the hepatoprotective activity of oil from SB berries against toxicity induced by aflatoxin B1 (AFB1) in broiler chickens. The toxicity of AFB1 led to lower total serum proteins and specifically reduced albumin (P < 0.001). Serum aspartate aminotransferase increased from 191.14 ± 11.56 to 218.80 ± 13.68 (P < 0.001). When chickens were simultaneously dosed with AFB1 and an extract of SB berries, subsequent histology of the liver showed a significant reduction of necrosis and fatty formation compared with chickens treated with AFB1 alone. Immunohistochemical results indicated that COX2, Bcl-2, and p53 were highly expressed in the liver of AFB1-treated chickens and their expression was significantly reduced by SB oil supplementation. The levels of AFB1 residues in chickens livers were significantly reduced by SB oil from 460.92 ± 6.2 ng/mL in the AFB1 group to 15.59 ± 6.1 ng/mL in the AFB1 and SB oil group. These findings suggest that SB oil has a potent hepatoprotective activity, reducing the concentration of aflatoxins in liver and diminishing their adverse effects.

  10. Hepatoprotective effect of electrolyzed reduced water against carbon tetrachloride-induced liver damage in mice.

    PubMed

    Tsai, Chia-Fang; Hsu, Yu-Wen; Chen, Wen-Kang; Chang, Wen-Huei; Yen, Cheng-Chieh; Ho, Yung-Chyuan; Lu, Fung-Jou

    2009-08-01

    The study investigated the protective effect of electrolyzed reduced water (ERW) against carbon tetrachloride (CCl(4))-induced liver damage. Male ICR mice were randomly divided into control, CCl(4), CCl(4)+silymarin, and CCl(4)+ERW groups. CCl(4)-induced liver lesions include leukocytes infiltration, hepatocyte necrosis, ballooning degeneration, mitosis, calcification, fibrosis and an increase of serum alanine aminotransferase (ALT), and aminotransferase (AST) activity. In addition, CCl(4) also significantly decreased the activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). By contrast, ERW or silymarin supplement significantly ameliorated the CCl(4)-induced liver lesions, lowered the serum levels of hepatic enzyme markers (ALT and AST) and increased the activities of SOD, catalase, and GSH-Px in liver. Therefore, the results of this study show that ERW can be proposed to protect the liver against CCl(4)-induced oxidative damage in mice, and the hepatoprotective effect might be correlated with its antioxidant and free radical scavenging effect.

  11. Hepatoprotective and Antioxidant Potential of Organic and Conventional Grape Juices in Rats Fed a High-Fat Diet

    PubMed Central

    Buchner, Iselde; Medeiros, Niara; dos Santos Lacerda, Denise; Normann, Carlos Augusto B. M.; Gemelli, Tanise; Rigon, Paula; Wannmacher, Clovis Milton Duval; Henriques, João Antônio Pegas; Dani, Caroline; Funchal, Cláudia

    2014-01-01

    The objective of this study was to investigate the antioxidant and hepatoprotective effect of the chronic use of conventional (CGJ) or organic (OGJ) grape juice from the Bordeaux variety grape on oxidative stress and cytoarchitecture in the liver of rats supplemented with a high-fat diet (HFD) for three months. The results demonstrated that HFD induced an increase in thiobarbituric acid-reactive substances (TBARS), catalase (CAT) activity and 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation and a decrease in sulfhydryl content and superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities. HFD also induced hepatocellular degeneration and steatosis. These alterations were prevented by CGJ and OGJ, where OGJ was more effective. Therefore, it was concluded that HFD induced oxidative stress and liver damage and that the chronic use of grape juice was able to prevent these alterations. PMID:26784874

  12. Design, synthesis and investigation of potential anti-inflammatory activity of O-alkyl and O-benzyl hesperetin derivatives.

    PubMed

    Huang, Ai-Ling; Zhang, Yi-Long; Ding, Hai-Wen; Li, Bo; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2018-05-28

    Hesperetin has been known to exert several activities such as anti-oxidant, antitumor and anti-inflammatory. To find hesperetin derivatives showing better activity, sixteen novel hesperetin derivatives were designed and synthesized. The new obtained compounds were investigated for their anti-inflammatory activity by inhibiting interleukin-1β (IL-1β), interleukin-6 (IL-6) and production of nitric oxide (NO) in mouse RAW264.7 macrophages, and the structure-activity relationship of them was discussed. Among them, the compound 1l, 2c demonstrated more effective inhibitory activity of IL-1β and IL-6, meanwhile, the compound 1l showed the best inhibition of NO production. The results of NO inhibition study were basically accord with the molecular docking results of inducible nitric oxide synthase (iNOS). Furthermore, the expression of LPS-induced iNOS and components of NF-κB signaling pathway were reduced by compound 1l. Our results suggest that the inhibitory effect of compound 1l on LPS-stimulated inflammatory mediator production in RAW 264.7 cells is associated with the suppression of NF-κB signaling pathway and inhibition of iNOS protein and iNOS activity. From in vivo study, it was also observed that compound 1l had hepato-protective and anti-inflammatory effects in CCl 4 -induced acute liver injury mouse models. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Metabolic profile and hepatoprotective activity of the anthocyanin-rich extract of Hibiscus sabdariffa calyces.

    PubMed

    Ezzat, Shahira M; Salama, Maha M; Seif El-Din, Sayed H; Saleh, Samira; El-Lakkany, Naglaa M; Hammam, Olfat A; Salem, Maha B; Botros, Sanaa S

    2016-12-01

    Hibiscus sabdariffa L. (Malvaceae) is a common traditional tea that has many biological activities. To evaluate the hepatoprotective effect and study the metabolic profile of the anthocyanin-rich extract of H. sabdariffa calyces (HSARE). The hepatoprotective activity of HSARE was assessed (100 mg/kg/d for 4 weeks) by examining the hepatic, inflammatory, oxidative stress markers and performing a histopathological examination in rats with thioacetamide (TAA)-induced hepatotoxicity. HSARE was analyzed using ultra-performance liquid chromatography-quadrupole-time-of-flight-photodiode array-mass spectrometry (UPLC-qTOF-PDA-MS). The UPLC-qTOF-PDA-MS analysis of HSARE enabled the identification of 25 compounds represented by delphinidin and its derivatives, cyanidin, kaempferol, quercetin, myricetin aglycones and glycosides, together with hibiscus lactone, hibiscus acid and caffeoylquinic acids. Compared to the TAA-intoxicated group, HSARE significantly reduced the serum levels of alanine aminotransferase, aspartate aminotransferase and hepatic malondialdehyde by 37.96, 42.74 and 45.31%, respectively. It also decreased hepatic inflammatory markers, including tumour necrosis factor alpha, interleukin-6 and interferon gamma (INF-γ), by 85.39, 14.96 and 70.87%, respectively. Moreover, it decreased the immunopositivity of nuclear factor kappa-B and CYP2E1 in liver tissue, with an increase in the effector apoptotic marker (caspase-3 positive cells), restoration of the altered hepatic architecture and increases in the activities of superoxide dismutase (SOD) and glutathione by 150.08 and 89.23%, respectively. HSARE revealed pronounced antioxidant and anti-inflammatory potential where SOD and INF-γ were significantly improved. HSARE possesses the added value of being more water-soluble and of natural origin with fewer side effects expected compared to silymarin.

  14. Hepatoprotective potential of ethanolic extract of Ziziphus oenoplia (L.) Mill roots against antitubercular drugs induced hepatotoxicity in experimental models.

    PubMed

    Rao, Ch V; Rawat, A K S; Singh, Anil P; Singh, Arpita; Verma, Neeraj

    2012-04-01

    To evaluate the hepatoprotective potential of ethanolic (50%) extract of Ziziphus oenoplia (L.) Mill (Z. oenoplia) root against isoniazid (INH) and rifampicin (RIF) induced liver damage in animal models. Five groups of six rats each were selected for the study. Ethanolic extract at a dose of 150 and 300 mg/kg as well as silymarin (100 mg/kg) were administered orally once daily for 21 d in INH + RIF treated groups. The serum levels of glutamic oxaloacetic transaminase (SGOT), glutamate pyruvate transaminase (SGPT), alkaline phosphatase (SALP), and bilirubin were estimated along with activities of superoxide dismutase, catalase, glutathione S-transferase, glutathione peroxidase, and hepatic melondialdehyde formation. Histopathological analysis was carried out to assess injury to the liver. The considerably elevated serum enzymatic activities of glutamic oxaloacetic transaminase, glutamate pyruvate transaminase, alkaline phosphatase and bilirubin due to INH + RIF treatment were restored towards normal in a dose dependent manner after the treatment with ethanolic extract of Z. oenoplia roots. Meanwhile, the decreased activities of superoxide dismutase, catalase, glutathione S-transferase and glutathione peroxidase were also restored towards normal dose dependently. In addition, ethanolic extract also significantly prevented the elevation of hepatic melondialdehyde formation in the liver of INH + RIF intoxicated rats in a dose dependent manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. The results of this study strongly indicate that ethanolic extract of Z. oenoplia has a potent hepatoprotective action against INH + RIF induced hepatic damage in rats. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. The treatment of jaundice with medicinal plants in indigenous communities of the Sub-Himalayan region of Uttarakhand, India.

    PubMed

    Sharma, Jyotsana; Gairola, Sumeet; Gaur, R D; Painuli, R M

    2012-08-30

    Inspite of tremendous advances made in allopathic medical practices, herbs still play an important role in the management of various liver diseases. A large number of plants and formulations have been claimed to have hepatoprotective activity. Jaundice is a symptom, indicative of the malfunctioning of the liver. This paper provides ethnomedicinal information on the plants used to treat jaundice by three important indigenous communities, i.e., nomadic Gujjars, Tharu and Bhoxa of Sub-Himalayan region, Uttarakhand, India. To record herbal preparations used by the studied indigenous communities in treatment of jaundice and discuss hepatoprotective properties of the recorded plants. The traditional knowledge of the studied indigenous communities on herbal preparations used for treating jaundice was collected through structured questionnaire and personal interviews. The interviews were conducted with 91 traditional healers (29 Bhoxa, 35 Tharu and 27 nomadic Gujjars) in Sub-Himalayan region of Uttarakhand, India. More than 250 research papers reporting ethnomedicinal information on the hepatoprotective plants used by various communities from different parts of India were extensively reviewed. A total of 40 medicinal plants belonging to 31 families and 38 genera were recorded to be used by the studied communities in 45 formulations as a remedy of jaundice. Bhoxa, nomadic Gujjars and Tharu communities used 15, 23 and 9 plants, respectively. To our knowledge eight plants reported in the present survey viz., Amaranthus spinosus L., Cissampelos pareira L., Ehretia laevis Roxb., Holarrhena pubescens Wall., Ocimum americanum L., Physalis divaricata D. Don, Solanum incanum L. and Trichosanthes cucumerina L. have not been reported earlier as remedy of jaundice in India. Literature review revealed that a total of 214 (belonging to 181 genus and 78 families), 19 (belonging to 18 genus and 12 families) and 14 (belonging to 14 genus and 11 families) plant species are used as internal, external and magico-religious remedies for jaundice, respectively by various communities in different parts of India. Most widely used hepatoprotective plant species for treatment of jaundice in India is Boerhavia diffusa L. followed by Tinospora cordifolia (Willd.) Miers, Saccharum officinarum L., Phyllanthus amarus Schumach. & Thonn., Ricinus communis L., Andrographis paniculata (Burm. f.) Nees., Oroxylum indicum (L.) Kurz, Lawsonia inermis L. and Eclipta prostrata (L.) L. The plants recorded in the present survey have also been discussed in relation to pharmacological studies and hepatoprotective phytoconstituents present in them. Most of the recorded plants have shown hepatoprotective effects on experimental animals in earlier studies but more studies are needed to assess hepatoprotective properties of some recorded medicinal plants viz., Averrhoa carambola L., Ehretia laevis Roxb., Holarrhena pubescens Wall., Mangifera indica L., Ocimum americanum L., Oroxylum indicum (L.) Kurz, Physalis divaricata D. Don, Solanum incanum L., Sphaeranthus senegalensis DC. and Tribulus terrestris L.. The plants enumerated in this study with high number of citations and wider distributions have given some useful leads for further biomedical research. Nevertheless more phytochemical, pharmaceutical and clinical studies are needed to evaluate hepatoprotective properties, efficacy and safety of all the claimed medicinal plants. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  16. Hepatoprotective effect of acetone semicarbazone on Ehrlich ascites carcinoma induced carcinogenesis in experimental mice

    PubMed Central

    Islam, Farhadul; Ali, Shaikh Mohummad Mohsin; Khanam, Jahan Ara

    2013-01-01

    Objective To determine the hepatoprotective effect of acetone semicarbazone (ASC) in vivo in normal and Ehrlich ascites carcinoma (EAC) bearing male Swiss albino mice. Methods Drug-induced changes in biochemical and behavioral parameters at dose of 2.0 mg/kg body weight for 14 d and nullifying the toxicity induced by EAC cells were studied. The histopathology studies of the protective effects of ASC on vital organs were also assessed. Results The administration of ASC made insignificant changes in body weight and behavioral (salivation, diarrhea, muscular numbness) changes during treatment period due to minor toxicity were minimized after the treatment in normal mice. The biochemical parameters, including serum glutamate pyruvate transaminase, glutamate oxaloactate transaminase, alkaline phosphatase, serum glucose, cholesterol, urea, triglyceride and billirubin changed modestly in normal mice receiving ASC. Though the treatment continued, these values gradually decreased to normal level after the treatment. In EAC bearing mice, the toxic effects due to EAC cells in all cases were nullified by treatment with the ASC. Significant abnormalities were not detected in histology of the various organs of the normal mice treated with ASC. Conclusions ASC can, therefore, be considered safe in formulating novel anticancer drug, as it exhibits strong protective effect against EAC cell bearing mice. PMID:23593588

  17. Ameliorative effect of alkaloid extract of Cyclea peltata (Poir.) Hook. f. & Thoms. roots (ACP) on APAP/CCl4 induced liver toxicity in Wistar rats and in vitro free radical scavenging property.

    PubMed

    Shine, Varghese Jancy; Latha, Panikamparambil Gopalakrishnan; Suja, Somasekharan Nair Rajam; Anuja, Gangadharan Indira; Raj, Gopan; Rajasekharan, Sreedharan Nair

    2014-02-01

    To evaluate the hepatoprotective and antioxidant properties of alkaloid extract of Cyclea peltata (C. peltata) against paracetamol/carbon tetra chloride induced liver damage in Wistar rats. In vivo paracetamol/carbon tetrachloride induced liver damage in Wistar rats, in vitro free radical scavenging studies, HPTLC estimation of tetrandrine and direct analysis in real time- mass spectrometry of alkaloid extract of C. peltata were used for the validation. The results showed that pretreatment with alkaloid extract of C. peltata caused significant reduction of serum glutamate pyruvate transaminase, serum glutamate oxaloacetate transaminase, serum alkaline phosphatase, serum cholesterol, liver malondialdehyde levels. The reduced glutathione, catalase, superoxide dismutase levels in liver were increased with alkaloid extract of C. peltata treatment. These results were almost comparable to silymarin and normal control. Histopathological studies also substantiated the biochemical findings. The in vitro hydroxyl, superoxide and DPPH scavenging study of alkaloid extract of C. peltata showed significant free radical scavenging property. The hepatoprotective property of alkaloid extract of C. peltata against paracetamol/carbon tetrachloride may be due the synergistic action of alkaloids especially tetrandrine, fangchinoline through free radical scavenging and thus preventing oxidative stress.

  18. Antioxidant and Hepatoprotective Efficiency of Selenium Nanoparticles Against Acetaminophen-Induced Hepatic Damage.

    PubMed

    Amin, Kamal Adel; Hashem, Khalid Shaban; Alshehri, Fawziah Saleh; Awad, Said T; Hassan, Mohammed S

    2017-01-01

    Overdoses of acetaminophen (APAP), a famous and widely used drug, may have hepatotoxic effects. Nanoscience is a novel scientific discipline that provides specific tools for medical science problems including using nano trace elements in hepatic diseases. Our study aimed to assess the hepatoprotective role of selenium nanoparticles (Nano-Se) against APAP-induced hepatic injury. Twenty-four male rats were classified into three equal groups: a control group that received 0.9 % NaCl, an APAP-treated group (oral administration), and a group treated with Nano-Se (10-20 nm, intraperitoneal (i.p.) injection) and APAP (oral administration). APAP overdose induced significant elevations in liver function biomarkers, hepatic lipid peroxidation, hepatic catalase, and superoxide dismutase (SOD), decreased the reduced glutathione (GSH) content and glutathione reductase (GR) activity, and stimulated significant DNA damage in hepatocytes, compared to control rats. Nano-Se administration improved the hepatic antioxidant protection mechanism and decreased cellular sensitivity to DNA fragmentation. Nano-Se exhibits a protective effect against APAP-induced hepatotoxicity through improved liver function and oxidative stress mediated by catalase, SOD, and GSH and decreases hepatic DNA fragmentation, a hepatic biomarker of cell death. Nano-Se could be a novel hepatoprotective strategy to inhibit oxidative stress.

  19. Walnut polyphenols prevent liver damage induced by carbon tetrachloride and d-galactosamine: hepatoprotective hydrolyzable tannins in the kernel pellicles of walnut.

    PubMed

    Shimoda, Hiroshi; Tanaka, Junji; Kikuchi, Mitsunori; Fukuda, Toshiyuji; Ito, Hideyuki; Hatano, Tsutomu; Yoshida, Takashi

    2008-06-25

    The polyphenol-rich fraction (WP, 45% polyphenol) prepared from the kernel pellicles of walnuts was assessed for its hepatoprotective effect in mice. A single oral administration of WP (200 mg/kg) significantly suppressed serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) elevation in liver injury induced by carbon tetrachloride (CCl 4), while it did not suppress d-galactosamine (GalN)-induced liver injury. In order to identify the active principles in WP, we examined individual constituents for the protective effect on cell damage induced by CCl 4 and d-GalN in primary cultured rat hepatocytes. WP was effective against both CCl 4- and d-GalN-induced hepatocyte damages. Among the constituents, only ellagitannins with a galloylated glucopyranose core, such as tellimagrandins I, II, and rugosin C, suppressed CCl 4-induced hepatocyte damage significantly. Most of the ellagitannins including tellimagrandin I and 2,3- O-hexahydroxydiphenoylglucose exhibited remarkable inhibitory effect against d-GalN-induced damage. Telliamgrandin I especially completely suppressed both CCl 4- and d-GalN-induced cell damage, and thus is likely the principal constituent for the hepatoprotective effect of WP.

  20. Quercus dilatata Lindl. ex Royle ameliorates BPA induced hepatotoxicity in Sprague Dawley rats.

    PubMed

    Kazmi, Syeda Tayyaba Batool; Majid, Muhammad; Maryam, Sonia; Rahat, Aymen; Ahmed, Madiha; Khan, Muhammad Rashid; Haq, Ihsan Ul

    2018-06-01

    Quercus dilatata Lindl. ex Royle was evaluated for in vitro polyphenol content and antioxidant potential as well as in vivo protective role against bisphenol A (BPA) induced hepatotoxicity. The distilled water-acetone (QDDAE) and methanol-ethyl acetate (QDMEtE) extracts were standardized and administered in high (300 mg/kg body weight (BW) and low (150 mg/kg BW) doses to Sprague Dawley rats, injected with BPA (25 mg/kg BW). Silymarin (50 mg/kg BW) was used as positive control. Subsequently, blood and liver homogenates were collected after four weeks of treatment, and the defensive effects of both extracts against oxidative damage and genotoxicity were assessed via hematological and biochemical investigations, determination of endogenous expression of enzymes as well as levels of free radicals and comet assay. Between the two extracts, maximum phenolics (213 ± 0.15 μg gallic acid equivalent/mg dry extract (DE) and flavonoids (55.6 ± 0.16 μg quercetin equivalent/mg DE) content, DPPH scavenging activity (IC 50 : 8.1 ± 0.5 μg/ml), antioxidant capacity (53.7 ± 0.98 μg ascorbic acid equivalent (AAE)/mg DE) and reducing potential (228.4 ± 2.4 μg AAE/mg DE) were observed in QDMEtE. In in vivo analysis, a dose dependent hepatoprotective activity was exhibited by both the extracts. QDDAE demonstrated maximum reduction in levels of alanine transaminase (49.77 ± 3.83 U/l), thiobarbituric acid reactant substances (33.46 ± 0.70 nM/min/mg protein), hydrogen peroxide (18.08 ± 0.01 ng/mg tissue) and nitrite (55.64 ± 1.79 μM/ml), along with decline in erythrocyte sedimentation rate (4.13 ± 0.072 mm/h), histopathological injuries and DNA damage in BPA intoxicated rats as compared with QDMEtE. Likewise, QDDAE also significantly restored activity levels of endogenous antioxidants, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (POD) and GSH with values of 6.46 ± 0.15 U/mg protein, 6.87 ± 0.1 U/min, 11.94 ± 0.17 U/min and 16.86 ± 1.56 nM/min/mg protein, respectively. Comparative results were obtained for QDMEtE. In conclusion, the present study endorses the significant hepatoprotective potential of standardized extracts of Q. dilatata with known polyphenolics content and validates the traditional use of this plant in natural medicine to manage disorders like hepatotoxicity. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  1. Spices, herbal xenobiotics and the stomach: Friends or foes?

    PubMed Central

    Mofleh, Ibrahim Abdulkarim Al

    2010-01-01

    Spices and herbal remedies have been used since ancient times to treat a variety of disorders. It has been experimentally demonstrated that spices, herbs, and their extracts possess antimicrobial, anti-inflammatory, antirheumatic, lipid-lowering, hepatoprotective, nephroprotective, antimutagenic and anticancer activities, besides their gastroprotective and anti-ulcer activities. Despite a number of reports on the toxicity of herbs and spices, they are generally accepted as safer alternatives to conventional therapy against gastric ulcers. To this end, it is also believed, that excessive consumption of spices may favor the pathogenesis of gastric and duodenal ulcer and some studies have substantiated this common perception. Based on various in vivo experiments and clinical studies, on the effects of spices and herbs on gastric ulcers, it has indeed been shown that certain spices do possess remarkable anti-ulcer properties mediated by antisecretory, cytoprotective, antioxidant, and anti-Helicobacter pylori effects and mechanisms regulated by nitric oxide, prostaglandins, non-protein sulfhydryl molecules and epidermal growth factor expression. Accordingly, their consumption may attenuate and help prevent peptic ulcer disease. In the present review, the beneficial effects of spices and herbal nutritive components on the gastric mucosa are discussed against the paradigm of their deleterious potential. PMID:20533590

  2. Spices, herbal xenobiotics and the stomach: friends or foes?

    PubMed

    Al Mofleh, Ibrahim Abdulkarim

    2010-06-14

    Spices and herbal remedies have been used since ancient times to treat a variety of disorders. It has been experimentally demonstrated that spices, herbs, and their extracts possess antimicrobial, anti-inflammatory, antirheumatic, lipid-lowering, hepatoprotective, nephroprotective, antimutagenic and anticancer activities, besides their gastroprotective and anti-ulcer activities. Despite a number of reports on the toxicity of herbs and spices, they are generally accepted as safer alternatives to conventional therapy against gastric ulcers. To this end, it is also believed, that excessive consumption of spices may favor the pathogenesis of gastric and duodenal ulcer and some studies have substantiated this common perception. Based on various in vivo experiments and clinical studies, on the effects of spices and herbs on gastric ulcers, it has indeed been shown that certain spices do possess remarkable anti-ulcer properties mediated by antisecretory, cytoprotective, antioxidant, and anti-Helicobacter pylori effects and mechanisms regulated by nitric oxide, prostaglandins, non-protein sulfhydryl molecules and epidermal growth factor expression. Accordingly, their consumption may attenuate and help prevent peptic ulcer disease. In the present review, the beneficial effects of spices and herbal nutritive components on the gastric mucosa are discussed against the paradigm of their deleterious potential.

  3. Hypoglycemic and Hepatoprotective Activity of Fermented Fruit Juice of Morinda citrifolia (Noni) in Diabetic Rats

    PubMed Central

    Nayak, B. Shivananda; Marshall, Julien R.; Isitor, Godwin; Adogwa, Andrew

    2011-01-01

    Morinda citrifolia is a medicinal plant used to treat diabetes and liver diseases. The fermented fruit juice of the M. Citrifolia (optical density = 1.25) was used to study the hypoglycemic and hepatoprotective properties in diabetes-induced rats. The rats were randomly distributed into 4 groups (control, diabetic experimental, diabetic standard, and diabetic untreated) of 6 each. Diabetes was induced by administering Streptozotocin (50 mg/kg body weight). Fasting blood glucose, body mass, liver tissue glycogen content, and the extent of liver degeneration were assessed. Diabetic experimental animals were treated with M. citrifolia juice (2 ml/kg, twice a day) and diabetic standard with reference hypoglycemic drug, glibenclamide orally for 20 days. Both the groups exhibited a significant reduction in blood glucose level of 150 mg/dl ±15.88 and 125 mg/dl ±3.89, respectively, as compared to diabetic untreated with FBS = 360.0 mg/dl ±15.81, (P < .003). On 10th day of experiment, diabetic experimental animals exhibited a decrease in body mass (10.2 g, 5.11%) which increased significantly by the 20th day (6 g, 3.0%, P < .022). Histological study of liver tissue obtained from untreated diabetic animals revealed significant fatty degeneration as compared to other three groups. The data of this study proved the hypoglycemic and hepatoprotective activity of M. citrifolia. PMID:20981320

  4. Hepatoprotective activity of Trichilia roka on carbon tetrachloride-induced liver damage in rats.

    PubMed

    Germanò, M P; D'Angelo, V; Sanogo, R; Morabito, A; Pergolizzi, S; De Pasquale, R

    2001-11-01

    Trichilia roka Chiov. (Meliaceae) is a tree widely distributed in tropical Africa. It has been used in Mali folk medicine for the treatment of various illnesses. A decoction of the roots is taken as a remedy for colds and pneumonia, and it is used as a diuretic and in hepatic disorders. We have evaluated the hepatoprotective effects of a decoction of Trichilia roka root on CCl4-induced acute liver damage in rats. Treatment with the decoction showed a significant protective action made evident by its effect on the levels of glutamate oxalacetate transaminase and glutamate pyruvate transaminase in the serum, on the protein content and lipid peroxidation levels in the liver homogenate. Histopathological changes produced by CCl4, such as necrosis, fatty change, ballooning degeneration and inflammatory infiltration of lymphocytes around the central veins, were clearly recovered by the treatment with Trichilia root decoction. On fractionating this extract into diethyl ether-soluble and water-soluble fractions, the activity was retained in the diethyl ether-soluble fraction. Moreover, the administration of decoction prevented a preferential deposition of collagen around the sinusoidal cell layer, which is responsible for the perisinusoidal fibrosis in the early stage of CCl4 damage. This study showed that treatment with Trichilia roka extracts or silymarin (as reference) appeared to enhance the recovery from CCl4-induced hepatotoxicity. The hepatoprotective properties of Trichilia roka may be correlated to polyphenol content of the decoction and its diethyl ether-soluble fraction.

  5. Anti-Inflammatory Iridoids of Botanical Origin

    PubMed Central

    Viljoen, A; Mncwangi, N; Vermaak, I

    2012-01-01

    Inflammation is a manifestation of a wide range of disorders which include; arthritis, atherosclerosis, Alzheimer’s disease, inflammatory bowel syndrome, physical injury and infection amongst many others. Common treatment modalities are usually non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, paracetamol, indomethacin and ibuprofen as well as corticosteroids such as prednisone. These however, may be associated with a host of side effects due to non-selectivity for cyclooxygenase (COX) enzymes involved in inflammation and those with selectivity may be highly priced. Thus, there is a continuing search for safe and effective anti-inflammatory molecules from natural sources. Research has confirmed that iridoids exhibit promising anti-inflammatory activity which may be beneficial in the treatment of inflammation. Iridoids are secondary metabolites present in various plants, especially in species belonging to the Apocynaceae, Lamiaceae, Loganiaceae, Rubiaceae, Scrophulariaceae and Verbenaceae families. Many of these ethnobotanicals have an illustrious history of traditional use alluding to their use to treat inflammation. Although iridoids exhibit a wide range of pharmacological activities such as cardiovascular, hepatoprotection, hypoglycaemic, antimutagenic, antispasmodic, anti-tumour, antiviral, immunomodulation and purgative effects this review will acutely focus on their anti-inflammatory properties. The paper aims to present a summary for the most prominent iridoid-containing plants for which anti-inflammatory activity has been demonstrated in vitro and / or in vivo. PMID:22414102

  6. Phytochemical and Pharmacological Profiles of Three Fagopyrum Buckwheats

    PubMed Central

    Jing, Rui; Li, Hua-Qiang; Hu, Chang-Ling; Jiang, Yi-Ping; Qin, Lu-Ping; Zheng, Cheng-Jian

    2016-01-01

    The genus Fagopyrum (Polygonaceae), currently comprising 15 species of plants, includes three important buckwheat species: Fagopyrum esculentum (F. esculentum) Moench. (common buckwheat), Fagopyrum tataricum (F. tataricum) (L.) Gaertn. (tartary buckwheat) and Fagopyrum dibotrys (F. dibotrys) (D. Don) Hara. (perennial buckwheat), which have been well explored due to their long tradition of both edible and medicinal use. This review aimed to present an up-to-date and comprehensive analysis of the phytochemistry and pharmacology of the three Fagopyrum buckwheats. In addition, the scope for future research was also discussed. All available references included in this paper were compiled from major databases, such as MEDLINE, Pubmed, Scholar, Elsevier, Springer, Wiley and CNKI. A total of 106 compounds isolated from three Fagopyrum buckwheats can be mainly divided into six classes: flavonoids, phenolics, fagopyritols, triterpenoids, steroids and fatty acids. Flavonoids and phenolic compounds were considered to be the major active components. Considerable pharmacological experiments both in vitro and in vivo have validated that Fagopyrum buckwheats possess antitumor, anti-oxidant, anti-inflammatory, hepatoprotective, anti-diabetic activities, etc. All reported data lead us to conclude that Fagopyrum buckwheats have convincing medicinal potential. However, further research is needed to explore its bioactive constituents, the relationship to their structural activities and the molecular mechanisms of action. PMID:27104519

  7. Hepatic protection and anticancer activity of curcuma: a potential chemopreventive strategy against hepatocellular carcinoma.

    PubMed

    Li, Yan; Shi, Xue; Zhang, Jingwen; Zhang, Xiang; Martin, Robert C G

    2014-02-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed antioxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro.

  8. Hepatic protection and anticancer activity of curcuma: A potential chemopreventive strategy against hepatocellular carcinoma

    PubMed Central

    LI, YAN; SHI, XUE; ZHANG, JINGWEN; ZHANG, XIANG; MARTIN, ROBERT C.G.

    2014-01-01

    Malignant transformation of hepatocellular carcinoma (HCC) occurs through repetitive liver injury in a context of inflammation and oxidative DNA damage. A spectrum of natural sesquiterpenoids from curcuma oil has displayed anti-oxidant, anti-inflammatory and anti-carcinogenic properties. The aim of the study was to investigate the hepatoprotective and anti-HCC effects of curcuma oil in vivo and in vitro. Mice were pretreated with curcuma oil (100 mg/kg) for 3 days, then treated with Concanavalin A (30 mg/kg). The hepatic tissue was evaluated for histology, CD4+ cell, interferon-γ, apoptosis, lipid peroxidation, 8-hydroxy-deoxyguanosine and MnSOD. C57L/J mice were treated with curcuma oil and 107 Hepa1-6 cells directly inoculated into liver lobes. The effects of curcuma oil on cell growth and cell death were evaluated. In addition, MnSOD, HSP60, catalase, NF-κB and caspase-3 were also investigated in the Hepa1-6 cells treated with curcuma oil. Pretreatment with curcuma oil significantly attenuates inflammation and oxidative damage by Concanavalin A. Treatment with curcuma oil can decrease the incidence of HCC. Curcuma oil inhibits cell growth and induces cell death in Hepa1-6 cells. Curcuma protected mice with hepatic injury from inflammatory and oxidative stress. Curcuma oil can inhibit hepatoma cell growth in vivo and in vitro. PMID:24270742

  9. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    PubMed

    Moselhy, Said S; Ghoneim, Magdy A; Khan, Jehan A

    2016-01-01

    The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink's. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl 4 as hepatotoxic. Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p <0.05) and AST (p <0.001) activities induced by CCl 4 . Animals given stevia extract showed prevention against deleterious effects of CCl 4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don't show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl 4 -caused liver damage.

  10. Chemical composition and hepatoprotective effects of polyphenol-rich extract from Houttuynia cordata tea.

    PubMed

    Tian, Lingmin; Shi, Xiaolong; Yu, Linhong; Zhu, Jiao; Ma, Rui; Yang, Xingbin

    2012-05-09

    This study was designed to investigate the antioxidant activity, hepatoprotective effect, and phenolic composition of the ethyl acetate fraction (EAF) extracted from Houttuynia cordata tea. EAF was shown to exhibit strong ferric-reducing antioxidant power (FRAP) and scavenging activity against DPPH radical in vitro, and the antioxidant effects were further verified by suppressing CCl₄-induced oxidative stress in mouse liver at three tested doses of EAF (250, 500, and 1000 mg/kg bw). Pretreatment with EAF (1000 mg/kg bw) prior to CCl₄ administration significantly (p < 0.001) decreased the CCl₄-elevated levels of serum AST, ALT, alkaline phosphatase, total bilirubin, and hepatic MDA in mice and prevented the increases in GSH, SOD, and CAT caused by CCl₄. HPLC analysis revealed that three predominantly polyphenolic compounds present in EAF were quercitrin (111.7 μg/mg), quercetin (43.8 μg/mg), and hyperoside (29.1 μg/mg). These results combined with liver histopathology indicate that EAF possesses a significant protective effect against acute hepatotoxicity induced by CCl₄, which may be due to the strong antioxidant activity of phenolic components.

  11. Vitamin C acts as a hepatoprotectant in carbofuran treated rat liver slices in vitro.

    PubMed

    Jaiswal, Sunil Kumar; Gupta, Vivek Kumar; Ansari, Md Dilshad; Siddiqi, Nikhat J; Sharma, Bechan

    2017-01-01

    Carbamates, most commonly used pesticides in agricultural practices, have been reported to produce free radicals causing deleterious effects in animals. The present study was designed to assess the carbofuran induced oxidative stress in rat liver slices in vitro and also to evaluate protective role of vitamin C by incubating them in Krebs-Ringer HEPES Buffer (KRHB) containing incubation media (Williams medium E (WME) supplemented with glucose and antibiotics) with different concentrations of carbofuran. The results demonstrated that carbofuran caused significant increase in lipid peroxidation and inhibition in the activity of hepatic superoxide dismutase (SOD) in concentration dependent manner. The data with incubation medium reflected that carbofuran at lowest concentration caused an increase in SOD activity followed by its inhibition at higher concentration. Carbofuran treatment caused inhibition in the activity of catalase in liver slices and WME incubation medium. Pre-incubation of liver slices and the WME media with vitamin C restored the values of biochemical indices tested. The results indicated that carbofuran might induce oxidative stress in hepatocytes. The pretreatment with vitamin C may offer hepatoprotection from toxicity of pesticide at low concentration only.

  12. Agaricus blazei Bioactive Compounds and their Effects on Human Health: Benefits and Controversies.

    PubMed

    da Silva de Souza, Aline Cristine; Correa, Vanesa Gesser; Goncalves, Geferson de Almeida; Soares, Andreia Assuncao; Bracht, Adelar; Peralta, Rosane Marina

    2017-01-01

    The mushroom Agaricus blazei has evoked considerable scientific and practical interest in several fields, especially those linked to its medicinal properties. This review aims to summarize and evaluate the past decade findings related to nutritional and therapeutic uses of A. blazei, with especial emphasis on the most recent discoveries regarding its chemical composition and clinical investigations. The specialized literature was searched for basic and clinical studies. The main isolated and identified compounds or fractions are described and confronted with their corresponding bioactivities. Basic research of high quality using ex vivo and in vivo conditions are quite abundant in the specialized literature, but ony 17 clinical studies and two case reports were found. A great number of active molecules have been identified, and they can be divided into three categories, (1) hydrophilic small molecules (e.g., phenolics), (2) lipophilic or partially lipophilic small molecules (e.g., agarol) (3) and macromolecules (e.g., β-glucans). At least the following bioactivities can be considered as being supported by experimental evidence: antioxidant activity (in aging or disease), immunomodulation and cell signaling, anti-inflammatory activity, antiparasitic actions, antimicrobial activity, anticancer effects and tumor growth inhibiting effects, antimutagenic activity, hepatoprotection against chemical or viral infection and antidiabetic activity. The amount and quality of the evidence that has been accumulating during the last decade strongly speaks in favor of the health benefits of the ingestion of A.blazei or derived products. However, there are many uncertainties and limitations when attempts are made to extrapolate or to demonstrate their biological effects in the human organism in health or disease. Clearly, more clinical trials, using reliable statistical methods and standardized preparations are needed to establish the efficacy of A. blazei as a therapeutic agent. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Glycyrrhetinic acid attenuates lipopolysaccharide-induced fulminant hepatic failure in d-galactosamine-sensitized mice by up-regulating expression of interleukin-1 receptor-associated kinase-M.

    PubMed

    Yin, Xinru; Gong, Xia; Zhang, Li; Jiang, Rong; Kuang, Ge; Wang, Bin; Chen, Xinyu; Wan, Jingyuan

    2017-04-01

    Glycyrrhetinic acid (GA), the main active ingredient of licorice, reportedly has anti-inflammatory and hepatoprotective properties, but its molecular mechanisms remain be elusive. In the present study, Balb/c mice were pretreated with GA (10, 30, or 100mg/kg) 1h before lipopolysaccharide (LPS)/d-galactosamine (D-GalN) administration. In other in vitro experiment, RAW264.7 macrophages were pretreated with GA before LPS exposure. The mortality, hepatic tissue histology, serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were analyzed. Toll like receptor 4 (TLR4), interleukin-1 receptor-associated kinases (IRAKs), activation of mitogen-activated protein kinases (MAPKs) and NF-κB, and production of TNF-α were assessed by flow cytometry, western blotting, and enzyme-linked immunosorbent assay (ELISA), respectively. Our results showed that pretreatment with GA protected mice against LPS/D-GalN-induced fulminant hepatic failure (FHF), including a dose-dependent alleviation of mortality and ALT/AST elevation, ameliorating hepatic pathological damage, and decreasing TNF-α release. Moreover, GA inhibited LPS-induced activation of MAPKs and NF-κB in response to LPS, but the expression of TLR4 was not affected in vivo and in vitro. Notably, GA pretreatment in vivo suppressed IRAK-1 activity while inducing IRAK-M expression. Silencing of IRAK-M expression with siRNA blocked these beneficial effects of GA on the activation of MAPKs and NF-κB as well as TNF-α production in LPS-primed macrophages. Taken together, we conclude that GA could prevent LPS/D-GalN-induced FHF. The underlying mechanisms may be related to up-regulation of IRAK-M, which in turn caused deactivation of IRAK-1 and subsequent MAPKs and NF-κB, resulting in inhibiting TNF-α production. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oleanane triterpenoids in the prevention and therapy of breast cancer: current evidence and future perspectives

    PubMed Central

    Parikh, Nisha R.; Mandal, Animesh; Bhatia, Deepak; Siveen, Kodappully Sivaraman; Sethi, Gautam

    2014-01-01

    Breast cancer is one of the most frequently diagnosed cancers and major cause of death in women in the world. Emerging evidence underscores the value of dietary and non-dietary phytochemicals, including triterpenoids, in the prevention and treatment of breast cancer. Oleanolic acid, an oleanane-type pentacyclic triterpenoid, is present in a large number of dietary and medicinal plants. Oleanolic acid and its derivatives exhibit several promising pharmacological activities, including antioxidant, anti-inflammatory, hepatoprotective, cardioprotective, antipruritic, spasmolytic, antiallergic, antimicrobial and antiviral effects. Numerous studies indicate that oleanolic acid and other oleanane triterpenoids modulate multiple intracellular signaling pathways and exert chemopreventive and antitumor activities in various in vitro and in vivo model systems. A series of novel synthetic oleanane triterpenoids have been prepared by chemical modifications of oleanolic acid and some of these compounds are considered to be the most potent anti-inflammatory and anticarcinogenic triterpenoids. Accumulating studies provide extensive evidence that synthetic oleanane derivatives inhibit proliferation and induce apoptosis of various cancer cells in vitro and demonstrate cancer preventive or antitumor efficacy in animal models of blood, breast, colon, connective tissue, liver, lung, pancreas, prostate and skin cancer. This review critically examines the potential role of oleanolic acid, oleanane triterpenoids and related synthetic compounds in the chemoprevention and treatment of mammary neoplasia. Both in vitro and in vivo studies on these agents and related molecular mechanisms are presented. Several challenges and future directions of research to translate already available impressive preclinical knowledge to clinical practice of breast cancer prevention and therapy are also presented. PMID:25395898

  15. Antioxidant and Protective Effect of Ethyl Acetate Extract of Podophyllum Hexandrum Rhizome on Carbon Tetrachloride Induced Rat Liver Injury

    PubMed Central

    Ganie, Showkat Ahmad; Haq, Ehtishamul; Masood, Akbar; Hamid, Abid; Zargar, Mohmmad Afzal

    2011-01-01

    The antioxidant and hepatoprotective activities of ethyl acetate extract was carefully investigated by the methods of DPPH radical scavenging activity, Hydroxyl radical scavenging activity, Superoxide radical scavenging activity, Hydrogen peroxide radical scavenging activity and its Reducing power ability. All these in vitro antioxidant activities were concentration dependent which were compared with standard antioxidants such as BHT, α-tocopherol. The hepatoprotective potential of Podophyllum hexandrum extract was also evaluated in male Wistar rats against carbon tetrachloride (CCl4)-induced liver damage. Pre-treated rats were given ethyl acetate extract at 20, 30 and 50 mg/kg dose prior to CCl4 administration (1 ml/kg, 1:1 in olive oil). Rats pre-treated with Podophyllum hexandrum extract remarkably prevented the elevation of serum AST, ALT, LDH and liver lipid peroxides in CCl4-treated rats. Hepatic glutathione levels were significantly increased by the treatment with the extract in all the experimental groups. The extract at the tested doses also restored the levels of liver homogenate enzymes (glutathione peroxidase, glutathione reductase, superoxide dismutase and glutathione-S- transferase) significantly. This study suggests that ethyl acetate extract of P. hexandrum has a liver protective effect against CCl4-induced hepatotoxicity and possess in vitro antioxidant activities. PMID:21394192

  16. Hepatoprotective activity of sea cucumber Phyllophorus sp. extract in carp (Cyprinus carpio)

    NASA Astrophysics Data System (ADS)

    Sulmartiwi, Laksmi; Triastuti, Juni; Andriyono, Sapto; Umami, Mardiah Rahma

    2017-02-01

    Many procedures continuously in aquaculture and scientific research like tagging and vaccinating cause pain, involving damaging tissue and also cause stress responses in fish. Stress responses in fish influence liver because liver have vital role to supply energy and metabolism. Histology alteration in liver is caused by stress response like changes of vacuolation hepatocyte and characteristic colour. Triterpenoid was known had hepatoprotective activity. One of marine organism contained triterpenoid was sea cucumber. Result of research showed that liver tissue in fish with injected acetic acid 5 % (in upper lip) as pain stimulus have histopathology damages such as pyknosis (medium damage level) and oedema (heavy damage level) after 8 hour injection. Injected Lidocaine 1mg/fish as analgesic drug have histopathology damages such as oedema (heavy damages level), necrosis and pyknosis (low damages level). Injected acetic acid 5 % (in upper lip) and ethanolic extract of sea cucumber Phyllophorus sp. dose 5 mg/50 gr body weight shown histopathology damages such as necrosis, edema (medium damage level) and pyknosis (low damage level).

  17. Hepatoprotective effects of setarud against carbon tetrachloride-induced liver injury in rats.

    PubMed

    Khorshid, Hamid Reza Khorram; Azonov, Jahan A; Novitsky, Yury A; Farzamfar, Bardia; Shahhosseiny, Mohammad Hassan

    2008-01-01

    To assess the hepatoprotective activity of a new herbal drug "setarud" in experimental liver fibrosis, 48 male Wistar rats were divided into four groups: controls, carbon tetrachloride (CCl4) group, and two treatment groups that received CCl4 and setarud at doses of 0.02 or 0.04 g/Kg/day for 30 days. Body weight gain, biochemical liver tests, bile flow rate and composition, and changes in liver morphology in the four groups were studied. CCl4 administration led to morphological and biochemical evidence of liver injury as compared to untreated controls. Setarud administration led to significant protection against CCl4-induced changes in body weight gain, liver morphology, bile flow and concentration. It was also associated with significantly lower serum liver enzyme levels (p<0.01), higher serum albumin level, and reduced increase in narcotic-induced sleeping time. Thus, setarud showed protective activity against CCl4-induced hepatotoxicity in rats. Further studies of its efficacy in liver disease are warranted.

  18. Pharmacognostic evaluation of leaf of Cordia macleodii Hook., An ethnomedicinally important plant.

    PubMed

    Bhide, Bhargav; Pillai, A P G; Shukla, V J; Acharya, R N

    2011-04-01

    Plants of ethnomedicinal importance have contributed for the development of many new pharmacologically effective molecules/chemical entities to modern medicine. India, the country having one of the richest biodiversity of its flora in its forest, with numerous tribal inhabitants, is able to contribute a lot from ethnomedicine to the ailing humanity. Cordia macleodii Hook. (Boraginaceae), an ethnomedicinal plant has been highlighted for its wound healing, aphrodisiac and hepatoprotective activities. It is a medium-sized tree, known as Panki/Shikari by the tribals, rarely found in the forests of Orissa, Chhattisgarh and Madhya Pradesh. So far, the plant has been studied neither for its pharmacognostical characters nor for its pharmacological actions except its hepatoprotective activity. Hence, it has been selected for a detailed investigation which includes pharmacognostic study of its leaf to find out the diagnostic characters and preliminary physicochemical analysis. Results of the study will help in identifying the plant pharmacognostically. Presence of alkaloids, glycosides and tannins were found during the study.

  19. Pharmacognostic evaluation of leaf of Cordia macleodii Hook., An ethnomedicinally important plant

    PubMed Central

    Bhide, Bhargav; Pillai, A. P. G.; Shukla, V. J.; Acharya, R. N.

    2011-01-01

    Plants of ethnomedicinal importance have contributed for the development of many new pharmacologically effective molecules/chemical entities to modern medicine. India, the country having one of the richest biodiversity of its flora in its forest, with numerous tribal inhabitants, is able to contribute a lot from ethnomedicine to the ailing humanity. Cordia macleodii Hook. (Boraginaceae), an ethnomedicinal plant has been highlighted for its wound healing, aphrodisiac and hepatoprotective activities. It is a medium-sized tree, known as Panki/Shikari by the tribals, rarely found in the forests of Orissa, Chhattisgarh and Madhya Pradesh. So far, the plant has been studied neither for its pharmacognostical characters nor for its pharmacological actions except its hepatoprotective activity. Hence, it has been selected for a detailed investigation which includes pharmacognostic study of its leaf to find out the diagnostic characters and preliminary physicochemical analysis. Results of the study will help in identifying the plant pharmacognostically. Presence of alkaloids, glycosides and tannins were found during the study. PMID:22408312

  20. Hepatoprotective effect of silymarin

    PubMed Central

    Vargas-Mendoza, Nancy; Madrigal-Santillán, Eduardo; Morales-González, Ángel; Esquivel-Soto, Jaime; Esquivel-Chirino, Cesar; García-Luna y González-Rubio, Manuel; Gayosso-de-Lucio, Juan A; Morales-González, José A

    2014-01-01

    The use of medicinal plants in treating illnesses has been reported since ancestral times. In the case of hepatic diseases, several species such as Silybum marianum, Phyllanthus niruri, and Panus giganteus (Berk.) have been shown to ameliorate hepatic lesions. Silymarin is a natural compound derived from the species Silybum marianum, which is commonly known as Milk thistle. This plant contains at least seven flavoligands and the flavonoid taxifolin. The hepatoprotective and antioxidant activity of silymarin is caused by its ability to inhibit the free radicals that are produced from the metabolism of toxic substances such as ethanol, acetaminophen, and carbon tetrachloride. The generation of free radicals is known to damage cellular membranes and cause lipoperoxidation. Silymarin enhances hepatic glutathione and may contribute to the antioxidant defense of the liver. It has also been shown that silymarin increases protein synthesis in hepatocytes by stimulating RNA polymerase I activity. A previous study on humans reported that silymarin treatment caused a slight increase in the survival of patients with cirrhotic alcoholism compared with untreated controls. PMID:24672644

  1. Phytochemical analysis of Hibiscus caesius using high performance liquid chromatography coupled with mass spectrometry.

    PubMed

    Ain, Quratul; Naveed, Muhammad Na; Mumtaz, Abdul Samad; Farman, Muhammad; Ahmed, Iftikhar; Khalid, Nauman

    2015-09-01

    Various species in genus Hibiscus are traditionally known for their therapeutic attributes. The present study focused on the phytochemical analysis of a rather unexplored species Hibiscus caesius (H. caesius), using high-pressure liquid chromatography coupled with mass spectrometry (HPLC-MS). The analysis revealed five major compounds in the aqueous extract, viz. vanillic acid, protocatechoic acid, quercetin, quercetin glucoside and apigenin, being reported for the first time in H. caesius. Literature suggests that these compounds have important pharmacological traits such as anti-cancer, anti-inflammatory, anti-bacterial and hepatoprotective etc. however, this requires further pharmacological investigations at in vitro and in vivo scale. The above study concluded the medicinal potential of H. caesius.

  2. Hepatoprotective Effect of Opuntia robusta and Opuntia streptacantha Fruits against Acetaminophen-Induced Acute Liver Damage

    PubMed Central

    González-Ponce, Herson Antonio; Martínez-Saldaña, María Consolación; Rincón-Sánchez, Ana Rosa; Sumaya-Martínez, María Teresa; Buist-Homan, Manon; Faber, Klaas Nico; Moshage, Han; Jaramillo-Juárez, Fernando

    2016-01-01

    Acetaminophen (APAP)-induced acute liver failure (ALF) is a serious health problem in developed countries. N-acetyl-l-cysteine (NAC), the current therapy for APAP-induced ALF, is not always effective, and liver transplantation is often needed. Opuntia spp. fruits are an important source of nutrients and contain high levels of bioactive compounds, including antioxidants. The aim of this study was to evaluate the hepatoprotective effect of Opuntia robusta and Opuntia streptacantha extracts against APAP-induced ALF. In addition, we analyzed the antioxidant activities of these extracts. Fruit extracts (800 mg/kg/day, orally) were given prophylactically to male Wistar rats before intoxication with APAP (500 mg/kg, intraperitoneally). Rat hepatocyte cultures were exposed to 20 mmol/L APAP, and necrosis was assessed by LDH leakage. Opuntia robusta had significantly higher levels of antioxidants than Opuntia streptacantha. Both extracts significantly attenuated APAP-induced injury markers AST, ALT and ALP and improved liver histology. The Opuntia extracts reversed APAP-induced depletion of liver GSH and glycogen stores. In cultured hepatocytes, Opuntia extracts significantly reduced leakage of LDH and cell necrosis, both prophylactically and therapeutically. Both extracts appeared to be superior to NAC when used therapeutically. We conclude that Opuntia extracts are hepatoprotective and can be used as a nutraceutical to prevent ALF. PMID:27782042

  3. Spirulina exhibits hepatoprotective effects against lead induced oxidative injury in newborn rats.

    PubMed

    Gargouri, M; Ben Saad, H; Ben Amara, I; Magné, C; El Feki, A

    2016-08-31

    Lead is a toxic metal that induces a wide range of biochemical and physiological effects. The present investigation was designed at evaluating the toxic effects of a prenatal exposure to lead of mothers on hepatic tissue of newborn rats, and potent protective effects of spirulina. Female rats were randomly divided into 4 groups which were given a normal diet (control),a diet enriched with spirulina (S), lead acetate administered through drinking water (Pb), or a diet enriched with spirulina and lead contaminated water (S Pb), respectively. The duration of treatments was from the 5th day of gestation to 14 days postpartum. Lead toxicity was assessed by measuring body and liver weights, blood and stomach lead levels, hepatic DNA, RNA and protein amounts, blood enzyme activities (AST and ALT), as well as lipid peroxidation level and activities of antioxidant enzymes in hepatic tissues of neonates. Lead intoxication of mothers caused reduction of liver weight as well as of hepatic DNA, mRNA and protein levels in newborns. Moreover, oxidative stress and changes in antioxidant enzyme activities were recorded. Conversely, supplementation of mothers with spirulina mitigated these effects induced by lead. These results substantiated the potential hepatoprotective and antioxidant activity of spirulina.

  4. Hepatoprotective effects of kombucha tea: identification of functional strains and quantification of functional components.

    PubMed

    Wang, Yong; Ji, Baoping; Wu, Wei; Wang, Ruojun; Yang, Zhiwei; Zhang, Di; Tian, Wenli

    2014-01-30

    Kombucha tea (KT), a traditional health beverage containing potential hepatoprotective agents, is fermented from sugared tea by a symbiotic culture of yeast and bacteria for 8 days. However, the functional strains that produce components for the hepatoprotective property of KT remain unclear. Multiple strains are involved in traditional KT production. Therefore, KT has not been standardized or produced commercially. This study aimed to identify the functional strains and quantify the functional components with hepatoprotective effects in kombucha tea. Gluconacetobacter sp. A4 was one of the microorganisms in KT in which the D-saccharic acid-1,4-lactone (DSL) produced by G. sp. A4 was significantly higher than that produced by original tea fungus at 8 days of fermentation. Traditional KT (TKT, tea broth fermented by mixed tea fungus), modified KT (MKT, fermented by single G. sp. A4), and DSL significantly inhibited the acetaminophen-induced increase of alanine aminotransferase, alkaline phosphatase, triglyceride and malondialdehyde, as well as facilitating the reduction of total antioxidant capacity in mice. Furthermore, MKT and TKT are both similar to DSL in terms of protection against acetaminophen-induced liver injury in mice. These results suggested a positive relationship between DSL content and the hepatoprotective effect of TKT, MKT and DSL groups. G. sp. A4 was concluded to be a potential functional strain and DSL might be the key functional component for the hepatoprotective property in KT. The stronger capability of G. sp. A4 in producing DSL makes it a better choice for the commercial production of KT. © 2013 Society of Chemical Industry.

  5. The protective effects of aqueous extracts of wild-growing and fermented Royal Sun mushroom, Agaricus brasiliensis S. Wasser et al. (higher basidiomycetes), in CCl4-induced oxidative damage in rats.

    PubMed

    Zhang, Chunjing; Han, Chunchao; Zhao, Baosheng; Yu, Haitao

    2012-01-01

    Culinary-medicinal Royal Sun mushroom, Agaricus brasiliensis (AbS), has traditionally been used for the prevention of a range of diseases, including cancer, hepatitis, atherosclerosis, hypercholesterolemia, diabetes, and dermatitis. The hepatoprotective effect of the fermented mushroom of A. brasiliensis (FMAE) and wild-growing A. brasiliensis (WMAE) were studied in this paper. An in vivo study of carbon tetrachloride (CCl4)-induced antioxidant activity in 2-month-old rats was conducted by examining the levels of activities of alanine aminotransaminase (ALT) and aspartate aminotransaminase (AST) and the antioxidant enzymes, including glutathione peroxidase (GSHPx) and catalase (CAT). Rats were divided into four groups, each containing six rats. The first group served as a control group. The second group was the CCl4 group. Group I and group II were treated orally with distilled water for 14 days respectively. Group III and Group IV were treated orally by WMAE and FMAE at oral doses of 50 mg/kg-day, respectively. Both WMAE and FMAE could reduce CCl4-induced toxicity, particularly hepatotoxicity, by suppressing ALT and AST activities, and increasing antioxidant enzyme activity. The studies demonstrate that both the fermented and wild-growing A. brasiliensis could protect the liver against CCl4-induced oxidative damage in rats.

  6. Cryopreservation of in vitro-grown shoot tips of Chinese medicinal plant Atractylodes macrocephala Koidz. using a droplet-vitrification method

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Atractylodes macrocephala Koidz. is an important medicinal species from China and has been used for thousands of years because of pharmacological antioxidant, hepatoprotective, anti-inflammatory, anti-allergic, antithrombotic, antiviral, and anticarcinogenic activities. OBJECTIVE: The ai...

  7. Protective effect of a polysaccharide from Anoectochilus roxburghii against carbon tetrachloride-induced acute liver injury in mice.

    PubMed

    Zeng, Biyu; Su, Minghua; Chen, Qingxi; Chang, Qiang; Wang, Wei; Li, Huihua

    2017-03-22

    Anoectochilus roxburghii (Wall.) Lindl. is traditionally used for the treatment of various types of chronic and acute hepatitis in China. Considering that Anoectochilus roxburghii polysaccharide (ARPT) is the main constituent of Anoectochilus roxburghii, the present study was designed to investigate the hepatoprotective effect of ARPT and its possible mechanism in carbon tetrachloride (CCl 4 )-induced mice. The hepatoprotective activity of ARPT (150, 300 and 500mg/kg) were investigated on CCl 4 -induced acute liver damage in mice. The activities of alanine transaminase (ALT), aspartate transaminase (AST) were determined in serum. The hepatic levels of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and malondialdehyde (MDA) were measured in liver homogenates. The levels of cytochrome P450 sub family 2E1 (CYP2E1), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), macrophage inflammatory protein-2 (MIP-2), KC (Murine IL-8 ortholog), transforming growth factor-beta1 (TGF-β1), Bcl-2 and Bax were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The expressions of CYP2E1, nuclear factor-kappa B (NF-κB) p65 and caspase-3 were evaluated by western blot assays. The hepatic levels of TNF-α, IL-6, MIP-2 and TGF-β1 were measured by enzyme-linked immunosorbent assay (ELISA). Furthermore, histopathological observation and terminal-deoxynucleoitidyl transferase mediated nick end labeling assay (TUNEL) were carried out on the separated livers of mice. ARPT significantly decreased serum ALT and AST activities, hepatic MDA level, and markedly enhanced antioxidant enzyme (SOD, CAT and GSH-Px) activities and GSH level in hepatic tissue, in a dose-dependent manner, when compared to the model group. Histopathological observation revealed the hepatoprotective effect of ARPT against the damage. Furthermore, ARPT remarkably inhibited CYP2E1 mRNA expression, decreased NF-κB p65 expression and therefore to prevent the secretion of pro-inflammatory cytokines (TNF-α and IL-6) and chemokines (MCP-1, MIP-2 and KC), suppressed TGF-β1 expression and hepatocytes apoptosis. Moreover, ARPT could prevent DNA fragmentation based on TUNEL assay results. These findings suggested that ARPT possessed hepatoprotective effect against CCl 4 -induced hepatotoxicity in mice and the action might in part be through reducing oxidative stress, inflammation and apoptosis. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  8. Hepatoprotective effects and antioxidant, antityrosinase activities of phloretin and phloretin isonicotinyl hydrazone.

    PubMed

    Zuo, Ai-Ren; Yu, Yan-Ying; Shu, Qing-Long; Zheng, Li-Xiang; Wang, Xiao-Min; Peng, Shu-Hong; Xie, Yan-Fei; Cao, Shu-Wen

    2014-06-01

    Acute liver damage is primarily induced by one of several causes, among them viral exposure, alcohol consumption, and drug and immune system issues. Agents with the ability to inhibit tyrosinase and protect against DNA damage caused by reactive oxygen species (ROS) may be therapeutically useful for the prevention or treatment of ROS-related diseases. This investigation examined the hepatoprotective effects of phloretin and phloretin isonicotinyl hydrazone (PIH) on d-galactosamine (D-GalN)-induced acute liver damage in Kunming mice, as well as the possible mechanisms. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transferase (γ-GT), alkaline phosphatase (ALP), and total bilirubin (TB) as well as the histopathological changes in mouse liver sections were determined. The antioxidant effects of phloretin, quercetin, and PIH on lipid peroxidation in rat liver mitochondria in vitro, 1,1-diphenyl-2-picrylhydrazyl (DPPH) or 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA were confirmed. The experiment also examined the antityrosinase activity, inhibition type, and inhibition constant of phloretin and PIH. Phloretin, quercetin, or PIH significantly prevented the increase in serum ALT, AST, γ-GT, ALP, and TB in acute liver damage induced by D-GalN, and produced a marked reduction in the histopathological hepatic lesions. Phloretin, quercetin, or PIH also exhibited antioxidant effects on lipid peroxidation in rat liver mitochondria in vitro, DPPH or ABTS free radical scavenging activity in vitro, and supercoiled pBR322 plasmid DNA. Phloretin, quercetin, or PIH also exhibited good antityrosinase activity. To the best of our knowledge, this was the first study of the hepatoprotective effects of phloretin and PIH on D-GalN-induced acute liver damage in Kunming mice as well as the possible mechanisms. This was also the first study of the lipid peroxidation inhibition activity of phloretin and PIH in liver mitochondria induced by the Fe(2+)/vitamin C (Vc) system in vitro, the protective effects on supercoiled pBR322 plasmid DNA, and the antityrosinase activity of phloretin and PIH. Copyright © 2014. Published by Elsevier B.V.

  9. Andrographis paniculata ameliorates carbon tetrachloride (CCl(4))-dependent hepatic damage and toxicity: diminution of oxidative stress.

    PubMed

    Koh, Pei Hoon; Mokhtar, Ruzaidi Azli Mohd; Iqbal, Mohammad

    2011-01-01

    Andrographis paniculata (hempedu bumi) is a plant that possesses many medicinal values in treating several diseases and for health care maintenance. However, its hepatoprotective activity and mechanism of action have not been fully investigated. Therefore, this study aimed to evaluate the hepatoprotective effects of A. paniculata and its mechanism of action in rats. Carbon tetrachloride (CCl(4)) challenge of rats at a dose of 1.2 ml/kg body weight-induced oxidative stress in the liver. This was evidenced by augmentation in lipid peroxidation, which was accompanied by a decrease in the activities of antioxidant enzymes and depletion in the level of reduced glutathione (P < 0.05). Parrallel to these changes, CCl(4) challenge too, enhanced hepatic damage as evidenced by sharp increase in serum transaminases (e.g. alanine aminotransferase, aspartate aminotransferase, and lactate dehydrogenase) (P < 0.05). Additionally, the impairment of liver function corresponded to histolopathological changes. However, most of these changes were reversed in a dose-dependent fashion by pre-treatment of animals with A. paniculata (P < 0.05). The ability of A. paniculata to scavenge the 2,2-Diphenyl-2-picrylhydrazyl radical was determined through its EC(50) value. The EC(50) value of A. paniculata was 583.60 ± 4.25 µg/ml. In addition, A. paniculata was found to contain 65.37 ± 1.20 mg/g total phenolics expressed as gallic acid equivalent. From these studies, it is concluded that A. paniculata could be used as a hepatoprotective agent and possesses the potential to treat or prevent degenerative diseases where oxidative stress is implicated.

  10. Hepatoprotective property of ethanolic and aqueous extracts of fluted pumpkin (Telfairia occidentalis) leaves against garlic-induced oxidative stress.

    PubMed

    Oboh, Ganiyu

    2005-01-01

    Fluted pumpkin (Telfairia occidentalis) leaf is a darkish-green leafy vegetable popularly used in soup and in herbal preparations for the management of many diseases in Nigeria. In this study, the hepatoprotective property of ethanolic and aqueous extracts of T. occidentalis leaf (earlier confirmed to have a high level of antioxidant activity) against garlic induced-oxidative stress in rat hepatocytes was investigated. Oxidative stress was induced in Wistar strain albino rats by overdosing them with raw garlic (4%) for 14 days, and this caused a significant increase (P < .05) in serum alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT), while there was no significant change (P > .05) in serum bilirubin, albumin, globulin, and total proteins. However, intubation of some of the rats fed raw garlic with 5 mg or 10 mg/0.5 mL of T. occidentalis leaf extract (ethanolic or aqueous) caused a significant decrease (P < .05) in serum ALP, GOT, and GPT when compared with rats fed raw garlic without intubation with the T. occidentalis leaf extract. Moreover, 10 mg/0.5 mL of extract was more effective than 5 mg/0.5 mL of extract, while the aqueous extracts appeared to be more effective than the ethanolic extracts in protecting hepatocytes. It could be inferred that both aqueous and ethanolic extracts of T. occidentalis leaf have hepatoprotective properties, although the aqueous extract is more effective than the ethanolic extract, which could be attributed to the higher antioxidant activity of the aqueous extract than the ethanolic extracts of T. occidentalis leaves.

  11. Baicalin Attenuates IL-17-Mediated Acetaminophen-Induced Liver Injury in a Mouse Model

    PubMed Central

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2016-01-01

    Background IL-17 has been shown to be involved in liver inflammatory disorders in both mice and humans. Baicalin (BA), a major compound extracted from traditional herb medicine (Scutellariae radix), has potent hepatoprotective properties. Previous study showed that BA inhibits IL-17-mediated lymphocyte adhesion and downregulates joint inflammation. The aim of this study is to investigate the role of IL-17 in the hepatoprotective effects of BA in an acetaminophen (APAP)-induced liver injury mouse model. Methods Eight weeks male C57BL/6 (B6) mice were used for this study. Mice received intraperitoneal hepatotoxic injection of APAP (300 mg/kg) and after 30 min of injection, the mice were treated with BA at a concentration of 30 mg/kg. After 16 h of treatment, mice were killed. Blood samples and liver tissues were harvested for analysis of liver injury parameters. Results APAP overdose significantly increased the serum alanine transferase (ALT) levels, hepatic activities of myeloperoxidase (MPO), expression of cytokines (TNF-α, IL-6, and IL-17), and malondialdehyde (MDA) activity when compared with the control animals. BA treatment after APAP administration significantly attenuated the elevation of these parameters in APAP-induced liver injury mice. Furthermore, BA treatment could also decrease hepatic IL-17-producing γδT cells recruitment, which was induced after APAP overdose. Conclusion Our data suggested that baicalin treatment could effectively decrease APAP-induced liver injury in part through attenuation of hepatic IL-17 expression. These results indicate that baicalin is a potential hepatoprotective agent. PMID:27855209

  12. Hepatoprotective Activity of Easter Lily (Lilium longiflorum Thunb.) Bulb Extracts.

    PubMed

    Tang, Wenping; Munafo, John P; Palatini, Kimberly; Esposito, Debora; Huang, Mou-Tuan; Komarnytsky, Slavko; Ho, Chi-Tang; Gianfagna, Thomas J

    2015-11-11

    The hepatoprotective activities of two different extracts, a hydroethanolic crude bulb extract (CB) and a steroidal glycoside-rich 1-butanol extract (BuOH), prepared from the bulbs of Easter lily (Lilium longiflorum Thunb.), were evaluated in a 24 week study in the female KK.Cg-A(y)/J Type 2 diabetic mouse model. Animals were divided into six groups (n = 16): control mice received Easter lily bulb extract-free drinking water together with a low- or high-fat diet (diabetic control); drinking water for the remaining groups was supplemented with CB extract (1%), BuOH extract (0.1 or 0.2%), and reference drug Metformin (0.001%), together with a high-fat diet. Both CB and BuOH extract treatment groups exhibited significantly improved liver function based on comparisons of triglycerides [diabetic 219 ± 34 mg/dL, CB 131 ± 27 mg/dL, BuOH(0.2%) 114 ± 35 mg/dL], CB total cholesterol (TC) (diabetic 196 ± 12 mg/dL, CB 159 ± 5 mg/dL), average liver mass [diabetic 2.96 ± 0.13 g, CB 2.58 ± 0.08 g, BuOH(0.1%) 2.48 ± 0.13 g], alanine transferase [diabetic 74 ± 5 units/L, CB 25 ± 1 units/L, BuOH(0.1%) 45 ± 1 units/L], and histological examinations. Glucose metabolism was improved only in CB, which was confirmed by oral glucose tolerance tests (OGTT) in diet-induced obese C57BL/6J mice exposed to CB extract. These data suggest that steroidal glycosides 1-5 might play a role in the hepatoprotective activity of the BuOH extracts, while the results of the TC measurements and OGTT study indicate that other constituents present in the CB extract are responsible for its hypocholesterolemic and hypoglycemic activity.

  13. ED-XRF spectrometry-based comparative inorganic profile of leaf-derived in vitro calli and in vivo leaf samples of Phyllanthus amarus Schum. & Thonn.--a hepatoprotective herb.

    PubMed

    Nayak, P; Behera, P R; Thirunavoukkarasu, M; Chand, P K

    2011-03-01

    The Energy Dispersive X-ray Fluorescence (ED-XRF) set-up incorporating a molybdenum secondary exciter was used for quantitative determination of major and minor elements in leaves of in vivo grown medicinal herb Phyllanthus amarus vis-á-vis its leaf-derived in vitro callus culture. The elements such as K, Ca, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Se, Rb, Sr and Pb were identified, quantified and compared between both the sources. Experimental results revealed that, compared to the naturally grown herb, in vitro leaf-derived callus cultures were more efficient in accumulating inorganic elements, especially trace elements, which are essential for growth and development and more importantly for prevention and cure of diseases. This investigation on a medicinal plant species is the first of its kind to have used the ED-XRF technique to demonstrate a comparative account of the elemental profile of in vitro callus cultures with their in vivo donor in order to explore the possibility of exploiting the former as a viable alternative and a renewable source of phytochemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. Thymoquinone: an emerging natural drug with a wide range of medical applications

    PubMed Central

    Khader, Mohannad; Eckl, Peter M

    2014-01-01

    Nigella sativa has attracted healers in ancient civilizations and researchers in recent times. Traditionally, it has been used in different forms to treat many diseases including asthma, hypertension, diabetes, inflammation, cough, bronchitis, headache, eczema, fever, dizziness and influenza. Experimentally, it has been demonstrated that N. sativa extracts and the main constituent of their volatile oil, thymoquinone, possess antioxidant, anti-inflammatory and hepatoprotective properties. In this review we aimed at summarizing the most recent investigations related to a few and most important effects of thymoquinone. It is concluded that thymoquinone has evidently proved its activity as hepatoprotective, anti-inflammatory, antioxidant, cytotoxic and anti-cancer chemical, with specific mechanisms of action, which provide support to consider this compound as an emerging drug. Further research is required to make thymoquinone a pharmaceutical preparation ready for clinical trials. PMID:25859298

  15. Protective Effect of Cymbopogon citratus Essential Oil in Experimental Model of Acetaminophen-Induced Liver Injury.

    PubMed

    Uchida, Nancy Sayuri; Silva-Filho, Saulo Euclides; Aguiar, Rafael Pazinatto; Wiirzler, Luiz Alexandre Marques; Cardia, Gabriel Fernando Esteves; Cavalcante, Heitor Augusto Otaviano; Silva-Comar, Francielli Maria de Souza; Becker, Tânia Cristina Alexandrino; Silva, Expedito Leite; Bersani-Amado, Ciomar Aparecida; Cuman, Roberto Kenji Nakamura

    2017-01-01

    To investigate the hepatoprotective effect of Cymbopogon citratus or lemongrass essential oil (LGO), it was used in an animal model of acute liver injury induced by acetaminophen (APAP). Swiss mice were pretreated with LGO (125, 250 and 500[Formula: see text]mg/kg) and SLM (standard drug, 200[Formula: see text]mg/kg) for a duration of seven days, followed by the induction of hepatotoxicity of APAP (single dose, 250[Formula: see text]mg/kg). The liver function markers alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and gamma-glutamyl transferase were determined to evaluate the hepatoprotective effects of the LGO. The livers were used to determine myeloperoxidase (MPO) activity, nitric oxide (NO) production and histological analysis. The effect of LGO on leukocyte migration was evaluated in vitro. Anti-oxidant activity was performed by assessing the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) in vitro. LGO pretreatment decreased significantly the levels of ALT, AST and ALP compared with APAP group. MPO activity and NO production were decreased. The histopathological analysis showed an improved of hepatic lesions in mice after LGO pretreatment. LGO inhibited neutrophil migration and exhibited anti-oxidant activity. Our results suggest that LGO has protective activity against liver toxicity induced by paracetamol.

  16. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats

    PubMed Central

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (−)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats. PMID:26106435

  17. Supplementation of Citrus maxima Peel Powder Prevented Oxidative Stress, Fibrosis, and Hepatic Damage in Carbon Tetrachloride (CCl4) Treated Rats.

    PubMed

    Chowdhury, Mohammed Riaz Hasan; Sagor, Md Abu Taher; Tabassum, Nabila; Potol, Md Abdullah; Hossain, Hemayet; Alam, Md Ashraful

    2015-01-01

    Citrus maxima peel is rich in natural phenolic compounds and has a long use in the traditional medicine. HPLC-DAD analysis on Citrus maxima peel powder exhibited the presence of various phenolic compounds such as caffeic acid and (-)-epicatechin. To determine the plausible hepatoprotective activity of Citrus maxima peel powder, we used carbon tetrachloride (CCl4) treated rat model. Liver damage in rats was confirmed by measuring the AST, ALT, and ALP enzyme activities. In addition, lipid peroxidation products (MDA), nitric oxide, advanced protein oxidation products level (APOP), and catalase activities were also analyzed along with the histological profiling for the inflammatory cell infiltration, collagen, and iron deposition in liver. Dietary supplementation of Citrus maxima peel powder exhibited significant reduction of serum AST, ALT, and ALP activities in carbon tetrachloride treated rats. Moreover, Citrus maxima peel powder also showed a significant reduction of the oxidative stress markers (MDA, NO, and APOP level) and restored the catalase activity in CCl4 treated rats. Histological examination of the liver section revealed reduced inflammatory cells infiltration, collagen, and iron deposition in CCl4 treated rats. The results from this study demonstrated that Citrus maxima peel powder produced significant hepatoprotective action in CCl4 administered rats.

  18. Holoptelea integrifolia (Roxb.) Planch: A Review of Its Ethnobotany, Pharmacology, and Phytochemistry

    PubMed Central

    Ganie, Showkat Ahmad; Yadav, Surender Singh

    2014-01-01

    Holoptelea integrifolia (Ulmaceae) is a versatile medicinal plant used in various indigenous systems of medicine for curing routine healthcare maladies. It is traditionally used in the treatment and prevention of several ailments like leprosy, inflammation, rickets, leucoderma, scabies, rheumatism, ringworm, eczema, malaria, intestinal cancer, and chronic wounds. In vitro and in vivo pharmacological investigations on crude extracts and isolated compounds showed antibacterial, antifungal, analgesic, antioxidant, anti-inflammatory, anthelmintic, antidiabetic, antidiarrhoeal, adaptogenic, anticancer, wound healing, hepatoprotective, larvicidal, antiemetic, CNS depressant, and hypolipidemic activities. Phytochemical analysis showed the presence of terpenoids, sterols, saponins, tannins, proteins, carbohydrates, alkaloids, phenols, flavonoids, glycosides, and quinines. Numerous compounds including Holoptelin-A, Holoptelin-B, friedlin, epifriedlin, β-amyrin, stigmasterol, β-sitosterol, 1, 4-napthalenedione, betulin, betulinic acid, hexacosanol, and octacosanol have been identified and isolated from the plant species. The results of several studies indicated that H. integrifolia may be used as an effective therapeutic remedy in the prevention and treatment of various ailments. However, further studies on chemical constituents and their mechanisms in exhibiting certain biological activities are needed. In addition, study on the toxicity of the crude extracts and the compounds isolated from this plant should be assessed to ensure their eligibility to be used as source of modern medicines. PMID:24949441

  19. Protection from liver fibrosis by a peroxisome proliferator-activated receptor δ agonist.

    PubMed

    Iwaisako, Keiko; Haimerl, Michael; Paik, Yong-Han; Taura, Kojiro; Kodama, Yuzo; Sirlin, Claude; Yu, Elizabeth; Yu, Ruth T; Downes, Michael; Evans, Ronald M; Brenner, David A; Schnabl, Bernd

    2012-05-22

    Peroxisome proliferator-activated receptor delta (PPARδ), a member of the nuclear receptor family, is emerging as a key metabolic regulator with pleiotropic actions on various tissues including fat, skeletal muscle, and liver. Here we show that the PPARδ agonist KD3010, but not the well-validated GW501516, dramatically ameliorates liver injury induced by carbon tetrachloride (CCl(4)) injections. Deposition of extracellular matrix proteins was lower in the KD3010-treated group than in the vehicle- or GW501516-treated group. Interestingly, profibrogenic connective tissue growth factor was induced significantly by GW501516, but not by KD3010, following CCl(4) treatment. The hepatoprotective and antifibrotic effect of KD3010 was confirmed in a model of cholestasis-induced liver injury and fibrosis using bile duct ligation for 3 wk. Primary hepatocytes treated with KD3010 but not GW501516 were protected from starvation or CCl(4)-induced cell death, in part because of reduced reactive oxygen species production. In conclusion, our data demonstrate that an orally active PPARδ agonist has hepatoprotective and antifibrotic effects in animal models of liver fibrosis, suggesting a possible mechanistic and therapeutic approach in treating patients with chronic liver diseases.

  20. Corn peptides protect against thioacetamide-induced hepatic fibrosis in rats.

    PubMed

    Lv, Jie; Nie, Zhi-Kui; Zhang, Jiu-Liang; Liu, Feng-Yan; Wang, Zhen-Zhen; Ma, Zhi-Li; He, Hui

    2013-10-01

    Certain bioactive peptides are reported to be able to alleviate hepatic fibrosis. Our previous work has confirmed the hepatoprotective effect of corn peptides (CPs) that are prepared from a high protein by-product, corn gluten meal, on acute liver injury in an animal model. However, the antifibrotic activity of CPs remained to be elucidated. In this study, the hepatoprotective effect of CPs on thioacetamide (TAA)-induced liver fibrosis was tested. Results showed that CPs (100 mg/kg body weight) significantly decreased the levels of alanine transaminase/aspartate transaminase, laminin, type IV collagen, and type III collagen in serum and increased the serum albumin levels and total antioxidant capacity. Additionally, with CP treatment (100 mg/kg body weight), a significant decrease was observed in the levels of malondialdehyde, nitric oxide, hydroxyproline, transforming growth factor β1, and lactate dehydrogenase activity as well as the liver index, while the activity of superoxidedismutase was significantly increased in livers. The histological and morphological analysis showed that the hepatocyte structure in CP-treated rats was superior to that of TAA-injured rats, and inflammation and fibrosis were also ameliorated. Therefore, CPs can be used as an option for prevention and adjuvant therapy of liver fibrosis.

  1. IN VITRO AND IN VIVO EVALUATION OF ANTIMICROBIAL AND ANTIOXIDANT POTENTIAL OF STEVIA EXTRACT.

    PubMed Central

    Moselhy, Said S.; Ghoneim, Magdy A.; Khan, Jehan A.

    2016-01-01

    Background: The current trend globally is the utilization of natural products as therapeutic agents given its minimum side effects. The leaves of Stevia contain several active ingredient compounds such as rebaudioside. Stevia extract have been used for many purposes. Active oxygen radicals can induce base modifications, DNA breakage, and intracellular protein crosslink’s. This study was done to evaluate the potential of stevia extract as antibacterial and antioxidants actions. Materials and methods: Antibacterial activity of different extracts of stevia was tested in vitro against different species of bacteria and hepato-protective efficacy was testes in rats injected with CCl4 as hepatotoxic. Results: Acetone extract exhibited antibacterial activity against selected five bacteria species. The acetone extract suppressed the elevation of serum ALT (p <0.05) and AST (p <0.001) activities induced by CCl4. Animals given stevia extract showed prevention against deleterious effects of CCl4 by lowering lipid peroxidation and enhancement of antioxidant activities as SOD and CAT. The protection trial is better than treatment trial. Total phenolic content of aqueous and acetone extracts were found 30 mg and 85 mg gallic /gm extract respectively. While the total flavonoids were 40 mg and 80 mg quercetin/g respectively. The GC-MS analysis showed that monoterpene and indole are the main components. Aqueous extract don’t show any antibacterial activity against the tested strains. The antioxidant properties were attributable to its phenolic content to scavenge free radicals. Conclusion: Acetone extract possess a potent antimicrobial and activity against deleterious effect of CCl4-caused liver damage. PMID:28480355

  2. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats.

    PubMed

    Yen, Feng-Lin; Wu, Tzu-Hui; Lin, Liang-Tzung; Cham, Thau-Ming; Lin, Chun-Ching

    2008-05-01

    Cuscuta chinensis is a commonly used traditional Chinese medicine to nourish the liver and kidney. Due to the poor water solubility of its major constituents such as flavonoids and lignans, its absorption upon oral administration could be limited. The purpose of the present study was to use the nanosuspension method to prepare C. chinensis nanoparticles (CN), and to compare the hepatoprotective and antioxidant effects of C. chinensis ethanolic extract (CE) and CN on acetaminophen-induced hepatotoxicity in rats. An oral dose of CE at 125 and 250 mg/kg and CN at 25 and 50mg/kg showed a significant hepatoprotective effect relatively to the same extent (P<0.05) by reducing levels of aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase. These biochemical assessments were supported by rat hepatic biopsy examinations. In addition, the antioxidant activities of CE and CN both significantly increased superoxide dismutase, catalase, glutathione peroxidase, and reduced malondialdehyde (P<0.05). Moreover, the results also indicated that the hepatoprotective and antioxidant effects of 50 mg/kg CN was effectively better than 125 mg/kg CE (P<0.05), and an oral dose of CN that is five times as less as CE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other water poorly soluble herbal medicines and furthermore to decrease the treatment dosage.

  3. Hepatoprotective evaluation and isolation of the major secondary metabolites from the ethyl acetate extract of liquid culture filtrate of Chaetomium globosum.

    PubMed

    Awad, Nagwa E; Kassem, Hanaa A; Hamed, Manal A; El-Feky, Amal M; El-Naggar, Mohamed A A

    2018-01-01

    The aim of the present study was to evaluate the hepatoprotective activity of ethyl acetate extract of the liquid culture filtrate of Chaetomium globosum fungus (family Chaetomiaceae). Rats were intraperitoneally injected by CCl4 (0.5ml/kg) twice a week for six consecutive weeks. Treatment tacks (250mg/kg) place at the same time of CCl4 induction and with the same duration. The evaluation was done through determination of liver function indices; aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), and total serum protein content. In addition, the oxidative stress markers; hepatic glutathione content (GSH), hepatic malondialdehyde (MDA), hepatic superoxide dismutase (SOD), and hepatic total protein were estimated. Moreover, the liver architectures were also examined. Isolation and identification of the main secondary metabolites were identified. Seven volatile compounds were identified from the plain chloroform fraction where, 1-Cyclopentyl-2,2-dimethyl-1-propanol (54.63%) was presented as the major compound. Eleven compounds were also identified from the fraction eluted by chloroform: methanol (85:15). 1,5,5-Trimethyl-6-methylene-1-cyclohexene (25.79%) and Norbornan-2-one (26.84%) are presented as the major compounds of this fraction. In conclusion, the extract recorded hepatoprotective effect by ameliorating the biochemical parameters under investigation. The liver histopathological pictures confirmed our results. Copyright © 2017. Published by Elsevier Masson SAS.

  4. Acute Pre-/Post-Treatment with 8th Day SOD-Like Supreme (a Free Radical Scavenging Health Product) Protects against Oxidant-Induced Injury in Cultured Cardiomyocytes and Hepatocytes In Vitro as Well as in Mouse Myocardium and Liver In Vivo.

    PubMed

    Leong, Pou Kuan; Chen, Jihang; Chan, Wing Man; Leung, Hoi Yan; Chan, Lincoln; Ko, Kam Ming

    2017-04-10

    8th Day superoxide dismutase (SOD)-Like Supreme (SOD-Like Supreme, a free radical scavenging health product) is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5-3% (v/v)) was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days) was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.

  5. A Novel Solid-Phase Site-Specific PEGylation Enhances the In Vitro and In Vivo Biostabilty of Recombinant Human Keratinocyte Growth Factor 1

    PubMed Central

    Zhang, Jingui; Zhang, Yi; Zhang, Youting; Ye, Chaohui; Wang, Xiaojie; Ilghari, Dariush; Li, Xiaokun

    2012-01-01

    Keratinocyte growth factor 1 (KGF-1) has proven useful in the treatment of pathologies associated with dermal adnexae, liver, lung, and the gastrointestinal tract diseases. However, poor stability and short plasma half-life of the protein have restricted its therapeutic applications. While it is possible to improve the stability and extend the circulating half-life of recombinant human KGF-1 (rhKGF-1) using solution-phase PEGylation, such preparations have heterogeneous structures and often low specific activities due to multiple and/or uncontrolled PEGylation. In the present study, a novel solid-phase PEGylation strategy was employed to produce homogenous mono-PEGylated rhKGF-1. RhKGF-1 protein was immobilized on a Heparin-Sepharose column and then a site-selective PEGylation reaction was carried out by a reductive alkylation at the N-terminal amino acid of the protein. The mono-PEGylated rhKGF-1, which accounted for over 40% of the total rhKGF-1 used in the PEGylation reaction, was purified to homogeneity by SP Sepharose ion-exchange chromatography. Our biophysical and biochemical studies demonstrated that the solid-phase PEGylation significantly enhanced the in vitro and in vivo biostability without affecting the over all structure of the protein. Furthermore, pharmacokinetic analysis showed that modified rhKGF-1 had considerably longer plasma half-life than its intact counterpart. Our cell-based analysis showed that, similar to rhKGF-1, PEGylated rhKGF-1 induced proliferation in NIH 3T3 cells through the activation of MAPK/Erk pathway. Notably, PEGylated rhKGF-1 exhibited a greater hepatoprotection against CCl4-induced injury in rats compared to rhKGF-1. PMID:22574160

  6. Medicinal properties of ‘true’ cinnamon (Cinnamomum zeylanicum): a systematic review

    PubMed Central

    2013-01-01

    Background In traditional medicine Cinnamon is considered a remedy for respiratory, digestive and gynaecological ailments. In-vitro and in-vivo studies from different parts of the world have demonstrated numerous beneficial medicinal effects of Cinnamomum zeylanicum (CZ). This paper aims to systematically review the scientific literature and provide a comprehensive summary on the potential medicinal benefits of CZ. Methods A comprehensive systematic review was conducted in the following databases; PubMed, Web of Science, SciVerse Scopus for studies published before 31st December 2012. The following keywords were used: “Cinnamomum zeylanicum”, “Ceylon cinnamon”, “True cinnamon” and “Sri Lankan cinnamon”. To obtain additional data a manual search was performed using the reference lists of included articles. Results The literature search identified the following number of articles in the respective databases; PubMed=54, Web of Science=76 and SciVerse Scopus=591. Thirteen additional articles were identified by searching reference lists. After removing duplicates the total number of articles included in the present review is 70. The beneficial health effects of CZ identified were; a) anti-microbial and anti-parasitic activity, b) lowering of blood glucose, blood pressure and serum cholesterol, c) anti-oxidant and free-radical scavenging properties, d) inhibition of tau aggregation and filament formation (hallmarks of Alzheimer’s disease), e) inhibitory effects on osteoclastogenesis, f) anti-secretagogue and anti-gastric ulcer effects, g) anti-nociceptive and anti-inflammatory activity, h) wound healing properties and i) hepato-protective effects. The studies reported minimal toxic and adverse effects. Conclusions The available in-vitro and in-vivo evidence suggests that CZ has many beneficial health effects. However, since data on humans are sparse, randomized controlled trials in humans will be necessary to determine whether these effects have public health implications. PMID:24148965

  7. Influence of olive and rosemary leaves extracts on chemically induced liver cirrhosis in male rats

    PubMed Central

    Al-Attar, Atef M.; Shawush, Nessreen A.

    2014-01-01

    The current study was undertaken to evaluate the protective activity of olive and rosemary leaves extracts on experimental liver cirrhosis induced by thioacetamide (TAA) in Wistar male rats. Highly significant decline in the values of body weight gain and highly statistically increase of liver/body weight ratio were noted in rats treated with TAA. Furthermore, the levels of serum alanine aminotransferase, aspartate aminotransferase, gamma glutamyl transferase, alkaline phosphatase and total bilirubin were statistically increased. Additionally, light microscopic examination of liver sections from rats treated with TAA showed a marked increase in the extracellular matrix collagen content and bridging fibrosis was prominent. There were bundles of collagen surrounding the lobules that resulted in large fibrous septa and distorted tissue architecture. Interestingly, the findings of this experimental study indicated that the extracts of olive and rosemary leaves and their combination possess hepatoprotective properties against TAA-induced hepatic cirrhosis by inhibiting the physiological and histopathological alterations. Moreover, these results suggest that the hepatoprotective effects of these extracts may be attributed to their antioxidant activities. PMID:25737646

  8. Hepatoprotective effects of lycopene on liver enzymes involved in methionine and xenobiotic metabolism in hyperhomocysteinemic rats.

    PubMed

    Yefsah-Idres, Aicha; Benazzoug, Yasmina; Otman, Amel; Latour, Alizée; Middendorp, Sandrine; Janel, Nathalie

    2016-06-15

    Hyperhomocysteinemia, defined by an increased plasma homocysteine level, is commonly associated with chronic liver diseases. A link between the elevated homocysteine level and oxidative stress has been demonstrated. Indeed the pathogenesis of liver diseases in the case of hyperhomocysteinemia could be due to this production of oxidative stress. Many studies have demonstrated the antioxidative properties of lycopene, a carotenoid. Therefore, the present study was designed to induce hyperhomocysteinemia in male Wistar rats in order to analyze the effect of lycopene supplementation on homocysteine metabolism, on phase I and phase II xenobiotic-metabolizing enzyme activities, and on liver injury by histological examination and analysis of biochemical markers. We found that rats with a high methionine diet showed abnormal histological features, with an increase of serum homocysteine, alanine aminotransferase and aspartate aminotransferase levels, decreased hepatic cystathionine beta synthase and S-adenosyl-homocysteine hydrolase activities and an increased hepatic malondialdehyde level. We demonstrated the reversal effect of lycopene supplementation on hyperhomocysteinemia. Taken together, these findings provide additional clues on the hepatoprotective effects of lycopene.

  9. Hepatoprotective effects of fermented Curcuma longa L. on carbon tetrachloride-induced oxidative stress in rats.

    PubMed

    Kim, Yongjae; You, Yanghee; Yoon, Ho-Geun; Lee, Yoo-Hyun; Kim, Kyungmi; Lee, Jeongmin; Kim, Min Soo; Kim, Jong-Choon; Jun, Woojin

    2014-05-15

    The hepatoprotective effect of fermented Curcuma longa L. (FC) was investigated in rats under CCl4-induced oxidative stress. FC at a dose of 30 or 300 mg/kg body weight (b.w.) was orally administered for 14 days followed by a single dose of CCl4 (1.25 mL/kg b.w. in 20% corn oil) on day 14. Pretreatment with FC drastically prevented the elevated activities of serum AST, ALT, LDH, and ALP caused by CCl4-induced hepatotoxicity. Histopathologically evident hepatic necrosis was significantly ameliorated by FC pretreatment. When compared to the CCl4-alone treated group, rats pretreated with FC displayed the reduced level of malondialdehyde. Furthermore, FC enhanced antioxidant capacities with higher activities of catalase, glutathione-S-transferase, glutathione reductase, and glutathione peroxidase, and level of reduced glutathione. These results suggest that FC could be a candidate used for the prevention against various liver diseases induced by oxidative stress via elevating antioxidative potentials and decreasing lipid peroxidation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β, COX-II and iNOS.

    PubMed

    Devkar, Santosh T; Kandhare, Amit D; Zanwar, Anand A; Jagtap, Suresh D; Katyare, Surendra S; Bodhankar, Subhash L; Hegde, Mahabaleshwar V

    2016-11-01

    Overdose of acetaminophen (APAP) is common in humans and is often associated with hepatic damage. Withania somnifera (L.) Dunal (Solanaceae) shows multiple pharmacological activities including antioxidant and anti-inflammatory potential. To evaluate the possible mechanism of hepatoprotective activity of withanolide-rich fraction (WRF) isolated from a methanolic extract of Withania somnifera roots. Hepatotoxicity was induced by oral administration of APAP (750 mg/kg, p.o.) for 14 d. The control group received the vehicle. APAP-treated animals were given either silymarin (25 mg/kg) or graded doses of WRF (50, 100 and 200mg/kg) 2 h prior to APAP administration. Animals were killed on 15th day and blood and liver tissue samples were collected for the further analysis. In WRF-treated group, there was significant and dose-dependent (p < 0.01 and p < 0.001) decrease in serum bilirubin, ALP, AST and ALT levels with significant and dose-dependent (p < 0.01 and p < 0.001) increase in hepatic SOD, GSH and total antioxidant capacity. The level of MDA and NO decreased significantly (p < 0.01) by WRF treatment. Up-regulated mRNA expression of TNF-α, IL-1β, COX-II and iNOS was significantly down-regulated (p < 0.001) by WRF. Histological alternations induced by APAP in liver were restored to near normality by WRF pretreatment. WRF may exert its hepatoprotective action by alleviating inflammatory and oxido-nitrosative stress via inhibition of TNF-α, IL-1β, COX-II and iNOS.

  11. Hepatoprotective effect of ethanol extract from Berchemia lineate against CCl4-induced acute hepatotoxicity in mice.

    PubMed

    Li, Cong; Yi, Li-Tao; Geng, Di; Han, Yuan-Yuan; Weng, Lian-Jin

    2015-05-01

    The roots of Berchemia lineate (L.) DC. (Rhamnaceae) have been long used as a remedy for the treatment of some diseases in Guangxi Province, China. The present study investigates the hepatoprotective effect of Berchemia lineate ethanol extract (BELE) on CCl4-induced acute liver damage in mice. Effect of BELE administrated for 7 consecutive days was evaluated in mice by the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), albulin (ALB), globulin (GLB), and total protein (TP) levels, as well as liver superoxide dismutase (SOD) activity and malondialdehyde (MDA) level. Moreover, histopathological examinations were also taken. Compared with the model group, administration of 400 mg/kg BELE for 7 d in mice significantly decreased the serum ALT (56.25 U/L), AST (297.67 U/L), ALP (188.20 U/L), and TBIL (17.90 mol/L), along with the elevation of TP (64.67 g/L). In addition, BELE (100, 200, and 400 mg/kg, i.g.) treated mice recorded a dose-dependent increment of SOD (291.17, 310.32, and 325.67 U/mg prot) and reduction of MDA (7.27, 6.77, and 5.33 nmol/mg prot) levels. Histopathological examinations also confirmed that BELE can ameliorate CCl4-induced liver injuries, characterized by extensive hepatocellular degeneration/necrosis, inflammatory cell infiltration, congestion, and sinusoidal dilatation. The results indicated that BELE possessed remarkable protective effect against acute hepatotoxicity and oxidative injuries induced by CCl4, and that the hepatoprotective effects of BELE may be due to both the inhibition of lipid peroxidation and the increase of antioxidant activity.

  12. Hepatoprotective effects of Flagellaria indica are mediated through the suppression of pro-inflammatory cytokines and oxidative stress markers in rats.

    PubMed

    Gnanaraj, Charles; Shah, Muhammad Dawood; Makki, Jaafar Sadeq; Iqbal, Mohammad

    2016-08-01

    Context The antioxidative properties of plants or plant derivative products are well known for their free radical scavenging effects. Flagellaria indica L. (Flagellariaceae) (FI) is a tropical medicinal plant used by the natives of Sabah as medication for semi-paralysis. Objective This study evaluates the hepatoprotective mechanism of FI against carbon tetrachloride (CCl4)-mediated liver damage. Materials and methods Aqueous extract of FI leaves was orally administered to adult Sprague-Dawley rats once daily for 14 consecutive days at 300, 400, and 500 mg/kg b.w. prior to CCl4 treatment (1.0 mL/kg b.w.) on the 13th and 14th days. Results Total phenolic content in the aqueous extract of FI leaves was 65.88 ± 1.84 mg gallic acid equivalent/g. IC50 value for free radical scavenging activity of FI aqueous extract was reached at the concentration of 400 μg/mL. Biochemical studies show that the aqueous extract of FI was able to prevent the increase in levels of serum transaminases, alanine aminotransferase, and aspartate aminotransferase (38-74% recovery), and malondialdehyde formation (25-87% recovery) in a dose-dependent manner. Immunohistochemical results evidenced the suppression of oxidative stress markers (4-hydroxynonenal and 8-hydroxydeoxyguanosine) and pro-inflammatory markers (tumour necrosis factor-α, interleukin-6, prostaglandin E2). Histopathological and hepatocyte ultrastructural alterations proved that there were protective effects in FI against CCl4-mediated liver injury. Signs of toxicity were not present in rats treated with FI alone (500 mg/kg b.w.). Discussion and conclusion It can be concluded that the presence of phenolic constituents and their antioxidative effects can be credited to the hepatoprotective activity of FI.

  13. Antioxidants of Phyllanthus emblica L. Bark Extract Provide Hepatoprotection against Ethanol-Induced Hepatic Damage: A Comparison with Silymarin

    PubMed Central

    Chaphalkar, Renuka; Apte, Kishori G.; Talekar, Yogesh

    2017-01-01

    Phyllanthus emblica L. (amla) has been used in Ayurveda as a potent rasayan for treatment of hepatic disorders. Most of the pharmacological studies, however, are largely focused on PE fruit, while the rest of the parts of PE, particularly, bark, remain underinvestigated. Therefore, we aimed to investigate the protective effect of the hydroalcoholic extract of Phyllanthus emblica bark (PEE) in ethanol-induced hepatotoxicity model in rats. Total phenolic, flavonoid, and tannin content and in vitro antioxidant activities were determined by using H2O2 scavenging and ABTS decolorization assays. Our results showed that PEE was rich in total phenols (99.523 ± 1.91 mg GAE/g), total flavonoids (389.33 ± 1.25 mg quercetin hydrate/g), and total tannins (310 ± 0.21 mg catechin/g), which clearly support its strong antioxidant potential. HPTLC-based quantitative analysis revealed the presence of the potent antioxidants gallic acid (25.05 mg/g) and ellagic acid (13.31 mg/g). Moreover, one-month PEE treatment (500 and 1000 mg/kg, p.o.) followed by 30-day 70% ethanol (10 mL/kg) administration showed hepatoprotection as evidenced by significant restoration of ALT (p < 0.01), AST (p < 0.001), ALP (p < 0.05), and TP (p < 0.001) and further confirmed by liver histopathology. PEE-mediated hepatoprotection could be due to its free radical scavenging and antioxidant activity that may be ascribed to its antioxidant components, namely, ellagic acid and gallic acid. Thus, the results of the present study support the therapeutic claims made in Ayurveda about Phyllanthus emblica. PMID:28168009

  14. Mangiferin exerts hepatoprotective activity against D-galactosamine induced acute toxicity and oxidative/nitrosative stress via Nrf2–NFκB pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Joydeep; Ghosh, Jyotirmoy; Roy, Anandita

    Mangiferin, a xanthone glucoside, is well known to exhibit antioxidant, antiviral, antitumor, anti-inflammatory and gene-regulatory effects. In the present study, we isolated mangiferin from the bark of Mangifera indica and assessed its beneficial role in galactosamine (GAL) induced hepatic pathophysiology. GAL (400 mg/kg body weight) exposed hepatotoxic rats showed elevation in the activities of serum ALP, ALT, levels of triglycerides, total cholesterol, lipid-peroxidation and reduction in the levels of serum total proteins, albumin and cellular GSH. Besides, GAL exposure (5 mM) in hepatocytes induced apoptosis and necrosis, increased ROS and NO production. Signal transduction studies showed that GAL exposure significantlymore » increased the nuclear translocation of NFκB and elevated iNOS protein expression. The same exposure also elevated TNF-α, IFN-γ, IL-1β, IL-6, IL-12, IL-18 and decreased IL-10 mRNA expressions. Furthermore, GAL also decreased the protein expression of Nrf2, NADPH:quinine oxidoreductase-1, heme oxygenase-1 and GSTα. However, mangiferin administration in GAL intoxicated rats or coincubation of hepatocytes with mangiferin significantly altered all these GAL-induced adverse effects. In conclusion, the hepatoprotective role of mangiferin was due to induction of antioxidant defense via the Nrf2 pathway and reduction of inflammation via NFκB inhibition. Highlights: ►Galactosamine induces hepatocytes death via oxidative and nitrosative stress. ►Mangiferin exerts hepatoprotective effect/antioxidant defense via Nrf2 pathway. ►Mangiferin exerts anti-inflammatory responses by inhibiting NF-κB. ►Mangiferin suppresses galactosamine-induced repression of IL-10 mRNA.« less

  15. Hepatoprotective activity of Macrothelypteris torresiana (Gaudich.) aerial parts against CCl4-induced hepatotoxicity in rodents and analysis of polyphenolic compounds by HPTLC.

    PubMed

    Mondal, Sumanta; Ghosh, Debjit; Ganapaty, Seru; Chekuboyina, Surya Vamsi Gokul; Samal, Manisha

    2017-06-01

    Macrothelypteris torresiana is a fern species belonging to family Thelypteridaceae. The present study was conducted to evaluate hepatoprotective potential of ethanol extract from M. torresiana aerial parts (EEMTAP) and detect the polyphenolic compounds present in the extract using high performance thin layer chromatography (HPTLC). Hepatoprotective potential of EEMTAP were tested at doses of 300 and 600 mg/kg, per os (p.o.), on Wistar albino rats. The extract and silymarin treated animal groups showed significant decrease in activities of different biochemical parameters like serum glutamic oxaloacetic transaminase (SGOT), serum glutamate-pyruvate transaminase (SGPT), alkaline phosphatase (ALP), which were elevated by carbon tetrachloride (CCl 4 ) intoxication. The levels of total bilirubin and total protein alongwith the liver weight were also restored to normalcy by EEMTAP and silymarin treatment. After CCl 4 administration the level of hepatic antioxidant enzymes such as Glutathione (GSH) and Catalase (CAT) were decreased whereas the level of hepatic lipid peroxidation (LPO) was elevated. The level of these hepatic antioxidant enzymes were also brought to normalcy by EEMTAP and silymarin treatment. Histological studies supported the biochemical findings and treatment with EEMTAP at doses 300 and 600 mg/kg, p.o. was found to be effective in restoring CCl 4 -induced hepatotoxicity in rats. A simple HPTLC analysis was conducted for the detection of polyphenolic compounds in EEMTAP, and the result revealed the presence of caffeic acid as phenolic acid and quercetin as flavonoid. The proposed HPTLC method is simple, concise and provides a good resolution of caffeic acid and quercetin from other constituents present in EEMTAP.

  16. Hibiscus vitifolius (Linn.) root extracts shows potent protective action against anti-tubercular drug induced hepatotoxicity.

    PubMed

    Samuel, Anbu Jeba Sunilson John; Mohan, Syam; Chellappan, Dinesh Kumar; Kalusalingam, Anandarajagopal; Ariamuthu, Saraswathi

    2012-05-07

    The roots of Hibiscus vitifolius Linn. (Malvaceae) is used for the treatment of jaundice in the folklore system of medicine in India. This study is an attempt to evaluate the hepatoprotective activity of the roots of Hibiscus vitifolius against anti-tubercular drug induced hepatotoxicity. Hepatotoxicity was induced in albino rats of either sex by oral administration of a combination of three anti-tubercular drugs. Petroleum ether, chloroform, methanol and aqueous extracts of roots of Hibiscus vitifolius (400mg/kg/day) were evaluated for their possible hepatoprotective potential. All the extracts were found to be safe up to a dose of 2000mg/kg. Among the four extracts studied, oral administration of methanol extract of Hibiscus vitifolius at 400mg/kg showed significant difference in all the parameters when compared to control. There was a significant (P<0.001) reduction in the levels of serum aspartate amino transaminase, alanine amino transferase, alkaline phosphatase, lactate dehydrogenase, total and direct bilirubin, where as an increase was found in the levels of total cholesterol, total protein and albumin. Liver homogenate studies showed a significant increase in the levels of total protein, phospholipids and glycogen, and a reduction in the levels of total lipids, triglycerides, and cholesterol against control animals. In the tissue anti-oxidant studies, we found a significant increase in the levels of catalase and superoxide dismutase, whereas there was marked reduction in the levels of thiobarbituric acid reactive substances, as compared to control. Histology of liver sections of the animals treated with the extracts showed significant reduction of necrosis and fatty formation when compared with control specimens. These findings suggest that the root extracts of Hibiscus vitifolius have potent hepatoprotective activity, thereby justifying its ethnopharmacological claim. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Hepatoprotective activity of ethanolic extract of Salix subserrata against CCl4-induced chronic hepatotoxicity in rats.

    PubMed

    Wahid, Ahmed; Hamed, Ashraf N; Eltahir, Heba M; Abouzied, Mekky M

    2016-07-29

    The liver performs diverse functions that are essential for life. In the absence of reliable liver protective drugs, a large number of natural medicinal preparations are used for the treatment of liver diseases. Therefore the present study aims to investigate the hepatoprotective effects of Salix subserrata Willd flower ethanolic extract (SFEE) against carbon tetrachloride (CCl4)-induced liver damage. Rats were divided into 4 groups of 10 animals each. Group I served as the normal healthy control, groups II rats were intoxicated with CCl4 i.p. (0.8 ml/kg body weight CCl4/olive oil, twice weekly for 9 weeks), group III rats received CCl4 i.p. and SFEE orally (150 mg/kg daily) and group IV rats received CCl4 i.p. and Silymarin orally (100 mg/kg, daily). The hepatoprotective potential of SFEE in rats was evaluated by measuring the protein levels of two inflammatory biomarkers; tumor necrosis factor-alpha (TNF-α) and nuclear factor kappa-B (NF-kB) in addition to other liver biomarkers. Histopathological changes in the liver were assessed using hematoxylin and eosin staining (HE). The administration of SFEE showed hepatic protection at an oral dose of 150 mg/kg. SFEE significantly reduced the elevated serum levels of intracellular liver enzymes as well as liver biomarkers in comparison to CCl4- intoxicated group. Notably, SFEE significantly reduced the expression levels of TNF-α and NFkB proteins compared to their levels in CCl4 intoxicated group. These findings were confirmed with the histopathological observations, where SFEE was capable of reversing the toxic effects of CCl4 on liver cells compared to that observed in CCl4-intoxicated animals. Our results show that SFEE has potential hepatoprotective effects at 150 mg/kg. These effects can be regarded to the antioxidant and anti-inflammatory properties of the extract.

  18. The protective effect of total phenolics from Oenanthe Javanica on acute liver failure induced by D-galactosamine.

    PubMed

    Ai, Guo; Huang, Zheng-Ming; Liu, Qing-Chuan; Han, Yan-Quan; Chen, Xi

    2016-06-20

    Water dropwort [Oenanthe javanica (O. javanica)] is an aquatic perennial herb cultivated in East Asian countries. It has been popularly used in traditional Chinese medicine which is beneficial for the treatment of many diseases, including jaundice and various types of chronic and acute hepatitis. In the present study, we investigated the hepatoprotective effect of total phenolics from O. javanica (TPOJ) against D-galactosamine (D-GalN) induced liver injury in mice. The hepatoprotective activity of TPOJ (125, 250 and 500mg/kg) was investigated on D-GalN (800mg/kg)-induced liver damages in mice. Blood and liver were collected for biochemical and microscopic analysis. RT-PCR was used to determine the changes in hepatic nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression. Protein levels of iNOS, COX-2, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were determined by western blotting. In the animal studies, TPOJ could improve the survival of acute liver failure model significantly and prevente the D-GalN-induced elevation of the serum enzymatic markers and nonenzymatic markers levels significantly. Meanwhile, TPOJ-treatment decreased the malondialdehyde (MDA) level and elevated the content of glutathione (GSH) in the liver as compared to those in the D-GalN group. Hepatic activities and protein expressions of antioxidative enzymes, including SOD, GPx, and CAT were enhanced dose dependently with TPOJ. At the same time, application of TPOJ effectively suppressed the D-GalN-induced proinflammatory mRNA and protein expression of iNOS and COX-2. Subsequently, the serum levels of proinflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2) were reduced. Additionally, histological analyses also showed that TPOJ reduced the extent of liver lesions induced by D-GalN. Our investigation demonstrated the hepatoprotective activity of TPOJ and revealed that TPOJ attributed its significance in the traditional use for treating liver diseases. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Influence of Piper betle on hepatic marker enzymes and tissue antioxidant status in D-galactosamine-induced hepatotoxic rats.

    PubMed

    Pushpavalli, Ganesan; Veeramani, Chinnadurai; Pugalendi, Kodukkur Viswanathan

    2008-01-01

    D-galactosamine is a well-established hepatotoxicant that induces a diffuse type of liver injury closely resembling human viral hepatitis. D-galactosamine by its property of generating free radicals causes severe damage to the membrane and affects almost all organs of the human body. The leaves of Piper betle L., a commonly used masticatory in Asian countries, possess several biological properties. Our aim is to investigate the in vivo antioxidant potential of P. betle leaf-extract against oxidative stress induced by D-galactosamine intoxication in male albino Wistar rats. Toxicity was induced by an intraperitoneal injection of D-galactosamine, 400 mg/kg body weight (BW) for 21 days. Rats were treated with P. betle extract (200 mg/kg BW) via intragastric intubations. We assessed the activities of liver marker enzymes (aspartate amino-transferase, alanine aminotransferase, alkaline phosphatase, gamma glutamyl transpeptidase) and levels of thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, superoxide dismutase, catalase, glutathione peroxidase, vitamin C, vitamin E, and reduced glutathione. The extract significantly improved the status of antioxidants and decreased TBARS, hydroperoxides, and liver marker enzymes when compared with the D-galactosamine treated group, demonstrating its hepatoprotective and antioxidant properties.

  20. Chlorogenic acid ameliorates alcohol-induced liver injuries through scavenging reactive oxygen species.

    PubMed

    Kim, Hyunjin; Pan, Jeong Hoon; Kim, Sung Hwan; Lee, Jin Hyup; Park, Jeen-Woo

    2018-05-19

    The key role of oxidative stress in alcoholic liver disease (ALD) has been established by the large body of evidence from previous studies. Excessive consumption of ethanol induces the production of a variety of reactive oxygen species (ROS) in the liver, such as superoxide, H 2 O 2 , and hydroxyl radical. These products activate oxidant-sensitive signaling cascades and modulators of apoptosis. Because ROS accumulation is closely related to ALD, a number of studies have investigated the benefits of antioxidants. Recent studies demonstrated that polyphenol chlorogenic acid (CGA) has antioxidant properties and health benefits, such as reduction of relative risk of cardiovascular diseases and hepatoprotective effects against acetaminophen toxicity. However, the protective effects of CGA against ALD have not been studied in detail. We hypothesize that CGA plays a role in preventing ALD through its antioxidant properties. In this study, we investigated the protective effects of CGA against liver injuries in vivo. Reduced alcohol-induced-steatosis, apoptotic cell death, and fibrosis due to reduced levels of oxidative stress were observed. These findings suggest that CGA treatment can be an effective approach to attenuate ALD through the suppression of oxidative stress. Copyright © 2018. Published by Elsevier B.V.

  1. Antioxidant potential of different grape cultivars against Fenton-like reagent-induced liver damage ex-vivo.

    PubMed

    Singha, Indrani; Das, Subir Kumar

    2014-10-01

    The phytochemicals present in the grapes are responsible for nutraceutical and health benfits due to their antioxidant properties. These phytochemicals, however, vary greatly among different cultivars. In this study, we evaluated the antioxidant potential and protective role of four different Indian grape (Vitis vinifera) cultivars extracts, namely Flame seedless (Black grapes), Kishmish chorni (Black with reddish brown), Red globe (Red) and Thompson seedless mutant (Sonaka, Green) against the Fenton-like reagent (200 μmole H2O2, 2 mmole ascorbate, 25 μmole FeSO4)-induced liver damage. Non-enzymatic antioxidants, such as glutathione (GSH) levels and activities of antioxidant enzymes, such as glutathione S-transferase (GST) and superoxide dismutase (SOD), as well as total antioxidant capacity (TAC) were highest in the grape seed, followed by skin and pulp. Among edible parts of different cultivars, skin of Flame seedless (Black) cultivar showed highest antioxidant potential, while the Thompson seedless the least potential. These antioxidants were found to be significantly (P < 0.01) correlated with the levels of total phenol, flavonoids and ascorbic acid. Fenton-like reagent treatment significantly (P < 0.001) decreased GSH content by 39.1% and activities of catalase (CAT) by 43.2% and glutathione reductase (GR) by 60%, while increasing thiobarbituric acid reactive substances (TBARS) and nitric oxide levels by 2.13-fold and 0.64-fold, respectively and GST activity by 0.81-fold. Pre-treatment with grape seed extracts showed the best hepatoprotective action against Fenton-like reagent-induced damage, followed by the extracts of skin and pulp of any cultivar. Thus, our study showed the significant amounts of antioxidants were in grape seed, followed by its skin and pulp, which varied among the cultivars and was associated with the protective action of grape extracts against Fenton-like reagent-induced liver damage ex-vivo.

  2. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice.

    PubMed

    Kong, Xiaoni; Feng, Dechun; Wang, Hua; Hong, Feng; Bertola, Adeline; Wang, Fu-Sheng; Gao, Bin

    2012-09-01

    Interleukin (IL)-22 is known to play a key role in promoting antimicrobial immunity, inflammation, and tissue repair at barrier surfaces by binding to the receptors, IL-10R2 and IL-22R1. IL-22R1 is generally thought to be expressed exclusively in epithelial cells. In this study, we identified high levels of IL-10R2 and IL-22R1 expression on hepatic stellate cells (HSCs), the predominant cell type involved in liver fibrogenesis in response to liver damage. In vitro treatment with IL-22 induced the activation of signal transducer and activator of transcription (STAT) 3 in primary mouse and human HSCs. IL-22 administration prevented HSC apoptosis in vitro and in vivo, but surprisingly, the overexpression of IL-22 by either gene targeting (e.g., IL-22 transgenic mice) or exogenous administration of adenovirus expressing IL-22 reduced liver fibrosis and accelerated the resolution of liver fibrosis during recovery. Furthermore, IL-22 overexpression or treatment increased the number of senescence-associated beta-galactosidase-positive HSCs and decreased alpha-smooth muscle actin expression in fibrotic livers in vivo and cultured HSCs in vitro. Deletion of STAT3 prevented IL-22-induced HSC senescence in vitro, whereas the overexpression of a constitutively activated form of STAT3 promoted HSC senescence through p53- and p21-dependent pathways. Finally, IL-22 treatment up-regulated the suppressor of cytokine signaling (SOCS) 3 expression in HSCs. Immunoprecipitation analyses revealed that SOCS3 bound p53 and subsequently increased the expression of p53 and its target genes, contributing to IL-22-mediated HSC senescence. IL-22 induces the senescence of HSCs, which express both IL-10R2 and IL-22R1, thereby ameliorating liver fibrogenesis. The antifibrotic effect of IL-22 is likely mediated by the induction of HSC senescence, in addition to the previously discovered hepatoprotective functions of IL-22. Copyright © 2012 American Association for the Study of Liver Diseases.

  3. Hepatoprotective effects of parsley, basil, and chicory aqueous extracts against dexamethasone-induced in experimental rats

    PubMed Central

    Soliman, Hanan A.; El-Desouky, Mohamed A.; Hozayen, Walaa G.; Ahmed, Rasha R.; Khaliefa, Amal K.

    2016-01-01

    Aim: The objective of this study is to investigate the hypoglycemic, hypolipidemic, and hepatoprotective effects of the aqueous extract of parsley, basil, and chicory whole plant in normal and dexamethasone (Dex) rats. Materials and Methods: 50 female albino rats were used in this study and divided into 5 groups (for each 10). Group (1) fed basal diet and maintained as negative control group. Group (2) received Dex in a dose of (0.1 mg/kg b. wt.). Groups 3, 4, and 5 were treated with Dex along with three different plant extracts of parsley, basil, and chicory (2 g/kg b. wt.), (400 mg/kg b. wt.), and (100 mg/kg b. wt.), respectively. Results: All these groups were treated given three times per week for 8 consecutive weeks. Dex-induced alterations in the levels of serum glucose, triglyceride, cholesterol, low-density lipoprotein-cholesterol levels and cardiovascular indices and serum alanine aminotransferase, aspartate aminotransferase and lactate dehydrogenase activities, liver thiobarbituric acid (TBARS) levels increased, while high-density lipoprotein-cholesterol, total protein, albumin, and liver glutathione (GSH) levels decreased. On the other hand, plant extracts succeeded to modulate these observed abnormalities resulting from Dex as indicated by the reduction of glucose, cholesterol, TBARS, and the pronounced improvement of the investigated biochemical and antioxidant parameters. Conclusions: It was concluded that probably, due to its antioxidant property, parsley, basil, and chicory extracts have hepatoprotective effects in Dex-induced in rats. PMID:27069727

  4. Reduction of oxidative stress by an ethanolic extract of leaves of Piper betle (Paan) Linn. decreased methotrexate-induced toxicity.

    PubMed

    De, Soumita; Sen, Tuhinadri; Chatterjee, Mitali

    2015-11-01

    Methotrexate (MTX), a folate antagonist, is currently used as first line therapy for autoimmune diseases like rheumatoid arthritis and psoriasis, but its use is limited by the associated hepatotoxicity. As leaves of Piper betle, belonging to family Piperaceae, have antioxidant and anti-inflammatory properties, the present study was undertaken to investigate the potential of Piper betle leaf extract (PB) in attenuating MTX-induced hepatotoxicity. Rats pre-treated with PB (50 or 100 mg kg(-1) b.w., p.o.) were administered with a single dose of MTX (20 mg kg(-1), b.w., i.p.) and its hepatoprotective efficacy was compared with folic acid (1 mg kg(-1) b.w., i.p.), conventionally used to minimize MTX-induced toxicity. MTX-induced hepatotoxicity was confirmed by increased activities of marker enzymes, alanine transaminase, aspartate transaminase, and alkaline phosphatase which were remitted by pre-treatment with PB and corroborated with histopathology. Additionally, MTX-induced hepatic oxidative stress which included increased generation of reactive oxygen species, enhanced lipid peroxidation, depleted levels of glutathione and decreased activities of antioxidant enzymes was effectively mitigated by PB, indicative that its promising antioxidant-mediated hepatoprotective activity was worthy of future pharmacological consideration.

  5. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats.

    PubMed

    Folarin, Rachael O; Omirinde, Jamiu O; Bejide, Ronald; Isola, Tajudeen O; Usende, Levi I; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for 7 days and then intoxicated as in Group 2 on the 8th day. Groups 5 and 6 received similar oral doses of Cuscuta australis stem extracts for 7 days and then intoxicated as in Groups 3 and 4. Group 2 rats showed severe periportal hepatic necrosis, significantly elevated serum hepatic injury markers, markedly increased lipid peroxidation, and decreased hepatic antioxidant enzymes activities. Remarkably, Cuscuta australis (seed and stem) extract pretreatments in Groups 3, 4, 5, and 6, most especially, the stem extract pretreatment in Groups 5 and 6, improved better the hepatic histoarchitecture, the hepatocellular, and the oxidative stress injury markers in a dose-dependent manner. Conclusively, ethanol extractions of Cuscuta australis stem appear to protect the liver from acetaminophen intoxication better than the seed counterpart.

  6. Comparative Hepatoprotective Activity of Ethanolic Extracts of Cuscuta australis against Acetaminophen Intoxication in Wistar Rats

    PubMed Central

    Folarin, Rachael O.; Omirinde, Jamiu O.; Bejide, Ronald; Isola, Tajudeen O.; Usende, Levi I.; Basiru, Afisu

    2014-01-01

    This study investigates the comparative hepatoprotective activity of crude ethanol extracts of Cuscuta australis against acetaminophen (APAP) intoxication. Thirty-six rats were randomly divided into six groups of 6 replicates: Group 1 which served as control received water. Group 2 was orally administered 835 mg/kg body wt. of paracetamol on day 8. Groups 3 and 4 were orally administered ethanolic extracts of the seed of Cuscuta australis in doses of 125 mg/kg and 250 mg/kg, respectively, for 7 days and then intoxicated as in Group 2 on the 8th day. Groups 5 and 6 received similar oral doses of Cuscuta australis stem extracts for 7 days and then intoxicated as in Groups 3 and 4. Group 2 rats showed severe periportal hepatic necrosis, significantly elevated serum hepatic injury markers, markedly increased lipid peroxidation, and decreased hepatic antioxidant enzymes activities. Remarkably, Cuscuta australis (seed and stem) extract pretreatments in Groups 3, 4, 5, and 6, most especially, the stem extract pretreatment in Groups 5 and 6, improved better the hepatic histoarchitecture, the hepatocellular, and the oxidative stress injury markers in a dose-dependent manner. Conclusively, ethanol extractions of Cuscuta australis stem appear to protect the liver from acetaminophen intoxication better than the seed counterpart. PMID:27433518

  7. Protective effect of crocin on BPA-induced liver toxicity in rats through inhibition of oxidative stress and downregulation of MAPK and MAPKAP signaling pathway and miRNA-122 expression.

    PubMed

    Vahdati Hassani, Faezeh; Mehri, Soghra; Abnous, Khalil; Birner-Gruenberger, Ruth; Hosseinzadeh, Hossein

    2017-09-01

    Bisphenol A (BPA) is an artificial environmental endocrine disrupting chemical and commonly used as a monomer of polycarbonate plastics and epoxy resins. The aim of the present study is to investigate the hepatoprotective effects of crocin, a constituent of saffron, against BPA-induced liver toxicity. We showed that treatment of male Wistar rats with 0.5 mg/kg BPA for 30 days increased the level of 8-isoprostane, decreased the level of reduced glutathione, elevated serum levels of aspartate aminotransferase, lactate dehydrogenase, triglyceride, and glucose, and induced periportal inflammation. Western blot results revealed that BPA increased the phosphorylation of c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK1/2), and mitogen-activated protein kinase-activated protein kinase (MAPKAPK), but not p38. BPA also reduced the Akt signaling activation and upregulated microRNA (miR-122) expression. Moreover, we showed here that crocin 20 mg/kg administration ameliorated liver damage and improved elevated levels of TG and liver enzymes of BPA-treated rats possibly though antioxidant activity, downregulation of miR-122 transcript level and lowering the phosphorylation of JNK, ERK1/2, and MAPKAPK and subsequently their activities. Overall, the findings suggest that crocin possesses hepatoprotective effects against BPA-induced liver toxicity by enhancing the antioxidative defense system and regulation of important signaling pathway activities and miR-122 expression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Low-molecular-weight lignin-rich fraction in the extract of cultured Lentinula edodes mycelia attenuates carbon tetrachloride-induced toxicity in primary cultures of rat hepatocytes.

    PubMed

    Yoshioka, Yasuko; Kojima, H; Tamura, A; Tsuji, K; Tamesada, M; Yagi, K; Murakami, N

    2012-01-01

    The extract of cultured Lentinula edodes mycelia (LEM) is a medicinal food ingredient that has hepatoprotective effects. In this study, we fractionated the LEM extract to explore novel active compounds related to hepatoprotection by using primary cultures of rat hepatocytes exposed to carbon tetrachloride (CCl(4)). The LEM extract and the fractions markedly inhibited the release of alanine aminotransferase (ALT) from hepatocytes damaged by CCl(4) into the culture medium. The strongest hepatocyte-protective activity was seen in a fraction (Fr. 2) in which a 50% ethanol extract was further eluted with 50% methanol and separated using reverse-phase HPLC. Fr. 2 had an average molecular weight of 2753, and the main components are lignin (49%) and saccharides (36%, of which xylose comprises 41%). Therefore, Fr. 2 was presumed to be a low-molecular-weight compound consisting mainly of lignin and xylan-like polysaccharides. The hepatocyte-protective activity was observed even after digestion of xylan-like polysaccharides in Fr.2 and confirmed with low-molecular-weight lignin (LM-lignin) alone. In addition, Fr. 2, the xylan-digested Fr. 2 and LM-lignin showed higher superoxide dismutase (SOD)-like activity than the LEM extract. These results suggested that the effective fraction in the LEM extract related to hepatocyte protection consisted mainly of LM-lignin, and its antioxidant activity partially contributes to the hepatocyte-protective activity of the LEM extract.

  9. [Hepatoprotective effect of deanol aceglumate on experimental stress-induced gastropathy and diabetes mellitus].

    PubMed

    Blinov, D S; Gogina, E D; Krupnova, T S; Balashov, V P; blinova, E V; Sadovnikov, V N; Lebedev, A B; Nikitina, O I

    2012-01-01

    Experiments on mice with streptozotocin-induced diabetes mellitus and stress-induced erosive ulcerous damage of the mucous membrane of stomach showed evidence of the preventive activity of deanol aceglumate in the course of peroral introduction at a dose of 250 mg/kg per 24 h during 4 days. This effect is accompanied by activation of the peristalsis of bowels and by an increase in the blood flow in the wall of stomach.

  10. Hepatoprotective effect of 10% ethanolic extract from Curdrania tricuspidata leaves against ethanol-induced oxidative stress through suppression of CYP2E1.

    PubMed

    You, Yanghee; Min, Seoyoung; Lee, Yoo-Hyun; Hwang, Kwontack; Jun, Woojin

    2017-10-01

    The hepatoprotective effect of 10% ethanolic extract of Curdrania tricuspidata (CTE) was investigated in HepG2/2E1 cells and C57BL/6 J mice. When compared ethanol-only treated HepG2/2E1 cells, pretreatment of CTE prevented increased intra-cellular reactive oxygen species levels and decreased antioxidant activities by ethanol-induced oxidative stress. In C57BL/6 J mice, CTE at a dose of 250 mg/kg/day was administered for 10 days, with ethanol (5 g/kg/day) administered for the final 3 days. Pretreatment with CTE prevented the elevated activities of serum aspartate aminotransferase, alanine aminotransferase, and alkaline phosphatase caused by ethanol-induced hepatic damage. CTE-treated mice displayed a reduced level of malondialdehyde and increased antioxidant activities of catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase, as well as a reduced level of glutathione as compared with ethanol-only-treated mice. CTE-treated mice exhibited significant inhibition of CYP2E1 activities and expression. These results suggest that CTE could be a useful agent for the prevention of ethanol-induced oxidative damage in the liver, elevating antioxidative potentials and alleviating oxidative stress by suppressing CYP2El. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. The Potential Protective Effect of Physalis peruviana L. against Carbon Tetrachloride-Induced Hepatotoxicity in Rats Is Mediated by Suppression of Oxidative Stress and Downregulation of MMP-9 Expression

    PubMed Central

    Al-Olayan, Ebtisam M.; El-Khadragy, Manal F.; Aref, Ahmed M.; Othman, Mohamed S.; Kassab, Rami B.; Abdel Moneim, Ahmed E.

    2014-01-01

    The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway. PMID:24876910

  12. The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression.

    PubMed

    Al-Olayan, Ebtisam M; El-Khadragy, Manal F; Aref, Ahmed M; Othman, Mohamed S; Kassab, Rami B; Abdel Moneim, Ahmed E

    2014-01-01

    The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway.

  13. Amelioration of Paracetamol-Induced Hepatotoxicity in Rat by the Administration of Methanol Extract of Muntingia calabura L. Leaves

    PubMed Central

    Mahmood, N. D.; Mamat, S. S.; Kamisan, F. H.; Yahya, F.; Kamarolzaman, M. F. F.; Nasir, N.; Mohtarrudin, N.; Tohid, S. F. Md.; Zakaria, Z. A.

    2014-01-01

    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n = 6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P < 0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations. PMID:24868543

  14. A Chinese herbal medicine, jia-wei-xiao-yao-san, prevents dimethylnitrosamine-induced hepatic fibrosis in rats.

    PubMed

    Chien, Shu-Chen; Chang, Wei-Chiao; Lin, Pu-Hua; Chang, Wei-Pin; Hsu, Shih-Chung; Chang, Jung-Chen; Wu, Ya-Chieh; Pei, Jin-Kuo; Lin, Chia-Hsien

    2014-01-01

    Jia-wei-xiao-yao-san (JWXYS) is a traditional Chinese herbal medicine that is widely used to treat neuropsychological disorders. Only a few of the hepatoprotective effects of JWXYS have been studied. The aim of this study was to investigate the hepatoprotective effects of JWXYS on dimethylnitrosamine- (DMN-) induced chronic hepatitis and hepatic fibrosis in rats and to clarify the mechanism through which JWXYS exerts these effects. After the rats were treated with DMN for 3 weeks, serum glutamic oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) levels were significantly elevated, whereas the albumin level decreased. Although DMN was continually administered, after the 3 doses of JWXYS were orally administered, the SGOT and SGPT levels significantly decreased and the albumin level was significantly elevated. In addition, JWXYS treatment prevented liver fibrosis induced by DMN. JWXYS exhibited superoxide-dismutase-like activity and dose-dependently inhibited DMN-induced lipid peroxidation and xanthine oxidase activity in the liver of rats. Our findings suggest that JWXYS exerts antifibrotic effects against DMN-induced chronic hepatic injury. The possible mechanism is at least partially attributable to the ability of JWXYS to inhibit reactive-oxygen-species-induced membrane lipid peroxidation.

  15. Anti-Inflammatory Properties of Brazilian Green Propolis Encapsulated in a γ-Cyclodextrin Complex in Mice Fed a Western-Type Diet.

    PubMed

    Rimbach, Gerald; Fischer, Alexandra; Schloesser, Anke; Jerz, Gerold; Ikuta, Naoko; Ishida, Yoshiyuki; Matsuzawa, Ryota; Matsugo, Seiichi; Huebbe, Patricia; Terao, Keiji

    2017-05-26

    Ageing is often accompanied by chronic inflammation. A fat- and sugar-rich Western-type diet (WTD) may accelerate the ageing phenotype. Cell culture studies have indicated that artepillin C-containing Brazilian green propolis exhibits anti-inflammatory properties. However, little is known regarding its anti-inflammatory potential in mouse liver in vivo. In this study, female C57BL/6NRj wild-type mice were fed a WTD, a WTD supplemented with Brazilian green propolis supercritical extract (GPSE) encapsulated in γ-cyclodextrin (γCD) or a WTD plus γCD for 10 weeks. GPSE-γCD did not affect the food intake, body weight or body composition of the mice. However, mRNA levels of the tumour necrosis factor α were significantly downregulated ( p < 0.05) in these mice compared to those in the WTD-fed controls. Furthermore, the gene expression levels of other pro-inflammatory markers, including serum amyloid P, were significantly ( p < 0.001) decreased following GPSE-γCD treatment. GPSE-γCD significantly induced hepatic ferritin gene expression ( p < 0.01), which may contribute to its anti-inflammatory properties. Conversely, GPSE-γCD did not affect the biomarkers of endogenous antioxidant defence, including catalase, glutathione peroxidase-4, paraoxonase-1, glutamate cysteine ligase and nuclear factor erythroid 2-related factor-2 (Nrf2). Overall, the present data suggest that dietary GPSE-γCD exhibits anti-inflammatory, but not antioxidant activity in mouse liver in vivo. Thus, GPSE-γCD has the potential to serve as a natural hepatoprotective bioactive compound for dietary-mediated strategies against chronic inflammation.

  16. GC-MS Analysis: In Vivo Hepatoprotective and Antioxidant Activities of the Essential Oil of Achillea biebersteinii Afan. Growing in Saudi Arabia.

    PubMed

    Al-Said, Mansour S; Mothana, Ramzi A; Al-Yahya, Mohammed M; Rafatullah, Syed; Al-Sohaibani, Mohammed O; Khaled, Jamal M; Alatar, Abdulrahman; Alharbi, Naiyf S; Kurkcuoglu, Mine; Baser, Husnu C

    2016-01-01

    Liver disease is a worldwide problem. It represents one of the main causes of morbidity and mortality in humans. Achillea biebersteinii is used as herbal remedy for various ailments including liver diseases. But the scientific basis for its medicinal use remains unknown. Thus, this research was undertaken to evaluate the efficiency of A. biebersteinii essential oil (ABEO) (0.2 mL/kg) in the amelioration of CCl4-induced hepatotoxicity in rodent model. Moreover, the chemical content of the oil was investigated using GC and GC-MS. The following biochemical parameters were evaluated: serum glutamic oxaloacetic transaminase (GOT), glutamic-pyruvic transaminase (GPT), gamma-glutamyl-transpeptidase (γ-GGT), alkaline phosphatase (ALP), and total bilirubin. Furthermore, lipid profile, malondialdehyde (MDA), nonprotein sulfhydryl (NP-SH), and total protein (TP) contents in liver tissue were estimated. 44 components (92.0%) of the total oil have been identified by GC-MS analysis where α-terpinene and p-cymene were the most abundant. The high serum enzymatic (GOT, GPT, GGT, and ALP) and bilirubin concentrations as well as the level of MDA, NP-SH, and TP contents in liver tissues were significantly reinstated towards normalization by the ABEO. Histopathological study further confirmed these findings. In addition, ABEO showed mild antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and β-carotene-linoleic acid assays.

  17. l-Theanine prevents ETEC-induced liver damage by reducing intrinsic apoptotic response and inhibiting ERK1/2 and JNK1/2 signaling pathways.

    PubMed

    Gong, Zhihua; Liu, Qiuling; Lin, Ling; Deng, Yanli; Cai, Shuxian; Liu, Zunying; Zhang, Sheng; Xiao, Wenjun; Xiong, Shuo; Chen, Dong

    2018-01-05

    l-Theanine (LTA; γ-glutamylethylamide), a peculiar non-protein-derived amino acid isolated from tea, is widely used as a functional ingredient and dietary supplement. l-Theanine has been confirmed to have hepatoprotective effects, but the underlying mechanism remains unknown. This study investigated the protective effect of l-Theanine-in vivo, using an enterotoxigenic Escherichia coli (ETEC)-infected mouse model. l-Theanine significantly decreased the elevated serum activities of both aspartate aminotransferase (AST) and alanine aminotransferase (ALT), two biomarkers of hepatic impairment. This was consistent with histopathological images from the microscopic observation of liver tissue. In addition, l-theanine significantly increased the mRNA and protein expression of Bcl-2 and decreased the expression of Bax, anti- and pro-apoptotic molecules, respectively, compared with levels in the ETEC control group. The expression of cleaved caspase-3 protein in the group pre-treated with l-theanine was significantly lower than that in the ETEC group. Additionally, decreases in extracellular signal-regulated kinase (ERK1/2) and c-Jun NH 2 -terminal kinase(JNK1/2) MAPK phosphorylation were observed in the l-theanine pre-treated group. Our study demonstrates that l-theanine possesses anti-apoptotic activity, which can be attributed to suppression of the intrinsic mitochondria-mediated apoptosis and MAPK phosphorylation signaling pathways. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Recent Updates on Acetaminophen Hepatotoxicity: The Role of Nrf2 in Hepatoprotection

    PubMed Central

    Gum, Sang Il

    2013-01-01

    Acetaminophen (APAP) known as paracetamol is the main ingredient in Tylenol, which has analgesic and anti-pyretic properties. Inappropriate use of APAP causes major morbidity and mortality secondary to hepatic failure. Overdose of APAP depletes the hepatic glutathione (GSH) rapidly, and the metabolic intermediate leads to hepatocellular death. This article reviews the mechanisms of hepatotoxicity and provides an overview of current research studies. Pharmacokinetics including metabolism (activation and detoxification), subsequent transport (efflux)-facilitating excretion, and some other aspects related to toxicity are discussed. Nuclear factor erythroid 2-related factor 2 (Nrf2)-regulated gene battery plays a critical role in the multiple steps associated with the mitigation of APAP toxicity. The role of Nrf2 as a protective target is described, and potential natural products inhibiting APAP toxicity are outlined. This review provides an update on the mechanism of APAP toxicity and highlights the beneficial role of Nrf2 and specific natural products in hepatoprotection. PMID:24386516

  19. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats.

    PubMed

    Rezaei-Golmisheh, Ali; Malekinejad, Hassan; Asri-Rezaei, Siamak; Farshid, Amir Abbas; Akbari, Peyman

    2015-07-01

    The current study was aimed to determine the bioactive constituents and biological effects of the Crataegus monogyna ethanolic extracts from bark, leaves and berries on hypercholesterolemia. Oleanolic acid, ursolic acid, quercetin and lupeol concentrations were quantified by HPLC. Total phenol content and radical scavenging activity of extracts were also measured. The hypocholesterolemic, antioxidant, and hepatoprotective effects of the extracts were examined in hypercholesterolemic rats and compared with orlistat. The highest phenol content, oleanolic acid, quercetin and lupeol levels and free radical scavenging potency were found in the bark extract, and the highest ursolic acid level was found in the berries extract. Orlistat and extracts significantly (P<0.05) lowered the hypercholesterolemia-increased serum level of hepatic enzymes and lipid peroxidation level. Hawthorn's extracts protected from hepatic thiol depletion and improved the lipid profile and hepatic damages. Data suggested that hawthorn's extracts are able to protect from hypercholesterolemia-induced oxidative stress and hepatic injuries. Moreover, the hypocholesterolemic effect of extracts was found comparable to orlistat.

  20. AMELIORATIVE ROLE OF Vernonia cinerea IN CARBON TETRACHLORIDE INDUCED HEPATIC DYSFUNCTION IN RATS.

    PubMed

    Gokilaveni, C; Nishadh, A; Selvi, V

    2006-01-01

    The ameliorative activity of herbal powder prepared from Veronia cinerea leaves on CCl(4) (0.2ml/kg body wt. intraperitoneally (ip) and liquid paraffin (0.2 ml / kg body wt:ip) induced hepatotoxicity was studied in rats. The liver marker enzymes namely alanine transmainase (ALT), aspartate transaminase (AST), acid phosphatase and alkaline phosphatase (ALP) activities were decreased in 10% w/v liver homogenates of hepatotoxicity induced rats. The results of both post treated and pre treated groups suggest the hepatoprotective activity of Veronia cinerea in CCl(4) induced rats.

  1. Comparative evaluation of hepatoprotective activity of carotenoids of microalgae.

    PubMed

    Murthy, K N Chidambara; Rajesha, J; Swamy, M Mahadeva; Ravishankar, G A

    2005-01-01

    The present study deals with evaluation of the hepatotoprotective activity of carotenoids from two well-known microalgae, Spirulina platensis and Dunaliella salina. Carotenoids were extracted in hexane:isopropyl alcohol (1:1 vol/vol) and fed orally in olive oil to Wistar albino rats at a dose of 100 microg/kg of body weight/day (in terms of carotenoids). The degree of hepatoprotection was measured by estimation of biochemical parameters like serum transaminases [serum glutamate oxaloacetate transaminase (SGOT) and serum glutamate pyruvate transaminase (SGPT)], serum alkaline phosphatase, total albumin, and total protein. The results were compared with those for a control group, a CCl4-induced hepatic damage group, and a group treated with synthetic beta-carotene (all-trans) at the same dose. The protein content of the CCl4-treated group, which received normal diet and a dose of toxin, showed a significant decrease, i.e., 3.92 mg/mL, whereas the protein levels were higher, i.e., 6.96 and 6.32 mg/mL, in the case of the Dunaliella and Spirulina, respectively, carotenoid-treated groups. The CCl4-treated group shown higher activity of transaminases (128.68 units/mL SGPT and 171.52 units/mL SGOT). However, the activity of SGPT was 62.83 units/mL for Dunaliella and 76.83 units/mL for Spirulina, i.e., carotenoids of Dunaliella showed a higher degree of protection. For serum alkaline phosphatase, the standard beta-carotene value was 81.52 units/mL, compared with 84.46 units/mL for the CCl4-treated group; however, natural algal carotenoids yielded 38.45 units/mL (D. salina) and 44.73 units/mL (Spirulina). The total albumin value diminished with CCl4 treatment (2.46 mg/mL); the effect was highest for Dunaliella, followed by the Spirulina carotenoid-treated group. The results clearly indicate that carotenoids from Dunaliella possess better hepatoprotection compared with those from Spirulina. High-performance liquid chromatography of the carotenoids indicated that Spirulina contains only beta-carotene and Dunaliella contains other carotenoids and xanthophyll. The increase in protection with Dunaliella indicates that mixed carotenoids exhibit better biological activity than beta-carotene alone. The results of this study indicate that carotenoids obtained from an algal source have a higher antihepatotoxic effect, compared with synthetic beta-carotene and with beta-carotene alone from a natural source.

  2. Isoglycyrrhizinate Magnesium Enhances Hepatoprotective Effect of FK506 on Ischemia-Reperfusion Injury Through HMGB1 Inhibition in a Rat Model of Liver Transplantation.

    PubMed

    Zhang, Weichen; Li, Feibo; Ye, Yufu; Liu, Yuanxing; Yu, Songfeng; Cen, Chao; Chen, Xuliang; Zhou, Lin; Tang, Xiaofeng; Yu, Jun; Zheng, Shusen

    2017-12-01

    Ischemia-reperfusion injury after liver transplantation (LT) impairs graft function and affects prognosis of recipients. Isoglycyrrhizinate magnesium (Iso) is a hepatoprotective drug usually used after liver injury. In this study, we intended to explore whether Iso alone have protective effect after ischemia-reperfusion injury in a rat model of liver transplantation. We also aimed to study whether Iso could enhance the hepatoprotective effect of FK506 (tacrolimus) and underlying mechanism. Rats after LT were treated with different concentration of FK506 with or without, Iso or lower-dose FK506 plus Iso. Alanine transaminase, aspartate transaminase, and albumin level were measured after 48 hours, 72 hours, and 7 days. A cell ischemic/reperfusion model was established to further study the mechanism of hepatoprotective effect of FK506 and Iso. Iso treatment alone had no effect on liver grafts after LT, but lower-dose FK506 + Iso was better for maintenance of liver function than lower-dose FK506 alone at 48 hours, 72 hours, and 7 days after LT. In terms of mechanism, FK506 induced autophagy which resulted in significantly reduced apoptosis and maintained proliferative potential. However, autophagy induced by FK506 also lead to high-mobility group box (HMGB) 1 release from nuclei, resulting in hepatocyte injury through triggering of p38 phosphorylation and chemokine release. Iso effectively inhibited the release of HMGB1 and downstream inflammatory cytokines. Iso could inhibit release of HMGB1 by FK506 and enhance the hepatoprotective effect of FK506 in rat LT. Combining Iso with FK506 would be promising for the patients after LT.

  3. Identification of Hepatoprotective Constituents in Limonium tetragonum and Development of Simultaneous Analysis Method using High-performance Liquid Chromatography

    PubMed Central

    Lee, Jae Sun; Kim, Yun Na; Kim, Na-Hyun; Heo, Jeong-Doo; Yang, Min Hye; Rho, Jung-Rae; Jeong, Eun Ju

    2017-01-01

    Background: Limonium tetragonum, a naturally salt-tolerant halophyte, has been studied recently and is of much interest to researchers due to its potent antioxidant and hepatoprotective activities. Objective: In the present study, we attempted to elucidate bioactive compounds from ethyl acetate (EtOAc) soluble fraction of L. tetragonum extract. Furthermore, the simultaneous analysis method of bioactive EtOAc fraction of L. tetragonum has been developed using high-performance liquid chromatography (HPLC). Materials and Methods: Thirteen compounds have been successfully isolated from EtOAc fraction of L. tetragonum, and the structures of 1–13 were elucidated by extensive one-dimensional and two-dimensional spectroscopic methods including 1H-NMR, 13C-NMR, 1H-1H COSY, heteronuclear single quantum coherence, heteronuclear multiple bond correlation, and nuclear Overhauser effect spectroscopy. Hepatoprotection of the isolated compounds against liver fibrosis was evaluated by measuring inhibition on hepatic stellate cells (HSCs) undergoing proliferation. Results: Compounds 1–13 were identified as gallincin (1), apigenin-3-O-β-D-galactopyranoside (2), quercetin (3), quercetin-3-O-β-D-galactopyranoside (4), (−)-epigallocatechin (5), (−)-epigallocatechin-3-gallate (6), (−)-epigallocatechin-3-(3″-O-methyl) gallate (7), myricetin-3-O-β-D-galactopyranoside (8), myricetin-3-O-(6″-O-galloyl)-β-D-galactopyranoside (9), myricetin-3-O-α-L-rhamnopyranoside (10), myricetin-3-O-(2″-O-galloyl)-α-L-rhamnopyranoside (11), myricetin-3-O-(3″-O-galloyl)-α-L-rhamnopyranoside (12), and myricetin-3-O-α-L-arabinopyranoside (13), respectively. All compounds except for 4, 8, and 10 are reported for the first time from this plant. Conclusion: Myricetin glycosides which possess galloyl substituent (9, 11, and 12) showed most potent inhibitory effects on the proliferation of HSCs. SUMMARY In the present study, we have successfully isolated 13 compounds from bioactive fraction of Limonium tetragonum. The structures of compounds isolated have been fully elucidated, and hepatoprotective activities of compounds against liver fibrosis were evaluated by measuring inhibition on hepatic stellate cells undergoing proliferation. Furthermore, the simultaneous analysis method of bioactive ethyl acetate fraction of L. tetragonum has been developed using HPLC. Ten compounds identified herein are reported for the first time from this plant. Abbreviations used: HSQC: Heteronuclear single quantum coherence; HMBC: Heteronuclear multiple bond correlation; NOESY: Nuclear Overhauser effect spectroscopy; EGCG: Epigallocatechin-3-gallate; EGC: Epigallocatechin; HSC: Hepatic stellate cell; MTT: 3-(4,5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide. PMID:29200710

  4. Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride.

    PubMed

    Lin, Song-Chow; Lin, Chia-Hsien; Lin, Chun-Ching; Lin, Yun-Ho; Chen, Chin-Fa; Chen, I-Cheng; Wang, Li-Ya

    2002-01-01

    Arctium lappa Linne (burdock) is a perennial herb which is popularly cultivated as a vegetable. In order to evaluate its hepatoprotective effects, a group of rats (n = 10) was fed a liquid ethanol diet (4 g of absolute ethanol/ 80 ml of liquid basal diet) for 28 days and another group (n = 10) received a single intraperitoneal injection of 0.5 ml/kg carbon tetrachloride (CCl(4)) in order to potentiate the liver damage on the 21st day (1 day before the beginning of A. lappa treatment). Control group rats were given a liquid basal diet which did not contain absolute ethanol. When 300 mg/kg A. lappa was administered orally 3 times per day in both the 1-day and 7-day treatment groups, some biochemical and histopathological parameters were significantly altered, both in the ethanol group and the groups receiving ethanol supplemented with CCl(4). A. lappa significantly improved various pathological and biochemical parameters which were worsened by ethanol plus CCl(4)-induced liver damage, such as the ethanol plus CCl(4)-induced decreases in total cytochrome P-450 content and NADPH-cytochrome c reductase activity, increases in serum triglyceride levels and lipid peroxidation (the deleterious peroxidative and toxic malondialdehyde metabolite may be produced in quantity) and elevation of serum transaminase levels. It could even restore the glutathione content and affect the histopathological lesions. These results tended to imply that the hepatotoxicity induced by ethanol and potentiated by CCl(4) could be alleviated with 1 and 7 days of A. lappa treatment. The hepatoprotective mechanism of A. lappa could be attributed, at least in part, to its antioxidative activity, which decreases the oxidative stress of hepatocytes, or to other unknown protective mechanism(s). Copyright 2002 National Science Council, ROC and S. Karger AG, Basel

  5. Virgin coconut oil supplementation attenuates acute chemotherapy hepatotoxicity induced by anticancer drug methotrexate via inhibition of oxidative stress in rats.

    PubMed

    Famurewa, Ademola C; Ufebe, Odomero G; Egedigwe, Chima A; Nwankwo, Onyebuchi E; Obaje, Godwin S

    2017-03-01

    The emerging health benefit of virgin coconut oil (VCO) has been associated with its potent natural antioxidants; however, the antioxidant and hepatoprotective effect of VCO against methotrexate-induced liver damage and oxidative stress remains unexplored. The study explored the antioxidant and hepatoprotective effects of VCO against oxidative stress and liver damage induced by anticancer drug methotrexate (MTX) in rats. Liver damage was induced in Wistar rats pretreated with dietary supplementation of VCO (5% and 15%) by intraperitoneal administration of MTX (20mg/kg bw) on day 10 only. After 12days of treatment, assays for serum liver biomarkers (aminotransferases), alkaline phosphatase, albumin and total protein as well as hepatic content of malondialdehyde, reduced glutathione and antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase) were carried out. Liver was used to examine histopathological changes. MTX administration induced significant increase in serum liver enzymes along with marked decrease in albumin and total protein compared to control group. Hepatic activities of antioxidant enzymes were significantly decreased, while malondialdehyde increased significantly. Treatment with VCO supplemented diet prior to MTX administration attenuated MTX-induced liver injury and oxidative stress evidenced by significant improvements in serum liver markers, hepatic antioxidant enzymes and malondialdehyde comparable to control group. Histopathological alterations were prevented and correlated well with the biochemical indices. The study suggests antioxidant and hepatoprotective effects of VCO supplementation against hepatotoxicity and oxidative damage via improving antioxidant defense system in rats. Our findings may have beneficial application in the management of hepatotoxicity associated with MTX cancer chemotherapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Potential hepatoprotective effects of new Cuban natural products in rat hepatocytes culture.

    PubMed

    Rodeiro, I; Donato, M T; Martínez, I; Hernández, I; Garrido, G; González-Lavaut, J A; Menéndez, R; Laguna, A; Castell, J V; Gómez-Lechón, M J

    2008-08-01

    The protective effects of five Cuban natural products (Mangifera indica L. (MSBE), Erythroxylum minutifolium, Erythroxylum confusum, Thalassia testudinum and Dictyota pinnatifida extracts and mangiferin) on the oxidative damage induced by model toxicants in rat hepatocyte cultures were studied. Cells were pre-incubated with the natural products (5-200 microg/mL) for 24 h. Then hepatotoxins (tert-butyl hydroperoxide, ethanol, carbon tetrachloride and lipopolysaccharide) were individually added and post-incubated for another 24 h. After treatments, cell viability was determined using the MTT assay. Mangiferin and MSBE exhibited the highest cytoprotective potential (EC50 between 50 and 125 microg/mL), followed by T. testudinum and Erythroxylum extracts, whereas no significant protective effects was produced by Dictyota extract treatment. Antioxidant properties of the natural products against lipid peroxidation and GSH depletion induced by tert-butyl hydroperoxide were then investigated. The results show that at 36 h pre-treatment of cells with mangiferin or MSBE, concentrations of T. testudinum and Erythroxylum extracts ranging from 25 to 100 microg/mL significantly inhibited lipid peroxidation induced by tert-butyl hydroperoxide (100 and 250 microM) and increased the GSH levels reduced by the toxicant. D. pinnatifida inhibited lipid peroxidation, but did not preserve GSH levels. In conclusion, MSBE, E. minutifolium, E. confusum and T. testudinum extracts and mangiferin showed hepatoprotective activity against induced damage in all the experimental series, where mangiferin and the extracts of MSBE and T. testudinum were the best candidates to inhibit "in vitro" damage to rat hepatocytes. This hepatoprotective effect found could be associated with the antioxidant properties observed for the products.

  7. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats.

    PubMed

    Lu, Kuan-Hung; Weng, Ching-Yi; Chen, Wei-Cheng; Sheen, Lee-Yan

    2017-07-01

    Ginseng essence (GE) is a formulation comprising four medicinal and edible herbs including ginseng ( Panax ginseng ), American ginseng ( Panax quinquefolius ), lotus seed ( Nelumbo nucifera ), and lily bulb ( Lilium longiflorum ). This study was aimed at investigating the hepatoprotective effect of GE against carbon tetrachloride (CCl 4 )-induced liver injury in rats. We treated Wistar rats daily with low, medium, and high [0.625 g/kg body weight (bw), 1.25 g/kg bw, and 3.125 g/kg bw, respectively] doses of GE for 9 wk. After the 1 st wk of treatment, rats were administered 20% CCl 4 (1.5 mL/kg bw) two times a week to induce liver damage until the treatment ended. Serum biochemical analysis indicated that GE ameliorated the elevation of aspartate aminotransferase and alanine aminotransferase and albumin decline in CCl 4 -treated rats. Moreover, CCl 4 -induced accumulation of hepatic total cholesterol and triglyceride was inhibited. The hepatoprotective effects of GE involved enhancing the hepatic antioxidant defense system including glutathione, glutathione peroxidase, glutathione reductase, glutathione S -transferase, superoxide dismutase, and catalase. In addition, histological analysis using hematoxylin and eosin and Masson's trichrome staining showed that GE inhibited CCl 4 -induced hepatic inflammation and fibrosis. Furthermore, immunohistochemical staining of alpha-smooth muscle actin indicated that CCl 4 -triggered activation of hepatic stellate cells was reduced. These findings demonstrate that GE improves CCl 4 -induced liver inflammation and fibrosis by attenuating oxidative stress. Therefore, GE could be a promising hepatoprotective herbal formulation for future development of phytotherapy.

  8. UPLC-ESI-MS/MS and HPTLC Method for Quantitative Estimation of Cytotoxic Glycosides and Aglycone in Bioactivity Guided Fractions of Solanum nigrum L.

    PubMed Central

    Chester, Karishma; Paliwal, Sarvesh; Khan, Washim; Ahmad, Sayeed

    2017-01-01

    Solanum nigrum L., is traditionally used for the management of the various liver disorders. Investigating the effect of polarity based fractionation of S. nigrum for its hepatoprotective effect on Hep G2 cells in vitro to provide base of its activity by quantifying in steroidal glycosides responsible for hepatoprotective potential. A new UPLC-ESI-MS/MS method following a high performance thin layer chromatography (HPTLC) has been developed and validated for quantification of steroidal glycosides and aglycone (solasonine, solamargine, and solasodine, respectively). The in vitro antioxidant potential, total phenolics, and flavonoid content were also determined in different fractions. The newly developed UPLC-ESI-MS/MS and HPTLC methods were linear (r2 ≥ 0.99), precise, accurate, and showing recovery more than 97%. The n-butanol enriched fraction of S. nigrum berries was found to be the most potent hepatoprotective fraction against all other fractions as it showed significantly (p < 0.01) better in vitro anti-oxidant potential than other fractions. Quantification by both methods revealed that, content of steroidal glycosides and aglycones are more than 20% in n-butanol fraction as compared to other fractions. The screened steroidal glycoside n-butanol enriched fraction underwent bioefficacy studies against D-galactosamine and H2O2 induced toxicity in HepG2 cell line showing significant (p < 0.05) liver protection. However, developed method can be used for the quality control analysis with respect to targeted metabolites and it can be explored for the pharmacokinetic and pharmacodynamic analysis in future. PMID:28729835

  9. Hepatoprotective potential of Lavandula coronopifolia extracts against ethanol induced oxidative stress-mediated cytotoxicity in HepG2 cells.

    PubMed

    Farshori, Nida Nayyar; Al-Sheddi, Ebtsam S; Al-Oqail, Mai M; Hassan, Wafaa H B; Al-Khedhairy, Abdulaziz A; Musarrat, Javed; Siddiqui, Maqsood A

    2015-08-01

    The present investigations were carried out to study the protective potential of four extracts (namely petroleum ether extract (LCR), chloroform extract (LCM), ethyl acetate extract (LCE), and alcoholic extract (LCL)) of Lavandula coronopifolia on oxidative stress-mediated cell death induced by ethanol, a known hepatotoxin in human hapatocellular carcinoma (HepG2) cells. Cells were pretreated with LCR, LCM, LCE, and LCL extracts (10-50 μg/ml) of L. coronopifolia for 24 h and then ethanol was added and incubated further for 24 h. After the exposure, cell viability using (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and neutral red uptake assays and morphological changes in HepG2 cells were studied. Pretreatment with various extracts of L. coronpifolia was found to be significantly effective in countering the cytotoxic responses of ethanol. Antioxidant properties of these L. coronopifolia extracts against reactive oxygen species (ROS) generation, lipid peroxidation (LPO), and glutathione (GSH) levels induced by ethanol were investigated. Results show that pretreatment with these extracts for 24 h significantly inhibited ROS generation and LPO induced and increased the GSH levels reduced by ethanol. The data from the study suggests that LCR, LCM, LCE, and LCL extracts of L. coronopifolia showed hepatoprotective activity against ethanol-induced damage in HepG2 cells. However, a comparative study revealed that the LCE extract was found to be the most effective and LCL the least effective. The hepatoprotective effects observed in the study could be associated with the antioxidant properties of these extracts of L. coronopifolia. © The Author(s) 2013.

  10. Therapeutic Role of Interleukin 22 in Experimental Intra-abdominal Klebsiella pneumoniae Infection in Mice.

    PubMed

    Zheng, Mingquan; Horne, William; McAleer, Jeremy P; Pociask, Derek; Eddens, Taylor; Good, Misty; Gao, Bin; Kolls, Jay K

    2016-01-04

    Interleukin 22 (IL-22) is an IL-10-related cytokine produced by T helper 17 (Th17) cells and other immune cells that signals via IL-22 receptor alpha 1 (IL-22Ra1), which is expressed on epithelial tissues, as well as hepatocytes. IL-22 has been shown to have hepatoprotective effects that are mediated by signal transducer and activator of transcription 3 (STAT3) signaling. However, it is unclear whether IL-22 can directly regulate antimicrobial programs in the liver. To test this hypothesis, hepatocyte-specific IL-22Ra1 knockout (Il22Ra1(Hep-/-)) and Stat3 knockout (Stat3(Hep-/-)) mice were generated and subjected to intra-abdominal infection with Klebsiella pneumoniae, which results in liver injury and necrosis. We found that overexpression of IL-22 or therapeutic administration of recombinant IL-22 (rIL-22), given 2 h postinfection, significantly reduced the bacterial burden in both the liver and spleen. The antimicrobial activity of rIL-22 required hepatic Il22Ra1 and Stat3. Serum from rIL-22-treated mice showed potent bacteriostatic activity against K. pneumoniae, which was dependent on lipocalin 2 (LCN2). However, in vivo, rIL-22-induced antimicrobial activity was only partially reduced in LCN2-deficient mice. We found that rIL-22 also induced serum amyloid A2 (SAA2) and that SAA2 had anti-K. pneumoniae bactericidal activity in vitro. These results demonstrate that IL-22, through IL-22Ra1 and STAT3 singling, can induce intrinsic antimicrobial activity in the liver, which is due in part to LCN2 and SAA2. Therefore, IL-22 may be a useful adjunct in treating hepatic and intra-abdominal infections. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Chemotaxonomic Diversity of Three Ficus Species: Their Discrimination Using Chemometric Analysis and Their Role in Combating Oxidative Stress.

    PubMed

    Al-Musayeib, Nawal; Ebada, Sherif S; Gad, Haidy A; Youssef, Fadia S; Ashour, Mohamed Lotfy

    2017-10-01

    Genus Ficus (Moraceae) constitutes more than 850 species and about 2000 varieties and it acts as a golden mine that could afford effective and safe remedies combating many health disorders. Discrimination of Ficus cordata , Ficus ingens , and Ficus palmata using chemometric analysis and assessment of their role in combating oxidative stress. Phytochemical profiling of the methanol extracts of the three Ficus species and their successive fractions was performed using high-performance liquid chromatography/electrospray ionization mass spectrometry. Their discrimination was carried out using the obtained spectral data applying chemometric unsupervised pattern-recognition techniques, namely, principal component analysis and hierarchical cluster analysis. In vitro hepatoprotective and antioxidant evaluation of the samples was performed using human hepatocellular carcinoma cells challenged by carbon tetrachloride (CCl 4 ). Altogether, 22 compounds belonging to polyphenolics, flavonoids, and furanocoumarins were identified in the three Ficus species. Aviprin is the most abundant compound in F. cordata while chlorogenic acid and psoralen were present in high percentages in F. ingens and F. palmata , respectively. Chemometric analyses showed that F. palmata and F. cordata are more closely related chemically to each other rather than F. ingens . The ethyl acetate fractions of all the examined species showed a marked hepatoprotective efficacy accounting for 54.78%, 55.46%, and 56.42% reduction in serum level of alanine transaminase and 56.82%, 54.16%, and 57.06% suppression in serum level of aspartate transaminase, respectively, at 100 μg/mL comparable to CCl 4 -treated cells. Ficus species exhibited a no table antioxidant and hepatoprotective activity owing to their richness in polyphenolics and furanocoumarins. Ficus cordata , Ficus ingens , and Ficus palmata were analyzed using high-performance liquid chromatography/electrospray ionization mass spectrometry that revealed their richness with polyphenolics and furanocoumarinsDiscrimination of the three species was performed using spectral data coupled with chemometrics that showed that F. palmata and F. cordata are chemically related to each other rather than F. ingens In vitro hepatoprotective and antioxidant evaluation was performed using human hepatocellular carcinoma cells. The ethyl acetate fractions of all the examined species showed a marked hepatoprotective efficacy Ficus species exhibited notable activities due to polyphenolics and furanocoumarins. Abbreviations used: ALT: Alanine transaminase, AST: Aspartate transaminase, CCl 4: Carbon tetrachloride, DMEM: Dulbecco's Modified Eagle's medium, DMSO: Dimethyl sulfoxide, EDTA: Ethylenediaminetetraacetic acid, FBS: Fetal bovine serum, FCA: Ficus cordata remaining aqueous fraction, FCB: Ficus cordata n -butanol fraction, FCE: Ficus cordata ethyl acetate fraction, FCP: Ficus cordata petroleum ether fraction, FCT: Ficus cordata total methanol extract, FIA: Ficus ingens remaining aqueous fraction, FIB: Ficus ingens n -butanol fraction, FIE: Ficus ingens ethyl acetate fraction, FIP: Ficus ingens petroleum ether fraction, FIT: Ficus ingens total methanol extract, FPA: Ficus palmata remaining aqueous fraction, FPB: Ficus palmata n -butanol fraction, FPE: Ficus palmata ethyl acetate fraction, FPP: Ficus palmata petroleum ether fraction, FPT: Ficus palmata total methanol extract, GSH: Reduced glutathione, HepG2 cells: Human hepatocellular carcinoma, HPLC-ESI-MS: High-performance liquid chromatography/electrospray ionization mass spectrometry, and SOD: Superoxide dismutase.

  12. [Coffee as hepatoprotective factor].

    PubMed

    Szántová, Mária; Ďurkovičová, Zuzana

    The mind about the coffee did change upon the recent studies and metaanalysis of the last years. Consensual protective effect of coffee on the progression of chronic liver diseases (NASH, viral hepatitis, liver cirrhosis, hepatocelullar carcinoma) was detected in experimental, clinical and large population studies together with decrease of mortality. Antioxidant, antifibrotic, insulinsensitizing and anticarcinogenic effect of coffee were detected. Modulation of genetic expression of key enzymes of fatty acid synthesis, modulation of mRNA included in autophagia, reduction of stress of endoplasmatic reticulum together with decrease of proinflammatory cytokines and decrease of fibrogenesis are main mechanisms. Chlorogenic acids, diterpens (cafestol, kahweol), caffein, polyfenols and melanoidins are key protective components of coffee. Inverse dose-dependent correlation of coffee consumption with liver diseases was found in clinical and population studies. Coffee is non-pharmacological tool of primary and secondary prevention of chronic liver diseases. Review of published data together with supposed mechanisms of hepatoprotection are given.Key words: coffee - hepatoprotective effect - metaanalysis.

  13. Heat-Killed Lactobacillus salivarius and Lactobacillus johnsonii Reduce Liver Injury Induced by Alcohol In Vitro and In Vivo.

    PubMed

    Chuang, Cheng-Hung; Tsai, Cheng-Chih; Lin, En-Shyh; Huang, Chin-Shiu; Lin, Yun-Yu; Lan, Chuan-Ching; Huang, Chun-Chih

    2016-10-31

    The aim of the present study was to determine whether Lactobacillus salivarius (LS) and Lactobacillus johnsonii (LJ) prevent alcoholic liver damage in HepG2 cells and rat models of acute alcohol exposure. In this study, heat-killed LS and LJ were screened from 50 Lactobacillus strains induced by 100 mM alcohol in HepG2 cells. The severity of alcoholic liver injury was determined by measuring the levels of aspartate transaminase (AST), alanine transaminase (ALT), gamma-glutamyl transferase (γ-GT), lipid peroxidation, triglyceride (TG) and total cholesterol. Our results indicated that heat-killed LS and LJ reduced AST, ALT, γ-GT and malondialdehyde (MDA) levels and outperformed other bacterial strains in cell line studies. We further evaluated these findings by administering these strains to rats. Only LS was able to reduce serum AST levels, which it did by 26.2%. In addition LS significantly inhibited serum TG levels by 39.2%. However, both strains were unable to inhibit ALT levels. In summary, we demonstrated that heat-killed LS and LJ possess hepatoprotective properties induced by alcohol both in vitro and in vivo.

  14. Hepatoprotective Effects of Chinese Medicine Herbs Decoction on Liver Cirrhosis in Rats

    PubMed Central

    Lim, Tong-Hye; Nor-Amdan, Nur-Asyura

    2017-01-01

    Hepatoprotective and curative activities of aqueous extract of decoction containing 10 Chinese medicinal herbs (HPE-XA-08) were evaluated in Sprague–Dawley albino rats with liver damage induced by thioacetamide (TAA). These activities were assessed by investigating the liver enzymes level and also histopathology investigation. Increases in alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) levels were observed in rats with cirrhotic liver. No significant alterations of the liver enzymes were observed following treatment with HPE-XA-08. Histopathology examination of rats treated with HPE-XA-08 at 250 mg/kg body weight, however, exhibited moderate liver protective effects. Reduced extracellular matrix (ECM) proteins within the hepatocytes were noted in comparison to the cirrhotic liver. The curative effects of HPE-XA-08 were observed with marked decrease in the level of ALP (more than 3x) and level of GGT (more than 2x) in cirrhotic rat treated with 600 mg/kg body weight HPE-XA-08 in comparison to cirrhotic rat treated with just water diluent. Reversion of cirrhotic liver to normal liver condition in rats treated with HPE-XA-08 was observed. Results from the present study suggest that HPE-XA-08 treatment assisted in the protection from liver cirrhosis and improved the recovery of cirrhotic liver. PMID:28280515

  15. Hepatoprotective effects of Vaccinium arctostaphylos against CCl4-induced acute liver injury in rats.

    PubMed

    Ravan, Alireza Pouyandeh; Bahmani, Mahdi; Ghasemi Basir, Hamid Reza; Salehi, Iraj; Oshaghi, Ebrahim Abbasi

    2017-09-26

    This study was carried out to evaluate the antioxidant and hepatoprotective effects of Vaccinium arctostaphylos (V.a) methanolic extract on carbon tetrachloride (CCl4)-induced acute liver injury in Wistar rats. Total phenolic and total flavonoid contents as well as antioxidant activity of V.a were determined. Extracts of V.a at doses of 200 and 400 mg/kg were administered by oral gavage to rats once per day for 7 days and then were given an intraperitoneal injection of 1 mL/kg CCl4 (1:1 in olive oil) for 3 consecutive days. Serum biochemical markers of liver injury, oxidative markers, as well as hydroxyproline (HP) content and histopathology of liver were evaluated. The obtained results showed that V.a had strong antioxidant activity. Treatment of rats with V.a blocked the CCl4-induced elevation of serum markers of liver function and enhanced albumin and total protein levels. The level of hepatic HP content was also reduced by the administration of V.a treatment. Histological examination of the liver section revealed that V.a prevented the occurrence of pathological changes in CCl4-treated rats. These findings suggested that V.a may be useful in the treatment and prevention of hepatic injury induced by CCl4.

  16. Sweet Marjoram

    PubMed Central

    Bina, Fatemeh; Rahimi, Roja

    2016-01-01

    Origanum majorana L. commonly known as sweet marjoram has been used for variety of diseases in traditional and folklore medicines, including gastrointestinal, ocular, nasopharyngeal, respiratory, cardiac, rheumatologic, and neurological disorders. Essential oil containing monoterpene hydrocarbons and oxygenated monoterpenes as well as phenolic compounds are chemical constituents isolated and detected in O majorana. Wide range of pharmacological activities including antioxidant, hepatoprotective, cardioprotective, anti-platelet, gastroprotective, antibacterial and antifungal, antiprotozoal, antiatherosclerosis, anti-inflammatory, antimetastatic, antitumor, antiulcer, and anticholinesterase inhibitory activities have been reported from this plant in modern medicine. This article summarizes comprehensive information concerning traditional uses, phytochemistry, and pharmacological activities of sweet marjoram. PMID:27231340

  17. AMELIORATIVE ROLE OF Vernonia cinerea IN CARBON TETRACHLORIDE INDUCED HEPATIC DYSFUNCTION IN RATS

    PubMed Central

    Gokilaveni, C.; Nishadh, A.; Selvi, V.

    2006-01-01

    The ameliorative activity of herbal powder prepared from Veronia cinerea leaves on CCl4 (0.2ml/kg body wt. intraperitoneally (ip) and liquid paraffin (0.2 ml / kg body wt:ip) induced hepatotoxicity was studied in rats. The liver marker enzymes namely alanine transmainase (ALT), aspartate transaminase (AST), acid phosphatase and alkaline phosphatase (ALP) activities were decreased in 10% w/v liver homogenates of hepatotoxicity induced rats. The results of both post treated and pre treated groups suggest the hepatoprotective activity of Veronia cinerea in CCl4 induced rats. PMID:22557198

  18. Zingiber officinale Roscoe prevents acetaminophen-induced acute hepatotoxicity by enhancing hepatic antioxidant status.

    PubMed

    Ajith, T A; Hema, U; Aswathy, M S

    2007-11-01

    A large number of xenobiotics are reported to be potentially hepatotoxic. Free radicals generated from the xenobiotic metabolism can induce lesions of the liver and react with the basic cellular constituents - proteins, lipids, RNA and DNA. Hepatoprotective activity of aqueous ethanol extract of Zingiber officinale was evaluated against single dose of acetaminophen-induced (3g/kg, p.o.) acute hepatotoxicity in rat. Aqueous extract of Z. officinale significantly protected the hepatotoxicity as evident from the activities of serum transaminase and alkaline phosphatase (ALP). Serum glutamate pyruvate transaminase (SGPT), serum glutamate oxaloacetate transaminase (SGOT) and ALP activities were significantly (p<0.01) elevated in the acetaminophen alone treated animals. Antioxidant status in liver such as activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase and glutathione-S-transferase (GST), a phase II enzyme, and levels of reduced glutathione (GSH) were declined significantly (p<0.01) in the acetaminophen alone treated animals (control group). Hepatic lipid peroxidation was enhanced significantly (p<0.01) in the control group. Administration of single dose of aqueous extract of Z. officinale (200 and 400mg/kg, p.o.) prior to acetaminophen significantly declines the activities of serum transaminases and ALP. Further the hepatic antioxidant status was enhanced in the Z. officinale plus acetaminophen treated group than the control group. The results of the present study concluded that the hepatoprotective effect of aqueous ethanol extract of Z. officinale against acetaminophen-induced acute toxicity is mediated either by preventing the decline of hepatic antioxidant status or due to its direct radical scavenging capacity.

  19. Effect of dietary supplementation of grape skin and seeds on liver fibrosis induced by dimethylnitrosamine in rats

    PubMed Central

    Shin, Mi-Ok

    2010-01-01

    Grape is one of the most popular and widely cultivated fruits in the world. Although grape skin and seeds are waste product of the winery and grape juice industry, these wastes contain large amounts of phytochemicals such as flavonoids, phenolic acids, and anthocyanidins, which play an important role as chemopreventive and anticancer agents. We evaluated efficacies of grape skin and seeds on hepatic injury induced by dimethylnitrosamine (DMN) in rats. Treatment with DMN significantly increased levels of serum alanine transaminase, aspartate transaminase, alkaline phosphatase, and bilirubin. Diet supplementation with grape skin or seeds (10% daily for 4 weeks) prevented these elevations. The grape skin and seeds also restored serum albumin and total protein levels, and reduced the hepatic level of hydroxyproline and malondialdehyde. Furthermore, grape skin and seeds reduced DMN-induced collagen accumulation, as estimated by histological analysis of liver tissue stained with Sirius red. Grape skin and seeds also reduced hepatic stellate cell activation, as assessed by α-smooth muscle actin staining. In conclusion, grape skin and seeds exhibited in vivo hepatoprotective and antifibrogenic effects against DMN-induced liver injury, suggesting that grape skin and seeds may be useful in preventing the development of hepatic fibrosis. PMID:21103082

  20. Hawthorn ethanolic extracts with triterpenoids and flavonoids exert hepatoprotective effects and suppress the hypercholesterolemia-induced oxidative stress in rats

    PubMed Central

    Rezaei-Golmisheh, Ali; Malekinejad, Hassan; Asri-Rezaei, Siamak; Farshid, Amir Abbas; Akbari, Peyman

    2015-01-01

    Objective(s): The current study was aimed to determine the bioactive constituents and biological effects of the Crataegus monogyna ethanolic extracts from bark, leaves and berries on hypercholesterolemia. Materials and Methods: Oleanolic acid, ursolic acid, quercetin and lupeol concentrations were quantified by HPLC. Total phenol content and radical scavenging activity of extracts were also measured. The hypocholesterolemic, antioxidant, and hepatoprotective effects of the extracts were examined in hypercholesterolemic rats and compared with orlistat. Results: The highest phenol content, oleanolic acid, quercetin and lupeol levels and free radical scavenging potency were found in the bark extract, and the highest ursolic acid level was found in the berries extract. Orlistat and extracts significantly (P<0.05) lowered the hypercholesterolemia-increased serum level of hepatic enzymes and lipid peroxidation level. Hawthorn’s extracts protected from hepatic thiol depletion and improved the lipid profile and hepatic damages. Conclusion: Data suggested that hawthorn’s extracts are able to protect from hypercholesterolemia-induced oxidative stress and hepatic injuries. Moreover, the hypocholesterolemic effect of extracts was found comparable to orlistat. PMID:26361538

  1. Protective effect of crude Curcuma longa and its methanolic extract in alloxanized rabbits.

    PubMed

    Ahmad, Mobasher; Kamran, Sairah Hafeez; Mobasher, Afroze

    2014-01-01

    Curcuma longa (C. longa) is commonly found in different areas of Pakistan. It has been locally utilized as a traditional medicine. The aim of this study was to evaluate the antidiabetic, hepatoprotective and total antioxidant effect of the crude drug and its methanolic extract in rabbits. Diabetes was induced with alloxan (180mg/kg). Two major groups were designed, curative and protective groups. In curative group the crude drug and its methanolic extract was orally administered to the diabetic animals and acute study was performed. On the other hand in protective group the crude drug and its methanolic extract were administered for eight days prior to the diabetes induction. Results indicated that in Curative group the crude and methanolic extract of C. longa significantly improved the levels of serum glucose, serum transaminases and antioxidant activity (AOA). In protective group, serum glucose, serum transaminases were not significantly increased by alloxan, in both crude as well as methanolic extract group. This study shows that C. longa acts as antidiabetic, hepatoprotective and antioxidant in diabetes especially type 1 diabetes.

  2. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine.

    PubMed

    Donnapee, Sineeporn; Li, Jin; Yang, Xi; Ge, Ai-hua; Donkor, Paul Owusu; Gao, Xiu-mei; Chang, Yan-xu

    2014-11-18

    Cuscuta chinensis Lam. has found its use as a traditional medicine in China, Korea, Pakistan, Vietnam, India and Thailand. It is commonly used as an anti-aging agent, anti-inflammatory agent, pain reliever and aphrodisiac. To provide an overview of the ethnopharmacology, phytochemistry, pharmacokinetics, pharmacology and clinical applications of Cuscuta chinensis, as well as being an evidence base for further research works of the plant. The present review covers the literature available from 1985 to 2014. The information was collected from journals, books, theses and electronic search (Google Scholar, PubMed, ScienceDirect, ESBCO, Springerlink and CNKI). Literature abstracts and full-text articles were analyzed and included in the review. Many phytochemicals have been isolated, identified and published to date, including: at least 18 flavonoids; 13 phenolic acids; 2 steroids; 1 hydroquinone; 10 volatile oils; 22 lignans; 9 polysaccharides; 2 resin glycosides; 16 fatty acids. These phytochemicals and plant extracts exhibit a range of pharmacological activities that include hepatoprotective, renoprotective, antiosteoporotic, antioxidant, anti-aging, antimutagenic, antidepressant, improve sexual function, abortifacient effects, etc. This present review offers primary information for further studies of Cuscuta chinensis. The in vitro studies and in vivo models have provided a bioscientific explanation for its various ethnopharmacological uses and pharmacological activities (most notably antioxidant effects) especially in the prevention of hepatic disease and renal failure. It is necessary and important to do more pharmacokinetic and toxicological research works on human subjects in order to inform the possible active compounds in the body and validate its safety in clinical uses. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Reduction of the DNA damages, Hepatoprotective Effect and Antioxidant Potential of the Coconut Water, ascorbic and Caffeic Acids in Oxidative Stress Mediated by Ethanol.

    PubMed

    Bispo, Vanderson S; Dantas, Lucas S; Chaves, Adriano B; Pinto, Isabella F D; Silva, Railmara P DA; Otsuka, Felipe A M; Santos, Rodrigo B; Santos, Aline C; Trindade, Danielle J; Matos, Humberto R

    2017-01-01

    Hepatic disorders such as steatosis and alcoholic steatohepatitis are common diseases that affect thousands of people around the globe. This study aims to identify the main phenol compounds using a new HPLC-ESI+-MS/MS method, to evaluate some oxidative stress parameters and the hepatoprotective action of green dwarf coconut water, caffeic and ascorbic acids on the liver and serum of rats treated with ethanol. The results showed five polyphenols in the lyophilized coconut water spiked with standards: chlorogenic acid (0.18 µM), caffeic acid (1.1 µM), methyl caffeate (0.03 µM), quercetin (0.08 µM) and ferulic acid (0.02 µM) isomers. In the animals, the activity of the serum γ-glutamyltranspeptidase (γ-GT) was reduced to 1.8 I.U/L in the coconut water group, 3.6 I.U/L in the ascorbic acid group and 2.9 I.U/L in the caffeic acid groups, when compared with the ethanol group (5.1 I.U/L, p<0.05). Still in liver, the DNA analysis demonstrated a decrease of oxidized bases compared to ethanol group of 36.2% and 48.0% for pretreated and post treated coconut water group respectively, 42.5% for the caffeic acid group, and 34.5% for the ascorbic acid group. The ascorbic acid was efficient in inhibiting the thiobarbituric acid reactive substances (TBARS) in the liver by 16.5% in comparison with the ethanol group. These data indicate that the green dwarf coconut water, caffeic and ascorbic acids have antioxidant, hepatoprotective and reduced DNA damage properties, thus decreasing the oxidative stress induced by ethanol metabolism.

  4. Influence of diabetes on liver injury induced by antitubercular drugs and on silymarin hepatoprotection in rats.

    PubMed

    Srivastava, R K; Sharma, S; Verma, S; Arora, B; Lal, H

    2008-12-01

    Isoniazid, rifampicin and pyrazinamide during short-course chemotherapy for tuberculosis can result in liver injury. The coexistence of tuberculosis and diabetes is common in patients who receive inadequate treatment. The risk of hepatotoxicity from many toxicants is increased in diabetic rats. Silymarin provides protection against liver injury caused by many hepatotoxicants, including antitubercular drugs (ATDs). In the wake of increased severity of ATD-induced hepatotoxicity in diabetes we report here the results of a study on the influence of diabetes on silymarin hepatoprotection in rats. Rats with diabetes induced via intraperitoneally injected streptozotocin (50 mg/kg), nondiabetic rats and insulin-treated diabetic rats received isoniazid (7.5 mg/kg/day), rifampicin (10 mg/kg/day) and pyrazinamide (35 mg/kg/day) orally (p.o.) with or without silymarin (100 mg/kg/day p.o.) treatment for 45 days. Compared to nondiabetic rats, liver function tests and histological changes of liver revealed exaggerated liver injury in diabetic rats caused by ATDs which was evident by 5- to 8-fold increases in serum levels of marker enzymes (aspartate and alanine aminotransferase, alkaline phosphatase and gamma-glutamyltranspeptidase) and 1- to 2-fold increases in bilirubin accompanied by a 2-fold decrease in total serum proteins, intense fatty and inflammatory infiltrations, necrosis and fibrosis. Coadministration of silymarin provided protection against ATD hepatotoxicity in all animals. However, insulin-treated diabetic animals showed greater silymarin-induced hepatoprotection against ATD-induced liver injury, which was characterized by near normal levels of marker enzymes, an increase in total proteins and normal hepatic structure. These results thus indicate that diabetes exaggerates ATD-induced liver injury and attenuates silymarin-induced hepatoprotection. However, insulin treatment for diabetes offers greater silymarin-induced hepatoprotection against ATD-induced liver injury. Copyright (c) 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

  5. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review.

    PubMed

    Akaberi, Maryam; Sobhani, Zahra; Javadi, Behjat; Sahebkar, Amirhossein; Emami, Seyed Ahmad

    2016-12-01

    Traditional medicine is a useful guide in medical sciences. In the Islamic Iranian traditional medicine, the medicinal properties of many plants have been mentioned that could be exploited in drug discovery. We aimed to explore the nature and properties of Aloe spp. As described in some major Islamic traditional texts including Ferdows al-Hekmah fi'l-Tibbe (The Paradise of Wisdom in Medicine), Al-Hawi fi'l-Tibb (Comprehensive Book of Medicine), Kamel al-Sanaat al-Tibbyyah (Complete Book of the Medical Art), Al-Qanun fi'l-Tibb (Canon of Medicine), Zakhireh Kharazmshahi (Treasure of Kharazmshah), and Makhzan al-Adwiah (Drug Treasure), and assess the conformity of traditional medicine instructions with the findings of modern pharmacological studies. Gastrointestinal activities, hepato-protective properties, beneficial effects against skin problems such as wounds, injuries, and infective diseases are among the most frequently mentioned properties of Aloe spp. Several activities of Aloe spp. described in traditional medicine have been the subject of recent in vitro and in vivo studies as well as clinical trials. Owing to the positive findings, different preparations of Aloe spp. are now present in pharmaceutical markets such as Aloe cosmetic products. On the other hand, there are many traditional therapeutic effects of Aloe spp. which have not been studied and require confirmatory experimental or clinical investigations. It is hoped that the present study could stimulate further research on the unexplored aspects of the medicinal properties of Aloe spp. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Altered expression and activation of signal transducers and activators of transcription (STATs) in hepatitis C virus infection: in vivo and in vitro studies.

    PubMed

    Larrea, E; Aldabe, R; Molano, E; Fernandez-Rodriguez, C M; Ametzazurra, A; Civeira, M P; Prieto, J

    2006-08-01

    Signal transducers and activators of transcription (STATs) play a critical role in antiviral defence. STAT3 is also important in cell protection against inflammatory damage. STAT proteins are activated by interferons and by hepatoprotective cytokines of the interleukin 6 superfamily, including cardiotrophin 1. We analysed the status of STATs in hepatitis C virus (HCV) infected livers and the relationship between expression and activation of STATs and HCV replication in Huh7 cells transfected with HCV genomic replicon. STAT3alpha expression was reduced in HCV infected livers showing an inverse correlation with serum alanine aminotransferase. In patients with HCV infection, nuclear staining for phosphorylated STAT3 was faint in parenchymal cells (although conspicuous in infiltrating leucocytes), in contrast with strong nuclear staining in hepatocytes from control livers. Expression and activation of STAT1 (a factor activated by both interferon (IFN)-alpha and IFN-gamma) were increased in HCV infected livers, particularly in those with high inflammatory activity. Conversely, phosphorylated STAT2 (a factor selectively activated by IFN-alpha) was undetectable in livers with HCV infection, a finding that was associated with marked downregulation of the two functional subunits of the IFN-alpha receptor. HCV replication in Huh7 cells caused STAT3alpha downregulation and blocked STAT3 phosphorylation by either IFN-alpha or cardiotrophin 1. HCV replication in Huh7 cells also inhibited STAT1 and STAT2 activation by IFN-alpha while there was no impairment of STAT1 phosphorylation by the proinflammatory cytokine IFN-gamma. STAT3 is downregulated in HCV infected livers and in Huh7 cells bearing the full length HCV replicon. HCV replication is associated with impaired Jak-STAT signalling by antiviral and cytoprotective cytokines. These effects may favour viral replication while facilitating the progression of liver disease.

  7. New acyclic secondary metabolites from the biologically active fraction of Albizia lebbeck flowers.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Abd El Halim, Mohamed F; Al-Said, Mansour S; Abdel-Kader, Maged S; Basudan, Omer A; Alqasoumi, Saleh I

    2017-01-01

    The total extract of Albizia lebbeck flowers was examined in vivo for its possible hepatoprotective activity in comparison with the standard drug silymarin at two doses. The higher dose expressed promising activity especially in reducing the levels of AST, ALT and bilirubin. Fractionation via liquid-liquid partition and reexamination of the fractions revealed that the n -butanol fraction was the best in improving liver biochemical parameters followed by the n -hexane fraction. However, serum lipid parameters were best improved with CHCl 3 fraction. The promising biological activity results initiated an intensive chromatographic purification of A. lebbeck flowers fractions. Two compounds were identified from natural source for the first time, the acyclic farnesyl sesquiterpene glycoside1-O-[6-O- α -l-arabinopyranosyl- β -d-glucopyranoside]-(2 E ,6 E -)-farnesol ( 6 ) and the squalene derivative 2,3-dihydroxy-2,3-dihydrosqualene ( 9 ), in addition to eight compounds reported here for the first time from the genus Albizia ; two benzyl glycosides, benzyl 1-O- β -d-glucopyranoside ( 1 ) and benzyl 6-O- α -l-arabinopyranosyl β -d-glucopyranoside ( 2 ); three acyclic monoterpene glycosides, linalyl β -d-glucopyranoside ( 3 ) and linalyl 6-O- α -l-arabinopyranosyl- β -d-glucopyranoside ( 4 ); (2 E )-3,7-dimethylocta-2,6-dienoate-6-O- α -l arabinopyranosyl- β -d-glucopyranoside ( 5 ), two oligoglycosides, n -hexyl- α -l arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (creoside) ( 7 ) and n -octyl α -l-arabinopyranosyl-(1 → 6)- β -d-glucopyranoside (rhodiooctanoside) ( 8 ); and ethyl fructofuranoside ( 10 ). The structures of the isolated compounds were elucidated based on extensive examination of their spectroscopic 1D and 2D-NMR, MS, UV, and IR data. It is worth mentioning that, some of the isolated linalol glycoside derivatives were reported as aroma precursors.

  8. Enhanced oral bioavailability and anticancer activity of novel curcumin loaded mixed micelles in human lung cancer cells.

    PubMed

    Patil, Sharvil; Choudhary, Bhavana; Rathore, Atul; Roy, Krishtey; Mahadik, Kakasaheb

    2015-11-15

    Curcumin has a wide range of pharmacological activities including antioxidant, anti-inflammatory, antidiabetic, antibacterial, wound healing, antiatherosclerotic, hepatoprotective and anti-carcinogenic. However, its clinical applications are limited owing to its poor aqueous solubility, multidrug pump P-gp efflux, extensive in vivo metabolism and rapid elimination due to glucuronidation/sulfation. The objective of the current work was to prepare novel curcumin loaded mixed micelles (CUR-MM) of Pluronic F-127 (PF127) and Gelucire® 44/14 (GL44) in order to enhance its oral bioavailability and cytotoxicity in human lung cancer cell line A549. 3(2) Factorial design was used to assess the effect of formulation variables for optimization of mixed micelle batch. CUR-MM was prepared by a solvent evaporation method. The optimized CUR-MM was evaluated for size, entrapment efficiency (EE), in vitro curcumin release, cytotoxicity and oral bioavailability in rats. The average size of CUR-MM was found to be around 188 ± 3 nm with an EE of about 76.45 ± 1.18% w/w. In vitro dissolution profile of CUR-MM revealed controlled release of curcumin. Additionally, CUR-MM showed significant improvement in cytotoxic activity (3-folds) and oral bioavailability (around 55-folds) of curcumin as compared to curcumin alone. Such significant improvement in cytotoxic activity and oral bioavailability of curcumin when formulated into mixed micelles could be attributed to solubilization of hydrophobic curcumin into micelle core along with P-gp inhibition effect of both, PF127 and GL44. Thus the present work propose the formulation of mixed micelles of PF127 and GL44 which can act as promising carrier systems for hydrophobic drugs such as curcumin with significant improvement in their oral bioavailability. Copyright © 2015 Elsevier GmbH. All rights reserved.

  9. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.

    PubMed

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A; Jia, Jidong; Zhuang, Hui

    2017-08-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation.

  10. Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice

    PubMed Central

    Cong, Min; Zhao, Weihua; Liu, Tianhui; Wang, Ping; Fan, Xu; Zhai, Qingling; Bao, Xiaoli; Zhang, Dong; You, Hong; Kisseleva, Tatiana; Brenner, David A.; Jia, Jidong; Zhuang, Hui

    2017-01-01

    Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28–30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation. PMID:28627620

  11. Hepatoprotective effect of fermented ginseng and its major constituent compound K in a rat model of paracetamol (acetaminophen)-induced liver injury.

    PubMed

    Igami, Kentaro; Shimojo, Yosuke; Ito, Hisatomi; Miyazaki, Toshitsugu; Kashiwada, Yoshiki

    2015-04-01

    This work aimed at evaluating the effect of fermented ginseng (FG) and fermented red ginseng (FRG) against rat liver injury caused by paracetamol (acetaminophen (APAP)). Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in the serum and histopathological changes in the liver were analysed to determine the degree of liver injury. Deoxyribonucleic acid (DNA) microarray analysis was performed to compare gene expression levels altered in the rat livers. Phosphorylated Jun-N-terminal kinase (JNK) in human hepatocellular carcinoma (HepG2) cells were detected using western blot analysis to investigate the anti-inflammatory activity of compound K. Pretreatment with FG, containing compound K at high concentration, attenuated AST as well as ALT levels in rats, while no obvious effect was observed in the group that received FRG, whose content of compound K was lower than that of FG. In addition, the results of our histopathological analysis were consistent with changes in the serum biochemical analysis. DNA microarray analysis indicated that JNK- and glutathione S-transferase (GST)-related genes were involved in the hepatotoxicity. Notably, compound K, a major ginsenoside in FG, inhibited the phosphorylation of JNK in HepG2 cells. FG was shown to possess hepatoprotective activity against paracetamol (APAP)-induced liver injury better than FRG. Compound K might play an important role for an anti-inflammatory activity of FG by inhibiting JNK signalling in the liver. © 2014 Royal Pharmaceutical Society.

  12. Hepatoprotective and immunological functions of Nigella sativa seed oil against hypervitaminosis A in adult male rats.

    PubMed

    Al-Suhaimi, Ebtesam Abdullah

    2012-08-01

    The toxic effects of excess vitamin A (VA) intake deserve increased attention. Nigella sativa (NS) seed possesses physiological and pharmacological actions and protects against toxic agents. This work investigated the availability of NS seed oil as a protective agent against the effects of hypervitaminosis A (HVA) on liver function and immunity. Fifty adult albino rats were used and divided into five groups: (G1) control; (G2) experimental HVA rats administered extreme doses (10,000 IU/kg body weight) of VA oil orally, daily for 6 weeks; (G3) rats treated with NS seed oil (800 mg/kg) orally, daily for 6 weeks; (G4) HVA rats simultaneously treated with NS seed oil at the same doses and periods; and (G5) HVA recovery group. Liver function, immunoglobulin (IgG and IgM) levels, and lysosome activity were measured in serum. HVA rats revealed marked elevations in alanine aminotransferase and aspartate aminotransferase activities. This is the first study to demonstrate that NS seed oil possesses significant hepatoprotective activity against HVA. NS seed oil was a potent inducer of IgG and IgM in rat serum either alone or with high doses of VA. These findings may be considered the initial steps of the physiological and humoral immune responses for NS seed oil against HVA, but further studies examining longer periods are needed prior to recommending the use of NS seed oil as an alternative medicine for hepatic and immune diseases.

  13. A Novel AKT Activator, SC79, Prevents Acute Hepatic Failure Induced by Fas-Mediated Apoptosis of Hepatocytes.

    PubMed

    Liu, Wei; Jing, Zhen-Tang; Wu, Shu-Xiang; He, Yun; Lin, Yan-Ting; Chen, Wan-Nan; Lin, Xin-Jian; Lin, Xu

    2018-05-01

    Acute liver failure is a serious clinical problem of which the underlying pathogenesis remains unclear and for which effective therapies are lacking. The Fas receptor/ligand system, which is negatively regulated by AKT, is known to play a prominent role in hepatocytic cell death. We hypothesized that AKT activation may represent a strategy to alleviate Fas-induced fulminant liver failure. We report here that a novel AKT activator, SC79, protects hepatocytes from apoptosis induced by agonistic anti-Fas antibody CH11 (for humans) or Jo2 (for mice) and significantly prolongs the survival of mice given a lethal dose of Jo2. Under Fas-signaling stimulation, SC79 inhibited Fas aggregation, prevented the recruitment of the adaptor molecule Fas-associated death domain (FADD) and procaspase-8 [or FADD-like IL-1β-converting enzyme (FLICE)] into the death-inducing signaling complex (DISC), but SC79 enhanced the recruitment of the long and short isoforms of cellular FLICE-inhibitory protein at the DISC. All of the SC79-induced hepatoprotective and DISC-interruptive effects were confirmed to have been reversed by the Akt inhibitor LY294002. These results strongly indicate that SC79 protects hepatocytes from Fas-induced fatal hepatic apoptosis. The potent alleviation of Fas-mediated hepatotoxicity by the relatively safe drug SC79 highlights the potential of our findings for immediate hepatoprotective translation. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  14. Antioxidant and hepatoprotective effects of A. cerana honey against acute alcohol-induced liver damage in mice.

    PubMed

    Zhao, Haoan; Cheng, Ni; He, Liangliang; Peng, Guoxia; Xue, Xiaofeng; Wu, Liming; Cao, Wei

    2017-11-01

    A. cerana honey, gathered from Apis cerana Fabricius (A. cerana), has not been fully studied. Samples of honey originating from six geographical regions (mainly in the Qinling Mountains of China) were investigated to determine their antioxidant and hepatoprotective effects against acute alcohol-induced liver damage. The results showed that A. cerana honeys from the Qinling Mountains had high total phenolic contents (345.1-502.1mgGAkg -1 ), ascorbic acid contents (153.8-368.4mgkg -1 ), and strong antioxidant activities in DPPH radical scavenging activity assays (87.5-136.2IC50mgmL -1 ), ferric reducing antioxidant powers (191.8-317.4mgTroloxkg -1 ), and ferrous ion-chelating activities (27.5-35.5mgNa 2 EDTAkg -1 ). Pretreatment with A. cerana honey (Qinling Mountains) at 5, 10, or 20gkg -1 twice daily for 12weeks significantly inhibited serum lipoprotein oxidation and increased serum radical absorbance capacity (ORAC) (P<0.05). Moreover, A. cerana honey inhibited acute alcohol-induced increases in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in serum (P<0.05), reduced the production of hepatic malondialdehyde (MDA) (P<0.05), and promoted superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities (P<0.05). More importantly, it also remarkably inhibited the level of TGF-β1 in the serum and liver (P<0.05). The results of this study indicate that administration of A. cerana honey prevents acute alcohol-induced liver damage likely because of its antioxidant properties and ability to prevent oxidative stress. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. The Hepatoprotective Effect of Vitamin A against Gasoline Vapor Toxicity in Rats

    PubMed Central

    Uboh, Friday E.; Ekaidem, Itemobong S.; Ebong, Patrick E.; Umoh, Ime B.

    2009-01-01

    Background Changes in the activities of plasma alanine amino transferase (ALT), aspartate amino transferase (AST), gamma glutamyl transferase (GGT), and alkaline phosphatase (ALP) are used to assess the functional state of the liver. Significant increase in the activities of these enzymes commonly indicates the hepatotoxicity of chemical agent(s) in the body. Exposure of male and female rats to 17.8 cm3h-1m-3 of Premium Motor Spirit (PMS) blend unleaded gasoline (UG) vapors for 6 hr/day, 5 days/week for 20 weeks have been observed to cause hepatotoxicity. In this study, the potential hepatoprotective effect of vitamin A (retinol) against gasoline vapours-induced toxicity was investigated in male and female rats. Methods Retinol (400 IU/kg/day) was orally administered to the test rats concomitant with the gasoline vapor exposure in the last two weeks of the experiment. Results The results obtained from this study showed that exposure to gasoline vapors caused significant increase (P < 0.05) in the activities of serum ALT, AST, ALP, GGT and bilirubin in both male and female rats. The treatment of the male and female test rats with vitamin A produced a significant decrease (P < 0.05) in the activities of these parameters, compared with the test rats without treatment; but insignificant increase(P ≥ 0.05), compared with the control. Conclusions The result of this study demonstrates the beneficial effects of retinol, at prophylactic dosage, against gasoline vapours hepatotoxicity in male and female rats, thereby suggesting that retinol may be used to prevent hepatotoxicity in individuals frequently exposed to gasoline vapours. PMID:27933127

  16. Chemical characteristics and enhanced hepatoprotective activities of Maillard reaction products derived from milk protein-sugar system.

    PubMed

    Oh, Nam Su; Young Lee, Ji; Lee, Hyun Ah; Joung, Jae Yeon; Shin, Yong Kook; Kim, Sae Hun; Kim, Younghoon; Lee, Kwang Won

    2016-02-01

    The objective of this study was to investigate the characteristics, antioxidative properties, and hepatoprotective effects of Maillard reaction products (MRP) from milk protein reacted with sugars. The MRP were obtained from milk protein, whey protein concentrates and sodium caseinate, using 2 types of sugars, lactose and glucose, by heating the mixture at 55°C for 7d in a sodium phosphate buffer (pH 7.4). Changes in the chemical modification of the milk protein were monitored by measuring the protein-bound carbonyls and PAGE protein profiles. The results showed that the amount of protein-bound carbonyls increased after Maillard reaction (MR). In addition, sodium dodecyl sulfate-PAGE analysis indicated a formation of high-molecular weight complexes through MR. The modification sites induced by MR of milk protein were monitored by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of tryptic-digested gel spots of MRP. As a result, modification and their localization in AA sequence of MRP was identified. Also, the MRP showed higher antioxidant activities than the intact milk protein, and they reduced intracellular reactive oxygen species production and inhibited the depletion of the reduced glutathione concentrations in the HepG2 cells. In particular, glucose-sodium caseinate MRP showed the highest biological activities among all MRP. Therefore, these results suggest that the MRP from milk protein reacting with sugars possess effective antioxidant activity and have a protective ability against oxidative damage. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. Review of the Pharmacological Effects of Vitis vinifera (Grape) and its Bioactive Constituents: An Update.

    PubMed

    Nassiri-Asl, Marjan; Hosseinzadeh, Hossein

    2016-09-01

    Vitis vinifera fruit (grape) contains various phenolic compounds, flavonoids and stilbenes. In recent years, active constituents found in the fruits, seeds, stems, skin and pomaces of grapes have been identified and some have been studied. In this review, we summarize the active constituents of different parts of V. vinifera and their pharmacological effects including skin protection, antioxidant, antibacterial, anticancer, antiinflammatory and antidiabetic activities, as well as hepatoprotective, cardioprotective and neuroprotective effects in experimental studies published after our 2009 review. Clinical and toxicity studies have also been examined. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Antcin H Protects Against Acute Liver Injury Through Disruption of the Interaction of c-Jun-N-Terminal Kinase with Mitochondria

    PubMed Central

    Huo, Yazhen; Win, Sanda; Than, Tin Aung; Yin, Shutao; Ye, Min

    2017-01-01

    Abstract Aim: Antrodia Camphorate (AC) is a mushroom that is widely used in Asian countries to prevent and treat various diseases, including liver diseases. However, the active ingredients that contribute to the biological functions remain elusive. The purpose of the present study is to test the hepatoprotective effect of Antcin H, a major triterpenoid chemical isolated from AC, in murine models of acute liver injury. Results: We found that Antcin H pretreatment protected against liver injury in both acetaminophen (APAP) and galactosamine/tumor necrosis factor (TNF)α models. More importantly, Antcin H also offered a significant protection against acetaminophen-induced liver injury when it was given 1 h after acetaminophen. The protection was verified in primary mouse hepatocytes. Antcin H prevented sustained c-Jun-N-terminal kinase (JNK) activation in both models. We excluded an effect of Antcin H on acetaminophen metabolism and TNF receptor signaling and excluded a direct effect as a free radical scavenger or JNK inhibitor. Since the sustained JNK activation through its interaction with mitochondrial Sab, leading to increased mitochondrial reactive oxygen species (ROS), is pivotal in both models, we examined the effect of Antcin H on p-JNK binding to mitochondria and impairment of mitochondrial respiration. Antcin H inhibited the direct effect of p-JNK on isolated mitochondrial function and binding to isolated mitochondria. Innovation and Conclusion: Our study has identified Antcin H as a novel active ingredient that contributes to the hepatoprotective effect of AC, and Antcin H protects against liver injury through disruption of the binding of p-JNK to Sab, which interferes with the ROS-dependent self-sustaining activation of MAPK cascade. Antioxid. Redox Signal. 26, 207–220. PMID:27596680

  19. Hepatoprotective effect of grape seed oil against carbon tetrachloride induced oxidative stress in liver of γ-irradiated rat.

    PubMed

    Ismail, Amel F M; Salem, Asmaa A M; Eassawy, Mamdouh M T

    2016-07-01

    Carbon tetrachloride (CCl4) and ionizing radiation are well known environmental pollutants that generate free radicals and induce oxidative stress. The liver is the primary and major target organ responsible for the metabolism of drugs, toxic chemicals and affected by irradiation. This study investigated the effect of grape seed oil (GSO) on acute liver injury induced by carbon tetrachloride (CCl4) in γ-irradiated rats (7Gy). CCl4-intoxicated rats exhibited an elevation of ALT, AST activities, IL-6 and TNF-α level in the serum. Further, the levels of MDA, NO, NF-κB and the gene expression of CYP2E1, iNOS and Caspase-3 were increased, and SOD, CAT, GSH-Px, GST activities and GSH content were decreased. Furthermore, silent information regulator protein 1 (SIRT1) gene expression was markedly down-regulated. Additionally, alterations of the trace elements; copper, manganese, zinc and DNA fragmentation was observed in the hepatic tissues of the intoxicated group. These effects were augmented in CCl4-intoxicated-γ-irradiated rats. However, the administration of GSO ameliorated these parameters. GSO exhibit protective effects on CCl4 induced acute liver injury in γ-irradiated rats that could be attributed to its potent antioxidant, anti-inflammatory and anti-apoptotic activities. The induction of the antioxidant enzymes activities, down-regulation of the CYP2E1, iNOS, Caspase-3 and NF-κB expression, up-regulation of the trace elements concentration levels and activation of SIRT1 gene expression are responsible for the improvement of the antioxidant and anti-inflammatory status in the hepatic tissues and could be claimed to be the hepatoprotective mechanism of GSO. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Modulatory role of Co-enzyme Q10 on methionine and choline deficient diet-induced non-alcoholic steatohepatitis (NASH) in albino rats.

    PubMed

    Saleh, Dalia O; Ahmed, Rania F; Amin, Mohamed M

    2017-03-01

    The present study aimed to evaluate the hepato-protective and neuro-protective activity of Co-enzyme Q10 (CoQ10) on non-alcoholic steatohepatitis (NASH) in albino rats induced by methionine and choline-deficient (MCD) diet. Rats were fed an MCD diet for 8 weeks to induce non-alcoholic steatohepatitis. CoQ10 (10 mg/(kg·day) -1 ) was orally administered for 2 consecutive weeks. Twenty-four hours after the last dose of the drug, the behavioral test, namely the activity cage test, was performed and the activity counts were recorded. Serum alanine transaminase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyl transferase, total/direct bilirubin, and albumin were valued to assess liver function. Moreover, hepatic cytokines interleukin-6 as well as its modulator nuclear factor kappa-light-chain-enhancer of activated B cells were determined. In addition, brain biomarkers, viz ammonia, nitric oxide, and brain-derived neurotrophic factor (BDNF), were measured as they are reliable indices to assess brain damage. Histopathological and immunohistochemical examination of brain proliferating cell nuclear antigen in brain and liver tissues were also evaluated. Results revealed that MCD-induced NASH showed impairment in the liver functions with an increase in the liver inflammatory markers. Moreover, NASH resulted in pronounced brain dysfunction as evidenced by hyper-locomotor activity, a decrease in the BDNF level, as well as an increase in the brain nitric oxide and ammonia contents. Oral treatment of MCD-diet-fed rats with CoQ10 for 14 days showed a marked improvement in all the assigned parameters. Finally, it can be concluded that CoQ10 has a hepatoprotective and neuroprotective role in MCD-diet-induced NASH in rats.

  1. Bioactive alkaloids from the aerial parts of Houttuynia cordata.

    PubMed

    Ma, Qinge; Wei, Rongrui; Wang, Zhiqiang; Liu, Wenmin; Sang, Zhipei; Li, Yaping; Huang, Hongchun

    2017-01-04

    Houttuynia cordata is an important traditional Chinese medicine used in heat-clearing and detoxifying, swelling and discharging pus, promoting diuresis and relieving stranguria which recorded in Pharmacopoeia of the people's Republic of China (2015 Edition). H. cordata has been recorded in the book Bencaogangmu which was written by Shizhen Li for the treatment of pyretic toxicity, carbuncle swelling, haemorrhoids, and rectocele diseases. Phytochemical investigation of the aerial parts of H. cordata and evaluation of their PTP1B inhibitory activities and hepatoprotective activities. The dried aerial parts of H. cordata were fractionated by liquid-liquid extraction to obtain CHCl 3 , ethyl acetate, and n-butanolic fractions. The CHCl 3 fraction was confirmed active fraction by the bioactivity-guided investigation, which was isolated and purified by chromatographing over silica gel, Sephadex LH-20, MPLC, and preparative HPLC. The chemical structures of the purified compounds were identified by their spectroscopic data and references. Eight new compounds (1-8), together with fourteen known compounds (9-22) were isolated from the aerial parts of H. cordata. The known compounds (9-22) were obtained from this plant for the first time. Among them, some compounds exhibited moderate bioactivities. Compounds (1-8) were identified as new alkaloids, and the known alkaloids (9-22) were isolated from this plant for the first time. Compounds 1, 4, 14, and 19 showed significant PTP1B inhibitory activities with IC 50 values of 1.254, 2.016, 2.672, and 1.862µm, respectively. Compounds 1, 3, 6, 11, 17, and 20 (10µm) exhibited moderate hepatoprotective activities against D-galactosamine-induced WB-F344 cells damage. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Guajavadimer A, a Dimeric Caryophyllene-Derived Meroterpenoid with a New Carbon Skeleton from the Leaves of Psidium guajava.

    PubMed

    Li, Chuang-Jun; Ma, Jie; Sun, Hua; Zhang, Dan; Zhang, Dong-Ming

    2016-01-15

    Guajavadimer A (1), a dimeric sesquiterpene-based meroterpenoid which possessed an unprecedented two caryophyllenes, a benzylphlorogulcinol, and a flavonone-fused complicated stereochemical skeleton, was isolated from the leaves of Psidium guajava L. Its structure and absolute configuration were elucidated on the basis of spectroscopic data and X-ray crystallography. Guajavadimer A (1) showed moderate hepatoprotective activity against N-acetyl-p-aminophenol (APAP)-induced toxicity in HepG2 cells.

  3. Amelioration of alcohol-induced hepatotoxicity by the administration of ethanolic extract of Sida cordifolia Linn.

    PubMed

    Rejitha, S; Prathibha, P; Indira, M

    2012-10-01

    Sida cordifolia Linn. (Malvaceae) is a plant used in folk medicine for the treatment of the inflammation of oral mucosa, asthmatic bronchitis, nasal congestion and rheumatism. We studied the hepatoprotective activity of 50 % ethanolic extract of S. cordifolia Linn. against alcohol intoxication. The duration of the experiment was 90 d. The substantially elevated levels of toxicity markers such as alanine aminotransferase, aspartate aminotransferase and γ-glutamyl transferase due to the alcohol treatment were significantly lowered in the extract-treated groups. The activity of antioxidant enzymes and glutathione content, which was lowered due to alcohol toxicity, was increased to a near-normal level in the co-administered group. Lipid peroxidation products, protein carbonyls, total collagen and hydroxyproline, which were increased in the alcohol-treated group, were reduced in the co-administered group. The mRNA levels of cytochrome P450 2E1, NF-κB, TNF-α and transforming growth factor-β1 were found to be increased in the alcohol-treated rats, and their expressions were found to be decreased in the co-administered group. These observations were reinforced by histopathological analysis. Thus, the present study clearly indicates that 50 % ethanolic extract of the roots of S. cordifolia Linn. has a potent hepatoprotective action against alcohol-induced toxicity, which was mediated by lowering oxidative stress and by down-regulating the transcription factors.

  4. Ultrastructural Analysis of In Vivo Hypoglycemiant Effect of Two Polyoxometalates in Rats with Streptozotocin-Induced Diabetes.

    PubMed

    Bâlici, Ştefana; Wankeu-Nya, Modeste; Rusu, Dan; Nicula, Gheorghe Z; Rusu, Mariana; Florea, Adrian; Matei, Horea

    2015-10-01

    Two polyoxometalates (POMs), synthesized through a self-assembling method, were used in the treatment of streptozotocin (STZ)-induced diabetic rats. One of these nanocompounds [tris(vanadyl)-substituted tungsto-antimonate(III)-anions—POM1] was previously described in the literature, whereas the second [tris-butyltin-21-tungsto-9-antimonate(III)-anions—POM2], was prepared by us based on our original formula. In rats with STZ-induced diabetes treated with POMs (up to a cumulative dose of 4 mg/kg bodyweight at the end of the treatments), statistically significant reduced levels of blood glucose were measured after 3 weeks, as compared with the diabetic control groups (DCGs). Ultrastructural analysis of pancreatic β-cells (including the mean diameter of secretory vesicles and of their insulin granules) in the treated diabetic rats proved the POMs contribute to limitation of cellular degeneration triggered by STZ, as well as to the presence of increased amounts of insulin-containing vesicles as compared with the DCG. The two POMs also showed hepatoprotective properties when ultrastructural aspects of hepatocytes in the experimental groups of rats were studied. Based on our in vivo studies, we concluded that the two POMs tested achieved hypoglycemiant effects by preventing STZ-triggered apoptosis of pancreatic β-cells and stimulation of insulin synthesis.

  5. 1,25-(OH){sub 2}-vitamin D{sub 3} prevents activation of hepatic stellate cells in vitro and ameliorates inflammatory liver damage but not fibrosis in the Abcb4{sup −/−} model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiter, Florian P., E-mail: florian.reiter@med.uni-muenchen.de; Hohenester, Simon; Nagel, Jutta M.

    Background/Purpose of the study: Vitamin D{sub 3}-deficiency is common in patients with chronic liver-disease and may promote disease progression. Vitamin D{sub 3}-administration has thus been proposed as a therapeutic approach. Vitamin D{sub 3} has immunomodulatory effects and may modulate autoimmune liver-disease such as primary sclerosing cholangitis. Although various mechanisms of action have been proposed, experimental evidence is limited. Here we test the hypothesis that active 1,25-(OH){sub 2}-vitamin D{sub 3} inhibits activation of hepatic stellate cells (HSC) in vitro and modulates liver-injury in vivo. Methods: Proliferation and activation of primary murine HSC were assessed by BrdU- and PicoGreen{sup ®}-assays, immunoblotting, immunofluorescence-microscopy, quantitative-PCR, andmore » zymography following calcitriol-treatment. Wild-type and ATP-binding cassette transporter b4{sup −/−} (Abcb4{sup −/−})-mice received calcitriol for 4 weeks. Liver-damage, inflammation, and fibrosis were assessed by serum liver-tests, Sirius-red staining, quantitative-PCR, immunoblotting, immunohistochemistry and hydroxyproline quantification. Results: In vitro, calcitriol inhibited activation and proliferation of murine HSC as shown by reduced α-smooth muscle actin and platelet-derived growth factor-receptor-β-protein-levels, BrdU and PicoGreen®-assays. Furthermore, mRNA-levels and activity of matrix metalloproteinase 13 were profoundly increased. In vivo, calcitriol ameliorated inflammatory liver-injury reflected by reduced levels of alanine aminotransferase in Abcb4{sup −/−}-mice. In accordance, their livers had lower mRNA-levels of F4/80, tumor necrosis factor-receptor 1 and a lower count of portal CD11b positive cells. In contrast, no effect on overall fibrosis was observed. Conclusion: Calcitriol inhibits activation and proliferation of HSCs in vitro. In Abcb4{sup −/−}-mice, administration of calcitriol ameliorates inflammatory liver-damage but has no effect on biliary fibrosis after 4 weeks of treatment. - Highlights: • Calcitriol inhibits activation and proliferation of murine HSC. • Calcitriol exerts antifibrotic properties by up-regulation of MMP 13 in HSC. • Calcitriol-treatment diminished hepatic inflammatory injury in Abcb4{sup −/−}-mice. • Calcitriol-treatment does not exert antifbrotic effects in Abcb4{sup −/−}-mice. • This study highlights potential hepatoprotective effects of calcitriol in PSC.« less

  6. Mechanisms of the hepatoprotective effects of tamoxifen against drug-induced and chemical-induced acute liver injuries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshikawa, Yukitaka; Miyashita, Taishi; Higuchi, Satonori

    Although estrogen receptor (ER)α agonists, such as estradiol and ethinylestradiol (EE2), cause cholestasis in mice, they also reduce the degree of liver injury caused by hepatotoxicants as well as ischemia–reperfusion. The functional mechanisms of ERα have yet to be elucidated in drug-induced or chemical-induced liver injury. The present study investigated the effects of an ERα agonist, selective ER modulators (SERMs) and an ER antagonist on drug-induced and chemical-induced liver injuries caused by acetaminophen, bromobenzene, diclofenac, and thioacetamide (TA). We observed hepatoprotective effects of EE2, tamoxifen (TAM) and raloxifene pretreatment in female mice that were exposed to a variety of hepatotoxicmore » compounds. In contrast, the ER antagonist did not show any hepatoprotective effects. DNA microarray analyses suggested that monocyte to macrophage differentiation-associated 2 (Mmd2) protein, which has an unknown function, is commonly increased by TAM and RAL pretreatment, but not by pretreatment with the ER antagonist. In ERα-knockout mice, the hepatoprotective effects of TAM and the increased expression of Mmd2 mRNA were not observed in TA-induced liver injury. To investigate the function of Mmd2, the expression level of Mmd2 mRNA was significantly knocked down to approximately 30% in mice by injection of siRNA for Mmd2 (siMmd2). Mmd2 knockdown resulted in a reduction of the protective effects of TAM on TA-induced liver injury in mice. This is the first report of the involvement of ERα in drug-induced or chemical-induced liver injury. Upregulation of Mmd2 protein in the liver was suggested as the mechanism of the hepatoprotective effects of EE2 and SERMs. -- Highlights: ► Liver injury induced by drugs or chemicals was investigated in mice. ► Liver injury was suppressed by pretreatment with tamoxifen in female mice. ► Mmd2, whose function was unknown, could be a candidate gene for liver protection. ► Tamoxifen up-regulated Mmd2 mRNA expression via ERα.« less

  7. Antioxidant, Hepatoprotective Potential and Chemical Profiling of Propolis Ethanolic Extract from Kashmir Himalaya Region Using UHPLC-DAD-QToF-MS

    PubMed Central

    Wali, Adil F.; Avula, Bharathi; Ali, Zulfiqar; Khan, Ikhlas A.; Mushtaq, Ahlam; Rehman, Muneeb U.; Akbar, Seema; Masoodi, Mubashir Hussain

    2015-01-01

    The aim of this study was to examine hepatoprotective effect of ethanolic extract of propolis (KPEt) from Kashmir Himalaya against isoniazid and rifampicin (INH-RIF) induced liver damage in rats. Hepatic cellular injury was initiated by administration of INH-RIF combination (100 mg/kg) intraperitoneal (i.p.) injection for 14 days. We report the protective effects of KPEt against INH-RIF induced liver oxidative stress, inflammation, and enzymatic and nonenzymatic antioxidants. Oral administration of KPEt at both doses (200 and 400 mg/kg body weight) distinctly restricted all modulating oxidative liver injury markers and resulted in the attenuation of INH-RIF arbitrated damage. The free radical scavenging activity of KPEt was evaluated by DPPH, nitric oxide, and superoxide radical scavenging assay. The components present in KPEt identified by ultra high performance liquid chromatography diode array detector time of flight-mass spectroscopy (UHPLC-DAD-QToF-MS) were found to be flavonoids and phenolic acids. The protective efficacy of KPEt is possibly because of free radical scavenging and antioxidant property resulting from the presence of flavonoids and phenolic acids. PMID:26539487

  8. Purification, Preliminary Characterization and Hepatoprotective Effects of Polysaccharides from Dandelion Root.

    PubMed

    Cai, Liangliang; Wan, Dongwei; Yi, Fanglian; Luan, Libiao

    2017-08-25

    In this study, purification, preliminary characterization and hepatoprotective effects of water-soluble polysaccharides from dandelion root (DRP) were investigated. Two polysaccharides, DRP1 and DRP2, were isolated from DRP. The two polysaccharides were α-type polysaccharides and didn't contain protein. DRP1, with a molecular weight of 5695 Da, was composed of glucose, galactose and arabinose, whereas DRP2, with molecular weight of 8882 Da, was composed of rhamnose, galacturonic acid, glucose, galactose and arabinose. The backbone of DRP1 was mainly composed of (1→6)-linked-α-d-Glc and (1→3,4)-linked-α-d-Glc. DRP2 was mainly composed of (1→)-linked-α-d-Ara and (1→)-linked-α-d-Glc. A proof-of-concept study was performed to assess the therapeutic potential of DRP1 and DRP2 in a mouse model that mimics acetaminophen (APAP) -induced liver injury (AILI) in humans. The present study shows DRP1 and DRP2 could protect the liver from APAP-induced hepatic injury by activating the Nrf2-Keap1 pathway. These conclusions demonstrate that the DRP1 and DRP2 might be suitable as functional foods and natural drugs in preventing APAP-induced liver injury.

  9. Antidiabetic Effects of Chamomile Flowers Extract in Obese Mice through Transcriptional Stimulation of Nutrient Sensors of the Peroxisome Proliferator-Activated Receptor (PPAR) Family

    PubMed Central

    Weidner, Christopher; Wowro, Sylvia J.; Rousseau, Morten; Freiwald, Anja; Kodelja, Vitam; Abdel-Aziz, Heba; Kelber, Olaf; Sauer, Sascha

    2013-01-01

    Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders. PMID:24265809

  10. Parboiled Germinated Brown Rice Protects Against CCl4-Induced Oxidative Stress and Liver Injury in Rats.

    PubMed

    Wunjuntuk, Kansuda; Kettawan, Aikkarach; Charoenkiatkul, Somsri; Rungruang, Thanaporn

    2016-01-01

    Parboiled germinated brown rice (PGBR) of Khao Dawk Mali 105 variety was produced by steaming germinated paddy rice, which is well-known for its nutrients and bioactive compounds. In this study we determined the in vivo antioxidant and hepatoprotective effects of PGBR in carbon tetrachloride (CCl(4))-induced oxidative stress in rats. Male Sprague-Dawley rats, (weight 200-250 g) were randomly divided into (1) control, (2) CCl(4), (3) white rice (WR)+CCl(4), (4) brown rice (BR)+CCl(4), and (5) PGBR+CCl(4) groups. PGBR, BR, and WR diets were produced by replacing corn starch in the AIN76A diet with cooked PGBR, BR, and WR powders, respectively. All rats except the control group were gavaged with 50% CCl4 in olive oil (v/v, 1 mL/kg) twice a week for 8 weeks. CCl(4)-treated rats exhibited significant liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as obvious changes to liver histopathology compared to control. In addition, CCl(4) treatment decreased the activities of CYP2E1 and antioxidant enzymes: glutathione S-transferase, glutathione peroxidase, superoxide dismutase and catalase, and glutathione (GSH) content. However, the PGBR+CCl(4) group exhibited less liver injury, lipid peroxidation, protein oxidation, and DNA damage, as well as better antioxidant enzyme activities and GSH content. Furthermore, PGBR inhibited degradation of CYP2E1 in CCl(4)-induced decrease of CYP2E1 activity. These data suggest that PGBR may prevent CCl(4)-induced liver oxidative stress and injury through enhancement of the antioxidant capacities, which may be due to complex actions of various bioactive compounds, including phenolic acids, γ-oryzanol, tocotrienol, and GABA.

  11. Hesperetin derivative-14 alleviates inflammation by activating PPAR-γ in mice with CCl4-induced acute liver injury and LPS-treated RAW264.7 cells.

    PubMed

    Chen, Xin; Ding, Hai-Wen; Li, Hai-Di; Huang, Hui-Min; Li, Xiao-Feng; Yang, Yang; Zhang, Yi-Long; Pan, Xue-Yin; Huang, Cheng; Meng, Xiao-Ming; Li, Jun

    2017-05-15

    Hesperetin is a flavanone glycoside compound naturally occurring in the fruit peel of Citrusaurantium L. (Rutaceae). Previous studies revealed that hesperetin possesses various pharmacological effects, including anti-inflammation, anti-tumor, anti-oxidant and neuroprotective properties. Hesperetin derivative-14 (HD-14) is a derivative of hesperetin improved in water solubility and bioavailability. In this study, we indicated that HD-14 (2μM) significantly attenuated inflammation in LPS-treated RAW264.7 cells, besides, HD-14 (100mg/kg) exhibited hepato-protective effects and anti-inflammatory effects on C57BL/6J mice with CCl 4 -induced acute liver injury. In addition, it was demonstrated that HD-14 dramatically up-regulated the expression of PPAR-γ in vivo and in vitro. Interestingly, over-expression of PPAR-γ had anti-inflammatory effects on the expressions of TNF-α, IL-6, and IL-1β, whereas, knockdown of PPAR-γ with small interfering RNA had pro-inflammatory effects in LPS-treated RAW264.7 cells. Thus, our findings demonstrated that HD-14 alleviated inflammation by activating PPAR-γ expression at least in part. Further studies founded that HD-14 remarkably inhibited the expression of p-JAK1 and p-STAT1 through up-regulating PPAR-γ. Together, these results suggested that HD-14 served as an activator of PPAR-γ and the JAK1/STAT1 signaling pathway may be involved in the progress of inflammation. Collectively, HD-14 may be utilized as a potential anti-inflammation monomeric compound in the treatment of acute liver injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antidiabetic effects of chamomile flowers extract in obese mice through transcriptional stimulation of nutrient sensors of the peroxisome proliferator-activated receptor (PPAR) family.

    PubMed

    Weidner, Christopher; Wowro, Sylvia J; Rousseau, Morten; Freiwald, Anja; Kodelja, Vitam; Abdel-Aziz, Heba; Kelber, Olaf; Sauer, Sascha

    2013-01-01

    Given the significant increases in the incidence of metabolic diseases, efficient strategies for preventing and treating of these common disorders are urgently needed. This includes the development of phytopharmaceutical products or functional foods to prevent or cure metabolic diseases. Plant extracts from edible biomaterial provide a potential resource of structurally diverse molecules that can synergistically interfere with complex disorders. In this study we describe the safe application of ethanolic chamomile (Matricaria recutita) flowers extract (CFE) for the treatment and prevention of type 2 diabetes and associated disorders. We show in vitro that this extract activates in particular nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) and its isotypes. In a cellular context, in human primary adipocytes CFE administration (300 µg/ml) led to specific expression of target genes of PPARγ, whereas in human hepatocytes CFE-induced we detected expression changes of genes that were regulated by PPARα. In vivo treatment of insulin-resistant high-fat diet (HFD)-fed C57BL/6 mice with CFE (200 mg/kg/d) for 6 weeks considerably reduced insulin resistance, glucose intolerance, plasma triacylglycerol, non-esterified fatty acids (NEFA) and LDL/VLDL cholesterol. Co-feeding of lean C57BL/6 mice a HFD with 200 mg/kg/d CFE for 20 weeks showed effective prevention of fatty liver formation and hepatic inflammation, indicating additionally hepatoprotective effects of the extract. Moreover, CFE treatment did not reveal side effects, which have otherwise been associated with strong synthetic PPAR-targeting molecules, such as weight gain, liver disorders, hemodilution or bone cell turnover. Taken together, modulation of PPARs and other factors by chamomile flowers extract has the potential to prevent or treat type 2 diabetes and related disorders.

  13. Modulatory role of Pterocarpus santalinus against alcohol-induced liver oxidative/nitrosative damage in rats.

    PubMed

    Bulle, Saradamma; Reddy, Vaddi Damodara; Padmavathi, Pannuru; Maturu, Paramahamsa; N Ch, Varadacharyulu

    2016-10-01

    Pterocarpus santalinus, a traditional medicinal plant has shown protective mechanisms against various complications. The aim of the present study is to evaluate therapeutic efficacy of P. santalinus heartwood methanolic extract (PSE) against alcohol-induced oxidative/nitrosative stress leading to hepatotoxicity. In-vitro studies revealed that PSE possess strong DPPH (1,1-diphenyl-2-picryl hydrazyl) and nitric oxide radical scavenging activity. For in vivo studies male albino Wistar rats were treated with 20% alcohol (5g/kg b.wt/day) and PSE (250mg/kg b.wt/day) for 60days. Results showed that alcohol administration significantly altered plasma lipid profile with marked increase in the levels of plasma transaminases (ALT and AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and gamma glutamyl transferase (γGT). Moreover, lipid peroxides, nitric oxide (NOx) levels in plasma and liver were increased with increased iNOS protein expression in liver was noticed in alcohol administered rats and these levels were significantly brought back close to normal level by PSE administration except iNOS protein expression. Alcohol administration also decreased the content of reduced glutathione (GSH) and activities of glutathione peroxidase (GPx), glutathione-s transferase (GST), glutathione reductase (GR), superoxide dismutase (SOD) and catalase (CAT) in liver, which were significantly enhanced by administration of PSE. The active compounds pterostilbene, lignan and lupeols present in PSE might have shown protection against alcohol-induced hepatic damage by possibly reducing the rate of lipid peroxidation, NOx levels and increasing the antioxidant defence mechanism in alcohol administered rats. Both biochemical and histopathological results in the alcohol-induced liver damage model emphasize beneficial action of PSE as a hepatoprotective agent. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity.

    PubMed

    Murugesan, G S; Sathishkumar, M; Jayabalan, R; Binupriya, A R; Swaminathan, K; Yun, S E

    2009-04-01

    Kombucha tea (KT) is sugared black tea fermented with a symbiotic culture of acetic acid bacteria and yeasts, which is said to be tea fungus. KT is claimed to have various beneficial effects on human health, but there is very little scientific evidence available in the literature. In the present study, KT along with black tea (BT) and black tea manufactured with tea fungus enzymes (enzyme-processed tea, ET) was evaluated for hepatoprotective and curative properties against CCl4-induced toxicity, using male albino rats as an experimental model by analyzing aspartate transaminase, alanine transaminase, and alkaline phosphatase in plasma and malondialdehyde content in plasma and liver tissues. Histopathological analysis of liver tissue was also included. Results showed that BT, ET, and KT have the potential to revert the CCl4-induced hepatotoxicity. Among the three types of teas tried, KT was found to be more efficient than BT and ET. Antioxidant molecules produced during the fermentation period could be the reason for the efficient hepatoprotective and curative properties of KT against CCI4-induced hepatotoxicity.

  15. Methotrexate hepatotoxicity is associated with oxidative stress, and down-regulation of PPARγ and Nrf2: Protective effect of 18β-Glycyrrhetinic acid.

    PubMed

    Mahmoud, Ayman M; Hussein, Omnia E; Hozayen, Walaa G; Abd El-Twab, Sanaa M

    2017-05-25

    18β-glycyrrhetinic acid (18β-GA) is a bioactive component of licorice with promising hepatoprotective activity. However, its protective mechanism on methotrexate (MTX) hepatotoxicity in not well defined. We investigated the hepatoprotective effect of 18β-GA, pointing to the role of peroxisome proliferator activated receptor gamma (PPARγ) and the redox-sensitive nuclear factor erythroid 2-related factor 2 (Nrf2). Wistar rats were orally administered 18β-GA (50 and 100 mg/kg) 7 days either before or after MTX injection. MTX induced significant increase in circulating liver function marker enzymes and bilirubin with concomitant declined albumin levels. Serum pro-inflammatory cytokines, and liver malondialdehyde and nitric oxide were significantly increased in MTX-induced rats. Treatment with 18β-GA significantly reduced serum enzymes of liver function, bilirubin and pro-inflammatory cytokines. 18β-GA attenuated MTX-induced oxidative stress and restored the antioxidant defenses. In addition, 18β-GA improved liver histological structure and decreased the expression of Bax whereas increased Bcl-2 expression. MTX-induced rats showed significant down-regulation of Nrf2, hemoxygenase-1 and PPARγ, an effect that was markedly reversed by 18β-GA supplemented either before or after MTX. In conclusion, 18β-GA protected against MTX-induced liver injury, possibly by activating Nrf2 and PPARγ, and subsequent attenuation of inflammation, oxidative stress and apoptosis. Therefore, 18β-GA can provide protection against MTX-induced hepatotoxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Therapeutic potential and health benefits of Sargassum species

    PubMed Central

    Yende, Subhash R.; Harle, Uday N.; Chaugule, Bhupal B.

    2014-01-01

    Sargassum species are tropical and sub-tropical brown macroalgae (seaweed) of shallow marine meadow. These are nutritious and rich source of bioactive compounds such as vitamins, carotenoids, dietary fibers, proteins, and minerals. Also, many biologically active compounds like terpenoids, flavonoids, sterols, sulfated polysaccharides, polyphenols, sargaquinoic acids, sargachromenol, pheophytine were isolated from different Sargassum species. These isolated compounds exhibit diverse biological activities like analgesic, anti-inflammatory, antioxidant, neuroprotective, anti-microbial, anti-tumor, fibrinolytic, immune-modulatory, anti-coagulant, hepatoprotective, anti-viral activity etc., Hence, Sargassum species have great potential to be used in pharmaceutical and neutralceutical areas. This review paper explores the current knowledge of phytochemical, therapeutic potential, and health benefits of different species of genus Sargassum. PMID:24600190

  17. Hepatoprotective effect of Cichorium intybus L., a traditional Uighur medicine, against carbon tetrachloride-induced hepatic fibrosis in rats

    PubMed Central

    Li, Guo-Yu; Gao, Hong-Ying; Huang, Jian; Lu, Jin; Gu, Jing-Kai; Wang, Jin-Hui

    2014-01-01

    AIM: To investigate the hepatoprotective effect of a Cichorium intybus L. extract (CIE) on CCl4-induced hepatic fibrosis in rats. METHODS: Seventy-two male Wistar albino rats were randomly divided into six groups of twelve rats each. The normal control group was allowed free access to food and water. Liver injury was performed in the remaining five groups with an i.p. injection of a 1.0 mL/kg CCl4 and olive oil (2:3 v/v) mixture, twice weekly for 8 weeks. All rats, with the exception of the injury model group, were intragastrically (i.g.,) administered quantum satis (q.s.) dosages [CIE group: 6, 18, and 54 mg/kg, respectively; Fu Fang Bie Jia Ruan Gan Pian (FFBJRGP) group: 780 mg/kg]. The oral administration of different drugs was performed on the day before CCl4 administration and subsequently once per day for 8 wk. The serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), hexadecenoic acid (HA), laminin (LN), hydroxyproline (Hyp), and glutathione (GSH), malondialdehyde (MDA) and superoxide dismutase (SOD) in the rat livers were measured. Histopathological changes in the liver were assessed for each group using HE staining and a Masson Trichrome examination. The expression of transforming growth factor-β1 (TGF-β1) and α-smooth muscle actin (α-SMA) was examined by immunohistochemical analysis. RESULTS: CIE at oral doses of 6, 18, and 54 g/kg per day showed a significant hepatoprotective effect, especially at a dose of 54 g/kg per day. CIE doses reduced the levels of AST (149.04 ± 34.44, P < 0.01), ALT (100.72 ± 27.19, P < 0.01), HA (548.50 ± 65.09, P < 0.01), LN (28.69 ± 3.32, P < 0.01) and Hyp (263.33 ± 75.82, P < 0.01). With regards to hepatoprotective activity, the CIE dose of 54 g/kg per day produced the largest significant effect by increasing GSH (3.11 ± 0.81), SOD (269.98 ± 33.77, P < 0.01) and reducing MDA (2.76 ± 0.51, P < 0.01) levels in the liver. The expressions of TGF-β1 and α-SMA were measured by immunohistology and found to be significantly reduced by CIE in a dose-dependent manner. CONCLUSION: CIE may effectively protect against CCl4-induced hepatic fibrosis in rats; thus, it is a promising anti-fibrotic therapeutic agent. PMID:24782629

  18. Beneficial effects of Lagenaria siceraria (Mol.) Standley fruit epicarp in animal models.

    PubMed

    Deshpande, J R; Choudhari, A A; Mishra, M R; Meghre, V S; Wadodkar, S G; Dorle, A K

    2008-04-01

    Lagenaria siceraria (Mol.) Standley fruit (bottle gourd), a commonly used vegetable in India is described as cardiotonic and as a general tonic in Ayurveda. Keeping in view the presence of free radical scavenging activity in L. siceraria and involvement of free radicals in the development of various disorders, present studies were designed to evaluate the ethanolic extract of L. siceraria fruit against the disorders where free radicals play a major role in pathogenesis. The extract was found effective as hepatoprotective, antioxidant, antihyperglycemic, immunomodulatory, antihyperlipidemic and cardiotonic agent. The results showed that the radical scavenging capacity of L. siceraria fruit may be responsible for various biological activities studied.

  19. [Pharmaceutical and formulation aspects of Petroselinum crispum extract].

    PubMed

    Pápay, Zsófia Edit; Kósa, Annamária; Boldizsár, Imre; Ruszkai, Akos; Balogh, Emese; Klebovich, Imre; Antal, István

    2012-01-01

    Parsley (Petroselinum crispum L.) is a very popular spice and vegetable in Europe, it is widely spread and easy to grow. It's herb and fruits are known to be diuretic, smooth muscle relaxant and hepatoprotective. The most important identified active ingredients are flavonoids, cumarins and vitamin C. Apigenin and its glycosides are the main flavonoids in parsley, it can be found relatively large amounts in the leaves. The bioactive flavonoid apigenin has antiinflammatory, antioxidant and anticancer activities. The objectives of this study were the preparation and detemination of the apigenin content of the parsley extract and the formulation using inert pellets by layering the apigenin in fluid-bed process.

  20. The medicinal and pharmaceutical importance of Dendrobium species.

    PubMed

    Teixeira da Silva, Jaime A; Ng, Tzi Bun

    2017-03-01

    Plants of the Dendrobium genus, one of the largest in the Orchidaceae, manifest a diversity of medicinal effects encompassing antiangiogenic, immunomodulating, antidiabetic, cataractogenesis-inhibiting, neuroprotective, hepatoprotective, anti-inflammatory, antiplatelet aggregation, antifungal, antibacterial, antiherpetic, antimalarial, aquaporin-5 stimulating, and hemagglutininating activities and also exert beneficial actions on colonic health and alleviate symptoms of hyperthyroidism. The active principles include a wide range of proteinaceous and non-proteinaceous molecules. This mini-review discusses the latest advances in what is known about the medicinal and pharmaceutical properties of members of the Dendrobium genus and explores how biotechnology can serve as a conduit to mass propagate valuable germplasm for sustainable exploration for the pharmaceutical industry.

  1. Protective effect of black garlic extracts on tert-Butyl hydroperoxide-induced injury in hepatocytes via a c-Jun N-terminal kinase-dependent mechanism

    PubMed Central

    Lee, Ko-Chao; Teng, Chih-Chuan; Shen, Chien-Heng; Huang, Wen-Shih; Lu, Chien-Chang; Kuo, Hsing-Chun; Tung, Shui-Yi

    2018-01-01

    Black garlic has been reported to show multiple bioactivities against the development of different diseases. In the present study, the hepatoprotective effect of black garlic on injured liver cells was investigated. Rat clone-9 hepatocytes were used for all experiments; tert-Butyl hydroperoxide (tBHP) was used to induce injury of rat clone-9 hepatocytes. The contents of malondialdehyde (MDA) and glutathione (GSH); anti-oxidative enzyme activities of catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx); and mRNA expression levels of interleukin (IL)-6 and IL-8 in rat clone-9 hepatocytes were determined to evaluate the level of cell damage. Black garlic extracts were demonstrated to significantly attenuate tBHP-induced cell death of rat clone-9 hepatocytes (P<0.05). Pretreatment with black garlic extracts antagonized GSH depletion, tBHP-increased MDA accumulation and the mRNA expression level of IL-6/IL-8, and tBHP-decreased antioxidative enzyme activities (all P<0.05). Moreover, the present study revealed that c-Jun N-terminal kinase signaling regulated black garlic-inhibited tBHP effects in rat clone-9 hepatocytes. Our findings demonstrate that black garlic has the hepatoprotective potential to block tBHP-damaged effects on cell death, lipid peroxidation, oxidative stress, and inflammation in rat clone-9 hepatocytes. Thus, the present study indicates that black garlic may be an excellent natural candidate in the development of adjuvant therapy and healthy foods for liver protection. PMID:29456651

  2. A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury.

    PubMed

    Rhodes, Katherine A; Andrew, Elizabeth M; Newton, Darren J; Tramonti, Daniela; Carding, Simon R

    2008-08-01

    Although gammadelta T cells play a role in protecting tissues from pathogen-elicited damage to bacterial, viral and parasitic pathogens, the mechanisms involved in the damage and in the protection have not been clearly elucidated. This has been addressed using a murine model of listeriosis, which in mice lacking gammadelta T cells (TCRdelta(-/-)) is characterised by severe and extensive immune-mediated hepatic necrosis. We show that these hepatic lesions are caused by Listeria-elicited CD8(+) T cells secreting high levels of TNF-alpha that accumulate in the liver of Listeria-infected TCRdelta(-/-) mice. Using isolated populations of gammadelta T cells from wild-type and cytokine-deficient strains of mice to reconstitute TCRdelta(-/-) mice, the TCR variable gene 4 (Vgamma4)(+) subset of gammadelta T cells was shown to protect against liver injury. Hepatoprotection was dependent upon their ability to produce IL-10 after TCR-mediated interactions with Listeria-elicited macrophages and CD8(+) T cells. IL-10-producing Vgamma4(+) T cells also contribute to controlling CD8(+) T cell expansion and to regulating and reducing TNF-alpha secretion by activated CD8(+) T cells. This effect on TNF-alpha production was directly attributed to IL-10. These findings identify a novel mechanism by which pathogen-elicited CD8(+) T cells are regulated via interactions with, and activation of, IL-10-producing hepatoprotective gammadelta T cells.

  3. Synergistic Hepatoprotective and Antioxidant Effect of Artichoke, Fig, Blackberry Herbal Mixture on HepG2 Cells and Their Metabolic Profiling Using NMR Coupled with Chemometrics.

    PubMed

    Youssef, Fadia S; Labib, Rola M; Eldahshan, Omayma A; Singab, Abdel Nasser B

    2017-12-01

    The edible plants have long been reported to possess a lot of biological activities. Herein, the hepatoprotective and the antioxidant activities of the aqueous infusion of the edible parts of Cynara cardunculus, Ficus carica, and Morus nigra and their herbal mixture (CFM) was investigated in vitro using CCl 4 induced damage in HepG2 cells. The highest amelioration was observed via the consumption of CFM at 1 mg/ml showing 47.00% and 37.09% decline in aspartate transaminase and alanine transaminase and 77.32% and 101.02% increase in reduced glutathione and superoxide dismutase comparable to CCl 4 treated cells. Metabolic profiling of their aqueous infusions was done using nuclear magnetic resonance spectroscopic experiments coupled with chemometrics particularly hierarchical cluster analysis (HCA) and principal component analysis (PCA). The structural closeness of the various metabolites existing in black berry and the mixture as reflected in the PCA score plot and HCA processed from the 1 H-NMR spectral data could eventually explained the close values in their biological behavior. For fig and artichoke, the existence of different phenolic metabolites that act synergistically could greatly interpret their potent biological behavior. Thus, it can be concluded that a herbal mixture composed of black berry, artichoke, and fig could afford an excellent natural candidate to combat oxidative stress and counteract hepatic toxins owing to its phenolic compounds. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  4. Hepatoprotective effects of polysaccharide isolated from Agaricus bisporus industrial wastewater against CCl₄-induced hepatic injury in mice.

    PubMed

    Huang, Jiafu; Ou, Yixin; Yew, Tai Wai David; Liu, Jingna; Leng, Bo; Lin, Zhichao; Su, Yi; Zhuang, Yuanhong; Lin, Jiaofen; Li, Xiumin; Xue, Yu; Pan, Yutian

    2016-01-01

    During the industrial production of canned mushroom (Agaricus bisporus), a large quantity of wastewater is produced. In this study, the wastewater generated during the canning of mushroom was analyzed. From this wastewater, four polysaccharide components (Abnp1001, Abnp1002, Abap1001, and Abap1002) with hepatic-protective activity were isolated by ultrafiltration, DEAE cellulose-52 chromatography and Sephadex G-200 size-exclusion chromatography. Results of ultraviolet spectra analysis and molecular weight determination showed that Abnp1001, Abnp1002, Abap1001 and Abap1002 were uniform with average molecular weights of 336, 12.8, 330 and 15.8kDa, respectively. The monosaccharide composition analysis using gas chromatography (GC) showed that the four fractions were heteropolysaccharides and mainly composed of glucose. Fourier transform-infrared (FT-IR) analysis showed that the isolated fractions were all composed of β-glycoside linkages. Additionally, the potential hepatoprotective activities of these polysaccharides against CCl4-induced hepatic injury in mice were studied. Notably, Abnp1002 and Abap1002 could lower the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentrations in serum in a dose dependent manner and reduce the hepatocellular degeneration and necrosis, as well as inflammatory infiltration. These results indicate that these two polysaccharides had protective effects on acute hepatic injury induced by CCl4 in mice and suggest that the polysaccharides extracted from A. bisporus industrial wastewater might have potential in therapeutics of acute hepatic injury. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Association of caffeine intake and histological features of chronic hepatitis C.

    PubMed

    Costentin, Charlotte E; Roudot-Thoraval, Françoise; Zafrani, Elie-Serge; Medkour, Fatiha; Pawlotsky, Jean-Michel; Mallat, Ariane; Hézode, Christophe

    2011-06-01

    The severity of chronic hepatitis C (CHC) is modulated by host and environmental factors. Several reports suggest that caffeine intake exerts hepatoprotective effects in patients with chronic liver disease. The aim of this study was to evaluate the impact of caffeine consumption on activity grade and fibrosis stage in patients with CHC. A total of 238 treatment-naïve patients with histologically-proven CHC were included in the study. Demographic, epidemiological, environmental, virological, and metabolic data were collected, including daily consumption of alcohol, cannabis, tobacco, and caffeine during the six months preceding liver biopsy. Daily caffeine consumption was estimated as the sum of mean intakes of caffeinated coffee, tea, and caffeine-containing sodas. Histological activity grade and fibrosis stage were scored according to Metavir. Patients (154 men, 84 women, mean age: 45±11 years) were categorized according to caffeine consumption quartiles: group 1 (<225 mg/day, n=59), group 2 (225-407 mg/day, n=57), group 3 (408-678 mg/day, n=62), and group 4 (>678 mg/day, n=60). There was a significant inverse relationship between activity grade and daily caffeine consumption: activity grade>A2 was present in 78%, 61%, 52%, and 48% of patients in group 1, 2, 3, and 4, respectively (p<0.001). By multivariate analysis, daily caffeine consumption greater than 408 mg/day was associated with a lesser risk of activity grade>A2 (OR=0.32 (0.12-0.85). Caffeine intake showed no relation with fibrosis stage. Caffeine consumption greater than 408 mg/day (3 cups or more) is associated with reduced histological activity in patients with CHC. These findings support potential hepatoprotective properties of caffeine in chronic liver diseases. Copyright © 2010 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  6. Hepatoprotective effect of engineered silver nanoparticles coated bioactive compounds against diethylnitrosamine induced hepatocarcinogenesis in experimental mice.

    PubMed

    Prasannaraj, Govindaraj; Venkatachalam, Perumal

    2017-02-01

    Nanoparticle based drug delivery can rapidly improves the therapeutic potential of anti-cancer agents. The present study focused to evaluate the hepatoprotective activity of silver nanoparticles (AgNPs) synthesized using aqueous extracts of Andrographis paniculata leaves (ApAgNPs) and Semecarpus anacardium nuts (SaAgNPs) against diethylnitrosamine (DEN) induced liver cancer in mice model. The physico-chemical properties of synthesized AgNPs were characterized by Fourier transform infrared (FTIR) spectroscopy, Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), X-ray Diffraction (XRD), Energy Dispersive X-ray (EDX) spectrum, Zeta potential and Dynamic Light Scattering (DLS) analysis. The surface plasmon resonance (SPR) absorption spectrum revealed a strong peak at 420nm for both SaAgNPs and ApAgNPs. FTIR results exhibited the presence of possible functional groups in the synthesized AgNPs. TEM analysis determined the hexagonal, and spherical shape of the synthesized silver nanoparticles. The XRD and SAED pattern confirmed the crystalline nature and crystalline size of the AgNPs. EDX result clearly showed strong silver signals in the range between 2 and 4keV. Zeta potential measurements indicated a sharp peak at -3.93 and -13.8mV for ApAgNPs and SaAgNPs, respectively. DLS measurement expressed the particle size distribution was 70 and 60nm for ApAgNPs and SaAgNPs, respectively. DEN (20mg/kg b.wt.) was subjected to induce liver cancer in mice for 8weeks and treated with biosynthesized silver nanoparticles. Interestingly, ApAgNPs and SaAgNPs treated DEN induced animal groups show a decreased level of aspartate amino transferase (AST), alanine amino transferase (ALT), serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT) activity and elevated level of catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and superoxide dismutase (SOD) activity over untreated DEN control animals group. Histopathological investigation reveals decreased fat accumulation, appearance of binucleated cells in nanoparticle treated animals and showed mere normal cells induced by DEN. Argyrophilic nucleolar organiser region (AgNORs) had a significant decrease in number of acidic proteins and mast cells assay showed decrease of metachromatic cells in nanoparticles treated animal groups over control. Present results strongly suggest that biomolecule coated silver nanoparticles exposure showed potential hepatoprotective effect against DEN induced liver cancer and could be used as an effective anticancer nanodrug. Copyright © 2017. Published by Elsevier B.V.

  7. Fabrication of surfactant-free quercetin-loaded PLGA nanoparticles: evaluation of hepatoprotective efficacy by nuclear scintigraphy

    NASA Astrophysics Data System (ADS)

    Ganguly, Soumya; Gaonkar, Raghuvir H.; Sinha, Samarendu; Gupta, Amit; Chattopadhyay, Dipankar; Chattopadhyay, Sankha; Sachdeva, Satbir S.; Ganguly, Shantanu; Debnath, Mita C.

    2016-07-01

    The purpose of this study was to develop surfactant-free quercetin-loaded PLGA nanoparticles (Qr-NPs) and investigate the hepatoprotective efficacy of the product non-invasively by nuclear scintigraphy. The nanoparticles were prepared using PLGA by dialysis method and ranged in size between 50 and 250 nm with a narrow range of distribution. They were found to arrive at the fenestra of liver sinusoidal epithelium for accumulation. The sizes of nanoparticles (batch S1) were optimal to reach the target and offer enough protection of the hepatocytes degenerated by CCl4 intoxication as determined by various biochemical and histopathological tests. In vitro studies exhibited the cytotoxic effect of the formulation against HepG2 cell line. The hepatoprotective efficacy of Qr-NPs evaluated non-invasively by nuclear scintigraphic technique using 99mTc-labelled sulphur colloid revealed abnormality in liver at the area of decreased uptake in rats of CCl4-treated group, which disappeared in Qr-NP-treated group. In dynamic studies with 99mTc-mebrofenin, excretion was severely impaired in CCl4-treated group but was moderate in drug-treated group, proving the recovery of animals from damage.

  8. Hepatoprotective effects of Arctium lappa on carbon tetrachloride- and acetaminophen-induced liver damage.

    PubMed

    Lin, S C; Chung, T C; Lin, C C; Ueng, T H; Lin, Y H; Lin, S Y; Wang, L Y

    2000-01-01

    The root of Arctium lappa Linne (A. lappa) (Compositae), a perennial herb, has been cultivated for a long time as a popular vegetable. In order to investigate the hepatoprotective effects of A. lappa, male ICR mice were injected with carbon tetrachloride (CCl4, 32 microl/kg, i.p.) or acetaminophen (600 mg/kg, i.p.). A. lappa suppressed the SGOT and SGPT elevations induced by CCl4 or acetaminophen in a dose-dependent manner and alleviated the severity of liver damage based on histopathological observations. In an attempt to elucidate the possible mechanism(s) of this hepatoprotective effect, glutathione (GSH), cytochrome P-450 (P-450) and malondialdehyde (MDA) contents were studied. A. lappa reversed the decrease in GSH and P-450 induced by CCl4 and acetaminophen. It was also found that A. lappa decreased the malondialdehyde (MDA) content in CCl4 or acetaminophen-intoxicated mice. From these results, it was suggested that A. lappa could protect the liver cells from CCl4 or acetaminophen-induced liver damages, perhaps by its antioxidative effect on hepatocytes, hence eliminating the deleterious effects of toxic metabolites from CCl4 or acetaminophen.

  9. The Hepatoprotective Effect of Selenium-Enriched Yeast and Gum Arabic Combination on Carbon Tetrachloride-Induced Chronic Liver Injury in Rats.

    PubMed

    Hamid, Mohammed; Abdulrahim, Yassin; Liu, Dandan; Qian, Gang; Khan, Alamzeb; Huang, Kehe

    2018-02-01

    The antioxidant and anti-inflammatory effects of selenium-enriched yeast (SY) and Gum Arabic (GA) have been reported. This study aimed to determine the hepatoprotective effect of SY and GA combination on carbon tetrachloride (CCl 4 )-induced chronic liver injury in rats and to explore their synergistic mechanisms of action. Forty adult male Wistar rats randomly allotted to 5 groups: (A) worked as control, (B) was administered CCl 4 , (C-E) were fed daily by GA, SY, and GA+SY respectively after mixing with basal diet, following CCl 4 -intoxication. GA and SY combination significantly ameliorated CCl 4 -induced reduction in serum total protein with elevation in aspartate transaminase (AST) and alanine transaminase (ALT) in addition to restoring the histopathological changes and hepatic content of hydroxyproline. GA and SY combination was also effective in reducing lipid peroxidation (MDA), consistent with an increase in total antioxidant capacity (T-AOC), glutathione (GSH), superoxide dismutase (SOD) activities, indicating the suppression of liver oxidative stress. Furthermore, liver inflammation was ameliorated by GA and SY combination through inhibition of nuclear factor-kappa (NF-κB), tumor necrosis factor-alpha (TNF-α), cyclooxygenase-2(COX-2), monocyte chemotactic protein-1 (MCP-1), and toll-like receptor 4(TLR-4) over expression in the liver. Moreover, the up-regulation of proliferating cell nuclear antigen (PCNA) expression by GA and SY combination enhanced the regeneration of liver tissue after CCl 4 -administration. The expression of Collagen1, alpha-smooth muscle actin (α-SMA), and transforming growth factor-beta1 (TGFβ1), was obviously ameliorated by GA and SY combination, suggesting the amelioration of profibrotic response of the liver. Taken together, our current study suggests that GA and SY combination exhibit a significant hepatoprotective activity, which more efficient than GA or SY alone. Chronic liver diseases are the serious health problems, which increase the morbidity and mortality in the world today. Selenium-enriched yeast (SY) and Gum Arabic (GA) combination might be potential dietary agents could obviously ameliorate chronic liver damage, higher than GA and SY alone. They act to suppress the inflammation and inhibit the profibrotic response as well as support the liver regeneration. © 2018 Institute of Food Technologists®.

  10. Phytopharmacology of Tribulus terrestris.

    PubMed

    Shahid, M; Riaz, M; Talpur, M M A; Pirzada, T

    2016-01-01

    Tribulus terrestris is an annual herb which belongs to the Zygophyllaceae family. This plant has been used in traditional medicine for the treatment of various diseases for hundreds of decades. The main active phytoconstituents of this plant include flavonoids, alkaloids, saponins, lignin, amides, and glycosides. The plant parts have different pharmacological activities including aphrodisiac, antiinflammatory, antimicrobial and antioxidant potential. T. terrestris is most often used for infertility and loss of libido. It has potential application as immunomodulatory, hepatoprotective, hypolipidemic, anthelmintic and anticarcinogenic activities. The aim of the present article is to create a database for further investigation of the phytopharmacological properties of this plant to promote research. This study will definitely help to confirm its traditional use along with its value-added utility, eventually leading to higher revenues from the plant.

  11. Isoprenylated flavonoids from the root bark of Morus alba and their hepatoprotective and neuroprotective activities.

    PubMed

    Jung, Jae-Woo; Ko, Won-Min; Park, Ji-Hae; Seo, Kyeong-Hwa; Oh, Eun-Ji; Lee, Dae-Young; Lee, Dong-Sung; Kim, Youn-Chul; Lim, Dong-Wook; Han, Daeseok; Baek, Nam-In

    2015-11-01

    A new isoprenylated flavonoid, 2S-5,7,2',4'-tetrahydroxy-3',5'-di-(γ,γ-dimethylallyl)flavanone, sanggenol Q (1), along with seven known isoprenylated flavonoids, sanggenol A (2), sanggenol L (3), kuwanon T (4), cyclomorusin (5), sanggenon F (6), sanggenol O (7), and sanggenon N (8), three known Diels-Alder type adducts, sanggenon G (9), mulberrofuran G (10), and mulberrofuran C (11), and a known benzofuran, moracin E (12), were isolated from the root bark of Morus alba using silica gel, ODS, and Sephadex LH-20 column chromatography. Chemical structures were determined based on spectroscopic data analyses including NMR, MS, CD, and IR. For the first time, compounds 1 and 7 were isolated from the root bark of M. alba. All compounds were evaluated for hepatoprotective activity on t-BHP-induced oxidative stress in HepG2 cells and neuroprotective activity on glutamate-induced cell death in HT22 cells. Compounds 1, 4, 8, 10, and 11 showed protective effects on t-BHP-induced oxidative stress with EC50 values of 6.94 ± 0.38, 30.32 ± 6.82, 23.45 ± 4.72, 15.31 ± 2.21, and 0.41 ± 0.48 μM, respectively, and compounds 1, 2, 10, 11, and 12 showed protective effects on glutamate-induced cell death with EC50 values of 5.54 ± 0.86, 34.03 ± 7.71, 19.71 ± 0.71, 16.50 ± 7.82, and 1.02 ± 0.13 μM, respectively.

  12. Phytochemical, antioxidant and protective effect of cactus cladodes extract against lithium-induced liver injury in rats.

    PubMed

    Ben Saad, Anouar; Dalel, Brahmi; Rjeibi, Ilhem; Smida, Amani; Ncib, Sana; Zouari, Nacim; Zourgui, Lazhar

    2017-12-01

    Opuntia ficus-indica (L.) Mill. (Castaceae) (cactus) is used in Tunisian medicine for the treatment of various diseases. This study determines phytochemical composition of cactus cladode extract (CCE). It also investigates antioxidant activity and hepatoprotective potential of CCE against lithium carbonate (Li 2 CO 3 )-induced liver injury in rats. Twenty-four Wistar male rats were divided into four groups of six each: a control group given distilled water (0.5 mL/100 g b.w.; i.p.), a group injected with Li 2 CO 3 (25 mg/kg b.w.; i.p.; corresponding to 30% of the LD 50 ) twice daily for 30 days, a group receiving only CCE at 100 mg/kg of b.w. for 60 days and then injected with distilled water during the last 30 days of CCE treatment, and a group receiving CCE and then injected with Li 2 CO 3 during the last 30 days of CCE treatment. The bioactive components containing the CCE were identified using chemical assays. Treatment with Li 2 CO 3 caused a significant change of some haematological parameters including red blood cells (RBC), white blood cells (WBC), haemoglobin content (Hb), haematocrit (Ht) and mean corpuscular volume (VCM) compared to the control group. Moreover, significant increases in the levels of glucose, cholesterol, triglycerides and of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities were observed in the blood of Li 2 CO 3 -treated rats. Furthermore, exposure to Li 2 CO 3 significantly increased the LPO level and decreased superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) activities in the hepatic tissues. CCE possesses a significant hepatoprotective effect.

  13. Hepatoprotective activity of Eugenia jambolana Lam. in carbon tetrachloride treated rats

    PubMed Central

    Sisodia, S.S.; Bhatnagar, M.

    2009-01-01

    Objective: To estimate the hepatoprotective effects of the methanolic seed extract of Eugenia jambolana Lam. (Myrtaceae), in Wistar albino rats treated with carbon tetrachloride (CCl4). Materials and Methods: Liver damage in rats treated with CCl4 (1ml/kg/Bw, administered subcutaneously, on alternate days for one week) was studied by assessing parameters such as serum glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), acid phosphatase (ACP) and bilirubin (total and direct). The effect of co-administration of Eugenia jambolana Lam. (doses 100, 200 and 400 mg/kg p. o.) on the above parameters was investigated. These biochemical observations were supplemented by weight and histological examination of liver sections. Liv.52® was used as positive control. Data were analyzed by one way ANOVA, followed by Scheff's/Dunnett's test. Results: Administration of Eugenia jambolana Lam. (doses 100, 200 and 400 mg/kg p. o.) significantly prevented carbon tetrachloride induced elevation of serum SGOT, SGPT, ALP, ACP and bilirubin (total and direct) level. Histological examination of the liver section revealed hepatic regeneration, after administration of various doses of Eugenia jambolana Lam. The results were comparable to that of Liv.52®. Conclusion: The study suggests preventive action of Eugenia jambolana Lam. in carbon tetrachloride induced liver toxicity. Hepatic cell regeneration process was dose dependent. PMID:20177577

  14. The thalidomide analog 3-phthalimido-3-(3,4-dimethoxyphenyl)-propanoic acid improves the biliary cirrhosis in the rat.

    PubMed

    Fernández-Martínez, Eduardo; Pérez-Hernández, Nury; Muriel, Pablo; Pérez-Alvarez, Víctor; Shibayama, Mineko; Tsutsumi, Víctor

    2009-09-01

    Chronic cholestasis and cholangitis may lead to the last phase known as biliary cirrhosis, characterized by cellular necrosis, apoptosis, tissue damage, local regeneration, inflammation and fibrosis. Such events are mediated by cytokines. Thalidomide and its analogs have shown to be effective immunomodulatory and hepatoprotective agents. The aim of this work was to evaluate the hepatoprotective properties of a thalidomide analog, the 3-phthalimido-3-(3,4-dimethoxyphenyl)-propanoic acid (PDA), on bile duct obstruction-induced cirrhosis. Vehicle or PDA (67 mg/kg) was orally administered twice a day to sham (Sham) or bile duct-ligated (BDL) male Wistar rats. The animals were sacrificed 28 days after treatments. Alkaline phosphatase (AP), gamma-glutamyl transpeptidase (GGTP) and alanine aminotransferase (ALT) enzyme activities as well as direct and total bilirubins concentration were determined in plasma. Lipid peroxidation (LP), glycogen and collagen were quantified in liver; in addition, histopathology was performed. PDA improved cholestasis, necrosis and fibrosis by significantly diminishing most of liver injury markers (P<0.05). Histopathology also showed remarkable liver damage amelioration. PDA effectiveness may be due to its water-solubility, stability, phosphodiesterase-4 inhibitory and immunomodulatory actions. Thalidomide and its analogs seem to be promising drugs for further treatment of biliary cirrhosis.

  15. Hepatoprotective influence of quercetin and ellagic acid on thioacetamide-induced hepatotoxicity in rats.

    PubMed

    Afifi, Nehal A; Ibrahim, Marwa A; Galal, Mona K

    2018-06-01

    Despite all the studies performed to date, therapy choices for liver injuries are very few. Therefore, the search for a new treatment that could safely and effectively block or reverse liver injuries remains a challenge. Quercetin (QR) and ellagic acid (EA) had potent antioxidant and anti-inflammatory activities. The current study aimed at evaluating the potential hepatoprotective influence of QR and EA against thioacetamide (TAA)-induced liver toxicity in rats and the underlying mechanism using silymarin as a reference drug. Fifty mature male rats were orally treated daily with EA and QR in separate groups for 45 consecutive days, and then were injected with TAA twice with 24 h intervals in the last 2 days of the experiment. Administration of TAA resulted in marked elevation of liver indices, alteration in oxidative stress parameters, and significant elevation in expression level of fibrosis-related genes (MMP9 and MMP2). Administration of QR and EA significantly attenuated the hepatic toxicity through reduction of liver biomarkers, improving the redox status of the tissue, as well as hampering the expression level of fibrosis-related genes. In this study, QR and EA were proved to attenuate the hepatotoxicity through their antioxidant, metal-chelating capacity, and anti-inflammatory effects.

  16. Growth-hormone-induced signal transducer and activator of transcription 5 signaling causes gigantism, inflammation, and premature death but protects mice from aggressive liver cancer.

    PubMed

    Friedbichler, Katrin; Themanns, Madeleine; Mueller, Kristina M; Schlederer, Michaela; Kornfeld, Jan-Wilhelm; Terracciano, Luigi M; Kozlov, Andrey V; Haindl, Susanne; Kenner, Lukas; Kolbe, Thomas; Mueller, Mathias; Snibson, Kenneth J; Heim, Markus H; Moriggl, Richard

    2012-03-01

    Persistently high levels of growth hormone (GH) can cause liver cancer. GH activates multiple signal-transduction pathways, among them janus kinase (JAK) 2-signal transducer and activator of transcription (STAT) 5 (signal transducer and activator of transcription 5). Both hyperactivation and deletion of STAT5 in hepatocytes have been implicated in the development of hepatocellular carcinoma (HCC); nevertheless, the role of STAT5 in the development of HCC as a result of high GH levels remains enigmatic. Thus, we crossed a mouse model of gigantism and inflammatory liver cancer caused by hyperactivated GH signaling (GH(tg) ) to mice with hepatic deletion of STAT5 (STAT5(Δhep) ). Unlike GH(tg) mice, GH(tg) STAT5(Δhep) animals did not display gigantism. Moreover, the premature mortality, which was associated with chronic inflammation, as well as the pathologic alterations of hepatocytes observed in GH(tg) mice, were not observed in GH(tg) animals lacking STAT5. Strikingly, loss of hepatic STAT5 proteins led to enhanced HCC development in GH(tg) mice. Despite reduced chronic inflammation, GH(tg) STAT5(Δhep) mice displayed earlier and more advanced HCC than GH(tg) animals. This may be attributed to the combination of increased peripheral lipolysis, hepatic lipid synthesis, loss of hepatoprotective mediators accompanied by aberrant activation of tumor-promoting c-JUN and STAT3 signaling cascades, and accumulation of DNA damage secondary to loss of cell-cycle control. Thus, HCC was never observed in STAT5(Δhep) mice. As a result of their hepatoprotective functions, STAT5 proteins prevent progressive fatty liver disease and the formation of aggressive HCC in the setting of hyperactivated GH signaling. At the same time, they play a key role in controlling systemic inflammation and regulating organ and body size. Copyright © 2011 American Association for the Study of Liver Diseases.

  17. Oral bioavailability of curcumin: problems and advancements.

    PubMed

    Liu, Weidong; Zhai, Yingjie; Heng, Xueyuan; Che, Feng Yuan; Chen, Wenjun; Sun, Dezhong; Zhai, Guangxi

    2016-09-01

    Curcumin is a natural compound of Curcuma longa L. and has shown many pharmacological activities such as anti-inflammatory, anti-oxidant in both preclinical and clinical studies. Moreover, curcumin has hepatoprotective, neuroprotective activities and protects against myocardial infarction. Particularly, curcumin has also demonstrated favorite anticancer efficacy. But limiting factors such as its extremely low oral bioavailability hampers its application as therapeutic agent. Therefore, many technologies have been developed and applied to overcome this limitation. This review described the main physicochemical properties of curcumin and summarized the recent studies in the design and development of oral delivery systems for curcumin to enhance the solubility and oral bioavailability, including liposomes, nanoparticles and polymeric micelles, phospholipid complexes, and microemulsions.

  18. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling.

    PubMed

    Wang, Rong; Zhang, Hai; Wang, Yuanyuan; Song, Fuxing; Yuan, Yongfang

    2017-06-01

    Quercetin, a natural flavonoid, has been used as a nutritional supplement for its anti-inflammatory and antioxidative properties. Quercetin was reported to exhibit a wide range of pharmacological properties, including its effect on anti-hepatic fibrosis. However, the anti-fibrotic mechanisms of quercetin have not been well-characterized to date. This study aimed to investigate the protective effects of quercetin on carbon tetrachloride (CCl 4 )-induced liver fibrosis in rats and to clarify its anti-hepatofibrotic mechanisms. We demonstrated that quercetin exhibited in-vivo hepatoprotective and anti-fibrogenic effects against CCl 4 -induced liver injury by improving the pathological manifestations, thereby reducing the activities of serum total bilirubin (TBIL), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and decreasing the serum levels of hyaluronic acid (HA), laminin (LN), type IV collagen (IV-C) and procollagen III peptide (PIIIP). Furthermore, treatment with quercetin 5-15mg/kg inhibited the activation of NF-κB in a dose-dependent manner via inhibition of IкBα degradation and decreased the expression of p38 MAPK by inhibiting its phosphorylation. Additionally, in a dose-dependent manner, quercetin down-regulated Bax, up-regulated Bcl-2, and subsequently inhibited caspase-3 activation. Moreover, quercetin regulated inflammation factors and hepatic stellate cells (HSCs)-activation markers, such as TNF-α, IL-6, IL-1β, Cox-2, TGF-β, α-SMA, Colla1, Colla2, TIMP-1, MMP-1, and desmin. Taken together, quercetin prevented the progression of liver fibrosis in SD rats. The anti-fibrotic mechanisms of quercetin might be associated with its ability to regulate NF-кB/IкBα, p38 MAPK anti-inflammation signaling pathways to inhibit inflammation, and regulate Bcl-2/Bax anti-apoptosis signaling pathway to prevent liver cell apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Methanol extract of Dicranopteris linearis L. leaves impedes acetaminophen-induced liver intoxication partly by enhancing the endogenous antioxidant system.

    PubMed

    Zakaria, Zainul Amiruddin; Kamisan, Farah Hidayah; Omar, Maizatul Hasyima; Mahmood, Nur Diyana; Othman, Fezah; Abdul Hamid, Siti Selina; Abdullah, Muhammad Nazrul Hakim

    2017-05-18

    The present study investigated the potential of methanolic extract of Dicranopteris linearis (MEDL) leaves to attenuate liver intoxication induced by acetaminophen (APAP) in rats. A group of mice (n = 5) treated orally with a single dose (5000 mg/kg) of MEDL was first subjected to the acute toxicity study using the OECD 420 model. In the hepatoprotective study, six groups of rats (n = 6) were used and each received as follows: Group 1 (normal control; pretreated with 10% DMSO (extract's vehicle) followed by treatment with 10% DMSO (hepatotoxin's vehicle) (10% DMSO +10% DMSO)), Group 2 (hepatotoxic control; 10% DMSO +3 g/kg APAP (hepatotoxin)), Group 3 (positive control; 200 mg/kg silymarin +3 g/kg APAP), Group 4 (50 mg/kg MEDL +3 g/kg APAP), Group 5 (250 mg/kg MEDL +3 g/kg APAP) or Group 6 (500 mg/kg MEDL +3 g/kg APAP). The test solutions pre-treatment were made orally once daily for 7 consecutive days, and 1 h after the last test solutions administration (on Day 7th), the rats were treated with vehicle or APAP. Blood were collected from those treated rats for biochemical analyses, which were then euthanized to collect their liver for endogenous antioxidant enzymes determination and histopathological examination. The extract was also subjected to in vitro anti-inflammatory investigation and, HPLC and GCMS analyses. Pre-treatment of rats (Group 2) with 10% DMSO failed to attenuate the toxic effect of APAP on the liver as seen under the microscopic examination. This observation was supported by the significant (p < 0.05) increased in the level of serum liver enzymes of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP), and significant (p < 0.05) decreased in the activity of endogenous antioxidant enzymes of catalase (CAT) and superoxide dismutase (SOD) in comparison to Group 1. Pre-treatment with MEDL, at all doses, significantly (p < 0.05) reduced the level of ALT and AST while the levels of CAT and SOD was significantly (p < 0.05) restored to their normal value. Histopathological studies showed remarkable improvement in the liver cells architecture with increase in dose of the extract. MEDL also demonstrated a low to none inhibitory activity against the respective LOX- and NO-mediated inflammatory activity. The HPLC and GCMS analyses of MEDL demonstrated the presence of several non-volatile (such as rutin, gallic acid etc.) and volatile (such as methyl palmitate, shikimic acid etc.) bioactive compounds. MEDL exerts hepatoprotective activity against APAP-induced intoxication possibly via its ability to partly activate the endogenous antioxidant system and presence of various volatile and non-volatile bioactive compounds that might act synergistically to enhance the hepatoprotective effect.

  20. Pharmacological features of osthole.

    PubMed

    Jarząb, Agata; Grabarska, Aneta; Skalicka-Woźniak, Krystyna; Stepulak, Andrzej

    2017-05-15

    Coumarins are a group of naturally occurring compounds common in the plant world. These substances and their derivatives exhibit a broad range of biological activities. One of the naturally occurring coumarins is osthole, which can most frequently be found in plants of the Apiaceae family. Cnidium monnieri (L.) Cusson ex Juss. Angelica pubescens Maxim. and Peucedanum ostruthium (L.). It has anti-proliferative, anti-inflammatory, anti-convulsant, and antiallergic properties; apart from that, inhibition of platelet aggregation has also been proved. The impact of osthole on bone metabolism has been demonstrated; also its hepatoprotective and neuroprotective properties have been confirmed. The inhibitory effect of this metokcompound on the development of neurodegenerative diseases has been proved in experimental models. Anticancer features of osthole have been also demonstrated both in vitro on different cell lines, and in vivo using animals xenografts. Osthole inhibited proliferation, motility and invasiveness of tumor cells, which may be associated with the induction of apoptosis and cell cycle slowdown. The exact molecular mechanism of osthole anti-cancer mode of action has not been fully elucidated. A synergistic effect of osthole with other anti-tumor substances has been also reported. Modification of its chemical structure led to the synthesis of many derivatives with significant anticancer effects. To sum up, osthole is an interesting therapeutic option, due to both its direct effect on tumor cells, as well as its neuroprotective or anti-inflammatory properties. Thus, there is a chance to use osthole or its synthetic derivatives in the treatment of cancer.

  1. Cranberry flavonoids prevent toxic rat liver mitochondrial damage in vivo and scavenge free radicals in vitro.

    PubMed

    Lapshina, Elena A; Zamaraeva, Maria; Cheshchevik, Vitali T; Olchowik-Grabarek, Ewa; Sekowski, Szymon; Zukowska, Izabela; Golovach, Nina G; Burd, Vasili N; Zavodnik, Ilya B

    2015-06-01

    The present study was undertaken for further elucidation of the mechanisms of flavonoid biological activity, focusing on the antioxidative and protective effects of cranberry flavonoids in free radical-generating systems and those on mitochondrial ultrastructure during carbon tetrachloride-induced rat intoxication. Treatment of rats with cranberry flavonoids (7 mg/kg) during chronic carbon tetrachloride-induced intoxication led to prevention of mitochondrial damage, including fragmentation, rupture and local loss of the outer mitochondrial membrane. In radical-generating systems, cranberry flavonoids effectively scavenged nitric oxide (IC50  = 4.4 ± 0.4 µg/ml), superoxide anion radicals (IC50  = 2.8 ± 0.3 µg/ml) and hydroxyl radicals (IC50  = 53 ± 4 µg/ml). The IC50 for reduction of 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH) was 2.2 ± 0.3 µg/ml. Flavonoids prevented to some extent lipid peroxidation in liposomal membranes and glutathione oxidation in erythrocytes treated with UV irradiation or organic hydroperoxides as well as decreased the rigidity of the outer leaflet of the liposomal membranes. The hepatoprotective potential of cranberry flavonoids could be due to specific prevention of rat liver mitochondrial damage. The mitochondria-addressed effects of flavonoids might be related both to radical-scavenging properties and modulation of various mitochondrial events. Copyright © 2015 John Wiley & Sons, Ltd.

  2. Evaluation of the cytotoxicity, mutagenicity and antimutagenicity of a natural antidepressant, Hypericum perforatum L. (St. John’s wort), on vegetal and animal test systems

    PubMed Central

    2013-01-01

    Background St. John’s wort (Hypericum perforatum L.) is an herbaceous plant that is native to Europe, West Asia and North Africa and that is recognized and used worldwide for the treatment of mild and moderate depression. It also has been shown to be therapeutic for the treatment of burns, bruises and swelling and can be used for its wound healing, antiviral, antimicrobial, antioxidant, analgesic, hepato-protective and anxiolytic properties. The aim of this study was to evaluate the potential cytotoxic, mutagenic and antimutagenic action of H. Perforatum. Methods Meristematic cells were used as the test system for Allium cepa L., and bone marrow cells from Rattus norvegicus, ex vivo, were used to calculate the mitotic index and the percentage of chromosomal aberration. Statistical analysis was performed using the chi-square test. Results This medicinal plant had no cytotoxic potential in the vegetal test system evaluated. In the animal test system, none of the acute treatments, including intraperitoneal gavage and subchronic gavage, were cytotoxic or mutagenic. Moreover, this plant presented antimutagenic activity against the clastogenic action of cyclophosphamide, as confirmed in pre-treatment (76% reduction in damage), simultaneous treatment (95%) and post-treatment (97%). Conclusions Thus, the results of this study suggest that the administration of H. perforatum, especially by gavage similar to oral consumption used by humans, is safe and with beneficial antimutagenic potential. PMID:23647762

  3. Progression of conventional hepatic cell culture models to bioengineered HepG2 cells for evaluation of herbal bioactivities.

    PubMed

    Kaur, Pardeep; Robin; Mehta, Rajendra G; Arora, Saroj; Singh, Balbir

    2018-06-01

    Cancer cell lines of human tissue origin have been extensively used to investigate antiproliferative activity and toxicity of herbal extracts, isolated compounds, and anticancer drugs. These cell lines are genetically and/or epigenetically well characterized to determine the altered expression of proteins within given cellular pathways and critical genes in cancer. Human derived hepatoma (HepG2) cell line has been extensively exploited to examine cytoprotective, antioxidative, hepatoprotective, anti-hepatoma, hypocholesterolemic, anti-steatosis, bioenergetic homeostatic and anti-insulin resistant properties. Moreover, mechanism of action of various botanicals and bioactive constituents has been reported using these cells. HepG2 cells have significant differences as compared to primary hepatocytes with respect to expression of cytochrome P450 enzymes and xenobiotic receptors in conventional in vitro culture conditions. Therefore, strategies have been employed to overcome limitations of two dimensional (2D) in vitro HepG2 cell culture in order to recognize functional biomarkers more accurately and to boost its predictive value in clinical research. In consequence, three dimensional (3D) human hepatoma cell culture models are being developed as a resource to achieve these goals of simulating the in vivo tumor microenvironment. It is assumed that bioengineered 3D hepatoma cell culture models can provide significant assistance in scrutinizing the molecular response of herbal natural products to recognize novel prognostic targets and crucial biomarkers in treatment strategies for cancer patients in near future.

  4. Protective effects of ginsenoside Rg1 against lipopolysaccharide/d-galactosamine-induced acute liver injury in mice through inhibiting toll-like receptor 4 signaling pathway.

    PubMed

    Ning, Chenqing; Gao, Xiaoguang; Wang, Changyuan; Huo, Xiaokui; Liu, Zhihao; Sun, Huijun; Yang, Xiaobo; Sun, Pengyuan; Ma, Xiaodong; Meng, Qiang; Liu, Kexin

    2018-06-11

    Acute liver injury (ALI) is a dramatic liver disease characterized by large areas of inflammation in the liver. This study aimed to investigate the protective effects of ginsenoside Rg1 (Rg1), a biologically active component in Panax ginseng, on lipopolysaccharide/d-galactosamine (LPS/D-GalN)-induced ALI in mice, and meanwhile explore the molecular mechanism in vivo and in vitro. Mice were pretreated with Rg1 for three days prior to LPS (40 μg/kg)/D-GalN (700 mg/kg) administration. The results showed that Rg1 improved the survival rate and reduced the liver to body weight ratios in mice. Rg1 also reduced the production of oxidative markers such as MDA and MPO induced by LPS/D-GalN. In addition, Rg1 significantly decreased the production of inflammatory cytokines including TNF-α, IL-6, IL-1β, Mip-2, Mcp-1, iNOS, and increased the activity of anti-inflammatory cytokine IL-10. Moreover, Rg1 inhibited the protein expression of TLR4 and its downstream genes including NF-κB and MAPKs, which are involved in inflammatory response. Rg1 dramatically reduced oxidative stress by regulating the expression of efflux transporters Mrp2 and various enzymes including GCLC, GCLM, HO-1 and NQO1. However, the changes in these genes and protein induced by Rg1 were abrogated by TLR4 antagonist TAK-242 in vitro. In conclusion, Rg1 had hepatoprotective effect on LPS/D-GalN-induced ALI in mice. The protection may be associated with the inhibition of TLR4. These findings suggest that Rg1 may be a promising agent for prevention against ALI. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. ERK Signaling Pathway Plays a Key Role in Baicalin Protection Against Acetaminophen-Induced Liver Injury.

    PubMed

    Liao, Chia-Chih; Day, Yuan-Ji; Lee, Hung-Chen; Liou, Jiin-Tarng; Chou, An-Hsun; Liu, Fu-Chao

    2017-01-01

    Acetaminophen (APAP) overdose causes hepatocytes necrosis and acute liver failure. Baicalin (BA), a major flavonoid of Scutellariae radix, has potent hepatoprotective properties in traditional medicine. In the present study, we investigated the protective effects of BA on a APAP-induced liver injury in a mouse model. The mice received an intraperitoneal hepatotoxic dose of APAP (300[Formula: see text]mg/kg) and after 30[Formula: see text]min, were treated with BA at concentrations of 0, 15, 30, or 60[Formula: see text]mg/kg. After 16[Formula: see text]h of treatment, the mice were sacrificed for further analysis. APAP administration significantly elevated the serum alanine transferase (ALT) enzyme levels and hepatic myeloperoxidase (MPO) activity when compared with control animals. Baicalin treatment significantly attenuated the elevation of liver ALT levels, as well as hepatic MPO activity in a dose- dependent manner (15-60[Formula: see text]mg/kg) in APAP-treated mice. The strongest beneficial effects of BA were seen at a dose of 30[Formula: see text]mg/kg. BA treatment at 30[Formula: see text]mg/kg after APAP overdose reduced elevated hepatic cytokine (TNF-[Formula: see text] and IL-6) levels, and macrophage recruitment around the area of hepatotoxicity in immunohistochemical staining. Significantly, BA treatment can also decrease hepatic phosphorylated extracellular signal-regulated kinase (ERK) expression, which is induced by APAP overdose. Our data suggests that baicalin treatment can effectively attenuate APAP-induced liver injury by down-regulating the ERK signaling pathway and its downstream effectors of inflammatory responses. These results support that baicalin is a potential hepatoprotective agent.

  6. Nanosuspension of Phyllanthus amarus extract for improving oral bioavailability and prevention of paracetamol induced hepatotoxicity in Sprague-Dawley rats

    NASA Astrophysics Data System (ADS)

    Bhushan Mishra, Shanti; Pandey, Himanshu; Pandey, Avinash C.

    2013-09-01

    Phyllanthus amarus (P. amarus) is commonly used for traditional Indian medicine and as dietary adjuncts for the treatment of numerous physiological disorders including hepatic disorders. Due to the poor water solubility of its major constituents such as lignans and flavonoids, its absorption upon oral administration could be limited. The present study was designed to evaluate and compare the hepatoprotective effects of the ethanolic extract of P. amarus (PAE) and its nanoparticles (PAN) on paracetamol induced acute liver toxicity in Sprague-Dawley rats. An oral dose of PAE at 125 and 250 mg kg-1 and PAN at 25 and 50 mg kg-1 showed a significant hepatoprotective effect relatively to the same extent (P < 0.001) by reducing levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase and bile salts. These biochemical assessments were supported by rat hepatic biopsy examinations. Moreover, the results also indicated that the hepatoprotective effect of 50 mg kg-1 PAN was effectively better than 125 mg kg-1 PAE (P < 0.001), and an oral dose of PAN that is five times less than PAE could exhibit similar levels of outcomes. In conclusion, we suggest that the nanoparticles system can be applied to overcome other poorly water soluble herbal medicines and furthermore to decrease the treatment dosage.

  7. Identification of Potential Plasma Biomarkers for Nonalcoholic Fatty Liver Disease by Integrating Transcriptomics and Proteomics in Laying Hens.

    PubMed

    Tsai, Meng-Tsz; Chen, Yu-Jen; Chen, Ching-Yi; Tsai, Mong-Hsun; Han, Chia-Li; Chen, Yu-Ju; Mersmann, Harry J; Ding, Shih-Torng

    2017-03-01

    Background: Prevalent worldwide obesity is associated with increased incidence of nonalcoholic fatty liver disease (NAFLD) and metabolic syndrome. The identification of noninvasive biomarkers for NAFLD is of recent interest. Because primary de novo lipogenesis occurs in chicken liver as in human liver, adult chickens with age-associated steatosis resembling human NAFLD is an appealing animal model. Objective: The objective of this study was to screen potential biomarkers in the chicken model for NAFLD by transcriptomic and proteomic analysis. Methods: Hy-Line W-36 laying hens were fed standard feed from 25 to 45 wk of age to induce fatty liver. They were killed every 4 wk, and liver and plasma were collected at each time point to assess fatty liver development and for transcriptomic and proteomic analysis. Next, selected biomarkers were confirmed in additional experiments by providing supplements of the hepatoprotective nutrients betaine [300, 600, or 900 parts per million (ppm) in vivo; 2 mM in vitro] or docosahexaenoic acid (DHA; 1% in vivo; 100 μM in vitro) to 30-wk-old Hy-Line W-36 laying hens for 4 mo and to Hy-Line W-36 chicken primary hepatocytes with oleic acid-induced steatosis. Liver or hepatocyte lipid contents and the expression of biomarkers were then examined. Results: Plasma acetoacetyl-CoA synthetase (AACS), dipeptidyl-peptidase 4 (DPP4), glutamine synthetase (GLUL), and glutathione S -transferase (GST) concentrations are well-established biomarkers for NAFLD. Selected biomarkers had significant positive associations with hepatic lipid deposition ( P < 0.001). Betaine (900 ppm in vivo; 2 mM in vitro) and DHA (1% in vivo; 100 μM in vitro) supplementation both resulted in lower steatosis accompanied by the reduced expression of selected biomarkers in vivo and in vitro ( P < 0.05). Conclusion: This study used adult laying hens to identify biomarkers for NAFLD and indicated that AACS, DPP4, GLUL, and GST could be considered to be potential diagnostic indicators for NAFLD in the future. © 2017 American Society for Nutrition.

  8. Fibroblast Activation Protein Cleaves and Inactivates Fibroblast Growth Factor 21*

    PubMed Central

    Dunshee, Diana Ronai; Bainbridge, Travis W.; Kljavin, Noelyn M.; Zavala-Solorio, Jose; Schroeder, Amy C.; Chan, Ruby; Corpuz, Racquel; Wong, Manda; Zhou, Wei; Deshmukh, Gauri; Ly, Justin; Sutherlin, Daniel P.; Ernst, James A.; Sonoda, Junichiro

    2016-01-01

    FGF21 is a stress-induced hormone with potent anti-obesity, insulin-sensitizing, and hepatoprotective properties. Although proteolytic cleavage of recombinant human FGF21 in preclinical species has been observed previously, the regulation of endogenously produced FGF21 is not well understood. Here we identify fibroblast activation protein (FAP) as the enzyme that cleaves and inactivates human FGF21. A selective chemical inhibitor, immunodepletion, or genetic deletion of Fap stabilized recombinant human FGF21 in serum. In addition, administration of a selective FAP inhibitor acutely increased circulating intact FGF21 levels in cynomolgus monkeys. On the basis of our findings, we propose selective FAP inhibition as a potential therapeutic approach to increase endogenous FGF21 activity for the treatment of obesity, type 2 diabetes, non-alcoholic steatohepatitis, and related metabolic disorders. PMID:26797127

  9. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    PubMed

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice

    PubMed Central

    Mazagova, Magdalena; Wang, Lirui; Anfora, Andrew T.; Wissmueller, Max; Lesley, Scott A.; Miyamoto, Yukiko; Eckmann, Lars; Dhungana, Suraj; Pathmasiri, Wimal; Sumner, Susan; Westwater, Caroline; Brenner, David A.; Schnabl, Bernd

    2015-01-01

    Translocation of bacteria and their products across the intestinal barrier is common in patients with liver disease, and there is evidence that experimental liver fibrosis depends on bacterial translocation. The purpose of our study was to investigate liver fibrosis in conventional and germ-free (GF) C57BL/6 mice. Chronic liver injury was induced by administration of thioacetamide (TAA) in the drinking water for 21 wk or by repeated intraperitoneal injections of carbon tetrachloride (CCl4). Increased liver fibrosis was observed in GF mice compared with conventional mice. Hepatocytes showed more toxin-induced oxidative stress and cell death. This was accompanied by increased activation of hepatic stellate cells, but hepatic mediators of inflammation were not significantly different. Similarly, a genetic model using Myd88/Trif-deficient mice, which lack downstream innate immunity signaling, had more severe fibrosis than wild-type mice. Isolated Myd88/Trif-deficient hepatocytes were more susceptible to toxin-induced cell death in culture. In conclusion, the commensal microbiota prevents fibrosis upon chronic liver injury in mice. This is the first study describing a beneficial role of the commensal microbiota in maintaining liver homeostasis and preventing liver fibrosis.—Mazagova, M., Wang, L., Anfora, A. T., Wissmueller, M., Lesley, S. A., Miyamoto, Y., Eckmann, L., Dhungana, S., Pathmasiri, W., Sumner, S., Westwater, C., Brenner, D. A., Schnabl, B. Commensal microbiota is hepatoprotective and prevents liver fibrosis in mice. PMID:25466902

  11. Heme oxygenase-1 upregulated by Ginkgo biloba extract: potential protection against ethanol-induced oxidative liver damage.

    PubMed

    Yao, Ping; Li, Ke; Song, Fangfang; Zhou, Shaoliang; Sun, Xiufa; Zhang, Xiping; Nüssler, Andreas K; Liu, Liegang

    2007-08-01

    Oxidative stress plays a pivotal role in the pathogenesis and progression of alcoholic liver disease (ALD) and HO-1 induction is suggested to protect hepatocytes from ethanol hepatotoxicity. Here, we present the data to explore the hepatoprotective effect and underlying mechanism(s) of Ginkgo biloba extract (EGB), a naturally occurring HO-1 inducer, against ethanol-induced oxidative damage. Ethanol-fed (2.4 g/kg) male rats were pretreated by EGB (48 or 96 mg/kg) for 90 days. Liver damage was evaluated by histopathology and serum aminotransferase assay. Hepatic redox parameters were measured by spectrophotometry. Heme oxygenase-1 (HO-1) expression was determined by RT-PCR and flow cytometry on mRNA and protein level, respectively. Our results showed that EGB, especially at high dose, ameliorated ethanol-induced macrovesicular steatosis and parenchymatous degeneration in hepatocytes, and decreased serum aminotransferases level. Furthermore, EGB reduced ethanol-derived glutathione depletion and lipid peroxidation, and inhibited the inactivation of superoxide dismutase, glutathione peroxidase and catalase, although EGB itself had no influence on such parameters. Importantly, EGB induced hepatic microsomal HO-1 on mRNA, protein expression and enzymatic activity, which is paralleled to the EGB-derived hepatoprotective effect. Hence, HO-1 upregulation by EGB may enhance the antioxidative capacity against the ethanol-induced oxidative stress and maintain the cellular redox balance.

  12. Protective effect of tea polyphenols against paracetamol-induced hepatotoxicity in mice is significantly correlated with cytochrome P450 suppression.

    PubMed

    Chen, Xia; Sun, Chang-Kai; Han, Guo-Zhu; Peng, Jin-Yong; Li, Ying; Liu, Yan-Xia; Lv, Yuan-Yuan; Liu, Ke-Xin; Zhou, Qin; Sun, Hui-Jun

    2009-04-21

    To investigate the hepatoprotective activity of tea polyphenols (TP) and its relation with cytochrome P450 (CYP450) expression in mice. Hepatic CYP450 and CYPb(5) levels were measured by UV-spectrophotometry in mice 2 d after intraperitoneal TP (25, 50 and 100 mg/kg per day). Then the mice were intragastricly pre-treated with TP (100, 200 and 400 mg/kg per day) for six days before paracetamol (1000 mg/kg) was given. Their acute mortality was compared with that of control mice. The mice were pre-treated with TP (100, 200, and 400 mg/kg per day) for five days before paracetamol (500 mg/kg) was given. Hepatic CYP2E1 and CYP1A2 protein and mRNA expression levels were evaluated by Western blotting, immunohistochemical staining and transcriptase-polymerase chain reaction. The hepatic CYP450 and CYPb(5) levels in mice of TP-treated groups (100, 200 and 400 mg/kg per day) were decreased in a dose-dependent manner compared with those in the negative control mice. TP significantly attenuated the paracetamol-induced hepatic injury and dramatically reduced the mortality of paracetamol-treated mice. Furthermore, TP reduced CYP2E1 and CYP1A2 expression at both protein and mRNA levels in a dose-dependent manner. TP possess potential hepatoprotective properties and can suppress CYP450 expression.

  13. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis.

    PubMed

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1.

  14. The Effect of Artichoke Leaf Extract on Alanine Aminotransferase and Aspartate Aminotransferase in the Patients with Nonalcoholic Steatohepatitis

    PubMed Central

    Rangboo, Vajiheh; Noroozi, Mostafa; Zavoshy, Roza; Rezadoost, Seyed Amirmansoor; Mohammadpoorasl, Asghar

    2016-01-01

    Background. Based on recent basic and clinical investigations, the extract of artichoke (Cynara scolymus) leaf has been revealed to be used for hepatoprotective and cholesterol reducing purposes. We aimed to assess the therapeutic effects of artichoke on biochemical and liver biomarkers in patients with nonalcoholic steatohepatitis (NASH). Methods. In a randomized double blind clinical trial, 60 consecutive patients suffering NASH were randomly assigned to receive Cynara scolymus extract (as 6 tablets per day consisting of 2700 mg extract of the herb) as the intervention group or placebo as the control group for two months. Results. Comparing changes in study markers following interventions showed improvement in liver enzymes. The levels of triglycerides and cholesterol were significantly reduced in the group treated with Cynara scolymus when compared to placebo group. To compare the role of Cynara scolymus use with placebo in changes in study parameters, multivariate linear regression models were employed indicating higher improvement in liver enzymes and also lipid profile particularly triglycerides and total cholesterol following administration of Cynara scolymus in comparison with placebo use. Conclusion. This study sheds light on the potential hepatoprotective activity and hypolipidemic effect of Cynara scolymus in management of NASH. This clinical trial is registered in the IRCT, Iranian Registry of Clinical Trials, by number IRCT2014070218321N1. PMID:27293900

  15. Protective effect of rutin in comparison to silymarin against induced hepatotoxicity in rats.

    PubMed

    Reddy, M Kasi; Reddy, A Gopala; Kumar, B Kala; Madhuri, D; Boobalan, G; Reddy, M Anudeep

    2017-01-01

    The aim of this study is to evaluate the hepatoprotective effect of rutin (RTN) in comparison to silymarin (SLM) against acetaminophen (APAP)-induced hepatotoxicity in rats. Male Wistar albino rats (n=24) of 3 months age were equally divided into four groups. Group 1 served as normal control. Hepatotoxicity was induced in the remaining three groups with administration of 500 mg/kg po APAP from day 1-3. Groups 2, 3, and 4 were subsequently administered orally with distilled water, 25 mg/kg of SLM, and 20 mg/kg of RTN, respectively, for 11 days. The mean body weights and biomarkers of hepatotoxicity were estimated on day 0, 4 (confirmation of toxicity), and 15 (at the end of treatment). Hematological parameters were evaluated on day 4 and 15. Antioxidant profile and adenosine triphosphatases (ATPases) were assessed at the end of the experiment. Liver tissues were subjected to histopathology and transmission electron microscopy after the sacrifice on day 15. Antioxidant profile, ATPases, and hematological and sero-biochemical parameters were significantly altered, and histopathological changes were noticed in the liver of toxic control group. These changes were reversed in groups 3 and 4 that were administered with SLM and RTN, respectively. The results of the present investigation enunciated that SLM has potent hepatoprotective activity though the RTN was found superior in restoring the pathological alterations in paracetamol-induced hepatotoxicity in Wistar albino rats.

  16. Pharmacological potentials of betalains.

    PubMed

    Kaur, Ginpreet; Thawkar, Baban; Dubey, Shivangi; Jadhav, Priyanka

    2018-06-06

    Betalains are water soluble plant pigments in plants of the order Caryophyllales, which are widely used as colorants. Several preclinical studies reported that betanin reveals antioxidants, anti-inflammatory, hepatoprotective, anticancer, anti-diabetes, anti-lipid emic, antimicrobial activity, radio protective and anti-proliferative activity. They are isolated from sources such as red beetroot, amaranth, prickly pear, red pitahaya, etc. Betalains are divided into two groups based on the colour and confer either the betacyanins (purple reddish) or betaxanthins (yellowish orange). Betalain is one of the promising nutraceuticals which can provide beneficial effects for prevention and cure of various diseases. The purpose of this review is to focus on nutraceutical facts of betalains by focusing on the ongoing treatment using betalains and to address its future nutraceuticals implications.

  17. Maize Bioactive Peptides against Cancer

    NASA Astrophysics Data System (ADS)

    Díaz-Gómez, Jorge L.; Castorena-Torres, Fabiola; Preciado-Ortiz, Ricardo E.; García-Lara, Silverio

    2017-06-01

    Cancer is one of the main chronic degenerative diseases worldwide. In recent years, consumption of whole-grain cereals and their derived food products has been associated with reduction risks of various types of cancer. Cereals main biomolecules includes proteins, peptides, and amino acids present in different quantities within the grain. The nutraceutical properties associated with peptides exerts biological functions that promote health and prevent this disease. In this review, we report the current status and advances on maize peptides regarding bioactive properties that have been reported such as antioxidant, antihypertensive, hepatoprotective, and anti-tumour activities. We also highlighted its biological potential through which maize bioactive peptides exert anti-cancer activity. Finally, we analyse and emphasize the possible areas of application for maize peptides.

  18. Role of Curcumin in Disease Prevention and Treatment.

    PubMed

    Rahmani, Arshad Husain; Alsahli, Mohammed A; Aly, Salah M; Khan, Masood A; Aldebasi, Yousef H

    2018-01-01

    Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases.

  19. Role of Curcumin in Disease Prevention and Treatment

    PubMed Central

    Rahmani, Arshad Husain; Alsahli, Mohammed A.; Aly, Salah M.; Khan, Masood A.; Aldebasi, Yousef H.

    2018-01-01

    Treatment based on traditional medicine is very popular in developing world due to inexpensive properties. Nowadays, several types of preparations based on medicinal plants at different dose have been extensively recognized in the diseases prevention and treatment. In this vista, latest findings support the effect of Curcuma longa and its chief constituents curcumin in a broad range of diseases cure via modulation of physiological and biochemical process. In addition, various studies based on animal mode and clinical trials showed that curcumin does not cause any adverse complications on liver and kidney function and it is safe at high dose. This review article aims at gathering information predominantly on pharmacological activities such as anti-diabetic, anti-microbial, hepato-protective activity, anti-inflammatory, and neurodegenerative diseases. PMID:29629341

  20. A Review on Ethnopharmacological Applications, Pharmacological Activities, and Bioactive Compounds of Mangifera indica (Mango)

    PubMed Central

    2017-01-01

    Mangifera indica (family Anacardiaceae), commonly known as mango, is a pharmacologically, ethnomedically, and phytochemically diverse plant. Various parts of M. indica tree have been used in traditional medicine for the treatment of different ailments, and a number of bioactive phytochemical constituents of M. indica have been reported, namely, polyphenols, terpenes, sterols, carotenoids, vitamins, and amino acids, and so forth. Several studies have proven the pharmacological potential of different parts of mango trees such as leaves, bark, fruit peel and flesh, roots, and flowers as anticancer, anti-inflammatory, antidiabetic, antioxidant, antibacterial, antifungal, anthelmintic, gastroprotective, hepatoprotective, immunomodulatory, antiplasmodial, and antihyperlipemic. In the present review, a comprehensive study on ethnopharmacological applications, pharmacological activities, and bioactive compounds of M. indica has been described. PMID:29456572

  1. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion's Mane) mushroom: A review.

    PubMed

    He, Xirui; Wang, Xiaoxiao; Fang, Jiacheng; Chang, Yu; Ning, Ning; Guo, Hao; Huang, Linhong; Huang, Xiaoqiang; Zhao, Zefeng

    2017-04-01

    Hericium erinaceus (Bull.) Pers., also known as Yamabushitake, Houtou and Lion's Mane, is capable of fortifying the spleen and nourishing the stomach, tranquilizing the mind, and fighting cancer. Over the past decade, it has been demonstrated that H. erinaceus polysaccharides possess various promising bioactivities, including antitumor and immunomodulation, anti-gastric ulcer, neuroprotection and neuroregeneration, anti-oxidation and hepatoprotection, anti-hyperlipidemia, anti-hyperglycemia, anti-fatigue and anti-aging. The purpose of the present review is to provide systematically reorganized information on extraction and purification, structure characteristics, biological activities, and industrial applications of H. erinaceus polysaccharides to support their therapeutic potentials and sanitarian functions. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Ganoderma: insights into anticancer effects.

    PubMed

    Kladar, Nebojša V; Gavarić, Neda S; Božin, Biljana N

    2016-09-01

    The genus Ganoderma includes about 80 species growing on cut or rotten trees. The most commonly used species is Ganoderma ludicum. Biomolecules responsible for the health benefits of Ganoderma are polysaccharides with an immunostimulative effect and triterpenes with a cytotoxic action. For more than 2000 years, it has been used traditionally in the treatment of various pathological conditions and recently, its immunoregulatory, antiviral, antibacterial, antioxidant, hepatoprotective, and anticancer potential has been confirmed. A wide range of Ganoderma extracts and preparations arrest the cell cycle in different phases and consequently inhibit the growth of various types of cancer cells. Extracts containing polysaccharides stimulate immunological reactions through the production of various cytokines and mobilization of immune system cells. In-vivo studies have confirmed the anticancer potential and the antimetastatic effects of compounds originating from Ganoderma. There is also evidence for the chemopreventive action of Ganoderma extracts in bladder, prostate, liver, and breast cancer. The results of clinical studies suggest the combined use of G. lucidum with conventional chemotherapy/radiotherapy, but the methodology and the results of these studies are being questioned. Therefore, a constant need for new clinical trials exists.

  3. Growth Arrest-Specific Protein 6 is Hepatoprotective Against Ischemia/Reperfusion Injury

    PubMed Central

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C.; de Frutos, Pablo García; Morales, Albert

    2010-01-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here, we report an early increase in serum GAS6 levels following I/R exposure. Moreover, unlike wild type mice, Gas6-/- mice were highly sensitive to partial hepatic I/R, with 90% of mice dying within 12 hours of reperfusion due to massive hepatocellular injury. I/R induced early hepatic AKT phosphorylation in wild type but not in Gas6-/- mice, without significant changes in JNK phosphorylation or nuclear NF-κB translocation, whereas hepatic IL-1β and TNF mRNA levels were higher in Gas6-/- mice compared to wild type mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes protecting them from hypoxia-induced cell death, while GAS6 diminished lipopolysaccharide (LPS)-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, in vivo recombinant GAS6 treatment not only rescued GAS6 knockout mice from I/R-induced severe liver damage, but also attenuated hepatic damage in wild type mice following I/R. In conclusion, our data uncover GAS6 as a new player in liver I/R injury, emerging as a potential therapeutic target to reduce post-ischemic hepatic damage. PMID:20730776

  4. Pharmacokinetic and pharmacodynamic herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide with etoricoxib after oral administration in rats.

    PubMed

    Balap, Aishwarya; Atre, Bhagyashri; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb

    2016-05-13

    Andrographis paniculata Nees (Acanthacae) is commonly used medicinal plant in the traditional. Unani and Ayurvedic medicinal systems. It has broad range of pharmacological effects such as hepatoprotective, antioxidant, antivenom, antifertility, inhibition of replication of the HIV virus, antimalarial, antifungal, antibacterial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug To evaluate the pharmacokinetic and pharmacodynamic (anti-arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with etoricoxib (ETO) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with ETO (10mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of Cmax, tmax, t1/2, MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of ETO with APE and pure AN decreased systemic exposure level of each compound in vivo. The Cmax, AUC, t1/2 of ETO was decreased whereas Vd and CL of ETO was increased significantly after co-administration of ETO with pure AN and APE. In pharmacodynamic study, ETO alone and ETO+APE (10+200mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups ETO+AN, APE and AN alone. The results obtained from this study suggested that ETO, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. Physicians and patients using A. paniculata should have the knowledge about its possible herb-drug interaction with ETO. Copyright © 2016. Published by Elsevier Ireland Ltd.

  5. Herb-drug interaction of Andrographis paniculata (Nees) extract and andrographolide on pharmacokinetic and pharmacodynamic of naproxen in rats.

    PubMed

    Balap, Aishwarya; Lohidasan, Sathiyanarayanan; Sinnathambi, Arulmozhi; Mahadik, Kakasaheb

    2017-01-04

    Andrographis paniculata Nees (Acanthacae) have broad range of pharmacological effects such as hepatoprotective, antifertility, antimalarial, antidiabetic, suppression of various cancer cells and anti-inflammatory properties and is widely used medicinal plant in the traditional Unani and Ayurvedic medicinal systems. Andrographolide (AN) is one of the active constituent of the A. paniculata Nees extract (APE). They have been found in many traditional herbal formulations in India and proven to be effective as anti-inflammatory drug. To evaluate the pharmacokinetic and pharmacodynamic (anti arthritic) herb-drug interactions of A. paniculata Nees extract (APE) and pure andrographolide (AN) with naproxen (NP) after oral co-administration in wistar rats. After oral co-administration of APE (200mg/Kg) and AN (60mg/kg) with NP (7.5mg/kg) in rats, drug concentrations in plasma were determined using HPLC method. The main pharmacokinetic parameters of C max , t max , t 1/2 , MRT, Vd, CL, and AUC were calculated by non-compartment model. Change in paw volume, mechanical nociceptive threshold, mechanical hyperalgesia, histopathology and hematological parameters were evaluated to study antiarthritic activity. Co-administration of NP with APE and pure AN decreased systemic exposure level of NP in vivo. The C max , t max, AUC 0-t of NP was decreased. In pharmacodynamic study, NP (10mg/kg) alone and NP+AN (10+60mg/kg) groups exhibited significant synergistic anti-arthritic activity as compared to groups NP+APE, APE and AN alone. The results obtained from this study suggested that NP, APE and pure AN existed pharmacokinetic herb-drug interactions in rat which is correlated with anti-arthritic study. The knowledge regarding possible herb-drug interaction of NP might be helpful for physicians as well as patients using AP. So further studies should be done to understand the effect of other herbal ingredients of APE on NP as well as to predict the herb-drug interaction in humans. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Investigations of the total flavonoids extracted from flowers of Abelmoschus manihot (L.) Medic against α-naphthylisothiocyanate-induced cholestatic liver injury in rats.

    PubMed

    Yan, Jia-Yin; Ai, Guo; Zhang, Xiao-Jian; Xu, Hai-Jiang; Huang, Zheng-Ming

    2015-08-22

    The decoction of the flowers of Abelmoschus manihot (L.) Medic was traditionally used for the treatment of jaundice and various types of chronic and acute hepatitis in Anhui and Jiangsu Provinces of China for hundreds of years. Phytochemical studies have indicated that total flavonoids extracted from flowers of A. manihot (L.) Medic (TFA) were the major constituents of the flowers. Our previous studies have investigated the hepatoprotective effects of the TFA against carbon tetrachloride (CCl4) induced hepatocyte damage in vitro and liver injury in vivo. This study aimed to investigate the protective effects and mechanisms of TFA on α-naphthylisothiocyanate (ANIT)-induced cholestatic liver injury in rats. The hepatoprotective activities of TFA (125, 250 and 500mg/kg) were investigated on ANIT-induced cholestatic liver injury in rats. The serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and lactate dehydrogenase (LDH) were used as indices of hepatic cell damage and measured. Meanwhile, the serum levels of alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA) were used as indices of biliary cell damage and cholestasis and evaluated. Hepatic malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), glutathione transferase (GST), tumor necrosis factor-α (TNF-α) and nitric oxide (NO) were measured in the liver homogenates. The bile flow in 4h was estimated and the histopathology of the liver tissue was evaluated. Furthermore, the expression of transporters, bile salt export pump (BSEP), multidrug resistance-associated protein 2 (MRP2), and Na(+)-taurocholate cotransporting polypeptide (NTCP) were studied by western blot and reverse transcription-quantitative real-time polymerase chain reaction (RT-PCR) to elucidate the protective mechanisms of TFA against ANIT-induced cholestasis. The oral administration of TFA to ANIT-treated rats could reduce the increases in serum levels of ALT, AST, LDH, ALP, GGT, TBIL, DBIL and TBA. Decreased bile flow by ANIT was restored with TFA treatment. Concurrent administration of TFA reduced the severity of polymorphonuclear neutrophil infiltration and other histological damages, which were consistent with the serological tests. Hepatic MDA and GSH contents in liver tissue were reduced, while SOD and GST activities, which had been suppressed by ANIT, were elevated in the groups pretreated with TFA. With TFA intervention, levels of TNF-α and NO in liver were decreased. Additionally, TFA was found to increase the expression of liver BSEP, MRP2, and NTCP in both protein and mRNA levels in ANIT-induced liver injury with cholestasis. TFA exerted protective effects against ANIT-induced liver injury. The possible mechanisms could be related to anti-oxidative damage, anti-inflammation and regulating the expression of hepatic transporters. It layed the foundation for the further research on the mechanisms of cholestasis as well as the therapeutic effects of A. manihot (L.) Medic for the treatment of jaundice. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Pretreatment Hepatoprotective Effect of the Marine Fungus Derived from Sponge on Hepatic Toxicity Induced by Heavy Metals in Rats

    PubMed Central

    Abdel-Monem, Nehad M.; Abdel-Azeem, Ahmed M.; El-Ashry, El-Sayed H.; Ghareeb, Doaa A.; Nabil-adam, Asmaa

    2013-01-01

    The aim of this study was to evaluate the pretreatment hepatoprotective effect of the extract of marine-derived fungus Trichurus spiralis Hasselbr (TS) isolated from Hippospongia communis sponge on hepatotoxicity. Twenty-eight male Sprague-Dawley rats were divided into four groups (n = 7). Group I served as −ve control, group II served as the induced group receiving subcutaneously for seven days 0.25 mg heavy metal mixtures, group III received (i.p.) TS extract of dose 40 mg for seven days, and group IV served as the protected group pretreated with TS extract for seven days as a protection dose, and then treated with the heavy metal-mixture. The main pathological changes within the liver after heavy-metal mixtures administrations marked hepatic damage evidenced by foci of lobular necrosis with neutrophilic infiltration, adjacent to dysplastic hepatocytes. ALT and AST measurements show a significant increase in group II by 46.20% and 45.12%, respectively. Total protein, elevated by about 38.9% in induction group compared to the −ve control group, in contrast to albumin, decreased as a consequence of metal administration with significant elevation on bilirubin level. The results prove that TS extract possesses a hepatoprotective property due to its proven antioxidant and free-radical scavenging properties. PMID:23484129

  8. Biological and therapeutic activities, and anticancer properties of curcumin.

    PubMed

    Perrone, Donatella; Ardito, Fatima; Giannatempo, Giovanni; Dioguardi, Mario; Troiano, Giuseppe; Lo Russo, Lucio; DE Lillo, Alfredo; Laino, Luigi; Lo Muzio, Lorenzo

    2015-11-01

    Curcumin (diferuloylmethane) is a polyphenol derived from the Curcuma longa plant. Curcumin has been used extensively in Ayurvedic medicine, as it is nontoxic and exhibits a variety of therapeutic properties, including antioxidant, analgesic, anti-inflammatory and antiseptic activities. Recently, certain studies have indicated that curcumin may exert anticancer effects in a variety of biological pathways involved in mutagenesis, apoptosis, tumorigenesis, cell cycle regulation and metastasis. The present study reviewed previous studies in the literature, which support the therapeutic activity of curcumin in cancer. In addition, the present study elucidated a number of the challenges concerning the use of curcumin as an adjuvant chemotherapeutic agent. All the studies reviewed herein suggest that curcumin is able to exert anti-inflammatory, antiplatelet, antioxidative, hepatoprotective and antitumor activities, particularly against cancers of the liver, skin, pancreas, prostate, ovary, lung and head neck, as well as having a positive effect in the treatment of arthritis.

  9. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    PubMed

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  10. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats

    PubMed Central

    Al-Dbass, Abeer M.; Al- Daihan, Sooad K.; Bhat, Ramesa Shafi

    2012-01-01

    Agaricus blazei Murill is one of the very popular edible medicinal mushrooms. The present study investigated the protective effect of this biologically active mushroom on the tissue peroxidative damage and abnormal antioxidant levels in carbon tetrachloride induced hepatotoxicity in male albino rats. Male albino rats of Sprague–Dawley strain weighting (120–150 g) were categorized into five groups. The first group served as the normal control, the second and the third groups were treated with Agaricus blazei Mushroom extract and carbon tetrachloride dose, respectively. Fourth group (protective group) was first treated with Agaricus blazei Mushroom extract followed by carbon tetrachloride treatment and fifth (therapeutic group) with carbon tetrachloride first followed by Agaricus blazei Mushroom treatment. The wet fruiting bodies of mushroom Agaricus blazei Murill, crushed and suspended in distilled water was administered orally to the treated groups of male albino rats. The activities of various enzymes (aspartate and alanine transaminase, lactate dehydrogenase, glutathione reductase), levels of non-enzymatic antioxidants (glutathione, vitamin C, vitamin E) and level of lipid peroxidation (malondialdehyde) were determined in the serum of all the experimental animals. Decrease in all the enzymes and non-enzymatic antioxidant, along with an increase in the lipid peroxidative index (malondialdehyde) was found in all the carbon tetrachloride treated rats as compared with normal controls. Also increase level of non-enzymatic antioxidant along with the decrease level in malondialdehyde was found in all experimental animals which were treated with Agaricus blazei Mushroom extract as compared with normal controls. The findings indicate that the extract of Agaricus blazei Murill can protect the liver against carbon tetrachloride induced oxidative damage in rats and is an efficient hepatoprotective and antioxidant agent against carbon tetrachloride induced liver injury. PMID:23961190

  11. Agaricus blazei Murill as an efficient hepatoprotective and antioxidant agent against CCl4-induced liver injury in rats.

    PubMed

    Al-Dbass, Abeer M; Al-Daihan, Sooad K; Bhat, Ramesa Shafi

    2012-07-01

    Agaricus blazei Murill is one of the very popular edible medicinal mushrooms. The present study investigated the protective effect of this biologically active mushroom on the tissue peroxidative damage and abnormal antioxidant levels in carbon tetrachloride induced hepatotoxicity in male albino rats. Male albino rats of Sprague-Dawley strain weighting (120-150 g) were categorized into five groups. The first group served as the normal control, the second and the third groups were treated with Agaricus blazei Mushroom extract and carbon tetrachloride dose, respectively. Fourth group (protective group) was first treated with Agaricus blazei Mushroom extract followed by carbon tetrachloride treatment and fifth (therapeutic group) with carbon tetrachloride first followed by Agaricus blazei Mushroom treatment. The wet fruiting bodies of mushroom Agaricus blazei Murill, crushed and suspended in distilled water was administered orally to the treated groups of male albino rats. The activities of various enzymes (aspartate and alanine transaminase, lactate dehydrogenase, glutathione reductase), levels of non-enzymatic antioxidants (glutathione, vitamin C, vitamin E) and level of lipid peroxidation (malondialdehyde) were determined in the serum of all the experimental animals. Decrease in all the enzymes and non-enzymatic antioxidant, along with an increase in the lipid peroxidative index (malondialdehyde) was found in all the carbon tetrachloride treated rats as compared with normal controls. Also increase level of non-enzymatic antioxidant along with the decrease level in malondialdehyde was found in all experimental animals which were treated with Agaricus blazei Mushroom extract as compared with normal controls. The findings indicate that the extract of Agaricus blazei Murill can protect the liver against carbon tetrachloride induced oxidative damage in rats and is an efficient hepatoprotective and antioxidant agent against carbon tetrachloride induced liver injury.

  12. The role of oxidative stress in the development of alcoholic liver disease.

    PubMed

    Galicia-Moreno, M; Gutiérrez-Reyes, G

    2014-01-01

    Alcohol is the most accepted addictive substance worldwide and its consumption is related to multiple health, economic, and social problems. The liver is the organ in charge of ethanol metabolism and it is susceptible to alcohol's toxic effects. To provide a detailed review of the role of oxidative stress in alcoholic liver disease and the mechanisms of damage involved, along with current information on the hepatoprotective effectiveness of the molecules that have been studied. A search of the PubMed database was conducted using the following keywords oxidative stress, alcoholic liver damage, alcoholic cirrhosis, and antioxidants. There was no time limit for gathering all available information on the subject at hand. According to the literature reviewed, oxidative stress plays an important role in the pathogenesis of alcoholic liver damage. Molecules such as reactive oxygen species (ROS) and reactive nitrogen species (RNS), formed during ethanol metabolism, structurally and functionally modify organic molecules. Consequently, biologic processes are altered and hepatocytes are sensitized to the action of cytokines like tumor necrosis factor-α, as well as to the action of endotoxins, activating signaling pathways such as those controlled by nuclear factor kappa B, extracellular signal regulated kinases, and mitogen activated protein kinase. Oxidative stress plays an important role in the development of liver damage resulting from alcohol consumption. The molecules that have currently displayed a hepatoprotective effect in preclinical and clinical trials must be studied further so that their effectiveness can be confirmed and they can possibly be used as adjuvant treatments for this disease. Copyright © 2014 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  13. Nigella sativa L. and its bioactive constituents as hepatoprotectant: a review.

    PubMed

    Tabassum, Heena; Ahmad, Asad; Ahmad, Iffat Zareen

    2018-04-26

    The pharmacological properties of Nigella sativa L. are well attributed to the presence of bioactive compounds, mainly, thymoquinone (TQ), thymol (THY) and α hederin and their antioxidant effects. TQ,THY and alpha-hederin (α-hederin) provide protection to liver from injury via different mechanisms including inhibition of iron-dependent lipid peroxidation, elevation in total thiol content and (GSH) level, radical scavenging, increasing the activity of quinone reductase, catalase, superoxide dismutase(SOD) and glutathione transferase (GST), inhibition of NF-κB activity and inhibition of both (COX) and (LOX) protects liver from injuries. The main aim of this literature review is to reflect the relevant role of ROS in inducing hepatic diseases and also the preventive role of N. sativa L. in hepatic diseases. The present article is directed towards highlighting the beneficial contribution of researchers to explore the pharmacological actions with therapeutic potential of this precious natural herb and its bioactive compounds pertaining to the hepatoprotective effects. We systematically searched for research literature through well-framed review question and presented the data in the tabular forms for the convenience of the readers. Two hundred forty-one papers were embodied in this review, oxidative effect and the reactive oxygen species (ROS) are known to be the major causes of many diseases such as hepatic cancer. Many drugs and chemicals have shown to incite oxidative damage by generation of ROS in the body. Therefore, this review intent to focus the role of ROS in liver diseases and the mechanisms through which N. sativa prevents hepatic diseases. The mechanisms by which N. sativa impede progression in chronic liver diseases should be used as a preventive medicine in patients with hepatic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A Review on Phytoconstituents and Biological activities of Cuscuta species.

    PubMed

    Ahmad, Ateeque; Tandon, Sudeep; Xuan, Tran Dang; Nooreen, Zulfa

    2017-08-01

    The genus Cuscuta belonging to the Cuscutaceae family comprises of about 100-170 species spread around the world. Although several species have been studied for their phytochemical characterization and biological activities but still many species are yet unexplored till date. Cuscuta are parasitic plants generally of yellow, orange, red or rarely green color. The Cuscuta species were reported rich in flavonoid and glycosidic constituents along with alkaloids, fatty acids, fixed oil, minerals, essential oil and others phytomolecules also etc. Flavonoids and other molecules of Cuscuta species were reported for different types of biological activities such as antiproliferative activity, antioxidant activity, anti-inflammatory, hepatoprotective, antimicrobial and anxiolytic activity, while some other flavonoids have exhibited potential antiviral and anticancer especially in ovarian and breast cancer activities. This review is an attempt to compile all the available data for the 24 different of Cuscuta species on the basis of different types of phytochemical constituents and biological studies as above. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Calotropis gigantiea (L.) R. Br (Apocynaceae): a phytochemical and pharmacological review.

    PubMed

    Kadiyala, Madhuri; Ponnusankar, S; Elango, Kannan

    2013-10-28

    Calotropis gigantiea (L.) R. Br (Apocynaceae) commonly called as "crown flower" or "giant milk weed" is a well-known weed to many cultures for treating various disorders related to central nervous system, skin diseases, digestive system, respiratory system, reproductive system etc. Indigenous groups made the plant as a part of their lives since they use the fruit fibre to make ropes, household items, for weaving clothes and flowers for garlands apart from usage for various indications. The study aims at far-reaching review on phytochemistry, pharmacological activities, ethnopharmacology, intellectual property transfer on pharmacological therapies, toxicity which aids to provide scientific evidence for the ethnobotanical claims and to identify gaps required to be conducted as a future research prerequisite. A systematic literature search was performed using different databases such as Scopus, Science direct, PubMed and Sciverse with no timeline limit set during the search. All the available abstracts and full text articles were included in the systematic review. Most of the folkloric uses were validated by the scientific studies such as analgesic, anti-arthritic, anti-asthmatic, anti-bacterial, anti-convulsant, anti-pyretic, central nervous system disorders, contraceptive, anti-ulcer and wound healing. In addition other studies such as anti-diabetic, anti-diarrhoeal, anti-helminthic, anti-histamine, anti-inflammatory, anti-microbial, anti-oxidant, cardio-protective studies, cytotoxicity, hepatoprotectivity, fibrinolytic, mosquitocidal, nerve muscle activity, vasodilation and skeletal muscle activities were also reported for the plant. Isolated compounds such as calotropin, frugoside and 4'-O-β-D-glucopyranosyl frugoside were tested for the cytotoxicity efficacy against both human and rat cell lines out of which calotropin showed potent activity (IC50-15 ng/ml). However there were no clinical trials reported on the plant which is one of the major lacunas. This review article explores the ethnopharmacological, pharmacological activities phytochemistry and intellectual rights of Cg which gives the evidence of a potent and commercial drug which up on further research leads to the most viable drug for variety of treatments. However there is further need for in-vivo studies and clinical trials on isolated phytoconstituents which will help to commercialise. © 2013 Published by Elsevier Ireland Ltd.

  16. CCl4 induced genotoxicity and DNA oxidative damages in rats: hepatoprotective effect of Sonchus arvensis.

    PubMed

    Alkreathy, Huda Mohammad; Khan, Rahmat Ali; Khan, Muhammad Rashid; Sahreen, Sumaira

    2014-11-21

    Sonchus arvesis is traditionally reported in various human ailments including hepatotoxicity in Pakistan. Presently we designed to assess the protective effects of methanolic extract of Sonchus arvesis against carbon tetrachloride induced genotoxicity and DNA oxidative damages in hepatic tissues of experimental rats. 36 male Sprague-Dawley rats were randomly divided into 6 groups to evaluate the hepatoprotective effects of Sonchus arvensis against CCl4 induced genotoxicity, DNA damages and antioxidant depletion. Rats of normal control group were given free access of food and water add labitum. Group II rats received 3 ml/kg of CCl4 (30% in olive oil v/v) via the intraperitoneal route twice a week for four weeks. Group III and IV received 1 ml of 100 mg/kg b.w. and 200 mg/kg b.w. SME via gavage after 48 h of CCl4 treatment whereas group V was given 1 ml of silymarin (100 mg/kg b.w.) after 48 h of CCl4 treatment. Group VI only received 200 mg/kg b.w. SME. Protective effects of SME were checked by measuring serum markers, activities of antioxidant enzymes, genotoxicity and DNA dmages. Results of the present study showed that treatment of SME reversed the activities of serum marker enzymes and cholesterol profile as depleted with CCl4 treatment. Activities of endogenous antioxidant enzymes of liver tissue homogenate; catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSHpx), glutathione-S-transferase (GST) and glutathione reductase (GSR) were reduced with administration of CCl4, which were returned to the control level with SME treatment. CCl4-induced hepatic cirrhosis decreased hepatic glutathione (GSH) and increased lipid peroxidative products (TBARS), were normalized by treatment with SME. Moreover, administration of CCl4 caused genotoxicity and DNA fragmentation which were significantly restored towards the normal level with SME. These results reveal that treatment of SME may be useful in the prevention of hepatic stress.

  17. Hepatoprotective Potential of Chestnut Bee Pollen on Carbon Tetrachloride-Induced Hepatic Damages in Rats

    PubMed Central

    Yıldız, Oktay; Can, Zehra; Saral, Özlem; Yuluğ, Esin; Öztürk, Ferhat; Aliyazıcıoğlu, Rezzan; Canpolat, Sinan; Kolaylı, Sevgi

    2013-01-01

    Bee pollen has been used as an apitherapy agent for several centuries to treat burns, wounds, gastrointestinal disorders, and various other diseases. The aim of our study was to investigate the hepatoprotective effects of chestnut bee pollen against carbon tetrachloride (CCI4)-induced liver damage. Total phenolic content, flavonoid, ferric reducing/antioxidant power, and DPPH radical activity measurements were used as antioxidant capacity determinants of the pollen. The study was conducted in rats as seven groups. Two different concentrations of chestnut bee pollens (200 and 400 mg/kg/day) were given orally and one group was administered with silibinin (50 mg/kg/day, i.p.) for seven days to the rats following the CCI4 treatment. The protective effect of the bee pollen was monitored by aspartate transaminase (AST) and alanine transaminase (AST) activities, histopathological imaging, and antioxidant parameters from the blood and liver samples of the rats. The results were compared with the silibinin-treated and untreated groups. We detected that CCI4 treatment induced liver damage and both the bee pollen and silibinin-treated groups reversed the damage; however, silibinin caused significant weight loss and mortality due, severe diarrhea in the rats. The chestnut pollen had showed 28.87 mg GAE/g DW of total phenolic substance, 8.07 mg QUE/g DW of total flavonoid, 92.71 mg Cyn-3-glu/kg DW of total anthocyanins, and 9 mg β-carotene/100 g DW of total carotenoid and substantial amount of antioxidant power according to FRAP and DPPH activity. The results demonstrated that the chestnut bee pollen protects the hepatocytes from the oxidative stress and promotes the healing of the liver damage induced by CCI4 toxicity. Our findings suggest that chestnut bee pollen can be used as a safe alternative to the silibinin in the treatment of liver injuries. PMID:24250716

  18. In vitro differentiated hepatic oval-like cells enhance hepatic regeneration in CCl4 -induced hepatic injury.

    PubMed

    Awan, Sana Javaid; Baig, Maria Tayyab; Yaqub, Faiza; Tayyeb, Asima; Ali, Gibran

    2017-01-01

    Hepatic oval cells are likely to be activated during advanced stage of liver fibrosis to reconstruct damaged hepatic tissue. However, their scarcity, difficulties in isolation, and in vitro expansion hampered their transplantation in fibrotic liver. This study was aimed to investigate the repair potential of in vitro differentiated hepatic oval-like cells in CCl 4 -induced liver fibrosis. BMSCs and oval cells were isolated and characterized from C57BL/6 GFP + mice. BMSCs were differentiated into oval cells by preconditioning with HGF, EGF, SCF, and LIF and analyzed for the oval cells-specific genes. Efficiency of oval cells to reduce hepatocyte injury was studied by determining cell viability, release of LDH, and biochemical tests in a co-culture system. Further, in vivo repair potential of differentiated oval cells was determined in CCl 4 -induced fibrotic model by gene expression analysis, biochemical tests, mason trichrome, and Sirius red staining. Differentiated oval cells expressed hepatic oval cells-specific markers AFP, ALB, CK8, CK18, CK19. These differentiated cells when co-cultured with injured hepatocytes showed significant hepato-protection as measured by reduction in apoptosis, LDH release, and improvement in liver functions. Transplantation of differentiated oval cells like cells in fibrotic livers exhibited enhanced homing, reduced liver fibrosis, and improved liver functions by augmenting hepatic microenvironment by improved liver functions. This preconditioning strategy to differentiate BMSCs into oval cell leads to improved survival and homing of transplanted cells. In addition, reduction in fibrosis and functional improvement in mice with CCl 4 -induced liver fibrosis was achieved. © 2016 International Federation for Cell Biology.

  19. Liver-targeting self-assembled hyaluronic acid-glycyrrhetinic acid micelles enhance hepato-protective effect of silybin after oral administration.

    PubMed

    Han, Xiaofeng; Wang, Zhe; Wang, Manyuan; Li, Jing; Xu, Yongsong; He, Rui; Guan, Hongyu; Yue, Zhujun; Gong, Muxin

    2016-06-01

    In order to enhance oral bioavailability and liver targeting delivery of silybin, two amphiphilic hyaluronic acid derivatives, hyaluronic acid-deoxycholic acid (HA-adh-DOCA) and hyaluronic acid-glycyrrhetinic acid (HA-adh-GA) conjugates, were designed and synthesized. Silybin was successfully loaded in HA-adh-DOCA and HA-adh-GA micelles with high drug-loading capacities (20.3% ± 0.5% and 20.6% ± 0.6%, respectively). The silybin-loaded micelles were spherical in shape with the average size around 130 nm. In vitro release study showed that two silybin-loaded micelles displayed similar steady continued-release pattern in simulated gastrointestinal fluids and PBS. Single-pass intestinal perfusion studies indicated that silybin-loaded micelles were absorbed in the whole intestine and transported via a passive diffusion mechanism. Compared with suspension formulation, silybin-loaded HA-adh-DOCA and HA-adh-GA micelles achieved significantly higher AUC and Cmax level. Moreover, liver targeting drug delivery of micelles was confirmed by in vivo imaging analysis. In comparison between the two micellar formulations, HA-adh-GA micelles possessed higher targeting capacity than HA-adh-DOCA micelles, owing to the active hepatic targeting properties of glycyrrhetinic acid. In the treatment of acute liver injury induced by CCl4, silybin-loaded HA-adh-GA micelles displayed better effects over suspension control and silybin-loaded HA-adh-DOCA micelles. Overall, pharmaceutical and pharmacological indicators suggested that the HA-adh-GA conjugates can be successfully utilized for liver targeting of orally administered therapeutics.

  20. Hepatoprotective effects of a self-micro emulsifying drug delivery system containing Silybum marianum native seed oil against experimentally induced liver injury.

    PubMed

    Fehér, P; Ujhelyi, Z; Vecsernyés, M; Fenyvesi, F; Damache, G; Ardelean, A; Costache, M; Dinischiotu, A; Hermenean, A; Bácskay, I

    2015-04-01

    The main purpose of this study was to certify the effect of native silymarin oil (SM-oil) formulated in a self-microemulsifying drug delivery system (SMEDDS). The optimal formulation was 25% of SM-oil, 33.3 % of Cremophor RH40, 20% of Transcutol HP, 16.6% of Labrasol and 5% of Capryol 90. In this novel formulation the SM-oil was the active substance and the lipid part. The in vivo study examined the preventive effects of SMEDDS containing SM native seeds oil against carbon tetrachloride (CC14) induced hepatotoxicity in mice. Determination of alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and also liver histology investigations have been done. The liver antioxidant status was determined with the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione (GSH) hepatic lipid peroxidation was examined and expressed in terms of malondialdehyde (MDA) content. The plasma levels of AST and ALT significantly diminished by pre-treatment with 500 mg/kg and 1000 mg/kg SMEDDS. The pre-treatment with 500 mg/kg and 1000 mg/kg SMEDDS increased GSH level by about 6% respectively 24% compared to the CC14 group. Due to preventive administration of 500 mg/kg and 1000 mg/kg of SMEDDS in the intoxicated animals, MDA levels were reduced by 22% respectively 58%. Also, an insignificant rise by almost 17% and 19% in the animals treated with the both doses of SMEDDS could be noticed. It can be concluded that hepatotoxicity may be avoided by the oral application of our formulation.

  1. Ficus carica L. (Moraceae): Phytochemistry, Traditional Uses and Biological Activities.

    PubMed

    Mawa, Shukranul; Husain, Khairana; Jantan, Ibrahim

    2013-01-01

    This paper describes the botanical features of Ficus carica L. (Moraceae), its wide variety of chemical constituents, its use in traditional medicine as remedies for many health problems, and its biological activities. The plant has been used traditionally to treat various ailments such as gastric problems, inflammation, and cancer. Phytochemical studies on the leaves and fruits of the plant have shown that they are rich in phenolics, organic acids, and volatile compounds. However, there is little information on the phytochemicals present in the stem and root. Reports on the biological activities of the plant are mainly on its crude extracts which have been proven to possess many biological activities. Some of the most interesting therapeutic effects include anticancer, hepatoprotective, hypoglycemic, hypolipidemic, and antimicrobial activities. Thus, studies related to identification of the bioactive compounds and correlating them to their biological activities are very useful for further research to explore the potential of F. carica as a source of therapeutic agents.

  2. Molecular progress in research on fruit astringency.

    PubMed

    He, Min; Tian, Henglu; Luo, Xiaowen; Qi, Xiaohua; Chen, Xuehao

    2015-01-15

    Astringency is one of the most important components of fruit oral sensory quality. Astringency mainly comes from tannins and other polyphenolic compounds and causes the drying, roughening and puckering of the mouth epithelia attributed to the interaction between tannins and salivary proteins. There is growing interest in the study of fruit astringency because of the healthy properties of astringent substances found in fruit, including antibacterial, antiviral, anti-inflammatory, antioxidant, anticarcinogenic, antiallergenic, hepatoprotective, vasodilating and antithrombotic activities. This review will focus mainly on the relationship between tannin structure and the astringency sensation as well as the biosynthetic pathways of astringent substances in fruit and their regulatory mechanisms.

  3. Mesenchymal stem cells display hepato-protective activity in lymphoma bearing xenografts.

    PubMed

    Secchiero, Paola; Corallini, Federica; Zavan, Barbara; Tripodo, Claudio; Vindigni, Vincenzo; Zauli, Giorgio

    2012-04-01

    A disseminated model of non-Hodgkin's lymphoma with prevalent liver metastasis was generated by intraperitoneal (i.p.) injection of EBV(+) B lymphoblastoid SKW6.4 in nude-SCID mice. The survival of SKW6.4 xenografts (median survival = 27 days) was significantly improved when hyaluronan scaffolds embedded with mesenchimal stem cells (MSC) were implanted in the abdominal area 4 days after SKW6.4 injection (median survival = 39.5 days). Mice implanted with MSC showed a significant improvement of hepatic functionality in lymphoma xenografts, as demonstrated by measurement of serum ALT/AST levels. Co-culture of MSC with lymphoma cells enhanced the release of hepatocyte growth factor (HGF) by MSC. These data suggest that hyaluronan-embedded MSC exert anti-lymphoma activity by ameliorating hepatic functionality.

  4. Hepatoprotective effects of kaempferol 3-O-rutinoside and kaempferol 3-O-glucoside from Carthamus tinctorius L. on CCl4-induced oxidative liver injury in mice.

    PubMed

    Wang, Yu; Tang, Changyun; Zhang, Hao

    2015-06-01

    Safflower (Carthamus tinctorius L.) is a traditional medicinal and edible herb with a long history of use in China. In this study, a model of hepatotoxicity induced by carbon tetrachloride (CCl 4 ) in mice was used to investigate the hepatoprotective effects of kaempferol 3-O-rutinoside (K-3-R) and kaempferol 3-O-glucoside (K-3-G), two kaempferol glycosides isolated from C. tinctorius L. K-3-R and K-3-G, at doses of 200 mg/kg and 400 mg/kg, were given orally to male mice once/d for 7 days before they received CCl 4 intraperitoneally. Our results showed that K-3-R and K-3-G treatment increased the level of total protein (TP) and prevented the CCl 4 -induced increases in serum aspartate aminotransferase (AST), serum alkaline phosphatase (ALP), and hepatic malondialdehyde (MDA) levels. Additionally, mice treated with K-3-R and K-3-G had significantly restored glutathione (GSH) levels and showed normal catalase (CAT) and superoxide dismutase (SOD) activities, compared to CCl 4 -treated mice. K-3-R and K-3-G also mitigated the CCl 4 -induced liver histological alteration, as indicated by histopathological evaluation. These findings demonstrate that K-3-R and K-3-G have protective effects against acute CCl 4 -induced oxidative liver damage. Copyright © 2014. Published by Elsevier B.V.

  5. Hepatoprotective, antioxidant, and ameliorative effects of ginger (Zingiber officinale Roscoe) and vitamin E in acetaminophen treated rats.

    PubMed

    Abdel-Azeem, Amal S; Hegazy, Amany M; Ibrahim, Khadiga S; Farrag, Abdel-Razik H; El-Sayed, Eman M

    2013-09-01

    Ginger is a remedy known to possess a number of pharmacological properties. This study investigated efficacy of ginger pretreatment in alleviating acetaminophen-induced acute hepatotoxicity in rats. Rats were divided into six groups; negative control, acetaminophen (APAP) (600 mg/kg single intraperitoneal injection); vitamin E (75 mg/kg), ginger (100 mg/kg), vitamin E + APAP, and ginger + APAP. Administration of APAP elicited significant liver injury that was manifested by remarkable increase in plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), arginase activities, and total bilirubin concentration. Meanwhile, APAP significantly decreased plasma total proteins and albumin levels. APAP administration resulted in substantial increase in each of plasma triacylglycerols (TAGs), malondialdhyde (MDA) levels, and total antioxidant capacity (TAC). However, ginger or vitamin E treatment prior to APAP showed significant hepatoprotective effect by lowering the hepatic marker enzymes (AST, ALT, ALP, and arginase) and total bilirubin in plasma. In addition, they remarkably ameliorated the APAP-induced oxidative stress by inhibiting lipid peroxidation (MDA). Pretreatment by ginger or vitamin E significantly restored TAGs, and total protein levels. Histopathological examination of APAP treated rats showed alterations in normal hepatic histoarchitecture, with necrosis and vacuolization of cells. These alterations were substantially decreased by ginger or vitamin E. Our results demonstrated that ginger can prevent hepatic injuries, alleviating oxidative stress in a manner comparable to that of vitamin E. Combination therapy of ginger and APAP is recommended especially in cases with hepatic disorders or when high doses of APAP are required.

  6. Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor-β1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats

    PubMed Central

    Al-Rasheed, Nouf M.; Attia, Hala A.; Mohamad, Raeesa A.; Al-Rasheed, Nawal M.; Al-Amin, Maha A.; AL-Onazi, Asma

    2015-01-01

    Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects. PMID:25945106

  7. Hepatoprotective effect of Taraxacum officinale leaf extract on sodium dichromate-induced liver injury in rats.

    PubMed

    Hfaiedh, Mbarka; Brahmi, Dalel; Zourgui, Lazhar

    2016-03-01

    Taraxacum officinale (L.) Weber, commonly known as Dandelion, has been widely used as a folkloric medicine for the treatment of liver and kidney disorders and some women diseases such as breast and uterus cancers. The main objective of the present study was to assess the efficiency of T. officinale leaf extract (TOE) in treating sodium dichromate hazards; it is a major environmental pollutant known for its wide toxic manifestations witch induced liver injury. TOE at a dose of 500 mg/kg b.w was orally administered once per day for 30 days consecutively, followed by 10 mg/kg b.w sodium dichromate was injected (intraperitoneal) for 10 days. Our results using Wistar rats showed that sodium dichromate significantly increased serum biochemical parameters. In the liver, it was found to induce an oxidative stress, evidenced from increase in lipid peroxidation and changes in antioxidative activities. In addition, histopathological observation revealed that sodium dichromate causes acute liver damage, necrosis of hepatocytes, as well as DNA fragmentation. Interestingly, animals that were pretreated with TOE, prior to sodium dichromate administration, showed a significant hepatoprotection, revealed by a significant reduction of sodium dichromate-induced oxidative damage for all tested markers. These finding powerfully supports that TOE was effective in the protection against sodium dichromate-induced hepatotoxicity and genotoxicity and, therefore, suggest a potential therapeutic use of this plant as an alternative medicine for patients with acute liver diseases. © 2014 Wiley Periodicals, Inc.

  8. An overview on hepatoprotective effects of thymoquinone.

    PubMed

    Noorbakhsh, Mohammad-Foad; Hayati, Farzad; Samarghandian, Saeed; Shaterzadeh-Yazdi, Hanieh; Farkhondeh, Tahereh

    2018-02-20

    Liver as an essential organ has an important function in metabolism and waste secretion from the body. Disorders of this organ may caused by several reasons such as high alcoholic consumption, various chemical or microbial agents and various hepatic cancers. Reactive and oxidative stress and oxygen species (ROS) are introduced the main mechanisms of these hepatic injuries. The seeds of Nigella sativa (Family Ranunculaceae) which is known as black seed, is widely used as a medicinal herb for cure or prevention of many of diseases such as liver problems. Thymoquinone (TQ) as a bioactive phytochemical constituent of Nigella sativa has hepatoprotective effects against of injures through different mechanisms including radical scavenging. This review describes protective role and related mechanism of TQ against liver injuries. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. In vitro antioxidant and hepatoprotective potential of Azolla microphylla phytochemically synthesized gold nanoparticles on acetaminophen - induced hepatocyte damage in Cyprinus carpio L.

    PubMed

    Kunjiappan, Selvaraj; Bhattacharjee, Chiranjib; Chowdhury, Ranjana

    2015-06-01

    The present study aims to evaluate the hepatoprotective and antioxidant effects of gold nanoparticles (GNaP) biosynthesized through the mediation of Azolla microphylla and A. microphylla extract on acetaminophen-induced hepatocyte damage in common carp fish (Cyprinus carpio L.). The gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla extract powder (100, 200, 400 μg/ml) were added to the primary hepatocytes in different conditions: treatment I (before 12 mM acetaminophen), treatment II (after 12 mM acetaminophen), and treatment III (both before and after 12 mM acetaminophen), and incubated. Among these, control group treated with 12 mM acetaminophen produced significantly elevated levels (50-80%) of lactate dehydrogenase (LDH), catalase (CAT), glutamate oxalate transaminase (GOT), glutamate pyruvate transaminase (GPT), and malondialdehyde (MDA), and significantly decreased the levels (60-75%) of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Treatment with methanol extract of A. microphylla phytochemically biosynthesized gold nanoparticles (100, 150, 200 μg/ml) and A. microphylla methanol extract powder (100, 200, 400 μg/ml) significantly improved the viability of cells in a culture medium. It also significantly reduced the levels of LDH, CAT, GOT, GPT, and MDA, and significantly increased the levels of SOD and GSH-Px. In conclusion, gold nanoparticles biosynthesized through A. microphylla demonstrated effective hepatoprotective and antioxidant effects than methanol extract of A. microphylla.

  10. A review on plant Cordia obliqua Willd. (Clammy cherry)

    PubMed Central

    Gupta, Richa; Gupta, Ghanshyam Das

    2015-01-01

    Cordia obliqua Willd. plant (Common name-Clammy Cherry) belongs to family Boraginaceae. It is a medium-sized deciduous tree and very vigorous in growth. According to traditional system, it possesses anthelmintic, purgative, diuretic, expectorant, antipyretic, hepatoprotective and analgesic action. The fruits are edible and used as pickle. The gum obtained from mucilage is used for pasting sheets of paper and as matrix forming material in tablet formulations. Phytochemical investigations show the presence of alkaloids, flavonoids, phenolics, tannins and reducing sugar. Evaluation of pharmacological activities confirmed C. obliqua plant as antimicrobial, hypotensive, respiratory stimulant, diuretic and anti-inflammatory drug. A number of traditional activities of this plant still need scientific approval which will increase its medicinal potential. This review presents the Pharmacognostic properties, phytochemical constituents, traditional uses and biological activities reported for the plant and it will be helpful to explore the knowledge about Cordia obliqua Willd. for the researchers. PMID:26392710

  11. A review on plant Cordia obliqua Willd. (Clammy cherry).

    PubMed

    Gupta, Richa; Gupta, Ghanshyam Das

    2015-01-01

    Cordia obliqua Willd. plant (Common name-Clammy Cherry) belongs to family Boraginaceae. It is a medium-sized deciduous tree and very vigorous in growth. According to traditional system, it possesses anthelmintic, purgative, diuretic, expectorant, antipyretic, hepatoprotective and analgesic action. The fruits are edible and used as pickle. The gum obtained from mucilage is used for pasting sheets of paper and as matrix forming material in tablet formulations. Phytochemical investigations show the presence of alkaloids, flavonoids, phenolics, tannins and reducing sugar. Evaluation of pharmacological activities confirmed C. obliqua plant as antimicrobial, hypotensive, respiratory stimulant, diuretic and anti-inflammatory drug. A number of traditional activities of this plant still need scientific approval which will increase its medicinal potential. This review presents the Pharmacognostic properties, phytochemical constituents, traditional uses and biological activities reported for the plant and it will be helpful to explore the knowledge about Cordia obliqua Willd. for the researchers.

  12. Isolation, synthesis and anti-hepatitis B virus evaluation of p-hydroxyacetophenone derivatives from Artemisia capillaris.

    PubMed

    Zhao, Yong; Geng, Chang-An; Chen, Hao; Ma, Yun-Bao; Huang, Xiao-Yan; Cao, Tuan-Wu; He, Kang; Wang, Hao; Zhang, Xue-Mei; Chen, Ji-Jun

    2015-04-01

    p-Hydroxyacetophenone (p-HAP), as a main hepatoprotective and choleretic constituent of Artemisia capillaris, was revealed with anti-hepatitis B virus (HBV) effects in recent investigation. In addition to p-HAP, four derivatives of p-HAP were also isolated from A. capillaris by various chromatographic methods. Subsequent structural modification on p-HAP and its glycoside led to the synthesis of 28 additional derivatives, of which 13 compounds showed activity inhibiting hepatitis B surface antigen (HBsAg) secretion; and 18 compounds possessed inhibition on HBV DNA replication. The primary structure-activity relationships (SARs) suggested that the conjugated derivatives of p-HAP glycoside and substituted cinnamic acids (2a-2i) obviously enhanced the activity against HBV DNA replication with IC50 values ranged from 5.8 to 74.4 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities.

    PubMed

    Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Nikzad, Sonia; Mohan, Gokula; Ali, Hapipah Mohd; Kadir, Habsah Abdul

    2015-07-10

    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities.

  14. Annona muricata (Annonaceae): A Review of Its Traditional Uses, Isolated Acetogenins and Biological Activities

    PubMed Central

    Moghadamtousi, Soheil Zorofchian; Fadaeinasab, Mehran; Nikzad, Sonia; Mohan, Gokula; Ali, Hapipah Mohd; Kadir, Habsah Abdul

    2015-01-01

    Annona muricata is a member of the Annonaceae family and is a fruit tree with a long history of traditional use. A. muricata, also known as soursop, graviola and guanabana, is an evergreen plant that is mostly distributed in tropical and subtropical regions of the world. The fruits of A. muricata are extensively used to prepare syrups, candies, beverages, ice creams and shakes. A wide array of ethnomedicinal activities is contributed to different parts of A. muricata, and indigenous communities in Africa and South America extensively use this plant in their folk medicine. Numerous investigations have substantiated these activities, including anticancer, anticonvulsant, anti-arthritic, antiparasitic, antimalarial, hepatoprotective and antidiabetic activities. Phytochemical studies reveal that annonaceous acetogenins are the major constituents of A. muricata. More than 100 annonaceous acetogenins have been isolated from leaves, barks, seeds, roots and fruits of A. muricata. In view of the immense studies on A. muricata, this review strives to unite available information regarding its phytochemistry, traditional uses and biological activities. PMID:26184167

  15. Investigation on flavonoid composition and anti free radical potential of Sida cordata.

    PubMed

    Shah, Naseer Ali; Khan, Muhammad Rashid; Ahmad, Bushra; Noureen, Farah; Rashid, Umbreen; Khan, Rahmat Ali

    2013-10-22

    Sida cordata, a member of Family Malvaceae is used in folk medicine for various ailments including liver diseases. In this study we investigated, its flavonoid constituents, in vitro antioxidant potential against different free radicals and hepatoprotection against carbon tetrachloride (CCl4)-induced liver damage in rat. Dried powder of S. cordata whole plant was extracted with methanol and the resultant (SCME) obtained was fractionated with escalating polarity to obtain n-hexane fraction (SCHE), ethyl acetate fraction (SCEE), n-butanol fraction (SCBE) and the remaining soluble portion as aqueous fraction (SCAE). Diverse in vitro antioxidants assays such as DPPH, H2O2, •OH, ABTS, β-carotene bleaching assay, superoxide radical, lipid peroxidation, reducing power, and total antioxidant capacity were studied to assess scavenging potential of methanol extract and its derived fractions. On account of marked scavenging activity SCEE was selected to investigate the hepatoprotective potential against CCl4 induced toxicity in Sprague-Dawley male rats by assessing the level of serum markers (alkaline phosphatase, alanine transaminase, aspartate transaminase, lactate dehydrogenase, bilirubin, and γ-glutamyltransferase) and of liver antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), peroxidase (POD), glutathione-S-transfers (GST), glutathione reductase (GSR), glutathione peroxidase (GSH-Px), and reduced glutathione (GSH) and lipid peroxidation (TBARS). Histology of the liver was performed to study alteration in histoarchitecture. Existence of active flavonoids was established by thin layer chromatographic studies. Considerable amount of flavonoid and phenolic contents were recorded in the methanol extract and its derived fractions. Although the extract and all its derived fractions exhibited good antioxidant activities however, the most distinguished scavenging potential was observed for SCEE. Treatment of SCEE decreased the elevated level of serum marker enzymes induced with CCl4 administration whereas increased the activity of hepatic antioxidant enzymes (CAT, SOD, POD, GST, GSR and GSH-Px). Hepatic concentration of GSH was increased while lipid peroxidation was decreased with SCEE administration in CCl4 intoxicated rats. Presence of apigenin with some unknown compounds was observed in SCEE by using thin layer chromatography. These results revealed the presence of some bioactive compound in the ethyl acetate fraction, confirming the utility of S. cordata against liver diseases in folk medicine.

  16. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury.

    PubMed

    Llacuna, Laura; Bárcena, Cristina; Bellido-Martín, Lola; Fernández, Laura; Stefanovic, Milica; Marí, Montserrat; García-Ruiz, Carmen; Fernández-Checa, José C; García de Frutos, Pablo; Morales, Albert

    2010-10-01

    Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here we report an early increase in serum GAS6 levels after I/R exposure. Moreover, unlike wild-type (WT) mice, Gas6(-/-) mice were highly sensitive to partial hepatic I/R, with 90% of the mice dying within 12 hours of reperfusion because of massive hepatocellular injury. I/R induced early hepatic protein kinase B (AKT) phosphorylation in WT mice but not in Gas6(-/-) mice without significant changes in c-Jun N-terminal kinase phosphorylation or nuclear factor kappa B translocation, whereas hepatic interleukin-1β (IL-1β) and tumor necrosis factor (TNF) messenger RNA levels were higher in Gas6(-/-) mice versus WT mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes and thus protected them from hypoxia-induced cell death, whereas GAS6 diminished lipopolysaccharide-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, recombinant GAS6 treatment in vivo not only rescued GAS6 knockout mice from severe I/R-induced liver damage but also attenuated hepatic damage in WT mice after I/R. Our data have revealed GAS6 to be a new player in liver I/R injury that is emerging as a potential therapeutic target for reducing postischemic hepatic damage.

  17. Association of antioxidant nutraceuticals and acetaminophen (paracetamol): Friend or foe?

    PubMed

    Abdel-Daim, Mohamed; Abushouk, Abdelrahman Ibrahim; Reggi, Raffaella; Yarla, Nagendra Sastry; Palmery, Maura; Peluso, Ilaria

    2018-04-01

    Acetaminophen (paracetamol or APAP) is an analgesic and antipyretic drug that can induce oxidative stress-mediated hepatotoxicity at high doses. Several studies reported that antioxidant nutraceuticals, in particular phenolic phytochemicals from dietary food, spices, herbs and algae have hepatoprotective effects. Others, however, suggested that they may negatively impact the metabolism, efficacy and toxicity of APAP. The aim of this review is to discuss the pros and cons of the association of antioxidant nutraceuticals and APAP by reviewing the in vivo evidence, with particular reference to APAP pharmacokinetics and hepatotoxicity. Results from the murine models of APAP-induced hepatotoxicity showed amelioration of liver damage with nutraceuticals coadministration, as well as reductions in tissue markers of oxidative stress, and serum levels of hepatic enzymes, bilirubin, cholesterol, triglycerides and inflammatory cytokines. On the other hand, both increased and decreased APAP plasma levels have been reported, depending on the nutraceutical type and route of administration. For example, studies showed that repeated administration of flavonoids causes down-regulation of cytochrome P450 enzymes and up-regulation of uridine diphosphate glucuronosyltransferases (UGT). Moreover, nutraceuticals can alter the levels of APAP metabolites, such as mercapturate glucuronide, sulfate and cysteine conjugates. Overall, the reviewed in vivo studies indicate that interactions between APAP and nutraceuticals or plant foods exist. However, the majority of data come from animal models with doses of phytochemicals far from dietary ones. Human studies should investigate gene-diet interactions, as well as ethnic variability in order to clarify the pros and cons of co-administering antioxidant nutraceuticals and APAP. Copyright © 2017. Published by Elsevier B.V.

  18. Cycloartanes from Oxyanthus pallidus and derivatives with analgesic activities.

    PubMed

    Piegang, Basile Nganmegne; Tigoufack, Ignas Bertrand Nzedong; Ngnokam, David; Achounna, Angèle Sorel; Watcho, Pierre; Greffrath, Wolfgang; Treede, Rolf-Detlef; Nguelefack, Télesphore Benoît

    2016-03-09

    The leaves of Oxyanthus pallidus Hiern (Rubiaceae) are extensively used in the west region of Cameroon as analgesic. These leaves are rich in cycloartanes, a subclass of triterpenes known to possess analgesic and anti-inflammatory properties. The present study aimed at evaluating the analgesic properties of three cycloartanes isolated from Oxyanthus pallidus leaves as well as their aglycones and acetylated derivatives. Three cycloartanes OP3, OP5 and OP6 obtained by successive chromatography of the crude methanol extract of the leaves were hydrolysed to yield respective aglycone AOP1, AOP2, AOP3 and acetylated to HOP1, HOP2 and HOP3 respectively. Formalin-induced pain model was used to evaluate the acute anti-nociceptive properties of these cycloartanes (5 mg/kg, p.o) in mice and to determine the structure-activity relationship. Acute (24 h) and chronic (10 days) anti-hyperalgesic and anti-inflammatory activities of OP5 were evaluated at the doses of 2.5 and 5 mg/kg/day administered orally. OP6 was also evaluated in acute experiments. The antioxidant and hepato-protective activities of OP5 were evaluated at the end of the chronic treatment. The mixture and the individual isolated cycloartanes significantly inhibited both phases of formalin-induced pain with percentage inhibition ranging from 13 to 78%. Acid hydrolysis did not significantly affect their antinociceptive activities while acetylation significantly reduced the effects of these compounds during the second phase of pain. OP5 and OP6 induced acute anti-hyperalgesic activity in formalin-induced mechanical hyperalgesia but not an anti-inflammatory effect. Repeated administration of OP5 for 10 days did not induce any anti-hyperalgesic effect. The evaluation of in vivo antioxidant properties showed that OP5 significantly reduced malondialdehyde and increased superoxide dismutase levels in liver without significantly affecting other oxidative stress and hepatotoxic parameters. Chronic administration of OP5 did not cause gastric ulceration. Cycloartanes isolated from Oxyanthus pallidus possess analgesic effects but lack anti-inflammatory activities. This analgesic effect especially on inflammatory pain may be due to the presence of hydroxyl group in front of the plane. OP5 is devoid of ulcerogenic effect and possess antioxidant properties that might be of benefit to its analgesic properties.

  19. A Review of Hepatoprotective Plants Used in Saudi Traditional Medicine

    PubMed Central

    Al-Asmari, Abdulrahman K.; Al-Elaiwi, Abdulrahman M.; Athar, Md Tanwir; Tariq, Mohammad; Al Eid, Ahmed; Al-Asmary, Saeed M.

    2014-01-01

    Liver disease is one of the major causes of morbidity and mortality across the world. According to WHO estimates, about 500 million people are living with chronic hepatitis infections resulting in the death of over one million people annually. Medicinal plants serve as a vital source of potentially useful new compounds for the development of effective therapy to combat liver problems. Moreover herbal products have the advantage of better affordability and acceptability, better compatibility with the human body, and minimal side effects and is easier to store. In this review attempt has been made to summarize the scientific data published on hepatoprotective plants used in Saudi Arabian traditional medicine. The information includes medicinal uses of the plants, distribution in Saudi Arabia, ethnopharmacological profile, possible mechanism of action, chemical constituents, and toxicity data. Comprehensive scientific studies on safety and efficacy of these plants can revitalise the treatment of liver diseases. PMID:25587347

  20. Quality assessment of Penthorum chinense Pursh through multicomponent qualification and fingerprint, chemometric, and antihepatocarcinoma analyses.

    PubMed

    Sun, Zong-Liang; Zhang, Yu-Zhen; Zhang, Feng; Zhang, Jia-Wei; Zheng, Guo-Can; Tan, Ling; Wang, Chong-Zhi; Zhou, Lian-Di; Zhang, Qi-Hui; Yuan, Chun-Su

    2018-06-22

    An efficient method combined with fingerprint and chemometric analyses was developed to evaluate the quality of the traditional Chinese medicine plant Penthorum chinense Pursh. Nine samples were collected from different regions during different harvest periods, and 17 components in the form of extracts were simultaneously examined to assess quality by using high-performance liquid chromatography. The hepatoprotective effects of components were investigated by assessing the inhibition of SMMC-7721 cell growth. The results indicated that the quality control method was accurate, stable, and reliable, and the hierarchical heat-map cluster and the principle component analyses confirmed that the classification of all nine samples was consistent. Quercetin and ellagitannins including pinocembrin-7-O-[3''-O-galloyl-4'',6''-hexahydroxydiphenoyl]-β-glucose (PGHG), thonningianin A, thonningianin B, and other flavonoids were abundant in the extracts, and significantly contributed to the hepatoprotective effects.

Top