Sample records for vivo mitochondrial function

  1. Lower Intrinsic ADP-Stimulated Mitochondrial Respiration Underlies In Vivo Mitochondrial Dysfunction in Muscle of Male Type 2 Diabetic Patients

    PubMed Central

    Phielix, Esther; Schrauwen-Hinderling, Vera B.; Mensink, Marco; Lenaers, Ellen; Meex, Ruth; Hoeks, Joris; Kooi, Marianne Eline; Moonen-Kornips, Esther; Sels, Jean-Pierre; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2008-01-01

    OBJECTIVE—A lower in vivo mitochondrial function has been reported in both type 2 diabetic patients and first-degree relatives of type 2 diabetic patients. The nature of this reduction is unknown. Here, we tested the hypothesis that a lower intrinsic mitochondrial respiratory capacity may underlie lower in vivo mitochondrial function observed in diabetic patients. RESEARCH DESIGN AND METHODS—Ten overweight diabetic patients, 12 first-degree relatives, and 16 control subjects, all men, matched for age and BMI, participated in this study. Insulin sensitivity was measured with a hyperinsulinemic-euglycemic clamp. Ex vivo intrinsic mitochondrial respiratory capacity was determined in permeabilized skinned muscle fibers using high-resolution respirometry and normalized for mitochondrial content. In vivo mitochondrial function was determined by measuring phosphocreatine recovery half-time after exercise using 31P-magnetic resonance spectroscopy. RESULTS—Insulin-stimulated glucose disposal was lower in diabetic patients compared with control subjects (11.2 ± 2.8 vs. 28.9 ± 3.7 μmol · kg−1 fat-free mass · min−1, respectively; P = 0.003), with intermediate values for first-degree relatives (22.1 ± 3.4 μmol · kg−1 fat-free mass · min−1). In vivo mitochondrial function was 25% lower in diabetic patients (P = 0.034) and 23% lower in first-degree relatives, but the latter did not reach statistical significance (P = 0.08). Interestingly, ADP-stimulated basal respiration was 35% lower in diabetic patients (P = 0.031), and fluoro-carbonyl cyanide phenylhydrazone–driven maximal mitochondrial respiratory capacity was 31% lower in diabetic patients (P = 0.05) compared with control subjects with intermediate values for first-degree relatives. CONCLUSIONS—A reduced basal ADP-stimulated and maximal mitochondrial respiratory capacity underlies the reduction in in vivo mitochondrial function, independent of mitochondrial content. A reduced capacity at both the level of the electron transport chain and phosphorylation system underlies this impaired mitochondrial capacity. PMID:18678616

  2. Reduced Coupling of Oxidative Phosphorylation In Vivo Precedes Electron Transport Chain Defects Due to Mild Oxidative Stress in Mice

    PubMed Central

    Siegel, Michael P.; Kruse, Shane E.; Knowels, Gary; Salmon, Adam; Beyer, Richard; Xie, Hui; Van Remmen, Holly; Smith, Steven R.; Marcinek, David J.

    2011-01-01

    Oxidative stress and mitochondrial function are at the core of many degenerative conditions. However, the interaction between oxidative stress and in vivo mitochondrial function is unclear. We used both pharmacological (2 week paraquat (PQ) treatment of wild type mice) and transgenic (mice lacking Cu, Zn-superoxide dismutase (SOD1−/−)) models to test the effect of oxidative stress on in vivo mitochondrial function in skeletal muscle. Magnetic resonance and optical spectroscopy were used to measure mitochondrial ATP and oxygen fluxes and cell energetic state. In both models of oxidative stress, coupling of oxidative phosphorylation was significantly lower (lower P/O) at rest in vivo in skeletal muscle and was dose-dependent in the PQ model. Despite this reduction in efficiency, in vivo mitochondrial phosphorylation capacity (ATPmax) was maintained in both models, and ex vivo mitochondrial respiration in permeabilized muscle fibers was unchanged following PQ treatment. In association with the reduced P/O, PQ treatment led to a dose-dependent reduction in PCr/ATP ratio and increased phosphorylation of AMPK. These results indicate that oxidative stress uncouples oxidative phosphorylation in vivo and results in energetic stress in the absence of defects in the mitochondrial electron transport chain. PMID:22132085

  3. Cutaneous respirometry by dynamic measurement of mitochondrial oxygen tension for monitoring mitochondrial function in vivo.

    PubMed

    Harms, Floor A; Voorbeijtel, Wilhelmina J; Bodmer, Sander I A; Raat, Nicolaas J H; Mik, Egbert G

    2013-09-01

    Progress in diagnosis and treatment of mitochondrial dysfunction in chronic and acute disease could greatly benefit from techniques for monitoring of mitochondrial function in vivo. In this study we demonstrate the feasibility of in vivo respirometry in skin. Mitochondrial oxygen measurements by means of oxygen-dependent delayed fluorescence of protoporphyrin IX are shown to provide a robust basis for measurement of local oxygen disappearance rate (ODR). The fundamental principles behind the technology are described, together with an analysis method for retrievel of respirometry data. The feasibility and reproducibility of this clinically useful approach are demonstrated in a series of rats. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction.

    PubMed

    Luz, Anthony L; Lagido, Cristina; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  5. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J

    2017-05-01

    Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.

  6. Impaired Adaptability of in Vivo Mitochondrial Energetics to Acute Oxidative Insult in Aged Skeletal Muscle

    PubMed Central

    Siegel, Michael P.; Wilbur, Tim; Mathis, Mark; Shankland, Eric; Trieu, Atlas; Harper, Mary-Ellen; Marcinek, David J.

    2012-01-01

    Periods of elevated reactive oxygen species (ROS) production are a normal part of mitochondrial physiology. However, little is known about age-related changes in the mitochondrial response to elevated ROS in vivo. Significantly, ROS-induced uncoupling of oxidative phosphorylation has received attention as a negative feedback mechanism to reduce mitochondrial superoxide production. Here we use a novel in vivo spectroscopy system to test the hypothesis that ROS-induced uncoupling is diminished in aged mitochondria. This system simultaneously acquires 31P magnetic resonance and near-infrared optical spectra to non-invasively measure phosphometabolite and O2 concentrations in mouse skeletal muscle. Using low dose paraquat to elevate intracellular ROS we assess in vivo mitochondrial function in young, middle aged, and old mice. Oxidative phosphorylation was uncoupled to the same degree in response to ROS at each age, but this uncoupling was associated with loss of phosphorylation capacity and total ATP in old mice only. Using mice lacking UCP3 we demonstrate that this in vivo uncoupling is independent of this putative uncoupler of skeletal muscle mitochondria. These data indicate that ROS-induced uncoupling persists throughout life, but that oxidative stress leads to mitochondrial deficits and loss of ATP in aged organisms that may contribute to impaired function and degeneration. PMID:22935551

  7. In Vivo Imaging of Flavoprotein Fluorescence During Hypoxia Reveals the Importance of Direct Arterial Oxygen Supply to Cerebral Cortex Tissue.

    PubMed

    Chisholm, K I; Ida, K K; Davies, A L; Papkovsky, D B; Singer, M; Dyson, A; Tachtsidis, I; Duchen, M R; Smith, K J

    2016-01-01

    Live imaging of mitochondrial function is crucial to understand the important role played by these organelles in a wide range of diseases. The mitochondrial redox potential is a particularly informative measure of mitochondrial function, and can be monitored using the endogenous green fluorescence of oxidized mitochondrial flavoproteins. Here, we have observed flavoprotein fluorescence in the exposed murine cerebral cortex in vivo using confocal imaging; the mitochondrial origin of the signal was confirmed using agents known to manipulate mitochondrial redox potential. The effects of cerebral oxygenation on flavoprotein fluorescence were determined by manipulating the inspired oxygen concentration. We report that flavoprotein fluorescence is sensitive to reductions in cortical oxygenation, such that reductions in inspired oxygen resulted in loss of flavoprotein fluorescence with the exception of a preserved 'halo' of signal in periarterial regions. The findings are consistent with reports that arteries play an important role in supplying oxygen directly to tissue in the cerebral cortex, maintaining mitochondrial function.

  8. Redox regulation of mitochondrial proteins and proteomes by cysteine thiol switches.

    PubMed

    Nietzel, Thomas; Mostertz, Jörg; Hochgräfe, Falko; Schwarzländer, Markus

    2017-03-01

    Mitochondria are hotspots of cellular redox biochemistry. Respiration as a defining mitochondrial function is made up of a series of electron transfers that are ultimately coupled to maintaining the proton motive force, ATP production and cellular energy supply. The individual reaction steps involved require tight control and flexible regulation to maintain energy and redox balance in the cell under fluctuating demands. Redox regulation by thiol switching has been a long-standing candidate mechanism to support rapid adjustment of mitochondrial protein function at the posttranslational level. Here we review recent advances in our understanding of cysteine thiol switches in the mitochondrial proteome with a focus on their operation in vivo. We assess the conceptual basis for thiol switching in mitochondria and discuss to what extent insights gained from in vitro studies may be valid in vivo, considering thermodynamic, kinetic and structural constraints. We compare functional proteomic approaches that have been used to assess mitochondrial protein thiol switches, including thioredoxin trapping, redox difference gel electrophoresis (redoxDIGE), isotope-coded affinity tag (OxICAT) and iodoacetyl tandem mass tag (iodoTMT) labelling strategies. We discuss conditions that may favour active thiol switching in mitochondrial proteomes in vivo, and appraise recent advances in dissecting their impact using combinations of in vivo redox sensing and quantitative redox proteomics. Finally we focus on four central facets of mitochondrial biology, aging, carbon metabolism, energy coupling and electron transport, exemplifying the current emergence of a mechanistic understanding of mitochondrial regulation by thiol switching in living plants and animals. Copyright © 2016 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  9. Impaired in vivo mitochondrial Krebs cycle activity after myocardial infarction assessed using hyperpolarized magnetic resonance spectroscopy.

    PubMed

    Dodd, Michael S; Atherton, Helen J; Carr, Carolyn A; Stuckey, Daniel J; West, James A; Griffin, Julian L; Radda, George K; Clarke, Kieran; Heather, Lisa C; Tyler, Damian J

    2014-11-01

    Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Using hyperpolarized carbon-13 ((13)C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased (13)C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. © 2014 American Heart Association, Inc.

  10. Impaired In Vivo Mitochondrial Krebs Cycle Activity After Myocardial Infarction Assessed Using Hyperpolarized Magnetic Resonance Spectroscopy

    PubMed Central

    Carr, Carolyn A.; Stuckey, Daniel J.; West, James A.; Griffin, Julian L.; Radda, George K.; Clarke, Kieran; Heather, Lisa C.; Tyler, Damian J.

    2015-01-01

    Background Myocardial infarction (MI) is one of the leading causes of heart failure. An increasing body of evidence links alterations in cardiac metabolism and mitochondrial function with the progression of heart disease. The aim of this work was to, therefore, follow the in vivo mitochondrial metabolic alterations caused by MI, thereby allowing a greater understanding of the interplay between metabolic and functional abnormalities. Methods and Results Using hyperpolarized carbon-13 (13C)-magnetic resonance spectroscopy, in vivo alterations in mitochondrial metabolism were assessed for 22 weeks after surgically induced MI with reperfusion in female Wister rats. One week after MI, there were no detectable alterations in in vivo cardiac mitochondrial metabolism over the range of ejection fractions observed (from 28% to 84%). At 6 weeks after MI, in vivo mitochondrial Krebs cycle activity was impaired, with decreased 13C-label flux into citrate, glutamate, and acetylcarnitine, which correlated with the degree of cardiac dysfunction. These changes were independent of alterations in pyruvate dehydrogenase flux. By 22 weeks, alterations were also seen in pyruvate dehydrogenase flux, which decreased at lower ejection fractions. These results were confirmed using in vitro analysis of enzyme activities and metabolomic profiles of key intermediates. Conclusions The in vivo decrease in Krebs cycle activity in the 6-week post-MI heart may represent an early maladaptive phase in the metabolic alterations after MI in which reductions in Krebs cycle activity precede a reduction in pyruvate dehydrogenase flux. Changes in mitochondrial metabolism in heart disease are progressive and proportional to the degree of cardiac impairment. PMID:25201905

  11. Impaired adaptability of in vivo mitochondrial energetics to acute oxidative insult in aged skeletal muscle.

    PubMed

    Siegel, Michael P; Wilbur, Tim; Mathis, Mark; Shankland, Eric G; Trieu, Atlas; Harper, Mary-Ellen; Marcinek, David J

    2012-01-01

    Periods of elevated reactive oxygen species (ROS) production are a normal part of mitochondrial physiology. However, little is known about age-related changes in the mitochondrial response to elevated ROS in vivo. Significantly, ROS-induced uncoupling of oxidative phosphorylation has received attention as a negative feedback mechanism to reduce mitochondrial superoxide production. Here we use a novel in vivo spectroscopy system to test the hypothesis that ROS-induced uncoupling is diminished in aged mitochondria. This system simultaneously acquires (31)P magnetic resonance and near-infrared optical spectra to non-invasively measure phosphometabolite and O(2) concentrations in mouse skeletal muscle. Using low dose paraquat to elevate intracellular ROS we assess in vivo mitochondrial function in young, middle aged, and old mice. Oxidative phosphorylation was uncoupled to the same degree in response to ROS at each age, but this uncoupling was associated with loss of phosphorylation capacity and total ATP in old mice only. Using mice lacking UCP3 we demonstrate that this in vivo uncoupling is independent of this putative uncoupler of skeletal muscle mitochondria. These data indicate that ROS-induced uncoupling persists throughout life, but that oxidative stress leads to mitochondrial deficits and loss of ATP in aged organisms that may contribute to impaired function and degeneration. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Mutant Huntingtin Impairs Axonal Trafficking in Mammalian Neurons In Vivo and In Vitro

    PubMed Central

    Trushina, Eugenia; Dyer, Roy B.; Badger, John D.; Ure, Daren; Eide, Lars; Tran, David D.; Vrieze, Brent T.; Legendre-Guillemin, Valerie; McPherson, Peter S.; Mandavilli, Bhaskar S.; Van Houten, Bennett; Zeitlin, Scott; McNiven, Mark; Aebersold, Ruedi; Hayden, Michael; Parisi, Joseph E.; Seeberg, Erling; Dragatsis, Ioannis; Doyle, Kelly; Bender, Anna; Chacko, Celin; McMurray, Cynthia T.

    2004-01-01

    Recent data in invertebrates demonstrated that huntingtin (htt) is essential for fast axonal trafficking. Here, we provide direct and functional evidence that htt is involved in fast axonal trafficking in mammals. Moreover, expression of full-length mutant htt (mhtt) impairs vesicular and mitochondrial trafficking in mammalian neurons in vitro and in whole animals in vivo. Particularly, mitochondria become progressively immobilized and stop more frequently in neurons from transgenic animals. These defects occurred early in development prior to the onset of measurable neurological or mitochondrial abnormalities. Consistent with a progressive loss of function, wild-type htt, trafficking motors, and mitochondrial components were selectively sequestered by mhtt in human Huntington's disease-affected brain. Data provide a model for how loss of htt function causes toxicity; mhtt-mediated aggregation sequesters htt and components of trafficking machinery leading to loss of mitochondrial motility and eventual mitochondrial dysfunction. PMID:15340079

  13. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo.

    PubMed

    Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J

    2016-07-13

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.

  14. Compartmentalized Regulation of Parkin-Mediated Mitochondrial Quality Control in the Drosophila Nervous System In Vivo

    PubMed Central

    Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny

    2016-01-01

    In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149

  15. Mitochondrial NAD(P)H In vivo: Identifying Natural Indicators of Oxidative Phosphorylation in the (31)P Magnetic Resonance Spectrum.

    PubMed

    Conley, Kevin E; Ali, Amir S; Flores, Brandon; Jubrias, Sharon A; Shankland, Eric G

    2016-01-01

    Natural indicators provide intrinsic probes of metabolism, biogenesis and oxidative protection. Nicotinamide adenine dinucleotide metabolites (NAD(P)) are one class of indicators that have roles as co-factors in oxidative phosphorylation, glycolysis, and anti-oxidant protection, as well as signaling in the mitochondrial biogenesis pathway. These many roles are made possible by the distinct redox states (NAD(P)(+) and NAD(P)H), which are compartmentalized between cytosol and mitochondria. Here we provide evidence for detection of NAD(P)(+) and NAD(P)H in separate mitochondrial and cytosol pools in vivo in human tissue by phosphorus magnetic resonance spectroscopy ((31)P MRS). These NAD(P) pools are identified by chemical standards (NAD(+), NADP(+), and NADH) and by physiological tests. A unique resonance reflecting mitochondrial NAD(P)H is revealed by the changes elicited by elevation of mitochondrial oxidation. The decline of NAD(P)H with oxidation is matched by a stoichiometric rise in the NAD(P)(+) peak. This unique resonance also provides a measure of the improvement in mitochondrial oxidation that parallels the greater phosphorylation found after exercise training in these elderly subjects. The implication is that the dynamics of the mitochondrial NAD(P)H peak provides an intrinsic probe of the reversal of mitochondrial dysfunction in elderly muscle. Thus, non-invasive detection of NAD(P)(+) and NAD(P)H in cytosol vs. mitochondria yields natural indicators of redox compartmentalization and sensitive intrinsic probes of the improvement of mitochondrial function with an intervention in human tissues in vivo. These natural indicators hold the promise of providing mechanistic insight into metabolism and mitochondrial function in vivo in a range of tissues in health, disease and with treatment.

  16. Seahorse Xfe24 Extracellular Flux Analyzer-based analysis of cellular respiration in Caenorhabditis elegans

    PubMed Central

    Luz, Anthony L.; Smith, Latasha L.; Rooney, John P.

    2015-01-01

    Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and inter- as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters (basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity and proton leak) of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans. PMID:26523474

  17. Improved brain and muscle mitochondrial respiration with CoQ. An in vivo study by 31P-MR spectroscopy in patients with mitochondrial cytopathies.

    PubMed

    Barbiroli, B; Iotti, S; Lodi, R

    1999-01-01

    We used in vivo phosphorus magnetic resonance spectroscopy (31P-MRS) to study the effect of CoQ10 on the efficiency of brain and skeletal muscle mitochondrial respiration in ten patients with mitochondrial cytopathies. Before CoQ, brain [PCr] was remarkably lower in patients than in controls, while [Pi] and [ADP] were higher. Brain cytosolic free [Mg2+] and delta G of ATP hydrolysis were also abnormal in all patients. MRS also revealed abnormal mitochondrial function in the skeletal muscles of all patients, as shown by a decreased rate of PCr recovery from exercise. After six-months of treatment with CoQ (150 mg/day), all brain MRS-measurable variables as well as the rate of muscle mitochondrial respiration were remarkably improved in all patients. These in vivo findings show that treatment with CoQ in patients with mitochondrial cytopathies improves mitochondrial respiration in both brain and skeletal muscles, and are consistent with Lenaz's view that increased CoQ concentration in the mitochondrial membrane increases the efficiency of oxidative phosphorylation independently of enzyme deficit.

  18. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  19. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations.

    PubMed

    Barbosa, Daniel José; Serrat, Romàn; Mirra, Serena; Quevedo, Martí; de Barreda, Elena Goméz; Àvila, Jesús; Ferreira, Luísa Maria; Branco, Paula Sério; Fernandes, Eduarda; Lourdes Bastos, Maria de; Capela, João Paulo; Soriano, Eduardo; Carvalho, Félix

    2014-06-01

    3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.

  20. Simple and effective exercise design for assessing in vivo mitochondrial function in clinical applications using (31)P magnetic resonance spectroscopy.

    PubMed

    Sleigh, Alison; Lupson, Victoria; Thankamony, Ajay; Dunger, David B; Savage, David B; Carpenter, T Adrian; Kemp, Graham J

    2016-01-11

    The growing recognition of diseases associated with dysfunction of mitochondria poses an urgent need for simple measures of mitochondrial function. Assessment of the kinetics of replenishment of the phosphocreatine pool after exercise using (31)P magnetic resonance spectroscopy can provide an in vivo measure of mitochondrial function; however, the wider application of this technique appears limited by complex or expensive MR-compatible exercise equipment and protocols not easily tolerated by frail participants or those with reduced mental capacity. Here we describe a novel in-scanner exercise method which is patient-focused, inexpensive, remarkably simple and highly portable. The device exploits an MR-compatible high-density material (BaSO4) to form a weight which is attached directly to the ankle, and a one-minute dynamic knee extension protocol produced highly reproducible measurements of post-exercise PCr recovery kinetics in both healthy subjects and patients. As sophisticated exercise equipment is unnecessary for this measurement, our extremely simple design provides an effective and easy-to-implement apparatus that is readily translatable across sites. Its design, being tailored to the needs of the patient, makes it particularly well suited to clinical applications, and we argue the potential of this method for investigating in vivo mitochondrial function in new cohorts of growing clinical interest.

  1. Defects in mitochondrial localization and ATP synthesis in the mdx mouse model of Duchenne muscular dystrophy are not alleviated by PDE5 inhibition

    PubMed Central

    Percival, Justin M.; Siegel, Michael P.; Knowels, Gary; Marcinek, David J.

    2013-01-01

    Given the crucial roles for mitochondria in ATP energy supply, Ca2+ handling and cell death, mitochondrial dysfunction has long been suspected to be an important pathogenic feature in Duchenne muscular dystrophy (DMD). Despite this foresight, mitochondrial function in dystrophin-deficient muscles has remained poorly defined and unknown in vivo. Here, we used the mdx mouse model of DMD and non-invasive spectroscopy to determine the impact of dystrophin-deficiency on skeletal muscle mitochondrial localization and oxidative phosphorylation function in vivo. Mdx mitochondria exhibited significant uncoupling of oxidative phosphorylation (reduced P/O) and a reduction in maximal ATP synthesis capacity that together decreased intramuscular ATP levels. Uncoupling was not driven by increased UCP3 or ANT1 expression. Dystrophin was required to maintain subsarcolemmal mitochondria (SSM) pool density, implicating it in the spatial control of mitochondrial localization. Given that nitric oxide-cGMP pathways regulate mitochondria and that sildenafil-mediated phosphodiesterase 5 inhibition ameliorates dystrophic pathology, we tested whether sildenafil's benefits result from decreased mitochondrial dysfunction in mdx mice. Unexpectedly, sildenafil treatment did not affect mitochondrial content or oxidative phosphorylation defects in mdx mice. Rather, PDE5 inhibition decreased resting levels of ATP, phosphocreatine and myoglobin, suggesting that sildenafil improves dystrophic pathology through other mechanisms. Overall, these data indicate that dystrophin-deficiency disrupts SSM localization, promotes mitochondrial inefficiency and restricts maximal mitochondrial ATP-generating capacity. Together these defects decrease intramuscular ATP and the ability of mdx muscle mitochondria to meet ATP demand. These findings further understanding of how mitochondrial bioenergetic dysfunction contributes to disease pathogenesis in dystrophin-deficient skeletal muscle in vivo. PMID:23049075

  2. Mitochondrial shape governs BAX-induced membrane permeabilization and apoptosis.

    PubMed

    Renault, Thibaud T; Floros, Konstantinos V; Elkholi, Rana; Corrigan, Kelly-Ann; Kushnareva, Yulia; Wieder, Shira Y; Lindtner, Claudia; Serasinghe, Madhavika N; Asciolla, James J; Buettner, Christoph; Newmeyer, Donald D; Chipuk, Jerry E

    2015-01-08

    Proapoptotic BCL-2 proteins converge upon the outer mitochondrial membrane (OMM) to promote mitochondrial outer membrane permeabilization (MOMP) and apoptosis. Here we investigated the mechanistic relationship between mitochondrial shape and MOMP and provide evidence that BAX requires a distinct mitochondrial size to induce MOMP. We utilized the terminal unfolded protein response pathway to systematically define proapoptotic BCL-2 protein composition after stress and then directly interrogated their requirement for a productive mitochondrial size. Complementary biochemical, cellular, in vivo, and ex vivo studies reveal that Mfn1, a GTPase involved in mitochondrial fusion, establishes a mitochondrial size that is permissive for proapoptotic BCL-2 family function. Cells with hyperfragmented mitochondria, along with size-restricted OMM model systems, fail to support BAX-dependent membrane association and permeabilization due to an inability to stabilize BAXα9·membrane interactions. This work identifies a mechanistic contribution of mitochondrial size in dictating BAX activation, MOMP, and apoptosis. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Cyclin D1 Determines Mitochondrial Function In Vivo†

    PubMed Central

    Sakamaki, Toshiyuki; Casimiro, Mathew C.; Ju, Xiaoming; Quong, Andrew A.; Katiyar, Sanjay; Liu, Manran; Jiao, Xuanmao; Li, Anping; Zhang, Xueping; Lu, Yinan; Wang, Chenguang; Byers, Stephen; Nicholson, Robert; Link, Todd; Shemluck, Melvin; Yang, Jianguo; Fricke, Stanley T.; Novikoff, Phyllis M.; Papanikolaou, Alexandros; Arnold, Andrew; Albanese, Christopher; Pestell, Richard

    2006-01-01

    The cyclin D1 gene encodes a regulatory subunit of the holoenzyme that phosphorylates and inactivates the pRb tumor suppressor to promote nuclear DNA synthesis. cyclin D1 is overexpressed in human breast cancers and is sufficient for the development of murine mammary tumors. Herein, cyclin D1 is shown to perform a novel function, inhibiting mitochondrial function and size. Mitochondrial activity was enhanced by genetic deletion or antisense or small interfering RNA to cyclin D1. Global gene expression profiling and functional analysis of mammary epithelial cell-targeted cyclin D1 antisense transgenics demonstrated that cyclin D1 inhibits mitochondrial activity and aerobic glycolysis in vivo. Reciprocal regulation of these genes was observed in cyclin D1-induced mammary tumors. Cyclin D1 thus integrates nuclear DNA synthesis and mitochondrial function. PMID:16809779

  4. Stomatin-Like Protein 2 Is Required for In Vivo Mitochondrial Respiratory Chain Supercomplex Formation and Optimal Cell Function

    PubMed Central

    Mitsopoulos, Panagiotis; Chang, Yu-Han; Wai, Timothy; König, Tim; Dunn, Stanley D.; Langer, Thomas

    2015-01-01

    Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV1-3 RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function. PMID:25776552

  5. Targeting Metabolic Plasticity in Breast Cancer Cells via Mitochondrial Complex I Modulation

    PubMed Central

    Xu, Qijin; Biener-Ramanujan, Eva; Yang, Wei; Ramanujan, V Krishnan

    2016-01-01

    Purpose Heterogeneity commonly observed in clinical tumors stems both from the genetic diversity as well as from the differential metabolic adaptation of multiple cancer types during their struggle to maintain uncontrolled proliferation and invasion in vivo. This study aims to identify a potential metabolic window of such adaptation in aggressive human breast cancer cell lines. Methods With a multidisciplinary approach using high resolution imaging, cell metabolism assays, proteomic profiling and animal models of human tumor xenografts and via clinically-relevant, pharmacological approach for modulating mitochondrial complex I function in human breast cancer cell lines, we report a novel route to target metabolic plasticity in human breast cancer cells. Results By a systematic modulation of mitochondrial function and by mitigating metabolic switch phenotype in aggressive human breast cancer cells, we demonstrate that the resulting metabolic adaptation signatures can predictably decrease tumorigenic potential in vivo. Proteomic profiling of the metabolic adaptation in these cells further revealed novel protein-pathway interactograms highlighting the importance of antioxidant machinery in the observed metabolic adaptation. Conclusions Improved metabolic adaptation potential in aggressive human breast cancer cells contribute to improving mitochondrial function and reducing metabolic switch phenotype –which may be vital for targeting primary tumor growth in vivo. PMID:25677747

  6. The 6-hydroxychromanol derivative SUL-109 ameliorates renal injury after deep hypothermia and rewarming in rats.

    PubMed

    Vogelaar, Pieter C; Roorda, Maurits; de Vrij, Edwin L; Houwertjes, Martin C; Goris, Maaike; Bouma, Hjalmar; van der Graaf, Adrianus C; Krenning, Guido; Henning, Robert H

    2018-04-11

    Mitochondrial dysfunction plays an important role in kidney damage in various pathologies, including acute and chronic kidney injury and diabetic nephropathy. In addition to the well-studied ischaemia/reperfusion (I/R) injury, hypothermia/rewarming (H/R) also inflicts acute kidney injury. Substituted 6-hydroxychromanols are a novel class of mitochondrial medicines that ameliorate mitochondrial oxidative stress and protect the mitochondrial network. To identify a novel 6-hydroxychromanol that protects mitochondrial structure and function in the kidney during H/R, we screened multiple compounds in vitro and subsequently assessed the efficacy of the 6-hydroxychromanol derivatives SUL-109 and SUL-121 in vivo to protect against kidney injury after H/R in rats. Human proximal tubule cell viability was assessed following exposure to H/R for 48/4 h in the presence of various 6-hydroxychromanols. Selected compounds (SUL-109, SUL-121) or vehicle were administered to ketamine-anaesthetized male Wistar rats (IV 135 µg/kg/h) undergoing H/R at 15°C for 3 h followed by rewarming and normothermia for 1 h. Metabolic parameters and body temperature were measured throughout. In addition, renal function, renal injury, histopathology and mitochondrial fitness were assessed. H/R injury in vitro lowered cell viability by 94 ± 1%, which was counteracted dose-dependently by multiple 6-hydroxychomanols derivatives. In vivo, H/R in rats showed kidney injury molecule 1 expression in the kidney and tubular dilation, accompanied by double-strand DNA breaks and protein nitrosylation. SUL-109 and SUL-121 ameliorated tubular kidney damage, preserved mitochondrial mass and maintained cortical adenosine 5'-triphosphate (ATP) levels, although SUL-121 did not reduce protein nitrosylation. The substituted 6-hydroxychromanols SUL-109 and SUL-121 ameliorate kidney injury during in vivo H/R by preserving mitochondrial mass, function and ATP levels. In addition, both 6-hydroxychromanols limit DNA damage, but only SUL-109 also prevented protein nitrosylation in tubular cells. Therefore SUL-109 offers a promising therapeutic strategy to preserve kidney mitochondrial function.

  7. Activation and function of mitochondrial uncoupling protein in plants.

    PubMed

    Smith, Anna M O; Ratcliffe, R George; Sweetlove, Lee J

    2004-12-10

    Plant mitochondrial uncoupling protein (UCP) is activated by superoxide suggesting that it may function to minimize mitochondrial reactive oxygen species (ROS) formation. However, the precise mechanism of superoxide activation and the exact function of UCP in plants are not known. We demonstrate that 4-hydroxy-2-nonenal (HNE), a product of lipid peroxidation, and a structurally related compound, trans-retinal, stimulate a proton conductance in potato mitochondria that is inhibitable by GTP (a characteristic of UCP). Proof that the effects of HNE and trans-retinal are mediated by UCP is provided by examination of proton conductance in transgenic plants overexpressing UCP. These experiments demonstrate that the mechanism of activation of UCP is conserved between animals and plants and imply a conservation of function. Mitochondria from transgenic plants overexpressing UCP were further studied to provide insight into function. Experimental conditions were designed to mimic a bioenergetic state that might be found in vivo (mitochondria were supplied with pyruvate as well as tricarboxylic cycle acids at in vivo cytosolic concentrations and an exogenous ATP sink was established). Under such conditions, an increase in UCP protein content resulted in a modest but significant decrease in the rate of superoxide production. In addition, 13C-labeling experiments revealed an increase in the conversion of pyruvate to citrate as a result of increased UCP protein content. These results demonstrate that under simulated in vivo conditions, UCP is active and suggest that UCP may influence not only mitochondrial ROS production but also tricarboxylic acid cycle flux.

  8. Mpv17 in mitochondria protects podocytes against mitochondrial dysfunction and apoptosis in vivo and in vitro.

    PubMed

    Casalena, Gabriela; Krick, Stefanie; Daehn, Ilse; Yu, Liping; Ju, Wenjun; Shi, Shaolin; Tsai, Su-yi; D'Agati, Vivette; Lindenmeyer, Maja; Cohen, Clemens D; Schlondorff, Detlef; Bottinger, Erwin P

    2014-06-01

    Mitochondrial dysfunction is increasingly recognized as contributing to glomerular diseases, including those secondary to mitochondrial DNA (mtDNA) mutations and deletions. Mitochondria maintain cellular redox and energy homeostasis and are a major source of intracellular reactive oxygen species (ROS) production. Mitochondrial ROS accumulation may contribute to stress-induced mitochondrial dysfunction and apoptosis and thereby to glomerulosclerosis. In mice, deletion of the gene encoding Mpv17 is associated with glomerulosclerosis, but the underlying mechanism remains poorly defined. Here we report that Mpv17 localizes to mitochondria of podocytes and its expression is reduced in several glomerular injury models and in human focal segmental glomerulosclerosis (FSGS) but not in minimal change disease. Using models of mild or severe nephrotoxic serum nephritis (NTSN) in Mpv17(+/+) wild-type (WT) and Mpv17(-/-) knockout mice, we found that Mpv17 deficiency resulted in increased proteinuria (mild NTSN) and renal insufficiency (severe NTSN) compared with WT. These lesions were associated with increased mitochondrial ROS generation and mitochondrial injury such as oxidative DNA damage. In vitro, podocytes with loss of Mpv17 function were characterized by increased susceptibility to apoptosis and ROS injury including decreased mitochondrial function, loss of mtDNA content, and change in mitochondrial configuration. In summary, the inner mitochondrial membrane protein Mpv17 in podocytes is essential for the maintenance of mitochondrial homeostasis and protects podocytes against oxidative stress-induced injury both in vitro and in vivo. Copyright © 2014 the American Physiological Society.

  9. Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage.

    PubMed

    Bachmann, Rosilla F; Wang, Yun; Yuan, Peixiong; Zhou, Rulun; Li, Xiaoxia; Alesci, Salvatore; Du, Jing; Manji, Husseini K

    2009-07-01

    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia.

  10. Poor embryo development in post-ovulatory in vivo-aged mouse oocytes is associated with mitochondrial dysfunction, but mitochondrial transfer from somatic cells is not sufficient for rejuvenation.

    PubMed

    Igarashi, Hideki; Takahashi, Toshifumi; Abe, Hiroyuki; Nakano, Hiroshi; Nakajima, Osamu; Nagase, Satoru

    2016-10-01

    Does in vivo aging of mouse oocytes affect mitochondrial function? Mitochondrial function was impaired in post-ovulatory in vivo-aged mouse oocytes and microinjection of somatic cell mitochondria did not rescue poor fertilization and embryonic development rates. The mechanisms underlying the decline in oocyte quality associated with oocyte aging remain unknown, although studies have suggested that the decline is regulated by mitochondrial dysfunction. However, only a limited number of studies have provided direct evidence implicating mitochondrial dysfunction in oocyte quality during the aging of oocytes. We used post-ovulatory, in vivo-aged mouse oocytes as a model for studying low-quality oocytes in oocyte aging. Superovulated oocytes released from the oviduct at 14 h and 20-24 h post-hCG injection were designated as 'fresh' and 'aged' oocytes, respectively. Membrane potentials and oxygen consumption in single oocytes were evaluated as measures of mitochondrial function in fresh and aged oocytes. Mitochondrial transcriptional factor A (TFAM) expression levels were examined by western blotting, and colocalization of mitochondria and TFAM was analyzed by measuring immunofluorescence in fresh and aged oocytes. IVF and blastocyst formation rates were calculated after oocyte microinjection with mitochondria derived from liver cells. The average mitochondrial membrane potential in fresh oocytes was significantly higher than that in aged oocytes (P < 0.05). The average oxygen consumption rate in aged oocytes was significantly lower than that in fresh oocytes (P < 0.05). Although total TFAM expression was unchanged, its colocalization with mitochondria decreased in aged oocytes. IVF and blastocyst formation rates for mitochondrion-injected aged oocytes were not significantly different from those for buffer-injected aged oocytes. Not applicable. A limitation of this study is that we did not examine the effects of microinjecting mitochondria from other somatic cell types into aged oocytes on their fertilization and embryonic development rates. The results from the present study showed that poor embryonic development was associated with impairment of mitochondrial functions in in vivo-aged oocytes. However, the microinjection of mitochondria from liver cells did not improve the low fertilization and embryonic development rates of aged oocytes. It remains to be demonstrated whether oocyte quality can be rescued by the transfer of cytosolic factors or cellular organelles, such as the endoplasmic reticulum or mitochondria, from specific cell types. This study was supported by Grants-in-Aid for General Science Research to Toshifumi Takahashi (No. 25462550) and Hideki Igarashi (No. 26462474). The funding source played no role in study design in the collection, analysis, and interpretation of data; in the writing of the report; and in the decision to submit the article for publication. The authors have no conflict of interest to disclose. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. ROS regulation of axonal mitochondrial transport is mediated by Ca2+ and JNK in Drosophila

    PubMed Central

    Liao, Pin-Chao; Tandarich, Lauren C.

    2017-01-01

    Mitochondria perform critical functions including aerobic ATP production and calcium (Ca2+) homeostasis, but are also a major source of reactive oxygen species (ROS) production. To maintain cellular function and survival in neurons, mitochondria are transported along axons, and accumulate in regions with high demand for their functions. Oxidative stress and abnormal mitochondrial axonal transport are associated with neurodegenerative disorders. However, we know little about the connection between these two. Using the Drosophila third instar larval nervous system as the in vivo model, we found that ROS inhibited mitochondrial axonal transport more specifically, primarily due to reduced flux and velocity, but did not affect transport of other organelles. To understand the mechanisms underlying these effects, we examined Ca2+ levels and the JNK (c-Jun N-terminal Kinase) pathway, which have been shown to regulate mitochondrial transport and general fast axonal transport, respectively. We found that elevated ROS increased Ca2+ levels, and that experimental reduction of Ca2+ to physiological levels rescued ROS-induced defects in mitochondrial transport in primary neuron cell cultures. In addition, in vivo activation of the JNK pathway reduced mitochondrial flux and velocities, while JNK knockdown partially rescued ROS-induced defects in the anterograde direction. We conclude that ROS have the capacity to regulate mitochondrial traffic, and that Ca2+ and JNK signaling play roles in mediating these effects. In addition to transport defects, ROS produces imbalances in mitochondrial fission-fusion and metabolic state, indicating that mitochondrial transport, fission-fusion steady state, and metabolic state are closely interrelated in the response to ROS. PMID:28542430

  12. Lack of Parkin Anticipates the Phenotype and Affects Mitochondrial Morphology and mtDNA Levels in a Mouse Model of Parkinson's Disease.

    PubMed

    Pinto, Milena; Nissanka, Nadee; Moraes, Carlos T

    2018-01-24

    PARK2 is the most common gene mutated in monogenic recessive familial cases of Parkinson's disease (PD). Pathogenic mutations cause a loss of function of the encoded protein Parkin. ParkinKO mice, however, poorly represent human PD symptoms as they only exhibit mild motor phenotypes, minor dopamine metabolism abnormalities, and no signs of dopaminergic neurodegeneration. Parkin has been shown to participate in mitochondrial turnover, by targeting damaged mitochondria with low membrane potential to mitophagy. We studied the role of Parkin on mitochondrial quality control in vivo by knocking out Parkin in the PD-mito- Pst I mouse (males), where the mitochondrial DNA (mtDNA) undergoes double-strand breaks only in dopaminergic neurons. The lack of Parkin promoted earlier onset of dopaminergic neurodegeneration and motor defects in the PD-mito- Pst I mice, but it did not worsen the pathology. The lack of Parkin affected mitochondrial morphology in dopaminergic axons and was associated with an increase in mtDNA levels (mutant and wild type). Unexpectedly, it did not cause a parallel increase in mitochondrial mass or mitophagy. Our results suggest that Parkin affects mtDNA levels in a mitophagy-independent manner. SIGNIFICANCE STATEMENT Parkinson's disease is characterized by progressive motor symptoms due to the selective loss of dopaminergic neurons in the substantia nigra. Loss-of-function mutations of Parkin cause some monogenic forms of Parkinson's disease, possibly through its role in mitochondrial turnover and quality control. To study whether Parkin has a role in vivo in the context of mitochondrial damage, we knocked out Parkin in a mouse model in which the mitochondrial DNA is damaged in dopaminergic neurons. We found that the loss of Parkin did not exacerbate the parkinsonian pathology already present in the mice, but it was associated with an increase in mtDNA levels (mutant and wild-type) without altering mitochondrial mass. These results shed new light on the function of Parkin in vivo . Copyright © 2018 the authors 0270-6474/18/381042-12$15.00/0.

  13. In Vivo Mitochondrial Oxygen Tension Measured by a Delayed Fluorescence Lifetime Technique

    PubMed Central

    Mik, Egbert G.; Johannes, Tanja; Zuurbier, Coert J.; Heinen, Andre; Houben-Weerts, Judith H. P. M.; Balestra, Gianmarco M.; Stap, Jan; Beek, Johan F.; Ince, Can

    2008-01-01

    Mitochondrial oxygen tension (mitoPO2) is a key parameter for cellular function, which is considered to be affected under various pathophysiological circumstances. Although many techniques for assessing in vivo oxygenation are available, no technique for measuring mitoPO2 in vivo exists. Here we report in vivo measurement of mitoPO2 and the recovery of mitoPO2 histograms in rat liver by a novel optical technique under normal and pathological circumstances. The technique is based on oxygen-dependent quenching of the delayed fluorescence lifetime of protoporphyrin IX. Application of 5-aminolevulinic acid enhanced mitochondrial protoporphyrin IX levels and induced oxygen-dependent delayed fluorescence in various tissues, without affecting mitochondrial respiration. Using fluorescence microscopy, we demonstrate in isolated hepatocytes that the signal is of mitochondrial origin. The delayed fluorescence lifetime was calibrated in isolated hepatocytes and isolated perfused livers. Ultimately, the technique was applied to measure mitoPO2 in rat liver in vivo. The results demonstrate mitoPO2 values of ∼30–40 mmHg. mitoPO2 was highly sensitive to small changes in inspired oxygen concentration around atmospheric oxygen level. Ischemia-reperfusion interventions showed altered mitoPO2 distribution, which flattened overall compared to baseline conditions. The reported technology is scalable from microscopic to macroscopic applications, and its reliance on an endogenous compound greatly enhances its potential field of applications. PMID:18641065

  14. Use of high-throughput and in vivo data to support read ...

    EPA Pesticide Factsheets

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence of mitochondrial toxicity has led to a number of drugs being withdrawn from the market highlighting the need to identify potential mitochondrial toxicants within the environment. High-throughput screening (HTS) assays provide a means of rapidly gathering toxicity data for a large number of chemicals; however, information as to the associated in vivo effect is typically unknown. The Adverse Outcome Pathway (AOP) concept provides a valuable scaffold onto which mechanistic data from different levels of biological organisation can be arranged.Information pertaining to mitochondrial toxicity from the U.S. EPA’s ToxCast program were integrated with rodent in vivo data from U.S. EPA’s ToxRefDB to connect the high throughput ToxCast assay results with potential adverse outcome data. Previously developed structural alerts were utilized to profile the chemicals with both in vitro mitochondrial toxicity and in vivo rodent data. Structural similarity guided by the toxicity profile as measured in the ToxCast assay battery was then used to group those chemicals which either were not tested in a mitochondrial toxicity assay or were not considered a “hit” and read-across was performed. Subsequen

  15. Propofol induces a metabolic switch to glycolysis and cell death in a mitochondrial electron transport chain-dependent manner.

    PubMed

    Sumi, Chisato; Okamoto, Akihisa; Tanaka, Hiromasa; Nishi, Kenichiro; Kusunoki, Munenori; Shoji, Tomohiro; Uba, Takeo; Matsuo, Yoshiyuki; Adachi, Takehiko; Hayashi, Jun-Ichi; Takenaga, Keizo; Hirota, Kiichi

    2018-01-01

    The intravenous anesthetic propofol (2,6-diisopropylphenol) has been used for the induction and maintenance of anesthesia and sedation in critical patient care. However, the rare but severe complication propofol infusion syndrome (PRIS) can occur, especially in patients receiving high doses of propofol for prolonged periods. In vivo and in vitro evidence suggests that the propofol toxicity is related to the impaired mitochondrial function. However, underlying molecular mechanisms remain unknown. Therefore, we investigated effects of propofol on cell metabolism and death using a series of established cell lines of various origins, including neurons, myocytes, and trans-mitochondrial cybrids, with defined mitochondrial DNA deficits. We demonstrated that supraclinical concentrations of propofol in not less than 50 μM disturbed the mitochondrial function and induced a metabolic switch, from oxidative phosphorylation to glycolysis, by targeting mitochondrial complexes I, II and III. This disturbance in mitochondrial electron transport caused the generation of reactive oxygen species, resulting in apoptosis. We also found that a predisposition to mitochondrial dysfunction, caused by a genetic mutation or pharmacological suppression of the electron transport chain by biguanides such as metformin and phenformin, promoted propofol-induced caspase activation and cell death induced by clinical relevant concentrations of propofol in not more than 25 μM. With further experiments with appropriate in vivo model, it is possible that the processes to constitute the molecular basis of PRIS are identified.

  16. In Vivo Microscopy Reveals Extensive Embedding of Capillaries within the Sarcolemma of Skeletal Muscle Fibers

    PubMed Central

    Glancy, Brian; Hsu, Li-Yueh; Dao, Lam; Bakalar, Matthew; French, Stephanie; Chess, David J.; Taylor, Joni L.; Picard, Martin; Aponte, Angel; Daniels, Mathew P.; Esfahani, Shervin; Cushman, Samuel; Balaban, Robert S.

    2013-01-01

    Objective To provide insight into mitochondrial function in vivo, we evaluated the 3D spatial relationship between capillaries, mitochondria, and muscle fibers in live mice. Methods 3D volumes of in vivo murine Tibialis anterior muscles were imaged by multi-photon microscopy (MPM). Muscle fiber type, mitochondrial distribution, number of capillaries, and capillary-to-fiber contact were assessed. The role of myoglobin-facilitated diffusion was examined in myoglobin knockout mice. Distribution of GLUT4 was also evaluated in the context of the capillary and mitochondrial network. Results MPM revealed that 43.6 ± 3.3% of oxidative fiber capillaries had ≥ 50% of their circumference embedded in a groove in the sarcolemma, in vivo. Embedded capillaries were tightly associated with dense mitochondrial populations lateral to capillary grooves and nearly absent below the groove. Mitochondrial distribution, number of embedded capillaries, and capillary-to-fiber contact were proportional to fiber oxidative capacity and unaffected by myoglobin knockout. GLUT4 did not preferentially localize to embedded capillaries. Conclusions Embedding capillaries in the sarcolemma may provide a regulatory mechanism to optimize delivery of oxygen to heterogeneous groups of muscle fibers. We hypothesize that mitochondria locate to paravascular regions due to myofibril voids created by embedded capillaries, not to enhance the delivery of oxygen to the mitochondria. PMID:25279425

  17. Brain physiological state evaluated by real-time multiparametric tissue spectroscopy in vivo

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Barbiro-Michaely, Efrat; Kutai-Asis, Hofit; Deutsch, Assaf; Jaronkin, Alex

    2004-07-01

    The significance of normal mitochondrial function in cellular energy homeostasis as well as its involvement in acute and chronic neurodegenerative disease was reviewed recently (Nicholls & Budd. Physiol Rev. 80: 315-360, 2000). Nevertheless, monitoring of mitochondrial function in vivo and real time mode was not used by many investigators and is very rare in clinical practice. The main principle tool available for the evaluation of mitochondrial function is the monitoring of NADH fluorescence. In order to interpret correctly the changes in NADH redox state in vivo, it is necessary to correlate this signal to other parameters, reflecting O2 supply to the brain. Therefore, we have developed and applied a multiparametric optical monitoring system, by which microcirculatory blood flow and hemoglobin oxygenation is measured, together with mitochondrial NADH fluorescence. Since the calibration of these signals is not in absolute units, the simultaneous monitoring provide a practical tool for the interpretation of brain functional state under various pathophysiological conditions. The monitoring system combines a time-sharing fluorometer-reflectometer for the measurement of NADH fluorescence and hemoglobin oxygenation as well as a laser Doppler flowmeter for the recording of microcirculatory blood flow. A combined fiber optic probe was located on the surface of the brain using a skull cemented cannula. Rats and gerbils were exposed to anoxia, ischemia and spreading depression and the functional state of the brain was evaluated. The results showed a clear correlation between O2 supply/demand as well as, energy balance under the various pathophysiological conditions. This monitoring approach could be adapted to clinical monitoring of tissue vitality.

  18. Mangiferin protects mitochondrial function by preserving mitochondrial hexokinase-II in vessel endothelial cells.

    PubMed

    Song, Junna; Li, Yi; Song, Junmei; Hou, Fangjie; Liu, Baolin; Li, Aiying

    2017-07-01

    Hexokinase-II (HK-II) confers protection against cell death and this study was designed to investigate the effect of mangiferin on the regulation of mitochondrial HK-II. In vessel endothelial cells, saturated fatty acid palmitate (PA) stimulation induced HK-II detachment from mitochondria due to cellular acidification. Mangiferin reduced lactate accumulation by improving pyruvate dehydrogenase activity, promoted Akt translocation to HK-II and prevented HK-II detachment from mitochondria. Knockdown of Akt2 diminished the protective effect of mangiferin on mitochondrial HK-II, confirming the role of Akt in the regulation of HK-II. Mangiferin prevented mitochondrial permeability transition pore opening, restored mitochondrial membrane potential and thereby protected cell from apoptosis. In high-fat diet fed mice, oral administration of mangiferin induced Akt phosphorylation, increased HK-II binding to mitochondria and resultantly protected vessel endothelial function, demonstrating its protective effect on endothelial integrity in vivo. This finding provided a novel strategy for the protection of mitochondrial function in the endothelium. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Over-expression of mitochondrial creatine kinase in the murine heart improves functional recovery and protects against injury following ischaemia-reperfusion.

    PubMed

    Whittington, Hannah J; Ostrowski, Philip J; McAndrew, Debra J; Cao, Fang; Shaw, Andrew; Eykyn, Thomas R; Lake, Hannah; Tyler, Jack; Schneider, Jurgen E; Neubauer, Stefan; Zervou, Sevasti; Lygate, Craig A

    2018-03-02

    Mitochondrial creatine kinase (MtCK) couples ATP production via oxidative phosphorylation to phosphocreatine in the cytosol, which acts as a mobile energy store available for regeneration of ATP at times of high demand. We hypothesised that elevating MtCK would be beneficial in ischaemia-reperfusion (I/R) injury. Mice were created overexpressing the sarcomeric MtCK gene with αMHC promoter at the Rosa26 locus (MtCK-OE) and compared with wild-type (WT) littermates. MtCK activity was 27% higher than WT, with no change in other CK isoenzymes or creatine levels. Electron microscopy confirmed normal mitochondrial cell density and mitochondrial localisation of transgenic protein. Respiration in isolated mitochondria was unaltered and metabolomic analysis by 1H-NMR suggests that cellular metabolism was not grossly affected by transgene expression. There were no significant differences in cardiac structure or function under baseline conditions by cine-MRI or LV haemodynamics. In Langendorff-perfused hearts subjected to 20min ischaemia and 30 min reperfusion, MtCK-OE exhibited less ischaemic contracture and improved functional recovery (Rate pressure product 58% above WT; P < 0.001). These hearts had reduced myocardial infarct size, which was confirmed in vivo: 55±4% in WT vs 29±4% in MtCK-OE; P < 0.0001). Isolated cardiomyocytes from MtCK-OE hearts exhibited delayed opening of the mitochondrial permeability transition pore (mPTP) compared to WT, which was confirmed by reduced mitochondrial swelling in response to calcium. There was no detectable change in the structural integrity of the mitochondrial membrane. Modest elevation of MtCK activity in the heart does not adversely affect cellular metabolism, mitochondrial or in vivo cardiac function, but modifies mPTP opening to protect against I/R injury and improve functional recovery. Our findings support MtCK as a prime therapeutic target in myocardial ischaemia.

  20. Brain mitochondrial bioenergetics change with rapid and prolonged shifts in aggression in the honey bee, Apis mellifera.

    PubMed

    Rittschof, Clare C; Vekaria, Hemendra J; Palmer, Joseph H; Sullivan, Patrick G

    2018-04-25

    Neuronal function demands high-level energy production, and as such, a decline in mitochondrial respiration characterizes brain injury and disease. A growing number of studies, however, link brain mitochondrial function to behavioral modulation in non-diseased contexts. In the honey bee, we show for the first time that an acute social interaction, which invokes an aggressive response, may also cause a rapid decline in brain mitochondrial bioenergetics. The degree and speed of this decline has only been previously observed in the context of brain injury. Furthermore, in the honey bee, age-related increases in aggressive tendency are associated with increased baseline brain mitochondrial respiration, as well as increased plasticity in response to metabolic fuel type in vitro Similarly, diet restriction and ketone body feeding, which commonly enhance mammalian brain mitochondrial function in vivo , cause increased aggression. Thus, even in normal behavioral contexts, brain mitochondria show a surprising degree of variation in function over both rapid and prolonged time scales, with age predicting both baseline function and plasticity in function. These results suggest that mitochondrial function is integral to modulating aggression-related neuronal signaling. We hypothesize that variation in function reflects mitochondrial calcium buffering activity, and that shifts in mitochondrial function signal to the neuronal soma to regulate gene expression and neural energetic state. Modulating brain energetic state is emerging as a critical component of the regulation of behavior in non-diseased contexts. © 2018. Published by The Company of Biologists Ltd.

  1. A specific role of the yeast mitochondrial carriers MRS3/4p in mitochondrial iron acquisition under iron-limiting conditions.

    PubMed

    Mühlenhoff, Ulrich; Stadler, Jochen A; Richhardt, Nadine; Seubert, Andreas; Eickhorst, Thomas; Schweyen, Rudolf J; Lill, Roland; Wiesenberger, Gerlinde

    2003-10-17

    The yeast genes MRS3 and MRS4 encode two members of the mitochondrial carrier family with high sequence similarity. To elucidate their function we utilized genome-wide expression profiling and found that both deletion and overexpression of MRS3/4 lead to up-regulation of several genes of the "iron regulon." We therefore analyzed the two major iron-utilizing processes, heme formation and Fe/S protein biosynthesis in vivo, in organello (intact mitochondria), and in vitro (mitochondrial extracts). Radiolabeling of yeast cells with 55Fe revealed a clear correlation between MRS3/4 expression levels and the efficiency of these biosynthetic reactions indicating a role of the carriers in utilization and/or transport of iron in vivo. Similar effects on both heme formation and Fe/S protein biosynthesis were seen in organello using mitochondria isolated from cells grown under iron-limiting conditions. The correlation between MRS3/4 expression levels and the efficiency of the two iron-utilizing processes was lost upon detergent lysis of mitochondria. As no significant changes in the mitochondrial membrane potential were observed upon overexpression or deletion of MRS3/4, our results suggest that Mrs3/4p carriers are directly involved in mitochondrial iron uptake. Mrs3/4p function in mitochondrial iron transport becomes evident under iron-limiting conditions only, indicating that the two carriers do not represent the sole system for mitochondrial iron acquisition.

  2. Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

    PubMed Central

    Schütt, Tanja; Kurz, Christopher; Eckert, Schamim H.; Schiller, Carola; Occhipinti, Angelo; Mai, Sören; Jendrach, Marina; Eckert, Gunter P.; Kruse, Shane E.; Palmiter, Richard D.; Brandt, Ulrich; Dröse, Stephan; Wittig, Ilka; Willem, Michael; Haass, Christian; Reichert, Andreas S.; Müller, Walter E.

    2012-01-01

    Abstract Aims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. Results: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. Innovation: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. Conclusion: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD. Antioxid. Redox Signal. 16, 1421–1433. PMID:22229260

  3. Insulin stimulates mitochondrial fusion and function in cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 signaling pathway.

    PubMed

    Parra, Valentina; Verdejo, Hugo E; Iglewski, Myriam; Del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez-Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A; Klip, Amira; Hill, Joseph A; Rothermel, Beverly A; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio

    2014-01-01

    Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway.

  4. Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway

    PubMed Central

    Parra, Valentina; Verdejo, Hugo E.; Iglewski, Myriam; del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez‑Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A.; Klip, Amira; Hill, Joseph A.; Rothermel, Beverly A.; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio

    2014-01-01

    Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway. PMID:24009260

  5. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    PubMed Central

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-01-01

    Abstract Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60–70 or 20–30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I–V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell. Key points The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. PMID:26096709

  6. Mitochondrial telomerase reverse transcriptase binds to and protects mitochondrial DNA and function from damage.

    PubMed

    Haendeler, Judith; Dröse, Stefan; Büchner, Nicole; Jakob, Sascha; Altschmied, Joachim; Goy, Christine; Spyridopoulos, Ioakim; Zeiher, Andreas M; Brandt, Ulrich; Dimmeler, Stefanie

    2009-06-01

    The enzyme telomerase and its catalytic subunit the telomerase reverse transcriptase (TERT) are important for maintenance of telomere length in the nucleus. Recent studies provided evidence for a mitochondrial localization of TERT. Therefore, we investigated the exact localization of TERT within the mitochondria and its function. Here, we demonstrate that TERT is localized in the matrix of the mitochondria. TERT binds to mitochondrial DNA at the coding regions for ND1 and ND2. Binding of TERT to mitochondrial DNA protects against ethidium bromide-induced damage. TERT increases overall respiratory chain activity, which is most pronounced at complex I and dependent on the reverse transcriptase activity of the enzyme. Moreover, mitochondrial reactive oxygen species are increased after genetic ablation of TERT by shRNA. Mitochondrially targeted TERT and not wild-type TERT revealed the most prominent protective effect on H(2)O(2)-induced apoptosis. Lung fibroblasts from 6-month-old TERT(-/-) mice (F2 generation) showed increased sensitivity toward UVB radiation and heart mitochondria exhibited significantly reduced respiratory chain activity already under basal conditions, demonstrating the protective function of TERT in vivo. Mitochondrial TERT exerts a novel protective function by binding to mitochondrial DNA, increasing respiratory chain activity and protecting against oxidative stress-induced damage.

  7. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase.

    PubMed

    Kinnaird, Adam; Dromparis, Peter; Saleme, Bruno; Gurtu, Vikram; Watson, Kristalee; Paulin, Roxane; Zervopoulos, Sotirios; Stenson, Trevor; Sutendra, Gopinath; Pink, Desmond B; Carmine-Simmen, Katia; Moore, Ronald; Lewis, John D; Michelakis, Evangelos D

    2016-04-01

    Clear-cell renal cell carcinoma (ccRCC) exhibits suppressed mitochondrial function and preferential use of glycolysis even in normoxia, promoting proliferation and suppressing apoptosis. ccRCC resistance to therapy is driven by constitutive hypoxia-inducible factor (HIF) expression due to genetic loss of von Hippel-Lindau factor. In addition to promoting angiogenesis, HIF suppresses mitochondrial function by inducing pyruvate dehydrogenase kinase (PDK), a gatekeeping enzyme for mitochondrial glucose oxidation. To reverse mitochondrial suppression of ccRCC using the PDK inhibitor dichloroacetate (DCA). Radical nephrectomy specimens from patients with ccRCC were assessed for PDK expression. The 786-O ccRCC line and two animal models (chicken in ovo and murine xenografts) were used for mechanistic studies. Mitochondrial function, proliferation, apoptosis, HIF transcriptional activity, angiogenesis, and tumor size were measured in vitro and in vivo. Independent-sample t-tests and analysis of variance were used for statistical analyses. PDK was elevated in 786-O cells and in ccRCC compared to normal kidney tissue from the same patient. DCA reactivated mitochondrial function (increased respiration, Krebs cycle metabolites such as α-ketoglutarate [cofactor of factor inhibiting HIF], and mitochondrial reactive oxygen species), increased p53 activity and apoptosis, and decreased proliferation in 786-O cells. DCA reduced HIF transcriptional activity in an FIH-dependent manner, inhibiting angiogenesis in vitro. DCA reduced tumor size and angiogenesis in vivo in both animal models. DCA can reverse the mitochondrial suppression of ccRCC and decrease HIF transcriptional activity, bypassing its constitutive expression. Its previous clinical use in humans makes it an attractive candidate for translation to ccRCC patients. We show that an energy-boosting drug decreases tumor growth and tumor blood vessels in animals carrying human kidney cancer cells. This generic drug has been used in patients for other conditions and thus could be tested in kidney cancer that remains incurable. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  8. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function

    PubMed Central

    Price, Nathan L.; Gomes, Ana P.; Ling, Alvin J.Y.; Duarte, Filipe V.; Martin-Montalvo, Alejandro; North, Brian J.; Agarwal, Beamon; Ye, Lan; Ramadori, Giorgio; Teodoro, Joao S.; Hubbard, Basil P.; Varela, Ana T.; Davis, James G.; Varamini, Behzad; Hafner, Angela; Moaddel, Ruin; Rolo, Anabela P.; Coppari, Roberto; Palmeira, Carlos M.; de Cabo, Rafael; Baur, Joseph A.; Sinclair, David A.

    2012-01-01

    SUMMARY Resveratrol induces mitochondrial biogenesis and protects against metabolic decline but whether SIRT1 mediates these benefits is the subject of debate. To circumvent the developmental defects of germ-line SIRT1 knockouts, we have developed the first inducible system that permits whole-body deletion of SIRT1 in adult mice. Mice treated with a moderate dose of resveratrol showed increased mitochondrial biogenesis and function, AMPK activation and increased NAD+ levels in skeletal muscle, whereas SIRT1 knockouts displayed none of these benefits. A mouse overexpressing SIRT1 mimicked these effects. A high dose of resveratrol activated AMPK in a SIRT1-independent manner, demonstrating that resveratrol dosage is a critical factor. Importantly, at both doses of resveratrol no improvements in mitochondrial function were observed in animals lacking SIRT1. Together these data indicate that SIRT1 plays an essential role in the ability of moderate doses of resveratrol to stimulate AMPK and improve mitochondrial function both in vitro and in vivo. PMID:22560220

  9. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Loss of the mitochondrial protein-only ribonuclease P complex causes aberrant tRNA processing and lethality in Drosophila.

    PubMed

    Sen, Aditya; Karasik, Agnes; Shanmuganathan, Aranganathan; Mirkovic, Elena; Koutmos, Markos; Cox, Rachel T

    2016-07-27

    Proteins encoded by mitochondrial DNA are translated using mitochondrially encoded tRNAs and rRNAs. As with nuclear encoded tRNAs, mitochondrial tRNAs must be processed to become fully functional. The mitochondrial form of ribonuclease P (mt:RNase P) is responsible for 5'-end maturation and is comprised of three proteins; mitochondrial RNase P protein (MRPP) 1 and 2 together with proteinaceous RNase P (PRORP). However, its mechanism and impact on development is not yet known. Using homology searches, we have identified the three proteins composing Drosophila mt:RNase P: Mulder (PRORP), Scully (MRPP2) and Roswell (MRPP1). Here, we show that each protein is essential and localizes with mitochondria. Furthermore, reducing levels of each causes mitochondrial deficits, which appear to be due at least in part to defective mitochondrial tRNA processing. Overexpressing two members of the complex, Mulder and Roswell, is also lethal, and in the case of Mulder, causes abnormal mitochondrial morphology. These data are the first evidence that defective mt:RNase P causes mitochondrial dysfunction, lethality and aberrant mitochondrial tRNA processing in vivo, underscoring its physiological importance. This in vivo mt:RNase P model will advance our understanding of how loss of mitochondrial tRNA processing causes tissue failure, an important aspect of human mitochondrial disease. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Exercise training in Tgαq*44 mice during the progression of chronic heart failure: cardiac vs. peripheral (soleus muscle) impairments to oxidative metabolism.

    PubMed

    Grassi, Bruno; Majerczak, Joanna; Bardi, Eleonora; Buso, Alessia; Comelli, Marina; Chlopicki, Stefan; Guzik, Magdalena; Mavelli, Irene; Nieckarz, Zenon; Salvadego, Desy; Tyrankiewicz, Urszula; Skórka, Tomasz; Bottinelli, Roberto; Zoladz, Jerzy A; Pellegrino, Maria Antonietta

    2017-08-01

    Cardiac function, skeletal (soleus) muscle oxidative metabolism, and the effects of exercise training were evaluated in a transgenic murine model (Tgα q *44) of chronic heart failure during the critical period between the occurrence of an impairment of cardiac function and the stage at which overt cardiac failure ensues (i.e., from 10 to 12 mo of age). Forty-eight Tgα q *44 mice and 43 wild-type FVB controls were randomly assigned to control groups and to groups undergoing 2 mo of intense exercise training (spontaneous running on an instrumented wheel). In mice evaluated at the beginning and at the end of training we determined: exercise performance (mean distance covered daily on the wheel); cardiac function in vivo (by magnetic resonance imaging); soleus mitochondrial respiration ex vivo (by high-resolution respirometry); muscle phenotype [myosin heavy chain (MHC) isoform content; citrate synthase (CS) activity]; and variables related to the energy status of muscle fibers [ratio of phosphorylated 5'-AMP-activated protein kinase (AMPK) to unphosphorylated AMPK] and mitochondrial biogenesis and function [peroxisome proliferative-activated receptor-γ coactivator-α (PGC-1α)]. In the untrained Tgα q *44 mice functional impairments of exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed. The impairment of mitochondrial respiration was related to the function of complex I of the respiratory chain, and it was not associated with differences in CS activity, MHC isoforms, p-AMPK/AMPK, and PGC-1α levels. Exercise training improved exercise performance and cardiac function, but it did not affect mitochondrial respiration, even in the presence of an increased percentage of type 1 MHC isoforms. Factors "upstream" of mitochondria were likely mainly responsible for the improved exercise performance. NEW & NOTEWORTHY Functional impairments in exercise performance, cardiac function, and soleus muscle mitochondrial respiration were observed in transgenic chronic heart failure mice, evaluated in the critical period between the occurrence of an impairment of cardiac function and the terminal stage of the disease. Exercise training improved exercise performance and cardiac function, but it did not affect the impaired mitochondrial respiration. Factors "upstream" of mitochondria, including an enhanced cardiovascular O 2 delivery, were mainly responsible for the functional improvement. Copyright © 2017 the American Physiological Society.

  12. Resveratrol improves mitochondrial function in the remnant kidney from 5/6 nephrectomized rats.

    PubMed

    Hui, Yan; Lu, Miaomiao; Han, Yarong; Zhou, Hongli; Liu, Wei; Li, Lijing; Jin, Ruixia

    2017-05-01

    Mitochondrial dysfunction is involved in the pathogenesis of chronic kidney disease (CKD). Resveratrol has been demonstrated to be beneficial for the recovery of kidney diseases. In this study, the 5/6 nephrectomized rat was used as a CKD model and the TGF-β1-exposed mouse mesangial cells were used as an in vitro model. Pathological examination showed that resveratrol treatment attenuated glomerular injury in the remnant kidney of 5/6 nephrectomized rat. Additionally, resveratrol improved mitochondrial function in vivo and in vitro, as evidenced by increasing mitochondrial membrane potential, increasing ATP, decreasing reactive oxygen species production and enhancing activities of complex I and III. Furthermore, the dysregulated expressions of electron transport chain proteins and fission/fusion proteins in the kidney of 5/6 nephrectomize rats and TGF-β1-exposed mesangial cells were restored by resveratrol. Finally, upregulated sirt1 and PGC-1α deacetylation were found after treatment with resveratrol in vivo and in vitro, which may contribute to the mitochondrial protective effects of resveratrol. The results demonstrate that resveratrol protects the mitochondria of kidney in 5/6 nephrectomized rats and TGF-β1 induced mesangial cells. The study provides new insights into the renoprotective mechanisms of resveratrol. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    PubMed

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-10-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.

  14. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia

    PubMed Central

    Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.

    2017-01-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464

  15. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normalmore » glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.« less

  16. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  17. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  18. Vulnerable Parkin Loss-of-Function Drosophila Dopaminergic Neurons Have Advanced Mitochondrial Aging, Mitochondrial Network Loss and Transiently Reduced Autophagosome Recruitment.

    PubMed

    Cackovic, Juliana; Gutierrez-Luke, Susana; Call, Gerald B; Juba, Amber; O'Brien, Stephanie; Jun, Charles H; Buhlman, Lori M

    2018-01-01

    Selective degeneration of substantia nigra dopaminergic (DA) neurons is a hallmark pathology of familial Parkinson's disease (PD). While the mechanism of degeneration is elusive, abnormalities in mitochondrial function and turnover are strongly implicated. An Autosomal Recessive-Juvenile Parkinsonism (AR-JP) Drosophila melanogaster model exhibits DA neurodegeneration as well as aberrant mitochondrial dynamics and function. Disruptions in mitophagy have been observed in parkin loss-of-function models, and changes in mitochondrial respiration have been reported in patient fibroblasts. Whether loss of parkin causes selective DA neurodegeneration in vivo as a result of lost or decreased mitophagy is unknown. This study employs the use of fluorescent constructs expressed in Drosophila DA neurons that are functionally homologous to those of the mammalian substantia nigra. We provide evidence that degenerating DA neurons in parkin loss-of-function mutant flies have advanced mitochondrial aging, and that mitochondrial networks are fragmented and contain swollen organelles. We also found that mitophagy initiation is decreased in park ( Drosophila parkin/PARK2 ortholog) homozygous mutants, but autophagosome formation is unaffected, and mitochondrial network volumes are decreased. As the fly ages, autophagosome recruitment becomes similar to control, while mitochondria continue to show signs of damage, and climbing deficits persist. Interestingly, aberrant mitochondrial morphology, aging and mitophagy initiation were not observed in DA neurons that do not degenerate. Our results suggest that parkin is important for mitochondrial homeostasis in vulnerable Drosophila DA neurons, and that loss of parkin-mediated mitophagy may play a role in degeneration of relevant DA neurons or motor deficits in this model.

  19. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle

    PubMed Central

    Cho, Yoshitake; Hazen, Bethany C.; Gandra, Paulo G.; Ward, Samuel R.; Schenk, Simon; Russell, Aaron P.; Kralli, Anastasia

    2016-01-01

    Skeletal muscle mitochondrial content and oxidative capacity are important determinants of muscle function and whole-body health. Mitochondrial content and function are enhanced by endurance exercise and impaired in states or diseases where muscle function is compromised, such as myopathies, muscular dystrophies, neuromuscular diseases, and age-related muscle atrophy. Hence, elucidating the mechanisms that control muscle mitochondrial content and oxidative function can provide new insights into states and diseases that affect muscle health. In past studies, we identified Perm1 (PPARGC1- and ESRR-induced regulator, muscle 1) as a gene induced by endurance exercise in skeletal muscle, and regulating mitochondrial oxidative function in cultured myotubes. The capacity of Perm1 to regulate muscle mitochondrial content and function in vivo is not yet known. In this study, we use adeno-associated viral (AAV) vectors to increase Perm1 expression in skeletal muscles of 4-wk-old mice. Compared to control vector, AAV1-Perm1 leads to significant increases in mitochondrial content and oxidative capacity (by 40–80%). Moreover, AAV1-Perm1–transduced muscles show increased capillary density and resistance to fatigue (by 33 and 31%, respectively), without prominent changes in fiber-type composition. These findings suggest that Perm1 selectively regulates mitochondrial biogenesis and oxidative function, and implicate Perm1 in muscle adaptations that also occur in response to endurance exercise.—Cho, Y., Hazen, B. C., Gandra, P. G., Ward, S. R., Schenk, S., Russell, A. P., Kralli, A. Perm1 enhances mitochondrial biogenesis, oxidative capacity, and fatigue resistance in adult skeletal muscle. PMID:26481306

  20. Mitochondrial quality control: Easy come, easy go

    PubMed Central

    Stotland, Aleksandr; Gottlieb, Roberta A.

    2015-01-01

    “Friends come and go but enemies accumulate.”Arthur Bloch Mitochondrial networks in eukaryotic cells are maintained via regular cycles of degradation and biogenesis. These complex processes function in concert with one another to eliminate dysfunctional mitochondria in a specific and targeted manner and coordinate the biogenesis of new organelles. This review covers the two aspects of mitochondrial turnover, focusing on the main pathways and mechanisms involved. The review also summarizes the current methods and techniques for analyzing mitochondrial turnover in vivo and in vitro, from the whole animal proteome level to the level of single organelle. PMID:25596427

  1. A high throughput respirometric assay for mitochondrial biogenesis and toxicity

    PubMed Central

    Beeson, Craig C.; Beeson, Gyda C.; Schnellmann, Rick G.

    2010-01-01

    Mitochondria are a common target of toxicity for drugs and other chemicals, and results in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput, real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTC) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Biosciences analyzer to measure mitochondrial function in real time in multi-well plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl2 and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTC. The merger of the RPTC model and multi-well respirometry results in a single high throughput assay to measure mitochondrial biogenesis and toxicity, and nephrotoxic potential. PMID:20465991

  2. Betaine is a positive regulator of mitochondrial respiration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Icksoo, E-mail: icksoolee@dankook.ac.kr

    2015-01-09

    Highlights: • Betaine enhances cytochrome c oxidase activity and mitochondrial respiration. • Betaine increases mitochondrial membrane potential and cellular energy levels. • Betaine’s anti-tumorigenic effect might be due to a reversal of the Warburg effect. - Abstract: Betaine protects cells from environmental stress and serves as a methyl donor in several biochemical pathways. It reduces cardiovascular disease risk and protects liver cells from alcoholic liver damage and nonalcoholic steatohepatitis. Its pretreatment can rescue cells exposed to toxins such as rotenone, chloroform, and LiCl. Furthermore, it has been suggested that betaine can suppress cancer cell growth in vivo and in vitro.more » Mitochondrial electron transport chain (ETC) complexes generate the mitochondrial membrane potential, which is essential to produce cellular energy, ATP. Reduced mitochondrial respiration and energy status have been found in many human pathological conditions including aging, cancer, and neurodegenerative disease. In this study we investigated whether betaine directly targets mitochondria. We show that betaine treatment leads to an upregulation of mitochondrial respiration and cytochrome c oxidase activity in H2.35 cells, the proposed rate limiting enzyme of ETC in vivo. Following treatment, the mitochondrial membrane potential was increased and cellular energy levels were elevated. We propose that the anti-proliferative effects of betaine on cancer cells might be due to enhanced mitochondrial function contributing to a reversal of the Warburg effect.« less

  3. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity.

    PubMed

    Meex, Ruth C R; Schrauwen-Hinderling, Vera B; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K C

    2010-03-01

    Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and VO2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (-64%; P < 0.01 in control subjects and -52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near-significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity.

  4. Restoration of Muscle Mitochondrial Function and Metabolic Flexibility in Type 2 Diabetes by Exercise Training Is Paralleled by Increased Myocellular Fat Storage and Improved Insulin Sensitivity

    PubMed Central

    Meex, Ruth C.R.; Schrauwen-Hinderling, Vera B.; Moonen-Kornips, Esther; Schaart, Gert; Mensink, Marco; Phielix, Esther; van de Weijer, Tineke; Sels, Jean-Pierre; Schrauwen, Patrick; Hesselink, Matthijs K.C.

    2010-01-01

    OBJECTIVE Mitochondrial dysfunction and fat accumulation in skeletal muscle (increased intramyocellular lipid [IMCL]) have been linked to development of type 2 diabetes. We examined whether exercise training could restore mitochondrial function and insulin sensitivity in patients with type 2 diabetes. RESEARCH DESIGN AND METHODS Eighteen male type 2 diabetic and 20 healthy male control subjects of comparable body weight, BMI, age, and Vo2max participated in a 12-week combined progressive training program (three times per week and 45 min per session). In vivo mitochondrial function (assessed via magnetic resonance spectroscopy), insulin sensitivity (clamp), metabolic flexibility (indirect calorimetry), and IMCL content (histochemically) were measured before and after training. RESULTS Mitochondrial function was lower in type 2 diabetic compared with control subjects (P = 0.03), improved by training in control subjects (28% increase; P = 0.02), and restored to control values in type 2 diabetic subjects (48% increase; P < 0.01). Insulin sensitivity tended to improve in control subjects (delta Rd 8% increase; P = 0.08) and improved significantly in type 2 diabetic subjects (delta Rd 63% increase; P < 0.01). Suppression of insulin-stimulated endogenous glucose production improved in both groups (−64%; P < 0.01 in control subjects and −52% in diabetic subjects; P < 0.01). After training, metabolic flexibility in type 2 diabetic subjects was restored (delta respiratory exchange ratio 63% increase; P = 0.01) but was unchanged in control subjects (delta respiratory exchange ratio 7% increase; P = 0.22). Starting with comparable pretraining IMCL levels, training tended to increase IMCL content in type 2 diabetic subjects (27% increase; P = 0.10), especially in type 2 muscle fibers. CONCLUSIONS Exercise training restored in vivo mitochondrial function in type 2 diabetic subjects. Insulin-mediated glucose disposal and metabolic flexibility improved in type 2 diabetic subjects in the face of near–significantly increased IMCL content. This indicates that increased capacity to store IMCL and restoration of improved mitochondrial function contribute to improved muscle insulin sensitivity. PMID:20028948

  5. Paclitaxel-induced painful neuropathy is associated with changes in mitochondrial bioenergetics, glycolysis, and an energy deficit in dorsal root ganglia neurons

    PubMed Central

    Duggett, Natalie A.; Griffiths, Lisa A.; Flatters, Sarah J.L.

    2017-01-01

    Abstract Painful neuropathy is the major dose-limiting side effect of paclitaxel chemotherapy. Mitochondrial dysfunction and adenosine triphosphate (ATP) deficit have previously been shown in peripheral nerves of paclitaxel-treated rats, but the effects of paclitaxel in the dorsal root ganglia (DRGs) have not been explored. The aim of this study was to determine the bioenergetic status of DRG neurons following paclitaxel exposure in vitro and in vivo. Utilising isolated DRG neurons, we measured respiratory function under basal conditions and at maximal capacity, glycolytic function, and Adenosine diphosphate (ADP)/ATP levels at 3 key behavioural timepoints; prior to pain onset (day 7), peak pain severity and pain resolution. At day 7, maximal respiration and spare reserve capacity were significantly decreased in DRG neurons from paclitaxel-treated rats. This was accompanied by decreased basal ATP levels and unaltered ADP levels. At peak pain severity, respiratory function was unaltered, yet glycolytic function was significantly increased. Reduced ATP and unaltered ADP levels were also observed at the peak pain timepoint. All these effects in DRG neurons had dissipated by the pain resolution timepoint. None of these paclitaxel-evoked changes could be replicated from in vitro paclitaxel exposure to naive DRG neurons, demonstrating the impact of in vivo exposure and the importance of in vivo models. These data demonstrate the nature of mitochondrial dysfunction evoked by in vivo paclitaxel in the DRG for the first time. Furthermore, we have identified paclitaxel-evoked changes in the bioenergetics of DRG neurons, which result in a persistent energy deficit that is causal to the development and maintenance of paclitaxel-induced pain. PMID:28541258

  6. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  7. In vitro and in vivo activation of mitochondrial membrane permeability transition pore using triiodothyronine.

    PubMed

    Endlicher, R; Drahota, Z; Červinková, Z

    2016-06-20

    Using a novel method for evaluating mitochondrial swelling (Drahota et al. 2012a) we studied the effect of calcium (Ca(2+)), phosphate (P(i)), and triiodothyronine (T(3)) on the opening of mitochondrial membrane permeability transition pore and how they interact in the activation of swelling process. We found that 0.1 mM P(i), 50 microM Ca(2+) and 25 microM T(3) when added separately increase the swelling rate to about 10 % of maximal values when all three factors are applied simultaneously. Our findings document that under experimental conditions in which Ca(2+) and P(i) are used as activating factors, the addition of T(3) doubled the rate of swelling. T(3) has also an activating effect on mitochondrial membrane potential. The T(3) activating effect was also found after in vivo application of T(3). Our data thus demonstrate that T(3) has an important role in opening the mitochondrial membrane permeability pore and activates the function of the two key physiological swelling inducers, calcium and phosphate ions.

  8. Permeabilization of brain tissue in situ enables multiregion analysis of mitochondrial function in a single mouse brain.

    PubMed

    Herbst, Eric A F; Holloway, Graham P

    2015-02-15

    Mitochondrial function in the brain is traditionally assessed through analysing respiration in isolated mitochondria, a technique that possesses significant tissue and time requirements while also disrupting the cooperative mitochondrial reticulum. We permeabilized brain tissue in situ to permit analysis of mitochondrial respiration with the native mitochondrial morphology intact, removing the need for isolation time and minimizing tissue requirements to ∼2 mg wet weight. The permeabilized brain technique was validated against the traditional method of isolated mitochondria and was then further applied to assess regional variation in the mouse brain with ischaemia-reperfusion injuries. A transgenic mouse model overexpressing catalase within mitochondria was applied to show the contribution of mitochondrial reactive oxygen species to ischaemia-reperfusion injuries in different brain regions. This technique enhances the accessibility of addressing physiological questions in small brain regions and in applying transgenic mouse models to assess mechanisms regulating mitochondrial function in health and disease. Mitochondria function as the core energy providers in the brain and symptoms of neurodegenerative diseases are often attributed to their dysregulation. Assessing mitochondrial function is classically performed in isolated mitochondria; however, this process requires significant isolation time, demand for abundant tissue and disruption of the cooperative mitochondrial reticulum, all of which reduce reliability when attempting to assess in vivo mitochondrial bioenergetics. Here we introduce a method that advances the assessment of mitochondrial respiration in the brain by permeabilizing existing brain tissue to grant direct access to the mitochondrial reticulum in situ. The permeabilized brain preparation allows for instant analysis of mitochondrial function with unaltered mitochondrial morphology using significantly small sample sizes (∼2 mg), which permits the analysis of mitochondrial function in multiple subregions within a single mouse brain. Here this technique was applied to assess regional variation in brain mitochondrial function with acute ischaemia-reperfusion injuries and to determine the role of reactive oxygen species in exacerbating dysfunction through the application of a transgenic mouse model overexpressing catalase within mitochondria. Through creating accessibility to small regions for the investigation of mitochondrial function, the permeabilized brain preparation enhances the capacity for examining regional differences in mitochondrial regulation within the brain, as the majority of genetic models used for unique approaches exist in the mouse model. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  9. A Screenable In Vivo Assay for Mitochondrial Modulators Using Transgenic Bioluminescent Caenorhabditis elegans.

    PubMed

    Lagido, Cristina; McLaggan, Debbie; Glover, L Anne

    2015-10-16

    The multicellular model organism Caenorhabditis elegans is a small nematode of approximately 1 mm in size in adulthood that is genetically and experimentally tractable. It is economical and easy to culture and dispense in liquid medium which makes it well suited for medium-throughput screening. We have previously validated the use of transgenic luciferase expressing C. elegans strains to provide rapid in vivo assessment of the nematode's ATP levels.(1-3) Here we present the required materials and procedure to carry out bioassays with the bioluminescent C. elegans strains PE254 or PE255 (or any of their derivative strains). The protocol allows for in vivo detection of sublethal effects of drugs that may identify mitochondrial toxicity, as well as for in vivo detection of potential beneficial drug effects. Representative results are provided for the chemicals paraquat, rotenone, oxaloacetate and for four firefly luciferase inhibitory compounds. The methodology can be scaled up to provide a platform for screening drug libraries for compounds capable of modulating mitochondrial function. Pre-clinical evaluation of drug toxicity is often carried out on immortalized cancerous human cell lines which derive ATP mostly from glycolysis and are often tolerant of mitochondrial toxicants.(4,5) In contrast, C. elegans depends on oxidative phosphorylation to sustain development into adulthood, drawing a parallel with humans and providing a unique opportunity for compound evaluation in the physiological context of a whole live multicellular organism.

  10. Modelling in vivo creatine/phosphocreatine in vitro reveals divergent adaptations in human muscle mitochondrial respiratory control by ADP after acute and chronic exercise.

    PubMed

    Ydfors, Mia; Hughes, Meghan C; Laham, Robert; Schlattner, Uwe; Norrbom, Jessica; Perry, Christopher G R

    2016-06-01

    Mitochondrial respiratory sensitivity to ADP is thought to influence muscle fitness and is partly regulated by cytosolic-mitochondrial diffusion of ADP or phosphate shuttling via creatine/phosphocreatine (Cr/PCr) through mitochondrial creatine kinase (mtCK). Previous measurements of respiration in vitro with Cr (saturate mtCK) or without (ADP/ATP diffusion) show mixed responses of ADP sensitivity following acute exercise vs. less sensitivity after chronic exercise. In human muscle, modelling in vivo 'exercising' [Cr:PCr] during in vitro assessments revealed novel responses to exercise that differ from detections with or without Cr (±Cr). Acute exercise increased ADP sensitivity when measured without Cr but had no effect ±Cr or with +Cr:PCr, whereas chronic exercise increased sensitivity ±Cr but lowered sensitivity with +Cr:PCr despite increased markers of mitochondrial oxidative capacity. Controlling in vivo conditions during in vitro respiratory assessments reveals responses to exercise that differ from typical ±Cr comparisons and challenges our understanding of how exercise improves metabolic control in human muscle. Mitochondrial respiratory control by ADP (Kmapp ) is viewed as a critical regulator of muscle energy homeostasis. However, acute exercise increases, decreases or has no effect on Kmapp in human muscle, whereas chronic exercise surprisingly decreases sensitivity despite greater mitochondrial content. We hypothesized that modelling in vivo mitochondrial creatine kinase (mtCK)-dependent phosphate-shuttling conditions in vitro would reveal increased sensitivity (lower Kmapp ) after acute and chronic exercise. The Kmapp was determined in vitro with 20 mm Cr (+Cr), 0 mm Cr (-Cr) or 'in vivo exercising' 20 mm Cr/2.4 mm PCr (Cr:PCr) on vastus lateralis biopsies sampled from 11 men before, immediately after and 3 h after exercise on the first, fifth and ninth sessions over 3 weeks. Dynamic responses to acute exercise occurred throughout training, whereby the first session did not change Kmapp with in vivo Cr:PCr despite increases in -Cr. The fifth session decreased sensitivity with Cr:PCr or +Cr despite no change in -Cr. Chronic exercise increased sensitivity ±Cr in association with increased electron transport chain content (+33-62% complexes I-V), supporting classic proposals that link increased sensitivity to oxidative capacity. However, in vivo Cr:PCr reveals a perplexing decreased sensitivity, contrasting the increases seen ±Cr. Functional responses occurred without changes in fibre type or proteins regulating mitochondrial-cytosolic energy exchange (mtCK, VDAC and ANT). Despite the dynamic responses seen with ±Cr, modelling in vivo phosphate-shuttling conditions in vitro reveals that ADP sensitivity is unchanged after high-intensity exercise and is decreased after training. These findings challenge our understanding of how exercise regulates skeletal muscle energy homeostasis. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  11. Decreasing mitochondrial fission diminishes vascular smooth muscle cell migration and ameliorates intimal hyperplasia

    PubMed Central

    Wang, Li; Yu, Tianzheng; Lee, Hakjoo; O'Brien, Dawn K.; Sesaki, Hiromi; Yoon, Yisang

    2015-01-01

    Aims Vascular smooth muscle cell (VSMC) migration in response to arterial wall injury is a critical process in the development of intimal hyperplasia. Cell migration is an energy-demanding process that is predicted to require mitochondrial function. Mitochondria are morphologically dynamic, undergoing continuous shape change through fission and fusion. However, the role of mitochondrial morphology in VSMC migration is not well understood. The aim of the study is to understand how mitochondrial fission contributes to VSMC migration and provides its in vivo relevance in the mouse model of intimal hyperplasia. Methods and results In primary mouse VSMCs, the chemoattractant PDGF induced mitochondrial shortening through the mitochondrial fission protein dynamin-like protein 1 (DLP1)/Drp1. Perturbation of mitochondrial fission by expressing the dominant-negative mutant DLP1-K38A or by DLP1 silencing greatly decreased PDGF-induced lamellipodia formation and VSMC migration, indicating that mitochondrial fission is an important process in VSMC migration. PDGF induced an augmentation of mitochondrial energetics as well as ROS production, both of which were found to be necessary for VSMC migration. Mechanistically, the inhibition of mitochondrial fission induced an increase of mitochondrial inner membrane proton leak in VSMCs, abrogating the PDGF-induced energetic enhancement and an ROS increase. In an in vivo model of intimal hyperplasia, transgenic mice expressing DLP1-K38A displayed markedly reduced ROS levels and neointima formation in response to femoral artery wire injury. Conclusions Mitochondrial fission is an integral process in cell migration, and controlling mitochondrial fission can limit VSMC migration and the pathological intimal hyperplasia by altering mitochondrial energetics and ROS levels. PMID:25587046

  12. The Effects of NAD+ on Apoptotic Neuronal Death and Mitochondrial Biogenesis and Function after Glutamate Excitotoxicity

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-01-01

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke. PMID:25387075

  13. Hyperforin promotes mitochondrial function and development of oligodendrocytes.

    PubMed

    Wang, Yanlin; Zhang, Yanbo; He, Jue; Zhang, Handi; Xiao, Lan; Nazarali, Adil; Zhang, Zhijun; Zhang, Dai; Tan, Qingrong; Kong, Jiming; Li, Xin-Min

    2011-11-01

    St. John's wort has been found to be an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. In this study, we evaluated the effects of hyperforin, a major active component of St. John's wort, on the proliferation, development and mitochondrial function of oligodendrocytes. The study results revealed that hyperforin promotes maturation of oligodendrocytes and increases mitochondrial function without affecting proliferation of an oligodendrocyte progenitor cell line and neural stem/progenitor cells. Hyperforin also prevented mitochondrial toxin-induced cytotoxicity in an oligodendrocyte progenitor cell line. These findings suggest that hyperforin may stimulate the development and function of oligodendrocytes, which could be a mechanism of its effect in depression. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  14. Cyclosporine A at reperfusion fails to reduce infarct size in the in vivo rat heart.

    PubMed

    De Paulis, Damien; Chiari, Pascal; Teixeira, Geoffrey; Couture-Lepetit, Elisabeth; Abrial, Maryline; Argaud, Laurent; Gharib, Abdallah; Ovize, Michel

    2013-09-01

    We examined the effects on infarct size and mitochondrial function of ischemic (Isch), cyclosporine A (CsA) and isoflurane (Iso) preconditioning and postconditioning in the in vivo rat model. Anesthetized open-chest rats underwent 30 min of ischemia followed by either 120 min (protocol 1: infarct size assessment) or 15 min of reperfusion (protocol 2: assessment of mitochondrial function). All treatments administered before the 30-min ischemia (Pre-Isch, Pre-CsA, Pre-Iso) significantly reduced infarct as compared to control. In contrast, only Post-Iso significantly reduced infarct size, while Post-Isch and Post-CsA had no significant protective effect. As for the postconditioning-like interventions, the mitochondrial calcium retention capacity significantly increased only in the Post-Iso group (+58 % vs control) after succinate activation. Only Post-Iso increased state 3 (+177 and +62 %, for G/M and succinate, respectively) when compared to control. Also, Post-Iso reduced the hydrogen peroxide (H2O2) production (-46 % vs control) after complex I activation. This study suggests that isoflurane, but not cyclosporine A, can prevent lethal reperfusion injury in this in vivo rat model. This might be related to the need for a combined effect on cyclophilin D and complex I during the first minutes of reperfusion.

  15. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by beta-amyloid peptide.

    PubMed

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, W E

    2010-05-01

    beta-Amyloid peptide (Abeta) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Abeta-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Abeta and on neurite outgrowth in PC12 cells were investigated. Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Abeta(1-42). Similar protective effects against Abeta(1-42) were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Abeta load was markedly diminished in the brain of those animals after treatment with piracetam. Abeta production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Abeta-induced mitochondrial dysfunction and Abeta-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Abeta on brain function.

  16. Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts

    PubMed Central

    Karamanlidis, Georgios; Garcia-Menendez, Lorena; Kolwicz, Stephen C.; Lee, Chi Fung

    2014-01-01

    Mitochondrial dysfunction in animal models of heart failure is associated with downregulation of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α pathway. To test whether PGC-1α is an appropriate therapeutic target for increasing mitochondrial biogenesis and improving function in heart failure, we used a transgenic (TG) mouse model of moderate overexpression of PGC-1α (∼3-fold) in the heart. TG mice had small increases in citrate synthase activity and mitochondria size in the heart without alterations in myocardial energetics or cardiac function at baseline. In vivo dobutamine stress increased fractional shortening in wild-type mice, but this increase was attenuated in TG mice, whereas ex vivo isolated perfused TG hearts demonstrated normal functional and energetic response to high workload challenge. When subjected to pressure overload by transverse aortic constriction (TAC), TG mice displayed a significantly greater acute mortality for both male and female mice; however, long-term survival up to 8 wk was similar between the two groups. TG mice also showed a greater decrease in fractional shortening and a greater increase in left ventricular chamber dimension in response to TAC. Mitochondrial gene expression and citrate synthase activity were mildly increased in TG mice compared with wild-type mice, and this difference was also maintained after TAC. Our data suggest that a moderate level of PGC-1α overexpression in the heart compromises acute survival and does not improve cardiac function during chronic pressure overload in mice. PMID:25172896

  17. Inositol trisphosphate receptor-mediated Ca2+ signalling stimulates mitochondrial function and gene expression in core myopathy patients.

    PubMed

    Suman, Matteo; Sharpe, Jenny A; Bentham, Robert B; Kotiadis, Vassilios N; Menegollo, Michela; Pignataro, Viviana; Molgó, Jordi; Muntoni, Francesco; Duchen, Michael R; Pegoraro, Elena; Szabadkai, Gyorgy

    2018-07-01

    Core myopathies are a group of childhood muscle disorders caused by mutations of the ryanodine receptor (RyR1), the Ca2+ release channel of the sarcoplasmic reticulum. These mutations have previously been associated with elevated inositol trisphosphate receptor (IP3R) levels in skeletal muscle myotubes derived from patients. However, the functional relevance and the relationship of IP3R mediated Ca2+ signalling with the pathophysiology of the disease is unclear. It has also been suggested that mitochondrial dysfunction underlies the development of central and diffuse multi-mini-cores, devoid of mitochondrial activity, which is a key pathological consequence of RyR1 mutations. Here we used muscle biopsies of central core and multi-minicore disease patients with RyR1 mutations, as well as cellular and in vivo mouse models of the disease to characterize global cellular and mitochondrial Ca2+ signalling, mitochondrial function and gene expression associated with the disease. We show that RyR1 mutations that lead to the depletion of the channel are associated with increased IP3-mediated nuclear and mitochondrial Ca2+ signals and increased mitochondrial activity. Moreover, western blot and microarray analysis indicated enhanced mitochondrial biogenesis at the transcriptional and protein levels and was reflected in increased mitochondrial DNA content. The phenotype was recapitulated by RYR1 silencing in mouse cellular myotube models. Altogether, these data indicate that remodelling of skeletal muscle Ca2+ signalling following loss of functional RyR1 mediates bioenergetic adaptation.

  18. Sustained expression of PGC-1α in the rat nigrostriatal system selectively impairs dopaminergic function

    PubMed Central

    Ciron, C.; Lengacher, S.; Dusonchet, J.; Aebischer, P.; Schneider, B.L.

    2012-01-01

    Mitochondrial dysfunction and oxidative stress have been implicated in the etiology of Parkinson's disease. Therefore, pathways controlling mitochondrial activity rapidly emerge as potential therapeutic targets. Here, we explore the neuronal response to prolonged overexpression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α), a transcriptional regulator of mitochondrial function, both in vitro and in vivo. In neuronal primary cultures from the ventral midbrain, PGC-1α induces mitochondrial biogenesis and increases basal respiration. Over time, we observe an increasing proportion of the oxygen consumed by neurons which are dedicated to adenosine triphosphate production. In parallel to enhanced oxidative phosphorylation, PGC-1α progressively leads to a decrease in mitochondrial polarization. In the adult rat nigrostriatal system, adeno-associated virus (AAV)-mediated overexpression of PGC-1α induces the selective loss of dopaminergic markers and increases dopamine (DA) catabolism, leading to a reduction in striatal DA content. In addition, PGC-1α prevents the labeling of nigral neurons following striatal injection of the fluorogold retrograde tracer. When PGC-1α is expressed at higher levels following intranigral AAV injection, it leads to overt degeneration of dopaminergic neurons. Finally, PGC-1α overexpression does not prevent nigrostriatal degeneration in pathologic conditions induced by α-synuclein overexpression. Overall, we find that lasting overexpression of PGC-1α leads to major alterations in the metabolic activity of neuronal cells which dramatically impair dopaminergic function in vivo. These results highlight the central role of PGC-1α in the function and survival of dopaminergic neurons and the critical need for maintaining physiological levels of PGC-1α activity. PMID:22246294

  19. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology

    PubMed Central

    Gong, Guohua; Wang, Xianhua; Wei-LaPierre, Lan; Cheng, Heping; Dirksen, Robert

    2016-01-01

    Abstract Significance: Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of “mitochondrial flash” activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. Recent Advances: The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. Critical Issues: We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. Future Directions: Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534–549. PMID:27245241

  20. Tryptamine-gallic acid hybrid prevents non-steroidal anti-inflammatory drug-induced gastropathy: correction of mitochondrial dysfunction and inhibition of apoptosis in gastric mucosal cells.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-27

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O(2)(·-)) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled ((99m)Tc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy.

  1. Antiviral Nucleotide Incorporation by Recombinant Human Mitochondrial RNA Polymerase Is Predictive of Increased In Vivo Mitochondrial Toxicity Risk

    PubMed Central

    Lin, Xiaodong; Yokokawa, Fumiaki; Sweeney, Zachary; Saunders, Oliver; Xie, Lili; Lim, Siew Pheng; Uteng, Marianne; Uehara, Kyoko; Warne, Robert; Gang, Wang; Jones, Christopher; Yendluri, Satya; Gu, Helen; Mansfield, Keith; Boisclair, Julie; Heimbach, Tycho; Catoire, Alexandre; Bracken, Kathryn; Weaver, Margaret; Moser, Heinz; Zhong, Weidong

    2016-01-01

    Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2′-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC50], 0.05 to 0.1 μM) with a selectivity index of >300 (50% cytotoxic concentration [CC50], 30 μM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, β, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated. PMID:27645237

  2. Enhanced J-protein interaction and compromised protein stability of mtHsp70 variants lead to mitochondrial dysfunction in Parkinson's disease.

    PubMed

    Goswami, Arvind Vittal; Samaddar, Madhuja; Sinha, Devanjan; Purushotham, Jaya; D'Silva, Patrick

    2012-08-01

    Parkinson's disease (PD) is the second most prevalent progressive neurological disorder commonly associated with impaired mitochondrial function in dopaminergic neurons. Although familial PD is multifactorial in nature, a recent genetic screen involving PD patients identified two mitochondrial Hsp70 variants (P509S and R126W) that are suggested in PD pathogenesis. However, molecular mechanisms underlying how mtHsp70 PD variants are centrally involved in PD progression is totally elusive. In this article, we provide mechanistic insights into the mitochondrial dysfunction associated with human mtHsp70 PD variants. Biochemically, the R126W variant showed severely compromised protein stability and was found highly susceptible to aggregation at physiological conditions. Strikingly, on the other hand, the P509S variant exhibits significantly enhanced interaction with J-protein cochaperones involved in folding and import machinery, thus altering the overall regulation of chaperone-mediated folding cycle and protein homeostasis. To assess the impact of mtHsp70 PD mutations at the cellular level, we developed yeast as a model system by making analogous mutations in Ssc1 ortholog. Interestingly, PD mutations in yeast (R103W and P486S) exhibit multiple in vivo phenotypes, which are associated with 'mitochondrial dysfunction', including compromised growth, impairment in protein translocation, reduced functional mitochondrial mass, mitochondrial DNA loss, respiratory incompetency and increased susceptibility to oxidative stress. In addition to that, R103W protein is prone to aggregate in vivo due to reduced stability, whereas P486S showed enhanced interaction with J-proteins, thus remarkably recapitulating the cellular defects that are observed in human PD variants. Taken together, our findings provide evidence in favor of direct involvement of mtHsp70 as a susceptibility factor in PD.

  3. Tryptamine-Gallic Acid Hybrid Prevents Non-steroidal Anti-inflammatory Drug-induced Gastropathy

    PubMed Central

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd. Shameel; Sarkar, Souvik; Kumar, Rahul; Halder, Kamal Krishna; Debnath, Mita Chatterjee; Adhikari, Susanta; Bandyopadhyay, Uday

    2012-01-01

    We have investigated the gastroprotective effect of SEGA (3a), a newly synthesized tryptamine-gallic acid hybrid molecule against non-steroidal anti-inflammatory drug (NSAID)-induced gastropathy with mechanistic details. SEGA (3a) prevents indomethacin (NSAID)-induced mitochondrial oxidative stress (MOS) and dysfunctions in gastric mucosal cells, which play a pathogenic role in inducing gastropathy. SEGA (3a) offers this mitoprotective effect by scavenging of mitochondrial superoxide anion (O2˙̄) and intramitochondrial free iron released as a result of MOS. SEGA (3a) in vivo blocks indomethacin-mediated MOS, as is evident from the inhibition of indomethacin-induced mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. SEGA (3a) corrects indomethacin-mediated mitochondrial dysfunction in vivo by restoring defective electron transport chain function, collapse of transmembrane potential, and loss of dehydrogenase activity. SEGA (3a) not only corrects mitochondrial dysfunction but also inhibits the activation of the mitochondrial pathway of apoptosis by indomethacin. SEGA (3a) inhibits indomethacin-induced down-regulation of bcl-2 and up-regulation of bax genes in gastric mucosa. SEGA (3a) also inhibits indometacin-induced activation of caspase-9 and caspase-3 in gastric mucosa. Besides the gastroprotective effect against NSAID, SEGA (3a) also expedites the healing of already damaged gastric mucosa. Radiolabeled (99mTc-labeled SEGA (3a)) tracer studies confirm that SEGA (3a) enters into mitochondria of gastric mucosal cell in vivo, and it is quite stable in serum. Thus, SEGA (3a) bears an immense potential to be a novel gastroprotective agent against NSAID-induced gastropathy. PMID:22157011

  4. Resveratrol and the mitochondria: From triggering the intrinsic apoptotic pathway to inducing mitochondrial biogenesis, a mechanistic view.

    PubMed

    de Oliveira, Marcos Roberto; Nabavi, Seyed Fazel; Manayi, Azadeh; Daglia, Maria; Hajheydari, Zohreh; Nabavi, Seyed Mohammad

    2016-04-01

    Mitochondria, the power plants of the cell, are known as a cross-road of different cellular signaling pathways. These cytoplasmic double-membraned organelles play a pivotal role in energy metabolism and regulate calcium flux in the cells. It is well known that mitochondrial dysfunction is associated with different diseases such as neurodegeneration and cancer. A growing body of literature has shown that polyphenolic compounds exert direct effects on mitochondrial ultra-structure and function. Resveratrol is known as one of the most common bioactive constituents of red wine, which improves mitochondrial functions under in vitro and in vivo conditions. This paper aims to review the molecular pathways underlying the beneficial effects of resveratrol on mitochondrial structure and functions. In addition, we discuss the chemistry and main sources of resveratrol. Resveratrol represents the promising effects on mitochondria in different experimental models. However, there are several reports on the detrimental effects elicited by resveratrol on mitochondria. An understanding of the chemistry and source of resveratrol, its bioavailability and the promising effects on mitochondria brings a new hope to therapy of mitochondrial dysfunction-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Reversible Disruption of Neuronal Mitochondria by Ischemic and Traumatic Injury Revealed by Quantitative Two-Photon Imaging in the Neocortex of Anesthetized Mice

    PubMed Central

    Kislin, Mikhail; Sword, Jeremy; Fomitcheva, Ioulia V.; Croom, Deborah; Pryazhnikov, Evgeny; Lihavainen, Eero; Toptunov, Dmytro; Rauvala, Heikki; Ribeiro, Andre S.

    2017-01-01

    Mitochondria play a variety of functional roles in cortical neurons, from metabolic support and neuroprotection to the release of cytokines that trigger apoptosis. In dendrites, mitochondrial structure is closely linked to their function, and fragmentation (fission) of the normally elongated mitochondria indicates loss of their function under pathological conditions, such as stroke and brain trauma. Using in vivo two-photon microscopy in mouse brain, we quantified mitochondrial fragmentation in a full spectrum of cortical injuries, ranging from severe to mild. Severe global ischemic injury was induced by bilateral common carotid artery occlusion, whereas severe focal stroke injury was induced by Rose Bengal photosensitization. The moderate and mild traumatic injury was inflicted by focal laser lesion and by mild photo-damage, respectively. Dendritic and mitochondrial structural changes were tracked longitudinally using transgenic mice expressing fluorescent proteins localized either in cytosol or in mitochondrial matrix. In response to severe injury, mitochondrial fragmentation developed in parallel with dendritic damage signified by dendritic beading. Reconstruction from serial section electron microscopy confirmed mitochondrial fragmentation. Unlike dendritic beading, fragmentation spread beyond the injury core in focal stroke and focal laser lesion models. In moderate and mild injury, mitochondrial fragmentation was reversible with full recovery of structural integrity after 1–2 weeks. The transient fragmentation observed in the mild photo-damage model was associated with changes in dendritic spine density without any signs of dendritic damage. Our findings indicate that alterations in neuronal mitochondria structure are very sensitive to the tissue damage and can be reversible in ischemic and traumatic injuries. SIGNIFICANCE STATEMENT During ischemic stroke or brain trauma, mitochondria can either protect neurons by supplying ATP and adsorbing excessive Ca2+, or kill neurons by releasing proapoptotic factors. Mitochondrial function is tightly linked to their morphology: healthy mitochondria are thin and long; dysfunctional mitochondria are thick (swollen) and short (fragmented). To date, fragmentation of mitochondria was studied either in dissociated cultured neurons or in brain slices, but not in the intact living brain. Using real-time in vivo two-photon microscopy, we quantified mitochondrial fragmentation during acute pathological conditions that mimic severe, moderate, and mild brain injury. We demonstrated that alterations in neuronal mitochondria structural integrity can be reversible in traumatic and ischemic injuries, highlighting mitochondria as a potential target for therapeutic interventions. PMID:28077713

  6. PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila

    PubMed Central

    Shiba-Fukushima, Kahori; Inoshita, Tsuyoshi; Hattori, Nobutaka; Imai, Yuzuru

    2014-01-01

    Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. PMID:24901221

  7. Metabolic labeling reveals proteome dynamics of mouse mitochondria.

    PubMed

    Kim, Tae-Young; Wang, Ding; Kim, Allen K; Lau, Edward; Lin, Amanda J; Liem, David A; Zhang, Jun; Zong, Nobel C; Lam, Maggie P Y; Ping, Peipei

    2012-12-01

    Mitochondrial dysfunction is associated with many human diseases. Mitochondrial damage is exacerbated by inadequate protein quality control and often further contributes to pathogenesis. The maintenance of mitochondrial functions requires a delicate balance of continuous protein synthesis and degradation, i.e. protein turnover. To understand mitochondrial protein dynamics in vivo, we designed a metabolic heavy water ((2)H(2)O) labeling strategy customized to examine individual protein turnover in the mitochondria in a systematic fashion. Mice were fed with (2)H(2)O at a minimal level (<5% body water) without physiological impacts. Mitochondrial proteins were analyzed from 9 mice at each of the 13 time points between 0 and 90 days (d) of labeling. A novel multiparameter fitting approach computationally determined the normalized peak areas of peptide mass isotopomers at initial and steady-state time points and permitted the protein half-life to be determined without plateau-level (2)H incorporation. We characterized the turnover rates of 458 proteins in mouse cardiac and hepatic mitochondria and found median turnover rates of 0.0402 d(-1) and 0.163 d(-1), respectively, corresponding to median half-lives of 17.2 d and 4.26 d. Mitochondria in the heart and those in the liver exhibited distinct turnover kinetics, with limited synchronization within functional clusters. We observed considerable interprotein differences in turnover rates in both organs, with half-lives spanning from hours to months (≈ 60 d). Our proteomics platform demonstrates the first large-scale analysis of mitochondrial protein turnover rates in vivo, with potential applications in translational research.

  8. The modulation of the biological activities of mitochondrial histone Abf2p by yeast PKA and its possible role in the regulation of mitochondrial DNA content during glucose repression.

    PubMed

    Cho, J H; Lee, Y K; Chae, C B

    2001-12-30

    The mitochondrial histone, Abf2p, of Saccharomyces cerevisiae is essential for the maintenance of mitochondrial DNA (mtDNA) and appears to play an important role in the recombination and copy number determination of mtDNA. Abf2p, encoded by a nuclear gene, is a member of HMG1 DNA-binding protein family and has two HMG1-Box domains, HMG1-Box A and B. To investigate the role of Abf2p in the control of mtDNA copy number, we asked if the in vivo functions of Abf2p are regulated by the possible modification such as phosphorylation. We found that the N-terminal extended segment (KRPT(21)S(22)) of HMG1-Box A is rapidly and specifically phosphorylated by cAMP-dependent protein kinase (PKA) in vitro. The phosphorylation in this region inhibits the binding of Abf2p to all kinds of DNA including four-way junction DNA and the supercoiling activity of Abf2p itself. The abf2 mutant cells with an abf2(T21A/S22A) allele defective in the phosphorylation site have a severe defect in the regulation of mtDNA content during glucose repression in vivo. These observations suggest that the phosphorylation via PKA, that is activated during glucose repression, may regulate the in vivo functions of Abf2p for the control of mtDNA content during shift from gluconeogenic to fermentative growth.

  9. Nuclear factors involved in mitochondrial translation cause a subgroup of combined respiratory chain deficiency.

    PubMed

    Kemp, John P; Smith, Paul M; Pyle, Angela; Neeve, Vivienne C M; Tuppen, Helen A L; Schara, Ulrike; Talim, Beril; Topaloglu, Haluk; Holinski-Feder, Elke; Abicht, Angela; Czermin, Birgit; Lochmüller, Hanns; McFarland, Robert; Chinnery, Patrick F; Chrzanowska-Lightowlers, Zofia M A; Lightowlers, Robert N; Taylor, Robert W; Horvath, Rita

    2011-01-01

    Mutations in several mitochondrial DNA and nuclear genes involved in mitochondrial protein synthesis have recently been reported in combined respiratory chain deficiency, indicating a generalized defect in mitochondrial translation. However, the number of patients with pathogenic mutations is small, implying that nuclear defects of mitochondrial translation are either underdiagnosed or intrauterine lethal. No comprehensive studies have been reported on large cohorts of patients with combined respiratory chain deficiency addressing the role of nuclear genes affecting mitochondrial protein synthesis to date. We investigated a cohort of 52 patients with combined respiratory chain deficiency without causative mitochondrial DNA mutations, rearrangements or depletion, to determine whether a defect in mitochondrial translation defines the pathomechanism of their clinical disease. We followed a combined approach of sequencing known nuclear genes involved in mitochondrial protein synthesis (EFG1, EFTu, EFTs, MRPS16, TRMU), as well as performing in vitro functional studies in 22 patient cell lines. The majority of our patients were children (<15 years), with an early onset of symptoms <1 year of age (65%). The most frequent clinical presentation was mitochondrial encephalomyopathy (63%); however, a number of patients showed cardiomyopathy (33%), isolated myopathy (15%) or hepatopathy (13%). Genomic sequencing revealed compound heterozygous mutations in the mitochondrial transfer ribonucleic acid modifying factor (TRMU) in a single patient only, presenting with early onset, reversible liver disease. No pathogenic mutation was detected in any of the remaining 51 patients in the other genes analysed. In vivo labelling of mitochondrial polypeptides in 22 patient cell lines showed overall (three patients) or selective (four patients) defects of mitochondrial translation. Immunoblotting for mitochondrial proteins revealed decreased steady state levels of proteins in some patients, but normal or increased levels in others, indicating a possible compensatory mechanism. In summary, candidate gene sequencing in this group of patients has a very low detection rate (1/52), although in vivo labelling of mitochondrial translation in 22 patient cell lines indicate that a nuclear defect affecting mitochondrial protein synthesis is responsible for about one-third of combined respiratory chain deficiencies (7/22). In the remaining patients, the impaired respiratory chain activity is most likely the consequence of several different events downstream of mitochondrial translation. Clinical classification of patients with biochemical analysis, genetic testing and, more importantly, in vivo labelling and immunoblotting of mitochondrial proteins show incoherent results, but a systematic review of these data in more patients may reveal underlying mechanisms, and facilitate the identification of novel factors involved in combined respiratory chain deficiency.

  10. Alterations in bioenergetic function induced by Parkinson's disease mimetic compounds: Lack of correlation with superoxide generation

    PubMed Central

    Dranka, Brian P.; Zielonka, Jacek; Kanthasamy, Anumantha G.; Kalyanaraman, Balaraman

    2012-01-01

    In vitro and in vivo models of Parkinson's disease (PD) suggest that increased oxidant production leads to mitochondrial dysfunction in dopaminergic neurons and subsequent cell death. However, it remains unclear if cell death in these models is caused by inhibition of mitochondrial function or oxidant production. The objective of the present study was to determine the relationship between mitochondrial dysfunction and oxidant production in response to multiple PD neurotoxicant mimetics. MPP+ caused a dose-dependent decrease in the basal oxygen consumption rate (OCR) in dopaminergic N27 cells, indicating a loss of mitochondrial function. In parallel, we found that MPP+ only modestly increased oxidation of hydroethidine as a diagnostic marker of superoxide production in these cells. Similar results were found using rotenone as a mitochondrial inhibitor, or 6-hydroxydopamine as a mechanistically distinct PD neurotoxicant, but not with exposure to paraquat. Additionally, the Extracellular Acidification Rate, used as a marker of glycolysis, was stimulated to compensate for OCR inhibition after exposure to MPP+, rotenone, or 6-hydroxydopamine, but not paraquat. Together these data indicate that MPP+, rotenone and 6-hydroxydopamine dramatically shift bioenergetic function away from the mitochondria and towards glycolysis in N27 cells. PMID:22708893

  11. Cord blood-derived CD34+ hematopoietic cells with low mitochondrial mass are enriched in hematopoietic repopulating stem cell function.

    PubMed

    Romero-Moya, Damia; Bueno, Clara; Montes, Rosa; Navarro-Montero, Oscar; Iborra, Francisco J; López, Luis Carlos; Martin, Miguel; Menendez, Pablo

    2013-07-01

    The homeostasis of the hematopoietic stem/progenitor cell pool relies on a fine-tuned balance between self-renewal, differentiation and proliferation. Recent studies have proposed that mitochondria regulate these processes. Although recent work has contributed to understanding the role of mitochondria during stem cell differentiation, it remains unclear whether the mitochondrial content/function affects human hematopoietic stem versus progenitor function. We found that mitochondrial mass correlates strongly with mitochondrial membrane potential in CD34(+) hematopoietic stem/progenitor cells. We, therefore, sorted cord blood CD34(+) cells on the basis of their mitochondrial mass and analyzed the in vitro homeostasis and clonogenic potential as well as the in vivo repopulating potential of CD34(+) cells with high (CD34(+) Mito(High)) versus low (CD34(+) Mito(Low)) mitochondrial mass. The CD34(+) Mito(Low) fraction contained 6-fold more CD34(+)CD38(-) primitive cells and was enriched in hematopoietic stem cell function, as demonstrated by its significantly greater hematopoietic reconstitution potential in immuno-deficient mice. In contrast, the CD34(+) Mito(High) fraction was more enriched in hematopoietic progenitor function with higher in vitro clonogenic capacity. In vitro differentiation of CD34(+) Mito(Low) cells was significantly delayed as compared to that of CD34(+) Mito(High) cells. The eventual complete differentiation of CD34(+) Mito(Low) cells, which coincided with a robust expansion of the CD34(-) differentiated progeny, was accompanied by mitochondrial adaptation, as shown by significant increases in ATP production and expression of the mitochondrial genes ND1 and COX2. In conclusion, cord blood CD34(+) cells with low levels of mitochondrial mass are enriched in hematopoietic repopulating stem cell function whereas high levels of mitochondrial mass identify hematopoietic progenitors. A mitochondrial response underlies hematopoietic stem/progenitor cell differentiation and proliferation of lineage-committed CD34(-) cells.

  12. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone

    PubMed Central

    Wilson-Fritch, Leanne; Nicoloro, Sarah; Chouinard, My; Lazar, Mitchell A.; Chui, Patricia C.; Leszyk, John; Straubhaar, Juerg; Czech, Michael P.; Corvera, Silvia

    2004-01-01

    Adipose tissue plays a central role in the control of energy homeostasis through the storage and turnover of triglycerides and through the secretion of factors that affect satiety and fuel utilization. Agents that enhance insulin sensitivity, such as rosiglitazone, appear to exert their therapeutic effect through adipose tissue, but the precise mechanisms of their actions are unclear. Rosiglitazone changes the morphological features and protein profiles of mitochondria in 3T3-L1 adipocytes. To examine the relevance of these effects in vivo, we studied white adipocytes from ob/ob mice during the development of obesity and after treatment with rosiglitazone. The levels of approximately 50% of gene transcripts encoding mitochondrial proteins were decreased with the onset of obesity. About half of those genes were upregulated after treatment with rosiglitazone, and this was accompanied by an increase in mitochondrial mass and changes in mitochondrial structure. Functionally, adipocytes from rosiglitazone-treated mice displayed markedly enhanced oxygen consumption and significantly increased palmitate oxidation. These data reveal mitochondrial remodeling and increased energy expenditure in white fat in response to rosiglitazone treatment in vivo and suggest that enhanced lipid utilization in this tissue may affect whole-body energy homeostasis and insulin sensitivity. PMID:15520860

  13. Alteration in mitochondrial function and glutamate metabolism affected by 2-chloroethanol in primary cultured astrocytes.

    PubMed

    Sun, Qi; Liao, Yingjun; Wang, Tong; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2016-12-01

    The aim of this study was to explore the mechanisms that contribute to 1,2-dichloroethane (1,2-DCE) induced brain edema by focusing on alteration of mitochondrial function and glutamate metabolism in primary cultured astrocytes induced by 2-chloroethanol (2-CE), a metabolite of 1,2-DCE in vivo. The cells were exposed to different levels of 2-CE in the media for 24h. Mitochondrial function was evaluated by its membrane potential and intracellular contents of ATP, lactic acid and reactive oxygen species (ROS). Glutamate metabolism was indicated by expression of glutamine synthase (GS), glutamate-aspartate transporter (GLAST) and glutamate transporter-1 (GLT-1) at both protein and gene levels. Compared to the control group, exposure to 2-CE could cause a dose dependent damage in astrocytes, indicated by decreased cell viability and morphological changes, and supported by decreased levels of nonprotein sulfhydryl (NPSH) and inhibited activities of Na + /K + -ATPase and Ca 2+ -ATPase in the cells. The present study also revealed both mitochondrial function and glutamate metabolism in astrocytes were significantly disturbed by 2-CE. Of which, mitochondrial function was much vulnerable to the effects of 2-CE. In conclusion, our findings suggested that mitochondrial dysfunction and glutamate metabolism disorder could contribute to 2-CE-induced cytotoxicity in astrocytes, which might be related to 1,2-DCE-induced brain edema. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Strawberry consumption improves aging-associated impairments, mitochondrial biogenesis and functionality through the AMP-activated protein kinase signaling cascade.

    PubMed

    Giampieri, Francesca; Alvarez-Suarez, Josè M; Cordero, Mario D; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Afrin, Sadia; Santos-Buelga, Celestino; González-Paramás, Ana M; Astolfi, Paola; Rubini, Corrado; Zizzi, Antonio; Tulipani, Sara; Quiles, Josè L; Mezzetti, Bruno; Battino, Maurizio

    2017-11-01

    Dietary polyphenols have been recently proposed as activators of the AMP-activated protein kinase (AMPK) signaling pathway and this fact might explain the relationship between the consumption of polyphenol-rich foods and the slowdown of the progression of aging. In the present work, the effects of strawberry consumption were evaluated on biomarkers of oxidative damage and on aging-associated reductions in mitochondrial function and biogenesis for 8weeks in old rats. Strawberry supplementation increased antioxidant enzyme activities, mitochondrial biomass and functionality, and decreased intracellular ROS levels and biomarkers of protein, lipid and DNA damage (P<0.05). Furthermore, a significant (P<0.05) increase in the expression of the AMPK cascade genes, involved in mitochondrial biogenesis and antioxidant defences, was also detected after strawberry intake. These in vivo results were then verified in vitro on HepG2 cells, confirming the involvement of AMPK in the beneficial effects exerted by strawberry against aging progression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. 31P-Magnetization Transfer Magnetic Resonance Spectroscopy Measurements of In Vivo Metabolism

    PubMed Central

    Befroy, Douglas E.; Rothman, Douglas L.; Petersen, Kitt Falk; Shulman, Gerald I.

    2012-01-01

    Magnetic resonance spectroscopy offers a broad range of noninvasive analytical methods for investigating metabolism in vivo. Of these, the magnetization-transfer (MT) techniques permit the estimation of the unidirectional fluxes associated with metabolic exchange reactions. Phosphorus (31P) MT measurements can be used to examine the bioenergetic reactions of the creatine-kinase system and the ATP synthesis/hydrolysis cycle. Observations from our group and others suggest that the inorganic phosphate (Pi) → ATP flux in skeletal muscle may be modulated by certain conditions, including aging, insulin resistance, and diabetes, and may reflect inherent alterations in mitochondrial metabolism. However, such effects on the Pi → ATP flux are not universally observed under conditions in which mitochondrial function, assessed by other techniques, is impaired, and recent articles have raised concerns about the absolute magnitude of the measured reaction rates. As the application of 31P-MT techniques becomes more widespread, this article reviews the methodology and outlines our experience with its implementation in a variety of models in vivo. Also discussed are potential limitations of the technique, complementary methods for assessing oxidative metabolism, and whether the Pi → ATP flux is a viable biomarker of metabolic function in vivo. PMID:23093656

  16. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach.

    PubMed

    Opalińska, Magdalena; Parys, Katarzyna; Jańska, Hanna

    2017-11-18

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i -AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4's in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4's physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome.

  17. Identification of Physiological Substrates and Binding Partners of the Plant Mitochondrial Protease FTSH4 by the Trapping Approach

    PubMed Central

    Parys, Katarzyna; Jańska, Hanna

    2017-01-01

    Maintenance of functional mitochondria is vital for optimal cell performance and survival. This is accomplished by distinct mechanisms, of which preservation of mitochondrial protein homeostasis fulfills a pivotal role. In plants, inner membrane-embedded i-AAA protease, FTSH4, contributes to the mitochondrial proteome surveillance. Owing to the limited knowledge of FTSH4’s in vivo substrates, very little is known about the pathways and mechanisms directly controlled by this protease. Here, we applied substrate trapping coupled with mass spectrometry-based peptide identification in order to extend the list of FTSH4’s physiological substrates and interaction partners. Our analyses revealed, among several putative targets of FTSH4, novel (mitochondrial pyruvate carrier 4 (MPC4) and Pam18-2) and known (Tim17-2) substrates of this protease. Furthermore, we demonstrate that FTSH4 degrades oxidatively damaged proteins in mitochondria. Our report provides new insights into the function of FTSH4 in the maintenance of plant mitochondrial proteome. PMID:29156584

  18. Mitochondrial Quality Control via the PGC1α-TFEB Signaling Pathway Is Compromised by Parkin Q311X Mutation But Independently Restored by Rapamycin.

    PubMed

    Siddiqui, Almas; Bhaumik, Dipa; Chinta, Shankar J; Rane, Anand; Rajagopalan, Subramanian; Lieu, Christopher A; Lithgow, Gordon J; Andersen, Julie K

    2015-09-16

    Following its activation by PINK1, parkin is recruited to depolarized mitochondria where it ubiquitinates outer mitochondrial membrane proteins, initiating lysosomal-mediated degradation of these organelles. Mutations in the gene encoding parkin, PARK2, result in both familial and sporadic forms of Parkinson's disease (PD) in conjunction with reductions in removal of damaged mitochondria. In contrast to what has been reported for other PARK2 mutations, expression of the Q311X mutation in vivo in mice appears to involve a downstream step in the autophagic pathway at the level of lysosomal function. This coincides with increased PARIS expression and reduced expression of a reciprocal signaling pathway involving the master mitochondrial regulator peroxisome proliferator-activated receptor-gamma coactivator (PGC1α) and the lysosomal regulator transcription factor EB (TFEB). Treatment with rapamycin was found to independently restore PGC1α-TFEB signaling in a manner not requiring parkin activity and to abrogate impairment of mitochondrial quality control and neurodegenerative features associated with this in vivo model. Losses in PGC1α-TFEB signaling in cultured rat DAergic cells expressing the Q311X mutation associated with reduced mitochondrial function and cell viability were found to be PARIS-dependent and to be independently restored by rapamycin in a manner requiring TFEB. Studies in human iPSC-derived neurons demonstrate that TFEB induction can restore mitochondrial function and cell viability in a mitochondrially compromised human cell model. Based on these data, we propose that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via upregulation of TFEB function. Mutations in PARK2 are generally associated with loss in ability to interact with PINK1, impacting on autophagic initiation. Our data suggest that, in the case of at least one parkin mutation, Q311X, detrimental effects are due to inhibition at the level of downstream lysosomal function. Mechanistically, this involves elevations in PARIS protein levels and subsequent effects on PGC1α-TFEB signaling that normally regulates mitochondrial quality control. Treatment with rapamycin independently restores PGC1α-TFEB signaling in a manner not requiring parkin activity and abrogates subsequent mitochondrial impairment and neuronal cell loss. Taken in total, our data suggest that the parkin Q311X mutation impacts on mitochondrial quality control via PARIS-mediated regulation of PGC1α-TFEB signaling and that this can be independently restored via rapamycin. Copyright © 2015 the authors 0270-6474/15/3512833-12$15.00/0.

  19. Curcumin micelles improve mitochondrial function in neuronal PC12 cells and brains of NMRI mice - Impact on bioavailability.

    PubMed

    Hagl, Stephanie; Kocher, Alexa; Schiborr, Christina; Kolesova, Natalie; Frank, Jan; Eckert, Gunter P

    2015-10-01

    Curcumin, a polyphenolic compound abundant in the rhizome of Curcuma longa, has been reported to have various beneficial biological and pharmacological activities. Recent research revealed that curcumin might be valuable in the prevention and therapy of numerous disorders including neurodegenerative diseases like Alzheimer's disease. Due to its low absorption and quick elimination from the body, curcumin bioavailability is rather low which poses major problems for the use of curcumin as a therapeutic agent. There are several approaches to ameliorate curcumin bioavailability after oral administration, amongst them simultaneous administration with secondary plant compounds, micronization and micellation. We examined bioavailability in vivo in NMRI mice and the effects of native curcumin and a newly developed curcumin micelles formulation on mitochondrial function in vitro in PC12 cells and ex vivo in isolated mouse brain mitochondria. We found that curcumin micelles improved bioavailability of native curcumin around 10- to 40-fold in plasma and brain of mice. Incubation with native curcumin and curcumin micelles prevented isolated mouse brain mitochondria from swelling, indicating less mitochondrial permeability transition pore (mPTP) opening and prevention of injury. Curcumin micelles proved to be more efficient in preventing mitochondrial swelling in isolated mouse brain mitochondria and protecting PC12 cells from nitrosative stress than native curcumin. Due to their improved effectivity, curcumin micelles might be a suitable formulation for the prevention of mitochondrial dysfunction in brain aging and neurodegeneration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Challenging the dogma of mitochondrial reactive oxygen species overproduction in diabetic kidney disease.

    PubMed

    Coughlan, Melinda T; Sharma, Kumar

    2016-08-01

    The paradigm that high glucose drives overproduction of superoxide from mitochondria as a unifying theory to explain end organ damage in diabetes complications has been tightly held for more than a decade. With the recent development of techniques and probes to measure the production of distinct reactive oxygen species (ROS) in vivo, this widely held dogma is now being challenged with the emerging view that specific ROS moieties are essential for the function of specific intracellular signaling pathways and represent normal mitochondrial function. This review will provide a balanced overview of the dual nature of ROS, detailing current evidence for ROS overproduction in diabetic kidney disease, with a focus on cell types and sources of ROS. The technical aspects of measurement of mitochondrial ROS, both in isolated mitochondria and emerging in vivo methods will be discussed. The counterargument, that mitochondrial ROS production is reduced in diabetic complications, is consistent with a growing recognition that stimulation of mitochondrial biogenesis and oxidative phosphorylation activity reduces inflammation and fibrosis. It is clear that there is an urgent need to fully characterize ROS production paying particular attention to spatiotemporal aspects and to factor in the relevance of ROS in the regulation of cellular signaling in the pathogenesis of diabetic kidney disease. With improved tools and real-time imaging capacity, a greater understanding of the complex role of ROS will be able to guide novel therapeutic regimens. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  1. Mitochondrial pharmacology: electron transport chain bypass as strategies to treat mitochondrial dysfunction.

    PubMed

    Atamna, Hani; Mackey, Jeanette; Dhahbi, Joseph M

    2012-01-01

    Mitochondrial dysfunction (primary or secondary) is detrimental to intermediary metabolism. Therapeutic strategies to treat/prevent mitochondrial dysfunction could be valuable for managing metabolic and age-related disorders. Here, we review strategies proposed to treat mitochondrial impairment. We then concentrate on redox-active agents, with mild-redox potential, who shuttle electrons among specific cytosolic or mitochondrial redox-centers. We propose that specific redox agents with mild redox potential (-0.1 V; 0.1 V) improve mitochondrial function because they can readily donate or accept electrons in biological systems, thus they enhance metabolic activity and prevent reactive oxygen species (ROS) production. These agents are likely to lack toxic effects because they lack the risk of inhibiting electron transfer in redox centers. This is different from redox agents with strong negative (-0.4 V; -0.2 V) or positive (0.2 V; 0.4 V) redox potentials who alter the redox status of redox-centers (i.e., become permanently reduced or oxidized). This view has been demonstrated by testing the effect of several redox active agents on cellular senescence. Methylene blue (MB, redox potential ≅10 mV) appears to readily cycle between the oxidized and reduced forms using specific mitochondrial and cytosolic redox centers. MB is most effective in delaying cell senescence and enhancing mitochondrial function in vivo and in vitro. Mild-redox agents can alter the biochemical activity of specific mitochondrial components, which then in response alters the expression of nuclear and mitochondrial genes. We present the concept of mitochondrial electron-carrier bypass as a potential result of mild-redox agents, a method to prevent ROS production, improve mitochondrial function, and delay cellular aging. Thus, mild-redox agents may prevent/delay mitochondria-driven disorders. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  2. Adolescent Binge Alcohol Exposure Affects the Brain Function Through Mitochondrial Impairment.

    PubMed

    Tapia-Rojas, Cheril; Carvajal, Francisco J; Mira, Rodrigo G; Arce, Camila; Lerma-Cabrera, José Manuel; Orellana, Juan A; Cerpa, Waldo; Quintanilla, Rodrigo A

    2018-05-01

    In the young population, binge drinking is a pattern of problematic alcohol consumption, characterized by a short period of heavy drinking followed by abstinence which is frequently repeated over time. This drinking pattern is associated with mental problems, use of other drugs, and an increased risk of excessive alcohol intake during adulthood. However, little is known about the effects of binge drinking on brain function in adolescents and its neurobiological impact during the adulthood. In the present study, we evaluated the effects of alcohol on hippocampal memory, synaptic plasticity, and mitochondrial function in adolescent rats after a binge drinking episode in vivo. These effects were analyzed at 1, 3, or 7 weeks post alcohol exposure. Our results showed that binge-like ethanol pre-treated (BEP) rats exhibited early alterations in learning and memory tests accompanied by an impairment of synaptic plasticity that was total and partially compensated, respectively. These changes could be attributed to a rapid increase in oxidative damage and a late inflammatory response induced by post ethanol exposure. Additionally, BEP alters the regulation of mitochondrial dynamics and modifies the expression of mitochondrial permeability transition pore (mPTP) components, such as cyclophilin D (Cyp-D) and the voltage-dependent anion channel (VDAC). These mitochondrial structural changes result in the impairment of mitochondrial bioenergetics, decreasing ATP production progressively until adulthood. These results strongly suggest that teenage alcohol binge drinking impairs the function of the adult hippocampus including memory and synaptic plasticity as a consequence of the mitochondrial damage induced by alcohol and that the recovery of hippocampal function could implicate the activation of alternative pathways that fail to reestablish mitochondrial function.

  3. Nitrate tolerance, oxidative stress, and mitochondrial function: another worrisome chapter on the effects of organic nitrates

    PubMed Central

    Parker, John D.

    2004-01-01

    A shortcoming in the clinical use of organic nitrates is the development of tolerance. Recent data have suggested that the denitrification of organic nitrates is mediated by mitochondrial aldehyde dehydrogenase and that dysfunction of this enzyme is an important cause of tolerance. In this issue of the JCI, evidence in support of this hypothesis is presented in an in vivo model of nitrate tolerance. PMID:14755331

  4. Design of 3-D adipospheres for quantitative metabolic study

    PubMed Central

    Akama, Takeshi; Leung, Brendan M.; Labuz, Joseph M.; Takayama, Shuichi; Chun, Tae-Hwa

    2017-01-01

    Quantitative assessment of adipose mitochondrial activity is critical for better understanding of adipose tissue function in obesity and diabetes. While the two-dimensional (2-D) tissue culture method has been sufficient to discover key molecules that regulate adipocyte differentiation and function, the method is insufficient to determine the role of extracellular matrix (ECM) molecules and their modifiers, such as matrix metalloproteinases (MMPs), in regulating adipocyte function in three-dimensional (3-D) in vivo-like microenvironments. By using a 3-D hanging drop tissue culture system, we are able to produce scalable 3-D adipospheres that are suitable for quantitative mitochondrial study in 3-D microenvironment. PMID:28244051

  5. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP+ exposure

    PubMed Central

    Dukes, April A.; Bai, Qing; Van Laar, Victor S.; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N.; Agim, Zeynep S.; Bonkowsky, Joshua L.; Cannon, Jason R.; Watkins, Simon C.; St. Croix, Claudette M.; Burton, Edward A.; Berman, Sarah B.

    2016-01-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson’s disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2 days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5 – 1.0mM MPP+ between 4 – 5 dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP+ caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP+ caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease. PMID:27452482

  6. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and methods we developed will be useful for future studies on mitochondrial dynamics in health and disease. Published by Elsevier Inc.

  7. What do magnetic resonance-based measurements of Pi→ATP flux tell us about skeletal muscle metabolism?

    PubMed

    Kemp, Graham J; Brindle, Kevin M

    2012-08-01

    Magnetic resonance spectroscopy (MRS) methods offer a potentially valuable window into cellular metabolism. Measurement of flux between inorganic phosphate (Pi) and ATP using (31)P MRS magnetization transfer has been used in resting muscle to assess what is claimed to be mitochondrial ATP synthesis and has been particularly popular in the study of insulin effects and insulin resistance. However, the measured Pi→ATP flux in resting skeletal muscle is far higher than the true rate of oxidative ATP synthesis, being dominated by a glycolytically mediated Pi↔ATP exchange reaction that is unrelated to mitochondrial function. Furthermore, even if measured accurately, the ATP production rate in resting muscle has no simple relationship to mitochondrial capacity as measured either ex vivo or in vivo. We summarize the published measurements of Pi→ATP flux, concentrating on work relevant to diabetes and insulin, relate it to current understanding of the physiology of mitochondrial ATP synthesis and glycolytic Pi↔ATP exchange, and discuss some possible implications of recently reported correlations between Pi→ATP flux and other physiological measures.

  8. Multi-omic Mitoprotease Profiling Defines a Role for Oct1p in Coenzyme Q Production.

    PubMed

    Veling, Mike T; Reidenbach, Andrew G; Freiberger, Elyse C; Kwiecien, Nicholas W; Hutchins, Paul D; Drahnak, Michael J; Jochem, Adam; Ulbrich, Arne; Rush, Matthew J P; Russell, Jason D; Coon, Joshua J; Pagliarini, David J

    2017-12-07

    Mitoproteases are becoming recognized as key regulators of diverse mitochondrial functions, although their direct substrates are often difficult to discern. Through multi-omic profiling of diverse Saccharomyces cerevisiae mitoprotease deletion strains, we predicted numerous associations between mitoproteases and distinct mitochondrial processes. These include a strong association between the mitochondrial matrix octapeptidase Oct1p and coenzyme Q (CoQ) biosynthesis-a pathway essential for mitochondrial respiration. Through Edman sequencing and in vitro and in vivo biochemistry, we demonstrated that Oct1p directly processes the N terminus of the CoQ-related methyltransferase, Coq5p, which markedly improves its stability. A single mutation to the Oct1p recognition motif in Coq5p disrupted its processing in vivo, leading to CoQ deficiency and respiratory incompetence. This work defines the Oct1p processing of Coq5p as an essential post-translational event for proper CoQ production. Additionally, our data visualization tool enables efficient exploration of mitoprotease profiles that can serve as the basis for future mechanistic investigations. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. VALSARTAN REGULATES MYOCARDIAL AUTOPHAGY AND MITOCHONDRIAL TURNOVER IN EXPERIMENTAL HYPERTENSION

    PubMed Central

    Zhang, Xin; Li, Zi-Lun; Crane, John A.; Jordan, Kyra L.; Pawar, Aditya S.; Textor, Stephen C.; Lerman, Amir; Lerman, Lilach O.

    2014-01-01

    Renovascular hypertension alters cardiac structure and function. Autophagy is activated during left ventricular hypertrophy and linked to adverse cardiac function. The Angiotensin II receptor blocker Valsartan lowers blood pressure and is cardioprotective, but whether it modulates autophagy in the myocardium is unclear. We hypothesized that Valsartan would alleviate autophagy and improve left ventricular myocardial mitochondrial turnover in swine renovascular hypertension. Domestic pigs were randomized to control, unilateral renovascular hypertension, and renovascular hypertension treated with Valsartan (320 mg/day) or conventional triple therapy (Reserpine+hydralazine+hydrochlorothiazide) for 4 weeks post 6-weeks of renovascular hypertension (n=7 each group). Left ventricular remodeling, function and myocardial oxygenation and microcirculation were assessed by multi-detector computer tomography, blood-oxygen-level-dependent magnetic resonance imaging and microcomputer tomography. Myocardial autophagy, markers for mitochondrial degradation and biogenesis, and mitochondrial respiratory-chain proteins were examined ex vivo. Renovascular hypertension induced left ventricular hypertrophy and myocardial hypoxia, enhanced cellular autophagy and mitochondrial degradation, and suppressed mitochondrial biogenesis. Valsartan and triple therapy similarly decreased blood pressure, but Valsartan solely alleviated left ventricular hypertrophy, ameliorated myocardial autophagy and mitophagy, and increased mitochondrial biogenesis. In contrast, triple therapy only slightly attenuated autophagy and preserved mitochondrial proteins, but elicited no improvement in mitophagy. These data suggest a novel potential role of Valsartan in modulating myocardial autophagy and mitochondrial turnover in renovascular hypertension-induced hypertensive heart disease, which may possibly bolster cardiac repair via a blood pressure-independent manner. PMID:24752430

  10. Mitochondrial Energy and Redox Signaling in Plants

    PubMed Central

    Schwarzländer, Markus

    2013-01-01

    Abstract Significance: For a plant to grow and develop, energy and appropriate building blocks are a fundamental requirement. Mitochondrial respiration is a vital source for both. The delicate redox processes that make up respiration are affected by the plant's changing environment. Therefore, mitochondrial regulation is critically important to maintain cellular homeostasis. This involves sensing signals from changes in mitochondrial physiology, transducing this information, and mounting tailored responses, by either adjusting mitochondrial and cellular functions directly or reprogramming gene expression. Recent Advances: Retrograde (RTG) signaling, by which mitochondrial signals control nuclear gene expression, has been a field of very active research in recent years. Nevertheless, no mitochondrial RTG-signaling pathway is yet understood in plants. This review summarizes recent advances toward elucidating redox processes and other bioenergetic factors as a part of RTG signaling of plant mitochondria. Critical Issues: Novel insights into mitochondrial physiology and redox-regulation provide a framework of upstream signaling. On the other end, downstream responses to modified mitochondrial function have become available, including transcriptomic data and mitochondrial phenotypes, revealing processes in the plant that are under mitochondrial control. Future Directions: Drawing parallels to chloroplast signaling and mitochondrial signaling in animal systems allows to bridge gaps in the current understanding and to deduce promising directions for future research. It is proposed that targeted usage of new technical approaches, such as quantitative in vivo imaging, will provide novel leverage to the dissection of plant mitochondrial signaling. Antioxid. Redox Signal. 18, 2122–2144. PMID:23234467

  11. Mito-Nuclear Interactions Affecting Lifespan and Neurodegeneration in a Drosophila Model of Leigh Syndrome.

    PubMed

    Loewen, Carin A; Ganetzky, Barry

    2018-04-01

    Proper mitochondrial activity depends upon proteins encoded by genes in the nuclear and mitochondrial genomes that must interact functionally and physically in a precisely coordinated manner. Consequently, mito-nuclear allelic interactions are thought to be of crucial importance on an evolutionary scale, as well as for manifestation of essential biological phenotypes, including those directly relevant to human disease. Nonetheless, detailed molecular understanding of mito-nuclear interactions is still lacking, and definitive examples of such interactions in vivo are sparse. Here we describe the characterization of a mutation in Drosophila ND23 , a nuclear gene encoding a highly conserved subunit of mitochondrial complex 1. This characterization led to the discovery of a mito-nuclear interaction that affects the ND23 mutant phenotype. ND23 mutants exhibit reduced lifespan, neurodegeneration, abnormal mitochondrial morphology, and decreased ATP levels. These phenotypes are similar to those observed in patients with Leigh syndrome, which is caused by mutations in a number of nuclear genes that encode mitochondrial proteins, including the human ortholog of ND23 A key feature of Leigh syndrome, and other mitochondrial disorders, is unexpected and unexplained phenotypic variability. We discovered that the phenotypic severity of ND23 mutations varies depending on the maternally inherited mitochondrial background. Sequence analysis of the relevant mitochondrial genomes identified several variants that are likely candidates for the phenotypic interaction with mutant ND23 , including a variant affecting a mitochondrially encoded component of complex I. Thus, our work provides an in vivo demonstration of the phenotypic importance of mito-nuclear interactions in the context of mitochondrial disease. Copyright © 2018 by the Genetics Society of America.

  12. Mono-epoxy-tocotrienol-α enhances wound healing in diabetic mice and stimulates in vitro angiogenesis and cell migration.

    PubMed

    Xu, Cheng; Bentinger, Magnus; Savu, Octavian; Moshfegh, Ali; Sunkari, Vivekananda; Dallner, Gustav; Swiezewska, Ewa; Catrina, Sergiu-Bogdan; Brismar, Kerstin; Tekle, Michael

    2017-01-01

    Diabetes mellitus is characterized by hyperglycemia and capillary hypoxia that causes excessive production of free radicals and impaired antioxidant defense, resulting in oxidative stress and diabetes complications such as impaired wound healing. We have previously shown that modified forms of tocotrienols possess beneficial effects on the biosynthesis of the mevalonate pathway lipids including increase in mitochondrial CoQ. The aim of this study is to investigate the effects of mono-epoxy-tocotrienol-α on in vitro and in vivo wound healing models as well as its effects on mitochondrial function. Gene profiling analysis and gene expression studies on HepG2 cells and human dermal fibroblasts were performed by microarray and qPCR, respectively. In vitro wound healing using human fibroblasts was studied by scratch assay and in vitro angiogenesis using human dermal microvascular endothelial cells was studied by the tube formation assay. In vivo wound healing was performed in the diabetic db/db mouse model. For the study of mitochondrial functions and oxygen consumption rate Seahorse XF-24 was employed. In vitro, significant increase in wound closure and cell migration (p<0.05) both in normal and high glucose and in endothelial tube formation (angiogenesis) (p<0.005) were observed. Microarray profiling analysis showed a 20-fold increase of KIF26A gene expression and 11-fold decrease of lanosterol synthase expression. Expression analysis by qPCR showed significant increase of the growth factors VEGFA and PDGFB. The epoxidated compound induced a significantly higher basal and reserve mitochondrial capacity in both HDF and HepG2 cells. Additionally, in vivo wound healing in db/db mice, demonstrated a small but significant enhancement on wound healing upon local application of the compound compared to treatment with vehicle alone. Mono-epoxy-tocotrienol-α seems to possess beneficial effects on wound healing by increasing the expression of genes involved in cell growth, motility and angiogenes as well as on mitochondrial function. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bacteria, Yeast, Worms, and Flies: Exploiting simple model organisms to investigate human mitochondrial diseases

    PubMed Central

    Rea, Shane L.; Graham, Brett H.; Nakamaru-Ogiso, Eiko; Kar, Adwitiya; Falk, Marni J.

    2013-01-01

    The extensive conservation of mitochondrial structure, composition, and function across evolution offers a unique opportunity to expand our understanding of human mitochondrial biology and disease. By investigating the biology of much simpler model organisms, it is often possible to answer questions that are unreachable at the clinical level. Here, we review the relative utility of four different model organisms, namely the bacteria Escherichia coli, the yeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster, in studying the role of mitochondrial proteins relevant to human disease. E. coli are single cell, prokaryotic bacteria that have proven to be a useful model system in which to investigate mitochondrial respiratory chain protein structure and function. S. cerevisiae is a single-celled eukaryote that can grow equally well by mitochondrial-dependent respiration or by ethanol fermentation, a property that has proven to be a veritable boon for investigating mitochondrial functionality. C. elegans is a multi-cellular, microscopic worm that is organized into five major tissues and has proven to be a robust model animal for in vitro and in vivo studies of primary respiratory chain dysfunction and its potential therapies in humans. Studied for over a century, D. melanogaster is a classic metazoan model system offering an abundance of genetic tools and reagents that facilitates investigations of mitochondrial biology using both forward and reverse genetics. The respective strengths and limitations of each species relative to mitochondrial studies are explored. In addition, an overview is provided of major discoveries made in mitochondrial biology in each of these four model systems. PMID:20818735

  14. Integrated SRS and fluorescence imaging for study of thermogenesis and lipid metabolism in vivo

    NASA Astrophysics Data System (ADS)

    He, Sicong; An, Yitai; Li, Xuesong; Wu, Zhenguo; Qu, Jianan Y.

    2018-02-01

    In this work, we developed a label-free imaging and spectroscopy method to assess the metabolism and thermogenesis of mouse adipose tissues in vivo. An optical redox ratio based on the endogenous fluorescence of mitochondrial coenzymes was used as a biomarker to determine the metabolic state of adipocytes during thermogenesis. The morphological and functional characteristics of different types of adipocytes were assessed in vivo and their thermogenic activities were monitored in real time with a robust spectroscope system.

  15. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

    PubMed

    Keckesova, Zuzana; Donaher, Joana Liu; De Cock, Jasmine; Freinkman, Elizaveta; Lingrell, Susanne; Bachovchin, Daniel A; Bierie, Brian; Tischler, Verena; Noske, Aurelia; Okondo, Marian C; Reinhardt, Ferenc; Thiru, Prathapan; Golub, Todd R; Vance, Jean E; Weinberg, Robert A

    2017-03-30

    Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  16. Mitochondrial dysfunction related to cell damage induced by 3-hydroxykynurenine and 3-hydroxyanthranilic acid: Non-dependent-effect of early reactive oxygen species production.

    PubMed

    Reyes-Ocampo, J; Ramírez-Ortega, D; Cervantes, G I Vázquez; Pineda, B; Balderas, Pavel Montes de Oca; González-Esquivel, D; Sánchez-Chapul, L; Lugo-Huitrón, R; Silva-Adaya, D; Ríos, C; Jiménez-Anguiano, A; Pérez-de la Cruz, V

    2015-09-01

    The kynurenines 3-hydroxyanthranilic acid (3-HANA) and its precursor 3-hydroxykynurenine (3-HK) are metabolites derived from tryptophan degradation. 3-HK, has been related to diverse neurodegenerative diseases including Huntington's, Alzheimer's and Parkinson's diseases that share mitochondrial metabolic dysregulation. Nevertheless, the direct effect of these kynurenines on mitochondrial function has not been investigated despite it could be regulated by their redox properties that are controversial. A body of literature has suggested a ROS mediated cell death induced by 3-HK and 3-HANA. On the other hand, some works have supported that both kynurenines have antioxidant effects. Therefore, the aim of this study was to investigate 3-HK and 3-HANA effects on mitochondrial and cellular function in rat cultured cortical astrocytes (rCCA) and in animals intrastriatally injected with these kynurenines as well as to determinate the ROS role on these effects. First, we evaluated 3-HK and 3-HANA effect on cellular function, ROS production and mitochondrial membrane potential in vivo and in vitro in rCCA. Our results show that both kynurenines decreased MTT reduction in a concentration-dependent manner together with mitochondrial membrane potential. These observations were accompanied with increased cell death in rCCA and in circling behavior and morphological changes of injected animals. Interestingly, we found that ROS production was not increased in both in vitro and in vivo experiments, and accordingly lipid peroxidation (LP) was neither increased in striatal tissue of animals injected with both kynurenines. The lack of effect on these oxidative markers is in agreement with the ·OH and ONOO(-) scavenging capacity of both kynurenines detected by chemical combinatorial assays. Altogether, these data indicate that both kynurenines exert toxic effects through mechanisms that include impairment of cellular energy metabolism which are not related to early ROS production. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Genetic reduction of mitochondrial complex I function does not lead to loss of dopamine neurons in vivo.

    PubMed

    Kim, Hyung-Wook; Choi, Won-Seok; Sorscher, Noah; Park, Hyung Joon; Tronche, François; Palmiter, Richard D; Xia, Zhengui

    2015-09-01

    Inhibition of mitochondrial complex I activity is hypothesized to be one of the major mechanisms responsible for dopaminergic neuron death in Parkinson's disease. However, loss of complex I activity by systemic deletion of the Ndufs4 gene, one of the subunits comprising complex I, does not cause dopaminergic neuron death in culture. Here, we generated mice with conditional Ndufs4 knockout in dopaminergic neurons (Ndufs4 conditional knockout mice [cKO]) to examine the effect of complex I inhibition on dopaminergic neuron function and survival during aging and on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment in vivo. Ndufs4 cKO mice did not show enhanced dopaminergic neuron loss in the substantia nigra pars compacta or dopamine-dependent motor deficits over the 24-month life span. These mice were just as susceptible to MPTP as control mice. However, compared with control mice, Ndufs4 cKO mice exhibited an age-dependent reduction of dopamine in the striatum and increased α-synuclein phosphorylation in dopaminergic neurons of the substantia nigra pars compacta. We also used an inducible Ndufs4 knockout mouse strain (Ndufs4 inducible knockout) in which Ndufs4 is conditionally deleted in all cells in adult to examine the effect of adult onset, complex I inhibition on MPTP sensitivity of dopaminergic neurons. The Ndufs4 inducible knockout mice exhibited similar sensitivity to MPTP as control littermates. These data suggest that mitochondrial complex I inhibition in dopaminergic neurons does contribute to dopamine loss and the development of α-synuclein pathology. However, it is not sufficient to cause cell-autonomous dopaminergic neuron death during the normal life span of mice. Furthermore, mitochondrial complex I inhibition does not underlie MPTP toxicity in vivo in either cell autonomous or nonautonomous manner. These results provide strong evidence that inhibition of mitochondrial complex I activity is not sufficient to cause dopaminergic neuron death during aging nor does it contribute to dopamine neuron toxicity in the MPTP model of Parkinson's disease. These findings suggest the existence of alternative mechanisms of dopaminergic neuron death independent of mitochondrial complex I inhibition. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Thioredoxin 2 haploinsufficiency in mice results in impaired mitochondrial function and increased oxidative stress.

    PubMed

    Pérez, Viviana I; Lew, Christie M; Cortez, Lisa A; Webb, Celeste R; Rodriguez, Marisela; Liu, Yuhong; Qi, Wenbo; Li, Yan; Chaudhuri, Asish; Van Remmen, Holly; Richardson, Arlan; Ikeno, Yuji

    2008-03-01

    The mitochondrial form of thioredoxin, thioredoxin 2 (Txn2), plays an important role in redox control and protection against ROS-induced mitochondrial damage. To evaluate the effect of reduced levels of Txn2 in vivo, we measured oxidative damage and mitochondrial function using mice heterozygous for the Txn2 gene (Txn2(+/-)). The Txn2(+/-) mice showed approximately 50% decrease in Trx-2 protein expression in all tissues without upregulating the other major components of the antioxidant defense system. Reduced levels of Txn2 resulted in decreased mitochondrial function as shown by reduced ATP production by isolated mitochondria and reduced activity of electron transport chain complexes (ETCs). Mitochondria isolated from Txn2(+/-) mice also showed increased ROS production compared to wild type mice. The Txn2(+/-) mice showed increased oxidative damage to nuclear DNA, lipids, and proteins in liver. In addition, we observed an increase in apoptosis in liver from Txn2(+/-) mice compared with wild type mice after diquat treatment. Our results suggest that Txn2 plays an important role in protecting the mitochondria against oxidative stress and in sensitizing the cells to ROS-induced apoptosis.

  19. Prolonged Fasting Identifies Skeletal Muscle Mitochondrial Dysfunction as Consequence Rather Than Cause of Human Insulin Resistance

    PubMed Central

    Hoeks, Joris; van Herpen, Noud A.; Mensink, Marco; Moonen-Kornips, Esther; van Beurden, Denis; Hesselink, Matthijs K.C.; Schrauwen, Patrick

    2010-01-01

    OBJECTIVE Type 2 diabetes and insulin resistance have been associated with mitochondrial dysfunction, but it is debated whether this is a primary factor in the pathogenesis of the disease. To test the concept that mitochondrial dysfunction is secondary to the development of insulin resistance, we employed the unique model of prolonged fasting in humans. Prolonged fasting is a physiologic condition in which muscular insulin resistance develops in the presence of increased free fatty acid (FFA) levels, increased fat oxidation and low glucose and insulin levels. It is therefore anticipated that skeletal muscle mitochondrial function is maintained to accommodate increased fat oxidation unless factors secondary to insulin resistance exert negative effects on mitochondrial function. RESEARCH DESIGN AND METHODS While in a respiration chamber, twelve healthy males were subjected to a 60 h fast and a 60 h normal fed condition in a randomized crossover design. Afterward, insulin sensitivity was assessed using a hyperinsulinemic-euglycemic clamp, and mitochondrial function was quantified ex vivo in permeabilized muscle fibers using high-resolution respirometry. RESULTS Indeed, FFA levels were increased approximately ninefold after 60 h of fasting in healthy male subjects, leading to elevated intramuscular lipid levels and decreased muscular insulin sensitivity. Despite an increase in whole-body fat oxidation, we observed an overall reduction in both coupled state 3 respiration and maximally uncoupled respiration in permeabilized skeletal muscle fibers, which could not be explained by changes in mitochondrial density. CONCLUSIONS These findings confirm that the insulin-resistant state has secondary negative effects on mitochondrial function. Given the low insulin and glucose levels after prolonged fasting, hyperglycemia and insulin action per se can be excluded as underlying mechanisms, pointing toward elevated plasma FFA and/or intramuscular fat accumulation as possible causes for the observed reduction in mitochondrial capacity. PMID:20573749

  20. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells*

    PubMed Central

    Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.

    2017-01-01

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784

  1. Adenoviral Gene Transfer of Hepatic Stimulator Substance Confers Resistance Against Hepatic Ischemia–Reperfusion Injury by Improving Mitochondrial Function

    PubMed Central

    Jiang, Shu-Jun; Li, Wen

    2013-01-01

    Abstract Hepatic stimulator substance (HSS) has been suggested to protect liver cells from various toxins. However, the precise role of HSS in hepatic ischemia–reperfusion (I/R) injury remains unknown. This study aims to elucidate whether overexpression of HSS could attenuate hepatic ischemia–reperfusion injury and its possible mechanisms. Both in vivo hepatic I/R injury in mice and in vitro hypoxia–reoxygenation (H/R) in a cell model were used to evaluate the effect of HSS protection after adenoviral gene transfer. Moreover, a possible mitochondrial mechanism of HSS protection was investigated. Efficient transfer of the HSS gene into liver inhibited hepatic I/R injury in mice, as evidenced by improvement in liver function tests, the preservation of hepatic morphology, and a reduction in hepatocyte apoptosis. HSS overexpression also inhibited H/R-induced cell death, as detected by cell viability and cell apoptosis assays. The underlying mechanism of this hepatic protection might involve the attenuation of mitochondrial dysfunction and mitochondrial-dependent cell apoptosis, as shown by the good preservation of mitochondrial ultrastructure, mitochondrial membrane potential, and the inhibition of cytochrome c leakage and caspase activity. Moreover, the suppression of H/R-induced mitochondrial ROS production and the maintenance of mitochondrial respiratory chain complex activities may participate in this mechanism. This new function of HSS expands the possibility of its application for the prevention of I/R injury, such as hepatic resection and liver transplantation in clinical practice. PMID:23461564

  2. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein.

    PubMed

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro . SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke.

  3. Pretreatment with Sodium Phenylbutyrate Alleviates Cerebral Ischemia/Reperfusion Injury by Upregulating DJ-1 Protein

    PubMed Central

    Yang, Rui-Xin; Lei, Jie; Wang, Bo-Dong; Feng, Da-Yun; Huang, Lu; Li, Yu-Qian; Li, Tao; Zhu, Gang; Li, Chen; Lu, Fang-Fang; Nie, Tie-Jian; Gao, Guo-Dong; Gao, Li

    2017-01-01

    Oxidative stress and mitochondrial dysfunction play critical roles in ischemia/reperfusion (I/R) injury. DJ-1 is an endogenous antioxidant that attenuates oxidative stress and maintains mitochondrial function, likely acting as a protector of I/R injury. In the present study, we explored the protective effect of a possible DJ-1 agonist, sodium phenylbutyrate (SPB), against I/R injury by protecting mitochondrial dysfunction via the upregulation of DJ-1 protein. Pretreatment with SPB upregulated the DJ-1 protein level and rescued the I/R injury-induced DJ-1 decrease about 50% both in vivo and in vitro. SPB also improved cellular viability and mitochondrial function and alleviated neuronal apoptosis both in cell and animal models; these effects of SPB were abolished by DJ-1 knockdown with siRNA. Furthermore, SPB improved the survival rate about 20% and neurological functions, as well as reduced about 50% of the infarct volume and brain edema, of middle cerebral artery occlusion mice 23 h after reperfusion. Therefore, our findings demonstrate that preconditioning of SPB possesses a neuroprotective effect against cerebral I/R injury by protecting mitochondrial function dependent on the DJ-1 upregulation, suggesting that DJ-1 is a potential therapeutic target for clinical ischemic stroke. PMID:28649223

  4. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin

    PubMed Central

    Velarde, Michael C.; Flynn, James M.; Day, Nicholas U.; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypes in vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo. PMID:22278880

  5. Human skeletal muscle mitochondrial capacity.

    PubMed

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  6. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells.

    PubMed

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-06-09

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD + ) metabolism. However, the functional role of NAD + metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD + levels affect the characteristics of glioma-driven SSEA1 + TICs, including clonogenic growth potential. An increase in the mitochondrial NAD + levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD + levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors.

  7. Dissecting Stop Transfer versus Conservative Sorting Pathways for Mitochondrial Inner Membrane Proteins in Vivo*

    PubMed Central

    Park, Kwangjin; Botelho, Salomé Calado; Hong, Joonki; Österberg, Marie; Kim, Hyun

    2013-01-01

    Mitochondrial inner membrane proteins that carry an N-terminal presequence are sorted by one of two pathways: stop transfer or conservative sorting. However, the sorting pathway is known for only a small number of proteins, in part due to the lack of robust experimental tools with which to study. Here we present an approach that facilitates determination of inner membrane protein sorting pathways in vivo by fusing a mitochondrial inner membrane protein to the C-terminal part of Mgm1p containing the rhomboid cleavage region. We validated the Mgm1 fusion approach using a set of proteins for which the sorting pathway is known, and determined sorting pathways of inner membrane proteins for which the sorting mode was previously uncharacterized. For Sdh4p, a multispanning membrane protein, our results suggest that both conservative sorting and stop transfer mechanisms are required for insertion. Furthermore, the sorting process of Mgm1 fusion proteins was analyzed under different growth conditions and yeast mutant strains that were defective in the import motor or the m-AAA protease function. Our results show that the sorting of mitochondrial proteins carrying moderately hydrophobic transmembrane segments is sensitive to cellular conditions, implying that mitochondrial import and membrane sorting in the physiological environment may be dynamically tuned. PMID:23184936

  8. Age-Related Phasic Patterns of Mitochondrial Maintenance in Adult Caenorhabditis elegans Neurons

    PubMed Central

    Morsci, Natalia S.; Hall, David H.

    2016-01-01

    Aging is associated with cognitive decline and increasing risk of neurodegeneration. Perturbation of mitochondrial function, dynamics, and trafficking are implicated in the pathogenesis of several age-associated neurodegenerative diseases. Despite this fundamental importance, the critical understanding of how organismal aging affects lifetime neuronal mitochondrial maintenance remains unknown, particularly in a physiologically relevant context. To address this issue, we performed a comprehensive in vivo analysis of age-associated changes in mitochondrial morphology, density, trafficking, and stress resistance in individual Caenorhabditis elegans neurons throughout adult life. Adult neurons display three distinct stages of increase, maintenance, and decrease in mitochondrial size and density during adulthood. Mitochondrial trafficking in the distal neuronal processes declines progressively with age starting from early adulthood. In contrast, long-lived daf-2 mutants exhibit delayed age-associated changes in mitochondrial morphology, constant mitochondrial density, and maintained trafficking rates during adulthood. Reduced mitochondrial load at late adulthood correlates with decreased mitochondrial resistance to oxidative stress. Revealing aging-associated changes in neuronal mitochondria in vivo is an essential precedent that will allow future elucidation of the mechanistic causes of mitochondrial aging. Thus, our study establishes the critical foundation for the future analysis of cellular pathways and genetic and pharmacological factors regulating mitochondrial maintenance in aging- and disease-relevant conditions. SIGNIFICANCE STATEMENT Using Caenorhabditis elegans as a model, we address long-standing questions: How does aging affect neuronal mitochondrial morphology, density, trafficking, and oxidative stress resistance? Are these age-related changes amenable to genetic manipulations that slow down the aging process? Our study illustrates that mitochondrial trafficking declines progressively from the first day of adulthood, whereas mitochondrial size, density, and resistance to oxidative stress undergo three distinct stages: increase in early adulthood, maintenance at high levels during mid-adulthood, and decline during late adulthood. Thus, our study characterizes mitochondrial aging profile at the level of a single neuron in its native environment and establishes the critical foundation for the future genetic and pharmacological dissection of factors that influence long-term mitochondrial maintenance in neurons. PMID:26818523

  9. Phosphatidic acid (PA)-preferring phospholipase A1 regulates mitochondrial dynamics.

    PubMed

    Baba, Takashi; Kashiwagi, Yuriko; Arimitsu, Nagisa; Kogure, Takeshi; Edo, Ayumi; Maruyama, Tomohiro; Nakao, Kazuki; Nakanishi, Hiroki; Kinoshita, Makoto; Frohman, Michael A; Yamamoto, Akitsugu; Tani, Katsuko

    2014-04-18

    Recent studies have suggested that phosphatidic acid (PA), a cone-shaped phospholipid that can generate negative curvature of lipid membranes, participates in mitochondrial fusion. However, precise mechanisms underling the production and consumption of PA on the mitochondrial surface are not fully understood. Phosphatidic acid-preferring phospholipase A1 (PA-PLA1)/DDHD1 is the first identified intracellular phospholipase A1 and preferentially hydrolyzes PA in vitro. Its cellular and physiological functions have not been elucidated. In this study, we show that PA-PLA1 regulates mitochondrial dynamics. PA-PLA1, when ectopically expressed in HeLa cells, induced mitochondrial fragmentation, whereas its depletion caused mitochondrial elongation. The effects of PA-PLA1 on mitochondrial morphology appear to counteract those of MitoPLD, a mitochondrion-localized phospholipase D that produces PA from cardiolipin. Consistent with high levels of expression of PA-PLA1 in testis, PA-PLA1 knock-out mice have a defect in sperm formation. In PA-PLA1-deficient sperm, the mitochondrial structure is disorganized, and an abnormal gap structure exists between the middle and principal pieces. A flagellum is bent at that position, leading to a loss of motility. Our results suggest a possible mechanism of PA regulation of the mitochondrial membrane and demonstrate an in vivo function of PA-PLA1 in the organization of mitochondria during spermiogenesis.

  10. Effects of Astragalus Polysaccharides on Dysfunction of Mitochondrial Dynamics Induced by Oxidative Stress.

    PubMed

    Huang, Yan-Feng; Lu, Lu; Zhu, Da-Jian; Wang, Ming; Yin, Yi; Chen, De-Xiu; Wei, Lian-Bo

    2016-01-01

    This paper studied the chronic fatigue induced by excessive exercise and the restoration effects of Astragalus polysaccharides (APS) on mitochondria. In vivo, we found that excessive exercise could cause oxidative stress statue which led to morphological and functional changes of mitochondria. The changes, including imbalance between mitochondria fusion-fission processes, activation of mitophagy, and decrease of PGC-1α expression, could be restored by APS. We further confirmed in vitro, and what is more, we found that APS may ameliorate mitochondrial dysfunction through Sirt1 pathway. Based on the results, we may figure out part of the molecular mechanism of mitochondrial amelioration by APS.

  11. Antibiotic tigecycline enhances cisplatin activity against human hepatocellular carcinoma through inducing mitochondrial dysfunction and oxidative damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jun; Song, Meijun; Zhou, Mi

    Targeting mitochondrial metabolism has been recently demonstrated to be a promising therapeutic strategy for the treatment of various cancer. In this work, we demonstrate that antibiotic tigecycline is selectively against hepatocellular carcinoma (HCC) through inducing mitochondrial dysfunction and oxidative damage. Tigecycline is more effective in inhibiting proliferation and inducing apoptosis of HCC than normal liver cells. Importantly, tigecycline significantly enhances the inhibitory effects of chemotherapeutic drug cisplatin in HCC in vitro and in vivo. Mechanistically, tigecycline specifically inhibits mitochondrial translation as shown by the decreased protein levels of Cox-1 and -2 but not Cox-4 or Grp78, and increased mRNA levels of Cox-1more » and -2 but not Cox-4 in HCC cells exposed to tigecycline. In addition, tigecycline significantly induces mitochondrial dysfunction in HCC cells via decreasing mitochondrial membrane potential, complex I and IV activities, mitochondrial respiration and ATP levels. Tigecycline also increases levels of mitochondrial superoxide, hydrogen peroxide and ROS levels. Consistent with oxidative stress, oxidative damage on DNA, protein and lipid are also observed in tigecycline-treated cells. Importantly, antioxidant N-acetyl-L-cysteine (NAC) reverses the effects of tigecycline, suggesting that oxidative stress is required for the action of tigecycline in HCC cells. We further show that HCC cells have higher level of mitochondrial biogenesis than normal liver cells which might explain the different sensitivity to tigecycline between HCC and normal liver cells. Our work is the first to demonstrate that tigecycline is a promising candidate for HCC treatment and highlight the therapeutic value of targeting mitochondrial metabolism in HCC. - Highlights: • Tigecycline selectively targets HCC in vitro and in vivo. • Tigecycline enhances HCC cell response to chemotherapeutic drug. • Tigecycline inhibits mitochondrial translation and functions in HCC cells. • Tigecycline induces oxidative stress and damage in HCC cells. • Mitochondrial biogenesis and respiration is higher in HCC than normal liver cells.« less

  12. Mitochondrial Optic Atrophy (OPA) 1 Processing Is Altered in Response to Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Baburamani, Ana A.; Hurling, Chloe; Stolp, Helen; Sobotka, Kristina; Gressens, Pierre; Hagberg, Henrik; Thornton, Claire

    2015-01-01

    Perturbation of mitochondrial function and subsequent induction of cell death pathways are key hallmarks in neonatal hypoxic-ischemic (HI) injury, both in animal models and in term infants. Mitoprotective therapies therefore offer a new avenue for intervention for the babies who suffer life-long disabilities as a result of birth asphyxia. Here we show that after oxygen-glucose deprivation in primary neurons or in a mouse model of HI, mitochondrial protein homeostasis is altered, manifesting as a change in mitochondrial morphology and functional impairment. Furthermore we find that the mitochondrial fusion and cristae regulatory protein, OPA1, is aberrantly cleaved to shorter forms. OPA1 cleavage is normally regulated by a balanced action of the proteases Yme1L and Oma1. However, in primary neurons or after HI in vivo, protein expression of YmelL is also reduced, whereas no change is observed in Oma1 expression. Our data strongly suggest that alterations in mitochondria-shaping proteins are an early event in the pathogenesis of neonatal HI injury. PMID:26393574

  13. A novel mitochondrial matrix serine/threonine protein phosphatase regulates the mitochondria permeability transition pore and is essential for cellular survival and development

    PubMed Central

    Lu, Gang; Ren, Shuxun; Korge, Paavo; Choi, Jayoung; Dong, Yuan; Weiss, James; Koehler, Carla; Chen, Jau-nian; Wang, Yibin

    2007-01-01

    Mitochondria play a central role in the regulation of programmed cell death signaling. Here, we report the finding of a mitochondrial matrix-targeted protein phosphatase 2C family member (PP2Cm) that regulates mitochondrial membrane permeability transition pore (MPTP) opening and is essential for cell survival, embryonic development, and cardiac function. PP2Cm is highly conserved among vertebrates, with the highest expression levels detected in the heart and brain. Small hairpin RNA (shRNA)-mediated knockdown of PP2Cm resulted in cell death associated with loss of mitochondrial membrane potential in cultured cardiac mycoytes and an induction of hepatocyte apoptosis in vivo. PP2Cm-deficient mitochondria showed elevated susceptibility to calcium-induced MPTP opening, whereas mitochondrial oxidative phosphorylation activities were not affected. Finally, inactivation of PP2Cm in developing zebrafish embryos caused abnormal cardiac and neural development as well as heart failure associated with induced apoptosis. These data suggest that PP2Cm is a novel mitochondrial protein phosphatase that has a critical function in cell death and survival, and may play a role in regulating the MPTP opening. PMID:17374715

  14. A new twist on an old idea part 2: cyclosporine preserves normal mitochondrial but not cardiomyocyte function in mini‐swine with compensated heart failure

    PubMed Central

    Hiemstra, Jessica A.; Gutiérrez‐Aguilar, Manuel; Marshall, Kurt D.; McCommis, Kyle S.; Zgoda, Pamela J.; Cruz‐Rivera, Noelany; Jenkins, Nathan T.; Krenz, Maike; Domeier, Timothy L.; Baines, Christopher P.; Emter, Craig A.

    2014-01-01

    Abstract We recently developed a clinically relevant mini‐swine model of heart failure with preserved ejection fraction (HFpEF), in which diastolic dysfunction was associated with increased mitochondrial permeability transition (MPT). Early diastolic function is ATP and Ca2+‐dependent, thus, we hypothesized chronic low doses of cyclosporine (CsA) would preserve mitochondrial function via inhibition of MPT and subsequently maintain normal cardiomyocyte Ca2+ handling and contractile characteristics. Left ventricular cardiomyocytes were isolated from aortic‐banded Yucatan mini‐swine divided into three groups; control nonbanded (CON), HFpEF nontreated (HF), and HFpEF treated with CsA (HF‐CsA). CsA mitigated the deterioration of mitochondrial function observed in HF animals, including functional uncoupling of Complex I‐dependent mitochondrial respiration and increased susceptibility to MPT. Attenuation of mitochondrial dysfunction in the HF‐CsA group was not associated with commensurate improvement in cardiomyocyte Ca2+ handling or contractility. Ca2+ transient amplitude was reduced and transient time to peak and recovery (tau) prolonged in HF and HF‐CsA groups compared to CON. Alterations in Ca2+ transient parameters observed in the HF and HF‐CsA groups were associated with decreased cardiomyocyte shortening and shortening rate. Cellular function was consistent with impaired in vivo systolic and diastolic whole heart function. A significant systemic hypertensive response to CsA was observed in HF‐CsA animals, and may have played a role in the accelerated the development of heart failure at both the whole heart and cellular levels. Given the significant detriment to cardiac function observed in response to CsA, our findings suggest chronic CsA treatment is not a viable therapeutic option for HFpEF. PMID:24963034

  15. Hyperoxia reduces insulin release and induces mitochondrial dysfunction with possible implications for hyperoxic treatment of neonates.

    PubMed

    Hals, Ingrid; Ohki, Tsuyoshi; Singh, Rinku; Ma, Zuheng; Björklund, Anneli; Balasuriya, Chandima; Scholz, Hanne; Grill, Valdemar

    2017-10-01

    We previously showed that hyperoxia in vitro negatively affects beta cells of the rat. Here, we tested for possible clinical significance as well as mitochondrial interactions by hyperoxia, using human islets (function and viability), INS-1 832/13 cells (mitochondrial metabolism), and mouse neonates (effects in vivo). Lastly, we assessed relevant parameters in a cohort of individuals born preterm and then exposed to hyperoxia. Human islets and INS-1 832/13 cells were exposed to 24 h of hyperoxia (90-92% oxygen). Mouse neonates were subjected to 5 days of continuous hyperoxia. Individuals born preterm were evaluated in terms of glucose homeostasis and beta cell function by HbA1c and the HOMA2 formula. In human islets, hyperoxia significantly reduced glucose-stimulated insulin secretion by 42.2 ± 5.3% and viability assessed by MTT by 22.5 ± 5.4%. Hyperoxia down-regulated mitochondrial complex II by 21 ± 5% and upregulated complex III by 26 ± 10.1% and complex IV by 37 ± 10.6%. Partly similar effects on mitochondrial complexes were found in hyperoxia-exposed INS-1 832/13 cells. Exposure to hyperoxia swiftly reduced oxygen consumption in these cells and increased mitochondrial uncoupling. Hyperoxia transiently but significantly reduced insulin release in mouse neonates. Individuals born preterm displayed higher HbA1c versus controls, as well as insulin resistance. Thus, hyperoxia exerts negative effects in vitro on human beta cells and results indicate inhibitory effects on insulin secretion in vivo in mouse neonates. Negative effects may be lessened by the demonstrated swift and profound mitochondrial adaptability. Our findings open the possibility that hyperoxia could negatively affect beta cells of preterm human neonates. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  16. Increase in Cardiac Ischemia-Reperfusion Injuries in Opa1+/- Mouse Model

    PubMed Central

    Fauconnier, Jérémy; Cellier, Laura; Tamareille, Sophie; Gharib, Abdallah; Chevrollier, Arnaud; Loufrani, Laurent; Grenier, Céline; Kamel, Rima; Sarzi, Emmanuelle; Lacampagne, Alain; Ovize, Michel; Henrion, Daniel; Reynier, Pascal; Lenaers, Guy; Mirebeau-Prunier, Delphine

    2016-01-01

    Background Recent data suggests the involvement of mitochondrial dynamics in cardiac ischemia/reperfusion (I/R) injuries. Whilst excessive mitochondrial fission has been described as detrimental, the role of fusion proteins in this context remains uncertain. Objectives To investigate whether Opa1 (protein involved in mitochondrial inner-membrane fusion) deficiency affects I/R injuries. Methods and Results We examined mice exhibiting Opa1delTTAG mutations (Opa1+/-), showing 70% Opa1 protein expression in the myocardium as compared to their wild-type (WT) littermates. Cardiac left-ventricular systolic function assessed by means of echocardiography was observed to be similar in 3-month-old WT and Opa1+/- mice. After subjection to I/R, infarct size was significantly greater in Opa1+/- than in WTs both in vivo (43.2±4.1% vs. 28.4±3.5%, respectively; p<0.01) and ex vivo (71.1±3.2% vs. 59.6±8.5%, respectively; p<0.05). No difference was observed in the expression of other main fission/fusion protein, oxidative phosphorylation, apoptotic markers, or mitochondrial permeability transition pore (mPTP) function. Analysis of calcium transients in isolated ventricular cardiomyocytes demonstrated a lower sarcoplasmic reticulum Ca2+ uptake, whereas cytosolic Ca2+ removal from the Na+/Ca2+ exchanger (NCX) was increased, whilst SERCA2a, phospholamban, and NCX protein expression levels were unaffected in Opa1+/- compared to WT mice. Simultaneous whole-cell patch-clamp recordings of mitochondrial Ca2+ movements and ventricular action potential (AP) showed impairment of dynamic mitochondrial Ca2+ uptake and a marked increase in the AP late repolarization phase in conjunction with greater occurrence of arrhythmia in Opa1+/- mice. Conclusion Opa1 deficiency was associated with increased sensitivity to I/R, imbalance in dynamic mitochondrial Ca2+ uptake, and subsequent increase in NCX activity. PMID:27723783

  17. Resveratrol induces mitochondrial biogenesis in endothelial cells.

    PubMed

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-07-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1alpha, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases.

  18. Resveratrol induces mitochondrial biogenesis in endothelial cells

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Pinto, John T.; Ballabh, Praveen; Zhang, Hanrui; Losonczy, Gyorgy; Pearson, Kevin; de Cabo, Rafael; Pacher, Pal; Zhang, Cuihua; Ungvari, Zoltan

    2009-01-01

    Pathways that regulate mitochondrial biogenesis are potential therapeutic targets for the amelioration of endothelial dysfunction and vascular disease. Resveratrol was shown to impact mitochondrial function in skeletal muscle and the liver, but its role in mitochondrial biogenesis in endothelial cells remains poorly defined. The present study determined whether resveratrol induces mitochondrial biogenesis in cultured human coronary arterial endothelial cells (CAECs). In CAECs resveratrol increased mitochondrial mass and mitochondrial DNA content, upregulated protein expression of electron transport chain constituents, and induced mitochondrial biogenesis factors (proliferator-activated receptor-coactivator-1α, nuclear respiratory factor-1, mitochondrial transcription factor A). Sirtuin 1 (SIRT1) was induced, and endothelial nitric oxide (NO) synthase (eNOS) was upregulated in a SIRT1-dependent manner. Knockdown of SIRT1 (small interfering RNA) or inhibition of NO synthesis prevented resveratrol-induced mitochondrial biogenesis. In aortas of type 2 diabetic (db/db) mice impaired mitochondrial biogenesis was normalized by chronic resveratrol treatment, showing the in vivo relevance of our findings. Resveratrol increases mitochondrial content in endothelial cells via activating SIRT1. We propose that SIRT1, via a pathway that involves the upregulation of eNOS, induces mitochondrial biogenesis. Resveratrol induced mitochondrial biogenesis in the aortas of type 2 diabetic mice, suggesting the potential for new treatment approaches targeting endothelial mitochondria in metabolic diseases. PMID:19429820

  19. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux.

    PubMed

    Xing, Wei; Yang, Lei; Peng, Yue; Wang, Qianlu; Gao, Min; Yang, Mingshi; Xiao, Xianzhong

    2017-08-31

    Sepsis-led mitochondrial dysfunction has become a critical pathophysiological procedure in sepsis. Since ginsenosides have been applied in the treatment of mitochondrial dysfunction, ginsenoside Rg3 was employed to study its effects on the mitochondrial dysfunction induced by sepsis. The apoptosis rate, oxygen consumption rate (OCR), reactive oxygen species (ROS), antioxidant glutathione (GSH) pools, and mitochondrial transmembrane potential (MTP) were determined in LPS-induced sepsis hepatocytes treated with different concentrations of Rg3. Then, the protein expression levels of mitochondrial biogenesis related transcription factors, autophagy-related proteins, and AMP-activated protein kinase (AMPK) signal pathway related proteins were determined by Western blotting in both in vitro and in vivo sepsis models. Rg3 shows functions of promotion of OCR, attenuation of ROS, and maintenance of GSH pools, and its conjugating activity in the in vitro sepsis models. Rg3-treated cells were observed to have a higher MTP value compared with the LPS only induced cells. Moreover, Rg3 treatment can inhibit mitochondrial dysfunction via increasing the protein expression levels of mitochondrial biogenesis related transcription factors. Rg3 treatment has the function of inhibitor of apoptosis of human primary hepatocytes, and Rg3 can up-regulate the autophagy-related proteins and activate AMPK signal pathway in sepsis models. Meanwhile, the mitochondrial protective function exerted by Rg3 decreased after the autophagy inhibitors or AMPK inhibitor treatment in LPS-induced human primary hepatocytes. Rg3 can improve mitochondrial dysfunction by regulating autophagy in mitochondria via activating the AMPK signal pathway, thus protecting cell and organ injuries caused by sepsis. © 2017 The Author(s).

  20. Faithful transcription initiation from a mitochondrial promoter in transgenic plastids

    PubMed Central

    Bohne, Alexandra-Viola; Ruf, Stephanie; Börner, Thomas; Bock, Ralph

    2007-01-01

    The transcriptional machineries of plastids and mitochondria in higher plants exhibit striking similarities. All mitochondrial genes and part of the plastid genes are transcribed by related phage-type RNA polymerases. Furthermore, the majority of mitochondrial promoters and a subset of plastid promoters show a similar structural organization. We show here that the plant mitochondrial atpA promoter is recognized by plastid RNA polymerases in vitro and in vivo. The Arabidopsis phage-type RNA polymerase RpoTp, an enzyme localized exclusively to plastids, was found to recognize the mitochondrial atpA promoter in in vitro assays suggesting the possibility that mitochondrial promoters might function as well in plastids. We have, therefore, generated transplastomic tobacco plants harboring in their chloroplast genome the atpA promoter fused to the coding region of the bacterial nptII gene. The chimeric nptII gene was found to be efficiently transcribed in chloroplasts. Mapping of the 5′ ends of the nptII transcripts revealed accurate recognition of the atpA promoter by the chloroplast transcription machinery. We show further that the 5′ untranslated region (UTR) of the mitochondrial atpA transcript is capable of mediating translation in chloroplasts. The functional and evolutionary implications of these findings as well as possible applications in chloroplast genome engineering are discussed. PMID:17959651

  1. Dietary Tocotrienol/γ-Cyclodextrin Complex Increases Mitochondrial Membrane Potential and ATP Concentrations in the Brains of Aged Mice

    PubMed Central

    Schloesser, Anke; Esatbeyoglu, Tuba; Piegholdt, Stefanie; Dose, Janina; Ikuta, Naoko; Okamoto, Hinako; Ishida, Yoshiyuki; Terao, Keiji; Matsugo, Seiichi; Rimbach, Gerald

    2015-01-01

    Brain aging is accompanied by a decrease in mitochondrial function. In vitro studies suggest that tocotrienols, including γ- and δ-tocotrienol (T3), may exhibit neuroprotective properties. However, little is known about the effect of dietary T3 on mitochondrial function in vivo. In this study, we monitored the effect of a dietary T3/γ-cyclodextrin complex (T3CD) on mitochondrial membrane potential and ATP levels in the brain of 21-month-old mice. Mice were fed either a control diet or a diet enriched with T3CD providing 100 mg T3 per kg diet for 6 months. Dietary T3CD significantly increased mitochondrial membrane potential and ATP levels compared to those of controls. The increase in MMP and ATP due to dietary T3CD was accompanied by an increase in the protein levels of the mitochondrial transcription factor A (TFAM). Furthermore, dietary T3CD slightly increased the mRNA levels of superoxide dismutase, γ-glutamyl cysteinyl synthetase, and heme oxygenase 1 in the brain. Overall, the present data suggest that T3CD increases TFAM, mitochondrial membrane potential, and ATP synthesis in the brains of aged mice. PMID:26301044

  2. SLP-2 interacts with Parkin in mitochondria and prevents mitochondrial dysfunction in Parkin-deficient human iPSC-derived neurons and Drosophila.

    PubMed

    Zanon, Alessandra; Kalvakuri, Sreehari; Rakovic, Aleksandar; Foco, Luisa; Guida, Marianna; Schwienbacher, Christine; Serafin, Alice; Rudolph, Franziska; Trilck, Michaela; Grünewald, Anne; Stanslowsky, Nancy; Wegner, Florian; Giorgio, Valentina; Lavdas, Alexandros A; Bodmer, Rolf; Pramstaller, Peter P; Klein, Christine; Hicks, Andrew A; Pichler, Irene; Seibler, Philip

    2017-07-01

    Mutations in the Parkin gene (PARK2) have been linked to a recessive form of Parkinson's disease (PD) characterized by the loss of dopaminergic neurons in the substantia nigra. Deficiencies of mitochondrial respiratory chain complex I activity have been observed in the substantia nigra of PD patients, and loss of Parkin results in the reduction of complex I activity shown in various cell and animal models. Using co-immunoprecipitation and proximity ligation assays on endogenous proteins, we demonstrate that Parkin interacts with mitochondrial Stomatin-like protein 2 (SLP-2), which also binds the mitochondrial lipid cardiolipin and functions in the assembly of respiratory chain proteins. SH-SY5Y cells with a stable knockdown of Parkin or SLP-2, as well as induced pluripotent stem cell-derived neurons from Parkin mutation carriers, showed decreased complex I activity and altered mitochondrial network morphology. Importantly, induced expression of SLP-2 corrected for these mitochondrial alterations caused by reduced Parkin function in these cells. In-vivo Drosophila studies showed a genetic interaction of Parkin and SLP-2, and further, tissue-specific or global overexpression of SLP-2 transgenes rescued parkin mutant phenotypes, in particular loss of dopaminergic neurons, mitochondrial network structure, reduced ATP production, and flight and motor dysfunction. The physical and genetic interaction between Parkin and SLP-2 and the compensatory potential of SLP-2 suggest a functional epistatic relationship to Parkin and a protective role of SLP-2 in neurons. This finding places further emphasis on the significance of Parkin for the maintenance of mitochondrial function in neurons and provides a novel target for therapeutic strategies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo.

    PubMed

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-07-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me-/- mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me-/- erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me-/- erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me-/- erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo.

  4. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity

    PubMed Central

    Lin, Ai-Ling; Coman, Daniel; Jiang, Lihong; Rothman, Douglas L; Hyder, Fahmeed

    2014-01-01

    Caloric restriction (CR) prolongs lifespan and retards many detrimental effects of aging, but its effect on brain mitochondrial function and neuronal activity—especially in healthy aging—remains unexplored. Here we measured rates of neuronal glucose oxidation and glutamate–glutamine neurotransmitter cycling in young control, old control (i.e., healthy aging), and old CR rats using in vivo nuclear magnetic resonance spectroscopy. We found that, compared with the young control, neuronal energy production and neurotransmission rates were significantly reduced in healthy aging, but were preserved in old CR rats. The results suggest that CR mitigated the age-related deceleration of brain physiology. PMID:24984898

  5. Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness.

    PubMed

    Jiroutková, Kateřina; Krajčová, Adéla; Ziak, Jakub; Fric, Michal; Waldauf, Petr; Džupa, Valér; Gojda, Jan; Němcova-Fürstová, Vlasta; Kovář, Jan; Elkalaf, Moustafa; Trnka, Jan; Duška, František

    2015-12-24

    Mitochondrial damage occurs in the acute phase of critical illness, followed by activation of mitochondrial biogenesis in survivors. It has been hypothesized that bioenergetics failure of skeletal muscle may contribute to the development of ICU-acquired weakness. The aim of the present study was to determine whether mitochondrial dysfunction persists until protracted phase of critical illness. In this single-centre controlled-cohort ex vivo proof-of-concept pilot study, we obtained vastus lateralis biopsies from ventilated patients with ICU-acquired weakness (n = 8) and from age and sex-matched metabolically healthy controls (n = 8). Mitochondrial functional indices were measured in cytosolic context by high-resolution respirometry in tissue homogenates, activities of respiratory complexes by spectrophotometry and individual functional capacities were correlated with concentrations of electron transport chain key subunits from respiratory complexes II, III, IV and V measured by western blot. The ability of aerobic ATP synthesis (OXPHOS) was reduced to ~54% in ICU patients (p<0.01), in correlation with the depletion of complexes III (~38% of control, p = 0.02) and IV (~26% of controls, p<0.01) and without signs of mitochondrial uncoupling. When mitochondrial functional indices were adjusted to citrate synthase activity, OXPHOS and the activity of complexes I and IV were not different, whilst the activities of complexes II and III were increased in ICU patients 3-fold (p<0.01) respectively 2-fold (p<0.01). Compared to healthy controls, in ICU patients we have demonstrated a ~50% reduction of the ability of skeletal muscle to synthetize ATP in mitochondria. We found a depletion of complex III and IV concentrations and relative increases in functional capacities of complex II and glycerol-3-phosphate dehydrogenase/complex III.

  6. Drp1 loss-of-function reduces cardiomyocyte oxygen dependence protecting the heart from ischemia-reperfusion injury.

    PubMed

    Zepeda, Ramiro; Kuzmicic, Jovan; Parra, Valentina; Troncoso, Rodrigo; Pennanen, Christian; Riquelme, Jaime A; Pedrozo, Zully; Chiong, Mario; Sánchez, Gina; Lavandero, Sergio

    2014-06-01

    Mitochondria are key organelles for ATP production in cardiomyocytes, which is regulated by processes of fission and fusion. We hypothesized that the mitochondria fusion protein dynamin-related protein 1 (Drp1) inhibition, attenuates ischemia-reperfusion (I/R) injury through modifications in mitochondrial metabolism. Rats were subjected to I/R through coronary artery ligation, and isolated cardiomyocytes were treated with an ischemia-mimicking solution. In vivo, cardiac function, myocardial infarction area, and mitochondrial morphology were determined, whereas in vitro, viability, mitochondrial membrane potential, intracellular ATP levels, and oxygen consumption rate (OCR) were assessed. In both models, an adenovirus expressing Drp1 dominant-negative K38A (Drp1K38A) was used to induce Drp1 loss-of-function. Our results showed that I/R stimulated mitochondrial fission. Myocardial infarction size and cell death induced by I/R were significantly reduced, whereas cardiac function after I/R was improved in Drp1K38A-treated rats compared with controls. Drp1K38A-transduced cardiomyocytes showed lower OCR with no decrease in intracellular ATP levels, and on I/R, a larger decrease in OCR with a smaller reduction in intracellular ATP level was observed. However, proton leak-associated oxygen consumption was comparatively higher in Drp1K38A-treated cardiomyocytes, suggesting a protective mitochondrial uncoupling effect against I/R. Collectively, our results show that Drp1 inhibition triggers cardioprotection by reducing mitochondrial metabolism during I/R.

  7. BAX inhibitor-1 is a Ca2+ channel critically important for immune cell function and survival

    PubMed Central

    Lisak, D; Schacht, T; Gawlitza, A; Albrecht, P; Aktas, O; Koop, B; Gliem, M; Hofstetter, H H; Zanger, K; Bultynck, G; Parys, J B; De Smedt, H; Kindler, T; Adams-Quack, P; Hahn, M; Waisman, A; Reed, J C; Hövelmeyer, N; Methner, A

    2016-01-01

    The endoplasmic reticulum (ER) serves as the major intracellular Ca2+ store and has a role in the synthesis and folding of proteins. BAX (BCL2-associated X protein) inhibitor-1 (BI-1) is a Ca2+ leak channel also implicated in the response against protein misfolding, thereby connecting the Ca2+ store and protein-folding functions of the ER. We found that BI-1-deficient mice suffer from leukopenia and erythrocytosis, have an increased number of splenic marginal zone B cells and higher abundance and nuclear translocation of NF-κB (nuclear factor-κ light-chain enhancer of activated B cells) proteins, correlating with increased cytosolic and ER Ca2+ levels. When put into culture, purified knockout T cells and even more so B cells die spontaneously. This is preceded by increased activity of the mitochondrial initiator caspase-9 and correlated with a significant surge in mitochondrial Ca2+ levels, suggesting an exhausted mitochondrial Ca2+ buffer capacity as the underlying cause for cell death in vitro. In vivo, T-cell-dependent experimental autoimmune encephalomyelitis and B-cell-dependent antibody production are attenuated, corroborating the ex vivo results. These results suggest that BI-1 has a major role in the functioning of the adaptive immune system by regulating intracellular Ca2+ homeostasis in lymphocytes. PMID:26470731

  8. Loss of Prohibitin Membrane Scaffolds Impairs Mitochondrial Architecture and Leads to Tau Hyperphosphorylation and Neurodegeneration

    PubMed Central

    Merkwirth, Carsten; Morbin, Michela; Brönneke, Hella S.; Jordan, Sabine D.; Rugarli, Elena I.; Langer, Thomas

    2012-01-01

    Fusion and fission of mitochondria maintain the functional integrity of mitochondria and protect against neurodegeneration, but how mitochondrial dysfunctions trigger neuronal loss remains ill-defined. Prohibitins form large ring complexes in the inner membrane that are composed of PHB1 and PHB2 subunits and are thought to function as membrane scaffolds. In Caenorhabditis elegans, prohibitin genes affect aging by moderating fat metabolism and energy production. Knockdown experiments in mammalian cells link the function of prohibitins to membrane fusion, as they were found to stabilize the dynamin-like GTPase OPA1 (optic atrophy 1), which mediates mitochondrial inner membrane fusion and cristae morphogenesis. Mutations in OPA1 are associated with dominant optic atrophy characterized by the progressive loss of retinal ganglion cells, highlighting the importance of OPA1 function in neurons. Here, we show that neuron-specific inactivation of Phb2 in the mouse forebrain causes extensive neurodegeneration associated with behavioral impairments and cognitive deficiencies. We observe early onset tau hyperphosphorylation and filament formation in the hippocampus, demonstrating a direct link between mitochondrial defects and tau pathology. Loss of PHB2 impairs the stability of OPA1, affects mitochondrial ultrastructure, and induces the perinuclear clustering of mitochondria in hippocampal neurons. A destabilization of the mitochondrial genome and respiratory deficiencies manifest in aged neurons only, while the appearance of mitochondrial morphology defects correlates with tau hyperphosphorylation in the absence of PHB2. These results establish an essential role of prohibitin complexes for neuronal survival in vivo and demonstrate that OPA1 stability, mitochondrial fusion, and the maintenance of the mitochondrial genome in neurons depend on these scaffolding proteins. Moreover, our findings establish prohibitin-deficient mice as a novel genetic model for tau pathologies caused by a dysfunction of mitochondria and raise the possibility that tau pathologies are associated with other neurodegenerative disorders caused by deficiencies in mitochondrial dynamics. PMID:23144624

  9. Zinc-dependent multi-conductance channel activity in mitochondria isolated from ischemic brain.

    PubMed

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M; Pypaert, Marc; Hardwick, J Marie; Sensi, Stefano L; Zukin, R Suzanne; Jonas, Elizabeth A

    2006-06-21

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear. Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, deltaN-BCL-xL. The findings implicate deltaN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant deltaN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate deltaN-BCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria.

  10. Zinc-Dependent Multi-Conductance Channel Activity in Mitochondria Isolated from Ischemic Brain

    PubMed Central

    Bonanni, Laura; Chachar, Mushtaque; Jover-Mengual, Teresa; Li, Hongmei; Jones, Adrienne; Yokota, Hidenori; Ofengeim, Dimitry; Flannery, Richard J.; Miyawaki, Takahiro; Cho, Chang-Hoon; Polster, Brian M.; Pypaert, Marc; Hardwick, J. Marie; Sensi, Stefano L.; Zukin, R. Suzanne; Jonas, Elizabeth A.

    2015-01-01

    Transient global ischemia is a neuronal insult that induces delayed cell death. A hallmark event in the early post-ischemic period is enhanced permeability of mitochondrial membranes. The precise mechanisms by which mitochondrial function is disrupted are, as yet, unclear.Here we show that global ischemia promotes alterations in mitochondrial membrane contact points, a rise in intramitochondrial Zn2+, and activation of large, multi-conductance channels in mitochondrial outer membranes by 1 h after insult. Mitochondrial channel activity was associated with enhanced protease activity and proteolytic cleavage of BCL-xL to generate its pro-death counterpart, ΔN-BCL-xL. The findings implicate ΔN-BCL-xL in large, multi-conductance channel activity. Consistent with this, large channel activity was mimicked by introduction of recombinant ΔN-BCL-xL to control mitochondria and blocked by introduction of a functional BCL-xL antibody to post-ischemic mitochondria via the patch pipette. Channel activity was also inhibited by nicotinamide adenine dinucleotide, indicative of a role for the voltage-dependent anion channel (VDAC) of the outer mitochondrial membrane. In vivo administration of the membrane-impermeant Zn2+ chelator CaEDTA before ischemia or in vitro application of the membrane-permeant Zn2+ chelator tetrakis-(2-pyridylmethyl) ethylenediamine attenuated channel activity, suggesting a requirement for Zn2+. These findings reveal a novel mechanism by which ischemic insults disrupt the functional integrity of the outer mitochondrial membrane and implicate ΔNBCL-xL and VDAC in the large, Zn2+-dependent mitochondrial channels observed in post-ischemic hippocampal mitochondria. PMID:16793892

  11. Carbon monoxide alleviates lipopolysaccharide-induced oxidative stress injury through suppressing the expression of Fis1 in NR8383 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Jia; Yu, Jian-bo, E-mail: yujianbo11@126.com; Liu, Wei

    Acute respiratory distress syndrome (ARDS) is one of the most devastating complications of sepsis lacking of effective therapy. Mitochondrial dynamics undergoing continuous fusion and fission play a crucial role in mitochondrial structure and function. Fis1, as a small protein located on the outer membrane of mitochondria, has been thought to be an important protein mediated mitochondrial fission. During ARDS, alveolar macrophages suffer from increased oxidative stress and apoptosis, and also accompanied by disrupted mitochondrial dynamics. In addition, as one of the products of heme degradation catalyzed by heme oxygenase, carbon monoxide (CO) possesses powerful protective properties in vivo or inmore » vitro models, such as anti-inflammatory, antioxidant and anti-apoptosis function. However, there is little evidence that CO alleviates oxidative stress damage through altering mitochondrial fission in alveolar macrophages. In the present study, our results showed that CO increased cell vitality, improved mitochondrial SOD activity, reduced reactive oxygen species (ROS) production and inhibited cell apoptosis in NR8383 exposed to LPS. Meanwhile, CO decreased the expression of Fis1, increased mitochondrial membrane potential and sustained elongation of mitochondria in LPS-incubated NR8383. Overall, our study underscored a critical role of CO in suppressing the expression of Fis1 and alleviating LPS- induced oxidative stress damage in alveolar macrophages. - Highlights: • LPS exposure triggered cell injury in NR8383. • CO alleviated LPS-induced oxidative stress damage in alveolar macrophages. • CO inhibited Fis1 levels and improved mitochondrial function in LPS-induced NR8383.« less

  12. Use of high-throughput and in vivo data to support read-across predictions

    EPA Science Inventory

    Disrupting normal function of mitochondria can culminate in a variety of organ-level toxicities. A number of mechanisms - such as uncoupling of oxidative phosphorylation and inhibition of the electron transport chain - have been implicated in mitochondrial toxicity. The presence ...

  13. Respiratory chain inhibition: one more feature to propose MPTP intoxication as a Leigh syndrome model.

    PubMed

    Da Costa, Barbara; Dumon, Elodie; Le Moigno, Laurence; Bodard, Sylvie; Castelnau, Pierre; Letellier, Thierry; Rocher, Christophe

    2016-10-01

    1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxicated mice have been widely used to model the loss of dopaminergic neurons. As this treatment leads to basal ganglia degeneration, it was proposed that MPTP mice could be used as a model of Leigh syndrome. However, this mitochondrial pathology is biochemically characterized by a respiratory chain dysfunction. To determine if MPTP can affect in vivo mitochondria function, we measured the activities of mitochondrial respiratory chain complexes in several tissues. Our results show that MPTP affects mainly mitochondrial respiratory chain complex IV, as found in Leigh Syndrome, confirming that acute MPTP intoxicated mice are a good model of Leigh Syndrome.

  14. Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells

    PubMed Central

    Son, Myung Jin; Ryu, Jae-Sung; Kim, Jae Yun; Kwon, Youjeong; Chung, Kyung-Sook; Mun, Seon Ju; Cho, Yee Sook

    2017-01-01

    Emerging evidence has emphasized the importance of cancer therapies targeting an abnormal metabolic state of tumor-initiating cells (TICs) in which they retain stem cell-like phenotypes and nicotinamide adenine dinucleotide (NAD+) metabolism. However, the functional role of NAD+ metabolism in regulating the characteristics of TICs is not known. In this study, we provide evidence that the mitochondrial NAD+ levels affect the characteristics of glioma-driven SSEA1+ TICs, including clonogenic growth potential. An increase in the mitochondrial NAD+ levels by the overexpression of the mitochondrial enzyme nicotinamide nucleotide transhydrogenase (NNT) significantly suppressed the sphere-forming ability and induced differentiation of TICs, suggesting a loss of the characteristics of TICs. In addition, increased SIRT3 activity and reduced lactate production, which are mainly observed in healthy and young cells, appeared following NNT-overexpressed TICs. Moreover, in vivo tumorigenic potential was substantially abolished by NNT overexpression. Conversely, the short interfering RNA-mediated knockdown of NNT facilitated the maintenance of TIC characteristics, as evidenced by the increased numbers of large tumor spheres and in vivo tumorigenic potential. Our results demonstrated that targeting the maintenance of healthy mitochondria with increased mitochondrial NAD+ levels and SIRT3 activity could be a promising strategy for abolishing the development of TICs as a new therapeutic approach to treating aging-associated tumors. PMID:28604662

  15. Molecular Regulation of DNA Damage-Induced Apoptosis in Neurons of Cerebral Cortex

    PubMed Central

    Liu, Zhiping; Pipino, Jacqueline; Chestnut, Barry; Landek, Melissa A.

    2009-01-01

    Cerebral cortical neuron degeneration occurs in brain disorders manifesting throughout life, but the mechanisms are understood poorly. We used cultured embryonic mouse cortical neurons and an in vivo mouse model to study mechanisms of DNA damaged-induced apoptosis in immature and differentiated neurons. p53 drives apoptosis of immature and differentiated cortical neurons through its rapid and prominent activation stimulated by DNA strand breaks induced by topoisomerase-I and -II inhibition. Blocking p53-DNA transactivation with α-pifithrin protects immature neurons; blocking p53-mitochondrial functions with μ-pifithrin protects differentiated neurons. Mitochondrial death proteins are upregulated in apoptotic immature and differentiated neurons and have nonredundant proapoptotic functions; Bak is more dominant than Bax in differentiated neurons. p53 phosphorylation is mediated by ataxia telangiectasia mutated (ATM) kinase. ATM inactivation is antiapoptotic, particularly in differentiated neurons, whereas inhibition of c-Abl protects immature neurons but not differentiated neurons. Cell death protein expression patterns in mouse forebrain are mostly similar to cultured neurons. DNA damage induces prominent p53 activation and apoptosis in cerebral cortex in vivo. Thus, DNA strand breaks in cortical neurons induce rapid p53-mediated apoptosis through actions of upstream ATM and c-Abl kinases and downstream mitochondrial death proteins. This molecular network operates through variations depending on neuron maturity. PMID:18820287

  16. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  17. Complex IV Deficient Surf1−/− Mice Initiate Mitochondrial Stress Responses

    PubMed Central

    Pulliam, Daniel A.; Deepa, Sathyaseelan S.; Liu, Yuhong; Hill, Shauna; Lin, Ai-Ling; Bhattacharya, Arunabh; Shi, Yun; Sloane, Lauren; Viscomi, Carlo; Zeviani, Massimo; Van Remmen, Holly

    2014-01-01

    Summary Mutations in SURF1 cytochrome c oxidase (COX) assembly protein are associated with Leigh’s syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the Surf1 protein (Surf1−/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in reactive oxygen species (ROS) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared to wild-type. However, blood lactate levels are elevated and Surf1−/− mice have reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo. Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis (PGC-1α and VDAC) in both heart and skeletal muscle. While mitochondrial biogenesis is a common response in the two tissues, skeletal muscle have an up-regulation of the mitochondrial unfolded protein response (UPRMT) and heart exhibits induction of the Nrf2 antioxidant response pathway. These data are the first to report induction of the UPRMT in a mammalian model of diminished COX activity. In addition our results suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homeostasis. Loss of complex IV assembly factor Surf1 in mice results in compensatory responses including mitochondrial biogenesis, the nrf2 pathway and the mitochondrial unfolded protein response. This compensatory response may contribute to the lack of deleterious phenotypes under basal conditions. PMID:24911525

  18. The mitochondrial transporter ABC-me (ABCB10), a downstream target of GATA-1, is essential for erythropoiesis in vivo

    PubMed Central

    Hyde, B B; Liesa, M; Elorza, A A; Qiu, W; Haigh, S E; Richey, L; Mikkola, H K; Schlaeger, T M; Shirihai, O S

    2012-01-01

    The mitochondrial transporter ATP binding cassette mitochondrial erythroid (ABC-me/ABCB10) is highly induced during erythroid differentiation by GATA-1 and its overexpression increases hemoglobin production rates in vitro. However, the role of ABC-me in erythropoiesis in vivo is unknown. Here we report for the first time that erythrocyte development in mice requires ABC-me. ABC-me−/− mice die at day 12.5 of gestation, showing nearly complete eradication of primitive erythropoiesis and lack of hemoglobinized cells at day 10.5. ABC-me−/− erythroid cells fail to differentiate because they exhibit a marked increase in apoptosis, both in vivo and ex vivo. Erythroid precursors are particularly sensitive to oxidative stress and ABC-me in the heart and its yeast ortholog multidrug resistance-like 1 have been shown to protect against oxidative stress. Thus, we hypothesized that increased apoptosis in ABC-me−/− erythroid precursors was caused by oxidative stress. Within this context, ABC-me deletion causes an increase in mitochondrial superoxide production and protein carbonylation in erythroid precursors. Furthermore, treatment of ABC-me−/− erythroid progenitors with the mitochondrial antioxidant MnTBAP (superoxide dismutase 2 mimetic) supports survival, ex vivo differentiation and increased hemoglobin production. Altogether, our findings demonstrate that ABC-me is essential for erythropoiesis in vivo. PMID:22240895

  19. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    PubMed

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian

    2016-06-01

    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  20. MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload.

    PubMed

    Ribeiro Junior, Rogério Faustino; Dabkowski, Erinne Rose; Shekar, Kadambari Chandra; O Connell, Kelly A; Hecker, Peter A; Murphy, Michael P

    2018-03-01

    Heart failure remains a major public-health problem with an increase in the number of patients worsening from this disease. Despite current medical therapy, the condition still has a poor prognosis. Heart failure is complex but mitochondrial dysfunction seems to be an important target to improve cardiac function directly. Our goal was to analyze the effects of MitoQ (100 µM in drinking water) on the development and progression of heart failure induced by pressure overload after 14 weeks. The main findings are that pressure overload-induced heart failure in rats decreased cardiac function in vivo that was not altered by MitoQ. However, we observed a reduction in right ventricular hypertrophy and lung congestion in heart failure animals treated with MitoQ. Heart failure also decreased total mitochondrial protein content, mitochondrial membrane potential in the intermyofibrillar mitochondria. MitoQ restored membrane potential in IFM but did not restore mitochondrial protein content. These alterations are associated with the impairment of basal and stimulated mitochondrial respiration in IFM and SSM induced by heart failure. Moreover, MitoQ restored mitochondrial respiration in heart failure induced by pressure overload. We also detected higher levels of hydrogen peroxide production in heart failure and MitoQ restored the increase in ROS production. MitoQ was also able to improve mitochondrial calcium retention capacity, mainly in the SSM whereas in the IFM we observed a small alteration. In summary, MitoQ improves mitochondrial dysfunction in heart failure induced by pressure overload, by decreasing hydrogen peroxide formation, improving mitochondrial respiration and improving mPTP opening. Published by Elsevier Inc.

  1. The metabolic enhancer piracetam ameliorates the impairment of mitochondrial function and neurite outgrowth induced by ß-amyloid peptide

    PubMed Central

    Kurz, C; Ungerer, I; Lipka, U; Kirr, S; Schütt, T; Eckert, A; Leuner, K; Müller, WE

    2010-01-01

    Background and purpose: β-Amyloid peptide (Aβ) is implicated in the pathogenesis of Alzheimer's disease by initiating a cascade of events from mitochondrial dysfunction to neuronal death. The metabolic enhancer piracetam has been shown to improve mitochondrial dysfunction following brain aging and experimentally induced oxidative stress. Experimental approach: We used cell lines (PC12 and HEK cells) and murine dissociated brain cells. The protective effects of piracetam in vitro and ex vivo on Aβ-induced impairment of mitochondrial function (as mitochondrial membrane potential and ATP production), on secretion of soluble Aβ and on neurite outgrowth in PC12 cells were investigated. Key results: Piracetam improves mitochondrial function of PC12 cells and acutely dissociated brain cells from young NMRI mice following exposure to extracellular Aβ1-42. Similar protective effects against Aβ1-42 were observed in dissociated brain cells from aged NMRI mice, or mice transgenic for mutant human amyloid precursor protein (APP) treated with piracetam for 14 days. Soluble Aβ load was markedly diminished in the brain of those animals after treatment with piracetam. Aβ production by HEK cells stably transfected with mutant human APP was elevated by oxidative stress and this was reduced by piracetam. Impairment of neuritogenesis is an important consequence of Aβ-induced mitochondrial dysfunction and Aβ-induced reduction of neurite growth in PC12 cells was substantially improved by piracetam. Conclusion and implications: Our findings strongly support the concept of improving mitochondrial function as an approach to ameliorate the detrimental effects of Aβ on brain function. This article is commented on by Moncada, pp. 217–219 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00706.x and to view related papers by Pravdic et al. and Puerta et al. visit http://dx.doi.org/10.1111/j.1476-5381.2010.00698.x and http://dx.doi.org/10.1111/j.1476-5381.2010.00663.x PMID:20218980

  2. A Review of MR Spectroscopy Studies of Pediatric Bipolar Disorder

    PubMed Central

    Kondo, D.G.; Hellem, T.L.; Shi, X.-F.; Sung, Y.H.; Prescot, A.P.; Kim, T.S.; Huber, R.S.; Forrest, L.N.; Renshaw, P.F.

    2015-01-01

    Pediatric bipolar disorder is a severe mental illness whose pathophysiology is poorly understood and for which there is an urgent need for improved diagnosis and treatment. MR spectroscopy is a neuroimaging method capable of in vivo measurement of neurochemicals relevant to bipolar disorder neurobiology. MR spectroscopy studies of adult bipolar disorder provide consistent evidence for alterations in the glutamate system and mitochondrial function. In bipolar disorder, these 2 phenomena may be linked because 85% of glucose in the brain is consumed by glutamatergic neurotransmission and the conversion of glutamate to glutamine. The purpose of this article is to review the MR spectroscopic imaging literature in pediatric bipolar disorder, at-risk samples, and severe mood dysregulation, with a focus on the published findings that are relevant to glutamatergic and mitochondrial functioning. Potential directions for future MR spectroscopy studies of the glutamate system and mitochondrial dysfunction in pediatric bipolar disorder are discussed. PMID:24557702

  3. Gamma rays induce a p53-independent mitochondrial biogenesis that is counter-regulated by HIF1α

    PubMed Central

    Bartoletti-Stella, A; Mariani, E; Kurelac, I; Maresca, A; Caratozzolo, M F; Iommarini, L; Carelli, V; Eusebi, L H; Guido, A; Cenacchi, G; Fuccio, L; Rugolo, M; Tullo, A; Porcelli, A M; Gasparre, G

    2013-01-01

    Mitochondrial biogenesis is an orchestrated process that presides to the regulation of the organelles homeostasis within a cell. We show that γ-rays, at doses commonly used in the radiation therapy for cancer treatment, induce an increase in mitochondrial mass and function, in response to a genotoxic stress that pushes cells into senescence, in the presence of a functional p53. Although the main effector of the response to γ-rays is the p53-p21 axis, we demonstrated that mitochondrial biogenesis is only indirectly regulated by p53, whose activation triggers a murine double minute 2 (MDM2)-mediated hypoxia-inducible factor 1α (HIF1α) degradation, leading to the release of peroxisome-proliferator activated receptor gamma co-activator 1β inhibition by HIF1α, thus promoting mitochondrial biogenesis. Mimicking hypoxia by HIF1α stabilization, in fact, blunts the mitochondrial response to γ-rays as well as the induction of p21-mediated cell senescence, indicating prevalence of the hypoxic over the genotoxic response. Finally, we also show in vivo that post-radiotherapy mitochondrial DNA copy number increase well correlates with lack of HIF1α increase in the tissue, concluding this may be a useful molecular tool to infer the trigger of a hypoxic response during radiotherapy, which may lead to failure of activation of cell senescence. PMID:23764844

  4. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy

    PubMed Central

    Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.

    2012-01-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570

  5. Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

    PubMed Central

    2013-01-01

    Background. Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Methods. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). Results. In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Conclusions. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age. PMID:23051977

  6. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults.

    PubMed

    Coen, Paul M; Jubrias, Sharon A; Distefano, Giovanna; Amati, Francesca; Mackey, Dawn C; Glynn, Nancy W; Manini, Todd M; Wohlgemuth, Stephanie E; Leeuwenburgh, Christiaan; Cummings, Steven R; Newman, Anne B; Ferrucci, Luigi; Toledo, Frederico G S; Shankland, Eric; Conley, Kevin E; Goodpaster, Bret H

    2013-04-01

    Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

  7. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy

    PubMed Central

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog

    2016-01-01

    Abstract Aims: Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. Results: We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. Innovation: This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. Conclusion: MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072–1083. PMID:26935406

  8. Menadione-Induced DNA Damage Leads to Mitochondrial Dysfunction and Fragmentation During Rosette Formation in Fuchs Endothelial Corneal Dystrophy.

    PubMed

    Halilovic, Adna; Schmedt, Thore; Benischke, Anne-Sophie; Hamill, Cecily; Chen, Yuming; Santos, Janine Hertzog; Jurkunas, Ula V

    2016-06-20

    Fuchs endothelial corneal dystrophy (FECD), a leading cause of age-related corneal edema requiring transplantation, is characterized by rosette formation of corneal endothelium with ensuing apoptosis. We sought to determine whether excess of mitochondrial reactive oxygen species leads to chronic accumulation of oxidative DNA damage and mitochondrial dysfunction, instigating cell death. We modeled the pathognomonic rosette formation of postmitotic corneal cells by increasing endogenous cellular oxidative stress with menadione (MN) and performed a temporal analysis of its effect in normal (HCEnC, HCECi) and FECD (FECDi) cells and ex vivo specimens. FECDi and FECD ex vivo specimens exhibited extensive mtDNA and nDNA damage as detected by quantitative PCR. Exposure to MN triggered an increase in mitochondrial superoxide levels and led to mtDNA and nDNA damage, while DNA amplification was restored with NAC pretreatment. Furthermore, MN exposure led to a decrease in ΔΨm and adenosine triphosphate levels in normal cells, while FECDi exhibited mitochondrial dysfunction at baseline. Mitochondrial fragmentation and cytochrome c release were detected in FECD tissue and after MN treatment of HCEnCs. Furthermore, cleavage of caspase-9 and caspase-3 followed MN-induced cytochrome c release in HCEnCs. This study provides the first line of evidence that accumulation of oxidative DNA damage leads to rosette formation, loss of functionally intact mitochondria via fragmentation, and subsequent cell death during postmitotic cell degeneration of ocular tissue. MN induced rosette formation, along with mtDNA and nDNA damage, mitochondrial dysfunction, and fragmentation, leading to activation of the intrinsic apoptosis via caspase cleavage and cytochrome c release. Antioxid. Redox Signal. 24, 1072-1083.

  9. p53 improves aerobic exercise capacity and augments skeletal muscle mitochondrial DNA content.

    PubMed

    Park, Joon-Young; Wang, Ping-Yuan; Matsumoto, Takumi; Sung, Ho Joong; Ma, Wenzhe; Choi, Jeong W; Anderson, Stasia A; Leary, Scot C; Balaban, Robert S; Kang, Ju-Gyeong; Hwang, Paul M

    2009-09-25

    Exercise capacity is a physiological characteristic associated with protection from both cardiovascular and all-cause mortality. p53 regulates mitochondrial function and its deletion markedly diminishes exercise capacity, but the underlying genetic mechanism orchestrating this is unclear. Understanding the biology of how p53 improves exercise capacity may provide useful insights for improving both cardiovascular as well as general health. The purpose of this study was to understand the genetic mechanism by which p53 regulates aerobic exercise capacity. Using a variety of physiological, metabolic, and molecular techniques, we further characterized maximum exercise capacity and the effects of training, measured various nonmitochondrial and mitochondrial determinants of exercise capacity, and examined putative regulators of mitochondrial biogenesis. As p53 did not affect baseline cardiac function or inotropic reserve, we focused on the involvement of skeletal muscle and now report a wider role for p53 in modulating skeletal muscle mitochondrial function. p53 interacts with Mitochondrial Transcription Factor A (TFAM), a nuclear-encoded gene important for mitochondrial DNA (mtDNA) transcription and maintenance, and regulates mtDNA content. The increased mtDNA in p53(+/+) compared to p53(-/-) mice was more marked in aerobic versus glycolytic skeletal muscle groups with no significant changes in cardiac tissue. These in vivo observations were further supported by in vitro studies showing overexpression of p53 in mouse myoblasts increases both TFAM and mtDNA levels whereas depletion of TFAM by shRNA decreases mtDNA content. Our current findings indicate that p53 promotes aerobic metabolism and exercise capacity by using different mitochondrial genes and mechanisms in a tissue-specific manner.

  10. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration

    PubMed Central

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-01-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS. PMID:20123860

  11. Loss of thymidine kinase 2 alters neuronal bioenergetics and leads to neurodegeneration.

    PubMed

    Bartesaghi, Stefano; Betts-Henderson, Joanne; Cain, Kelvin; Dinsdale, David; Zhou, Xiaoshan; Karlsson, Anna; Salomoni, Paolo; Nicotera, Pierluigi

    2010-05-01

    Mutations of thymidine kinase 2 (TK2), an essential component of the mitochondrial nucleotide salvage pathway, can give rise to mitochondrial DNA (mtDNA) depletion syndromes (MDS). These clinically heterogeneous disorders are characterized by severe reduction in mtDNA copy number in affected tissues and are associated with progressive myopathy, hepatopathy and/or encephalopathy, depending in part on the underlying nuclear genetic defect. Mutations of TK2 have previously been associated with an isolated myopathic form of MDS (OMIM 609560). However, more recently, neurological phenotypes have been demonstrated in patients carrying TK2 mutations, thus suggesting that loss of TK2 results in neuronal dysfunction. Here, we directly address the role of TK2 in neuronal homeostasis using a knockout mouse model. We demonstrate that in vivo loss of TK2 activity leads to a severe ataxic phenotype, accompanied by reduced mtDNA copy number and decreased steady-state levels of electron transport chain proteins in the brain. In TK2-deficient cerebellar neurons, these abnormalities are associated with impaired mitochondrial bioenergetic function, aberrant mitochondrial ultrastructure and degeneration of selected neuronal types. Overall, our findings demonstrate that TK2 deficiency leads to neuronal dysfunction in vivo, and have important implications for understanding the mechanisms of neurological impairment in MDS.

  12. In vivo functional investigations of lactic acid in patients with respiratory chain disorders

    PubMed Central

    Touati, G; Rigal, O; Lombes, A; Frachon, P; Giraud, M; de Baulny, H O.

    1997-01-01

    Accepted 4 September 1996
 OBJECTIVE—To assess the prevalence of in vivo detectable abnormalities of lactate metabolism in mitochondrial disorders.
DESIGN—Retrospective study in a metabolic investigation unit.
PATIENTS—28 patients with a respiratory chain disorder identified from biochemical or genetic analyses, or both, and 133 age matched controls. Controls were children in whom causes of secondary hyperlactataemia and/or disorders, affecting the energy pathways could be excluded.
METHODS—Lactate and pyruvate were measured in blood, together with other intermediary metabolism indices, before and one hour after four meals each day. Lactate and creatinine in a 24 hour urine sample collected at the same time were analysed. When basal hyperlactataemia was not evident, an intravenous glucose or pyruvate loading test was performed as a provocative test.
RESULTS—Abnormal lactate metabolism was found in 25 of 28 patients thus demonstrating the potential usefulness of these investigations in the diagnosis of mitochondrial diseases. Moderate lactate accumulation was present in relatively mild disease, associated with a mitochondrial DNA mutation and combined respiratory complexes deficiency. By contrast, high lactate concentrations were observed in very young children, with severe disease, isolated complex deficiency, and no apparent mitochondrial DNA defect.

 PMID:9059154

  13. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    PubMed

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  14. Differential Effects of Sepsis and Chronic Inflammation on Diaphragm Muscle Fiber Type, Thyroid Hormone Metabolism, and Mitochondrial Function.

    PubMed

    Bloise, Flavia F; van der Spek, Anne H; Surovtseva, Olga V; Ortiga-Carvalho, Tania Maria; Fliers, Eric; Boelen, Anita

    2016-04-01

    The diaphragm is the main respiratory muscle, and its function is compromised during severe illness. Altered local thyroid hormone (TH) metabolism may be a determinant of impaired muscle function during illness. This study investigates the effects of bacterial sepsis and chronic inflammation on muscle fiber type, local TH metabolism, and mitochondrial function in the diaphragm. Two mouse models were used: sepsis induced by S. pneumoniae infection or chronic inflammation induced by subcutaneous turpentine injection. In vitro, the effect of bacterial endotoxin (LPS) on mitochondrial function in C2C12 myotubes was studied. Sepsis induced a transient increase in the fiber type I profile and increased Dio3 expression while decreasing Dio2, Thra1, and Slc16a2 expression. Triiodothyronine positively regulated genes Tnni2 and Myog were decreased, indicating reduced TH signaling in the diaphragm. In contrast, chronic inflammation increased the fiber type II profile in the diaphragm as well as Thra1, Thrb1, and Myog expression while decreasing Dio3 expression, suggesting increased TH responsiveness during chronic inflammation. LPS-stimulated C2C12 myotubes showed decreased Dio2 expression and reduced basal oxygen consumption as well as non-mitochondrial respiration. The same respiratory profile was induced by Dio2 knockdown in myotubes. The in vivo results show differential effects of sepsis and chronic inflammation on diaphragm muscle fiber type, TH metabolism, and mitochondrial function, while the in vitro results point to a causal role for altered TH metabolism in functional muscle impairment. These findings may be relevant for the pathogenesis of impaired respiratory function in critical illness.

  15. Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver.

    PubMed

    Theurey, Pierre; Tubbs, Emily; Vial, Guillaume; Jacquemetton, Julien; Bendridi, Nadia; Chauvin, Marie-Agnès; Alam, Muhammad Rizwan; Le Romancer, Muriel; Vidal, Hubert; Rieusset, Jennifer

    2016-04-01

    Mitochondria-associated endoplasmic reticulum membranes (MAM) play a key role in mitochondrial dynamics and function and in hepatic insulin action. Whereas mitochondria are important regulators of energy metabolism, the nutritional regulation of MAM in the liver and its role in the adaptation of mitochondria physiology to nutrient availability are unknown. In this study, we found that the fasted to postprandial transition reduced the number of endoplasmic reticulum-mitochondria contact points in mouse liver. Screening of potential hormonal/metabolic signals revealed glucose as the main nutritional regulator of hepatic MAM integrity both in vitro and in vivo Glucose reduced organelle interactions through the pentose phosphate-protein phosphatase 2A (PP-PP2A) pathway, induced mitochondria fission, and impaired respiration. Blocking MAM reduction counteracted glucose-induced mitochondrial alterations. Furthermore, disruption of MAM integrity mimicked effects of glucose on mitochondria dynamics and function. This glucose-sensing system is deficient in the liver of insulin-resistant ob/ob and cyclophilin D-KO mice, both characterized by chronic disruption of MAM integrity, mitochondrial fission, and altered mitochondrial respiration. These data indicate that MAM contribute to the hepatic glucose-sensing system, allowing regulation of mitochondria dynamics and function during nutritional transition. Chronic disruption of MAM may participate in hepatic mitochondrial dysfunction associated with insulin resistance. © The Author (2016). Published by Oxford University Press on behalf of Journal of Molecular Cell Biology, IBCB, SIBS, CAS. All rights reserved.

  16. In vivo high-resolution magic angle spinning magnetic and electron paramagnetic resonance spectroscopic analysis of mitochondria-targeted peptide in Drosophila melanogaster with trauma-induced thoracic injury.

    PubMed

    Constantinou, Caterina; Apidianakis, Yiorgos; Psychogios, Nikolaos; Righi, Valeria; Mindrinos, Michael N; Khan, Nadeem; Swartz, Harold M; Szeto, Hazel H; Tompkins, Ronald G; Rahme, Laurence G; Tzika, A Aria

    2016-02-01

    Trauma is the most common cause of mortality among individuals aged between 1 and 44 years and the third leading cause of mortality overall in the US. In this study, we examined the effects of trauma on the expression of genes in Drosophila melanogaster, a useful model for investigating genetics and physiology. After trauma was induced by a non-lethal needle puncture of the thorax, we observed the differential expression of genes encoding for mitochondrial uncoupling proteins, as well as those encoding for apoptosis-related and insulin signaling-related proteins, thus indicating muscle functional dysregulation. These results prompted us to examine the link between insulin signaling and mitochondrial dysfunction using in vivo nuclear magnetic resonance (NMR) with complementary electron paramagnetic resonance (EPR) spectroscopy. Trauma significantly increased insulin resistance biomarkers, and the NMR spectral profile of the aged flies with trauma-induced thoracic injury resembled that of insulin-resistant chico mutant flies. In addition, the mitochondrial redox status, as measured by EPR, was significantly altered following trauma, indicating mitochondrial uncoupling. A mitochondria-targeted compound, Szeto-Schiller (SS)-31 that promotes adenosine triphosphate (ATP) synthesis normalized the NMR spectral profile, as well as the mitochondrial redox status of the flies with trauma-induced thoracic injury, as assessed by EPR. Based on these findings, we propose a molecular mechanism responsible for trauma-related mortality and also propose that trauma sequelae in aging are linked to insulin signaling and mitochondrial dysfunction. Our findings further suggest that SS-31 attenuates trauma-associated pathological changes.

  17. PPAR-γ Regulates Carnitine Homeostasis and Mitochondrial Function in a Lamb Model of Increased Pulmonary Blood Flow

    PubMed Central

    Rafikov, Ruslan; Kumar, Sanjiv; Hou, Yali; Oishi, Peter E.; Datar, Sanjeev A.; Raff, Gary; Fineman, Jeffrey R.; Black, Stephen M.

    2012-01-01

    Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow. PMID:22962578

  18. Arterial Smooth Muscle Mitochondria Amplify Hydrogen Peroxide Microdomains Functionally Coupled to L-Type Calcium Channels

    PubMed Central

    Chaplin, Nathan L.; Nieves-Cintrón, Madeline; Fresquez, Adriana M.; Navedo, Manuel F.; Amberg, Gregory C.

    2015-01-01

    Rationale Mitochondria are key integrators of convergent intracellular signaling pathways. Two important second messengers modulated by mitochondria are calcium and reactive oxygen species. To date, coherent mechanisms describing mitochondrial integration of calcium and oxidative signaling in arterial smooth muscle are incomplete. Objective To address and add clarity to this issue we tested the hypothesis that mitochondria regulate subplasmalemmal calcium and hydrogen peroxide microdomain signaling in cerebral arterial smooth muscle. Methods and Results Using an image-based approach we investigated the impact of mitochondrial regulation of L-type calcium channels on subcellular calcium and ROS signaling microdomains in isolated arterial smooth muscle cells. Our single cell observations were then related experimentally to intact arterial segments and to living animals. We found that subplasmalemmal mitochondrial amplification of hydrogen peroxide microdomain signaling stimulates L-type calcium channels and that this mechanism strongly impacts the functional capacity of the vasoconstrictor angiotensin II. Importantly, we also found that disrupting this mitochondrial amplification mechanism in vivo normalized arterial function and attenuated the hypertensive response to systemic endothelial dysfunction. Conclusions From these observations we conclude that mitochondrial amplification of subplasmalemmal calcium and hydrogen peroxide microdomain signaling is a fundamental mechanism regulating arterial smooth muscle function. As the principle components involved are fairly ubiquitous and positioning of mitochondria near the plasma membrane is not restricted to arterial smooth muscle, this mechanism could occur in many cell types and contribute to pathological elevations of intracellular calcium and increased oxidative stress associated with many diseases. PMID:26390880

  19. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism.

    PubMed

    Anderson, Mary Ann; Deng, Jing; Seymour, John F; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R; Westerman, David; Si, Eric G; Majewski, Ian J; Segal, David; Heitner Enschede, Sari L; Huang, David C S; Davids, Matthew S; Letai, Anthony; Roberts, Andrew W

    2016-06-23

    BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. © 2016 by The American Society of Hematology.

  20. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism

    PubMed Central

    Anderson, Mary Ann; Deng, Jing; Seymour, John F.; Tam, Constantine; Kim, Su Young; Fein, Joshua; Yu, Lijian; Brown, Jennifer R.; Westerman, David; Si, Eric G.; Majewski, Ian J.; Segal, David; Heitner Enschede, Sari L.; Huang, David C. S.; Davids, Matthew S.; Letai, Anthony

    2016-01-01

    BCL2 blunts activation of the mitochondrial pathway to apoptosis, and high-level expression is required for chronic lymphocytic leukemia (CLL) survival. Venetoclax (ABT-199) is a small-molecule selective inhibitor of BCL2 currently in clinical trials for CLL and other malignancies. In conjunction with the phase 1 first-in-human clinical trial of venetoclax in patients with relapsed or refractory CLL (M12-175), we investigated the mechanism of action of venetoclax in vivo, explored whether in vitro sensitivity assays or BH3 profiling correlated with in vivo responses in patients, and determined whether loss of TP53 function affected responses in vitro and in vivo. In all samples tested, venetoclax induced death of CLL cells in vitro at concentrations achievable in vivo, with cell death evident within 4 hours. Apoptotic CLL cells were detected in vivo 6 or 24 hours after a single 20-mg or 50-mg dose in some patients. The extent of mitochondrial depolarization by a BIM BH3 peptide in vitro was correlated with percentage reduction of CLL in the blood and bone marrow in vivo, whereas the half lethal concentration derived from standard cytotoxicity assays was not. CLL cell death in vitro and the depth of clinical responses were independent of deletion of chromosome 17p, TP53 mutation, and TP53 function. These data provide direct evidence that venetoclax kills CLL cells in a TP53-independent fashion by inhibition of BCL2 in patients and support further assessment of BH3 profiling as a predictive biomarker for this drug. PMID:27069256

  1. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c

    PubMed Central

    Mootha, Vamsi K.; Wei, Michael C.; Buttle, Karolyn F.; Scorrano, Luca; Panoutsakopoulou, Vily; Mannella, Carmen A.; Korsmeyer, Stanley J.

    2001-01-01

    Multiple apoptotic pathways release cytochrome c from the mitochondrial intermembrane space, resulting in the activation of downstream caspases. In vivo activation of Fas (CD95) resulted in increased permeability of the mitochondrial outer membrane and depletion of cytochrome c stores. Serial measurements of oxygen consumption, NADH redox state and membrane potential revealed a loss of respiratory state transitions. This tBID-induced respiratory failure did not require any caspase activity. At early time points, re-addition of exogenous cytochrome c markedly restored respiratory functions. Over time, however, mitochondria showed increasing irreversible respiratory dysfunction as well as diminished calcium buffering. Electron microscopy and tomographic reconstruction revealed asymmetric mitochondria with blebs of herniated matrix, distended inner membrane and partial loss of cristae structure. Thus, apoptogenic redistribution of cytochrome c is responsible for a distinct program of mitochondrial respiratory dysfunction, in addition to the activation of downstream caspases. PMID:11179211

  2. Mitochondria localize to injured axons to support regeneration

    PubMed Central

    Han, Sung Min; Baig, Huma S.; Hammarlund, Marc

    2016-01-01

    SUMMARY Axon regeneration is essential to restore the nervous system after axon injury. However, the neuronal cell biology that underlies axon regeneration is incompletely understood. Here we use in vivo single-neuron analysis to investigate the relationship between nerve injury, mitochondrial localization, and axon regeneration. Mitochondria translocate into injured axons, so that average mitochondria density increases after injury. Moreover, single-neuron analysis reveals that axons that fail to increase mitochondria have poor regeneration. Experimental alterations to axonal mitochondrial distribution or mitochondrial respiratory chain function result in corresponding changes to regeneration outcomes. Axonal mitochondria are specifically required for growth cone migration, identifying a key energy challenge for injured neurons. Finally, mitochondrial localization to the axon after injury is regulated in part by dual-leucine zipper kinase-1 (DLK-1), a conserved regulator of axon regeneration. These data identify regulation of axonal mitochondria as a new cell biological mechanism that helps determine the regenerative response of injured neurons. PMID:28009276

  3. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice.

    PubMed

    Gioscia-Ryan, Rachel A; Battson, Micah L; Cuevas, Lauren M; Zigler, Melanie C; Sindler, Amy L; Seals, Douglas R

    2016-11-22

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.

  4. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology.

    PubMed

    Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade

    2015-05-21

    The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.

  5. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology

    PubMed Central

    Guarani, Virginia; McNeill, Elizabeth M; Paulo, Joao A; Huttlin, Edward L; Fröhlich, Florian; Gygi, Steven P; Van Vactor, David; Harper, J Wade

    2015-01-01

    The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture. DOI: http://dx.doi.org/10.7554/eLife.06265.001 PMID:25997101

  6. Protein kinase C epsilon regulates mitochondrial pools of Nampt and NAD following resveratrol and ischemic preconditioning in the rat cortex

    PubMed Central

    Morris-Blanco, Kahlilia C; Cohan, Charles H; Neumann, Jake T; Sick, Thomas J; Perez-Pinzon, Miguel A

    2014-01-01

    Preserving mitochondrial pools of nicotinamide adenine dinucleotide (NAD) or nicotinamide phosphoribosyltransferase (Nampt), an enzyme involved in NAD production, maintains mitochondrial function and confers neuroprotection after ischemic stress. However, the mechanisms involved in regulating mitochondrial-localized Nampt or NAD have not been defined. In this study, we investigated the roles of protein kinase C epsilon (PKCɛ) and AMP-activated protein kinase (AMPK) in regulating mitochondrial pools of Nampt and NAD after resveratrol or ischemic preconditioning (IPC) in the cortex and in primary neuronal-glial cortical cultures. Using the specific PKCɛ agonist ψɛRACK, we found that PKCɛ induced robust activation of AMPK in vitro and in vivo and that AMPK was required for PKCɛ-mediated ischemic neuroprotection. In purified mitochondrial fractions, PKCɛ enhanced Nampt levels in an AMPK-dependent manner and was required for increased mitochondrial Nampt after IPC or resveratrol treatment. Analysis of intrinsic NAD autofluorescence using two-photon microscopy revealed that PKCɛ modulated NAD in the mitochondrial fraction. Further assessments of mitochondrial NAD concentrations showed that PKCɛ has a key role in regulating the mitochondrial NAD+/nicotinamide adenine dinucleotide reduced (NADH) ratio after IPC and resveratrol treatment in an AMPK- and Nampt-dependent manner. These findings indicate that PKCɛ is critical to increase or maintain mitochondrial Nampt and NAD after pathways of ischemic neuroprotection in the brain. PMID:24667915

  7. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data.

    PubMed

    Lauterbach, Edward C; Victoroff, Jeff; Coburn, Kerry L; Shillcutt, Samuel D; Doonan, Suzanne M; Mendez, Mario F

    2010-01-01

    This manuscript reviews the preclinical in vitro, ex vivo, and nonhuman in vivo effects of psychopharmacological agents in clinical use on cell physiology with a view toward identifying agents with neuroprotective properties in neurodegenerative disease. These agents are routinely used in the symptomatic treatment of neurodegenerative disease. Each agent is reviewed in terms of its effects on pathogenic proteins, proteasomal function, mitochondrial viability, mitochondrial function and metabolism, mitochondrial permeability transition pore development, cellular viability, and apoptosis. Effects on the metabolism of the neurodegenerative disease pathogenic proteins alpha-synuclein, beta-amyloid, and tau, including tau phosphorylation, are particularly addressed, with application to Alzheimer's and Parkinson's diseases. Limitations of the current data are detailed and predictive criteria for translational clinical neuroprotection are proposed and discussed. Drugs that warrant further study for neuroprotection in neurodegenerative disease include pramipexole, thioridazine, risperidone, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, fluoxetine, buspirone, clonazepam, diphenhydramine, and melatonin. Those with multiple neuroprotective mechanisms include pramipexole, thioridazine, olanzapine, quetiapine, lithium, valproate, desipramine, maprotiline, clonazepam, and melatonin. Those best viewed circumspectly in neurodegenerative disease until clinical disease course outcomes data become available, include several antipsychotics, lithium, oxcarbazepine, valproate, several tricyclic antidepressants, certain SSRIs, diazepam, and possibly diphenhydramine. A search for clinical studies of neuroprotection revealed only a single study demonstrating putatively positive results for ropinirole. An agenda for research on potentially neuroprotective agent is provided.

  8. Treating SCA1 Mice with Water-Soluble Compounds to Non-Specifically Boost Mitochondrial Function.

    PubMed

    Ferro, Austin; Carbone, Emily; Marzouk, Evan; Siegel, Asher; Nguyen, Donna; Polley, Kailen; Hartman, Jessilyn; Frederick, Kimberley; Ives, Stephen; Lagalwar, Sarita

    2017-01-22

    Mitochondrial dysfunction plays a significant role in the aging process and in neurodegenerative diseases including several hereditary spinocerebellar ataxias and other movement disorders marked by progressive degeneration of the cerebellum. The goal of this protocol is to assess mitochondrial dysfunction in Spinocerebellar ataxia type 1 (SCA1) and assess the efficacy of pharmacological targeting of metabolic respiration via the water-soluble compound succinic acid to slow disease progression. This approach is applicable to other cerebellar diseases and can be adapted to a host of water-soluble therapies. Ex vivo analysis of mitochondrial respiration is used to detect and quantify disease-related changes in mitochondrial function. With genetic evidence (unpublished data) and proteomic evidence of mitochondrial dysfunction in the SCA1 mouse model, we evaluate the efficacy of treatment with the water-soluble metabolic booster succinic acid by dissolving this compound directly into the home cage drinking water. The ability of the drug to pass the blood brain barrier can be deduced using high performance liquid chromatography (HPLC). The efficacy of these compounds can then be tested using multiple behavioral paradigms including the accelerating rotarod, balance beam test and footprint analysis. Cytoarchitectural integrity of the cerebellum can be assessed using immunofluorescence assays that detect Purkinje cell nuclei and Purkinje cell dendrites and soma. These methods are robust techniques for determining mitochondrial dysfunction and the efficacy of treatment with water-soluble compounds in cerebellar neurodegenerative disease.

  9. Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies

    PubMed Central

    Peerapanyasut, Wachirasek

    2018-01-01

    This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria. PMID:29670679

  10. Mitochondrial-nuclear communication by prohibitin shuttling under oxidative stress.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Atkinson, Cameron L; Smith, Joseph J; Liu, Zhicong; Elledge, Beth M; Jahng, Wan Jin

    2011-10-04

    Mitochondrial-nuclear communication is critical for maintaining mitochondrial activity under stress conditions. Adaptation of the mitochondrial-nuclear network to changes in the intracellular oxidation and reduction milieu is critical for the survival of retinal and retinal pigment epithelial (RPE) cells, in relation to their high oxygen demand and rapid metabolism. However, the generation and transmission of the mitochondrial signal to the nucleus remain elusive. Previously, our in vivo study revealed that prohibitin is upregulated in the retina, but downregulated in RPE cells in the aging and diabetic model. In this study, the functional role of prohibitin in the retina and RPE cells was examined using biochemical methods, including a lipid binding assay, two-dimensional gel electrophoresis, immunocytochemistry, Western blotting, and a knockdown approach. Protein depletion by siRNA characterized prohibitin as an anti-apoptotic molecule in mitochondria, while the lipid binding assay demonstrated subcellular communication between mitochondria and the nucleus under oxidative stress. The changes in the expression and localization of mitochondrial prohibitin triggered by reactive oxygen species are crucial for mitochondrial integrity. We propose that prohibitin shuttles between mitochondria and the nucleus as an anti-apoptotic molecule and a transcriptional regulator in a stress environment in the retina and RPE cells.

  11. Neuroprotective Efficacy of Mitochondrial Antioxidant MitoQ in Suppressing Peroxynitrite-Mediated Mitochondrial Dysfunction Inflicted by Lead Toxicity in the Rat Brain.

    PubMed

    Maiti, Arpan Kumar; Saha, Nimai Chandra; More, Sunil S; Panigrahi, Ashish Kumar; Paul, Goutam

    2017-04-01

    Lead (Pb) is one of the most pollutant metals that accumulate in the brain mitochondria disrupting mitochondrial structure and function. Though oxidative stress mediated by reactive oxygen species remains the most accepted mechanism of Pb neurotoxicity, some reports suggest the involvement of nitric oxide ( • NO) and reactive nitrogen species in Pb-induced neurotoxicity. But the impact of Pb neurotoxicity on mitochondrial respiratory enzyme complexes remains unknown with no relevant report highlighting the involvement of peroxynitrite (ONOO - ) in it. Herein, we investigated these effects in in vivo rat model by oral application of MitoQ, a known mitochondria-specific antioxidant with ONOO - scavenging activity. Interestingly, MitoQ efficiently alleviated ONOO - -mediated mitochondrial complexes II, III and IV inhibition, increased mitochondrial ATP production and restored mitochondrial membrane potential. MitoQ lowered enhanced caspases 3 and 9 activities upon Pb exposure and also suppressed synaptosomal lipid peroxidation and protein oxidation accompanied by diminution of nitrite production and protein-bound 3-nitrotyrosine. To ascertain our in vivo findings on mitochondrial dysfunction, we carried out similar experiments in the presence of different antioxidants and free radical scavengers in the in vitro SHSY5Y cell line model. MitoQ provided better protection compared to mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase suggesting the predominant involvement of ONOO - compared to • NO and O 2 •- . However, dimethylsulphoxide and catalase failed to provide protection signifying the noninvolvement of • OH and H 2 O 2 in the process. The better protection provided by MitoQ in SHSY5Y cells can be attributed to the fact that MitoQ targets mitochondria whereas mercaptoethylguanidine, N-nitro-L-arginine methyl ester and superoxide dismutase are known to target mainly cytoplasm and not mitochondria. Taken together the results from the present study clearly brings out the potential of MitoQ against ONOO - -induced toxicity upon Pb exposure indicating its therapeutic potential in metal toxicity.

  12. Pyruvate dehydrogenase has a major role in mast cell function, and its activity is regulated by mitochondrial microphthalmia transcription factor.

    PubMed

    Sharkia, Israa; Hadad Erlich, Tal; Landolina, Nadine; Assayag, Miri; Motzik, Alex; Rachmin, Inbal; Kay, Gillian; Porat, Ziv; Tshori, Sagi; Berkman, Neville; Levi-Schaffer, Francesca; Razin, Ehud

    2017-07-01

    We have recently observed that oxidative phosphorylation-mediated ATP production is essential for mast cell function. Pyruvate dehydrogenase (PDH) is the main regulator of the Krebs cycle and is located upstream of the electron transport chain. However, the role of PDH in mast cell function has not been described. Microphthalmia transcription factor (MITF) regulates the development, number, and function of mast cells. Localization of MITF to the mitochondria and its interaction with mitochondrial proteins has not been explored. We sought to explore the role played by PDH in mast cell exocytosis and to determine whether MITF is localized in the mitochondria and involved in regulation of PDH activity. Experiments were performed in vitro by using human and mouse mast cells, as well as rat basophil leukemia cells, and in vivo in mice. The effect of PDH inhibition on mast cell function was examined. PDH interaction with MITF was measured before and after immunologic activation. Furthermore, mitochondrial localization of MITF and its effect on PDH activity were determined. PDH is essential for immunologically mediated degranulation of mast cells. After activation, PDH is serine dephosphorylated. In addition, for the first time, we show that MITF is partially located in the mitochondria and interacts with PDH. This interaction is dependent on the phosphorylation state of PDH. Furthermore, mitochondrial MITF regulates PDH activity. The association of mitochondrial MITF with PDH emerges as an important regulator of mast cell function. Our findings indicate that PDH could arise as a new target for the manipulation of allergic diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  13. Nanotized PPARα Overexpression Targeted to Hypertrophied Myocardium Improves Cardiac Function by Attenuating the p53-GSK3β-Mediated Mitochondrial Death Pathway.

    PubMed

    Rana, Santanu; Datta, Ritwik; Chaudhuri, Ratul Datta; Chatterjee, Emeli; Chawla-Sarkar, Mamta; Sarkar, Sagartirtha

    2018-05-09

    Metabolic remodeling of cardiac muscles during pathological hypertrophy is characterized by downregulation of fatty acid oxidation (FAO) regulator, peroxisome proliferator-activated receptor alpha (PPARα). Thereby, we hypothesized that a cardiac-specific induction of PPARα might restore the FAO-related protein expression and resultant energy deficit. In the present study, consequences of PPARα augmentation were evaluated for amelioration of chronic oxidative stress, myocyte apoptosis, and cardiac function during pathological cardiac hypertrophy. Nanotized PPARα overexpression targeted to myocardium was done by a stearic acid-modified carboxymethyl-chitosan (CMC) conjugated to a 20-mer myocyte-targeted peptide (CMCP). Overexpression of PPARα ameliorated pathological hypertrophy and improved cardiac function. Augmented PPARα in hypertrophied myocytes revealed downregulated p53 acetylation (lys 382), leading to reduced apoptosis. Such cells showed increased binding of PPARα with p53 that in turn reduced interaction of p53 with glycogen synthase kinase-3β (GSK3β), which upregulated inactive phospho-GSK3β (serine [Ser]9) expression within mitochondrial protein fraction. Altogether, the altered molecular milieu in PPARα-overexpressed hypertrophy groups restored mitochondrial structure and function both in vitro and in vivo. Cardiomyocyte-targeted overexpression of a protein of interest (PPARα) by nanotized plasmid has been described for the first time in this study. Our data provide a novel insight towards regression of pathological hypertrophy by ameliorating mitochondrial oxidative stress in targeted PPARα-overexpressed myocardium. PPARα-overexpression during pathological hypertrophy showed substantial betterment of mitochondrial structure and function, along with downregulated apoptosis. Myocardium-targeted overexpression of PPARα during pathological cardiac hypertrophy led to an overall improvement of cardiac energy deficit and subsequent cardiac function, thereby, opening up a potential avenue for cardiac tissue engineering during hypertrophic cardiac pathophysiology.

  14. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putt, David A.; Zhong, Qing; Lash, Lawrence H., E-mail: l.h.lash@wayne.edu

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox statusmore » in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter. ►Oxidatively modified proteins in renal mitochondria from diabetic rats.« less

  15. Low anaerobic threshold and increased skeletal muscle lactate production in subjects with Huntington's disease.

    PubMed

    Ciammola, Andrea; Sassone, Jenny; Sciacco, Monica; Mencacci, Niccolò E; Ripolone, Michela; Bizzi, Caterina; Colciago, Clarissa; Moggio, Maurizio; Parati, Gianfranco; Silani, Vincenzo; Malfatto, Gabriella

    2011-01-01

    Mitochondrial defects that affect cellular energy metabolism have long been implicated in the etiology of Huntington's disease (HD). Indeed, several studies have found defects in the mitochondrial functions of the central nervous system and peripheral tissues of HD patients. In this study, we investigated the in vivo oxidative metabolism of exercising muscle in HD patients. Ventilatory and cardiometabolic parameters and plasma lactate concentrations were monitored during incremental cardiopulmonary exercise in twenty-five HD subjects and twenty-five healthy subjects. The total exercise capacity was normal in HD subjects but notably the HD patients and presymptomatic mutation carriers had a lower anaerobic threshold than the control subjects. The low anaerobic threshold of HD patients was associated with an increase in the concentration of plasma lactate. We also analyzed in vitro muscular cell cultures and found that HD cells produce more lactate than the cells of healthy subjects. Finally, we analyzed skeletal muscle samples by electron microscopy and we observed striking mitochondrial structural abnormalities in two out of seven HD subjects. Our findings confirm mitochondrial abnormalities in HD patients' skeletal muscle and suggest that the mitochondrial dysfunction is reflected functionally in a low anaerobic threshold and an increased lactate synthesis during intense physical exercise. Copyright © 2010 Movement Disorder Society.

  16. 3,5-Diiodo-L-Thyronine Activates Brown Adipose Tissue Thermogenesis in Hypothyroid Rats

    PubMed Central

    Lombardi, Assunta; Senese, Rosalba; De Matteis, Rita; Busiello, Rosa Anna; Cioffi, Federica; Goglia, Fernando; Lanni, Antonia

    2015-01-01

    3,5-diiodo-l-thyronine (T2), a thyroid hormone derivative, is capable of increasing energy expenditure, as well as preventing high fat diet-induced overweight and related metabolic dysfunction. Most studies to date on T2 have been carried out on liver and skeletal muscle. Considering the role of brown adipose tissue (BAT) in energy and metabolic homeostasis, we explored whether T2 could activate BAT thermogenesis. Using euthyroid, hypothyroid, and T2-treated hypothyroid rats (all maintained at thermoneutrality) in morphological and functional studies, we found that hypothyroidism suppresses the maximal oxidative capacity of BAT and thermogenesis, as revealed by reduced mitochondrial content and respiration, enlarged cells and lipid droplets, and increased number of unilocular cells within the tissue. In vivo administration of T2 to hypothyroid rats activated BAT thermogenesis and increased the sympathetic innervation and vascularization of tissue. Likewise, T2 increased BAT oxidative capacity in vitro when added to BAT homogenates from hypothyroid rats. In vivo administration of T2 to hypothyroid rats enhanced mitochondrial respiration. Moreover, UCP1 seems to be a molecular determinant underlying the effect of T2 on mitochondrial thermogenesis. In fact, inhibition of mitochondrial respiration by GDP and its reactivation by fatty acids were greater in mitochondria from T2-treated hypothyroid rats than untreated hypothyroid rats. In vivo administration of T2 led to an increase in PGC-1α protein levels in nuclei (transient) and mitochondria (longer lasting), suggesting a coordinate effect of T2 in these organelles that ultimately promotes net activation of mitochondrial biogenesis and BAT thermogenesis. The effect of T2 on PGC-1α is similar to that elicited by triiodothyronine. As a whole, the data reported here indicate T2 is a thyroid hormone derivative able to activate BAT thermogenesis. PMID:25658324

  17. Dynamic changes in cardiac mitochondrial metabolism during warm acclimation in rainbow trout.

    PubMed

    Pichaud, Nicolas; Ekström, Andreas; Hellgren, Kim; Sandblom, Erik

    2017-05-01

    Although the mitochondrial metabolism responses to warm acclimation have been widely studied in fish, the time course of this process is less understood. Here, we characterized the changes of rainbow trout ( Oncorhynchus mykiss ) cardiac mitochondrial metabolism during acute warming from 10 to 16°C, and during the subsequent warm acclimation for 39 days. We repeatedly measured mitochondrial oxygen consumption in cardiac permeabilized fibers and the functional integrity of mitochondria (i.e. mitochondrial coupling and cytochrome c effect) at two assay temperatures (10 and 16°C), as well as the activities of citrate synthase (CS) and lactate dehydrogenase (LDH) at room temperature. LDH and CS activities significantly increased between day 0 (10°C acclimated fish) and day 1 (acute warming to 16°C) while mitochondrial oxygen consumption measured at respective in vivo temperatures did not change. Enzymatic activities and mitochondrial oxygen consumption rates significantly decreased by day 2, and remained stable during warm acclimation (days 2-39). The decrease in rates of oxygen between day 0 and day 1 coincided with an increased cytochrome c effect and a decreased mitochondrial coupling, suggesting a structural/functional impairment of mitochondria during acute warming. We suggest that after 2 days of warm acclimation, a new homeostasis is reached, which may involve the removal of dysfunctional mitochondria. Interestingly, from day 2 onwards, there was a lack of differences in mitochondrial oxygen consumption rates between the assay temperatures, suggesting that warm acclimation reduces the acute thermal sensitivity of mitochondria. This study provides significant knowledge on the thermal sensitivity of cardiac mitochondria that is essential to delineate the contribution of cellular processes to warm acclimation. © 2017. Published by The Company of Biologists Ltd.

  18. Inhibition of the Mitochondrial Fission Protein Drp1 Improves Survival in a Murine Cardiac Arrest Model

    PubMed Central

    Sharp, Willard W.; Beiser, David G.; Fang, Yong Hu; Han, Mei; Piao, Lin; Varughese, Justin; Archer, Stephen L.

    2015-01-01

    Objectives Survival following sudden cardiac arrest is poor despite advances in cardiopulmonary resuscitation (CPR) and the use of therapeutic hypothermia. Dynamin related protein 1 (Drp1), a regulator of mitochondrial fission, is an important determinant of reactive oxygen species generation, myocardial necrosis, and left ventricular function following ischemia/reperfusion injury, but its role in cardiac arrest is unknown. We hypothesized that Drp1 inhibition would improve survival, cardiac hemodynamics, and mitochondrial function in an in vivo model of cardiac arrest. Design Laboratory investigation. Setting University laboratory Interventions Anesthetized and ventilated adult female C57BL/6 wild-type mice underwent an 8-min KCl induced cardiac arrest followed by 90 seconds of CPR. Mice were then blindly randomized to a single intravenous injection of Mdivi-1 (0.24 mg/kg), a small molecule Drp1 inhibitor or vehicle (DMSO). Measurements and Main Results Following resuscitation from cardiac arrest, mitochondrial fission was evidenced by Drp1 translocation to the mitochondrial membrane and a decrease in mitochondrial size. Mitochondrial fission was associated with increased lactate and evidence of oxidative damage. Mdivi-1 administration during CPR inhibited Drp1 activation, preserved mitochondrial morphology, and decreased oxidative damage. Mdivi-1 also reduced the time to return of spontaneous circulation (ROSC) 116±4 vs. 143±7 sec (p<. 001) during CPR and enhanced myocardial performance post-ROSC. These improvements were associated with significant increases in survival (65% vs. 33%) and improved neurological scores up to 72 hours post cardiac arrest. Conclusions Post cardiac arrest inhibition of Drp1 improves time to ROSC and myocardial hemodynamics resulting in improved survival and neurological outcomes in a murine model of cardiac arrest. Pharmacological targeting of mitochondrial fission may be a promising therapy for cardiac arrest. PMID:25599491

  19. MitoQ protects dopaminergic neurons in a 6-OHDA induced PD model by enhancing Mfn2-dependent mitochondrial fusion via activation of PGC-1α.

    PubMed

    Xi, Ye; Feng, Dayun; Tao, Kai; Wang, Ronglin; Shi, Yajun; Qin, Huaizhou; Murphy, Michael P; Yang, Qian; Zhao, Gang

    2018-05-26

    Parkinson's disease (PD) is characterized by the degeneration of dopaminergic neurons in the substantia nigra compacta (SNc). Although mitochondrial dysfunction is the critical factor in the pathogenesis of PD, the underlying molecular mechanisms are not well understood, and as a result, effective medical interventions are lacking. Mitochondrial fission and fusion play important roles in the maintenance of mitochondrial function and cell viability. Here, we investigated the effects of MitoQ, a mitochondria-targeted antioxidant, in 6-hydroxydopamine (6-OHDA)-induced in vitro and in vivo PD models. We observed that 6-OHDA enhanced mitochondrial fission by decreasing the expression of Mfn1, Mfn2 and OPA1 as well as by increasing the expression of Drp1 in the dopaminergic (DA) cell line SN4741. Notably, MitoQ treatment particularly upregulated the Mfn2 protein and mRNA levels and promoted mitochondrial fusion in the presence of 6-OHDA in a Mfn2-dependent manner. In addition, MitoQ also stabilized mitochondrial morphology and function in the presence of 6-OHDA, which further suppressed the formation of reactive oxygen species (ROS), as well as ameliorated mitochondrial fragmentation and cellular apoptosis. Moreover, the activation of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) was attributed to the upregulation of Mfn2 induced by MitoQ. Consistent with these findings, administration of MitoQ in 6-OHDA-treated mice significantly rescued the decrease of Mfn2 expression and the loss of DA neurons in the SNc. Taken together, our findings suggest that MitoQ protects DA neurons in a 6-OHDA induced PD model by activating PGC-1α to enhance Mfn2-dependent mitochondrial fusion. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Retrograde Signaling as a Mechanism of Yeast Adaptation to Unfavorable Factors.

    PubMed

    Trendeleva, T A; Zvyagilskaya, R A

    2018-02-01

    Mitochondria perform many essential functions in eukaryotic cells. Being the main producers of ATP and the site of many catabolic and anabolic reactions, they participate in intracellular signaling, proliferation, aging, and formation of reactive oxygen species. Mitochondrial dysfunction is the cause of many diseases and even cell death. The functioning of mitochondria in vivo is impossible without interaction with other cellular compartments. Mitochondrial retrograde signaling is a signaling pathway connecting mitochondria and the nucleus. The major signal transducers in the yeast retrograde response are Rtg1p, Rtg2p, and Rtg3p proteins, as well as four additional negative regulatory factors - Mks1p, Lst8p, and two 14-3-3 proteins (Bmh1/2p). In this review, we analyze current information on the retrograde signaling in yeast that is regarded as a stress or homeostatic response mechanism to changes in various metabolic and biosynthetic activities that occur upon mitochondrial dysfunction. We also discuss relations between retrograde signaling and other signaling pathways in the cell.

  1. Induction of autophagy by ARHI (DIRAS3) alters fundamental metabolic pathways in ovarian cancer models.

    PubMed

    Ornelas, Argentina; McCullough, Christopher R; Lu, Zhen; Zacharias, Niki M; Kelderhouse, Lindsay E; Gray, Joshua; Yang, Hailing; Engel, Brian J; Wang, Yan; Mao, Weiqun; Sutton, Margie N; Bhattacharya, Pratip K; Bast, Robert C; Millward, Steven W

    2016-10-26

    Autophagy is a bulk catabolic process that modulates tumorigenesis, therapeutic resistance, and dormancy. The tumor suppressor ARHI (DIRAS3) is a potent inducer of autophagy and its expression results in necroptotic cell death in vitro and tumor dormancy in vivo. ARHI is down-regulated or lost in over 60 % of primary ovarian tumors yet is dramatically up-regulated in metastatic disease. The metabolic changes that occur during ARHI induction and their role in modulating death and dormancy are unknown. We employed Nuclear Magnetic Resonance (NMR)-based metabolomic strategies to characterize changes in key metabolic pathways in both cell culture and xenograft models of ARHI expression and autophagy. These pathways were further interrogated by cell-based immunofluorescence imaging, tracer uptake studies, targeted metabolic inhibition, and in vivo PET/CT imaging. Induction of ARHI in cell culture models resulted in an autophagy-dependent increase in lactate production along with increased glucose uptake and enhanced sensitivity to glycolytic inhibitors. Increased uptake of glutamine was also dependent on autophagy and dramatically sensitized cultured ARHI-expressing ovarian cancer cell lines to glutaminase inhibition. Induction of ARHI resulted in a reduction in mitochondrial respiration, decreased mitochondrial membrane potential, and decreased Tom20 staining suggesting an ARHI-dependent loss of mitochondrial function. ARHI induction in mouse xenograft models resulted in an increase in free amino acids, a transient increase in [ 18 F]-FDG uptake, and significantly altered choline metabolism. ARHI expression has previously been shown to trigger autophagy-associated necroptosis in cell culture. In this study, we have demonstrated that ARHI expression results in decreased cellular ATP/ADP, increased oxidative stress, and decreased mitochondrial function. While this bioenergetic shock is consistent with programmed necrosis, our data indicates that the accompanying up-regulation of glycolysis and glutaminolysis is autophagy-dependent and serves to support cell viability rather than facilitate necroptotic cell death. While the mechanistic basis for metabolic up-regulation following ARHI induction is unknown, our preliminary data suggest that decreased mitochondrial function and increased metabolic demand may play a role. These alterations in fundamental metabolic pathways during autophagy-associated necroptosis may provide the basis for new therapeutic strategies for the treatment of dormant ovarian tumors.

  2. Characterization and utilization of the flexor digitorum brevis for assessing skeletal muscle function.

    PubMed

    Tarpey, Michael D; Amorese, Adam J; Balestrieri, Nicholas P; Ryan, Terence E; Schmidt, Cameron A; McClung, Joseph M; Spangenburg, Espen E

    2018-04-17

    The ability to assess skeletal muscle function and delineate regulatory mechanisms is essential to uncovering therapeutic approaches that preserve functional independence in a disease state. Skeletal muscle provides distinct experimental challenges due to inherent differences across muscle groups, including fiber type and size that may limit experimental approaches. The flexor digitorum brevis (FDB) possesses numerous properties that offer the investigator a high degree of experimental flexibility to address specific hypotheses. To date, surprisingly few studies have taken advantage of the FDB to investigate mechanisms regulating skeletal muscle function. The purpose of this study was to characterize and experimentally demonstrate the value of the FDB muscle for scientific investigations. First, we characterized the FDB phenotype and provide reference comparisons to skeletal muscles commonly used in the field. We developed approaches allowing for experimental assessment of force production, in vitro and in vivo microscopy, and mitochondrial respiration to demonstrate the versatility of the FDB. As proof-of principle, we performed experiments to alter force production or mitochondrial respiration to validate the flexibility the FDB affords the investigator. The FDB is made up of small predominantly type IIa and IIx fibers that collectively produce less peak isometric force than the extensor digitorum longus (EDL) or soleus muscles, but demonstrates a greater fatigue resistance than the EDL. Unlike the other muscles, inherent properties of the FDB muscle make it amenable to multiple in vitro- and in vivo-based microscopy methods. Due to its anatomical location, the FDB can be used in cardiotoxin-induced muscle injury protocols and is amenable to electroporation of cDNA with a high degree of efficiency allowing for an effective means of genetic manipulation. Using a novel approach, we also demonstrate methods for assessing mitochondrial respiration in the FDB, which are comparable to the commonly used gastrocnemius muscle. As proof of principle, short-term overexpression of Pgc1α in the FDB increased mitochondrial respiration rates. The results highlight the experimental flexibility afforded the investigator by using the FDB muscle to assess mechanisms that regulate skeletal muscle function.

  3. Nicotinamide riboside attenuates alcohol induced liver injuries via activation of SirT1/PGC-1α/mitochondrial biosynthesis pathway.

    PubMed

    Wang, Sufan; Wan, Ting; Ye, Mingtong; Qiu, Yun; Pei, Lei; Jiang, Rui; Pang, Nengzhi; Huang, Yuanling; Liang, Baoxia; Ling, Wenhua; Lin, Xiaojun; Zhang, Zhenfeng; Yang, Lili

    2018-07-01

    Nicotinamide riboside (NR) is a nicotinamide adenine dinucleotide (NAD + ) precursor which is present in foods such as milk and beer. It was reported that NR can prevent obesity, increase longevity, and promote liver regeneration. However, whether NR can prevent ethanol-induced liver injuries is not known. This study aimed to explore the effect of NR on ethanol induced liver injuries and the underlying mechanisms. We fed C57BL/6 J mice with Lieber-DeCarli ethanol liquid diet with or without 400 mg/kg·bw NR for 16 days. Liver injuries and SirT1-PGC-1α-mitochondrial function were analyzed. In in vitro experiments, HepG2 cells (CYP2E1 over-expressing cells) were incubated with ethanol ± 0.5 mmol/L NR. Lipid accumulation and mitochondrial function were compared. SirT1 knockdown in HepG2 cells were further applied to confirm the role of SirT1 in the protection of NR on lipid accumulation. We found that ethanol significantly decreased the expression and activity of hepatic SirT1 and induced abnormal expression of enzymes of lipid metabolism in mice. Both in vivo and in vitro experiments showed that NR activated SirT1 through increasing NAD + levels, decreased oxidative stress, increased deacetylation of PGC-1α and mitochondrial function. In SirT1 knockdown HepG2 cells, NR lost its ability in enhancing mitochondrial function, and its protection against lipid accumulation induced by ethanol. NR can protect against ethanol induced liver injuries via replenishing NAD + , reducing oxidative stress, and activating SirT1-PGC-1α-mitochondrial biosynthesis. Our data indicate that SirT1 plays an important role in the protection of NR against lipid accumulation and mitochondrial dysfunctions induced by ethanol. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Protection of cerebral microcirculation, mitochondrial function, and electrocortical activity by small-volume resuscitation with terlipressin in a rat model of haemorrhagic shock.

    PubMed

    Ida, K K; Chisholm, K I; Malbouisson, L M S; Papkovsky, D B; Dyson, A; Singer, M; Duchen, M R; Smith, K J

    2018-06-01

    During early treatment of haemorrhagic shock, cerebral perfusion pressure can be restored by small-volume resuscitation with vasopressors. Whether this therapy is improved with additional fluid remains unknown. We assessed the value of terlipressin and lactated Ringer's solution (LR) on early recovery of microcirculation, tissue oxygenation, and mitochondrial and electrophysiological function in the rat cerebral cortex. Animals treated with LR replacing three times (3LR) the volume bled (n=26), terlipressin (n=27), terlipressin plus 1LR (n=26), 2LR (n=16), or 3LR (n=15) were compared with untreated (n=36) and sham-operated rats (n=17). In vivo confocal microscopy was used to assess cortical capillary perfusion, changes in tissue oxygen concentration, and mitochondrial membrane potential and redox state. Electrophysiological function was assessed by cortical somatosensory evoked potentials, spinal cord dorsum potential, and peripheral electromyography. Compared with sham treatment, haemorrhagic shock reduced the mean (SD) area of perfused vessels [82% (sd 10%) vs 38% (12%); P<0.001] and impaired oxygen concentration, mitochondrial redox state [99% (4%) vs 59% (15%) of baseline; P<0.001], and somatosensory evoked potentials [97% (13%) vs 27% (19%) of baseline]. Administration of terlipressin plus 1LR or 2LR was able to recover these measures, but terlipressin plus 3LR or 3LR alone were not as effective. Spinal cord dorsum potential was preserved in all groups, but no therapy protected electromyographic function. Resuscitation from haemorrhagic shock using terlipressin with small-volume LR was superior to high-volume LR, with regard to cerebral microcirculation, and mitochondrial and electrophysiological functions. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  5. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein

    PubMed Central

    Park, Daeho; Han, Claudia; Elliott, Michael R.; Kinchen, Jason M.; Trampont, Paul C.; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J.; Hoehn, Kyle L.; Ravichandran, Kodi S.

    2012-01-01

    Rapid and efficient removal of apoptotic cells by phagocytes plays a key role during development, tissue homeostasis, and in controlling immune responses1–5. An important feature of efficient clearance is the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the increased load of corpse-derived cellular material6–9. However, factors that influence sustained phagocytic capacity or how they in turn influence continued clearance by phagocytes are not known. Here we identify that the ability of a phagocyte to control its mitochondrial membrane potential is a critical factor in the capacity of a phagocyte to engulf apoptotic cells. Changing the phagocyte mitochondrial membrane potential (genetically or pharmacologically) significantly affected phagocytosis, with lower potential enhancing engulfment and higher membrane potential inhibiting uptake. We then identified that Ucp2, a mitochondrial membrane protein that acts to lower the mitochondrial membrane potential10–12, is upregulated in phagocytes engulfing apoptotic cells (but not synthetic targets, bacteria, or yeast). Loss of Ucp2 limited the capacity of phagocytes to continually ingest apoptotic cells, while overexpression of Ucp2 increased the capacity for engulfment and the ability to engulf multiple apoptotic cells. Mutational and pharmacological inhibition of Ucp2 uncoupling activity reversed the positive effect of Ucp2 on engulfment capacity, suggesting a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice13, 14 were impaired in their capacity to engulf apoptotic cells in vitro, and Ucp2-deficient mice displayed profound in vivo defects in clearing dying cells in the thymus and the testes. Collectively, these data suggest that phagocytes alter the mitochondrial membrane potential during engulfment to regulate uptake of sequential apoptotic cells, and that Ucp2 is a key molecular determinant of this step in vivo. Since Ucp2 function has also been linked to metabolic diseases and atherosclerosis14–16, these data identifying a new role for Ucp2 in regulating apoptotic cell clearance may provide additional insights toward understanding the complex etiology and pathogenesis of these diseases. PMID:21857682

  6. Inner Mitochondrial Membrane Disruption Links Apoptotic and Agonist-Initiated Phosphatidylserine Externalization in Platelets.

    PubMed

    Choo, Hyo-Jung; Kholmukhamedov, Andaleb; Zhou, ChengZing; Jobe, Shawn

    2017-08-01

    Phosphatidylserine exposure mediates platelet procoagulant function and regulates platelet life span. Apoptotic, necrotic, and integrin-mediated mechanisms have been implicated as intracellular determinants of platelet phosphatidylserine exposure. Here, we investigate (1) the role of mitochondrial events in platelet phosphatidylserine exposure initiated by these distinct stimuli and (2) the cellular interactions of the procoagulant platelet in vitro and in vivo. Key mitochondrial events were examined, including cytochrome c release and inner mitochondrial membrane (IMM) disruption. In both ABT-737 (apoptotic) and agonist (necrotic)-treated platelets, phosphatidylserine externalization was temporally correlated with IMM disruption. Agonist stimulation resulted in rapid cyclophilin D-dependent IMM disruption that coincided with phosphatidylserine exposure. ABT-737 treatment caused rapid cytochrome c release, eventually followed by caspase-dependent IMM disruption that again closely coincided with phosphatidylserine exposure. A nonmitochondrial and integrin-mediated mechanism has been implicated in the formation of a novel phosphatidylserine-externalizing platelet subpopulation. Using image cytometry, this subpopulation is demonstrated to be the result of the interaction of an aggregatory platelet and a procoagulant platelet rather than indicative of a novel intracellular mechanism regulating platelet phosphatidylserine externalization. Using electron microscopy, similar interactions between aggregatory and procoagulant platelets are demonstrated in vitro and in vivo within a mesenteric vein hemostatic thrombus. Platelet phosphatidylserine externalization is closely associated with the mitochondrial event of IMM disruption identifying a common pathway in phosphatidylserine-externalizing platelets. The limited interaction of procoagulant platelets and integrin-active aggregatory platelets identifies a potential mechanism for procoagulant platelet retention within the hemostatic thrombus. © 2017 American Heart Association, Inc.

  7. Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice

    PubMed Central

    Gioscia-Ryan, Rachel A.; Battson, Micah L.; Cuevas, Lauren M.; Zigler, Melanie C.; Sindler, Amy L.; Seals, Douglas R.

    2016-01-01

    Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12;−32.5±-10.5%) versus young (~7 mo., YC n=11;−5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running;−0.8±-2.1% and −8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise. PMID:27875805

  8. An Essential Role for ECSIT in Mitochondrial Complex I Assembly and Mitophagy in Macrophages.

    PubMed

    Carneiro, Flávia R G; Lepelley, Alice; Seeley, John J; Hayden, Matthew S; Ghosh, Sankar

    2018-03-06

    ECSIT is a mitochondrial complex I (CI)-associated protein that has been shown to regulate the production of mitochondrial reactive oxygen species (mROS) following engagement of Toll-like receptors (TLRs). We have generated an Ecsit conditional knockout (CKO) mouse strain to study the in vivo role of ECSIT. ECSIT deletion results in profound alteration of macrophage metabolism, leading to a striking shift to reliance on glycolysis, complete disruption of CI activity, and loss of the CI holoenzyme and multiple subassemblies. An increase in constitutive mROS production in ECSIT-deleted macrophages prevents further TLR-induced mROS production. Surprisingly, ECSIT-deleted cells accumulate damaged mitochondria because of defective mitophagy. ECSIT associates with the mitophagy regulator PINK1 and exhibits Parkin-dependent ubiquitination. However, upon ECSIT deletion, we observed increased mitochondrial Parkin without the expected increase in mitophagy. Taken together, these results demonstrate a key role of ECSIT in CI function, mROS production, and mitophagy-dependent mitochondrial quality control. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice

    PubMed Central

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence. PMID:29721087

  10. Resveratrol counteracts bone loss via mitofilin-mediated osteogenic improvement of mesenchymal stem cells in senescence-accelerated mice.

    PubMed

    Lv, Ya-Jie; Yang, Yi; Sui, Bing-Dong; Hu, Cheng-Hu; Zhao, Pan; Liao, Li; Chen, Ji; Zhang, Li-Qiang; Yang, Tong-Tao; Zhang, Shao-Feng; Jin, Yan

    2018-01-01

    Rational: Senescence of mesenchymal stem cells (MSCs) and the related functional decline of osteogenesis have emerged as the critical pathogenesis of osteoporosis in aging. Resveratrol (RESV), a small molecular compound that safely mimics the effects of dietary restriction, has been well documented to extend lifespan in lower organisms and improve health in aging rodents. However, whether RESV promotes function of senescent stem cells in alleviating age-related phenotypes remains largely unknown. Here, we intend to investigate whether RESV counteracts senescence-associated bone loss via osteogenic improvement of MSCs and the underlying mechanism. Methods: MSCs derived from bone marrow (BMMSCs) and the bone-specific, senescence-accelerated, osteoblastogenesis/osteogenesis-defective mice (the SAMP6 strain) were used as experimental models. In vivo application of RESV was performed at 100 mg/kg intraperitoneally once every other day for 2 months, and in vitro application of RESV was performed at 10 μM. Bone mass, bone formation rates and osteogenic differentiation of BMMSCs were primarily evaluated. Metabolic statuses of BMMSCs and the mitochondrial activity, transcription and morphology were also examined. Mitofilin expression was assessed at both mRNA and protein levels, and short hairpin RNA (shRNA)-based gene knockdown was applied for mechanistic experiments. Results: Chronic intermittent application of RESV enhances bone formation and counteracts accelerated bone loss, with RESV improving osteogenic differentiation of senescent BMMSCs. Furthermore, in rescuing osteogenic decline under BMMSC senescence, RESV restores cellular metabolism through mitochondrial functional recovery via facilitating mitochondrial autonomous gene transcription. Molecularly, in alleviating senescence-associated mitochondrial disorders of BMMSCs, particularly the mitochondrial morphological alterations, RESV upregulates Mitofilin, also known as inner membrane protein of mitochondria (Immt) or Mic60, which is the core component of the mitochondrial contact site and cristae organizing system (MICOS). Moreover, Mitofilin is revealed to be indispensable for mitochondrial homeostasis and osteogenesis of BMMSCs, and that insufficiency of Mitofilin leads to BMMSC senescence and bone loss. More importantly, Mitofilin mediates resveratrol-induced mitochondrial and osteogenic improvements of BMMSCs in senescence. Conclusion: Our findings uncover osteogenic functional improvements of senescent MSCs as critical impacts in anti-osteoporotic practice of RESV, and unravel Mitofilin as a novel mechanism mediating RESV promotion on mitochondrial function in stem cell senescence.

  11. Mitochondrial-Nuclear Communication by Prohibitin Shuttling Under Oxidative Stress

    PubMed Central

    Sripathi, Srinivas; He, Weilue; Atkinson, Cameron; Smith, Joey; Liu, Zhicong; Elledge, Beth; Jahng, Wan Jin

    2017-01-01

    Mitochondrial-nuclear communication is critical to maintain mitochondrial activity under stress conditions. Adaptation of the mitochondria-nucleus network to changes in the intracellular oxidation and reduction milieu is critical for the survival of retinal and retinal pigment epithelial (RPE) cells, in relation to their high oxygen demand and rapid metabolism. However, the generation and transmittal of mitochondrial signal to the nucleus remains elusive. Previously, our in vivo study revealed that prohibitin is up-regulated in the retina but is down-regulated in RPE in the aging and diabetic model. In this study, the functional role of prohibitin in the retina and the RPE was studied using biochemical methods, including lipid binding assay, 2D gel electrophoresis, immunocytochemistry, Western blot, and knockdown approach. Protein depletion by siRNA characterized prohibitin as an anti-apoptotic molecule in mitochondria, while lipid binding assay demonstrated subcellular communications between mitochondria and the nucleus under oxidative stress. The changes of the expressions and localization of mitochondrial prohibitin triggered by reactive oxygen species are crucial for mitochondrial integrity. We propose that prohibitin shuttles between mitochondria and the nucleus as an anti-apoptotic molecule and a transcriptional regulator under stress environment in the retina and RPE. PMID:21879722

  12. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis.

    PubMed

    Silva-Platas, Christian; Villegas, César A; Oropeza-Almazán, Yuriana; Carrancá, Mariana; Torres-Quintanilla, Alejandro; Lozano, Omar; Valero-Elizondo, Javier; Castillo, Elena C; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F; Treviño-Saldaña, Niria; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Elizondo-Montemayor, Leticia; Guerrero-Beltrán, Carlos E; Carvajal, Karla; Bravo-Gómez, María E; García-Rivas, Gerardo

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC 50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7  μ M, correspondingly. Myocardial oxygen consumption was not modified at their respective IC 50 , although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca 2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca 2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability.

  13. Ex Vivo Cardiotoxicity of Antineoplastic Casiopeinas Is Mediated through Energetic Dysfunction and Triggered Mitochondrial-Dependent Apoptosis

    PubMed Central

    Silva-Platas, Christian; Villegas, César A.; Carrancá, Mariana; Lozano, Omar; Valero-Elizondo, Javier; Bernal-Ramírez, Judith; Fernández-Sada, Evaristo; Vega, Luis F.; Chapoy-Villanueva, Héctor; Ruiz-Azuara, Lena; Hernández-Brenes, Carmen; Guerrero-Beltrán, Carlos E.; Bravo-Gómez, María E.

    2018-01-01

    Casiopeinas are a group of copper-based antineoplastic molecules designed as a less toxic and more therapeutic alternative to cisplatin or Doxorubicin; however, there is scarce evidence about their toxic effects on the whole heart and cardiomyocytes. Given this, rat hearts were perfused with Casiopeinas or Doxorubicin and the effects on mechanical performance, energetics, and mitochondrial function were measured. As well, the effects of Casiopeinas-triggered cell death were explored in isolated cardiomyocytes. Casiopeinas III-Ea, II-gly, and III-ia induced a progressive and sustained inhibition of heart contractile function that was dose- and time-dependent with an IC50 of 1.3 ± 0.2, 5.5 ± 0.5, and 10 ± 0.7 μM, correspondingly. Myocardial oxygen consumption was not modified at their respective IC50, although ATP levels were significantly reduced, indicating energy impairment. Isolated mitochondria from Casiopeinas-treated hearts showed a significant loss of membrane potential and reduction of mitochondrial Ca2+ retention capacity. Interestingly, Cyclosporine A inhibited Casiopeinas-induced mitochondrial Ca2+ release, which suggests the involvement of the mitochondrial permeability transition pore opening. In addition, Casiopeinas reduced the viability of cardiomyocytes and stimulated the activation of caspases 3, 7, and 9, demonstrating a cell death mitochondrial-dependent mechanism. Finally, the early perfusion of Cyclosporine A in isolated hearts decreased Casiopeinas-induced dysfunction with reduction of their toxic effect. Our results suggest that heart cardiotoxicity of Casiopeinas is similar to that of Doxorubicin, involving heart mitochondrial dysfunction, loss of membrane potential, changes in energetic metabolites, and apoptosis triggered by mitochondrial permeability. PMID:29765507

  14. SIRT1 activation by curcumin pretreatment attenuates mitochondrial oxidative damage induced by myocardial ischemia reperfusion injury.

    PubMed

    Yang, Yang; Duan, Weixun; Lin, Yan; Yi, Wei; Liang, Zhenxing; Yan, Juanjuan; Wang, Ning; Deng, Chao; Zhang, Song; Li, Yue; Chen, Wensheng; Yu, Shiqiang; Yi, Dinghua; Jin, Zhenxiao

    2013-12-01

    Ischemia reperfusion (IR) injury (IRI) is harmful to the cardiovascular system and causes mitochondrial oxidative stress. Silent information regulator 1 (SIRT1), a type of histone deacetylase, contributes to IRI. Curcumin (Cur) is a strong natural antioxidant and is the active component in Curcuma longa; Cur has protective effects against IRI and may regulate the activity of SIRT1. This study was designed to investigate the protective effect of Cur pretreatment on myocardial IRI and to elucidate this potential mechanism. Isolated and in vivo rat hearts and cultured neonatal rat cardiomyocytes were subjected to IR. Prior to this procedure, the hearts or cardiomyocytes were exposed to Cur in the absence or presence of the SIRT1 inhibitor sirtinol or SIRT1 siRNA. Cur conferred a cardioprotective effect, as shown by improved postischemic cardiac function, decreased myocardial infarct size, decreased myocardial apoptotic index, and several biochemical parameters, including the up-regulation of the antiapoptotic protein Bcl2 and the down-regulation of the proapoptotic protein Bax. Sirtinol and SIRT1 siRNA each blocked the Cur-mediated cardioprotection by inhibiting SIRT1 signaling. Cur also resulted in a well-preserved mitochondrial redox potential, significantly elevated mitochondrial superoxide dismutase activity, and decreased formation of mitochondrial hydrogen peroxide and malondialdehyde. These observations indicated that the IR-induced mitochondrial oxidative damage was remarkably attenuated. However, this Cur-elevated mitochondrial function was reversed by sirtinol or SIRT1 siRNA treatment. In summary, our results demonstrate that Cur pretreatment attenuates IRI by reducing IR-induced mitochondrial oxidative damage through the activation of SIRT1 signaling. © 2013 Elsevier Inc. All rights reserved.

  15. Azoxystrobin, a mitochondrial complex III Qo site inhibitor, exerts beneficial metabolic effects in vivo and in vitro.

    PubMed

    Gao, An-Hui; Fu, Yan-Yun; Zhang, Kun-Zhi; Zhang, Mei; Jiang, Hao-Wen; Fan, Li-Xia; Nan, Fa-Jun; Yuan, Chong-Gang; Li, Jia; Zhou, Yu-Bo; Li, Jing-Ya

    2014-07-01

    Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear. We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level. Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling. AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice. These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Mitochondrial flashes: From indicator characterization to in vivo imaging.

    PubMed

    Wang, Wang; Zhang, Huiliang; Cheng, Heping

    2016-10-15

    Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Calcium and ER stress mediate hepatic apoptosis after burn injury

    PubMed Central

    Gauglitz, Gerd G.; Song, Juquan; Kulp, Gabriela A.; Finnerty, Celeste C.; Cox, Robert A.; Barral, José M.; Herndon, David N.; Boehning, Darren

    2009-01-01

    Abstract A hallmark of the disease state following severe burn injury is decreased liver function, which results in gross metabolic derangements that compromise patient survival. The underlying mechanisms leading to hepatocyte dysfunction after burn are essentially unknown. The aim of the present study was to determine the underlying mechanisms leading to hepatocyte dysfunction and apoptosis after burn. Rats were randomized to either control (no burn) or burn (60% total body surface area burn) and sacrificed at various time‐points. Liver was either perfused to isolate primary rat hepatocytes, which were used for in vitro calcium imaging, or liver was harvested and processed for immunohistology, transmission electron microscopy, mitochondrial isolation, mass spectroscopy or Western blotting to determine the hepatic response to burn injury in vivo. We found that thermal injury leads to severely depleted endoplasmic reticulum (ER) calcium stores and consequent elevated cytosolic calcium concentrations in primary hepatocytes in vitro. Burn‐induced ER calcium depletion caused depressed hepatocyte responsiveness to signalling molecules that regulate hepatic homeostasis, such as vasopressin and the purinergic agonist ATP. In vivo, thermal injury resulted in activation of the ER stress response and major alterations in mitochondrial structure and function – effects which may be mediated by increased calcium release by inositol 1,4,5‐trisphosphate receptors. Our results reveal that thermal injury leads to dramatic hepatic disturbances in calcium homeostasis and resultant ER stress leading to mitochondrial abnormalities contributing to hepatic dysfunction and apoptosis after burn injury. PMID:20141609

  18. Mitochondrial Ceramide-Rich Macrodomains Functionalize Bax upon Irradiation

    PubMed Central

    Lee, Hyunmi; Rotolo, Jimmy A.; Mesicek, Judith; Penate-Medina, Tuula; Rimner, Andreas; Liao, Wen-Chieh; Yin, Xianglei; Ragupathi, Govind; Ehleiter, Desiree; Gulbins, Erich; Zhai, Dayong; Reed, John C.; Haimovitz-Friedman, Adriana; Fuks, Zvi; Kolesnick, Richard

    2011-01-01

    Background Evidence indicates that Bax functions as a “lipidic” pore to regulate mitochondrial outer membrane permeabilization (MOMP), the apoptosis commitment step, through unknown membrane elements. Here we show mitochondrial ceramide elevation facilitates MOMP-mediated cytochrome c release in HeLa cells by generating a previously-unrecognized mitochondrial ceramide-rich macrodomain (MCRM), which we visualize and isolate, into which Bax integrates. Methodology/Principal Findings MCRMs, virtually non-existent in resting cells, form upon irradiation coupled to ceramide synthase-mediated ceramide elevation, optimizing Bax insertion/oligomerization and MOMP. MCRMs are detected by confocal microscopy in intact HeLa cells and isolated biophysically as a light membrane fraction from HeLa cell lysates. Inhibiting ceramide generation using a well-defined natural ceramide synthase inhibitor, Fumonisin B1, prevented radiation-induced Bax insertion, oligomerization and MOMP. MCRM deconstruction using purified mouse hepatic mitochondria revealed ceramide alone is non-apoptogenic. Rather Bax integrates into MCRMs, oligomerizing therein, conferring 1–2 log enhanced cytochrome c release. Consistent with this mechanism, MCRM Bax isolates as high molecular weight “pore-forming” oligomers, while non-MCRM membrane contains exclusively MOMP-incompatible monomeric Bax. Conclusions/Significance Our recent studies in the C. elegans germline indicate that mitochondrial ceramide generation is obligate for radiation-induced apoptosis, although a mechanism for ceramide action was not delineated. Here we demonstrate that ceramide, generated in the mitochondrial outer membrane of mammalian cells upon irradiation, forms a platform into which Bax inserts, oligomerizes and functionalizes as a pore. We posit conceptualization of ceramide as a membrane-based stress calibrator, driving membrane macrodomain organization, which in mitochondria regulates intensity of Bax-induced MOMP, and is pharmacologically tractable in vitro and in vivo. PMID:21695182

  19. A novel SOD mimic with a redox-modulating mn (II) complex, ML1 attenuates high glucose-induced abnormalities in intracellular Ca2+ transients and prevents cardiac cell death through restoration of mitochondrial function.

    PubMed

    Kain, Vasundhara; Sawant, Mithila A; Dasgupta, Aparajita; Jaiswal, Gaurav; Vyas, Alok; Padhye, Subhash; Sitasawad, Sandhya L

    2016-03-01

    A key contributor to the pathophysiology of diabetic cardiomyopathy, mitochondrial superoxide can be adequately countered by Mn-superoxide dismutase, which constitutes the first line of defense against mitochondrial oxidative stress. Our group has recently synthesized low molecular weight SOD mimics, demonstrating superior protection against oxidative damages to kidney cells. In the current study, we sought to evaluate the protective effect of the SOD mimic ML1 against high glucose induced cardiomyopathy in diabetes. Mechanistic studies using rat cardiac myoblast H9c2 showed that ML1 markedly inhibited High Glucose (HG) induced cytotoxicity. This was associated with increased Mn-SOD expression along with decreased mitochondrial [Formula: see text], ONOO- and Ca 2+ accumulation, unveiling its anti-oxidant potentials. ML1 also attenuated HG-induced loss of mitochondrial membrane potential (Δ Ψ m ) and release of cytochrome c, suggesting that ML1 effectuates its cytoprotective action via the preservation of mitochondrial function. In an ex-vivo model normal adult rat ventricular myocytes (ARVMs) were isolated and cultured in either normal glucose (5.5 mmol/l glucose) or HG (25.5 mmol/l glucose) conditions and the efficiency of ML-1 was analyzed by studying contractile function and calcium indices. Mechanical properties were assessed using a high-speed video-edge detection system, and intracellular Ca 2+ transients were recorded in fura-2-loaded myocytes. Pretreatment of myocytes with ML1 (10 nM) ameliorated HG induced abnormalities in relaxation including depressed peak shortening, prolonged time to 90% relenghthening, and slower Ca 2+ transient decay. Thus, ML1 exhibits significant cardio protection against oxidative damage, perhaps through its potent antioxidant action via activation of Mn-SOD.

  20. The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae.

    PubMed

    Smith, Christopher P; Thorsness, Peter E

    2008-07-01

    AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.

  1. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Yoon Sun; Jung, Hye Jin; Seok, Seung Hyeok

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levelsmore » in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.« less

  2. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins.

    PubMed

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-12-22

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1-11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons.

  3. The Mitochondrial m-AAA Protease Prevents Demyelination and Hair Greying.

    PubMed

    Wang, Shuaiyu; Jacquemyn, Julie; Murru, Sara; Martinelli, Paola; Barth, Esther; Langer, Thomas; Niessen, Carien M; Rugarli, Elena I

    2016-12-01

    The m-AAA protease preserves proteostasis of the inner mitochondrial membrane. It ensures a functional respiratory chain, by controlling the turnover of respiratory complex subunits and allowing mitochondrial translation, but other functions in mitochondria are conceivable. Mutations in genes encoding subunits of the m-AAA protease have been linked to various neurodegenerative diseases in humans, such as hereditary spastic paraplegia and spinocerebellar ataxia. While essential functions of the m-AAA protease for neuronal survival have been established, its role in adult glial cells remains enigmatic. Here, we show that deletion of the highly expressed subunit AFG3L2 in mature mouse oligodendrocytes provokes early-on mitochondrial fragmentation and swelling, as previously shown in neurons, but causes only late-onset motor defects and myelin abnormalities. In contrast, total ablation of the m-AAA protease, by deleting both Afg3l2 and its paralogue Afg3l1, triggers progressive motor dysfunction and demyelination, owing to rapid oligodendrocyte cell death. Surprisingly, the mice showed premature hair greying, caused by progressive loss of melanoblasts that share a common developmental origin with Schwann cells and are targeted in our experiments. Thus, while both neurons and glial cells are dependant on the m-AAA protease for survival in vivo, complete ablation of the complex is necessary to trigger death of oligodendrocytes, hinting to cell-autonomous thresholds of vulnerability to m-AAA protease deficiency.

  4. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases

    PubMed Central

    Nakahira, Kiichi; Hisata, Shu

    2015-01-01

    Abstract Significance: Mitochondria, vital cellular power plants to generate energy, are involved in immune responses. Mitochondrial damage-associated molecular patterns (DAMPs) are molecules that are released from mitochondria to extracellular space during cell death and include not only proteins but also DNA or lipids. Mitochondrial DAMPs induce inflammatory responses and are critically involved in the pathogenesis of various diseases. Recent Advances: Recent studies elucidate the molecular mechanisms by which mitochondrial DAMPs are released and initiate immune responses by use of genetically modulated cells or animals. Importantly, the levels of mitochondrial DAMPs in patients are often associated with severity and prognosis of human diseases, such as infection, asthma, ischemic heart disease, and cancer. Critical Issues: Although mitochondrial DAMPs can represent proinflammatory molecules in various experimental models, their roles in human diseases may be multifunctional and complex. It remains unclear where and how mitochondrial DAMPs are liberated into extracellular spaces and exert their biological functions particularly in vivo. In addition, while mitochondria can secrete several types of DAMPs during cell death, the interaction of each mitochondrial DAMP (e.g., synergistic effects) remains unclear. Future Directions: Regulation of mitochondrial DAMP-mediated immune responses may be important to alter the progression of human diseases. In addition, measuring mitochondrial DAMPs in patients may be clinically useful as biomarkers to predict prognosis or response to therapies. Further studies of the mechanisms by which mitochondrial DAMPs impact the initiation and progression of diseases may lead to the development of therapeutics specifically targeting this pathway. Antioxid. Redox Signal. 23, 1329–1350. PMID:26067258

  5. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  6. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria.

    PubMed

    Xu, Shangcheng; Pi, Huifeng; Zhang, Lei; Zhang, Nixian; Li, YuMing; Zhang, Huiliang; Tang, Ju; Li, Huijuan; Feng, Min; Deng, Ping; Guo, Pan; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Wang, Wang; Reiter, Russel J; Yu, Zhengping; Zhou, Zhou

    2016-04-01

    Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by DL-α-Lipoic Acid.

    PubMed

    Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester C S; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba

    2015-02-18

    Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3-1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1-3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants DL-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia.

  8. Regulation of Vascular Tone, Angiogenesis and Cellular Bioenergetics by the 3-Mercaptopyruvate Sulfurtransferase/H2S Pathway: Functional Impairment by Hyperglycemia and Restoration by dl-α-Lipoic Acid

    PubMed Central

    Coletta, Ciro; Módis, Katalin; Szczesny, Bartosz; Brunyánszki, Attila; Oláh, Gábor; Rios, Ester CS; Yanagi, Kazunori; Ahmad, Akbar; Papapetropoulos, Andreas; Szabo, Csaba

    2015-01-01

    Hydrogen sulfide (H2S), as a reducing agent and an antioxidant molecule, exerts protective effects against hyperglycemic stress in the vascular endothelium. The mitochondrial enzyme 3-mercaptopyruvate sulfurtransferase (3-MST) is an important biological source of H2S. We have recently demonstrated that 3-MST activity is inhibited by oxidative stress in vitro and speculated that this may have an adverse effect on cellular homeostasis. In the current study, given the importance of H2S as a vasorelaxant, angiogenesis stimulator and cellular bioenergetic mediator, we first determined whether the 3-MST/H2S system plays a physiological regulatory role in endothelial cells. Next, we tested whether a dysfunction of this pathway develops during the development of hyperglycemia and μmol/L to diabetes-associated vascular complications. Intraperitoneal (IP) 3-MP (1 mg/kg) raised plasma H2S levels in rats. 3-MP (10 1 mmol/L) promoted angiogenesis in vitro in bEnd3 microvascular endothelial cells and in vivo in a Matrigel assay in mice (0.3–1 mg/kg). In vitro studies with bEnd3 cell homogenates demonstrated that the 3-MP-induced increases in H2S production depended on enzymatic activity, although at higher concentrations (1–3 mmol/L) there was also evidence for an additional nonenzymatic H2S production by 3-MP. In vivo, 3-MP facilitated wound healing in rats, induced the relaxation of dermal microvessels and increased mitochondrial bioenergetic function. In vitro hyperglycemia or in vivo streptozotocin diabetes impaired angiogenesis, attenuated mitochondrial function and delayed wound healing; all of these responses were associated with an impairment of the proangiogenic and bioenergetic effects of 3-MP. The antioxidants dl-α-lipoic acid (LA) in vivo, or dihydrolipoic acid (DHLA) in vitro restored the ability of 3-MP to stimulate angiogenesis, cellular bioenergetics and wound healing in hyperglycemia and diabetes. We conclude that diabetes leads to an impairment of the 3-MST/H2S pathway, and speculate that this may contribute to the pathogenesis of hyperglycemic endothelial cell dysfunction. We also suggest that therapy with H2S donors, or treatment with the combination of 3-MP and lipoic acid may be beneficial in improving angiogenesis and bioenergetics in hyperglycemia. PMID:25715337

  9. Neuronal Progenitor Maintenance Requires Lactate Metabolism and PEPCK-M-Directed Cataplerosis.

    PubMed

    Álvarez, Zaida; Hyroššová, Petra; Perales, José Carlos; Alcántara, Soledad

    2016-03-01

    This study investigated the metabolic requirements for neuronal progenitor maintenance in vitro and in vivo by examining the metabolic adaptations that support neuronal progenitors and neural stem cells (NSCs) in their undifferentiated state. We demonstrate that neuronal progenitors are strictly dependent on lactate metabolism, while glucose induces their neuronal differentiation. Lactate signaling is not by itself capable of maintaining the progenitor phenotype. The consequences of lactate metabolism include increased mitochondrial and oxidative metabolism, with a strict reliance on cataplerosis through the mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) pathway to support anabolic functions, such as the production of extracellular matrix. In vivo, lactate maintains/induces populations of postnatal neuronal progenitors/NSCs in a PEPCK-M-dependent manner. Taken together, our data demonstrate that, lactate alone or together with other physical/biochemical cues maintain NSCs/progenitors with a metabolic signature that is classically found in tissues with high anabolic capacity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. Specific inhibition of mitochondrial oxidative stress suppresses inflammation and improves cardiac function in a rat pneumonia-related sepsis model.

    PubMed

    Zang, Qun S; Sadek, Hesham; Maass, David L; Martinez, Bobbie; Ma, Lisha; Kilgore, Jessica A; Williams, Noelle S; Frantz, Doug E; Wigginton, Jane G; Nwariaku, Fiemu E; Wolf, Steven E; Minei, Joseph P

    2012-05-01

    Using a mitochondria-targeted vitamin E (Mito-Vit-E) in a rat pneumonia-related sepsis model, we examined the role of mitochondrial reactive oxygen species in sepsis-mediated myocardial inflammation and subsequent cardiac contractile dysfunction. Sepsis was produced in adult male Sprague-Dawley rats via intratracheal injection of S. pneumonia (4 × 10(6) colony formation units per rat). A single dose of Mito-Vit-E, vitamin E, or control vehicle, at 21.5 μmol/kg, was administered 30 min postinoculation. Blood was collected, and heart tissue was harvested at various time points. Mito-Vit-E in vivo distribution was confirmed by mass spectrometry. In cardiac mitochondria, Mito-Vit-E improved total antioxidant capacity and suppressed H(2)O(2) generation, whereas vitamin E offered little effect. In cytosol, both antioxidants decreased H(2)O(2) levels, but only vitamin E strengthened antioxidant capacity. Mito-Vit-E protected mitochondrial structure and function in the heart during sepsis, demonstrated by reduction in lipid and protein oxidation, preservation of mitochondrial membrane integrity, and recovery of respiratory function. While both Mito-Vit-E and vitamin E suppressed sepsis-induced peripheral and myocardial production of proinflammatory cytokines (tumor necrosis factor-α, interleukin-1β, and interleukin-6), Mito-Vit-E exhibited significantly higher efficacy (P < 0.05). Stronger anti-inflammatory action of Mito-Vit-E was further shown by its near-complete inhibition of sepsis-induced myeloperoxidase accumulation in myocardium, suggesting its effect on neutrophil infiltration. Echocardiography analysis indicated that Mito-Vit-E ameliorated cardiac contractility of sepsis animals, shown by improved fractional shortening and ejection fraction. Together, our data suggest that targeted scavenging of mitochondrial reactive oxygen species protects mitochondrial function, attenuates tissue-level inflammation, and improves whole organ activities in the heart during sepsis.

  11. Amelioration of High Fructose-Induced Cardiac Hypertrophy by Naringin.

    PubMed

    Park, Jung Hyun; Ku, Hyeong Jun; Kim, Jae Kyeom; Park, Jeen-Woo; Lee, Jin Hyup

    2018-06-21

    Heart failure is a frequent unfavorable outcome of pathological cardiac hypertrophy. Recent increase in dietary fructose consumption mirrors the rise in prevalence of cardiovascular diseases such as cardiac hypertrophy leading to concerns raised by public health experts. Mitochondria, comprising 30% of cardiomyocyte volume, play a central role in modulating redox-dependent cellular processes such as metabolism and apoptosis. Furthermore, mitochondrial dysfunction is a key cause of pathogenesis of fructose-induced cardiac hypertrophy. Naringin, a major flavanone glycoside in citrus species, has displayed strong antioxidant potential in models of oxidative stress. In this study, we evaluated protective effects of naringin against fructose-induced cardiac hypertrophy and associated mechanisms of action, using in vitro and in vivo models. We found that naringin suppressed mitochondrial ROS production and mitochondrial dysfunction in cardiomyocytes exposed to fructose and consequently reduced cardiomyocyte hypertrophy by regulating AMPK-mTOR signaling axis. Furthermore, naringin counteracted fructose-induced cardiomyocyte apoptosis, and this function of naringin was linked to its ability to inhibit ROS-dependent ATM-mediated p53 signaling. This result was supported by observations in in vivo mouse model of cardiac hypertrophy. These findings indicate a novel role for naringin in protecting against fructose-induced cardiac hypertrophy and suggest unique therapeutic strategies for prevention of cardiovascular diseases.

  12. Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release

    PubMed Central

    Zorov, Dmitry B.; Juhaszova, Magdalena; Sollott, Steven J.

    2014-01-01

    Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo. PMID:24987008

  13. Pink1 and Parkin regulate Drosophila intestinal stem cell proliferation during stress and aging.

    PubMed

    Koehler, Christopher L; Perkins, Guy A; Ellisman, Mark H; Jones, D Leanne

    2017-08-07

    Intestinal stem cells (ISCs) maintain the midgut epithelium in Drosophila melanogaster Proper cellular turnover and tissue function rely on tightly regulated rates of ISC division and appropriate differentiation of daughter cells. However, aging and epithelial injury cause elevated ISC proliferation and decreased capacity for terminal differentiation of daughter enteroblasts (EBs). The mechanisms causing functional decline of stem cells with age remain elusive; however, recent findings suggest that stem cell metabolism plays an important role in the regulation of stem cell activity. Here, we investigate how alterations in mitochondrial homeostasis modulate stem cell behavior in vivo via RNA interference-mediated knockdown of factors involved in mitochondrial dynamics. ISC/EB-specific knockdown of the mitophagy-related genes Pink1 or Parkin suppresses the age-related loss of tissue homeostasis, despite dramatic changes in mitochondrial ultrastructure and mitochondrial damage in ISCs/EBs. Maintenance of tissue homeostasis upon reduction of Pink1 or Parkin appears to result from reduction of age- and stress-induced ISC proliferation, in part, through induction of ISC senescence. Our results indicate an uncoupling of cellular, tissue, and organismal aging through inhibition of ISC proliferation and provide insight into strategies used by stem cells to maintain tissue homeostasis despite severe damage to organelles. © 2017 Koehler et al.

  14. Single-Cell Analysis Reveals Early Manifestation of Cancerous Phenotype in Pre-Malignant Esophageal Cells

    PubMed Central

    Wang, Jiangxin; Shi, Xu; Johnson, Roger H.; Kelbauskas, Laimonas; Zhang, Weiwen; Meldrum, Deirdre R.

    2013-01-01

    Cellular heterogeneity plays a pivotal role in a variety of functional processes in vivo including carcinogenesis. However, our knowledge about cell-to-cell diversity and how differences in individual cells manifest in alterations at the population level remains very limited mainly due to the lack of appropriate tools enabling studies at the single-cell level. We present a study on changes in cellular heterogeneity in the context of pre-malignant progression in response to hypoxic stress. Utilizing pre-malignant progression of Barrett’s esophagus (BE) as a disease model system we studied molecular mechanisms underlying the progression from metaplastic to dysplastic (pre-cancerous) stage. We used newly developed methods enabling measurements of cell-to-cell differences in copy numbers of mitochondrial DNA, expression levels of a set of mitochondrial and nuclear genes involved in hypoxia response pathways, and mitochondrial membrane potential. In contrast to bulk cell studies reported earlier, our study shows significant differences between metaplastic and dysplastic BE cells in both average values and single-cell parameter distributions of mtDNA copy numbers, mitochondrial function, and mRNA expression levels of studied genes. Based on single-cell data analysis, we propose that mitochondria may be one of the key factors in pre-malignant progression in BE. PMID:24116039

  15. Inhibiting the Mitochondrial Calcium Uniporter during Development Impairs Memory in Adult Drosophila.

    PubMed

    Drago, Ilaria; Davis, Ronald L

    2016-09-06

    The uptake of cytoplasmic calcium into mitochondria is critical for a variety of physiological processes, including calcium buffering, metabolism, and cell survival. Here, we demonstrate that inhibiting the mitochondrial calcium uniporter in the Drosophila mushroom body neurons (MBn)-a brain region critical for olfactory memory formation-causes memory impairment without altering the capacity to learn. Inhibiting uniporter activity only during pupation impaired adult memory, whereas the same inhibition during adulthood was without effect. The behavioral impairment was associated with structural defects in MBn, including a decrease in synaptic vesicles and an increased length in the axons of the αβ MBn. Our results reveal an in vivo developmental role for the mitochondrial uniporter complex in establishing the necessary structural and functional neuronal substrates for normal memory formation in the adult organism. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Acute Ethanol Causes Hepatic Mitochondrial Depolarization in Mice: Role of Ethanol Metabolism

    PubMed Central

    Zhong, Zhi; Ramshesh, Venkat K.; Rehman, Hasibur; Liu, Qinlong; Theruvath, Tom P.; Krishnasamy, Yasodha; Lemasters, John J.

    2014-01-01

    Background/Aims An increase of ethanol metabolism and hepatic mitochondrial respiration occurs in vivo after a single binge of alcohol. Here, our aim was to determine how ethanol intake affects hepatic mitochondrial polarization status in vivo in relation to ethanol metabolism and steatosis. Methods Hepatic mitochondrial polarization, permeability transition (MPT), and reduce pyridine nucleotides, and steatosis in mice were monitored by intravital confocal/multiphoton microscopy of the fluorescence of rhodamine 123 (Rh123), calcein, NAD(P)H, and BODIPY493/503, respectively, after gavage with ethanol (1–6 g/kg). Results Mitochondria depolarized in an all-or-nothing fashion in individual hepatocytes as early as 1 h after alcohol. Depolarization was dose- and time-dependent, peaked after 6 to 12 h and maximally affected 94% of hepatocytes. This mitochondrial depolarization was not due to onset of the MPT. After 24 h, mitochondria of most hepatocytes recovered normal polarization and were indistinguishable from untreated after 7 days. Cell death monitored by propidium iodide staining, histology and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was low throughout. After alcohol, mitochondrial NAD(P)H autofluorescence increased and decreased, respectively, in hepatocytes with polarized and depolarized mitochondria. Ethanol also caused steatosis mainly in hepatocytes with depolarized mitochondria. Depolarization was linked to ethanol metabolism, since deficiency of alcohol dehydrogenase and cytochrome-P450 2E1 (CYP2E1), the major ethanol-metabolizing enzymes, decreased mitochondrial depolarization by ∼70% and ∼20%, respectively. Activation of aldehyde dehydrogenase decreased depolarization, whereas inhibition of aldehyde dehydrogenase enhanced depolarization. Activation of aldehyde dehydrogenase also markedly decreased steatosis. Conclusions Acute ethanol causes reversible hepatic mitochondrial depolarization in vivo that may contribute to steatosis and increased mitochondrial respiration. Onset of this mitochondrial depolarization is linked, at least in part, to metabolism of ethanol to acetaldehyde. PMID:24618581

  17. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy

    PubMed Central

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenli

    2017-01-01

    Background Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. Material/Methods The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. Results Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. Conclusions In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma. PMID:28842551

  18. Induction of Mitochondrial Dysfunction and Oxidative Damage by Antibiotic Drug Doxycycline Enhances the Responsiveness of Glioblastoma to Chemotherapy.

    PubMed

    Tan, Qian; Yan, Xiaoqiong; Song, Lin; Yi, Hongxiang; Li, Ping; Sun, Guobin; Yu, Danfang; Li, Le; Zeng, Zheng; Guo, Zhenlin

    2017-08-26

    BACKGROUND Inducing mitochondrial dysfunction has been recently demonstrated to be an alternative therapeutic strategy for cancer treatment. Doxycycline is an antibiotic that has been shown to have anti-cancer activities in various cancers by way of targeting mitochondria. In this work, we examined whether doxycycline can be repurposed for glioblastoma treatment. MATERIAL AND METHODS The effects of doxycycline on the growth, survival, and mitochondrial metabolisms of glioblastoma were investigated. The efficacy of a combination of doxycycline with temozolomide was examined using xenograft mouse model in total number of 40 mice. RESULTS Doxycycline targeted glioblastoma cell lines, regardless of their origin, through inhibiting growth and inducing cell death, accompanied by a significant decrease in proliferating cell nuclear antigen (PCNA) and increase in cleaved caspase-3. In addition, doxycycline significantly sensitized glioblastoma cell response to temozolomide in vitro and in vivo. Mechanistically, doxycycline disrupted mitochondrial functions through decreasing mitochondrial membrane potential and mitochondrial respiration. Inducing mitochondrial dysfunctions by using doxycycline led to energy crisis, oxidative stress, and damage as shown by the decreased levels of ATP and the elevated levels of mitochondrial superoxide, intracellular ROS, 8-OHdG, protein carbonylation, and lipid peroxidation. An antioxidant N-acetyl-L-cysteine (NAC) significantly abolished the anti-proliferative and pro-apoptotic effects of doxycycline, demonstrating that doxycycline acts on glioblastoma via inducing oxidative stress. CONCLUSIONS In our study, we show that the antibiotic doxycycline is effective in targeting glioblastoma through inducing mitochondrial dysfunctions and oxidative stress. Our work also demonstrated the importance of mitochondrial metabolism in glioblastoma.

  19. The Yeast Gene, MDM20, Is Necessary for Mitochondrial Inheritance and Organization of the Actin Cytoskeleton

    PubMed Central

    Hermann, Greg J.; King, Edward J.; Shaw, Janet M.

    1997-01-01

    In Saccharomyces cerevisiae, the growing bud inherits a portion of the mitochondrial network from the mother cell soon after it emerges. Although this polarized transport of mitochondria is thought to require functions of the cytoskeleton, there are conflicting reports concerning the nature of the cytoskeletal element involved. Here we report the isolation of a yeast mutant, mdm20, in which both mitochondrial inheritance and actin cables (bundles of actin filaments) are disrupted. The MDM20 gene encodes a 93-kD polypeptide with no homology to other characterized proteins. Extra copies of TPM1, a gene encoding the actin filament–binding protein tropomyosin, suppress mitochondrial inheritance defects and partially restore actin cables in mdm20Δ cells. Synthetic lethality is also observed between mdm20 and tpm1 mutant strains. Overexpression of a second yeast tropomyosin, Tpm2p, rescues mutant phenotypes in the mdm20 strain to a lesser extent. Together, these results provide compelling evidence that mitochondrial inheritance in yeast is an actin-mediated process. MDM20 and TPM1 also exhibit the same pattern of genetic interactions; mutations in MDM20 are synthetically lethal with mutations in BEM2 and MYO2 but not SAC6. Although MDM20 and TPM1 are both required for the formation and/or stabilization of actin cables, mutations in these genes disrupt mitochondrial inheritance and nuclear segregation to different extents. Thus, Mdm20p and Tpm1p may act in vivo to establish molecular and functional heterogeneity of the actin cytoskeleton. PMID:9105043

  20. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis

    PubMed Central

    Boulet, Aren; Vest, Katherine E.; Maynard, Margaret K.; Gammon, Micah G.; Russell, Antoinette C.; Mathews, Alexander T.; Cole, Shelbie E.; Zhu, Xinyu; Phillips, Casey B.; Kwong, Jennifer Q.; Dodani, Sheel C.; Leary, Scot C.; Cobine, Paul A.

    2018-01-01

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2. Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo. PMID:29237729

  1. Inhibition of cancer growth in vitro and in vivo by a novel ROS-modulating agent with ability to eliminate stem-like cancer cells.

    PubMed

    Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun

    2017-06-22

    Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.

  2. Response of mitochondrial thioredoxin PsTrxo1, antioxidant enzymes, and respiration to salinity in pea (Pisum sativum L.) leaves.

    PubMed

    Martí, María C; Florez-Sarasa, Igor; Camejo, Daymi; Ribas-Carbó, Miquel; Lázaro, Juan J; Sevilla, Francisca; Jiménez, Ana

    2011-07-01

    Mitochondria play an essential role in reactive oxygen species (ROS) signal transduction in plants. Redox regulation is an essential feature of mitochondrial function, with thioredoxin (Trx), involved in disulphide/dithiol interchange, playing a prominent role. To explore the participation of mitochondrial PsTrxo1, Mn-superoxide dismutase (Mn-SOD), peroxiredoxin (PsPrxII F), and alternative oxidase (AOX) under salt stress, their transcriptional and protein levels were analysed in pea plants growing under 150 mM NaCl for a short and a long period. The activities of mitochondrial Mn-SOD and Trx together with the in vivo activities of the alternative pathway (AP) and the cytochrome pathway (CP) were also determined, combined with the characterization of the plant physiological status as well as the mitochondrial oxidative indicators. The analysis of protein and mRNA levels and activities revealed the importance of the post-transcriptional and post-translational regulation of these proteins in the response to salt stress. Increases in AOX protein amount correlated with increases in AP capacity, whereas in vivo AP activity was maintained under salt stress. Similarly, Mn-SOD activity was also maintained. Under all the stress treatments, photosynthesis, stomatal conductance, and CP activity were decreased although the oxidative stress in leaves was only moderate. However, an increase in lipid peroxidation and protein oxidation was found in mitochondria isolated from leaves under the short-term salinity conditions. In addition, an increase in mitochondrial Trx activity was produced in response to the long-term NaCl treatment. The results support a role for PsTrxo1 as a component of the defence system induced by NaCl in pea mitochondria, providing the cell with a mechanism by which it can respond to changing environment protecting mitochondria from oxidative stress together with Mn-SOD, AOX, and PrxII F.

  3. A Role for Mitochondrial Phosphoenolpyruvate Carboxykinase (PEPCK-M) in the Regulation of Hepatic Gluconeogenesis*

    PubMed Central

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C.; Ioja, Simona; Pongratz, Rebecca L.; Bhanot, Sanjay; Roden, Michael; Cline, Gary W.; Shulman, Gerald I.; Kibbey, Richard G.

    2014-01-01

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism. PMID:24497630

  4. A role for mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M) in the regulation of hepatic gluconeogenesis.

    PubMed

    Stark, Romana; Guebre-Egziabher, Fitsum; Zhao, Xiaojian; Feriod, Colleen; Dong, Jianying; Alves, Tiago C; Ioja, Simona; Pongratz, Rebecca L; Bhanot, Sanjay; Roden, Michael; Cline, Gary W; Shulman, Gerald I; Kibbey, Richard G

    2014-03-14

    Synthesis of phosphoenolpyruvate (PEP) from oxaloacetate is an absolute requirement for gluconeogenesis from mitochondrial substrates. Generally, this reaction has solely been attributed to the cytosolic isoform of PEPCK (PEPCK-C), although loss of the mitochondrial isoform (PEPCK-M) has never been assessed. Despite catalyzing the same reaction, to date the only significant role reported in mammals for the mitochondrial isoform is as a glucose sensor necessary for insulin secretion. We hypothesized that this nutrient-sensing mitochondrial GTP-dependent pathway contributes importantly to gluconeogenesis. PEPCK-M was acutely silenced in gluconeogenic tissues of rats using antisense oligonucleotides both in vivo and in isolated hepatocytes. Silencing PEPCK-M lowers plasma glucose, insulin, and triglycerides, reduces white adipose, and depletes hepatic glycogen, but raises lactate. There is a switch of gluconeogenic substrate preference to glycerol that quantitatively accounts for a third of glucose production. In contrast to the severe mitochondrial deficiency characteristic of PEPCK-C knock-out livers, hepatocytes from PEPCK-M-deficient livers maintained normal oxidative function. Consistent with its predicted role, gluconeogenesis rates from hepatocytes lacking PEPCK-M are severely reduced for lactate, alanine, and glutamine, but not for pyruvate and glycerol. Thus, PEPCK-M has a direct role in fasted and fed glucose homeostasis, and this mitochondrial GTP-dependent pathway should be reconsidered for its involvement in both normal and diabetic metabolism.

  5. Metabolic reprogramming during neuronal differentiation.

    PubMed

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-09-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate-glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K-Akt-mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation.

  6. Metabolic reprogramming during neuronal differentiation

    PubMed Central

    Agostini, M; Romeo, F; Inoue, S; Niklison-Chirou, M V; Elia, A J; Dinsdale, D; Morone, N; Knight, R A; Mak, T W; Melino, G

    2016-01-01

    Newly generated neurons pass through a series of well-defined developmental stages, which allow them to integrate into existing neuronal circuits. After exit from the cell cycle, postmitotic neurons undergo neuronal migration, axonal elongation, axon pruning, dendrite morphogenesis and synaptic maturation and plasticity. Lack of a global metabolic analysis during early cortical neuronal development led us to explore the role of cellular metabolism and mitochondrial biology during ex vivo differentiation of primary cortical neurons. Unexpectedly, we observed a huge increase in mitochondrial biogenesis. Changes in mitochondrial mass, morphology and function were correlated with the upregulation of the master regulators of mitochondrial biogenesis, TFAM and PGC-1α. Concomitant with mitochondrial biogenesis, we observed an increase in glucose metabolism during neuronal differentiation, which was linked to an increase in glucose uptake and enhanced GLUT3 mRNA expression and platelet isoform of phosphofructokinase 1 (PFKp) protein expression. In addition, glutamate–glutamine metabolism was also increased during the differentiation of cortical neurons. We identified PI3K–Akt–mTOR signalling as a critical regulator role of energy metabolism in neurons. Selective pharmacological inhibition of these metabolic pathways indicate existence of metabolic checkpoint that need to be satisfied in order to allow neuronal differentiation. PMID:27058317

  7. Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species.

    PubMed

    Choi, Kyungsun; Kim, Jinho; Kim, Gyung W; Choi, Chulhee

    2009-11-01

    Oxidative stress is deeply involved in various brain diseases, including neurodegenerative diseases, stroke, and ischemia/reperfusion injury. Mitochondria are thought to be the target and source of oxidative stress. We investigated the role of mitochondria in oxidative stress-induced necrotic neuronal cell death in a neuroblastoma cell line and a mouse model of middle cerebral artery occlusion. The exogenous administration of hydrogen peroxide was used to study the role of oxidative stress on neuronal cell survival and mitochondrial function in vitro. Hydrogen peroxide induced non-apoptotic neuronal cell death in a c-Jun N-terminal kinase- and poly(ADP-ribosyl) polymerase-dependent manner. Unexpectedly, hydrogen peroxide treatment induced transient hyperpolarization of the mitochondrial membrane potential and a subsequent delayed burst of endogenous reactive oxygen species (ROS). The inhibition of mitochondrial hyperpolarization by diphenylene iodonium or rotenone, potent inhibitors of mitochondrial respiratory chain complex I, resulted in reduced ROS production and subsequent neuronal cell death in vitro and in vivo. The inhibition of mitochondrial hyperpolarization can protect neuronal cells from oxidative stress-induced necrotic cell death, suggesting a novel method of therapeutic intervention in oxidative stress-induced neurological disease.

  8. Mitochondrial ROS Drive Sudden Cardiac Death and Chronic Proteome Remodeling in Heart Failure.

    PubMed

    Dey, Swati; DeMazumder, Deeptankar; Sidor, Agnieszka; Foster, D B; O'Rourke, Brian

    2018-06-13

    Rationale: Despite increasing prevalence and incidence of heart failure (HF), therapeutic options remain limited. In early stages of HF, sudden cardiac death (SCD) from ventricular arrhythmias claims many lives. Reactive oxygen species (ROS) have been implicated in both arrhythmias and contractile dysfunction. However, little is known about how ROS in specific subcellular compartments contribute to HF or SCD pathophysiology. The role of ROS in chronic proteome remodeling has not been explored. Objective: We will test the hypothesis that elevated mitochondrial ROS (mROS) is a principal source of oxidative stress in HF and in vivo reduction of mROS mitigates SCD. Methods and Results: Using a unique guinea pig model of non-ischemic HF that recapitulates important features of human HF, including prolonged QT interval and high incidence of spontaneous arrhythmic SCD. Compartment-specific ROS sensors revealed increased mROS in resting and contracting left ventricular (LV) myocytes in failing hearts. Importantly, mitochondrially-targeted antioxidant (MitoTEMPO) normalized global cellular ROS. Further, in vivo MitoTEMPO treatment of HF animals prevented and reversed HF; eliminated SCD by decreasing dispersion of repolarization and ventricular arrhythmias; suppressed chronic HF-induced remodeling of the expression proteome; and prevented specific phosphoproteome alterations. Pathway analysis of mROS-sensitive networks indicated that increased mROS in HF disrupts the normal coupling between cytosolic signals and nuclear gene programs driving mitochondrial function, antioxidant enzymes, Ca2+ handling and action potential repolarization, suggesting new targets for therapeutic intervention. Conclusions: mROS drive both acute emergent events, such as electrical instability responsibly for SCD, and those that mediate chronic HF remodeling, characterized by suppression or altered phosphorylation of metabolic, antioxidant and ion transport protein networks. In vivo reduction of mROS prevents and reverses electrical instability, SCD and HF. Our findings support the feasibility of targeting the mitochondria as a potential new therapy for HF and SCD while identifying new mROS-sensitive protein modifications.

  9. Oxygen matters: tissue culture oxygen levels affect mitochondrial function and structure as well as responses to HIV viroproteins

    PubMed Central

    Tiede, L M; Cook, E A; Morsey, B; Fox, H S

    2011-01-01

    Mitochondrial dysfunction is implicated in a majority of neurodegenerative disorders and much study of neurodegenerative disease is done on cultured neurons. In traditional tissue culture, the oxygen level that cells experience is dramatically higher (21%) than in vivo conditions (1–11%). These differences can alter experimental results, especially, pertaining to mitochondria and oxidative metabolism. Our results show that primary neurons cultured at physiological oxygen levels found in the brain showed higher polarization, lower rates of ROS production, larger mitochondrial networks, greater cytoplasmic fractions of mitochondria and larger mitochondrial perimeters than those cultured at higher oxygen levels. Although neurons cultured in either physiological oxygen or atmospheric oxygen exhibit significant increases in mitochondrial reactive oxygen species (ROS) production when treated with the human immunodeficiency virus (HIV) virotoxin trans-activator of transcription, mitochondria of neurons cultured at physiological oxygen underwent depolarization with dramatically increased cell death, whereas those cultured at atmospheric oxygen became hyperpolarized with no increase in cell death. Studies with a second HIV virotoxin, negative regulation factor (Nef), revealed that Nef treatment also increased mitochondrial ROS production for both the oxygen conditions, but resulted in mitochondrial depolarization and increased death only in neurons cultured in physiological oxygen. These results indicate a role for oxidative metabolism in a mechanism of neurotoxicity during HIV infection and demonstrate the importance of choosing the correct, physiological, culture oxygen in mitochondrial studies performed in neurons. PMID:22190005

  10. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition.

    PubMed

    Lamb, Rebecca; Harrison, Hannah; Hulit, James; Smith, Duncan L; Lisanti, Michael P; Sotgia, Federica

    2014-11-30

    Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.

  11. Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler, J.; Curran, R.D.; Ochoa, J.B.

    1991-02-01

    Nitric oxide, a highly reactive radical, was recently identified as an intermediate of L-arginine metabolism in mammalian cells. We have shown that nitric oxide synthesis is induced in vitro in cultured hepatocytes by supernatants from activated Kupffer cells or in vivo by injecting rats with nonviable Corynebacterium parvum. In both cases, nitric oxide biosynthesis in hepatocytes was associated with suppression of total protein synthesis. This study attempts to determine the effect of nitric oxide biosynthesis on the activity of specific hepatocytic mitochondrial enzymes and to determine whether inhibition of protein synthesis is caused by suppression of energy metabolism. Exposure ofmore » hepatocytes to supernatants from activated Kupffer cells led to a 30% decrease of aconitase (Krebs cycle) and complex I (mitochondrial electron transport chain) activity. Using NG-monomethyl-L-arginine, an inhibitor of nitric oxide synthesis, we demonstrated that the inhibition of mitochondrial aconitase activity was due, in part, to the action of nitric oxide. In contrast, in vivo nitric oxide synthesis of hepatocytes from Corynebacterium parvum-treated animals had no effect on mitochondrial respiration. This suggests that inhibition of protein synthesis by nitric oxide is not likely to be mediated by inhibition of energy metabolism.« less

  12. Identification of in vivo substrates of the yeast mitochondrial chaperonins reveals overlapping but non-identical requirement for hsp60 and hsp10.

    PubMed Central

    Dubaquié, Y; Looser, R; Fünfschilling, U; Jenö, P; Rospert, S

    1998-01-01

    The mechanism of chaperonin-assisted protein folding has been mostly analyzed in vitro using non-homologous substrate proteins. In order to understand the relative importance of hsp60 and hsp10 in the living cell, homologous substrate proteins need to be identified and analyzed. We have devised a novel screen to test the folding of a large variety of homologous substrates in the mitochondrial matrix in the absence or presence of functional hsp60 or hsp10. The identified substrates have an Mr of 15-90 kDa and fall into three groups: (i) proteins that require both hsp60 and hsp10 for correct folding; (ii) proteins that completely fail to fold after inactivation of hsp60 but are unaffected by the inactivation of hsp10; and (iii) newly imported hsp60 itself, which is more severely affected by inactivation of hsp10 than by inactivation of pre-existing hsp60. The majority of the identified substrates are group I proteins. For these, the lack of hsp60 function has a more pronounced effect than inactivation of hsp10. We suggest that homologous substrate proteins have differential chaperonin requirements, indicating that hsp60 and hsp10 do not always act as a single functional unit in vivo. PMID:9774331

  13. The effect of crataegus fruit extract and some of its flavonoids on mitochondrial oxidative phosphorylation in the heart.

    PubMed

    Bernatoniene, J; Trumbeckaite, S; Majiene, D; Baniene, R; Baliutyte, G; Savickas, A; Toleikis, A

    2009-12-01

    Crataegus (Hawthorn) fruit extracts (CE) are widely used for the treatment of various cardiovascular diseases (arrhythmias, heart failure, myocardial weakness, etc). Despite the fact that many of these diseases are associated with disturbances of the mitochondria, no data have been found on the effect of CE on their function. The aim of this study was to perform an oxygraphic investigation of the effect of CE (in concentration range from 70 ng/mL to 13.9 microg/mL of Crataegus phenolic compounds (PC)) and its several pure flavonoids on isolated rat heart mitochondria respiring on pyruvate+malate, succinate and palmitoyl-L-carnitine+malate. CE at doses under 278 ng/mL of PC had no effect on mitochondrial functions. At concentrations from 278 ng/mL to 13.9 microg/mL of PC, CE stimulated State 2 respiration by 11%-34% with all used substrates, and decreased the mitochondrial membrane potential by 1.2-4.4 mV measured with a tetraphenylphosphonium-selective electrode and H2O2 production measured fluorimetrically. Similar uncoupling effects on mitochondrial respiration were observed with several pure CE flavonoids. The highest CE concentration also slightly reduced the maximal ADP-stimulated and uncoupled respiration, which might be due to inhibition of the mitochondrial respiratory chain between flavoprotein and cytochrome c. Whether or not the uncoupling and other effects of CE on mitochondria may be realized in vivo remains to be determined. Copyright (c) 2009 John Wiley & Sons, Ltd.

  14. Mitochondrial fusion dynamics is robust in the heart and depends on calcium oscillations and contractile activity

    PubMed Central

    Eisner, Verónica; Gao, Erhe; Csordás, György; Slovinsky, William S.; Paillard, Melanie; Cheng, Lan; Ibetti, Jessica; Chen, S. R. Wayne; Chuprun, J. Kurt; Hoek, Jan B.; Koch, Walter J.; Hajnóczky, György

    2017-01-01

    Mitochondrial fusion is thought to be important for supporting cardiac contractility, but is hardly detectable in cultured cardiomyocytes and is difficult to directly evaluate in the heart. We overcame this obstacle through in vivo adenoviral transduction with matrix-targeted photoactivatable GFP and confocal microscopy. Imaging in whole rat hearts indicated mitochondrial network formation and fusion activity in ventricular cardiomyocytes. Promptly after isolation, cardiomyocytes showed extensive mitochondrial connectivity and fusion, which decayed in culture (at 24–48 h). Fusion manifested both as rapid content mixing events between adjacent organelles and slower events between both neighboring and distant mitochondria. Loss of fusion in culture likely results from the decline in calcium oscillations/contractile activity and mitofusin 1 (Mfn1), because (i) verapamil suppressed both contraction and mitochondrial fusion, (ii) after spontaneous contraction or short-term field stimulation fusion activity increased in cardiomyocytes, and (iii) ryanodine receptor-2–mediated calcium oscillations increased fusion activity in HEK293 cells and complementing changes occurred in Mfn1. Weakened cardiac contractility in vivo in alcoholic animals is also associated with depressed mitochondrial fusion. Thus, attenuated mitochondrial fusion might contribute to the pathogenesis of cardiomyopathy. PMID:28096338

  15. Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions.

    PubMed

    Lobb, I; Jiang, J; Lian, D; Liu, W; Haig, A; Saha, M N; Torregrossa, R; Wood, M E; Whiteman, M; Sener, A

    2017-02-01

    Ischemia-reperfusion injury is unavoidably caused by loss and subsequent restoration of blood flow during organ procurement, and prolonged ischemia-reperfusion injury IRI results in increased rates of delayed graft function and early graft loss. The endogenously produced gasotransmitter, hydrogen sulfide (H 2 S), is a novel molecule that mitigates hypoxic tissue injury. The current study investigates the protective mitochondrial effects of H 2 S during in vivo cold storage and subsequent renal transplantation (RTx) and in vitro cold hypoxic renal injury. Donor allografts from Brown Norway rats treated with University of Wisconsin (UW) solution + H 2 S (150 μM NaSH) during prolonged (24-h) cold (4°C) storage exhibited significantly (p < 0.05) decreased acute necrotic/apoptotic injury and significantly (p < 0.05) improved function and recipient Lewis rat survival compared to UW solution alone. Treatment of rat kidney epithelial cells (NRK-52E) with the mitochondrial-targeted H 2 S donor, AP39, during in vitro cold hypoxic injury improved the protective capacity of H 2 S >1000-fold compared to similar levels of the nonspecific H 2 S donor, GYY4137 and also improved syngraft function and survival following prolonged cold storage compared to UW solution. H 2 S treatment mitigates cold IRI-associated renal injury via mitochondrial actions and could represent a novel therapeutic strategy to minimize the detrimental clinical outcomes of prolonged cold IRI during RTx. © 2016 The American Society of Transplantation and the American Society of Transplant Surgeons.

  16. Cardiac Myocyte-specific Knock-out of Calcium-independent Phospholipase A2γ (iPLA2γ) Decreases Oxidized Fatty Acids during Ischemia/Reperfusion and Reduces Infarct Size *

    PubMed Central

    Moon, Sung Ho; Mancuso, David J.; Sims, Harold F.; Liu, Xinping; Nguyen, Annie L.; Yang, Kui; Guan, Shaoping; Dilthey, Beverly Gibson; Jenkins, Christopher M.; Weinheimer, Carla J.; Kovacs, Attila; Abendschein, Dana; Gross, Richard W.

    2016-01-01

    Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca2+-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca2+ by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion. PMID:27453526

  17. Effects of Exposure to Ozone on the Ocular Surface in an Experimental Model of Allergic Conjunctivitis

    PubMed Central

    Lee, Hun; Kim, Eung Kweon; Kim, Hee Young; Kim, Tae-im

    2017-01-01

    Based on previous findings that ozone can induce an inflammatory response in the ocular surface of an animal model and in cultured human conjunctival epithelial cells, we investigated whether exposure to ozone exacerbates symptoms of allergic conjunctivitis. We evaluated the effects of exposure to ozone on conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, production of inflammatory cytokines in tears, and aqueous tear production in a mouse model of allergic conjunctivitis. To validate our in vivo results, we used interleukin (IL)-1α-pretreated conjunctival epithelial cells as an in vitro substitute for the mouse model. We evaluated whether exposure to ozone increased the inflammatory response and altered oxidative status and mitochondrial function in IL-1α-pretreated conjunctival epithelial cells. In the in vivo study, ozone induced increases in conjunctival chemosis, conjunctival injection, corneal and conjunctival fluorescein staining scores, and production of inflammatory cytokines, accompanied by a decrease in tear volume. In the in vitro study, exposure to ozone led to additional increases in IL-6 and tumor necrosis factor-α mRNA levels, which were already induced by treatment with IL-1α. Ozone did not induce any changes in cell viability. Pretreatment with IL-1α increased the expression of manganese superoxide dismutase, and exposure to ozone led to additional increments in the expression of this antioxidant enzyme. Ozone did not induce any changes in mitochondrial activity or expression of mitochondrial enzymes and proteins related to mitochondrial function, with the exception of phosphor-mammalian target of rapamycin. Treatment with butylated hydroxyanisole, a free radical scavenger, attenuated the ozone-induced increases in IL-6 expression in IL-1α-pretreated conjunctival epithelial cells. Therefore, we conclude that exposure to ozone exacerbates the detrimental effects on the integrity of the ocular surface caused by conjunctival allergic reactions, and further increases the inflammatory response in IL-1α-pretreated conjunctival epithelial cells. PMID:28046113

  18. Low-level light therapy of the eye and brain.

    PubMed

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain.

  19. 8-pCPT-cGMP prevents mitochondrial depolarization and improves the outcome of steatotic partial liver transplantation

    PubMed Central

    Liu, Qinlong; Rehman, Hasibur; Krishnasamy, Yasodha; Lemasters, John J; Zhong, Zhi

    2017-01-01

    Permeant cGMP analogs prevent the mitochondria permeability transition (MPT) in vitro. In this study, we explored whether 8-pCPT-cGMP prevents the MPT and decreases post-transplant damage to fatty partial liver grafts (FPG) in vivo. Rats were fed a control or high-fat, high-fructose diet for 2-week. Lean and fatty liver explants were reduced in size ex vivo to ~35% and stored in the University of Wisconsin solution with and without 8-pCPT-cGMP (300 µM) for 2 h. After transplantation, alanine aminotransferase release (indicator of hepatocellular injury), hyperbilirubinemia (indicator of poor liver function), and cell death were all higher in FPG than in lean partial grafts (LPG). Liver regeneration increased in LPG but was suppressed in FPG. 8-pCPT-cGMP blunted graft injury, improved liver regeneration and function, and increased survival of FPG. Hepatic mitochondrial depolarization detected by intravital multiphoton microscopy of rhodamine 123 in living rats was ~3.5-fold higher in FPG than in LPG. 8-pCPT-cGMP decreased mitochondrial depolarization in FPG almost to the level of LPG. Activation of mammalian target of rapamycin (mTOR), an energy sensitive kinase that stimulates cell proliferation and growth, and p70S6 kinase, a downstream signaling molecule of mTOR, was increased in LPG but suppressed in FPG. 8-pCPT-cGMP restored the activity of mTOR and p70S6 kinase in FPG. 8-pCPT-cGMP also increased activation of cAMP response element-binding protein (CREB) and expression of cyclins D1 and E in FPG. Non-alcoholic steatosis increases injury and suppresses regeneration after partial liver transplantation, at least in part, due to more severe mitochondrial dysfunction. Protection of mitochondria with a cGMP analog effectively improves outcomes of FPG transplantation. PMID:28694919

  20. Low-level light therapy of the eye and brain

    PubMed Central

    Rojas, Julio C; Gonzalez-Lima, F

    2011-01-01

    Low-level light therapy (LLLT) using red to near-infrared light energy has gained attention in recent years as a new scientific approach with therapeutic applications in ophthalmology, neurology, and psychiatry. The ongoing therapeutic revolution spearheaded by LLLT is largely propelled by progress in the basic science fields of photobiology and bioenergetics. This paper describes the mechanisms of action of LLLT at the molecular, cellular, and nervous tissue levels. Photoneuromodulation of cytochrome oxidase activity is the most important primary mechanism of action of LLLT. Cytochrome oxidase is the primary photoacceptor of light in the red to near-infrared region of the electromagnetic spectrum. It is also a key mitochondrial enzyme for cellular bioenergetics, especially for nerve cells in the retina and the brain. Evidence shows that LLLT can secondarily enhance neural metabolism by regulating mitochondrial function, intraneuronal signaling systems, and redox states. Current knowledge about LLLT dosimetry relevant for its hormetic effects on nervous tissue, including noninvasive in vivo retinal and transcranial effects, is also presented. Recent research is reviewed that supports LLLT potential benefits in retinal disease, stroke, neurotrauma, neurodegeneration, and memory and mood disorders. Since mitochondrial dysfunction plays a key role in neurodegeneration, LLLT has potential significant applications against retinal and brain damage by counteracting the consequences of mitochondrial failure. Upon transcranial delivery in vivo, LLLT induces brain metabolic and antioxidant beneficial effects, as measured by increases in cytochrome oxidase and superoxide dismutase activities. Increases in cerebral blood flow and cognitive functions induced by LLLT have also been observed in humans. Importantly, LLLT given at energy densities that exert beneficial effects does not induce adverse effects. This highlights the value of LLLT as a novel paradigm to treat visual, neurological, and psychological conditions, and supports that neuronal energy metabolism could constitute a major target for neurotherapeutics of the eye and brain. PMID:28539775

  1. Mitochondrial carrier family inventory of Trypanosoma brucei brucei: Identification, expression and subcellular localisation.

    PubMed

    Colasante, Claudia; Peña Diaz, P; Clayton, Christine; Voncken, Frank

    2009-10-01

    The mitochondrial carrier family (MCF) is a group of structurally conserved proteins that mediate the transport of a wide range of metabolic intermediates across the mitochondrial inner membrane. In this paper, an overview of the mitochondrial carrier proteins (MCPs) of the early-branching kinetoplastid parasite Trypanosoma brucei brucei is presented. Sequence analysis and phylogenetic reconstruction gave insight into the evolution and conservation of the 24 identified TbMCPs; for most of these, putative transport functions could be predicted. Comparison of the kinetoplastid MCP inventory to those previously reported for other eukaryotes revealed remarkable deviations: T. b. brucei lacks genes encoding some prototypical MCF members, such as the citrate carrier and uncoupling proteins. The in vivo expression of the identified TbMCPs in the two replicating life-cycle forms of T. b. brucei, the bloodstream-form and procyclic-form, was quantitatively assessed at the mRNA level by Northern blot analysis. Immunolocalisation studies confirmed that majority of the 24 identified TbMCPs is found in the mitochondrion of procyclic-form T. b. brucei.

  2. Novel role of NOX in supporting aerobic glycolysis in cancer cells with mitochondrial dysfunction and as a potential target for cancer therapy.

    PubMed

    Lu, Weiqin; Hu, Yumin; Chen, Gang; Chen, Zhao; Zhang, Hui; Wang, Feng; Feng, Li; Pelicano, Helene; Wang, Hua; Keating, Michael J; Liu, Jinsong; McKeehan, Wallace; Wang, Huamin; Luo, Yongde; Huang, Peng

    2012-01-01

    Elevated aerobic glycolysis in cancer cells (the Warburg effect) may be attributed to respiration injury or mitochondrial dysfunction, but the underlying mechanisms and therapeutic significance remain elusive. Here we report that induction of mitochondrial respiratory defect by tetracycline-controlled expression of a dominant negative form of DNA polymerase γ causes a metabolic shift from oxidative phosphorylation to glycolysis and increases ROS generation. We show that upregulation of NOX is critical to support the elevated glycolysis by providing additional NAD+. The upregulation of NOX is also consistently observed in cancer cells with compromised mitochondria due to the activation of oncogenic Ras or loss of p53, and in primary pancreatic cancer tissues. Suppression of NOX by chemical inhibition or genetic knockdown of gene expression selectively impacts cancer cells with mitochondrial dysfunction, leading to a decrease in cellular glycolysis, a loss of cell viability, and inhibition of cancer growth in vivo. Our study reveals a previously unrecognized function of NOX in cancer metabolism and suggests that NOX is a potential novel target for cancer treatment.

  3. Piracetam improves mitochondrial dysfunction following oxidative stress

    PubMed Central

    Keil, Uta; Scherping, Isabel; Hauptmann, Susanne; Schuessel, Katin; Eckert, Anne; Müller, Walter E

    2005-01-01

    Mitochondrial dysfunction including decrease of mitochondrial membrane potential and reduced ATP production represents a common final pathway of many conditions associated with oxidative stress, for example, hypoxia, hypoglycemia, and aging. Since the cognition-improving effects of the standard nootropic piracetam are usually more pronounced under such pathological conditions and young healthy animals usually benefit little by piracetam, the effect of piracetam on mitochondrial dysfunction following oxidative stress was investigated using PC12 cells and dissociated brain cells of animals treated with piracetam. Piracetam treatment at concentrations between 100 and 1000 μM improved mitochondrial membrane potential and ATP production of PC12 cells following oxidative stress induced by sodium nitroprusside (SNP) and serum deprivation. Under conditions of mild serum deprivation, piracetam (500 μM) induced a nearly complete recovery of mitochondrial membrane potential and ATP levels. Piracetam also reduced caspase 9 activity after SNP treatment. Piracetam treatment (100–500 mg kg−1 daily) of mice was also associated with improved mitochondrial function in dissociated brain cells. Significant improvement was mainly seen in aged animals and only less in young animals. Moreover, the same treatment reduced antioxidant enzyme activities (superoxide dismutase, glutathione peroxidase, and glutathione reductase) in aged mouse brain only, which are elevated as an adaptive response to the increased oxidative stress with aging. In conclusion, therapeutically relevant in vitro and in vivo concentrations of piracetam are able to improve mitochondrial dysfunction associated with oxidative stress and/or aging. Mitochondrial stabilization and protection might be an important mechanism to explain many of piracetam's beneficial effects in elderly patients. PMID:16284628

  4. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload.

    PubMed

    Yancey, Danielle M; Guichard, Jason L; Ahmed, Mustafa I; Zhou, Lufang; Murphy, Michael P; Johnson, Michelle S; Benavides, Gloria A; Collawn, James; Darley-Usmar, Victor; Dell'Italia, Louis J

    2015-03-15

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β₂-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF.

  5. Cardiomyocyte mitochondrial oxidative stress and cytoskeletal breakdown in the heart with a primary volume overload

    PubMed Central

    Yancey, Danielle M.; Guichard, Jason L.; Ahmed, Mustafa I.; Zhou, Lufang; Murphy, Michael P.; Johnson, Michelle S.; Benavides, Gloria A.; Collawn, James; Darley-Usmar, Victor

    2015-01-01

    Left ventricular (LV) volume overload (VO) results in cardiomyocyte oxidative stress and mitochondrial dysfunction. Because mitochondria are both a source and target of ROS, we hypothesized that the mitochondrially targeted antioxidant mitoubiquinone (MitoQ) will improve cardiomyocyte damage and LV dysfunction in VO. Isolated cardiomyocytes from Sprague-Dawley rats were exposed to stretch in vitro and VO of aortocaval fistula (ACF) in vivo. ACF rats were treated with and without MitoQ. Isolated cardiomyocytes were analyzed after 3 h of cyclical stretch or 8 wk of ACF with MitoSox red or 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate to measure ROS and with tetramethylrhodamine to measure mitochondrial membrane potential. Transmission electron microscopy and immunohistochemistry were used for cardiomyocyte structural assessment. In vitro cyclical stretch and 8-wk ACF resulted in increased cardiomyocyte mitochondrial ROS production and decreased mitochondrial membrane potential, which were significantly improved by MitoQ. ACF had extensive loss of desmin and β2-tubulin that was paralleled by mitochondrial disorganization, loss of cristae, swelling, and clustering identified by mitochondria complex IV staining and transmission electron microscopy. MitoQ improved mitochondrial structural damage and attenuated desmin loss/degradation evidenced by immunohistochemistry and protein expression. However, LV dilatation and fractional shortening were unaffected by MitoQ treatment in 8-wk ACF. In conclusion, although MitoQ did not affect LV dilatation or function in ACF, these experiments suggest a connection of cardiomyocyte mitochondria-derived ROS production with cytoskeletal disruption and mitochondrial damage in the VO of ACF. PMID:25599572

  6. A novel MitoNEET ligand, TT01001, improves diabetes and ameliorates mitochondrial function in db/db mice.

    PubMed

    Takahashi, Takehiro; Yamamoto, Masashi; Amikura, Kazutoshi; Kato, Kozue; Serizawa, Takashi; Serizawa, Kanako; Akazawa, Daisuke; Aoki, Takumi; Kawai, Koji; Ogasawara, Emi; Hayashi, Jun-Ichi; Nakada, Kazuto; Kainoh, Mie

    2015-02-01

    The mitochondrial outer membrane protein mitoNEET is a binding protein of the insulin sensitizer pioglitazone (5-[[4-[2-(5-ethylpyridin-2-yl)ethoxy]phenyl]methyl]-1,3-thiazolidine-2,4-dione) and is considered a novel target for the treatment of type II diabetes. Several small-molecule compounds have been identified as mitoNEET ligands using structure-based design or virtual docking studies. However, there are no reports about their therapeutic potential in animal models. Recently, we synthesized a novel small molecule, TT01001 [ethyl-4-(3-(3,5-dichlorophenyl)thioureido)piperidine-1-carboxylate], designed on the basis of pioglitazone structure. In this study, we assessed the pharmacological properties of TT01001 in both in vitro and in vivo studies. We found that TT01001 bound to mitoNEET without peroxisome proliferator-activated receptor-γ activation effect. In type II diabetes model db/db mice, TT01001 improved hyperglycemia, hyperlipidemia, and glucose intolerance, and its efficacy was equivalent to that of pioglitazone, without the pioglitazone-associated weight gain. Mitochondrial complex II + III activity of the skeletal muscle was significantly increased in db/db mice. We found that TT01001 significantly suppressed the elevated activity of the complex II + III. These results suggest that TT01001 improved type II diabetes without causing weight gain and ameliorated mitochondrial function of db/db mice. This is the first study that demonstrates the effects of a mitoNEET ligand on glucose metabolism and mitochondrial function in an animal disease model. These findings support targeting mitoNEET as a potential therapeutic approach for the treatment of type II diabetes. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  7. LW-214, a newly synthesized flavonoid, induces intrinsic apoptosis pathway by down-regulating Trx-1 in MCF-7 human breast cells.

    PubMed

    Pan, Di; Li, Wei; Miao, Hanchi; Yao, Jing; Li, Zhiyu; Wei, Libin; Zhao, Li; Guo, Qinglong

    2014-02-15

    In this study, the anticancer effect of LW-214, a newly synthesized flavonoid, against MCF-7 human breast cancer cells and the underlying mechanisms were investigated. LW-214 triggered the mitochondrial apoptotic pathway by increasing Bax/Bcl-2 ratio, loss of mitochondrial membrane potential (ΔΨm) and caspase-9 activation, degradation of poly (ADP-ribose) polymerase (PARP), cytochrome c (Cyt c) release and apoptosis-inducing factor (AIF) transposition. Further research revealed that both the reactive oxygen species (ROS) generation and the apoptosis signal regulating kinase 1 (ASK1) activation by LW-214 were induced by down-regulating the thioredoxin-1 (Trx-1) expression. The ROS elevation and ASK1 activation induced a sustained phosphorylation of c-Jun N-terminal kinase (JNK), while SP600125, as known as JNK inhibitor, almost reversed LW-214-induced apoptosis in MCF-7 cells. Overexpression of Trx-1 in MCF-7 cells attenuated LW-214-mediated apoptosis as well as the JNK activation and reversed the expression of mitochondrial apoptosis-related protein. Accordingly, the in vivo study showed that LW-214 exhibited a potential antitumor effect in BALB/c species mice inoculated MCF-7 tumor with low systemic toxicity, and the mechanism was the same as in vitro study. Taken together, these findings indicated that LW-214 may down-regulated Trx-1 function, causing intracellular ROS generation and releasing the ASK1, and lead to JNK activation, which consequently induced the mitochondrial apoptosis in vitro and in vivo. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. BAD overexpression inhibits cell growth and induces apoptosis via mitochondrial-dependent pathway in non-small cell lung cancer.

    PubMed

    Jiang, Li; Luo, Man; Liu, Dan; Chen, Bojiang; Zhang, Wen; Mai, Lin; Zeng, Jing; Huang, Na; Huang, Yi; Mo, Xianming; Li, Weimin

    2013-06-01

    The pro-apoptotic Bcl-2 protein BAD initiated apoptosis in human cells and has been identified as a prognostic marker in non-small cell lung cancer (NSCLC). In this study, we aimed to explore the functions of BAD in NSCLC. Overexpression of BAD was performed by transfecting different NSCLC cell lines with wild-type BAD. Cell proliferation, cell cycle, apoptosis, and invasion were characterized in vitro. Tumorigenicity was analyzed in vivo. Western blot was performed to determine the effects of BAD overexpression on the Bcl-2 family proteins and apoptosis-related proteins. Overexpression of BAD significantly inhibited cell proliferation in H1299, H292, and SPC-A1 but not in SK-MES-1 and H460 cell lines in vitro. BAD overexpression also reduced the tumorigenicity of H1299/SPC-A1 cell in vivo. However, no appreciable effects on cell cycle distribution and invasion were observed in all these cell lines. BAD overexpression also induced apoptosis in all cell types, in which process expression of mitochondrial cytochrom c (cyto-c) and caspase 3 were increased, whereas Bcl-xl, Bcl-2, Bax and caspase 8 expressions did not changed. These findings indicated that a mitochondrial pathway, in which process cyto-c was released from mitochondrial to activate caspase 3, was involved in BAD overexpression-mediated apoptosis. Our data suggested that increased expression of BAD enhance apoptosis and has negative influence on cell proliferation and tumor growth in NSCLC. Bad is a new potential target for tumor interventions.

  9. Mitochondrial function and tissue vitality: bench-to-bedside real-time optical monitoring system

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Walden, Raphael; Pewzner, Eliyahu; Deutsch, Assaf; Heldenberg, Eitan; Lavee, Jacob; Tager, Salis; Kachel, Erez; Raanani, Ehud; Preisman, Sergey; Glauber, Violete; Segal, Eran

    2011-06-01

    Background: The involvement of mitochondria in pathological states, such as neurodegenerative diseases, sepsis, stroke, and cancer, are well documented. Monitoring of nicotinamide adenine dinucleotide (NADH) fluorescence in vivo as an intracellular oxygen indicator was established in 1950 to 1970 by Britton Chance and collaborators. We use a multiparametric monitoring system enabling assessment of tissue vitality. In order to use this technology in clinical practice, the commercial developed device, the CritiView (CRV), is tested in animal models as well as in patients. Methods and Results: The new CRV enables the optical monitoring of four different parameters, representing the energy balance of various tissues in vivo. Mitochondrial NADH is measured by surface fluorometry/reflectometry. In addition, tissue microcirculatory blood flow, tissue reflectance and oxygenation are measured as well. The device is tested both in vitro and in vivo in a small animal model and in preliminary clinical trials in patients undergoing vascular or open heart surgery. In patients, the monitoring is started immediately after the insertion of a three-way Foley catheter (urine collection) to the patient and is stopped when the patient is discharged from the operating room. The results show that monitoring the urethral wall vitality provides information in correlation to the surgical procedure performed.

  10. Bacopa monnieri as an Antioxidant Therapy to Reduce Oxidative Stress in the Aging Brain

    PubMed Central

    Simpson, Tamara; Pase, Matthew; Stough, Con

    2015-01-01

    The detrimental effect of neuronal cell death due to oxidative stress and mitochondrial dysfunction has been implicated in age-related cognitive decline and neurodegenerative disorders such as Alzheimer's disease. The Indian herb Bacopa monnieri is a dietary antioxidant, with animal and in vitro studies indicating several modes of action that may protect the brain against oxidative damage. In parallel, several studies using the CDRI08 extract have shown that extracts of Bacopa monnieri improve cognitive function in humans. The biological mechanisms of this cognitive enhancement are unknown. In this review we discuss the animal studies and in vivo evidence for Bacopa monnieri as a potential therapeutic antioxidant to reduce oxidative stress and improve cognitive function. We suggest that future studies incorporate neuroimaging particularly magnetic resonance spectroscopy into their randomized controlled trials to better understand whether changes in antioxidant status in vivo cause improvements in cognitive function. PMID:26413126

  11. Imaging Mitochondrial Redox Potential and Its Possible Link to Tumor Metastatic Potential

    PubMed Central

    Li, Lin Z.

    2012-01-01

    Cellular redox states can regulate cell metabolism, growth, differentiation, motility, apoptosis, signaling pathways, and gene expressions etc. Growing body of literature suggest importance of redox status for cancer progression. While most studies on redox state were done on cells and tissue lysates, it is important to understand the role of redox state in tissue in vivo/ex vivo and image its heterogeneity. Redox scanning is a clinically-translatable method for imaging tissue mitochondrial redox potential with a submillimeter resolution. Redox scanning data in mouse models of human cancers demonstrate a correlation between mitochondrial redox state and tumor metastatic potential. I will discuss the significance of this correlation and possible directions for future research. PMID:22895837

  12. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: structure-activity relationships.

    PubMed

    Tune, B M; Hsu, C Y

    1994-09-01

    Cephaloridine (Cld), the most widely studied nephrotoxic cephalosporin, has significant structural homology with carnitine, which facilitates the transport of long-chain fatty acids into the mitochondrial inner matrix. Because of this homology, and evidence of a role of lipids in cephaloglycin (Cgl) nephrotoxicity, protocols were designed to compare the effects of Cld and Cgl on renal cortical mitochondrial carnitine transport, on long-chain fatty acylcarnitine-mediated respiration and on the in situ mitochondrial pools and urinary excretion of carnitine and acylcarnitines. The following was found: 1) both cephalosporins reduced carnitine-facilitated pyruvate oxidation (CFPO) and palmitoylcarnitine-mediated respiration (PCMR) by 40 to 50% in mitochondria exposed in vivo (300 mg/kg b.wt., 1 hr). CFPO could be decreased by reduction of carnitine uptake, pyruvate oxidation or carnitine acetyltransferase activity; 2) neither cephalosporin reduced mitochondrial carnitine acetyltransferase or carnitine palmitoyltransferase; 3) with in vitro exposure (2000 micrograms/ml, immediate effect) Cgl had no significant toxicity to mitochondrial CFPO. Cld inhibited CFPO in a dose-dependent manner, up to 100% at 2000 micrograms/ml; this effect was reduced by increasing carnitine concentrations; 4) in vitro Cld prevented the potentiation of PCMR by preloading with carnitine, reduced mitochondrial acetylcarnitine/carnitine exchange by 70% and reduced PCMR by 30%; 5) in vivo Cld increased mitochondrial-free carnitine in the in situ kidney by 100%; and 6) in vivo Cld increased the fractional renal excretion of carnitine from 0 +/- 0 to 0.29 +/- 0.03 and the fractional excretion of long-chain acylcarnitines from 0.06 +/- 0.01 to 0.79 +/- 0.17.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    PubMed Central

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  14. High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II

    PubMed Central

    Sverdlov, Aaron L.; Elezaby, Aly; Behring, Jessica B.; Bachschmid, Markus M.; Luptak, Ivan; Tu, Vivian H.; Siwik, Deborah A.; Miller, Edward J.; Liesa, Marc; Shirihai, Orian S; Pimentel, David R.; Cohen, Richard A.; Colucci, Wilson S.

    2014-01-01

    Background Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Methods and results Male C57Bl/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8 months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. Conclusions MHD due to consumption of a HFHS “Western” diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. PMID:25109264

  15. Associations between fatty acid oxidation, hepatic mitochondrial function, and plasma acylcarnitine levels in mice.

    PubMed

    Bjørndal, Bodil; Alterås, Eva Katrine; Lindquist, Carine; Svardal, Asbjørn; Skorve, Jon; Berge, Rolf K

    2018-01-01

    The 4-thia fatty acid tetradecylthiopropionic acid (TTP) is known to inhibit mitochondrial β-oxidation, and can be used as chemically induced hepatic steatosis-model in rodents, while 3-thia fatty acid tetradecylthioacetic acid (TTA) stimulates fatty acid oxidation through activation of peroxisome proliferator activated receptor alpha (PPARα). We wished to determine how these two compounds affected in vivo respiration and mitochondrial efficiency, with an additional goal to elucidate whether mitochondrial function is reflected in plasma acylcarnitine levels. C57BL/6 mice were divided in 4 groups of 10 mice and fed a control low-fat diet, low-fat diets with 0.4% ( w /w) TTP, 0.4% TTA or a combination of these two fatty acids for three weeks ( n  = 10). At sacrifice, β-oxidation and oxidative phosphorylation (OXPHOS) capacity was analysed in fresh liver samples. Hepatic mitochondria were studied using transmission electron microscopy. Lipid classes were measured in plasma, heart and liver, acylcarnitines were measured in plasma, and gene expression was measured in liver. The TTP diet resulted in hepatic lipid accumulation, plasma L-carnitine and acetylcarnitine depletion and elevated palmitoylcarnitine and non-esterified fatty acid levels. No significant lipid accumulation was observed in heart. The TTA supplement resulted in enhanced hepatic β-oxidation, accompanied by an increased level of acetylcarnitine and palmitoylcarnitine in plasma. Analysis of mitochondrial respiration showed that TTP reduced oxidative phosphorylation, while TTA increased the maximum respiratory capacity of the electron transport system. Combined treatment with TTP and TTA resulted in a profound stimulation of genes involved in the PPAR-response and L-carnitine metabolism, and partly prevented triacylglycerol accumulation in the liver concomitant with increased peroxisomal β-oxidation and depletion of plasma acetylcarnitines. Despite an increased number of mitochondria in the liver of TTA + TTP fed mice, the OXPHOS capacity was significantly reduced. This study indicates that fatty acid β-oxidation directly affects mitochondrial respiratory capacity in liver. As plasma acylcarnitines reflected the reduced mitochondrial β-oxidation in TTP-fed mice, they could be useful tools to monitor mitochondrial function. As mitochondrial dysfunction is a major determinant of metabolic disease, this supports their use as plasma markers of cardiovascular risk in humans. Results however indicate that high PPAR activation obscures the interpretation of plasma acylcarnitine levels.

  16. The importance of controlling in vitro oxygen tension to accurately model in vivo neurophysiology.

    PubMed

    Bordt, Evan A

    2018-05-01

    The majority of in vitro studies modeling in vivo conditions are performed on the lab bench in atmospheric air. However, the oxygen tension (pO 2 ) present in atmospheric air (160mm Hg, ∼21% O 2 ) is in great excess to the pO 2 that permeates tissues within the brain (5-45mm Hg, ∼1-6% O 2 ). This review will discuss the differentiation between pO 2 in the in vivo environment and the pO 2 commonly used during in vitro experiments, and how this could affect assay outcomes. Also highlighted are studies linking changes in pO 2 to changes in cellular function, particularly the role of pO 2 in mitochondrial function, reactive oxygen species production, and cellular growth and differentiation. The role of hypoxia inducible factor 1 and oxygen sensing is also presented. Finally, emerging literature exploring sex differences in tissue oxygenation is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Protection against renal ischemia-reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ.

    PubMed

    Dare, Anna J; Bolton, Eleanor A; Pettigrew, Gavin J; Bradley, J Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P

    2015-08-01

    Ischemia-reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Protection against renal ischemia–reperfusion injury in vivo by the mitochondria targeted antioxidant MitoQ

    PubMed Central

    Dare, Anna J.; Bolton, Eleanor A.; Pettigrew, Gavin J.; Bradley, J. Andrew; Saeb-Parsy, Kourosh; Murphy, Michael P.

    2015-01-01

    Ischemia–reperfusion (IR) injury to the kidney occurs in a range of clinically important scenarios including hypotension, sepsis and in surgical procedures such as cardiac bypass surgery and kidney transplantation, leading to acute kidney injury (AKI). Mitochondrial oxidative damage is a significant contributor to the early phases of IR injury and may initiate a damaging inflammatory response. Here we assessed whether the mitochondria targeted antioxidant MitoQ could decrease oxidative damage during IR injury and thereby protect kidney function. To do this we exposed kidneys in mice to in vivo ischemia by bilaterally occluding the renal vessels followed by reperfusion for up to 24 h. This caused renal dysfunction, measured by decreased creatinine clearance, and increased markers of oxidative damage. Administering MitoQ to the mice intravenously 15 min prior to ischemia protected the kidney from damage and dysfunction. These data indicate that mitochondrial oxidative damage contributes to kidney IR injury and that mitochondria targeted antioxidants such as MitoQ are potential therapies for renal dysfunction due to IR injury. PMID:25965144

  19. Mitochondriotropic and Cardioprotective Effects of Triphenylphosphonium-Conjugated Derivatives of the Diterpenoid Isosteviol

    PubMed Central

    Strobykina, Irina; Semenov, Victor V.; Semenova, Marina; Martelli, Alma; Citi, Valentina; Breschi, Maria C.; Kataev, Vladimir E.; Calderone, Vincenzo

    2017-01-01

    Mitochondria play a crucial role in the cell fate; in particular, reducing the accumulation of calcium in the mitochondrial matrix offers cardioprotection. This affect is achieved by a mild depolarization of the mitochondrial membrane potential, which prevents the assembly and opening of the mitochondrial permeability transition pore. For this reason, mitochondria are an attractive target for pharmacological interventions that prevent ischaemia/reperfusion injury. Isosteviol is a diterpenoid created from the acid hydrolysis of Stevia rebaudiana Bertoni (fam. Asteraceae) glycosides that has shown protective effects against ischaemia/reperfusion injury, which are likely mediated through the activation of mitochondrial adenosine tri-phosphate (ATP)-sensitive potassium (mitoKATP) channels. Some triphenylphosphonium (triPP)-conjugated derivatives of isosteviol have been developed, and to evaluate the possible pharmacological benefits that result from these synthetic modifications, in this study, the mitochondriotropic properties of isosteviol and several triPP-conjugates were investigated in rat cardiac mitochondria and in the rat heart cell line H9c2. This study’s main findings highlight the ability of isosteviol to depolarize the mitochondrial membrane potential and reduce calcium uptake by the mitochondria, which are typical functions of mitochondrial potassium channel openings. Moreover, triPP-conjugated derivatives showed a similar behavior to isosteviol but at lower concentrations, indicative of their improved uptake into the mitochondrial matrix. Finally, the cardioprotective property of a selected triPP-conjugated derivative was demonstrated in an in vivo model of acute myocardial infarct. PMID:28954424

  20. Mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia.

    PubMed

    Ali, Shimaa E; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A A; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4-24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp.

  1. Mitochondrial translational-initiation and elongation factors in Saccharomyces cerevisiae.

    PubMed

    Vambutas, A; Ackerman, S H; Tzagoloff, A

    1991-11-01

    C155 and E252 are respiratory-defective mutants of Saccharomyces cerevisiae, previously assigned to complementation groups G37 and G142, respectively. The following evidence suggested that both mutants were likely to have lesions in components of the mitochondrial translational machinery: C155 and E252 display a pleiotropic deficiency in cytochromes a, a3 and b; both strains are severly limited in their ability to incorporate radioactive methionine into the mitochondrial translation products and, in addition, display a tendency to loose wild-type mitochondrial DNA. This set of characteristics is commonly found in strains affected in mitochondrial protein synthesis. To identify the biochemical lesions, each mutant was transformed with a wild-type yeast genomic library and clones complemented for the respiratory defect were selected for growth on a non-fermentable substrate. Analysis of the cloned genes revealed that C155 has a mutation in a protein which has high sequence similarity to bacterial elongation factor G and that E252 has a mutation in a protein homologous to bacterial initiation factor 2. Disruption of the chromosomal copy of each gene in a wild-type haploid yeast induced a phenotype analogous to that of the original mutants, but does not affect cell viability. These results indicate that both gene products function exclusively in mitochondrial protein synthesis. Subcloning of the IFM1 gene, coding for the mitochondrial initiation factor, indicates that the amino-terminal 423 residues of the protein are sufficient to promote peptide-chain initiation in vivo.

  2. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    PubMed

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Designer aminoglycosides that selectively inhibit cytoplasmic rather than mitochondrial ribosomes show decreased ototoxicity: a strategy for the treatment of genetic diseases.

    PubMed

    Shulman, Eli; Belakhov, Valery; Wei, Gao; Kendall, Ann; Meyron-Holtz, Esther G; Ben-Shachar, Dorit; Schacht, Jochen; Baasov, Timor

    2014-01-24

    There is compelling evidence that aminoglycoside (AG) antibiotics can induce the mammalian ribosome to suppress disease-causing nonsense mutations and partially restore the expression of functional proteins. However, prolonged AG treatment can cause detrimental side effects in patients, including most prominently, ototoxicity. Recent mechanistic discussions have considered the relative contributions of mitochondrial and cytoplasmic protein synthesis inhibition to AG-induced ototoxicity. We show that AGs inhibit mitochondrial protein synthesis in mammalian cells and perturb cell respiration, leading to a time- and dose-dependent increase in superoxide overproduction and accumulation of free ferrous iron in mitochondria caused by oxidative damage of mitochondrial aconitase, ultimately leading to cell apoptosis via the Fenton reaction. These deleterious effects increase with the increased potency of AG to inhibit the mitochondrial rather than cytoplasmic protein synthesis, which in turn correlates with their ototoxic potential in both murine cochlear explants and the guinea pig in vivo. The deleterious effects of AGs were alleviated in synthetic derivatives specially designed for the treatment of genetic diseases caused by nonsense mutations and possessing low affinity toward mitochondrial ribosomes. This work highlights the benefit of a mechanism-based drug redesign strategy that can maximize the translational value of "readthrough therapy" while mitigating drug-induced side effects. This approach holds promise for patients suffering from genetic diseases caused by nonsense mutations.

  4. The mammalian phosphate carrier SLC25A3 is a mitochondrial copper transporter required for cytochrome c oxidase biogenesis.

    PubMed

    Boulet, Aren; Vest, Katherine E; Maynard, Margaret K; Gammon, Micah G; Russell, Antoinette C; Mathews, Alexander T; Cole, Shelbie E; Zhu, Xinyu; Phillips, Casey B; Kwong, Jennifer Q; Dodani, Sheel C; Leary, Scot C; Cobine, Paul A

    2018-02-09

    Copper is required for the activity of cytochrome c oxidase (COX), the terminal electron-accepting complex of the mitochondrial respiratory chain. The likely source of copper used for COX biogenesis is a labile pool found in the mitochondrial matrix. In mammals, the proteins that transport copper across the inner mitochondrial membrane remain unknown. We previously reported that the mitochondrial carrier family protein Pic2 in budding yeast is a copper importer. The closest Pic2 ortholog in mammalian cells is the mitochondrial phosphate carrier SLC25A3. Here, to investigate whether SLC25A3 also transports copper, we manipulated its expression in several murine and human cell lines. SLC25A3 knockdown or deletion consistently resulted in an isolated COX deficiency in these cells, and copper addition to the culture medium suppressed these biochemical defects. Consistent with a conserved role for SLC25A3 in copper transport, its heterologous expression in yeast complemented copper-specific defects observed upon deletion of PIC2 Additionally, assays in Lactococcus lactis and in reconstituted liposomes directly demonstrated that SLC25A3 functions as a copper transporter. Taken together, these data indicate that SLC25A3 can transport copper both in vitro and in vivo . © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Alpha Lipoamide Ameliorates Motor Deficits and Mitochondrial Dynamics in the Parkinson's Disease Model Induced by 6-Hydroxydopamine.

    PubMed

    Zhou, Bo; Wen, Min; Lin, Xin; Chen, Yun-Hua; Gou, Yun; Li, Yong; Zhang, Yi; Li, Hong-Wei; Tang, Lei

    2018-05-01

    The precise mechanisms underlying neuronal injury in Parkinson's disease (PD) are not yet fully elucidated; however, evidence from the in vitro and in vivo PD models suggest that mitochondrial dysfunction may play a major role in PD pathogenesis. Alpha lipoamide, a neutral amide derivative of the lipoic acid, is a better cofactor for mitochondrial dehydrogenase with a stronger protective effect on mitochondria than lipoic acid. Identification of these protective effects of alpha lipoamide on mitochondria, together with the evidence that mitochondrial dysfunction plays a critical role in PD, we speculate that alpha lipoamide may exert a protective effect in PD by regulating the mitochondrial function. The present study investigated the neuroprotective effects of alpha lipoamide in an animal model of PD induced by 6-hydroxydopamine (6-OHDA). The results demonstrated that alpha lipoamide could significantly antagonize the 6-OHDA-induced behavioral damages; restore ATP levels in the midbrain; and also improve the fragmentation, vacuolization, and morphology of the mitochondria. The results of Western blot indicated that alpha lipoamide significantly restored the number of dopaminergic neurons in midbrain and substantially recovered the balance between mitochondrial fission, fusion, and transport. In conclusion, the results demonstrated that alpha lipoamide might exert a significant neuroprotective effect in the animal model of PD by regulation of the dynamic properties of mitochondria.

  6. Transcriptional requirements of the distal heavy-strand promoter of mtDNA

    PubMed Central

    Zollo, Ornella; Tiranti, Valeria; Sondheimer, Neal

    2012-01-01

    The heavy strand of mtDNA contains two promoters with nonoverlapping functions. The role of the minor heavy-strand promoter (HSP2) is controversial, because the promoter has been difficult to activate in an in vitro system. We have isolated HSP2 by excluding its interaction with the more powerful HSP1 promoter, and we find that it is transcribed efficiently by recombinant mtRNA polymerase and mitochondrial transcription factor B2. The mitochondrial transcription factor A is not required for initiation, but it has the ability to alternatively activate and repress the HSP2 transcriptional unit depending on the ratio between mitochondrial transcription factor A and other transcription factors. The positioning of transcriptional initiation agrees with our current understanding of HSP2 activity in vivo. Serial deletion of HSP2 shows that only proximal sequences are required. Several mutations, including the disruption of a polycytosine track upstream of the HSP2 initiation site, influence transcriptional activity. Transcription from HSP2 is also observed when HeLa cell mitochondrial extract is used as the source of mitochondrial polymerase, and this transcription is maintained when HSP2 is provided in proper spacing and context to the HSP1 promoter. Studies of the linked heavy-strand promoters show that they are differentially regulated by ATP dosage. We conclude that HSP2 is transcribed and has features that allow it to regulate mitochondrial mRNA synthesis. PMID:22454497

  7. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Min; Li, Ruishu, E-mail: liruishu2016@yahoo.com; Zhang, Juan

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptoticmore » effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.« less

  8. Epac2-Rap1 Signaling Regulates Reactive Oxygen Species Production and Susceptibility to Cardiac Arrhythmias

    PubMed Central

    Yang, Zhaokang; Kirton, Hannah M.; Al-Owais, Moza; Thireau, Jérôme; Richard, Sylvain; Peers, Chris

    2017-01-01

    Abstract Aims: In the heart, β1-adrenergic signaling involves cyclic adenosine monophosphate (cAMP) acting via both protein kinase-A (PKA) and exchange protein directly activated by cAMP (Epac): a guanine nucleotide exchange factor for the small GTPase Rap1. Inhibition of Epac-Rap1 signaling has been proposed as a therapeutic strategy for both cancer and cardiovascular disease. However, previous work suggests that impaired Rap1 signaling may have detrimental effects on cardiac function. The aim of the present study was to investigate the influence of Epac2-Rap1 signaling on the heart using both in vivo and in vitro approaches. Results: Inhibition of Epac2 signaling induced early afterdepolarization arrhythmias in ventricular myocytes. The underlying mechanism involved an increase in mitochondrial reactive oxygen species (ROS) and activation of the late sodium current (INalate). Arrhythmias were blocked by inhibition of INalate or the mitochondria-targeted antioxidant, mitoTEMPO. In vivo, inhibition of Epac2 caused ventricular tachycardia, torsades de pointes, and sudden death. The in vitro and in vivo effects of Epac2 inhibition were mimicked by inhibition of geranylgeranyltransferase-1, which blocks interaction of Rap1 with downstream targets. Innovation: Our findings show for the first time that Rap1 acts as a negative regulator of mitochondrial ROS production in the heart and that impaired Epac2-Rap1 signaling causes arrhythmias due to ROS-dependent activation of INalate. This has implications for the use of chemotherapeutics that target Epac2-Rap1 signaling. However, selective inhibition of INalate provides a promising strategy to prevent arrhythmias caused by impaired Epac2-Rap1 signaling. Conclusion: Epac2-Rap1 signaling attenuates mitochondrial ROS production and reduces myocardial arrhythmia susceptibility. Antioxid. Redox Signal. 27, 117–132. PMID:27649969

  9. Functional reconstitution of mitochondrial Fe/S cluster synthesis on Isu1 reveals the involvement of ferredoxin.

    PubMed

    Webert, Holger; Freibert, Sven-Andreas; Gallo, Angelo; Heidenreich, Torsten; Linne, Uwe; Amlacher, Stefan; Hurt, Ed; Mühlenhoff, Ulrich; Banci, Lucia; Lill, Roland

    2014-10-31

    Maturation of iron-sulphur (Fe/S) proteins involves complex biosynthetic machinery. In vivo synthesis of [2Fe-2S] clusters on the mitochondrial scaffold protein Isu1 requires the cysteine desulphurase complex Nfs1-Isd11, frataxin, ferredoxin Yah1 and its reductase Arh1. The roles of Yah1-Arh1 have remained enigmatic, because they are not required for in vitro Fe/S cluster assembly. Here, we reconstitute [2Fe-2S] cluster synthesis on Isu1 in a reaction depending on Nfs1-Isd11, frataxin, Yah1, Arh1 and NADPH. Unlike in the bacterial system, frataxin is an essential part of Fe/S cluster biosynthesis and is required simultaneously and stoichiometrically to Yah1. Reduced but not oxidized Yah1 tightly interacts with apo-Isu1 indicating a dynamic interaction between Yah1-apo-Isu1. Nuclear magnetic resonance structural studies identify the Yah1-apo-Isu1 interaction surface and suggest a pathway for electron flow from reduced ferredoxin to Isu1. Together, our study defines the molecular function of the ferredoxin Yah1 and its human orthologue FDX2 in mitochondrial Fe/S cluster synthesis.

  10. Effect of antihypertensive agents - captopril and nifedipine - on the functional properties of rat heart mitochondria

    PubMed Central

    Kancirová, Ivana; Jašová, Magdaléna; Waczulíková, Iveta; Ravingerová, Táňa; Ziegelhöffer, Attila; Ferko, Miroslav

    2016-01-01

    Objective(s): Investigation of acute effect on cellular bioenergetics provides the opportunity to characterize the possible adverse effects of drugs more comprehensively. This study aimed to investigate the changes in biochemical and biophysical properties of heart mitochondria induced by captopril and nifedipine antihypertensive treatment. Materials and Methods: Male, 12-week-old Wistar rats in two experimental models (in vivo and in vitro) were used. In four groups, the effects of escalating doses of captopril, nifedipine and combination of captopril + nifedipine added to the incubation medium (in vitro) or administered per os to rat (in vivo) on mitochondrial ATP synthase activity and membrane fluidity were monitored. Results: In the in vitro model we observed a significant inhibitory effect of treatment on the ATP synthase activity (P<0.05) with nonsignificant differences in membrane fluidity. Decrease in the value of maximum reaction rate Vmax (P<0.05) without any change in the value of Michaelis-Menten constant Km, indicative of a noncompetitive inhibition, was presented. At the in vivo level, we did not demonstrate any significant changes in the ATP synthase activity and the membrane fluidity in rats receiving captopril, nifedipine, and combined therapy. Conclusion: In vitro kinetics study revealed that antihypertensive drugs (captopril and nifedipine) directly interact with mitochondrial ATP synthase. In vivo experiment did not prove any acute effect on myocardial bioenergetics and suggest that drugs do not enter cardiomyocyte and have no direct effect on mitochondria. PMID:27482342

  11. Mitochondrial fission promotes cell migration by Ca2+ /CaMKII/ERK/FAK pathway in hepatocellular carcinoma.

    PubMed

    Sun, Xiacheng; Cao, Haiyan; Zhan, Lei; Yin, Chun; Wang, Gang; Liang, Ping; Li, Jibin; Wang, Zhe; Liu, Bingrong; Huang, Qichao; Xing, Jinliang

    2018-07-01

    Mitochondrial dynamics of fission and fusion plays critical roles in a diverse range of important cellular functions, and its deregulation has been increasingly implicated in human diseases. Previous studies have shown that increased mitochondrial fission significantly promoted the proliferation of hepatocellular carcinoma (HCC) cells. However, how they influence the migration of tumour cells remained largely unknown. In the present study, we further investigated the effect of mitochondrial fission on the migration and metastasis of hepatocellular carcinoma cells. Moreover, the underlying molecular mechanisms and therapeutic application were explored. Our data showed that dynamin-1-like protein expression was strongly increased in distant metastasis of hepatocellular carcinoma when compared to primary hepatocellular carcinoma. In contrast, the mitochondrial fusion protein mitofusin 1 showed an opposite trend. Moreover, the expression of dynamin-1-like protein and mitofusin 1 was significantly associated with the disease-free survival of hepatocellular carcinoma patients. In addition, our data further showed that mitochondrial fission significantly promoted the reprogramming of focal-adhesion dynamics and lamellipodia formation in hepatocellular carcinoma cells mainly by activating typical Ca 2+ /CaMKII/ERK/FAK pathway. Importantly, treatment with mitochondrial division inhibitor-1 significantly decreased calcium signalling in hepatocellular carcinoma cells and had a potential treatment effect for hepatocellular carcinoma metastasis in vivo. Taken together, our findings demonstrate that mitochondrial fission plays a critical role in the regulation of hepatocellular carcinoma cell migration, which provides strong evidence for this process as a drug target in hepatocellular carcinoma metastasis treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Biomarkers and Brain Mechanisms of Gulf War Illness

    DTIC Science & Technology

    2017-09-01

    serve as biomarkers of the disorder. 15. SUBJECT TERMS Gulf War illness, neuroinflammation, oxidative stress , mitochondrial dysfunction, magnetic...Oxidative Stress , Mitochondrial Dysfunction; Magnetic Resonance Imaging, Positron Emission Tomography Page | 5 Subtask 2: Develop complementary or...30 Major Task 3: To conduct 1H and 31P MRS studies for assessment of oxidative stress and mitochondrial dysfunction in vivo. Assess cerebral blood

  13. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.

    PubMed

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-06-15

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  14. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice

    PubMed Central

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-01-01

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093

  15. Discovery and Characterization of the 3-Hydroxyacyl-ACP Dehydratase Component of the Plant Mitochondrial Fatty Acid Synthase System1[OPEN

    PubMed Central

    Okazaki, Yozo; Lithio, Andrew; Jin, Huanan

    2017-01-01

    We report the characterization of the Arabidopsis (Arabidopsis thaliana) 3-hydroxyacyl-acyl carrier protein dehydratase (mtHD) component of the mitochondrial fatty acid synthase (mtFAS) system, encoded by AT5G60335. The mitochondrial localization and catalytic capability of mtHD were demonstrated with a green fluorescent protein transgenesis experiment and by in vivo complementation and in vitro enzymatic assays. RNA interference (RNAi) knockdown lines with reduced mtHD expression exhibit traits typically associated with mtFAS mutants, namely a miniaturized morphological appearance, reduced lipoylation of lipoylated proteins, and altered metabolomes consistent with the reduced catalytic activity of lipoylated enzymes. These alterations are reversed when mthd-rnai mutant plants are grown in a 1% CO2 atmosphere, indicating the link between mtFAS and photorespiratory deficiency due to the reduced lipoylation of glycine decarboxylase. In vivo biochemical feeding experiments illustrate that sucrose and glycolate are the metabolic modulators that mediate the alterations in morphology and lipid accumulation. In addition, both mthd-rnai and mtkas mutants exhibit reduced accumulation of 3-hydroxytetradecanoic acid (i.e. a hallmark of lipid A-like molecules) and abnormal chloroplastic starch granules; these changes are not reversible by the 1% CO2 atmosphere, demonstrating two novel mtFAS functions that are independent of photorespiration. Finally, RNA sequencing analysis revealed that mthd-rnai and mtkas mutants are nearly equivalent to each other in altering the transcriptome, and these analyses further identified genes whose expression is affected by a functional mtFAS system but independent of photorespiratory deficiency. These data demonstrate the nonredundant nature of the mtFAS system, which contributes unique lipid components needed to support plant cell structure and metabolism. PMID:28202596

  16. Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury.

    PubMed

    Adlam, Victoria J; Harrison, Joanne C; Porteous, Carolyn M; James, Andrew M; Smith, Robin A J; Murphy, Michael P; Sammut, Ivan A

    2005-07-01

    Mitochondrial oxidative damage contributes to a wide range of pathologies, including cardiovascular disorders and neurodegenerative diseases. Therefore, protecting mitochondria from oxidative damage should be an effective therapeutic strategy. However, conventional antioxidants have limited efficacy due to the difficulty of delivering them to mitochondria in situ. To overcome this problem, we developed mitochondria-targeted antioxidants, typified by MitoQ, which comprises a lipophilic triphenylphosphonium (TPP) cation covalently attached to a ubiquinol antioxidant. Driven by the large mitochondrial membrane potential, the TPP cation concentrates MitoQ several hundred-fold within mitochondria, selectively preventing mitochondrial oxidative damage. To test whether MitoQ was active in vivo, we chose a clinically relevant form of mitochondrial oxidative damage: cardiac ischemia-reperfusion injury. Feeding MitoQ to rats significantly decreased heart dysfunction, cell death, and mitochondrial damage after ischemia-reperfusion. This protection was due to the antioxidant activity of MitoQ within mitochondria, as an untargeted antioxidant was ineffective and accumulation of the TPP cation alone gave no protection. Therefore, targeting antioxidants to mitochondria in vivo is a promising new therapeutic strategy in the wide range of human diseases such as Parkinson's disease, diabetes, and Friedreich's ataxia where mitochondrial oxidative damage underlies the pathology.

  17. The Diabetes Drug Target MitoNEET Governs a Novel Trafficking Pathway to Rebuild an Fe-S Cluster into Cytosolic Aconitase/Iron Regulatory Protein 1*

    PubMed Central

    Ferecatu, Ioana; Gonçalves, Sergio; Golinelli-Cohen, Marie-Pierre; Clémancey, Martin; Martelli, Alain; Riquier, Sylvie; Guittet, Eric; Latour, Jean-Marc; Puccio, Hélène; Drapier, Jean-Claude; Lescop, Ewen; Bouton, Cécile

    2014-01-01

    In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis. PMID:25012650

  18. Normalization of CD4+ T Cell Metabolism Reverses Lupus

    PubMed Central

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Perry, Daniel J.; Seay, Howard; Croker, Byron P.; Sobel, Eric S.; Brusko, Todd M.; Morel, Laurence

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. Here, we show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-Deoxy-D-glucose (2DG) reduced IFNγ production, although at different stages of activation. Metformin also restored the defective IL-2 production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFNγ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE. PMID:25673763

  19. p46Shc Inhibits Thiolase and Lipid Oxidation in Mitochondria*

    PubMed Central

    Tomilov, Alexey; Tomilova, Natalia; Shan, Yuxi; Hagopian, Kevork; Bettaieb, Ahmed; Kim, Kyoungmi; Pelicci, Pier Giuseppe; Haj, Fawaz; Ramsey, Jon; Cortopassi, Gino

    2016-01-01

    Although the p46Shc isoform has been known to be mitochondrially localized for 11 years, its function in mitochondria has been a mystery. We confirmed p46Shc to be mitochondrially localized and showed that the major mitochondrial partner of p46Shc is the lipid oxidation enzyme 3-ketoacylCoA thiolase ACAA2, to which p46Shc binds directly and with a strong affinity. Increasing p46Shc expression inhibits, and decreasing p46Shc stimulates enzymatic activity of thiolase in vitro. Thus, we suggest p46Shc to be a negative mitochondrial thiolase activity regulator, and reduction of p46Shc expression activates thiolase. This is the first demonstration of a protein that directly binds and controls thiolase activity. Thiolase was thought previously only to be regulated by metabolite balance and steady-state flux control. Thiolase is the last enzyme of the mitochondrial fatty acid beta-oxidation spiral, and thus is important for energy metabolism. Mice with reduction of p46Shc are lean, resist obesity, have higher lipid oxidation capacity, and increased thiolase activity. The thiolase-p46Shc connection shown here in vitro and in organello may be an important underlying mechanism explaining the metabolic phenotype of Shc-depleted mice in vivo. PMID:27059956

  20. Phosphorus and proton magnetic resonance spectroscopy demonstrates mitochondrial dysfunction in early and advanced Parkinson's disease.

    PubMed

    Hattingen, Elke; Magerkurth, Jörg; Pilatus, Ulrich; Mozer, Anne; Seifried, Carola; Steinmetz, Helmuth; Zanella, Friedhelm; Hilker, Rüdiger

    2009-12-01

    Mitochondrial dysfunction hypothetically contributes to neuronal degeneration in patients with Parkinson's disease. While several in vitro data exist, the measurement of cerebral mitochondrial dysfunction in living patients with Parkinson's disease is challenging. Anatomical magnetic resonance imaging combined with phosphorus and proton magnetic resonance spectroscopic imaging provides information about the functional integrity of mitochondria in specific brain areas. We measured partial volume corrected concentrations of low-energy metabolites and high-energy phosphates with sufficient resolution to focus on pathology related target areas in Parkinson's disease. Combined phosphorus and proton magnetic resonance spectroscopic imaging in the mesostriatal region was performed in 16 early and 13 advanced patients with Parkinson's disease and compared to 19 age-matched controls at 3 Tesla. In the putamen and midbrain of both Parkinson's disease groups, we found a bilateral reduction of high-energy phosphates such as adenosine triphophosphate and phosphocreatine as final acceptors of energy from mitochondrial oxidative phosphorylation. In contrast, low-energy metabolites such as adenosine diphophosphate and inorganic phosphate were within normal ranges. These results provide strong in vivo evidence that mitochondrial dysfunction of mesostriatal neurons is a central and persistent phenomenon in the pathogenesis cascade of Parkinson's disease which occurs early in the course of the disease.

  1. The diabetes drug target MitoNEET governs a novel trafficking pathway to rebuild an Fe-S cluster into cytosolic aconitase/iron regulatory protein 1.

    PubMed

    Ferecatu, Ioana; Gonçalves, Sergio; Golinelli-Cohen, Marie-Pierre; Clémancey, Martin; Martelli, Alain; Riquier, Sylvie; Guittet, Eric; Latour, Jean-Marc; Puccio, Hélène; Drapier, Jean-Claude; Lescop, Ewen; Bouton, Cécile

    2014-10-10

    In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first identified Fe-S protein anchored in the mitochondrial outer membrane, strictly depends on ISC machineries and not on the CIA or CIAPIN1. We identify a dedicated ISC/export pathway in which augmenter of liver regeneration, a mitochondrial Mia40-dependent protein, is specific to mitoNEET maturation. When inserted, the Fe-S cluster confers mitoNEET folding and stability in vitro and in vivo. The holo-form of mitoNEET is resistant to NO and H2O2 and is capable of repairing oxidatively damaged Fe-S of iron regulatory protein 1 (IRP1), a master regulator of cellular iron that has recently been involved in the mitochondrial iron supply. Therefore, our findings point to IRP1 as the missing link to explain the function of mitoNEET in the control of mitochondrial iron homeostasis. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Continued clearance of apoptotic cells critically depends on the phagocyte Ucp2 protein.

    PubMed

    Park, Daeho; Han, Claudia Z; Elliott, Michael R; Kinchen, Jason M; Trampont, Paul C; Das, Soumita; Collins, Sheila; Lysiak, Jeffrey J; Hoehn, Kyle L; Ravichandran, Kodi S

    2011-08-21

    Rapid and efficient removal of apoptotic cells by phagocytes is important during development, tissue homeostasis and in immune responses. Efficient clearance depends on the capacity of a single phagocyte to ingest multiple apoptotic cells successively, and to process the corpse-derived cellular material. However, the factors that influence continued clearance by phagocytes are not known. Here we show that the mitochondrial membrane potential of the phagocyte critically controls engulfment capacity, with lower potential enhancing engulfment and vice versa. The mitochondrial membrane protein Ucp2, which acts to lower the mitochondrial membrane potential, was upregulated in phagocytes engulfing apoptotic cells. Loss of Ucp2 reduced phagocytic capacity, whereas Ucp2 overexpression enhanced engulfment. Mutational and pharmacological studies indicated a direct role for Ucp2-mediated mitochondrial function in phagocytosis. Macrophages from Ucp2-deficient mice were impaired in phagocytosis in vitro, and Ucp2-deficient mice showed profound in vivo defects in clearing dying cells in the thymus and testes. Collectively, these data indicate that mitochondrial membrane potential and Ucp2 are key molecular determinants of apoptotic cell clearance. As Ucp2 is linked to metabolic diseases and atherosclerosis, this newly discovered role for Ucp2 in apoptotic cell clearance has implications for the complex aetiology and pathogenesis of these diseases.

  3. Mitochondrial efficiency and exercise economy following heat stress: a potential role of uncoupling protein 3.

    PubMed

    Salgado, Roy M; Sheard, Ailish C; Vaughan, Roger A; Parker, Daryl L; Schneider, Suzanne M; Kenefick, Robert W; McCormick, James J; Gannon, Nicholas P; Van Dusseldorp, Trisha A; Kravitz, Len R; Mermier, Christine M

    2017-02-01

    Heat stress has been reported to reduce uncoupling proteins (UCP) expression, which in turn should improve mitochondrial efficiency. Such an improvement in efficiency may translate to the systemic level as greater exercise economy. However, neither the heat-induced improvement in mitochondrial efficiency (due to decrease in UCP), nor its potential to improve economy has been studied. Determine: (i) if heat stress in vitro lowers UCP3 thereby improving mitochondrial efficiency in C2C12 myocytes; (ii) whether heat acclimation (HA) in vivo improves exercise economy in trained individuals; and (iii) the potential improved economy during exercise at altitude. In vitro, myocytes were heat stressed for 24 h (40°C), followed by measurements of UCP3, mitochondrial uncoupling, and efficiency. In vivo, eight trained males completed: (i) pre-HA testing; (ii) 10 days of HA (40°C, 20% RH); and (iii) post-HA testing. Pre- and posttesting consisted of maximal exercise test and submaximal exercise at two intensities to assess exercise economy at 1600 m (Albuquerque, NM) and 4350 m. Heat-stressed myocytes displayed significantly reduced UCP3 mRNA expression and, mitochondrial uncoupling (77.1 ± 1.2%, P < 0.0001) and improved mitochondrial efficiency (62.9 ± 4.1%, P < 0.0001) compared to control. In humans, at both 1600 m and 4350 m, following HA, submaximal exercise economy did not change at low and moderate exercise intensities. Our findings indicate that while heat-induced reduction in UCP3 improves mitochondrial efficiency in vitro, this is not translated to in vivo improvement of exercise economy at 1600 m or 4350 m. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  4. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans.

    PubMed

    Knowlton, Wendy M; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo , we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1 . Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7 , and isp-1 , and the putative oxidoreductase rad-8 . In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1 . Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury.

  5. A Select Subset of Electron Transport Chain Genes Associated with Optic Atrophy Link Mitochondria to Axon Regeneration in Caenorhabditis elegans

    PubMed Central

    Knowlton, Wendy M.; Hubert, Thomas; Wu, Zilu; Chisholm, Andrew D.; Jin, Yishi

    2017-01-01

    The role of mitochondria within injured neurons is an area of active interest since these organelles are vital for the production of cellular energy in the form of ATP. Using mechanosensory neurons of the nematode Caenorhabditis elegans to test regeneration after neuronal injury in vivo, we surveyed genes related to mitochondrial function for effects on axon regrowth after laser axotomy. Genes involved in mitochondrial transport, calcium uptake, mitophagy, or fission and fusion were largely dispensable for axon regrowth, with the exception of eat-3/Opa1. Surprisingly, many genes encoding components of the electron transport chain were dispensable for regrowth, except for the iron-sulfur proteins gas-1, nduf-2.2, nduf-7, and isp-1, and the putative oxidoreductase rad-8. In these mutants, axonal development was essentially normal and axons responded normally to injury by forming regenerative growth cones, but were impaired in subsequent axon extension. Overexpression of nduf-2.2 or isp-1 was sufficient to enhance regrowth, suggesting that mitochondrial function is rate-limiting in axon regeneration. Moreover, loss of function in isp-1 reduced the enhanced regeneration caused by either a gain-of-function mutation in the calcium channel EGL-19 or overexpression of the MAP kinase DLK-1. While the cellular function of RAD-8 remains unclear, our genetic analyses place rad-8 in the same pathway as other electron transport genes in axon regeneration. Unexpectedly, rad-8 regrowth defects were suppressed by altered function in the ubiquinone biosynthesis gene clk-1. Furthermore, we found that inhibition of the mitochondrial unfolded protein response via deletion of atfs-1 suppressed the defective regrowth in nduf-2.2 mutants. Together, our data indicate that while axon regeneration is not significantly affected by general dysfunction of cellular respiration, it is sensitive to the proper functioning of a select subset of electron transport chain genes, or to the cellular adaptations used by neurons under conditions of injury. PMID:28539870

  6. Dissecting tumor metabolic heterogeneity: Telomerase and large cell size metabolically define a sub-population of stem-like, mitochondrial-rich, cancer cells

    PubMed Central

    Lamb, Rebecca; Ozsvari, Bela; Bonuccelli, Gloria; Smith, Duncan L.; Pestell, Richard G.; Martinez-Outschoorn, Ubaldo E.; Clarke, Robert B.; Sotgia, Federica; Lisanti, Michael P.

    2015-01-01

    Tumor cell metabolic heterogeneity is thought to contribute to tumor recurrence, distant metastasis and chemo-resistance in cancer patients, driving poor clinical outcome. To better understand tumor metabolic heterogeneity, here we used the MCF7 breast cancer line as a model system to metabolically fractionate a cancer cell population. First, MCF7 cells were stably transfected with an hTERT-promoter construct driving GFP expression, as a surrogate marker of telomerase transcriptional activity. To enrich for immortal stem-like cancer cells, MCF7 cells expressing the highest levels of GFP (top 5%) were then isolated by FACS analysis. Notably, hTERT-GFP(+) MCF7 cells were significantly more efficient at forming mammospheres (i.e., stem cell activity) and showed increased mitochondrial mass and mitochondrial functional activity, all relative to hTERT-GFP(−) cells. Unbiased proteomics analysis of hTERT-GFP(+) MCF7 cells directly demonstrated the over-expression of 33 key mitochondrial proteins, 17 glycolytic enzymes, 34 ribosome-related proteins and 17 EMT markers, consistent with an anabolic cancer stem-like phenotype. Interestingly, MT-CO2 (cytochrome c oxidase subunit 2; Complex IV) expression was increased by >20-fold. As MT-CO2 is encoded by mt-DNA, this finding is indicative of increased mitochondrial biogenesis in hTERT-GFP(+) MCF7 cells. Importantly, most of these candidate biomarkers were transcriptionally over-expressed in human breast cancer epithelial cells in vivo. Similar results were obtained using cell size (forward/side scatter) to fractionate MCF7 cells. Larger stem-like cells also showed increased hTERT-GFP levels, as well as increased mitochondrial mass and function. Thus, this simple and rapid approach for the enrichment of immortal anabolic stem-like cancer cells will allow us and others to develop new prognostic biomarkers and novel anti-cancer therapies, by specifically and selectively targeting this metabolic sub-population of aggressive cancer cells. Based on our proteomics and functional analysis, FDA-approved inhibitors of protein synthesis and/or mitochondrial biogenesis, may represent novel treatment options for targeting these anabolic stem-like cancer cells. PMID:26323205

  7. The Mitochondria-Targeted Antioxidant Mitoquinone Protects against Cold Storage Injury of Renal Tubular Cells and Rat Kidneys

    PubMed Central

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A. J.; Murphy, Michael P.

    2011-01-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ∼2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation. PMID:21159749

  8. The mitochondria-targeted antioxidant mitoquinone protects against cold storage injury of renal tubular cells and rat kidneys.

    PubMed

    Mitchell, Tanecia; Rotaru, Dumitru; Saba, Hamida; Smith, Robin A J; Murphy, Michael P; MacMillan-Crow, Lee Ann

    2011-03-01

    The majority of kidneys used for transplantation are obtained from deceased donors. These kidneys must undergo cold preservation/storage before transplantation to preserve tissue quality and allow time for recipient selection and transport. However, cold storage (CS) can result in tissue injury, kidney discardment, or long-term renal dysfunction after transplantation. We have previously determined mitochondrial superoxide and other downstream oxidants to be important signaling molecules that contribute to CS plus rewarming (RW) injury of rat renal proximal tubular cells. Thus, this study's purpose was to determine whether adding mitoquinone (MitoQ), a mitochondria-targeted antioxidant, to University of Wisconsin (UW) preservation solution could offer protection against CS injury. CS was initiated by placing renal cells or isolated rat kidneys in UW solution alone (4 h at 4°C) or UW solution containing MitoQ or its control compound, decyltriphenylphosphonium bromide (DecylTPP) (1 μM in vitro; 100 μM ex vivo). Oxidant production, mitochondrial function, cell viability, and alterations in renal morphology were assessed after CS exposure. CS induced a 2- to 3-fold increase in mitochondrial superoxide generation and tyrosine nitration, partial inactivation of mitochondrial complexes, and a significant increase in cell death and/or renal damage. MitoQ treatment decreased oxidant production ~2-fold, completely prevented mitochondrial dysfunction, and significantly improved cell viability and/or renal morphology, whereas DecylTPP treatment did not offer any protection. These findings implicate that MitoQ could potentially be of therapeutic use for reducing organ preservation damage and kidney discardment and/or possibly improving renal function after transplantation.

  9. Protective Effects of Myricetin on Acute Hypoxia-Induced Exercise Intolerance and Mitochondrial Impairments in Rats

    PubMed Central

    Zou, Dan; Liu, Peng; Chen, Ka; Xie, Qi; Liang, Xinyu; Bai, Qian; Zhou, Qicheng; Liu, Kai; Zhang, Ting; Zhu, Jundong; Mi, Mantian

    2015-01-01

    Purpose Exercise tolerance is impaired in hypoxia. The aim of this study was to evaluate the effects of myricetin, a dietary flavonoid compound widely found in fruits and vegetables, on acute hypoxia-induced exercise intolerance in vivo and in vitro. Methods Male rats were administered myricetin or vehicle for 7 days and subsequently spent 24 hours at a barometric pressure equivalent to 5000 m. Exercise capacity was then assessed through the run-to-fatigue procedure, and mitochondrial morphology in skeletal muscle cells was observed by transmission electron microscopy (TEM). The enzymatic activities of electron transfer complexes were analyzed using an enzyme-linked immuno-sorbent assay (ELISA). mtDNA was quantified by real-time-PCR. Mitochondrial membrane potential was measured by JC-1 staining. Protein expression was detected through western blotting, immunohistochemistry, and immunofluorescence. Results Myricetin supplementation significantly prevented the decline of run-to-fatigue time of rats in hypoxia, and attenuated acute hypoxia-induced mitochondrial impairment in skeletal muscle cells in vivo and in vitro by maintaining mitochondrial structure, mtDNA content, mitochondrial membrane potential, and activities of the respiratory chain complexes. Further studies showed that myricetin maintained mitochondrial biogenesis in skeletal muscle cells under hypoxic conditions by up-regulating the expressions of mitochondrial biogenesis-related regluators, in addition, AMP-activated protein kinase(AMPK) plays a crucial role in this process. Conclusions Myricetin may have important applications for improving physical performance under hypoxic environment, which may be attributed to the protective effect against mitochondrial impairment by maintaining mitochondrial biogenesis. PMID:25919288

  10. Twenty-seven Years of Cerebral Pyruvate Recycling.

    PubMed

    Cerdán, Sebastián

    2017-06-01

    Cerebral pyruvate recycling is a metabolic pathway deriving carbon skeletons and reducing equivalents from mitochondrial oxaloacetate and malate, to the synthesis of mitochondrial and cytosolic pyruvate, lactate and alanine. The pathway allows both, to provide the tricarboxylic acid cycle with pyruvate molecules produced from alternative substrates to glucose and, to generate reducing equivalents necessary for the operation of NADPH requiring processes. At the cellular level, pyruvate recycling involves the activity of malic enzyme, or the combined activities of phosphoenolpyruvate carboxykinase and pyruvate kinase, as well as of those transporters of the inner mitochondrial membrane exchanging the corresponding intermediates. Its cellular localization between the neuronal or astrocytic compartments of the in vivo brain has been controversial, with evidences favoring either a primarily neuronal or glial localizations, more recently accepted to occur in both environments. This review provides a brief history on the detection and characterization of the pathway, its relations with the early developments of cerebral high resolution 13 C NMR, and its potential neuroprotective functions under hypoglycemic conditions or ischemic redox stress.

  11. High fat, high sucrose diet causes cardiac mitochondrial dysfunction due in part to oxidative post-translational modification of mitochondrial complex II.

    PubMed

    Sverdlov, Aaron L; Elezaby, Aly; Behring, Jessica B; Bachschmid, Markus M; Luptak, Ivan; Tu, Vivian H; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Colucci, Wilson S

    2015-01-01

    Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease". Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Novel Cancer Therapeutics with Allosteric Modulation of the Mitochondrial C-Raf-DAPK Complex by Raf Inhibitor Combination Therapy.

    PubMed

    Tsai, Yi-Ta; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Chen, Yu-Chi; Sun, Guang-Huan; Hsiao, Pei-Wen; Huang, Shih-Ming; Lee, Hwei-Jen; Yu, Cheng-Ping; Ho, Jar-Yi; Lin, Hui-Kuan; Chen, Ming-Rong; Lin, Chung-Chih; Chang, Sun-Yran; Lin, Victor C; Yu, Dah-Shyong; Cha, Tai-Lung

    2015-09-01

    Mitochondria are the powerhouses of cells. Mitochondrial C-Raf is a potential cancer therapeutic target, as it regulates mitochondrial function and is localized to the mitochondria by its N-terminal domain. However, Raf inhibitor monotherapy can induce S338 phosphorylation of C-Raf (pC-Raf(S338)) and impede therapy. This study identified the interaction of C-Raf with S308 phosphorylated DAPK (pDAPK(S308)), which together became colocalized in the mitochondria to facilitate mitochondrial remodeling. Combined use of the Raf inhibitors sorafenib and GW5074 had synergistic anticancer effects in vitro and in vivo, but targeted mitochondrial function, rather than the canonical Raf signaling pathway. C-Raf depletion in knockout MEF(C-Raf-/-) or siRNA knockdown ACHN renal cancer cells abrogated the cytotoxicity of combination therapy. Crystal structure simulation showed that GW5074 bound to C-Raf and induced a C-Raf conformational change that enhanced sorafenib-binding affinity. In the presence of pDAPK(S308), this drug-target interaction compromised the mitochondrial targeting effect of the N-terminal domain of C-Raf, which induced two-hit damages to cancer cells. First, combination therapy facilitated pC-Raf(S338) and pDAPK(S308) translocation from mitochondria to cytoplasm, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation. Second, ROS facilitated PP2A-mediated dephosphorylation of pDAPK(S308) to DAPK. PP2A then dissociated from the C-Raf-DAPK complex and induced profound cancer cell death. Increased pDAPK(S308) modification was also observed in renal cancer tissues, which correlated with poor disease-free survival and poor overall survival in renal cancer patients. Besides mediating the anticancer effect, pDAPK(S308) may serve as a predictive biomarker for Raf inhibitors combination therapy, suggesting an ideal preclinical model that is worthy of clinical translation. ©2015 American Association for Cancer Research.

  13. Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance.

    PubMed

    Hegazy, Ahmed M; Yamada, Daisuke; Kobayashi, Masahiko; Kohno, Susumu; Ueno, Masaya; Ali, Mohamed A E; Ohta, Kumiko; Tadokoro, Yuko; Ino, Yasushi; Todo, Tomoki; Soga, Tomoyoshi; Takahashi, Chiaki; Hirao, Atsushi

    2016-10-07

    Although abnormal metabolic regulation is a critical determinant of cancer cell behavior, it is still unclear how an altered balance between ATP production and consumption contributes to malignancy. Here we show that disruption of this energy balance efficiently suppresses aggressive malignant gliomas driven by mammalian target of rapamycin complex 1 (mTORC1) hyperactivation. In a mouse glioma model, mTORC1 hyperactivation induced by conditional Tsc1 deletion increased numbers of glioma-initiating cells (GICs) in vitro and in vivo Metabolic analysis revealed that mTORC1 hyperactivation enhanced mitochondrial biogenesis, as evidenced by elevations in oxygen consumption rate and ATP production. Inhibition of mitochondrial ATP synthetase was more effective in repressing sphere formation by Tsc1-deficient glioma cells than that by Tsc1-competent glioma cells, indicating a crucial function for mitochondrial bioenergetic capacity in GIC expansion. To translate this observation into the development of novel therapeutics targeting malignant gliomas, we screened drug libraries for small molecule compounds showing greater efficacy in inhibiting the proliferation/survival of Tsc1-deficient cells compared with controls. We identified several compounds able to preferentially inhibit mitochondrial activity, dramatically reducing ATP levels and blocking glioma sphere formation. In human patient-derived glioma cells, nigericin, which reportedly suppresses cancer stem cell properties, induced AMPK phosphorylation that was associated with mTORC1 inactivation and induction of autophagy and led to a marked decrease in sphere formation with loss of GIC marker expression. Furthermore, malignant characteristics of human glioma cells were markedly suppressed by nigericin treatment in vivo Thus, targeting mTORC1-driven processes, particularly those involved in maintaining a cancer cell's energy balance, may be an effective therapeutic strategy for glioma patients. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Mutant Profilin Suppresses Mutant Actin-dependent Mitochondrial Phenotype in Saccharomyces cerevisiae*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Rubenstein, Peter A.

    2011-01-01

    In the Saccharomyces cerevisiae actin-profilin interface, Ala167 of the actin barbed end W-loop and His372 near the C terminus form a clamp around a profilin segment containing residue Arg81 and Tyr79. Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function. PMID:21956104

  15. Expression of the yeast NADH dehydrogenase Ndi1 in Drosophila confers increased lifespan independently of dietary restriction

    PubMed Central

    Sanz, Alberto; Soikkeli, Mikko; Portero-Otín, Manuel; Wilson, Angela; Kemppainen, Esko; McIlroy, George; Ellilä, Simo; Kemppainen, Kia K.; Tuomela, Tea; Lakanmaa, Matti; Kiviranta, Essi; Stefanatos, Rhoda; Dufour, Eric; Hutz, Bettina; Naudí, Alba; Jové, Mariona; Zeb, Akbar; Vartiainen, Suvi; Matsuno-Yagi, Akemi; Yagi, Takao; Rustin, Pierre; Pamplona, Reinald; Jacobs, Howard T.

    2010-01-01

    Mutations in mitochondrial oxidative phosphorylation complex I are associated with multiple pathologies, and complex I has been proposed as a crucial regulator of animal longevity. In yeast, the single-subunit NADH dehydrogenase Ndi1 serves as a non-proton-translocating alternative enzyme that replaces complex I, bringing about the reoxidation of intramitochondrial NADH. We have created transgenic strains of Drosophila that express yeast NDI1 ubiquitously. Mitochondrial extracts from NDI1-expressing flies displayed a rotenone-insensitive NADH dehydrogenase activity, and functionality of the enzyme in vivo was confirmed by the rescue of lethality resulting from RNAi knockdown of complex I. NDI1 expression increased median, mean, and maximum lifespan independently of dietary restriction, and with no change in sirtuin activity. NDI1 expression mitigated the aging associated decline in respiratory capacity and the accompanying increase in mitochondrial reactive oxygen species production, and resulted in decreased accumulation of markers of oxidative damage in aged flies. Our results support a central role of mitochondrial oxidative phosphorylation complex I in influencing longevity via oxidative stress, independently of pathways connected to nutrition and growth signaling. PMID:20435911

  16. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission

    PubMed Central

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-01-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. PMID:26119034

  17. The Ablation of Mitochondrial Protein Phosphatase Pgam5 Confers Resistance Against Metabolic Stress.

    PubMed

    Sekine, Shiori; Yao, Akari; Hattori, Kazuki; Sugawara, Sho; Naguro, Isao; Koike, Masato; Uchiyama, Yasuo; Takeda, Kohsuke; Ichijo, Hidenori

    2016-03-01

    Phosphoglycerate mutase family member 5 (PGAM5) is a mitochondrial protein phosphatase that has been reported to be involved in various stress responses from mitochondrial quality control to cell death. However, its roles in vivo are largely unknown. Here, we show that Pgam5-deficient mice are resistant to several metabolic insults. Under cold stress combined with fasting, Pgam5-deficient mice better maintained body temperature than wild-type mice and showed an extended survival rate. Serum triglycerides and lipid content in brown adipose tissue (BAT), a center of adaptive thermogenesis, were severely reduced in Pgam5-deficient mice. Moreover, although Pgam5 deficiency failed to maintain proper mitochondrial integrity in BAT, it reciprocally resulted in the dramatic induction of fibroblast growth factor 21 (FGF21) that activates various functions of BAT including thermogenesis. Thus, the enhancement of lipid metabolism and FGF21 may contribute to the cold resistance of Pgam5-deficient mice under fasting condition. Finally, we also found that Pgam5-deficient mice are resistant to high-fat-diet-induced obesity. Our study uncovered that PGAM5 is involved in the whole-body metabolism in response to stresses that impose metabolic challenges on mitochondria.

  18. The mitochondria-targeted antioxidant MitoQ extends lifespan and improves healthspan of a transgenic Caenorhabditis elegans model of Alzheimer disease.

    PubMed

    Ng, Li Fang; Gruber, Jan; Cheah, Irwin K; Goo, Chong Kit; Cheong, Wei Fun; Shui, Guanghou; Sit, Kim Ping; Wenk, Markus R; Halliwell, Barry

    2014-06-01

    β-Amyloid (Aβ)-induced toxicity and oxidative stress have been postulated to play critical roles in the pathogenic mechanism of Alzheimer disease (AD). We investigated the in vivo ability of a mitochondria-targeted antioxidant, MitoQ, to protect against Aβ-induced toxicity and oxidative stress in a Caenorhabditis elegans model overexpressing human Aβ. Impairment of electron transport chain (ETC) enzymatic activity and mitochondrial dysfunction are early features of AD. We show that MitoQ extends lifespan, delays Aβ-induced paralysis, ameliorates depletion of the mitochondrial lipid cardiolipin, and protects complexes IV and I of the ETC. Despite its protective effects on lifespan, healthspan, and ETC function, we find that MitoQ does not reduce DCFDA fluorescence, protein carbonyl levels or modulate steadystate ATP levels or oxygen consumption rate. Moreover, MitoQ does not attenuate mitochondrial DNA (mtDNA) oxidative damage. In agreement with its design, the protective effects of MitoQ appear to be targeted specifically to the mitochondrial membrane and our findings suggest that MitoQ may have therapeutic potential for Aβ- and oxidative stress-associated neurodegenerative disorders, particularly AD. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Triterpenic acids-enriched fraction from Cyclocarya paliurus attenuates non-alcoholic fatty liver disease via improving oxidative stress and mitochondrial dysfunction.

    PubMed

    Zhao, Meng-Ge; Sheng, Xue-Ping; Huang, Ya-Ping; Wang, Yi-Ting; Jiang, Cui-Hua; Zhang, Jian; Yin, Zhi-Qi

    2018-08-01

    The effects of triterpenic acids-enriched fraction from Cyclocarya paliurus (CPT) on nonalcoholic fatty liver disease (NAFLD) were investigated using in vivo and in vitro models. In high fat diet-induced Wister rats, CPT significantly increased superoxide dismutase (SOD) activity and glutathione/oxidized glutathione (GSH/GSSG) ratio, reduced malondialdehyde (MDA) and protein carbonyl (PCO) levels. Moreover, CPT restored mitochondrial membrane potential dysfunction, decreased cytochrome P450 enzyme 2E1 (CYP2E1) activity, improved nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-mediated antioxidant enzyme heme oxygenase1 (HO-1) expression. In free fatty acids-induced HepG2 cells, CPT dramatically decreased ROS content, increased mitochondrial NADH dehydrogenase (Complex I) and mitochondrial cytochrome C oxidase (Complex IV) levels. Furthermore, CPT could upregulate HO-1, quinine oxidoreductase 1 (NQO1) expression, and increase Nrf2 translocation from cytoplasm-to-nucleus. The results indicated CPT could protect mitochondria function and improve oxidative stress by activating Nrf2. Therefore, it can be inferred that CPT may be a potential agent against NAFLD. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Mitochondrial enzymes are protected from stress-induced aggregation by mitochondrial chaperones and the Pim1/LON protease

    PubMed Central

    Bender, Tom; Lewrenz, Ilka; Franken, Sebastian; Baitzel, Catherina; Voos, Wolfgang

    2011-01-01

    Proteins in a natural environment are constantly challenged by stress conditions, causing their destabilization, unfolding, and, ultimately, aggregation. Protein aggregation has been associated with a wide variety of pathological conditions, especially neurodegenerative disorders, stressing the importance of adequate cellular protein quality control measures to counteract aggregate formation. To secure protein homeostasis, mitochondria contain an elaborate protein quality control system, consisting of chaperones and ATP-dependent proteases. To determine the effects of protein aggregation on the functional integrity of mitochondria, we set out to identify aggregation-prone endogenous mitochondrial proteins. We could show that major metabolic pathways in mitochondria were affected by the aggregation of key enzyme components, which were largely inactivated after heat stress. Furthermore, treatment with elevated levels of reactive oxygen species strongly influenced the aggregation behavior, in particular in combination with elevated temperatures. Using specific chaperone mutant strains, we showed a protective effect of the mitochondrial Hsp70 and Hsp60 chaperone systems. Moreover, accumulation of aggregated polypeptides was strongly decreased by the AAA-protease Pim1/LON. We therefore propose that the proteolytic breakdown of aggregation-prone polypeptides represents a major protective strategy to prevent the in vivo formation of aggregates in mitochondria. PMID:21209324

  1. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice.

    PubMed

    Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2017-07-11

    Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism.

  2. Methyl jasmonate leads to necrosis and apoptosis in hepatocellular carcinoma cells via inhibition of glycolysis and represses tumor growth in mice

    PubMed Central

    Li, Jingjing; Chen, Kan; Wang, Fan; Dai, Weiqi; Li, Sainan; Feng, Jiao; Wu, Liwei; Liu, Tong; Xu, Shizan; Xia, Yujing; Lu, Jie; Zhou, Yingqun; Xu, Ling; Guo, Chuanyong

    2017-01-01

    Methyl jasmonate has recently been found to have anti-cancer activity. Methyl jasmonate detached hexokinase 2 from a voltage dependent anion channel causing a reduction in mitochondrial transmembrane potential that led to the release of cytochrome C and apoptosis inducing factor resulting in intrinsic apoptosis. Blocked adenosine triphosphate synthesis caused by mitochondrial injury hampered oxidative phosphorylation and led to cell necrosis. The results were applied to the in vivo treatment of nude mice with a satisfactory effect. Collectively, our results suggest that methyl jasmonate may be an adjuvant therapy for liver tumors due to its mechanism in cancer cells compared to that in normal cells: The major function is to inhibit glycolysis instead of changing aerobic metabolism. PMID:28498814

  3. Estrogen Receptor Alpha Expression in Podocytes Mediates Protection against Apoptosis In-Vitro and In-Vivo

    PubMed Central

    Kummer, Sebastian; Jeruschke, Stefanie; Wegerich, Lara Vanessa; Peters, Andrea; Lehmann, Petra; Seibt, Annette; Mueller, Friederike; Koleganova, Nadezda; Halbenz, Elisabeth; Schmitt, Claus Peter; Bettendorf, Markus; Mayatepek, Ertan; Gross-Weissmann, Marie-Luise; Oh, Jun

    2011-01-01

    Context/Objective Epidemiological studies have demonstrated that women have a significantly better prognosis in chronic renal diseases compared to men. This suggests critical influences of gender hormones on glomerular structure and function. We examined potential direct protective effects of estradiol on podocytes. Methods Expression of estrogen receptor alpha (ERα) was examined in podocytes in vitro and in vivo. Receptor localization was shown using Western blot of separated nuclear and cytoplasmatic protein fractions. Podocytes were treated with Puromycin aminonucleoside (PAN, apoptosis induction), estradiol, or both in combination. Apoptotic cells were detected with Hoechst nuclear staining and Annexin-FITC flow cytometry. To visualize mitochondrial membrane potential depolarization as an indicator for apoptosis, cells were stained with tetramethyl rhodamine methylester (TMRM). Estradiol-induced phosphorylation of ERK1/2 and p38 MAPK was examined by Western blot. Glomeruli of ERα knock-out mice and wild-type controls were analysed by histomorphometry and immunohistochemistry. Results ERα was consistently expressed in human and murine podocytes. Estradiol stimulated ERα protein expression, reduced PAN-induced apoptosis in vitro by 26.5±24.6% or 56.6±5.9% (flow cytometry or Hoechst-staining, respectively; both p<0.05), and restored PAN-induced mitochondrial membrane potential depolarization. Estradiol enhanced ERK1/2 phosphorylation. In ERα knockout mice, podocyte number was reduced compared to controls (female/male: 80/86 vs. 132/135 podocytes per glomerulus, p<0.05). Podocyte volume was enhanced in ERα knockout mice (female/male: 429/371 µm3 vs. 264/223 µm3 in controls, p<0.05). Tgfβ1 and collagen type IV expression were increased in knockout mice, indicating glomerular damage. Conclusions Podocytes express ERα, whose activation leads to a significant protection against experimentally induced apoptosis. Possible underlying mechanisms include stabilization of mitochondrial membrane potential and activation of MAPK signalling. Characteristic morphological changes indicating glomerulopathy in ERα knock-out mice support the in vivo relevance of the ERα for podocyte viability and function. Thus, our findings provide a novel model for the protective influence of female gender on chronic glomerular diseases. PMID:22096576

  4. Binding of FUN14 Domain Containing 1 With Inositol 1,4,5-Trisphosphate Receptor in Mitochondria-Associated Endoplasmic Reticulum Membranes Maintains Mitochondrial Dynamics and Function in Hearts in Vivo.

    PubMed

    Wu, Shengnan; Lu, Qiulun; Wang, Qilong; Ding, Ye; Ma, Zejun; Mao, Xiaoxiang; Huang, Kai; Xie, Zhonglin; Zou, Ming-Hui

    2017-12-05

    FUN14 domain containing 1 (FUNDC1) is a highly conserved outer mitochondrial membrane protein. The aim of this study is to examine whether FUNDC1 modulates the mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs), mitochondrial morphology, and function in cardiomyocytes and intact hearts. The impacts of FUNDC1 on MAMs formation and cardiac functions were studied in mouse neonatal cardiomyocytes, in mice with cardiomyocyte-specific Fundc1 gene knockout ( Fundc1 f/Y /Cre αMyHC+/- ), and in the cardiac tissues of the patients with heart failure. In mouse neonatal cardiomyocytes and intact hearts, FUNDC1 was localized in MAMs by binding to ER-resided inositol 1,4,5-trisphosphate type 2 receptor (IP 3 R2). Fundc1 ablation disrupted MAMs and reduced the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol, whereas overexpression of Fundc1 increased the levels of IP 3 R2 and Ca 2+ in both mitochondria and cytosol. Consistently, Fundc1 ablation increased Ca 2+ levels in ER, whereas Fundc1 overexpression lowered ER Ca 2+ levels. Further, Fundc1 ablation in cardiomyocytes elongated mitochondria and compromised mitochondrial functions. Mechanistically, we found that Fundc1 ablation-induced reduction of intracellular Ca 2+ levels suppressed mitochondrial fission 1 protein ( Fis1 ) expression and mitochondrial fission by reducing the binding of the cAMP response element binding protein (CREB) in the Fis1 promoter. Fundc1 f/Y /Cre αMyHC+/- mice but not their littermate control mice ( Fundc1 wt/Y /Cre αMyHC+/- ) exhibited cardiac dysfunction. The ligation of the left ventricle artery of Fundc1 f/Y /Cre αMyHC+/- mice caused more severe cardiac dysfunction than those in sham-treated Fundc1 f/Y /Cre αMyHC+/- mice. Finally, we found that the FUNDC1/MAMs/CREB/Fis1 signaling axis was significantly suppressed in patients with heart failure. We conclude that FUNDC1 binds to IP 3 R2 to modulate ER Ca 2+ release into mitochondria and cytosol. Further, a disruption of the FUNDC1 and IP 3 R2 interaction lowers the levels of Ca 2+ in mitochondria and cytosol, both of which instigate aberrant mitochondrial fission, mitochondrial dysfunction, cardiac dysfunction, and heart failure. © 2017 American Heart Association, Inc.

  5. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons.

    PubMed

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M; Kinoshita, Yoshito; Horner, Philip J; Morrison, Richard S

    2009-08-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant-negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons.

  6. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons

    PubMed Central

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M.; Kinoshita, Yoshito; Horner, Philip J.; Morrison, Richard S.

    2009-01-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons. PMID:19445933

  7. In the absence of phosphate shuttling, exercise reveals the in vivo importance of creatine-independent mitochondrial ADP transport.

    PubMed

    Miotto, Paula M; Holloway, Graham P

    2016-09-15

    The transport of cytosolic adenosine diphosphate (ADP) into the mitochondria is a major control point in metabolic homeostasis, as ADP concentrations directly affect glycolytic flux and oxidative phosphorylation rates within mitochondria. A large contributor to the efficiency of this process is thought to involve phosphocreatine (PCr)/Creatine (Cr) shuttling through mitochondrial creatine kinase (Mi-CK), whereas the biological importance of alterations in Cr-independent ADP transport during exercise remains unknown. Therefore, we utilized an Mi-CK knockout (KO) model to determine whether in vivo Cr-independent mechanisms are biologically important for sustaining energy homeostasis during exercise. Ablating Mi-CK did not alter exercise tolerance, as the time to volitional fatigue was similar between wild-type (WT) and KO mice at various exercise intensities. In addition, skeletal muscle metabolic profiles after exercise, including glycogen, PCr/Cr ratios, free ADP/adenosine monophosphate (AMP), and lactate, were similar between genotypes. While these data suggest that the absence of PCr/Cr shuttling is not detrimental to maintaining energy homeostasis during exercise, KO mice displayed a dramatic increase in Cr-independent mitochondrial ADP sensitivity after exercise. Specifically, whereas mitochondrial ADP sensitivity decreased with exercise in WT mice, in stark contrast, exercise increased mitochondrial Cr-independent ADP sensitivity in KO mice. As a result, the apparent ADP Km was 50% lower in KO mice after exercise, suggesting that in vivo activation of voltage-dependent anion channel (VDAC)/adenine nucleotide translocase (ANT) can support mitochondrial ADP transport. Altogether, we provide insight that Cr-independent ADP transport mechanisms are biologically important for regulating ADP sensitivity during exercise, while highlighting complex regulation and the plasticity of the VDAC/ANT axis to support adenosine triphosphate demand. © 2016 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  8. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS

    PubMed Central

    Gaude, Edoardo; Aksentijević, Dunja; Sundier, Stephanie Y.; Robb, Ellen L.; Logan, Angela; Nadtochiy, Sergiy M.; Ord, Emily N. J.; Smith, Anthony C.; Eyassu, Filmon; Shirley, Rachel; Hu, Chou-Hui; Dare, Anna J.; James, Andrew M.; Rogatti, Sebastian; Hartley, Richard C.; Eaton, Simon; Costa, Ana S.H.; Brookes, Paul S.; Davidson, Sean M.; Duchen, Michael R.; Saeb-Parsy, Kourosh; Shattock, Michael J.; Robinson, Alan J.; Work, Lorraine M.; Frezza, Christian; Krieg, Thomas; Murphy, Michael P.

    2014-01-01

    Ischaemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted and then restored, and underlies many disorders, notably heart attack and stroke. While reperfusion of ischaemic tissue is essential for survival, it also initiates oxidative damage, cell death, and aberrant immune responses through generation of mitochondrial reactive oxygen species (ROS)1-5. Although mitochondrial ROS production in IR is established, it has generally been considered a non-specific response to reperfusion1,3. Here, we developed a comparative in vivo metabolomic analysis and unexpectedly identified widely conserved metabolic pathways responsible for mitochondrial ROS production during IR. We showed that selective accumulation of the citric acid cycle (CAC) intermediate succinate is a universal metabolic signature of ischaemia in a range of tissues and is responsible for mitochondrial ROS production during reperfusion. Ischaemic succinate accumulation arises from reversal of succinate dehydrogenase (SDH), which in turn is driven by fumarate overflow from purine nucleotide breakdown and partial reversal of the malate/aspartate shuttle. Upon reperfusion, the accumulated succinate is rapidly re-oxidised by SDH, driving extensive ROS generation by reverse electron transport (RET) at mitochondrial complex I. Decreasing ischaemic succinate accumulation by pharmacological inhibition is sufficient to ameliorate in vivo IR injury in murine models of heart attack and stroke. Thus, we have identified a conserved metabolic response of tissues to ischaemia and reperfusion that unifies many hitherto unconnected aspects of IR injury. Furthermore, these findings reveal a novel pathway for metabolic control of ROS production in vivo, while demonstrating that inhibition of ischaemic succinate accumulation and its oxidation upon subsequent reperfusion is a potential therapeutic target to decrease IR injury in a range of pathologies. PMID:25383517

  9. Long-wavelength Low-intensity Photon Therapy (LLPT) for Traumatic Brain Injuries

    DTIC Science & Technology

    2010-09-08

    analysis . These estimates are based on the variability in previously published experiments. Design: For each in vivo model of TBI, rats will be...ATP, GSH, apoptotic indicators, mitochondrial function, and changes in the levels of NSE and S100B proteins will be examined. Analysis of ATP, GSH...or to be run with the sample size intended. In particular, the weight drop assays were limited to the analysis of GSH levels. The cortical contusion

  10. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo

    PubMed Central

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-01-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans. PMID:26567514

  11. Selective Mitochondrial Targeting Exerts Anxiolytic Effects In Vivo.

    PubMed

    Nussbaumer, Markus; Asara, John M; Teplytska, Larysa; Murphy, Michael P; Logan, Angela; Turck, Christoph W; Filiou, Michaela D

    2016-06-01

    Current treatment strategies for anxiety disorders are predominantly symptom-based. However, a third of anxiety patients remain unresponsive to anxiolytics highlighting the need for more effective, mechanism-based therapeutic approaches. We have previously compared high vs low anxiety mice and identified changes in mitochondrial pathways, including oxidative phosphorylation and oxidative stress. In this work, we show that selective pharmacological targeting of these mitochondrial pathways exerts anxiolytic effects in vivo. We treated high anxiety-related behavior (HAB) mice with MitoQ, an antioxidant that selectively targets mitochondria. MitoQ administration resulted in decreased anxiety-related behavior in HAB mice. This anxiolytic effect was specific for high anxiety as MitoQ treatment did not affect the anxiety phenotype of C57BL/6N and DBA/2J mouse strains. We furthermore investigated the molecular underpinnings of the MitoQ-driven anxiolytic effect and found that MitoQ treatment alters the brain metabolome and that the response to MitoQ treatment is characterized by distinct molecular signatures. These results indicate that a mechanism-driven approach based on selective mitochondrial targeting has the potential to attenuate the high anxiety phenotype in vivo, thus paving the way for translational implementation as long-term MitoQ administration is well-tolerated with no reported side effects in mice and humans.

  12. Mitochondrial Dysfunction Is Involved in the Toxic Activity of Boric Acid against Saprolegnia

    PubMed Central

    Ali, Shimaa E.; Thoen, Even; Evensen, Øystein; Wiik-Nielsen, Jannicke; Gamil, Amr A. A.; Skaar, Ida

    2014-01-01

    There has been a significant increase in the incidence of Saprolegnia infections over the past decades, especially after the banning of malachite green. Very often these infections are associated with high economic losses in salmonid farms and hatcheries. The use of boric acid to control the disease has been investigated recently both under in vitro and in vivo conditions, however its possible mode of action against fish pathogenic Saprolegnia is not known. In this study, we have explored the transformation in Saprolegnia spores/hyphae after exposure to boric acid (1 g/L) over a period 4–24 h post treatment. Using transmission electron microscopy (TEM), early changes in Saprolegnia spores were detected. Mitochondrial degeneration was the most obvious sign observed following 4 h treatment in about 20% of randomly selected spores. We also investigated the effect of the treatment on nuclear division, mitochondrial activity and function using confocal laser scanning microscopy (CLSM). Fluorescence microscopy was also used to test the effect of treatment on mitochondrial membrane potential and formation of reactive oxygen species. Additionally, the viability and proliferation of treated spores that correlated to mitochondrial enzymatic activity were tested using an MTS assay. All obtained data pointed towards changes in the mitochondrial structure, membrane potential and enzymatic activity following treatment. We have found that boric acid has no effect on the integrity of membranes of Saprolegnia spores at concentrations tested. It is therefore likely that mitochondrial dysfunction is involved in the toxic activity of boric acid against Saprolegnia spp. PMID:25354209

  13. Role of Pterocarpus santalinus against mitochondrial dysfunction and membrane lipid changes induced by ulcerogens in rat gastric mucosa.

    PubMed

    Narayan, Shoba; Devi, R S; Devi, C S Shyamala

    2007-11-20

    Free radicals produced by ulcerogenic agents affect the TCA cycle enzymes located in the outer membrane of the mitochondria. Upon induction with ulcerogens, peroxidation of membrane lipids bring about alterations in the mitochondrial enzyme activity. This indicates an increase in the permeability levels of the mitochondrial membrane. The ability of PSE to scavenge the reactive oxygen species results in restoration of activities of TCA cycle enzymes. NSAIDs interfere with the mitochondrial beta-oxidation of fatty acids in vitro and in vivo, resulting in uncoupling of mitochondrial oxidative phosphorylation process. This usually results in diminished cellular ATP production. The recovery of gastric mucosal barrier function through maintenance of energy metabolism results in maintenance of ATP levels, as observed in this study upon treatment with PSE. Membrane integrity altered by peroxidation is known to have a modified fatty acid composition, a disruption of permeability, a decrease in electrical resistance, and increase in flip-flopping between monolayers and inactivated cross-linked proteins. The severe depletion of arachidonic acid in ulcer induced groups was prevented upon treatment with PSE. The acid inhibitory property of the herbal extract enables the maintenance of GL activity upon treatment with PSE. The ability to prevent membrane peroxidation has been traced to the presence of active constituents in the PSE. In essence, PSE has been found to prevent mitochondrial dysfunction, provide mitochondrial cell integrity, through the maintenance of lipid bilayer by its ability to provide a hydrophobic character to the gastric mucosa, further indicating its ability to reverse the action of NSAIDs and mast cell degranulators in gastric mucosa.

  14. N-acetylcysteine and vitamin E rescue animal longevity and cellular oxidative stress in pre-clinical models of mitochondrial complex I disease.

    PubMed

    Polyak, Erzsebet; Ostrovsky, Julian; Peng, Min; Dingley, Stephen D; Tsukikawa, Mai; Kwon, Young Joon; McCormack, Shana E; Bennett, Michael; Xiao, Rui; Seiler, Christoph; Zhang, Zhe; Falk, Marni J

    2018-04-01

    Oxidative stress is a known contributing factor in mitochondrial respiratory chain (RC) disease pathogenesis. Yet, no efficient means exists to objectively evaluate the comparative therapeutic efficacy or toxicity of different antioxidant compounds empirically used in human RC disease. We postulated that pre-clinical comparative analysis of diverse antioxidant drugs having suggested utility in primary RC disease using animal and cellular models of RC dysfunction may improve understanding of their integrated effects and physiologic mechanisms, and enable prioritization of lead antioxidant molecules to pursue in human clinical trials. Here, lifespan effects of N-acetylcysteine (NAC), vitamin E, vitamin C, coenzyme Q10 (CoQ10), mitochondrial-targeted CoQ10 (MS010), lipoate, and orotate were evaluated as the primary outcome in a well-established, short-lived C. elegans gas-1(fc21) animal model of RC complex I disease. Healthspan effects were interrogated to assess potential reversal of their globally disrupted in vivo mitochondrial physiology, transcriptome profiles, and intermediary metabolic flux. NAC or vitamin E fully rescued, and coenzyme Q, lipoic acid, orotic acid, and vitamin C partially rescued gas-1(fc21) lifespan toward that of wild-type N2 Bristol worms. MS010 and CoQ10 largely reversed biochemical pathway expression changes in gas-1(fc21) worms. While nearly all drugs normalized the upregulated expression of the "cellular antioxidant pathway", they failed to rescue the mutant worms' increased in vivo mitochondrial oxidant burden. NAC and vitamin E therapeutic efficacy were validated in human fibroblast and/or zebrafish complex I disease models. Remarkably, rotenone-induced zebrafish brain death was preventable partially with NAC and fully with vitamin E. Overall, these pre-clinical model animal data demonstrate that several classical antioxidant drugs do yield significant benefit on viability and survival in primary mitochondrial disease, where their major therapeutic benefit appears to result from targeting global cellular, rather than intramitochondria-specific, oxidative stress. Clinical trials are needed to evaluate whether the two antioxidants, NAC and vitamin E, that show greatest efficacy in translational model animals significantly improve the survival, function, and feeling of human subjects with primary mitochondrial RC disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria.

    PubMed

    Santos, N A G; Catão, C S; Martins, N M; Curti, C; Bianchi, M L P; Santos, A C

    2007-07-01

    The clinical use of cisplatin (cis-diamminedichloroplatinum II) is highly limited by its nephrotoxicity. The precise mechanisms involved in cisplatin-induced mitochondrial dysfunction in kidney have not been completely clarified. Therefore, we investigated in vivo the effects of cisplatin on mitochondrial bioenergetics, redox state, and oxidative stress as well as the occurrence of cell death by apoptosis in cisplatin-treated rat kidney. Adult male Wistar rats weighing 200-220 g were divided into two groups. The control group (n = 8) was treated only with an intraperitoneal (i.p.) injection of saline solution (1 ml per 100 g body weight), and the cisplatin group (n = 8) was given a single injection of cisplatin (10 mg/kg body weight, i.p.). Animals were sacrificed 72 h after the treatment. The cisplatin group presented acute renal failure characterized by increased plasmatic creatinine and urea levels. Mitochondrial dysfunction was evidenced by the decline in membrane electrochemical potential and the substantial decrease in mitochondrial calcium uptake. The mitochondrial antioxidant defense system was depleted, as shown by decreased GSH and NADPH levels, GSH/GSSG ratio, and increased GSSG level. Moreover, cisplatin induced oxidative damage to mitochondrial lipids, including cardiolipin, and oxidation of mitochondrial proteins, as demonstrated by the significant decrease of sulfhydryl protein concentrations and increased levels of carbonylated proteins. Additionally, aconitase activity, which is essential for mitochondrial function, was also found to be lower in the cisplatin group. Renal cell death via apoptosis was evidenced by the increased caspase-3 activity. Results show the central role of mitochondria and the intensification of apoptosis in cisplatin-induced acute renal failure, highlighting a number of steps that might be targeted to minimize cisplatin-induced nephrotoxicity.

  16. Decreased hydrogen peroxide production and mitochondrial respiration in skeletal muscle but not cardiac muscle of the green-striped burrowing frog, a natural model of muscle disuse.

    PubMed

    Reilly, Beau D; Hickey, Anthony J R; Cramp, Rebecca L; Franklin, Craig E

    2014-04-01

    Suppression of disuse-induced muscle atrophy has been associated with altered mitochondrial reactive oxygen species (ROS) production in mammals. However, despite extended hindlimb immobility, aestivating animals exhibit little skeletal muscle atrophy compared with artificially immobilised mammalian models. Therefore, we studied mitochondrial respiration and ROS (H2O2) production in permeabilised muscle fibres of the green-striped burrowing frog, Cyclorana alboguttata. Mitochondrial respiration within saponin-permeabilised skeletal and cardiac muscle fibres was measured concurrently with ROS production using high-resolution respirometry coupled to custom-made fluorometers. After 4 months of aestivation, C. alboguttata had significantly depressed whole-body metabolism by ~70% relative to control (active) frogs, and mitochondrial respiration in saponin-permeabilised skeletal muscle fibres decreased by almost 50% both in the absence of ADP and during oxidative phosphorylation. Mitochondrial ROS production showed up to an 88% depression in aestivating skeletal muscle when malate, succinate and pyruvate were present at concentrations likely to reflect those in vivo. The percentage ROS released per O2 molecule consumed was also ~94% less at these concentrations, indicating an intrinsic difference in ROS production capacities during aestivation. We also examined mitochondrial respiration and ROS production in permeabilised cardiac muscle fibres and found that aestivating frogs maintained respiratory flux and ROS production at control levels. These results show that aestivating C. alboguttata has the capacity to independently regulate mitochondrial function in skeletal and cardiac muscles. Furthermore, this work indicates that ROS production can be suppressed in the disused skeletal muscle of aestivating frogs, which may in turn protect against potential oxidative damage and preserve skeletal muscle structure during aestivation and following arousal.

  17. Uncoupling protein 2 deficiency mimics the effects of hypoxia and endoplasmic reticulum stress on mitochondria and triggers pseudohypoxic pulmonary vascular remodeling and pulmonary hypertension.

    PubMed

    Dromparis, Peter; Paulin, Roxane; Sutendra, Gopinath; Qi, Andrew C; Bonnet, Sébastien; Michelakis, Evangelos D

    2013-07-05

    Mitochondrial signaling regulates both the acute and the chronic response of the pulmonary circulation to hypoxia, and suppressed mitochondrial glucose oxidation contributes to the apoptosis-resistance and proliferative diathesis in the vascular remodeling in pulmonary hypertension. Hypoxia directly inhibits glucose oxidation, whereas endoplasmic reticulum (ER)-stress can indirectly inhibit glucose oxidation by decreasing mitochondrial calcium (Ca²⁺m levels). Both hypoxia and ER stress promote proliferative pulmonary vascular remodeling. Uncoupling protein 2 (UCP2) has been shown to conduct calcium from the ER to mitochondria and suppress mitochondrial function. We hypothesized that UCP2 deficiency reduces Ca²⁺m in pulmonary artery smooth muscle cells (PASMCs), mimicking the effects of hypoxia and ER stress on mitochondria in vitro and in vivo, promoting normoxic hypoxia inducible factor-1α activation and pulmonary hypertension. Ucp2 knockout (KO)-PASMCs had lower mitochondrial calcium than Ucp2 wildtype (WT)-PASMCs at baseline and during histamine-stimulated ER-Ca²⁺ release. Normoxic Ucp2KO-PASMCs had mitochondrial hyperpolarization, lower Ca²⁺-sensitive mitochondrial enzyme activity, reduced levels of mitochondrial reactive oxygen species and Krebs' cycle intermediates, and increased resistance to apoptosis, mimicking the hypoxia-induced changes in Ucp2WT-PASMC. Ucp2KO mice spontaneously developed pulmonary vascular remodeling and pulmonary hypertension and exhibited a pseudohypoxic state with pulmonary vascular and systemic hypoxia inducible factor-1α activation (increased hematocrit), not exacerbated further by chronic hypoxia. This first description of the role of UCP2 in oxygen sensing and in pulmonary hypertension vascular remodeling may open a new window in biomarker and therapeutic strategies.

  18. The PB2 Subunit of the Influenza Virus RNA Polymerase Affects Virulence by Interacting with the Mitochondrial Antiviral Signaling Protein and Inhibiting Expression of Beta Interferon▿

    PubMed Central

    Graef, Katy M.; Vreede, Frank T.; Lau, Yuk-Fai; McCall, Amber W.; Carr, Simon M.; Subbarao, Kanta; Fodor, Ervin

    2010-01-01

    The PB2 subunit of the influenza virus RNA polymerase is a major virulence determinant of influenza viruses. However, the molecular mechanisms involved remain unknown. It was previously shown that the PB2 protein, in addition to its nuclear localization, also accumulates in the mitochondria. Here, we demonstrate that the PB2 protein interacts with the mitochondrial antiviral signaling protein, MAVS (also known as IPS-1, VISA, or Cardif), and inhibits MAVS-mediated beta interferon (IFN-β) expression. In addition, we show that PB2 proteins of influenza viruses differ in their abilities to associate with the mitochondria. In particular, the PB2 proteins of seasonal human influenza viruses localize to the mitochondria while PB2 proteins of avian influenza viruses are nonmitochondrial. This difference in localization is caused by a single amino acid polymorphism in the PB2 mitochondrial targeting signal. In order to address the functional significance of the mitochondrial localization of the PB2 protein in vivo, we have generated two recombinant human influenza viruses encoding either mitochondrial or nonmitochondrial PB2 proteins. We found that the difference in the mitochondrial localization of the PB2 proteins does not affect the growth of these viruses in cell culture. However, the virus encoding the nonmitochondrial PB2 protein induces higher levels of IFN-β and, in an animal model, is attenuated compared to the isogenic virus encoding a mitochondrial PB2. Overall this study implicates the PB2 protein in the regulation of host antiviral innate immune pathways and suggests an important role for the mitochondrial association of the PB2 protein in determining virulence. PMID:20538852

  19. Physical exercise in aging human skeletal muscle increases mitochondrial calcium uniporter expression levels and affects mitochondria dynamics.

    PubMed

    Zampieri, Sandra; Mammucari, Cristina; Romanello, Vanina; Barberi, Laura; Pietrangelo, Laura; Fusella, Aurora; Mosole, Simone; Gherardi, Gaia; Höfer, Christian; Löfler, Stefan; Sarabon, Nejc; Cvecka, Jan; Krenn, Matthias; Carraro, Ugo; Kern, Helmut; Protasi, Feliciano; Musarò, Antonio; Sandri, Marco; Rizzuto, Rosario

    2016-12-01

    Age-related sarcopenia is characterized by a progressive loss of muscle mass with decline in specific force, having dramatic consequences on mobility and quality of life in seniors. The etiology of sarcopenia is multifactorial and underlying mechanisms are currently not fully elucidated. Physical exercise is known to have beneficial effects on muscle trophism and force production. Alterations of mitochondrial Ca 2+ homeostasis regulated by mitochondrial calcium uniporter (MCU) have been recently shown to affect muscle trophism in vivo in mice. To understand the relevance of MCU-dependent mitochondrial Ca 2+ uptake in aging and to investigate the effect of physical exercise on MCU expression and mitochondria dynamics, we analyzed skeletal muscle biopsies from 70-year-old subjects 9 weeks trained with either neuromuscular electrical stimulation (ES) or leg press. Here, we demonstrate that improved muscle function and structure induced by both trainings are linked to increased protein levels of MCU Ultrastructural analyses by electron microscopy showed remodeling of mitochondrial apparatus in ES-trained muscles that is consistent with an adaptation to physical exercise, a response likely mediated by an increased expression of mitochondrial fusion protein OPA1. Altogether these results indicate that the ES-dependent physiological effects on skeletal muscle size and force are associated with changes in mitochondrial-related proteins involved in Ca 2+ homeostasis and mitochondrial shape. These original findings in aging human skeletal muscle confirm the data obtained in mice and propose MCU and mitochondria-related proteins as potential pharmacological targets to counteract age-related muscle loss. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    PubMed Central

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  1. Gallic acid prevents nonsteroidal anti-inflammatory drug-induced gastropathy in rat by blocking oxidative stress and apoptosis.

    PubMed

    Pal, Chinmay; Bindu, Samik; Dey, Sumanta; Alam, Athar; Goyal, Manish; Iqbal, Mohd Shameel; Maity, Pallab; Adhikari, Susanta S; Bandyopadhyay, Uday

    2010-07-15

    Nonsteroidal anti-inflammatory drug (NSAID)-induced oxidative stress plays a critical role in gastric mucosal cell apoptosis and gastropathy. NSAIDs induce the generation of hydroxyl radical ((*)OH) through the release of free iron, which plays an important role in developing gastropathy. Thus, molecules having both iron-chelating and antiapoptotic properties will be beneficial in preventing NSAID-induced gastropathy. Gallic acid (GA), a polyphenolic natural product, has the capacity to chelate free iron. Here, we report that GA significantly prevents, as well as heals, NSAID-induced gastropathy. In vivo, GA blocks NSAID-mediated mitochondrial oxidative stress by preventing mitochondrial protein carbonyl formation, lipid peroxidation, and thiol depletion. In vitro, GA scavenges free radicals and blocks (*)OH-mediated oxidative damage. GA also attenuates gastric mucosal cell apoptosis in vivo as well as in vitro in cultured gastric mucosal cells as evident from the TUNEL assay. GA prevents NSAID-induced activation of caspase-9, a marker for the mitochondrial pathway of apoptosis, and restores NSAID-mediated collapse of the mitochondrial transmembrane potential and dehydrogenase activity. Thus, the inhibition of mitochondrial oxidative stress by GA is associated with the inhibition of NSAID-induced mitochondrial dysfunction and activation of apoptosis in gastric mucosal cells, which are responsible for gastric injury or gastropathy. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Genetic identification of thiosulfate sulfurtransferase as an adipocyte-expressed anti-diabetic target in mice selected for leanness

    PubMed Central

    Morton, Nicholas M.; Beltram, Jasmina; Carter, Roderick N.; Michailidou, Zoi; Gorjanc, Gregor; Fadden, Clare Mc; Barrios-Llerena, Martin E.; Rodriguez-Cuenca, Sergio; Gibbins, Matthew T. G.; Aird, Rhona E.; Moreno-Navarrete, José Maria; Munger, Steven C.; Svenson, Karen L.; Gastaldello, Annalisa; Ramage, Lynne; Naredo, Gregorio; Zeyda, Maximilian; Wang, Zhao V.; Howie, Alexander F.; Saari, Aila; Sipilä, Petra; Stulnig, Thomas M.; Gudnason, Vilmundur; Kenyon, Christopher J.; Seckl, Jonathan R.; Walker, Brian R.; Webster, Scott P.; Dunbar, Donald R.; Churchill, Gary A.; Vidal-Puig, Antonio; Fernandez-Real, José Manuel; Emilsson, Valur; Horvat, Simon

    2017-01-01

    Discovery of genetic mechanisms for resistance to obesity and diabetes may illuminate new therapeutic strategies for the treatment of this global health challenge. We used the polygenic Lean mouse model, selected for low adiposity over 60 generations, to identify thiosulfate sulfurtransferase (Tst, Rhodanese) as a candidate obesity-resistance gene with selectively increased adipocyte expression. Elevated adipose Tst expression correlated with indices of metabolic health across diverse mouse strains. Transgenic overexpression of Tst in adipocytes protected mice from diet-induced obesity and insulin-resistant diabetes. Tst gene deficiency markedly exacerbated diabetes whereas pharmacological TST activation ameliorated diabetes in mice in vivo. Mechanistically, TST selectively augmented mitochondrial function combined with degradation of reactive oxygen species and sulfide. In humans, adipose TST mRNA correlated positively with adipose insulin sensitivity and negatively with fat mass. Genetic identification of Tst as a beneficial regulator of adipocyte mitochondrial function may have therapeutic significance for type 2 diabetes. PMID:27270587

  3. Superoxide dismutating molecules rescue the toxic effects of PINK1 and parkin loss.

    PubMed

    Biosa, Alice; Sanchez-Martinez, Alvaro; Filograna, Roberta; Terriente-Felix, Ana; Alam, Sarah M; Beltramini, Mariano; Bubacco, Luigi; Bisaglia, Marco; Whitworth, Alexander J

    2018-05-01

    Reactive oxygen species exert important functions in regulating several cellular signalling pathways. However, an excessive accumulation of reactive oxygen species can perturb the redox homeostasis leading to oxidative stress, a condition which has been associated to many neurodegenerative disorders. Accordingly, alterations in the redox state of cells and mitochondrial homeostasis are established hallmarks in both familial and sporadic Parkinson's disease cases. PINK1 and Parkin are two genes which account for a large fraction of autosomal recessive early-onset forms of Parkinson's disease and are now firmly associated to both mitochondria and redox homeostasis. In this study we explored the hypothesis that superoxide anions participate in the generation of the Parkin and PINK1 associated phenotypic effect by testing the capacity of endogenous and exogenous superoxide dismutating molecules to rescue the toxic effects induced by loss of PINK1 or Parkin, in both cellular and fly models. Our results demonstrate the positive effect of an increased level of superoxide dismutase proteins on the pathological phenotypes, both in vitro and in vivo. A more pronounced effectiveness for mitochondrial SOD2 activity points to the superoxide radicals generated in the mitochondrial matrix as the prime suspect in the definition of the observed phenotypes. Moreover, we also demonstrate the efficacy of a SOD-mimetic compound, M40403, to partially ameliorate PINK1/Parkin phenotypes in vitro and in vivo. These results support the further exploration of SOD-mimetic compounds as a therapeutic strategy against Parkinson's disease.

  4. Bioimaging of Fluorescence-Labeled Mitochondria in Subcutaneously Grafted Murine Melanoma Cells by the “In Vivo Cryotechnique”

    PubMed Central

    Lei, Ting; Huang, Zheng; Ohno, Nobuhiko; Wu, Bao; Sakoh, Takashi; Saitoh, Yurika; Saiki, Ikuo

    2014-01-01

    The microenvironments of organs with blood flow affect the metabolic profiles of cancer cells, which are influenced by mitochondrial functions. However, histopathological analyses of these aspects have been hampered by technical artifacts of conventional fixation and dehydration, including ischemia/anoxia. The purpose of this study was to combine the in vivo cryotechnique (IVCT) with fluorescent protein expression, and examine fluorescently labeled mitochondria in grafted melanoma tumors. The intensity of fluorescent proteins was maintained well in cultured B16-BL6 cells after cryotechniques followed by freeze-substitution (FS). In the subcutaneous tumors of mitochondria-targeted DsRed2 (mitoDsRed)-expressing cells, a higher number of cancer cells were found surrounding the widely opened blood vessels that contained numerous erythrocytes. Such blood vessels were immunostained positively for immunoglobulin M and ensheathed by basement membranes. MitoDsRed fluorescence was detected in scattering melanoma cells using the IVCT-FS method, and the total mitoDsRed volume in individual cancer cells was significantly decreased with the expression of markers of hypoxia. MitoDsRed was frequently distributed throughout the cytoplasm and in processes extending along basement membranes. IVCT combined with fluorescent protein expression is a useful tool to examine the behavior of fluorescently labeled cells and organelles. We propose that the mitochondrial volume is dynamically regulated in the hypoxic microenvironment and that mitochondrial distribution is modulated by cancer cell interactions with basement membranes. PMID:24394469

  5. Morusin induces paraptosis-like cell death through mitochondrial calcium overload and dysfunction in epithelial ovarian cancer.

    PubMed

    Xue, Jing; Li, Rui; Zhao, Xinrui; Ma, Congcong; Lv, Xin; Liu, Lidong; Liu, Peishu

    2018-03-01

    Epithelial ovarian cancer (EOC) is the leading cause of death among all gynecological cancers. Morusin, a prenylated flavonoid extracted from the root bark of Morus australis, has been reported to exhibit anti-tumor activity against various human cancers except EOC. In the present study, we explored the potential anti-cancer activity of morusin against EOC in vitro and in vivo and possible underlying mechanisms for the first time. We first found that morusin effectively inhibited EOC cell proliferation and survival in vitro and suppressed tumor growth in vivo. Then we observed that treatment of EOC cells with morusin resulted in paraptosis-like cell death, a novel mode of non-apoptotic programmed cell death that is characterized by extensive cytoplasmic vacuolation due to dilation of the endoplasmic reticulum (ER) and mitochondria and lack of apoptotic hallmarks. In addition, we discovered that morusin induced obvious increase in mitochondrial Ca 2+ levels, accumulation of ER stress markers, generation of reactive oxygen species (ROS), and loss of mitochondrial membrane potential (Δψm) in EOC cells. Furthermore, pretreatment with 4, 4'-diisothiocyanostilbene-2, 2'-disulfonic acid (DIDS), a chemical inhibitor of voltage-dependent anion channel (VDAC) on the outer mitochondrial membrane, effectively inhibited mitochondrial Ca 2+ influx, cytoplasmic vacuolation and cell death induced by morusin in EOC cells. Moreover, DIDS pretreatment also suppressed morusin-induced accumulation of ER stress markers, ROS production and depletion of Δψm. Consistently, tumor xenograft assays showed that co-treatment with DIDS partially reversed the inhibitory effects of morusin on tumor growth in vivo and inhibited the increased levels of ER stress markers induced by morusin in tumor tissues. Collectively, our results suggest that VDAC-mediated Ca 2+ influx into mitochondria and subsequent mitochondrial Ca 2+ overload contribute to mitochondrial swelling and dysfunction, leading to morusin-induced paraptosis-like cell death in EOC. This study may provide alternative therapeutic strategies for EOC exhibiting resistance to apoptosis. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Mitophagy-driven mitochondrial rejuvenation regulates stem cell fate

    PubMed Central

    Vazquez-Martin, Alejandro; Van den Haute, Chris; Cufí, Sílvia; Corominas-Faja, Bruna; Cuyàs, Elisabet; Lopez-Bonet, Eugeni; Rodriguez-Gallego, Esther; Fernández-Arroyo, Salvador; Joven, Jorge; Baekelandt, Veerle; Menendez, Javier A.

    2016-01-01

    Our understanding on how selective mitochondrial autophagy, or mitophagy, can sustain the archetypal properties of stem cells is incomplete. PTEN-induced putative kinase 1 (PINK1) plays a key role in the maintenance of mitochondrial morphology and function and in the selective degradation of damaged mitochondria by mitophagy. Here, using embryonic fibroblasts from PINK1 gene-knockout (KO) mice, we evaluated whether mitophagy is a causal mechanism for the control of cell-fate plasticity and maintenance of pluripotency. Loss of PINK1-dependent mitophagy was sufficient to dramatically decrease the speed and efficiency of induced pluripotent stem cell (iPSC) reprogramming. Mitophagy-deficient iPSC colonies, which were characterized by a mixture of mature and immature mitochondria, seemed unstable, with a strong tendency to spontaneously differentiate and form heterogeneous populations of cells. Although mitophagy-deficient iPSC colonies normally expressed pluripotent markers, functional monitoring of cellular bioenergetics revealed an attenuated glycolysis in mitophagy-deficient iPSC cells. Targeted metabolomics showed a notable alteration in numerous glycolysis- and TCA-related metabolites in mitophagy-deficient iPSC cells, including a significant decrease in the intracellular levels of α-ketoglutarate -a key suppressor of the differentiation path in stem cells. Mitophagy-deficient iPSC colonies exhibited a notably reduced teratoma-initiating capacity, but fully retained their pluripotency and multi-germ layer differentiation capacity in vivo. PINK1-dependent mitophagy pathway is an important mitochondrial switch that determines the efficiency and quality of somatic reprogramming. Mitophagy-driven mitochondrial rejuvenation might contribute to the ability of iPSCs to suppress differentiation by directing bioenergetic transition and metabolome remodeling traits. These findings provide new insights into how mitophagy might influence the stem cell decisions to retain pluripotency or differentiate in tissue regeneration and aging, tumor growth, and regenerative medicine. PMID:27295498

  7. Energy metabolism of cerebral mitochondria during aging, ischemia and post-ischemic recovery assessed by functional proteomics of enzymes.

    PubMed

    Villa, Roberto Federico; Gorini, Antonella; Ferrari, Federica; Hoyer, Siegfried

    2013-12-01

    Stroke is a leading cause of death and disability, but most of the therapeutic approaches failed in clinical trials. The energy metabolism alterations, due to marked ATP decline, are strongly related to stroke and, at present, their physiopathological roles are not fully understood. Thus, the aim of this study was to evaluate the effects of aging on ischemia-induced changes in energy mitochondrial transduction and the consequences on overall brain energy metabolism in an in vivo experimental model of complete cerebral ischemia of 15min duration and during post-ischemic recirculation after 1, 24, 48, 72 and 96h, in 1year "adult" and 2year-old "aged" rats. The maximum rate (Vmax) of citrate synthase, malate dehydrogenase, succinate dehydrogenase for Krebs' cycle; NADH-cytochrome c reductase and cytochrome oxidase for electron transfer chain (ETC) were assayed in non-synaptic "free" mitochondria and in two populations of intra-synaptic mitochondria, i.e., "light" and "heavy" mitochondria. The catalytic activities of enzymes markedly differ according to: (a) mitochondrial type (non-synaptic, intra-synaptic), (b) age, (c) acute effects of ischemia and (d) post-ischemic recirculation at different times. Enzyme activities changes are injury maturation events and strictly reflect the bioenergetic state of the tissue in each specific experimental condition respect to the energy demand, as shown by the comparative evaluation of the energy-linked metabolites and substrates content. Remarkably, recovery of mitochondrial function was more difficult for intra-synaptic mitochondria in "aged" rats, but enzyme activities of energy metabolism tended to normalize in all mitochondrial populations after 96h of recirculation. This observation is relevant for Therapy, indicating that mitochondrial enzymes may be important metabolic factors for the responsiveness of ischemic penumbra towards the restore of cerebral functions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Imaging of oxygen and hypoxia in cell and tissue samples.

    PubMed

    Papkovsky, Dmitri B; Dmitriev, Ruslan I

    2018-05-14

    Molecular oxygen (O 2 ) is a key player in cell mitochondrial function, redox balance and oxidative stress, normal tissue function and many common disease states. Various chemical, physical and biological methods have been proposed for measurement, real-time monitoring and imaging of O 2 concentration, state of decreased O 2 (hypoxia) and related parameters in cells and tissue. Here, we review the established and emerging optical microscopy techniques allowing to visualize O 2 levels in cells and tissue samples, mostly under in vitro and ex vivo, but also under in vivo settings. Particular examples include fluorescent hypoxia stains, fluorescent protein reporter systems, phosphorescent probes and nanosensors of different types. These techniques allow high-resolution mapping of O 2 gradients in live or post-mortem tissue, in 2D or 3D, qualitatively or quantitatively. They enable control and monitoring of oxygenation conditions and their correlation with other biomarkers of cell and tissue function. Comparison of these techniques and corresponding imaging setups, their analytical capabilities and typical applications are given.

  9. Molecular Strategies for Targeting Antioxidants to Mitochondria: Therapeutic Implications

    PubMed Central

    2015-01-01

    Abstract Mitochondrial function and specifically its implication in cellular redox/oxidative balance is fundamental in controlling the life and death of cells, and has been implicated in a wide range of human pathologies. In this context, mitochondrial therapeutics, particularly those involving mitochondria-targeted antioxidants, have attracted increasing interest as potentially effective therapies for several human diseases. For the past 10 years, great progress has been made in the development and functional testing of molecules that specifically target mitochondria, and there has been special focus on compounds with antioxidant properties. In this review, we will discuss several such strategies, including molecules conjugated with lipophilic cations (e.g., triphenylphosphonium) or rhodamine, conjugates of plant alkaloids, amino-acid- and peptide-based compounds, and liposomes. This area has several major challenges that need to be confronted. Apart from antioxidants and other redox active molecules, current research aims at developing compounds that are capable of modulating other mitochondria-controlled processes, such as apoptosis and autophagy. Multiple chemically different molecular strategies have been developed as delivery tools that offer broad opportunities for mitochondrial manipulation. Additional studies, and particularly in vivo approaches under physiologically relevant conditions, are necessary to confirm the clinical usefulness of these molecules. Antioxid. Redox Signal. 22, 686–729. PMID:25546574

  10. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise.

    PubMed

    Goncalves, Renata L S; Quinlan, Casey L; Perevoshchikova, Irina V; Hey-Mogensen, Martin; Brand, Martin D

    2015-01-02

    The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Sites of Superoxide and Hydrogen Peroxide Production by Muscle Mitochondria Assessed ex Vivo under Conditions Mimicking Rest and Exercise*

    PubMed Central

    Goncalves, Renata L. S.; Quinlan, Casey L.; Perevoshchikova, Irina V.; Hey-Mogensen, Martin; Brand, Martin D.

    2015-01-01

    The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo. PMID:25389297

  12. MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and non-invasive magnetic resonance spectroscopy

    PubMed Central

    Beloueche-Babari, Mounia; Wantuch, Slawomir; Casals Galobart, Teresa; Koniordou, Markella; Parkes, Harold G; Arunan, Vaitha; Chung, Yuen-Li; Eykyn, Thomas R; Smith, Paul D; Leach, Martin O

    2017-01-01

    Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo. Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by co-administration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. PMID:28923861

  13. From NGS assembly challenges to instability of fungal mitochondrial genomes: A case study in genome complexity.

    PubMed

    Misas, Elizabeth; Muñoz, José Fernando; Gallo, Juan Esteban; McEwen, Juan Guillermo; Clay, Oliver Keatinge

    2016-04-01

    The presence of repetitive or non-unique DNA persisting over sizable regions of a eukaryotic genome can hinder the genome's successful de novo assembly from short reads: ambiguities in assigning genome locations to the non-unique subsequences can result in premature termination of contigs and thus overfragmented assemblies. Fungal mitochondrial (mtDNA) genomes are compact (typically less than 100 kb), yet often contain short non-unique sequences that can be shown to impede their successful de novo assembly in silico. Such repeats can also confuse processes in the cell in vivo. A well-studied example is ectopic (out-of-register, illegitimate) recombination associated with repeat pairs, which can lead to deletion of functionally important genes that are located between the repeats. Repeats that remain conserved over micro- or macroevolutionary timescales despite such risks may indicate functionally or structurally (e.g., for replication) important regions. This principle could form the basis of a mining strategy for accelerating discovery of function in genome sequences. We present here our screening of a sample of 11 fully sequenced fungal mitochondrial genomes by observing where exact k-mer repeats occurred several times; initial analyses motivated us to focus on 17-mers occurring more than three times. Based on the diverse repeats we observe, we propose that such screening may serve as an efficient expedient for gaining a rapid but representative first insight into the repeat landscapes of sparsely characterized mitochondrial chromosomes. Our matching of the flagged repeats to previously reported regions of interest supports the idea that systems of persisting, non-trivial repeats in genomes can often highlight features meriting further attention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Omega-3 fatty acids in neurodegenerative diseases: focus on mitochondria.

    PubMed

    Eckert, Gunter P; Lipka, Uta; Muller, Walter E

    2013-01-01

    Mitochondrial dysfunction represents a common early pathological event in brain aging and in neurodegenerative diseases, e.g., in Alzheimer's (AD), Parkinson's (PD), and Huntington's disease (HD), as well as in ischemic stroke. In vivo and ex vivo experiments using animal models of aging and AD, PD, and HD mainly showed improvement of mitochondrial function after treatment with polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA). Thereby, PUFA are particular beneficial in animals treated with mitochondria targeting toxins. However, DHA showed adverse effects in a transgenic PD mouse model and it is not clear if a diet high or low in PUFA might provide neuroprotective effects in PD. Post-treatment with PUFA revealed conflicting results in ischemic animal models, but intravenous administered DHA provided neuroprotective efficacy after acute occlusion of the middle cerebral artery. In summary, the majority of preclinical data indicate beneficial effects of n-3 PUFA in neurodegenerative diseases, whereas most controlled clinical trials did not meet the expectations. Because of the high half-life of DHA in the human brain clinical studies may have to be initiated much earlier and have to last much longer to be more efficacious. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Long-Term Oral Administration of Theaphenon-E Improves Cardiomyocyte Mechanics and Calcium Dynamics by Affecting Phospholamban Phosphorylation and ATP Production.

    PubMed

    Bocchi, Leonardo; Savi, Monia; Naponelli, Valeria; Vilella, Rocchina; Sgarbi, Gianluca; Baracca, Alessandra; Solaini, Giancarlo; Bettuzzi, Saverio; Rizzi, Federica; Stilli, Donatella

    2018-06-15

    Dietary polyphenols from green tea have been shown to possess cardio-protective activities in different experimental models of heart diseases and age-related ventricular dysfunction. The present study was aimed at evaluating whether long term in vivo administration of green tea extracts (GTE), can exert positive effects on the normal heart, with focus on the underlying mechanisms. The study population consisted of 20 male adult Wistar rats. Ten animals were given 40 mL/day tap water solution of GTE (concentration 0.3%) for 4 weeks (GTE group). The same volume of water was administered to the 10 remaining control rats (CTRL). Then, in vivo and ex vivo measurements of cardiac function were performed in the same animal, at the organ (hemodynamics) and cellular (cardiomyocyte mechanical properties and intracellular calcium dynamics) levels. On cardiomyocytes and myocardial tissue samples collected from the same in vivo studied animals, we evaluated: (1) the intracellular content of ATP, (2) the endogenous mitochondrial respiration, (3) the expression levels of the Sarcoplasmic Reticulum Ca2+-dependent ATPase 2a (SERCA2), the Phospholamban (PLB) and the phosphorylated form of PLB, the L-type Ca2+ channel, the Na+-Ca2+ exchanger, and the ryanodine receptor 2. GTE cardiomyocytes exhibited a hyperdynamic contractility compared with CTRL (the rate of shortening and re-lengthening, the fraction of shortening, the amplitude of calcium transient, and the rate of cytosolic calcium removal were significantly increased). A faster isovolumic relaxation was also observed at the organ level. Consistent with functional data, we measured a significant increase in the intracellular ATP content supported by enhanced endogenous mitochondrial respiration in GTE cardiomyocytes, as well as higher values of the ratios phosphorylated-PLB/PLB and SERCA2/PLB. Long-term in vivo administration of GTE improves cell mechanical properties and intracellular calcium dynamics in normal cardiomyocytes, by increasing energy availability and removing the inhibitory effect of PLB on SERCA2. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function.

    PubMed

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J; He, Wei; Voss, Oliver H; Gonzalez-Mejia, M Elba; Guttridge, Denis C; Grotewold, Erich; Doseff, Andrea I

    2016-03-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors' accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo.

  17. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  18. Ecstasy produces left ventricular dysfunction and oxidative stress in rats

    PubMed Central

    Shenouda, Sylvia K.; Lord, Kevin C.; McIlwain, Elizabeth; Lucchesi, Pamela A.; Varner, Kurt J.

    2008-01-01

    Aims Our aim was to determine whether the repeated, binge administration of 3,4-methylenedioxymethamphetamine (ecstasy; MDMA) produces structural and/or functional changes in the myocardium that are associated with oxidative stress. Methods and results Echocardiography and pressure–volume conductance catheters were used to assess left ventricular (LV) structure and function in rats subjected to four ecstasy binges (9 mg/kg i.v. for 4 days, separated by a 10 day drug-free period). Hearts from treated and control rats were used for either biochemical and proteomic analysis or the isolation of adult LV myocytes. After the fourth binge, treated hearts showed eccentric LV dilation and diastolic dysfunction. Systolic function was not altered in vivo; however, the magnitude of the contractile responses to electrical stimulation was significantly smaller in myocytes from rats treated in vivo with ecstasy compared with myocytes from control rats. The magnitude of the peak increase in intracellular calcium (measured by Fura-2) was also significantly smaller in myocytes from ecstasy-treated vs. control rats. The relaxation kinetics of the intracellular calcium transients were significantly longer in myocytes from ecstasy-treated rats. Ecstasy significantly increased nitrotyrosine content in the left ventricle. Proteomic analysis revealed increased nitration of contractile proteins (troponin-T, tropomyosin alpha-1 chain, myosin light polypeptide, and myosin regulatory light chain), mitochondrial proteins (Ub-cytochrome-c reductase and ATP synthase), and sarcoplasmic reticulum calcium ATPase. Conclusion The repeated binge administration of ecstasy produces eccentric LV dilation and dysfunction that is accompanied by oxidative stress. These functional responses may result from the redox modification of proteins involved in excitation-contraction coupling and/or mitochondrial energy production. Together, these results indicate that ecstasy has the potential to produce serious cardiac toxicity and ventricular dysfunction. PMID:18495670

  19. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration

    PubMed Central

    Valenzuela, Rita; Costa-Besada, Maria A; Iglesias-Gonzalez, Javier; Perez-Costas, Emma; Villar-Cheda, Begoña; Garrido-Gil, Pablo; Melendez-Ferro, Miguel; Soto-Otero, Ramon; Lanciego, Jose L; Henrion, Daniel; Franco, Rafael; Labandeira-Garcia, Jose L

    2016-01-01

    The renin–angiotensin system (RAS) was initially considered as a circulating humoral system controlling blood pressure, being kidney the key control organ. In addition to the ‘classical' humoral RAS, a second level in RAS, local or tissular RAS, has been identified in a variety of tissues, in which local RAS play a key role in degenerative and aging-related diseases. The local brain RAS plays a major role in brain function and neurodegeneration. It is normally assumed that the effects are mediated by the cell-surface-specific G-protein-coupled angiotensin type 1 and 2 receptors (AT1 and AT2). A combination of in vivo (rats, wild-type mice and knockout mice) and in vitro (primary mesencephalic cultures, dopaminergic neuron cell line cultures) experimental approaches (confocal microscopy, electron microscopy, laser capture microdissection, transfection of fluorescent-tagged receptors, treatments with fluorescent angiotensin, western blot, polymerase chain reaction, HPLC, mitochondrial respirometry and other functional assays) were used in the present study. We report the discovery of AT1 and AT2 receptors in brain mitochondria, particularly mitochondria of dopaminergic neurons. Activation of AT1 receptors in mitochondria regulates superoxide production, via Nox4, and increases respiration. Mitochondrial AT2 receptors are much more abundant and increase after treatment of cells with oxidative stress inducers, and produce, via nitric oxide, a decrease in mitochondrial respiration. Mitochondria from the nigral region of aged rats displayed altered expression of AT1 and AT2 receptors. AT2-mediated regulation of mitochondrial respiration represents an unrecognized primary line of defence against oxidative stress, which may be particularly important in neurons with increased levels of oxidative stress such as dopaminergic neurons. Altered expression of AT1 and AT2 receptors with aging may induce mitochondrial dysfunction, the main risk factor for neurodegeneration. PMID:27763643

  20. Ethanol Influences on Bax Translocation, Mitochondrial Membrane Potential, and Reactive Oxygen Species Generation are Modulated by Vitamin E and Brain-Derived Neurotrophic Factor

    PubMed Central

    Heaton, Marieta Barrow; Paiva, Michael; Siler-Marsiglio, Kendra

    2011-01-01

    Background This study investigated ethanol influences on intracellular events which predispose developing neurons toward apoptosis, and the capacity of the antioxidant α-tocopherol (vitamin E) and the neurotrophin brain-derived neurotrophic factor (BDNF) to modulate these effects. Assessments were made of the following: (1) ethanol-induced translocation of the pro-apoptotic Bax protein to the mitochondrial membrane, a key upstream event in the initiation of apoptotic cell death; (2) disruption of the mitochondrial membrane potential (MMP) as a result of ethanol exposure, an important process in triggering the apoptotic cascade; and (3) generation of damaging reactive oxygen species (ROS) as a function of ethanol exposure. Methods These interactions were investigated in cultured postnatal day 8 neonatal rat cerebellar granule cells, a population vulnerable to developmental ethanol exposure in vivo and in vitro. Bax mitochondrial translocation was analyzed via subcellular fractionation followed by Western blot, and mitochondrial membrane integrity was determined using the lipophilic dye, JC-1, which exhibits potential-dependent accumulation in the mitochondrial membrane as a function of the MMP. Results Brief ethanol exposure in these preparations precipitated Bax translocation, but both vitamin E and BDNF reduced this effect to control levels. Ethanol treatment also resulted in a disturbance of the MMP, and this effect was blunted by the antioxidant and the neurotrophin. ROS generation was enhanced by a short ethanol exposure in these cells, but the production of these harmful free radicals was diminished to control levels by co-treatment with either vitamin E or BDNF. Conclusions These results indicate that both antioxidants and neurotrophic factors have the potential to ameliorate ethanol neurotoxicity, and suggest possible interventions which could be implemented in preventing or lessening the severity of the damaging effects of ethanol in the developing central nervous system seen in the fetal alcohol syndrome (FAS). PMID:21332533

  1. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration.

    PubMed

    Bernard-Marissal, Nathalie; Médard, Jean-Jacques; Azzedine, Hamid; Chrast, Roman

    2015-04-01

    Mutations in Sigma 1 receptor (SIGMAR1) have been previously identified in patients with amyotrophic lateral sclerosis and disruption of Sigmar1 in mouse leads to locomotor deficits. However, cellular mechanisms underlying motor phenotypes in human and mouse with disturbed SIGMAR1 function have not been described so far. Here we used a combination of in vivo and in vitro approaches to investigate the role of SIGMAR1 in motor neuron biology. Characterization of Sigmar1(-/-) mice revealed that affected animals display locomotor deficits associated with muscle weakness, axonal degeneration and motor neuron loss. Using primary motor neuron cultures, we observed that pharmacological or genetic inactivation of SIGMAR1 led to motor neuron axonal degeneration followed by cell death. Disruption of SIGMAR1 function in motor neurons disturbed endoplasmic reticulum-mitochondria contacts, affected intracellular calcium signalling and was accompanied by activation of endoplasmic reticulum stress and defects in mitochondrial dynamics and transport. These defects were not observed in cultured sensory neurons, highlighting the exacerbated sensitivity of motor neurons to SIGMAR1 function. Interestingly, the inhibition of mitochondrial fission was sufficient to induce mitochondria axonal transport defects as well as axonal degeneration similar to the changes observed after SIGMAR1 inactivation or loss. Intracellular calcium scavenging and endoplasmic reticulum stress inhibition were able to restore mitochondrial function and consequently prevent motor neuron degeneration. These results uncover the cellular mechanisms underlying motor neuron degeneration mediated by loss of SIGMAR1 function and provide therapeutically relevant insight into motor neuronal diseases. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Diagnostic evaluation of oxidoreductive capability of sperm mitochondria.

    PubMed

    Piasecka, M; Gaczarzewicz, D; Kurzawa, R; Laszczyńska, M; Kram, A

    2004-01-01

    In the present paper, morphological and functional features of human sperm midpiece, contributing to the assessment of sperm fertility potential, have been described. The NADH-dependent NBT screening assay was used to identify and visualise: 1/ morphological defects of sperm midpiece, 2/ immature sperm forms with extensive cytoplasmic retention, reflecting developmental failure in spermatogenic remodelling process, 3/ cytoplasmic sperm conglomerates, related to apoptotic bodies and 4/ sperm NADH-dependent oxidoreductase system at the mitochondrial level, related to the reaction intensity. The used assay is an adequate marker of sperm mitochondrial activity and sperm maturity. It can also help discover sperm defects that result in asthenozoospermia and can be used as an additional indicator in the evaluation of the sperm midpiece, as well as in routine morphological examination of spermatozoa, having a considerable predictive value for in vivo and in vitro fertilization.

  3. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    PubMed Central

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  4. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria.

    PubMed

    Popov-Celeketić, Dusan; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2008-05-21

    The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments.

  5. Active remodelling of the TIM23 complex during translocation of preproteins into mitochondria

    PubMed Central

    Popov-Čeleketić, Dus̆an; Mapa, Koyeli; Neupert, Walter; Mokranjac, Dejana

    2008-01-01

    The TIM23 (translocase of the mitochondrial inner membrane) complex mediates translocation of preproteins across and their insertion into the mitochondrial inner membrane. How the translocase mediates sorting of preproteins into the two different subcompartments is poorly understood. In particular, it is not clear whether association of two operationally defined parts of the translocase, the membrane-integrated part and the import motor, depends on the activity state of the translocase. We established conditions to in vivo trap the TIM23 complex in different translocation modes. Membrane-integrated part of the complex and import motor were always found in one complex irrespective of whether an arrested preprotein was present or not. Instead, we detected different conformations of the complex in response to the presence and, importantly, the type of preprotein being translocated. Two non-essential subunits of the complex, Tim21 and Pam17, modulate its activity in an antagonistic manner. Our data demonstrate that the TIM23 complex acts as a single structural and functional entity that is actively remodelled to sort preproteins into different mitochondrial subcompartments. PMID:18418384

  6. Variant forms of mitochondrial translation products in yeast: evidence for location of determinants on mitochondrial DNA.

    PubMed

    Douglas, M G; Butow, R A

    1976-04-01

    Products of mitochondrial protein synthesis in yeast have been labeled in vivo with 35SO42-. More than 20 polypeptide species fulfilling the criteria of mitochondrial translation products have been detected by analysis on sodium dodecyl sulfate-exponential polyacrylamide slab gels. A comparison of mitochondrial translation products in two wild-type strains has revealed variant forms of some polypeptide species which show genetic behavior consistent with the location of their structural genes on mtDNA. Our results demonstrate the feasibility of performing genetic analysis on putative gene products of mtDNA in wild-type yeast by direct examination of the segregation and recombination behavior of specific polypeptide species.

  7. Metformin Reduces Hepatic Expression of SIRT3, the Mitochondrial Deacetylase Controlling Energy Metabolism

    PubMed Central

    Buler, Marcin; Aatsinki, Sanna-Mari; Izzi, Valerio; Hakkola, Jukka

    2012-01-01

    Metformin inhibits ATP production in mitochondria and this may be involved in the anti-hyperglycemic effects of the drug. Sirtuin 3 (SIRT3) is a mitochondrial protein deacetylase that regulates the function of the electron transport chain and maintains basal ATP yield. We hypothesized that metformin treatment could diminish mitochondrial ATP production through downregulation of SIRT3 expression. Glucagon and cAMP induced SIRT3 mRNA in mouse primary hepatocytes. Metformin prevented SIRT3 induction by glucagon. Moreover, metformin downregulated constitutive expression of SIRT3 in primary hepatocytes and in the liver in vivo. Estrogen related receptor alpha (ERRα) mediates regulation of Sirt3 gene by peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). ERRα mRNA expression was regulated in a similar manner as SIRT3 mRNA by glucagon, cAMP and metformin. However, a higher metformin concentration was required for downregulation of ERRα than SIRT3. ERRα siRNA attenuated PGC-1α mediated induction of SIRT3, but did not affect constitutive expression. Overexpression of the constitutively active form of AMP-activated protein kinase (AMPK) induced SIRT3 mRNA, indicating that the SIRT3 downregulation by metformin is not mediated by AMPK. Metformin reduced the hepatocyte ATP level. This effect was partially counteracted by SIRT3 overexpression. Furthermore, metformin decreased mitochondrial SIRT3 protein levels and this was associated with enhanced acetylation of several mitochondrial proteins. However, metformin increased mitochondrial mass in hepatocytes. Altogether, our results indicate that metformin attenuates mitochondrial expression of SIRT3 and suggest that this mechanism is involved in regulation of energy metabolism by metformin in the liver and may contribute to the therapeutic action of metformin. PMID:23166782

  8. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  9. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    PubMed

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial biogenesis. Copyright © 2015 the American Physiological Society.

  10. KM-34, a Novel Antioxidant Compound, Protects against 6-Hydroxydopamine-Induced Mitochondrial Damage and Neurotoxicity.

    PubMed

    Fonseca-Fonseca, Luis Arturo; Nuñez-Figueredo, Yanier; Sánchez, Jeney Ramírez; Guerra, Maylin Wong; Ochoa-Rodríguez, Estael; Verdecia-Reyes, Yamila; Hernádez, René Delgado; Menezes-Filho, Noelio J; Costa, Teresa Cristina Silva; de Santana, Wagno Alcântara; Oliveira, Joana L; Segura-Aguilar, Juan; da Silva, Victor Diogenes Amaral; Costa, Silva Lima

    2018-01-02

    The etiology of Parkinson's disease is not completely understood and is believed to be multifactorial. Neuronal disorders associated to oxidative stress and mitochondrial dysfunction are widely considered major consequences. The aim of this study was to investigate the effect of the synthetic arylidenmalonate derivative 5-(3,4-dihydroxybenzylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione (KM-34), in oxidative stress and mitochondrial dysfunction induced by 6-hydroxydopamine (6-OHDA). Pretreatment (2 h) with KM-34 (1 and 10 μM) markedly attenuated 6-OHDA-induced PC12 cell death in a concentration-dependent manner. KM-34 also inhibited H 2 O 2 generation, mitochondrial swelling, and membrane potential dissipation after 6-OHDA-induced mitochondrial damage. In vivo, KM-34 treatment (1 and 2 mg/Kg) reduced percentage of asymmetry (cylinder test) and increased the vertical exploration (open field) with respect to untreated injured animals; KM-34 also reduced glial fibrillary acidic protein overexpression and increased tyrosine hydroxylase-positive cell number, both in substantia nigra pars compacta. These results demonstrate that KM-34 present biological effects associated to mitoprotection and neuroprotection in vitro, moreover, glial response and neuroprotection in SNpc in vivo. We suggest that KM-34 could be a putative neuroprotective agent for inhibiting the progressive neurodegenerative disease associated to oxidative stress and mitochondrial dysfunction.

  11. THE INTRACELLULAR SITE OF SYNTHESIS OF MITOCHONDRIAL RIBOSOMAL PROTEINS IN NEUROSPORA CRASSA

    PubMed Central

    Lizardi, Paul M.; Luck, David J. L.

    1972-01-01

    The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes. PMID:4261038

  12. Mitochondrial Reactive Oxygen Species Mediate Cardiac Structural, Functional, and Mitochondrial Consequences of Diet-Induced Metabolic Heart Disease.

    PubMed

    Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S

    2016-01-11

    Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  13. The importance of hypoxia and extra physiologic oxygen shock/stress for collection and processing of stem and progenitor cells to understand true physiology/pathology of these cells ex vivo.

    PubMed

    Broxmeyer, Hal E; O'Leary, Heather A; Huang, Xinxin; Mantel, Charlie

    2015-07-01

    Hematopoietic stem (HSCs) and progenitor (HPCs) cells reside in a hypoxic (lowered oxygen tension) environment, in vivo. We review literature on growth of HSCs and HPCs under hypoxic and normoxic (ambient air) conditions with a focus on our recent work demonstrating the detrimental effects of collecting and processing cells in ambient air through a phenomenon termed extra physiologic oxygen shock/stress (EPHOSS), and we describe means to counteract EPHOSS for enhanced collection of HSCs. Collection and processing of bone marrow and cord blood cells in ambient air cause rapid differentiation and loss of HSCs, with increases in HPCs. This apparently irreversible EPHOSS phenomenon results from increased mitochondrial reactive oxygen species, mediated by a p53-cyclophilin D-mitochondrial permeability transition pore axis, and involves hypoxia inducing factor-1α and micro-RNA 210. EPHOSS can be mitigated by collecting and processing cells in lowered (3%) oxygen, or in ambient air in the presence of, cyclosporine A which effects the mitochondrial permeability transition pore, resulting in increased HSC collections. Our recent findings may be advantageous for HSC collection for hematopoietic cell transplantation, and likely for enhanced collection of other stem cell types. EPHOSS should be considered when ex-vivo cell analysis is utilized for personalized medicine, as metabolism of cells and their response to targeted drug treatment ex vivo may not mimic what occurs in vivo.

  14. Astaxanthin prevents pulmonary fibrosis by promoting myofibroblast apoptosis dependent on Drp1-mediated mitochondrial fission.

    PubMed

    Zhang, Jinjin; Xu, Pan; Wang, Youlei; Wang, Meirong; Li, Hongbo; Lin, Shengcui; Mao, Cuiping; Wang, Bingsi; Song, Xiaodong; Lv, Changjun

    2015-09-01

    Promotion of myofibroblast apoptosis is a potential therapeutic strategy for pulmonary fibrosis. This study investigated the antifibrotic effect of astaxanthin on the promotion of myofibroblast apoptosis based on dynamin-related protein-1 (Drp1)-mediated mitochondrial fission in vivo and in vitro. Results showed that astaxanthin can inhibit lung parenchymal distortion and collagen deposition, as well as promote myofibroblast apoptosis. Astaxanthin demonstrated pro-apoptotic function in myofibroblasts by contributing to mitochondrial fission, thereby leading to apoptosis by increasing the Drp1 expression and enhancing Drp1 translocation into the mitochondria. Two specific siRNAs were used to demonstrate that Drp1 is necessary to promote astaxanthin-induced mitochondrial fission and apoptosis in myofibroblasts. Drp1-associated genes, such as Bcl-2-associated X protein, cytochrome c, tumour suppressor gene p53 and p53-up-regulated modulator of apoptosis, were highly up-regulated in the astaxanthin group compared with those in the sham group. This study revealed that astaxanthin can prevent pulmonary fibrosis by promoting myofibroblast apoptosis through a Drp1-dependent molecular pathway. Furthermore, astaxanthin provides a potential therapeutic value in pulmonary fibrosis treatment. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Pharmacological approaches to restore mitochondrial function

    PubMed Central

    Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan

    2014-01-01

    Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487

  16. Transcriptional coactivators PGC-1α and PGC-lβ control overlapping programs required for perinatal maturation of the heart

    PubMed Central

    Lai, Ling; Leone, Teresa C.; Zechner, Christoph; Schaeffer, Paul J.; Kelly, Sean M.; Flanagan, Daniel P.; Medeiros, Denis M.; Kovacs, Attila; Kelly, Daniel P.

    2008-01-01

    Oxidative tissues such as heart undergo a dramatic perinatal mitochondrial biogenesis to meet the high-energy demands after birth. PPARγ coactivator-1 (PGC-1) α and β have been implicated in the transcriptional control of cellular energy metabolism. Mice with combined deficiency of PGC-1α and PGC-1β (PGC-1αβ−/− mice) were generated to investigate the convergence of their functions in vivo. The phenotype of PGC-1β−/− mice was minimal under nonstressed conditions, including normal heart function, similar to that of PGC-1α−/− mice generated previously. In striking contrast to the singly deficient PGC-1 lines, PGC-1αβ−/− mice died shortly after birth with small hearts, bradycardia, intermittent heart block, and a markedly reduced cardiac output. Cardiac-specific ablation of the PGC-1β gene on a PGC-1α-deficient background phenocopied the generalized PGC-1αβ−/− mice. The hearts of the PGC-1αβ−/− mice exhibited signatures of a maturational defect including reduced growth, a late fetal arrest in mitochondrial biogenesis, and persistence of a fetal pattern of gene expression. Brown adipose tissue (BAT) of PGC-1αβ−/− mice also exhibited a severe abnormality in function and mitochondrial density. We conclude that PGC-1α and PGC-1β share roles that collectively are necessary for the postnatal metabolic and functional maturation of heart and BAT. PMID:18628400

  17. Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo.

    PubMed

    Sheline, Christian T; Zhu, Julia; Zhang, Wendy; Shi, Chunxiao; Cai, Ai-Li

    2013-01-01

    Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease. Zinc (Zn(2+)) accumulates after 3-NPA, 6-OHDA and MPP(+) in situ or in vivo. We will investigate the role of Zn(2+) neurotoxicity in 3-NPA, 6-OHDA and MPP(+). Murine striatal/midbrain tyrosine hydroxylase positive, or near-pure cortical neuronal cultures, or animals were exposed to 3-NPA or MPP(+) and 6-OHDA with or without neuroprotective compounds. Intracellular zinc ([Zn(2+)](i)), nicotinamide adenine dinucleotide (NAD(+)), NADH, glycolytic intermediates and neurotoxicity were measured. We showed that compounds or genetics which restore NAD(+) and attenuate Zn(2+) neurotoxicity (pyruvate, nicotinamide, NAD(+), increased NAD(+) synthesis, sirtuin inhibition or Zn(2+) chelation) attenuated the neuronal death induced by these toxins. The increase in [Zn(2+)](i) preceded a reduction in the NAD(+)/NADH ratio that caused a reversible glycolytic inhibition. Pyruvate, nicotinamide and NAD(+) reversed the reductions in the NAD(+)/NADH ratio, glycolysis and neuronal death after challenge with 3-NPA, 6-OHDA or MPP(+), as was previously shown for exogenous Zn(2+). To test efficacy in vivo, we injected 3-NPA into the striatum of rats and systemically into mice, with or without pyruvate. We observed early striatal Zn(2+) fluorescence, and pyruvate significantly attenuated the 3-NPA-induced lesion and restored behavioral scores. Together, these studies suggest that Zn(2+) accumulation caused by MPP(+) and 3-NPA is a novel preventable mechanism of the resultant neurotoxicity. Copyright © 2012 S. Karger AG, Basel.

  18. Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma.

    PubMed

    Kabashima, Ayano; Hirsova, Petra; Bronk, Steven F; Hernandez, Matthew C; Truty, Mark J; Rizvi, Sumera; Kaufmann, Scott H; Gores, Gregory J

    2018-03-08

    Myeloid cell leukemia 1 (MCL1), a prosurvival member of the BCL2 protein family, has a pivotal role in human cholangiocarcinoma (CCA) cell survival. We previously reported that fibroblast growth factor receptor (FGFR) signalling mediates MCL1-dependent survival of CCA cells in vitro and in vivo. However, the mode and mechanisms of cell death in this model were not delineated. Human CCA cell lines were treated with the pan-FGFR inhibitor LY2874455 and the mode of cell death examined by several complementary assays. Mitochondrial oxidative metabolism was examined using a XF24 extracellular flux analyser. The efficiency of FGFR inhibition in patient-derived xenografts (PDX) was also assessed. CCA cells expressed two species of MCL1, a full-length form localised to the outer mitochondrial membrane, and an N terminus-truncated species compartmentalised within the mitochondrial matrix. The pan-FGFR inhibitor LY2874455 induced non-apoptotic cell death in the CCA cell lines associated with cellular depletion of both MCL1 species. The cell death was accompanied by failure of mitochondrial oxidative metabolism and was most consistent with necrosis. Enforced expression of N terminus-truncated MCL1 targeted to the mitochondrial matrix, but not full-length MCL1 targeted to the outer mitochondrial membrane, rescued cell death and mitochondrial function. LY2874455 treatment of PDX-bearing mice was associated with tumour cell loss of MCL1 and cell necrosis. FGFR inhibition induces loss of matrix MCL1, resulting in cell necrosis. These observations support a heretofore unidentified, alternative MCL1 survival function, namely prevention of cell necrosis, and have implications for treatment of human CCA. Herein, we report that therapeutic inhibition of a cell receptor expressed by bile duct cancer cells resulted in the loss of a critical survival protein termed MCL1. Cellular depletion of MCL1 resulted in the death of the cancer cells by a process characterised by cell rupture. Cell death by this process can stimulate the immune system and has implications for combination therapy using receptor inhibition with immunotherapy. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Cutaneous Respirometry as Novel Technique to Monitor Mitochondrial Function: A Feasibility Study in Healthy Volunteers

    PubMed Central

    Stolker, Robert Jan; Mik, Egbert

    2016-01-01

    Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies. PMID:27455073

  20. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro

    PubMed Central

    Posse, Viktor; Shahzad, Saba; Falkenberg, Maria; Hällberg, B. Martin; Gustafsson, Claes M.

    2015-01-01

    A single-subunit RNA polymerase, POLRMT, transcribes the mitochondrial genome in human cells. Recently, a factor termed as the mitochondrial transcription elongation factor, TEFM, was shown to stimulate transcription elongation in vivo, but its effect in vitro was relatively modest. In the current work, we have isolated active TEFM in recombinant form and used a reconstituted in vitro transcription system to characterize its activities. We show that TEFM strongly promotes POLRMT processivity as it dramatically stimulates the formation of longer transcripts. TEFM also abolishes premature transcription termination at conserved sequence block II, an event that has been linked to primer formation during initiation of mtDNA synthesis. We show that POLRMT pauses at a wide range of sites in a given DNA sequence. In the absence of TEFM, this leads to termination; however, the presence of TEFM abolishes this effect and aids POLRMT in continuation of transcription. Further, we show that TEFM substantially increases the POLRMT affinity to an elongation-like DNA:RNA template. In combination with previously published in vivo observations, our data establish TEFM as an essential component of the mitochondrial transcription machinery. PMID:25690892

  1. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1

    PubMed Central

    Chouchani, Edward T.; Kazak, Lawrence; Jedrychowski, Mark P.; Lu, Gina Z.; Erickson, Brian K.; Szpyt, John; Pierce, Kerry A.; Laznik-Bogoslavski, Dina; Vetrivelan, Ramalingam; Clish, Clary B.; Robinson, Alan J.; Gygi, Steve P.; Spiegelman, Bruce M.

    2017-01-01

    Brown adipose tissue (BAT) can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1)1,2. Thermogenesis from BAT and beige adipose can combat obesity and diabetes3, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Herein we show that acutely activated BAT thermogenesis is defined by a substantial increase in mitochondrial reactive oxygen species (ROS) levels. Remarkably, this process supports in vivo BAT thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole body energy expenditure. We further establish that thermogenic ROS alter BAT cysteine thiol redox status to drive increased respiration, and Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine nucleotide inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify BAT mitochondrial ROS induction as a mechanism that drives UCP1-dependent thermogenesis and whole body energy expenditure, which opens the way to develop improved therapeutic strategies for combating metabolic disorders. PMID:27027295

  2. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse.

    PubMed

    Liu, Qianying; Lei, Zhixin; Guo, Jingchao; Liu, Aimei; Lu, Qirong; Fatima, Zainab; Khaliq, Haseeb; Shabbir, Muhammad A B; Maan, Muhammad Kashif; Wu, Qinghua; Dai, Menghong; Wang, Xu; Pan, Yuanhu; Yuan, Zonghui

    2018-01-01

    Mequindox (MEQ), belonging to quinoxaline-di- N -oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo .

  3. Mequindox-Induced Kidney Toxicity Is Associated With Oxidative Stress and Apoptosis in the Mouse

    PubMed Central

    Liu, Qianying; Lei, Zhixin; Guo, Jingchao; Liu, Aimei; Lu, Qirong; Fatima, Zainab; Khaliq, Haseeb; Shabbir, Muhammad A. B.; Maan, Muhammad Kashif; Wu, Qinghua; Dai, Menghong; Wang, Xu; Pan, Yuanhu; Yuan, Zonghui

    2018-01-01

    Mequindox (MEQ), belonging to quinoxaline-di-N-oxides (QdNOs), is a synthetic antimicrobial agent widely used in China. Previous studies found that the kidney was one of the main toxic target organs of the QdNOs. However, the mechanisms underlying the kidney toxicity caused by QdNOs in vivo still remains unclear. The present study aimed to explore the molecular mechanism of kidney toxicity in mice after chronic exposure to MEQ. MEQ led to the oxidative stress, apoptosis, and mitochondrial damage in the kidney of mice. Meanwhile, MEQ upregulated Bax/Bcl-2 ratio, disrupted mitochondrial permeability transition pores, caused cytochrome c release, and a cascade activation of caspase, eventually induced apoptosis. The oxidative stress mediated by MEQ might led to mitochondria damage and apoptosis in a mitochondrial-dependent apoptotic pathway. Furthermore, upregulation of the Nrf2-Keap1 signaling pathway was also observed. Our findings revealed that the oxidative stress, mitochondrial dysfunction, and the Nrf2-Keap1 signaling pathway were associated with the kidney apoptosis induced by MEQ in vivo. PMID:29765325

  4. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences

    PubMed Central

    Zhu, Xiao-Hong; Lu, Ming; Lee, Byeong-Yeul; Ugurbil, Kamil; Chen, Wei

    2015-01-01

    NAD is an essential metabolite that exists in NAD+ or NADH form in all living cells. Despite its critical roles in regulating mitochondrial energy production through the NAD+/NADH redox state and modulating cellular signaling processes through the activity of the NAD+-dependent enzymes, the method for quantifying intracellular NAD contents and redox state is limited to a few in vitro or ex vivo assays, which are not suitable for studying a living brain or organ. Here, we present a magnetic resonance (MR) -based in vivo NAD assay that uses the high-field MR scanner and is capable of noninvasively assessing NAD+ and NADH contents and the NAD+/NADH redox state in intact human brain. The results of this study provide the first insight, to our knowledge, into the cellular NAD concentrations and redox state in the brains of healthy volunteers. Furthermore, an age-dependent increase of intracellular NADH and age-dependent reductions in NAD+, total NAD contents, and NAD+/NADH redox potential of the healthy human brain were revealed in this study. The overall findings not only provide direct evidence of declined mitochondrial functions and altered NAD homeostasis that accompany the normal aging process but also, elucidate the merits and potentials of this new NAD assay for noninvasively studying the intracellular NAD metabolism and redox state in normal and diseased human brain or other organs in situ. PMID:25730862

  5. Mitochondrionopathy phenotype in doxorubicin-treated Wistar rats depends on treatment protocol and is cardiac-specific.

    PubMed

    Pereira, Gonçalo C; Pereira, Susana P; Pereira, Claudia V; Lumini, José A; Magalhães, José; Ascensão, António; Santos, Maria S; Moreno, António J; Oliveira, Paulo J

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations.

  6. Mitochondrionopathy Phenotype in Doxorubicin-Treated Wistar Rats Depends on Treatment Protocol and Is Cardiac-Specific

    PubMed Central

    Pereira, Gonçalo C.; Pereira, Susana P.; Pereira, Claudia V.; Lumini, José A.; Magalhães, José; Ascensão, António; Santos, Maria S.; Moreno, António J.; Oliveira, Paulo J.

    2012-01-01

    Although doxorubicin (DOX) is a very effective antineoplastic agent, its clinical use is limited by a dose-dependent, persistent and cumulative cardiotoxicity, whose mechanism remains to be elucidated. Previous works in animal models have failed to use a multi-organ approach to demonstrate that DOX-associated toxicity is selective to the cardiac tissue. In this context, the present work aims to investigate in vivo DOX cardiac, hepatic and renal toxicity in the same animal model, with special relevance on alterations of mitochondrial bioenergetics. To this end, male Wistar rats were sub-chronically (7 wks, 2 mg/Kg) or acutely (20 mg/Kg) treated with DOX and sacrificed one week or 24 hours after the last injection, respectively. Alterations of mitochondrial bioenergetics showed treatment-dependent differences between tissues. No alterations were observed for cardiac mitochondria in the acute model but decreased ADP-stimulated respiration was detected in the sub-chronic treatment. In the acute treatment model, ADP-stimulated respiration was increased in liver and decreased in kidney mitochondria. Aconitase activity, a marker of oxidative stress, was decreased in renal mitochondria in the acute and in heart in the sub-chronic model. Interestingly, alterations of cardiac mitochondrial bioenergetics co-existed with an absence of echocardiograph, histopathological or ultra-structural alterations. Besides, no plasma markers of cardiac injury were found in any of the time points studied. The results confirm that alterations of mitochondrial function, which are more evident in the heart, are an early marker of DOX-induced toxicity, existing even in the absence of cardiac functional alterations. PMID:22745682

  7. Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury

    PubMed Central

    Azzam, Edouard I.; Jay-Gerin, Jean-Paul; Pain, Debkumar

    2013-01-01

    Cellular exposure to ionizing radiation leads to oxidizing events that alter atomic structure through direct interactions of radiation with target macromolecules or via products of water radiolysis. Further, the oxidative damage may spread from the targeted to neighboring, non-targeted bystander cells through redox-modulated intercellular communication mechanisms. To cope with the induced stress and the changes in the redox environment, organisms elicit transient responses at the molecular, cellular and tissue levels to counteract toxic effects of radiation. Metabolic pathways are induced during and shortly after the exposure. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Physiological levels of reactive oxygen and nitrogen species play critical roles in many cellular functions. In irradiated cells, levels of these reactive species may be increased due to perturbations in oxidative metabolism and chronic inflammatory responses, thereby contributing to the long-term effects of exposure to ionizing radiation on genomic stability. Here, in addition to immediate biological effects of water radiolysis on DNA damage, we also discuss the role of mitochondria in the delayed outcomes of ionization radiation. Defects in mitochondrial functions lead to accelerated aging and numerous pathological conditions. Different types of radiation vary in their linear energy transfer (LET) properties, and we discuss their effects on various aspects of mitochondrial physiology. These include short and long-term in vitro and in vivo effects on mitochondrial DNA, mitochondrial protein import and metabolic and antioxidant enzymes. PMID:22182453

  8. Establishment of mitochondrial pyruvate carrier 1 (MPC1) gene knockout mice with preliminary gene function analyses

    PubMed Central

    Li, Xiaoli; Li, Yaqing; Han, Gaoyang; Li, Xiaoran; Ji, Yasai; Fan, Zhirui; Zhong, Yali; Cao, Jing; Zhao, Jing; Mariusz, Goscinski; Zhang, Mingzhi; Wen, Jianguo; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Pyruvate plays a critical role in the mitochondrial tricarboxylic acid (TCA) cycle, and it is the center product for the synthesis of amino acids, carbohydrates and fatty acids. Pyruvate transported across the inner mitochondrial membrane appears to be essential in anabolic and catabolic intermediary metabolism. The mitochondrial pyruvate carrier (MPC) mounted in the inner membrane of mitochondria serves as the channel to facilitate pyruvate permeating. In mammals, the MPC is formed by two paralogous subunits, MPC1 and MPC2. It is known that complete ablation of MPC2 in mice causes death on the 11th or 12th day of the embryonic period. However, MPC1 deletion and the knowledge of gene function in vivo are lacking. Using the new technology of gene manipulation known as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) systems, we gained stable MPC1 gene heterozygous mutation mice models, and the heterozygous mutations could be stably maintained in their offsprings. Only one line with homozygous 27 bases deletion in the first exon was established, but no offsprings could be obtained after four months of mating experiments, indicating infertility of the mice with such homozygous deletion. The other line of MPC1 knockout (KO) mice was only heterozygous, which mutated in the first exon with a terminator shortly afterwards. These two lines of MPC1 KO mice showed lower fertility and significantly higher bodyweight in the females. We concluded that heterozygous MPC1 KO weakens fertility and influences the metabolism of glucose and fatty acid and bodyweight in mice. PMID:27835892

  9. Ubiquinol treatment for TBI in male rats: Effects on mitochondrial integrity, injury severity, and neurometabolism.

    PubMed

    Pierce, Janet D; Gupte, Raeesa; Thimmesch, Amanda; Shen, Qiuhua; Hiebert, John B; Brooks, William M; Clancy, Richard L; Diaz, Francisco J; Harris, Janna L

    2018-06-01

    Following traumatic brain injury (TBI), there is significant secondary damage to cerebral tissue from increased free radicals and impaired mitochondrial function. This imbalance between reactive oxygen species (ROS) production and the effectiveness of cellular antioxidant defenses is termed oxidative stress. Often there are insufficient antioxidants to scavenge ROS, leading to alterations in cerebral structure and function. Attenuating oxidative stress following a TBI by administering an antioxidant may decrease secondary brain injury, and currently many drugs and supplements are being investigated. We explored an over-the-counter supplement called ubiquinol (reduced form of coenzyme Q10), a potent antioxidant naturally produced in brain mitochondria. We administered intra-arterial ubiquinol to rats to determine if it would reduce mitochondrial damage, apoptosis, and severity of a contusive TBI. Adult male F344 rats were randomly assigned to one of three groups: (1) Saline-TBI, (2) ubiquinol 30 minutes before TBI (UB-PreTBI), or (3) ubiquinol 30 minutes after TBI (UB-PostTBI). We found when ubiquinol was administered before or after TBI, rats had an acute reduction in brain mitochondrial damage, apoptosis, and two serum biomarkers of TBI severity, glial fibrillary acidic protein (GFAP) and ubiquitin C-terminal hydrolase-L1 (UCH-L1). However, in vivo neurometabolic assessment with proton magnetic resonance spectroscopy did not show attenuated injury-induced changes. These findings are the first to show that ubiquinol preserves mitochondria and reduces cellular injury severity after TBI, and support further study of ubiquinol as a promising adjunct therapy for TBI. © 2018 Wiley Periodicals, Inc.

  10. Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure

    PubMed Central

    Schwarzer, Michael; Osterholt, Moritz; Lunkenbein, Anne; Schrepper, Andrea; Amorim, Paulo; Doenst, Torsten

    2014-01-01

    We investigated the impact of cardiac reactive oxygen species (ROS) during the development of pressure overload-induced heart failure. We used our previously described rat model where transverse aortic constriction (TAC) induces compensated hypertrophy after 2 weeks, heart failure with preserved ejection fraction at 6 and 10 weeks, and heart failure with systolic dysfunction after 20 weeks. We measured mitochondrial ROS production rates, ROS damage and assessed the therapeutic potential of in vivo antioxidant therapies. In compensated hypertrophy (2 weeks of TAC) ROS production rates were normal at both mitochondrial ROS production sites (complexes I and III). Complex I ROS production rates increased with the appearance of diastolic dysfunction (6 weeks of TAC) and remained high thereafter. Surprisingly, maximal ROS production at complex III peaked at 6 weeks of pressure overload. Mitochondrial respiratory capacity (state 3 respiration) was elevated 2 and 6 weeks after TAC, decreased after this point and was significantly impaired at 20 weeks, when contractile function was also impaired and ROS damage was found with increased hydroxynonenal. Treatment with the ROS scavenger α-phenyl-N-tert-butyl nitrone or the uncoupling agent dinitrophenol significantly reduced ROS production rates at 6 weeks. Despite the decline in ROS production capacity, no differences in contractile function between treated and untreated animals were observed. Increased ROS production occurs early in the development of heart failure with a peak at the onset of diastolic dysfunction. However, ROS production may not be related to the onset of contractile dysfunction. PMID:24951621

  11. Hydroxyethyl methacrylate grafted carboxy methyl tamarind (CMT-g-HEMA) polysaccharide based matrix as a suitable scaffold for skin tissue engineering.

    PubMed

    Choudhury, Priyanka; Kumar, Satish; Singh, Abhishek; Kumar, Ashutosh; Kaur, Navneet; Sanyasi, Sridhar; Chawla, Saurabh; Goswami, Chandan; Goswami, Luna

    2018-06-01

    Patho-physiologies related to skin are diverse in nature such as burns, skin ulcers, atopic dermatitis, psoriasis etc. which impose severe bio-medical problems and thus enforce requirement of new and healthy skin prepared through tissues engineering methodologies. However, fully functional and biodegradable matrix for attachment, growth, proliferation and differentiation of the relevant cells is not available. In the present study, we introduce a set of hydrogels synthesized by incorporation of a synthetic monomer (Hydroxyethlmethacryate) with a semi-synthetic polymer backbone (carboxy methyl tamarind, CMT) in different mole ratios. We termed these materials as CMT:HEMA based hydrogels and these were characterized by different physico-chemical techniques, namely by X-Ray Diffraction, SEM and Dynamic Light Scattering. Biocompatibility studies with HaCaT, NIH-3T3 and mouse dermal fibroblasts confirm that this material is biocompatible. MTT assay further confirmed that this material does not have any cytotoxic effects. Assays for mitochondrial functionality such as ATP assay and mitochondrial reactive oxygen (ROS) generation also suggest that this material is safe and does not have any cytotoxicity. Hemolytic assay with red blood cells and acute skin irritation test on SD Rats confirmed that this material is suitable for ex-vivo application in future. We suggest that this hydrogel is suitable for in-vivo applications and may have clinical and commercial importance against skin disorders. Copyright © 2018. Published by Elsevier Ltd.

  12. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis

    PubMed Central

    Zambonin, Jessica L.; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R.; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M.; Turnbull, Doug M.; Trapp, Bruce D.; Lassmann, Hans; Franklin, Robin J. M.

    2011-01-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination. PMID:21705418

  13. Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis.

    PubMed

    Zambonin, Jessica L; Zhao, Chao; Ohno, Nobuhiko; Campbell, Graham R; Engeham, Sarah; Ziabreva, Iryna; Schwarz, Nadine; Lee, Sok Ee; Frischer, Josa M; Turnbull, Doug M; Trapp, Bruce D; Lassmann, Hans; Franklin, Robin J M; Mahad, Don J

    2011-07-01

    Mitochondrial content within axons increases following demyelination in the central nervous system, presumably as a response to the changes in energy needs of axons imposed by redistribution of sodium channels. Myelin sheaths can be restored in demyelinated axons and remyelination in some multiple sclerosis lesions is extensive, while in others it is incomplete or absent. The effects of remyelination on axonal mitochondrial content in multiple sclerosis, particularly whether remyelination completely reverses the mitochondrial changes that follow demyelination, are currently unknown. In this study, we analysed axonal mitochondria within demyelinated, remyelinated and myelinated axons in post-mortem tissue from patients with multiple sclerosis and controls, as well as in experimental models of demyelination and remyelination, in vivo and in vitro. Immunofluorescent labelling of mitochondria (porin, a voltage-dependent anion channel expressed on all mitochondria) and axons (neurofilament), and ultrastructural imaging showed that in both multiple sclerosis and experimental demyelination, mitochondrial content within remyelinated axons was significantly less than in acutely and chronically demyelinated axons but more numerous than in myelinated axons. The greater mitochondrial content within remyelinated, compared with myelinated, axons was due to an increase in density of porin elements whereas increase in size accounted for the change observed in demyelinated axons. The increase in mitochondrial content in remyelinated axons was associated with an increase in mitochondrial respiratory chain complex IV activity. In vitro studies showed a significant increase in the number of stationary mitochondria in remyelinated compared with myelinated and demyelinated axons. The number of mobile mitochondria in remyelinated axons did not significantly differ from myelinated axons, although significantly greater than in demyelinated axons. Our neuropathological data and findings in experimental demyelination and remyelination in vivo and in vitro are consistent with a partial amelioration of the supposed increase in energy demand of demyelinated axons by remyelination.

  14. Adiponectin improves the osteointegration of titanium implant under diabetic conditions by reversing mitochondrial dysfunction via the AMPK pathway in vivo and in vitro.

    PubMed

    Hu, Xiao-Fan; Wang, Lin; Lu, Yi-Zhao; Xiang, Geng; Wu, Zi-Xiang; Yan, Ya-Bo; Zhang, Yang; Zhao, Xiong; Zang, Yuan; Shi, Lei; Lei, Wei; Feng, Ya-Fei

    2017-10-01

    Diabetes-induced reactive oxygen species (ROS) overproduction would result in compromised osteointegration of titanium implant (TI) and high rate of implant failure, yet the underlying mechanisms remain elusive. Adiponectin (APN) is a fat-derived adipocytokine with strong antioxidant, mitochondrial-protective and anti-diabetic efficacies. We hypothesized that mitochondrial dysfunction under diabetes may account for the oxidative stress in osteoblasts and titanium-bone interface (TBI) instability, which could be ameliorated by APN. To test this hypothesis, we incubated primary rat osteoblasts on TI and tested the cellular behaviors when subjected to normal milieu (NM), diabetic milieu (DM), DM+APN, DM+AICAR (AMPK activator) and DM+APN+Compound C (AMPK inhibitor). In vivo, APN or APN+Compound C were administered to diabetic db/db mice with TI implanted in their femurs. Results showed that diabetes induced structural damage, dysfunction and content decrease of mitochondria in osteoblasts, which led to ROS overproduction, dysfunction and apoptosis of osteoblasts accompanied by the inhibition of AMPK signaling. APN alleviated the mitochondrial damage by activating AMPK, thus reversing osteoblast impairment and improving the osteointegration of TI evidenced by Micro-CT and histological analysis. Furthermore, AICAR showed beneficial effects similar to APN treatment, while the protective effects of APN were abolished when AMPK activation was blocked by Compound C. This study clarifies mitochondrial dysfunction as a crucial mechanism in the impaired bone healing and implant loosening in diabetes, and provides APN as a novel promising active component for biomaterial-engineering to improve clinical performance of TI in diabetic patients. The loosening rate of titanium implants in diabetic patients is high. The underlying mechanisms remain elusive and, with the rapid increase of diabetic morbility, efficacious strategies to mitigate this problem have become increasingly important. Our study showed that the mitochondrial impairment and the consequent oxidative stress in osteoblasts at the titanium-bone interface (TBI) play a critical role in the diabetes-induced poor bone repair and implant destabilization, which could become therapeutic targets. Furthermore, adiponectin, a cytokine, promotes the bio-functional recovery of osteoblasts and bone regeneration at the TBI in diabetes. This provides APN as a novel bioactive component used in material-engineering to promote the osteointegration of implants, which could reduce implant failure, especially for diabetic patients. Copyright © 2017. Published by Elsevier Ltd.

  15. Capsiate supplementation reduces oxidative cost of contraction in exercising mouse skeletal muscle in vivo.

    PubMed

    Yashiro, Kazuya; Tonson, Anne; Pecchi, Émilie; Vilmen, Christophe; Le Fur, Yann; Bernard, Monique; Bendahan, David; Giannesini, Benoît

    2015-01-01

    Chronic administration of capsiate is known to accelerate whole-body basal energy metabolism, but the consequences in exercising skeletal muscle remain very poorly documented. In order to clarify this issue, the effect of 2-week daily administration of either vehicle (control) or purified capsiate (at 10- or 100-mg/kg body weight) on skeletal muscle function and energetics were investigated throughout a multidisciplinary approach combining in vivo and in vitro measurements in mice. Mechanical performance and energy metabolism were assessed strictly non-invasively in contracting gastrocnemius muscle using magnetic resonance (MR) imaging and 31-phosphorus MR spectroscopy (31P-MRS). Regardless of the dose, capsiate treatments markedly disturbed basal bioenergetics in vivo including intracellular pH alkalosis and decreased phosphocreatine content. Besides, capsiate administration did affect neither mitochondrial uncoupling protein-3 gene expression nor both basal and maximal oxygen consumption in isolated saponin-permeabilized fibers, but decreased by about twofold the Km of mitochondrial respiration for ADP. During a standardized in vivo fatiguing protocol (6-min of repeated maximal isometric contractions electrically induced at a frequency of 1.7 Hz), both capsiate treatments reduced oxidative cost of contraction by 30-40%, whereas force-generating capacity and fatigability were not changed. Moreover, the rate of phosphocreatine resynthesis during the post-electrostimulation recovery period remained unaffected by capsiate. Both capsiate treatments further promoted muscle mass gain, and the higher dose also reduced body weight gain and abdominal fat content. These findings demonstrate that, in addition to its anti-obesity effect, capsiate supplementation improves oxidative metabolism in exercising muscle, which strengthen this compound as a natural compound for improving health.

  16. MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy.

    PubMed

    Beloueche-Babari, Mounia; Wantuch, Slawomir; Casals Galobart, Teresa; Koniordou, Markella; Parkes, Harold G; Arunan, Vaitha; Chung, Yuen-Li; Eykyn, Thomas R; Smith, Paul D; Leach, Martin O

    2017-11-01

    Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13 C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by coadministration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. Cancer Res; 77(21); 5913-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  17. In vivo conformation of mitochondrial DNA revealed by pulsed-field gel electrophoresis in the true slime mold, Physarum polycephalum.

    PubMed

    Sakurai, R; Sasaki, N; Takano, H; Abe, T; Kawano, S

    2000-04-28

    Pulsed-field gel electrophoresis (PFGE) was used to examine the in vivo and in vitro conformations of Physarum polycephalum mitochondrial DNA (mtDNA). We used plugs containing isolated mitochondria, isolated mitochondrial nucleoids (mt-nuclei), and isolated mtDNA, in addition to whole cells. The mtDNA contained in the myxamoebae, plasmodia, isolated mitochondria, and isolated mt-nuclei was circular, but most of the isolated mtDNA had been site-specifically fragmented and linearized during DNA preparation and storage under low ionic strength conditions. Restriction mapping of Physarum mtDNA by the direct digestion of the isolated mt-nuclei from two different strains, DP89 x AI16 and KM88 x AI16, resulted in the circular form. A linear mitochondrial plasmid, mF, is known to promote mitochondrial fusion and integration of itself into the mtDNA in Physarum. Linearization of mtDNA by the integration of the mF plasmid was demonstrated when we used PFGE to analyze isolated mitochondria from the plasmodial strain DP89 x NG7 carrying the mF plasmid (mF+). The PFGE system can be used not only to determine whether the form of mtDNA is linear or circular but also to analyze the dynamic conformational changes of mtDNA.

  18. Fatty acid ethyl ester synthase inhibition ameliorates ethanol-induced Ca2+-dependent mitochondrial dysfunction and acute pancreatitis

    PubMed Central

    Huang, Wei; Booth, David M; Cane, Matthew C; Chvanov, Michael; Javed, Muhammad A; Elliott, Victoria L; Armstrong, Jane A; Dingsdale, Hayley; Cash, Nicole; Li, Yan; Greenhalf, William; Mukherjee, Rajarshi; Kaphalia, Bhupendra S; Jaffar, Mohammed; Petersen, Ole H; Tepikin, Alexei V; Sutton, Robert; Criddle, David N

    2014-01-01

    Objective Non-oxidative metabolism of ethanol (NOME) produces fatty acid ethyl esters (FAEEs) via carboxylester lipase (CEL) and other enzyme action implicated in mitochondrial injury and acute pancreatitis (AP). This study investigated the relative importance of oxidative and non-oxidative pathways in mitochondrial dysfunction, pancreatic damage and development of alcoholic AP, and whether deleterious effects of NOME are preventable. Design Intracellular calcium ([Ca2+]C), NAD(P)H, mitochondrial membrane potential and activation of apoptotic and necrotic cell death pathways were examined in isolated pancreatic acinar cells in response to ethanol and/or palmitoleic acid (POA) in the presence or absence of 4-methylpyrazole (4-MP) to inhibit oxidative metabolism. A novel in vivo model of alcoholic AP induced by intraperitoneal administration of ethanol and POA was developed to assess the effects of manipulating alcohol metabolism. Results Inhibition of OME with 4-MP converted predominantly transient [Ca2+]C rises induced by low ethanol/POA combination to sustained elevations, with concurrent mitochondrial depolarisation, fall of NAD(P)H and cellular necrosis in vitro. All effects were prevented by 3-benzyl-6-chloro-2-pyrone (3-BCP), a CEL inhibitor. 3-BCP also significantly inhibited rises of pancreatic FAEE in vivo and ameliorated acute pancreatic damage and inflammation induced by administration of ethanol and POA to mice. Conclusions A combination of low ethanol and fatty acid that did not exert deleterious effects per se became toxic when oxidative metabolism was inhibited. The in vitro and in vivo damage was markedly inhibited by blockade of CEL, indicating the potential for development of specific therapy for treatment of alcoholic AP via inhibition of FAEE generation. PMID:24162590

  19. Suppression of Arrhythmia by Enhancing Mitochondrial Ca2+ Uptake in Catecholaminergic Ventricular Tachycardia Models.

    PubMed

    Schweitzer, Maria K; Wilting, Fabiola; Sedej, Simon; Dreizehnter, Lisa; Dupper, Nathan J; Tian, Qinghai; Moretti, Alessandra; My, Ilaria; Kwon, Ohyun; Priori, Silvia G; Laugwitz, Karl-Ludwig; Storch, Ursula; Lipp, Peter; Breit, Andreas; Mederos Y Schnitzler, Michael; Gudermann, Thomas; Schredelseker, Johann

    2017-12-01

    Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca 2+ handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca 2+ handling. Therefore, intracellular Ca 2+ transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca 2+ transport proteins are important regulators of cardiac Ca 2+ handling. Here we evaluated the potential of pharmacological activation of mitochondrial Ca 2+ uptake for the treatment of cardiac arrhythmia. To this aim,we tested substances that enhance mitochondrial Ca 2+ uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2 R4496C/WT mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca 2+ waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca 2+ uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca 2+ uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2 R4496C/WT mice in vivo and abolished diastolic, arrhythmogenic Ca 2+ events in human iPSC-derived cardiomyocytes.

  20. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed

    Lord, Christina E N; Wertman, Jaime N; Lane, Stephanie; Gunawardena, Arunika H L A N

    2011-06-06

    Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant.

  1. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling

    PubMed Central

    Karpinska, Barbara; Alomrani, Sarah Owdah

    2017-01-01

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808105

  2. Low Concentrations of Cationic PAMAM Dendrimers Affect Lymphocyte Respiration in In vitro Studies.

    PubMed

    Labieniec-Watala, Magdalena; Szwed, Marzena; Hertel, Joanna; Wisnik, Ewelina

    2017-01-01

    In this study, the effect of low concentrations of poly(amido)amine dendrimers (G2-G4) on human lymphocytes was studied. Some works revealed that PAMAMs can adversely affect the morphology of blood components and mitochondria functions. In this context, the present report aimed to investigate the in vitro cationic dendrimers' effect on mitochondrial respiration and cell morphology in lymphocytes isolated from human blood. To monitor the mitochondrial changes, the high-resolution respirometer was used, whereas the cell morphology was analyzed using a flow cytometer and fluorescence microscopy. The concentration-dependent dendrimers' influence on lymphocytes morphology was shown. Changes in mitochondrial respiration revealed the concentration- and generation-dependent differences between dendrimer activity. There were no alterations in the routine respiration and in the state of the inner mitochondrial membrane (L/E), but decreased ADP- and FCCP-stimulated respirations were detected after treatment with G3 and G4 dendrimers. The markers of mitochondrial membrane integrity (RCR) and OXPHOS efficiency (P/E) significantly decreased regardless of the dendrimer generation used. Based on these in vitro evaluations, we state that cationic PAMAM dendrimers can impair both the morphology and the bioenergetics of human lymphocytes, even when used at low concentrations and in a short time (up to 1 h). However, these results do not imply that similar findings could be possible for in vivo observations. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins.

    PubMed

    Rey, Benjamin; Halsey, Lewis G; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J; Duchamp, Claude

    2008-07-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (Vo2; -33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC1-alpha) mRNA in pectoralis muscle (-54%, -36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting Vo2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting.

  4. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae.

    PubMed

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A

    2015-11-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs.

  5. Members of the RAD52 Epistasis Group Contribute to Mitochondrial Homologous Recombination and Double-Strand Break Repair in Saccharomyces cerevisiae

    PubMed Central

    Stein, Alexis; Kalifa, Lidza; Sia, Elaine A.

    2015-01-01

    Mitochondria contain an independently maintained genome that encodes several proteins required for cellular respiration. Deletions in the mitochondrial genome have been identified that cause several maternally inherited diseases and are associated with certain cancers and neurological disorders. The majority of these deletions in human cells are flanked by short, repetitive sequences, suggesting that these deletions may result from recombination events. Our current understanding of the maintenance and repair of mtDNA is quite limited compared to our understanding of similar events in the nucleus. Many nuclear DNA repair proteins are now known to also localize to mitochondria, but their function and the mechanism of their action remain largely unknown. This study investigated the contribution of the nuclear double-strand break repair (DSBR) proteins Rad51p, Rad52p and Rad59p in mtDNA repair. We have determined that both Rad51p and Rad59p are localized to the matrix of the mitochondria and that Rad51p binds directly to mitochondrial DNA. In addition, a mitochondrially-targeted restriction endonuclease (mtLS-KpnI) was used to produce a unique double-strand break (DSB) in the mitochondrial genome, which allowed direct analysis of DSB repair in vivo in Saccharomyces cerevisiae. We find that loss of these three proteins significantly decreases the rate of spontaneous deletion events and the loss of Rad51p and Rad59p impairs the repair of induced mtDNA DSBs. PMID:26540255

  6. Long-term fasting decreases mitochondrial avian UCP-mediated oxygen consumption in hypometabolic king penguins

    PubMed Central

    Rey, Benjamin; Halsey, Lewis G.; Dolmazon, Virginie; Rouanet, Jean-Louis; Roussel, Damien; Handrich, Yves; Butler, Patrick J.; Duchamp, Claude

    2008-01-01

    In endotherms, regulation of the degree of mitochondrial coupling affects cell metabolic efficiency. Thus it may be a key contributor to minimizing metabolic rate during long periods of fasting. The aim of the present study was to investigate whether variation in mitochondrial avian uncoupling proteins (avUCP), as putative regulators of mitochondrial oxidative phosphorylation, may contribute to the ability of king penguins (Aptenodytes patagonicus) to withstand fasting for several weeks. After 20 days of fasting, king penguins showed a reduced rate of whole animal oxygen consumption (V̇o2; −33%) at rest, together with a reduced abundance of avUCP and peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1-α) mRNA in pectoralis muscle (−54%, −36%, respectively). These parameters were restored after the birds had been refed for 3 days. Furthermore, in recently fed, but not in fasted penguins, isolated muscle mitochondria showed a guanosine diphosphate-inhibited, fatty acid plus superoxide-activated respiration, indicating the presence of a functional UCP. It was calculated that variation in mitochondrial UCP-dependent respiration in vitro may contribute to nearly 20% of the difference in resting V̇o2 between fed or refed penguins and fasted penguins measured in vivo. These results suggest that the lowering of avUCP activity during periods of long-term energetic restriction may contribute to the reduction in metabolic rate and hence the ability of king penguins to face prolonged periods of fasting. PMID:18495832

  7. Axonal Degeneration Is Mediated by the Mitochondrial Permeability Transition Pore

    PubMed Central

    Barrientos, Sebastian A.; Martinez, Nicolas W.; Yoo, Soonmoon; Jara, Juan S.; Zamorano, Sebastian; Hetz, Claudio; Twiss, Jeffery L.; Alvarez, Jaime; Court, Felipe A.

    2011-01-01

    Axonal degeneration is an active process that has been associated with neurodegenerative conditions triggered by mechanical, metabolic, infectious, toxic, hereditary and inflammatory stimuli. This degenerative process can cause permanent loss of function, so it represents a focus for neuroprotective strategies. Several signaling pathways are implicated in axonal degeneration, but identification of an integrative mechanism for this self-destructive process has remained elusive. Here, we show that rapid axonal degeneration triggered by distinct mechanical and toxic insults is dependent on the activation of the mitochondrial permeability transition pore (mPTP). Both pharmacological and genetic targeting of cyclophilin D, a functional component of the mPTP, protects severed axons and vincristine-treated neurons from axonal degeneration in ex vivo and in vitro mouse and rat model systems. These effects were observed in axons from both the peripheral and central nervous system. Our results suggest that the mPTP is a key effector of axonal degeneration, upon which several independent signaling pathways converge. Since axonal and synapse degeneration are increasingly considered early pathological events in neurodegeneration, our work identifies a potential target for therapeutic intervention in a wide variety of conditions that lead to loss of axons and subsequent functional impairment. PMID:21248121

  8. Anatomical and functional assessment of brown adipose tissue by magnetic resonance imaging.

    PubMed

    Chen, Y Iris; Cypess, Aaron M; Sass, Christina A; Brownell, Anna-Liisa; Jokivarsi, Kimmo T; Kahn, C Ronald; Kwong, Kenneth K

    2012-07-01

    Brown adipose tissue (BAT) is the primary tissue responsible for nonshivering thermogenesis in mammals. The amount of BAT and its level of activation help regulate the utilization of excessive calories for thermogenesis as opposed to storage in white adipose tissue (WAT) which would lead to weight gain. Over the past several years, BAT activity in vivo has been primarily assessed by positron emission tomography-computed tomography (PET-CT) scan using 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) to measure glucose utilization associated with BAT mitochondrial respiration. In this study, we demonstrate the feasibility of mapping and estimating BAT volume and metabolic function in vivo in rats at a 9.4T magnetic resonance imaging (MRI) scanner using sequences available from clinical MR scanners. Based on the morphological characteristics of BAT, we measured the volume distribution of BAT with MRI sequences that have strong fat-water contrast. We also investigated BAT volume by utilizing spin-echo MRI sequences. The in vivo MRI-estimated BAT volumes were correlated with direct measurement of BAT mass from dissected samples. Using MRI, we also were able to map hemodynamic responses to changes in BAT metabolism induced pharmacologically by β3-adrenergic receptor agonist, CL-316,243 and compare this to BAT activity in response to CL-316,243 assessed by PET 18F-FDG. In conclusion, we demonstrate the feasibility of measuring BAT volume and function in vivo using routine MRI sequences. The MRI measurement of BAT volume is consistent with quantitative measurement of the tissue ex vivo.

  9. Carbamazepine suppresses calpain-mediated autophagy impairment after ischemia/reperfusion in mouse livers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jae-Sung, E-mail: Jae.Kim@surgery.ufl.edu; Wang, Jin-Hee, E-mail: jin-hee.wang@surgery.ufl.edu; Biel, Thomas G., E-mail: Thomas.Biel@surgery.ufl.edu

    Onset of the mitochondrial permeability transition (MPT) plays a causative role in ischemia/reperfusion (I/R) injury. Current therapeutic strategies for reducing reperfusion injury remain disappointing. Autophagy is a lysosome-mediated, catabolic process that timely eliminates abnormal or damaged cellular constituents and organelles such as dysfunctional mitochondria. I/R induces calcium overloading and calpain activation, leading to degradation of key autophagy-related proteins (Atg). Carbamazepine (CBZ), an FDA-approved anticonvulsant drug, has recently been reported to increase autophagy. We investigated the effects of CBZ on hepatic I/R injury. Hepatocytes and livers from male C57BL/6 mice were subjected to simulated in vitro, as well as in vivomore » I/R, respectively. Cell death, intracellular calcium, calpain activity, changes in autophagy-related proteins (Atg), autophagic flux, MPT and mitochondrial membrane potential after I/R were analyzed in the presence and absence of 20 μM CBZ. CBZ significantly increased hepatocyte viability after reperfusion. Confocal microscopy revealed that CBZ prevented calcium overloading, the onset of the MPT and mitochondrial depolarization. Immunoblotting and fluorometric analysis showed that CBZ blocked calpain activation, depletion of Atg7 and Beclin-1 and loss of autophagic flux after reperfusion. Intravital multiphoton imaging of anesthetized mice demonstrated that CBZ substantially reversed autophagic defects and mitochondrial dysfunction after I/R in vivo. In conclusion, CBZ prevents calcium overloading and calpain activation, which, in turn, suppresses Atg7 and Beclin-1 depletion, defective autophagy, onset of the MPT and cell death after I/R. - Highlights: • A mechanism of carbamazepine (CBZ)-induced cytoprotection in livers is proposed. • Impaired autophagy is a key event contributing to lethal reperfusion injury. • The importance of autophagy is extended and confirmed in an in vivo model. • CBZ is a potential agent to improve liver function after liver surgery.« less

  10. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages.

    PubMed

    Zhao, X; Khan, N; Gan, H; Tzelepis, F; Nishimura, T; Park, S-Y; Divangahi, M; Remold, H G

    2017-11-01

    Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mϕ, which is essential for successful pathogenesis in tuberculosis. Here we demonstrate that necrosis of Mtb-infected Mϕ is dependent on the action of the cytosolic Receptor Interacting Protein Kinase 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma-extra large (Bcl-x L ). RIPK3-deficient Mϕ are able to better control bacterial growth in vitro and in vivo. Mechanistically, cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-x L . Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition. Collectively, these events upregulate the level of reactive oxygen species to induce necrosis. Thus, in Mtb-infected Mϕ, mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8-activation.

  11. How Parkinsonian Toxins Dysregulate the Autophagy Machinery

    PubMed Central

    Dagda, Ruben K.; Das Banerjee, Tania; Janda, Elzbieta

    2013-01-01

    Since their discovery, Parkinsonian toxins (6-hydroxydopamine, MPP+, paraquat, and rotenone) have been widely employed as in vivo and in vitro chemical models of Parkinson’s disease (PD). Alterations in mitochondrial homeostasis, protein quality control pathways, and more recently, autophagy/mitophagy have been implicated in neurotoxin models of PD. Here, we highlight the molecular mechanisms by which different PD toxins dysregulate autophagy/mitophagy and how alterations of these pathways play beneficial or detrimental roles in dopamine neurons. The convergent and divergent effects of PD toxins on mitochondrial function and autophagy/mitophagy are also discussed in this review. Furthermore, we propose new diagnostic tools and discuss how pharmacological modulators of autophagy/mitophagy can be developed as disease-modifying treatments for PD. Finally, we discuss the critical need to identify endogenous and synthetic forms of PD toxins and develop efficient health preventive programs to mitigate the risk of developing PD. PMID:24217228

  12. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse, human glioblastomas in the mouse brain in vivo

    PubMed Central

    Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.

    2012-01-01

    SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223

  13. Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma

    PubMed Central

    Tsoli, Maria; Liu, Jie; Franshaw, Laura; Shen, Han; Cheng, Cecilia; Jung, MoonSun; Joshi, Swapna; Ehteda, Anahid; Khan, Aaminah; Montero-Carcabosso, Angel; Dilda, Pierre J.; Hogg, Philip; Ziegler, David S.

    2018-01-01

    Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted. PMID:29484131

  14. A Krebs Cycle Component Limits Caspase Activation Rate through Mitochondrial Surface Restriction of CRL Activation.

    PubMed

    Aram, Lior; Braun, Tslil; Braverman, Carmel; Kaplan, Yosef; Ravid, Liat; Levin-Zaidman, Smadar; Arama, Eli

    2016-04-04

    How cells avoid excessive caspase activity and unwanted cell death during apoptotic caspase-mediated removal of large cellular structures is poorly understood. We investigate caspase-mediated extrusion of spermatid cytoplasmic contents in Drosophila during spermatid individualization. We show that a Krebs cycle component, the ATP-specific form of the succinyl-CoA synthetase β subunit (A-Sβ), binds to and activates the Cullin-3-based ubiquitin ligase (CRL3) complex required for caspase activation in spermatids. In vitro and in vivo evidence suggests that this interaction occurs on the mitochondrial surface, thereby limiting the source of CRL3 complex activation to the vicinity of this organelle and reducing the potential rate of caspase activation by at least 60%. Domain swapping between A-Sβ and the GTP-specific SCSβ (G-Sβ), which functions redundantly in the Krebs cycle, show that the metabolic and structural roles of A-Sβ in spermatids can be uncoupled, highlighting a moonlighting function of this Krebs cycle component in CRL activation. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Skeletal muscle mitochondria: a major player in exercise, health and disease.

    PubMed

    Russell, Aaron P; Foletta, Victoria C; Snow, Rod J; Wadley, Glenn D

    2014-04-01

    Maintaining skeletal muscle mitochondrial content and function is important for sustained health throughout the lifespan. Exercise stimulates important key stress signals that control skeletal mitochondrial biogenesis and function. Perturbations in mitochondrial content and function can directly or indirectly impact skeletal muscle function and consequently whole-body health and wellbeing. This review will describe the exercise-stimulated stress signals and molecular mechanisms positively regulating mitochondrial biogenesis and function. It will then discuss the major myopathies, neuromuscular diseases and conditions such as diabetes and ageing that have dysregulated mitochondrial function. Finally, the impact of exercise and potential pharmacological approaches to improve mitochondrial function in diseased populations will be discussed. Exercise activates key stress signals that positively impact major transcriptional pathways that transcribe genes involved in skeletal muscle mitochondrial biogenesis, fusion and metabolism. The positive impact of exercise is not limited to younger healthy adults but also benefits skeletal muscle from diseased populations and the elderly. Impaired mitochondrial function can directly influence skeletal muscle atrophy and contribute to the risk or severity of disease conditions. Pharmacological manipulation of exercise-induced pathways that increase skeletal muscle mitochondrial biogenesis and function in critically ill patients, where exercise may not be possible, may assist in the treatment of chronic disease. This review highlights our understanding of how exercise positively impacts skeletal muscle mitochondrial biogenesis and function. Exercise not only improves skeletal muscle mitochondrial health but also enables us to identify molecular mechanisms that may be attractive targets for therapeutic manipulation. This article is part of a Special Issue entitled Frontiers of mitochondrial research. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Activation of G protein‐coupled oestrogen receptor 1 at the onset of reperfusion protects the myocardium against ischemia/reperfusion injury by reducing mitochondrial dysfunction and mitophagy

    PubMed Central

    Feng, Yansheng; Madungwe, Ngonidzashe B; da Cruz Junho, Carolina Victoria

    2017-01-01

    Background and Purpose Recent evidence indicates that GPER (G protein‐coupled oestrogen receptor 1) mediates acute pre‐ischaemic oestrogen‐induced protection of the myocardium from ischaemia/reperfusion injury via a signalling cascade that includes PKC translocation, ERK1/2/ GSK‐3β phosphorylation and inhibition of the mitochondrial permeability transition pore (mPTP) opening. Here, we investigated the impact and mechanism involved in post‐ischaemic GPER activation in ischaemia/reperfusion injury. We determined whether GPER activation at the onset of reperfusion confers cardioprotective effects by protecting against mitochondrial impairment and mitophagy. Experimental Approach In vivo rat hearts were subjected to ischaemia followed by reperfusion with oestrogen (17β‐oestradiol, E2), E2 + G15, a GPER antagonist, or vehicle. Myocardial infarct size, the threshold for the opening of mPTP, mitophagy, mitochondrial membrane potential, ROS production, proteins ubiquitinated including cyclophilin D, and phosphorylation levels of ERK and GSK‐3β were measured. Results We found that post‐ischaemic E2 administration to both male and female ovariectomized‐rats reduced myocardial infarct size. Post‐ischaemic E2 administration preserved mitochondrial structural integrity and this was associated with a decrease in ROS production and increased mitochondrial membrane potential, as well as an increase in the mitochondrial Ca2+ load required to induce mPTP opening via activation of the MEK/ERK/GSK‐3β axis. Moreover, E2 reduced mitophagy via the PINK1/Parkin pathway involving LC3I, LC3II and p62 proteins. All these post‐ischaemic effects of E2 were abolished by G15 suggesting a GPER‐dependent mechanism. Conclusion These results indicate that post‐ischaemic GPER activation induces cardioprotective effects against ischaemia/reperfusion injury in males and females by protecting mitochondrial structural integrity and function and reducing mitophagy. PMID:28906548

  17. Synergistic effect of fisetin combined with sorafenib in human cervical cancer HeLa cells through activation of death receptor-5 mediated caspase-8/caspase-3 and the mitochondria-dependent apoptotic pathway.

    PubMed

    Lin, Ming-Te; Lin, Chia-Liang; Lin, Tzu-Yu; Cheng, Chun-Wen; Yang, Shun-Fa; Lin, Chu-Liang; Wu, Chih-Chien; Hsieh, Yi-Hsien; Tsai, Jen-Pi

    2016-05-01

    Combining antitumor agents with bioactive compounds is a potential strategy for improving the effect of chemotherapy on cancer cells. The goal of this study was to elucidate the antitumor effect of the flavonoid, fisetin, combined with the multikinase inhibitor, sorafenib, against human cervical cancer cells in vitro and in vivo. The combination of fisetin and sorafenib synergistically induced apoptosis in HeLa cells, which is accompanied by a marked increase in loss of mitochondrial membrane potential. Apoptosis induction was achieved by caspase-3 and caspase-8 activation which increased the ratio of Bax/Bcl-2 and caused the subsequent cleavage of PARP level while disrupting the mitochondrial membrane potential in HeLa cells. Decreased Bax/Bcl-2 ratio level and mitochondrial membrane potential were also observed in siDR5-treated HeLa cells. In addition, in vivo studies revealed that the combined fisetin and sorafenib treatment was clearly superior to sorafenib treatment alone using a HeLa xenograft model. Our study showed that the combination of fisetin and sorafenib exerted better synergistic effects in vitro and in vivo than either agent used alone against human cervical cancer, and this synergism was based on apoptotic potential through a mitochondrial- and DR5-dependent caspase-8/caspase-3 signaling pathway. This combined fisetin and sorafenib treatment represents a novel therapeutic strategy for further clinical developments in advanced cervical cancer.

  18. The Alzheimer's Disease Mitochondrial Cascade Hypothesis: Progress and Perspectives

    PubMed Central

    Swerdlow, Russell H.; Burns, Jeffrey M.; Khan, Shaharyar M.

    2013-01-01

    Ten years ago we first proposed the Alzheimer's disease (AD) mitochondrial cascade hypothesis. This hypothesis maintains gene inheritance defines an individual's baseline mitochondrial function; inherited and environmental factors determine rates at which mitochondrial function changes over time; and baseline mitochondrial function and mitochondrial change rates influence AD chronology. Our hypothesis unequivocally states in sporadic, late-onset AD, mitochondrial function affects amyloid precursor protein (APP) expression, APP processing, or beta amyloid (Aβ) accumulation and argues if an amyloid cascade truly exists, mitochondrial function triggers it. We now review the state of the mitochondrial cascade hypothesis, and discuss it in the context of recent AD biomarker studies, diagnostic criteria, and clinical trials. Our hypothesis predicts biomarker changes reflect brain aging, new AD definitions clinically stage brain aging, and removing brain Aβ at any point will marginally impact cognitive trajectories. Our hypothesis, therefore, offers unique perspective into what sporadic, late-onset AD is and how to best treat it. PMID:24071439

  19. Direct effects of mitochondrial dysfunction on poor bone health in Leigh syndrome.

    PubMed

    Kato, Hiroki; Han, Xu; Yamaza, Haruyoshi; Masuda, Keiji; Hirofuji, Yuta; Sato, Hiroshi; Pham, Thanh Thi Mai; Taguchi, Tomoaki; Nonaka, Kazuaki

    2017-11-04

    Mitochondrial diseases are the result of aberrant mitochondrial function caused by mutations in either nuclear or mitochondrial DNA. Poor bone health has recently been suggested as a symptom of mitochondrial diseases; however, a direct link between decreased mitochondrial function and poor bone health in mitochondrial disease has not been demonstrated. In this study, stem cells from human exfoliated deciduous teeth (SHED) were isolated from a child with Leigh syndrome (LS), a mitochondrial disease, and the effects of decreased mitochondrial function on poor bone health were analyzed. Compared with control SHED, LS SHED displayed decreased osteoblastic differentiation and calcium mineralization. The intracellular and mitochondrial calcium levels were lower in LS SHED than in control SHED. Furthermore, the mitochondrial activity of LS SHED was decreased compared with control SHED both with and without osteoblastic differentiation. Our results indicate that decreased osteoblast differentiation potential and osteoblast function contribute to poor bone health in mitochondrial diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Autophagy in sepsis: Degradation into exhaustion?

    PubMed

    Ho, Jeffery; Yu, Jun; Wong, Sunny H; Zhang, Lin; Liu, Xiaodong; Wong, Wai T; Leung, Czarina C H; Choi, Gordon; Wang, Maggie H T; Gin, Tony; Chan, Matthew T V; Wu, William K K

    2016-07-02

    Autophagy is one of the innate immune defense mechanisms against microbial challenges. Previous in vitro and in vivo models of sepsis demonstrated that autophagy was activated initially in sepsis, followed by a subsequent phase of impairment. Autophagy modulation appears to be protective against multiple organ injuries in these murine sepsis models. This is achieved in part by preventing apoptosis, maintaining a balance between the productions of pro- and anti-inflammatory cytokines, and preserving mitochondrial functions. This article aims to discuss the role of autophagy in sepsis and the therapeutic potential of autophagy enhancers.

  1. Bim and VDAC1 are hierarchically essential for mitochondrial ATF2 mediated cell death.

    PubMed

    Liu, Zhaoyun; Luo, Qianfu; Guo, Chunbao

    2015-01-01

    ATF2 mediated cytochrome c release is the formation of a channel with some unknown factors larger than that of the individual proteins. BHS-only proteins (BH3s), such as Bim, could induce BAX and VDAC, forming a new channel. According to this facts, we can speculated that there is possible signal relationship with BH3s and ATF2, which is associated with mitochondrial-based death programs. The growth inhibitory effects of mitochondrial ATF2 were tested in cancer cell lines B16F10, A549, EG7, and LL2. Apoptosis was measured by flow cytometry. The effects of ATF2 and levels of apoptosis regulatory proteins were measured by Western blotting. The interaction of proteins were evaluated by immunoprecipitation analysis. The in vivo antitumor activity of mitochondrial ATF2 were tested in xenograft B16F10 models. Genotoxic stress enabled mitochondrial ATF2 accumulation, perturbing the HK1-VDAC1 complex, increasing mitochondrial permeability, and promoting apoptosis. ATF2 inhibition strongly reduced the conformational activation of Bim, suggesting that Bim acts downstream of ATF2. Although Bim downregulation had no effect on ATF2 activation, Bim knockdown abolished VDAC1 activation; the failure of VDAC1 activation in Bim-depleted cells could be reversed by the BH3-only protein mimic ABT-737. We also demonstrate that silencing of ATF2 in B16F10 cells increases both the incidence and prevalence of tumor xenografts in vivo, whereas stably mitochondrial ATF2 transfection inhibited B16F10 tumor xenografts growth. Altogether, these results show that ATF2 is a component of the apoptosis machinery that involves a hierarchical contribution of ATF2, Bim, and VDAC1. Our data offer new insight into the mechanism of mitochondrial ATF2 in mitochondrial apoptosis.

  2. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.

  3. Characterization, design, and function of the mitochondrial proteome: from organs to organisms.

    PubMed

    Lotz, Christopher; Lin, Amanda J; Black, Caitlin M; Zhang, Jun; Lau, Edward; Deng, Ning; Wang, Yueju; Zong, Nobel C; Choi, Jeong H; Xu, Tao; Liem, David A; Korge, Paavo; Weiss, James N; Hermjakob, Henning; Yates, John R; Apweiler, Rolf; Ping, Peipei

    2014-02-07

    Mitochondria are a common energy source for organs and organisms; their diverse functions are specialized according to the unique phenotypes of their hosting environment. Perturbation of mitochondrial homeostasis accompanies significant pathological phenotypes. However, the connections between mitochondrial proteome properties and function remain to be experimentally established on a systematic level. This uncertainty impedes the contextualization and translation of proteomic data to the molecular derivations of mitochondrial diseases. We present a collection of mitochondrial features and functions from four model systems, including two cardiac mitochondrial proteomes from distinct genomes (human and mouse), two unique organ mitochondrial proteomes from identical genetic codons (mouse heart and mouse liver), as well as a relevant metazoan out-group (drosophila). The data, composed of mitochondrial protein abundance and their biochemical activities, capture the core functionalities of these mitochondria. This investigation allowed us to redefine the core mitochondrial proteome from organs and organisms, as well as the relevant contributions from genetic information and hosting milieu. Our study has identified significant enrichment of disease-associated genes and their products. Furthermore, correlational analyses suggest that mitochondrial proteome design is primarily driven by cellular environment. Taken together, these results connect proteome feature with mitochondrial function, providing a prospective resource for mitochondrial pathophysiology and developing novel therapeutic targets in medicine.

  4. Multifunctional G-Rich and RRM-Containing Domains of TbRGG2 Perform Separate yet Essential Functions in Trypanosome RNA Editing

    PubMed Central

    Foda, Bardees M.; Downey, Kurtis M.; Fisk, John C.

    2012-01-01

    Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3′-to-5′ progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain. PMID:22798390

  5. Dietary Apigenin Exerts Immune-Regulatory Activity in Vivo by Reducing NF-κB Activity, Halting Leukocyte Infiltration and Restoring Normal Metabolic Function

    PubMed Central

    Cardenas, Horacio; Arango, Daniel; Nicholas, Courtney; Duarte, Silvia; Nuovo, Gerard J.; He, Wei; Voss, Oliver H.; Gonzalez-Mejia, M. Elba; Guttridge, Denis C.; Grotewold, Erich; Doseff, Andrea I.

    2016-01-01

    The increasing prevalence of inflammatory diseases and the adverse effects associated with the long-term use of current anti-inflammatory therapies prompt the identification of alternative approaches to reestablish immune balance. Apigenin, an abundant dietary flavonoid, is emerging as a potential regulator of inflammation. Here, we show that apigenin has immune-regulatory activity in vivo. Apigenin conferred survival to mice treated with a lethal dose of Lipopolysaccharide (LPS) restoring normal cardiac function and heart mitochondrial Complex I activity. Despite the adverse effects associated with high levels of splenocyte apoptosis in septic models, apigenin had no effect on reducing cell death. However, we found that apigenin decreased LPS-induced apoptosis in lungs, infiltration of inflammatory cells and chemotactic factors’ accumulation, re-establishing normal lung architecture. Using NF-κB luciferase transgenic mice, we found that apigenin effectively modulated NF-κB activity in the lungs, suggesting the ability of dietary compounds to exert immune-regulatory activity in an organ-specific manner. Collectively, these findings provide novel insights into the underlying immune-regulatory mechanisms of dietary nutraceuticals in vivo. PMID:26938530

  6. Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart

    PubMed Central

    Rasmussen, Tyler P.; Wu, Yuejin; Joiner, Mei-ling A.; Koval, Olha M.; Wilson, Nicholas R.; Luczak, Elizabeth D.; Wang, Qinchuan; Chen, Biyi; Gao, Zhan; Zhu, Zhiyong; Wagner, Brett A.; Soto, Jamie; McCormick, Michael L.; Kutschke, William; Weiss, Robert M.; Yu, Liping; Boudreau, Ryan L.; Abel, E. Dale; Zhan, Fenghuang; Spitz, Douglas R.; Buettner, Garry R.; Song, Long-Sheng; Zingman, Leonid V.; Anderson, Mark E.

    2015-01-01

    Myocardial mitochondrial Ca2+ entry enables physiological stress responses but in excess promotes injury and death. However, tissue-specific in vivo systems for testing the role of mitochondrial Ca2+ are lacking. We developed a mouse model with myocardial delimited transgenic expression of a dominant negative (DN) form of the mitochondrial Ca2+ uniporter (MCU). DN-MCU mice lack MCU-mediated mitochondrial Ca2+ entry in myocardium, but, surprisingly, isolated perfused hearts exhibited higher O2 consumption rates (OCR) and impaired pacing induced mechanical performance compared with wild-type (WT) littermate controls. In contrast, OCR in DN-MCU–permeabilized myocardial fibers or isolated mitochondria in low Ca2+ were not increased compared with WT, suggesting that DN-MCU expression increased OCR by enhanced energetic demands related to extramitochondrial Ca2+ homeostasis. Consistent with this, we found that DN-MCU ventricular cardiomyocytes exhibited elevated cytoplasmic [Ca2+] that was partially reversed by ATP dialysis, suggesting that metabolic defects arising from loss of MCU function impaired physiological intracellular Ca2+ homeostasis. Mitochondrial Ca2+ overload is thought to dissipate the inner mitochondrial membrane potential (ΔΨm) and enhance formation of reactive oxygen species (ROS) as a consequence of ischemia-reperfusion injury. Our data show that DN-MCU hearts had preserved ΔΨm and reduced ROS during ischemia reperfusion but were not protected from myocardial death compared with WT. Taken together, our findings show that chronic myocardial MCU inhibition leads to previously unanticipated compensatory changes that affect cytoplasmic Ca2+ homeostasis, reprogram transcription, increase OCR, reduce performance, and prevent anticipated therapeutic responses to ischemia-reperfusion injury. PMID:26153425

  7. Functions of the high mobility group protein, Abf2p, in mitochondrial DNA segregation, recombination and copy number in Saccharomyces cerevisiae.

    PubMed

    Zelenaya-Troitskaya, O; Newman, S M; Okamoto, K; Perlman, P S; Butow, R A

    1998-04-01

    Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (rho+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous deltaabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf2p is known to be required for the maintenance of mtDNA in rho+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in p cells grown on the same medium. The content of both rho+ and rho- mtDNAs is increased in cells by 50-150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf2p by > or = 10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of rho+ mtDNA and a quantitative conversion of rho+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in rho- cells also leads to a loss of mtDNA, but at a slower rate than was observed for rho+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf2p because a mutant Abf2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements deltaabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf2p and green fluorescent protein. These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination.

  8. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes

    PubMed Central

    Peiris, Heshan; Duffield, Michael D.; Fadista, Joao; Kashmir, Vinder; Genders, Amanda J.; McGee, Sean L.; Martin, Alyce M.; Saiedi, Madiha; Morton, Nicholas; Carter, Roderick; Cousin, Michael A.; Oskolkov, Nikolay; Volkov, Petr; Hough, Tertius A.; Fisher, Elizabeth M. C.; Tybulewicz, Victor L. J.; Busciglio, Jorge; Coskun, Pinar E.; Becker, Ann; Belichenko, Pavel V.; Mobley, William C.; Ryan, Michael T.; Chan, Jeng Yie; Laybutt, D. Ross; Coates, P. Toby; Yang, Sijun; Ling, Charlotte; Groop, Leif; Pritchard, Melanie A.; Keating, Damien J.

    2016-01-01

    Type 2 diabetes (T2D) is a complex metabolic disease associated with obesity, insulin resistance and hypoinsulinemia due to pancreatic β-cell dysfunction. Reduced mitochondrial function is thought to be central to β-cell dysfunction. Mitochondrial dysfunction and reduced insulin secretion are also observed in β-cells of humans with the most common human genetic disorder, Down syndrome (DS, Trisomy 21). To identify regions of chromosome 21 that may be associated with perturbed glucose homeostasis we profiled the glycaemic status of different DS mouse models. The Ts65Dn and Dp16 DS mouse lines were hyperglycemic, while Tc1 and Ts1Rhr mice were not, providing us with a region of chromosome 21 containing genes that cause hyperglycemia. We then examined whether any of these genes were upregulated in a set of ~5,000 gene expression changes we had identified in a large gene expression analysis of human T2D β-cells. This approach produced a single gene, RCAN1, as a candidate gene linking hyperglycemia and functional changes in T2D β-cells. Further investigations demonstrated that RCAN1 methylation is reduced in human T2D islets at multiple sites, correlating with increased expression. RCAN1 protein expression was also increased in db/db mouse islets and in human and mouse islets exposed to high glucose. Mice overexpressing RCAN1 had reduced in vivo glucose-stimulated insulin secretion and their β-cells displayed mitochondrial dysfunction including hyperpolarised membrane potential, reduced oxidative phosphorylation and low ATP production. This lack of β-cell ATP had functional consequences by negatively affecting both glucose-stimulated membrane depolarisation and ATP-dependent insulin granule exocytosis. Thus, from amongst the myriad of gene expression changes occurring in T2D β-cells where we had little knowledge of which changes cause β-cell dysfunction, we applied a trisomy 21 screening approach which linked RCAN1 to β-cell mitochondrial dysfunction in T2D. PMID:27195491

  9. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome

    PubMed Central

    Comte, Caroline; Tonin, Yann; Heckel-Mager, Anne-Marie; Boucheham, Abdeldjalil; Smirnov, Alexandre; Auré, Karine; Lombès, Anne; Martin, Robert P.; Entelis, Nina; Tarassov, Ivan

    2013-01-01

    Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases. PMID:23087375

  10. Directed alteration of Saccharomyces cerevisiae mitochondrial DNA by biolistic transformation and homologous recombination.

    PubMed

    Bonnefoy, Nathalie; Fox, Thomas D

    2007-01-01

    Saccharomyces cerevisiae is currently the only species in which genetic transformation of mitochondria can be used to generate a wide variety of defined alterations in mitochondrial deoxyribonucleic acid (mtDNA). DNA sequences can be delivered into yeast mitochondria by microprojectile bombardment (biolistic transformation) and subsequently incorporated into mtDNA by the highly active homologous recombination machinery present in the organelle. Although transformation frequencies are relatively low, the availability of strong mitochondrial selectable markers for the yeast system, both natural and synthetic, makes the isolation of transformants routine. The strategies and procedures reviewed here allow the researcher to insert defined mutations into endogenous mitochondrial genes and to insert new genes into mtDNA. These methods provide powerful in vivo tools for the study of mitochondrial biology.

  11. Application of the principles of systems biology and Wiener's cybernetics for analysis of regulation of energy fluxes in muscle cells in vivo.

    PubMed

    Guzun, Rita; Saks, Valdur

    2010-03-08

    The mechanisms of regulation of respiration and energy fluxes in the cells are analyzed based on the concepts of systems biology, non-equilibrium steady state kinetics and applications of Wiener's cybernetic principles of feedback regulation. Under physiological conditions cardiac function is governed by the Frank-Starling law and the main metabolic characteristic of cardiac muscle cells is metabolic homeostasis, when both workload and respiration rate can be changed manifold at constant intracellular level of phosphocreatine and ATP in the cells. This is not observed in skeletal muscles. Controversies in theoretical explanations of these observations are analyzed. Experimental studies of permeabilized fibers from human skeletal muscle vastus lateralis and adult rat cardiomyocytes showed that the respiration rate is always an apparent hyperbolic but not a sigmoid function of ADP concentration. It is our conclusion that realistic explanations of regulation of energy fluxes in muscle cells require systemic approaches including application of the feedback theory of Wiener's cybernetics in combination with detailed experimental research. Such an analysis reveals the importance of limited permeability of mitochondrial outer membrane for ADP due to interactions of mitochondria with cytoskeleton resulting in quasi-linear dependence of respiration rate on amplitude of cyclic changes in cytoplasmic ADP concentrations. The system of compartmentalized creatine kinase (CK) isoenzymes functionally coupled to ANT and ATPases, and mitochondrial-cytoskeletal interactions separate energy fluxes (mass and energy transfer) from signalling (information transfer) within dissipative metabolic structures - intracellular energetic units (ICEU). Due to the non-equilibrium state of CK reactions, intracellular ATP utilization and mitochondrial ATP regeneration are interconnected by the PCr flux from mitochondria. The feedback regulation of respiration occurring via cyclic fluctuations of cytosolic ADP, Pi and Cr/PCr ensures metabolic stability necessary for normal function of cardiac cells.

  12. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines.

    PubMed

    Dashdorj, Amarjargal; Jyothi, K R; Lim, Sangbin; Jo, Ara; Nguyen, Minh Nam; Ha, Joohun; Yoon, Kyung-Sik; Kim, Hyo Jong; Park, Jae-Hoon; Murphy, Michael P; Kim, Sung Soo

    2013-08-06

    MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease.

  13. Mitochondria-targeted antioxidant MitoQ ameliorates experimental mouse colitis by suppressing NLRP3 inflammasome-mediated inflammatory cytokines

    PubMed Central

    2013-01-01

    Background MitoQ is a mitochondria-targeted derivative of the antioxidant ubiquinone, with antioxidant and anti-apoptotic functions. Reactive oxygen species are involved in many inflammatory diseases including inflammatory bowel disease. In this study, we assessed the therapeutic effects of MitoQ in a mouse model of experimental colitis and investigated the possible mechanisms underlying its effects on intestinal inflammation. Methods Reactive oxygen species levels and mitochondrial function were measured in blood mononuclear cells of patients with inflammatory bowel disease. The effects of MitoQ were evaluated in a dextran sulfate sodium-induced colitis mouse model. Clinical and pathological markers of disease severity and oxidative injury, and levels of inflammatory cytokines in mouse colonic tissue were measured. The effect of MitoQ on inflammatory cytokines released in the human macrophage-like cell line THP-1 was also analyzed. Results Cellular and mitochondrial reactive oxygen species levels in mononuclear cells were significantly higher in patients with inflammatory bowel disease (P <0.003, cellular reactive oxygen species; P <0.001, mitochondrial reactive oxygen species). MitoQ significantly ameliorated colitis in the dextran sulfate sodium-induced mouse model in vivo, reduced the increased oxidative stress response (malondialdehyde and 3-nitrotyrosine formation), and suppressed mitochondrial and histopathological injury by decreasing levels of inflammatory cytokines IL-1 beta and IL-18 (P <0.001 and P <0.01 respectively). By decreasing mitochondrial reactive oxygen species, MitoQ also suppressed activation of the NLRP3 inflammasome that was responsible for maturation of IL-1 beta and IL-18. In vitro studies demonstrated that MitoQ decreases IL-1 beta and IL-18 production in human THP-1 cells. Conclusion Taken together, our results suggest that MitoQ may have potential as a novel therapeutic agent for the treatment of acute phases of inflammatory bowel disease. PMID:23915129

  14. MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype

    PubMed Central

    Hong, Zhigang; Chen, Kuang-Hueih; DasGupta, Asish; Potus, Francois; Dunham-Snary, Kimberly; Bonnet, Sebastien; Tian, Lian; Fu, Jennifer; Breuils-Bonnet, Sandra; Provencher, Steeve; Wu, Danchen; Mewburn, Jeffrey; Ormiston, Mark L.

    2017-01-01

    Rationale: Pulmonary arterial hypertension (PAH) is an obstructive vasculopathy characterized by excessive pulmonary artery smooth muscle cell (PASMC) proliferation, migration, and apoptosis resistance. This cancer-like phenotype is promoted by increased cytosolic calcium ([Ca2+]cyto), aerobic glycolysis, and mitochondrial fission. Objectives: To determine how changes in mitochondrial calcium uniporter (MCU) complex (MCUC) function influence mitochondrial dynamics and contribute to PAH’s cancer-like phenotype. Methods: PASMCs were isolated from patients with PAH and healthy control subjects and assessed for expression of MCUC subunits. Manipulation of the pore-forming subunit, MCU, in PASMCs was achieved through small interfering RNA knockdown or MCU plasmid-mediated up-regulation, as well as through modulation of the upstream microRNAs (miRs) miR-138 and miR-25. In vivo, nebulized anti-miRs were administered to rats with monocrotaline-induced PAH. Measurements and Main Results: Impaired MCUC function, resulting from down-regulation of MCU and up-regulation of an inhibitory subunit, mitochondrial calcium uptake protein 1, is central to PAH’s pathogenesis. MCUC dysfunction decreases intramitochondrial calcium ([Ca2+]mito), inhibiting pyruvate dehydrogenase activity and glucose oxidation, while increasing [Ca2+]cyto, promoting proliferation, migration, and fission. In PAH PASMCs, increasing MCU decreases cell migration, proliferation, and apoptosis resistance by lowering [Ca2+]cyto, raising [Ca2+]mito, and inhibiting fission. In normal PASMCs, MCUC inhibition recapitulates the PAH phenotype. In PAH, elevated miRs (notably miR-138) down-regulate MCU directly and also by decreasing MCU’s transcriptional regulator cAMP response element–binding protein 1. Nebulized anti-miRs against miR-25 and miR-138 restore MCU expression, reduce cell proliferation, and regress established PAH in the monocrotaline model. Conclusions: These results highlight miR-mediated MCUC dysfunction as a unifying mechanism in PAH that can be therapeutically targeted. PMID:27648837

  15. Cathepsin E Promotes Pulmonary Emphysema via Mitochondrial Fission

    PubMed Central

    Zhang, Xuchen; Shan, Peiying; Homer, Robert; Zhang, Yi; Petrache, Irina; Mannam, Praveen; Lee, Patty J.

    2015-01-01

    Emphysema is characterized by loss of lung elasticity and irreversible air space enlargement, usually in the later decades of life. The molecular mechanisms of emphysema remain poorly defined. We identified a role for a novel cathepsin, cathepsin E, in promoting emphysema by inducing mitochondrial fission. Unlike previously reported cysteine cathepsins, which have been implicated in cigarette smoke-induced lung disease, cathepsin E is a nonlysosomal intracellular aspartic protease whose function has been described only in antigen processing. We examined lung tissue sections of persons with chronic obstructive pulmonary disease, a clinical entity that includes emphysematous change. Human chronic obstructive pulmonary disease lungs had markedly increased cathepsin E protein in the lung epithelium. We generated lung epithelial-targeted transgenic cathepsin E mice and found that they develop emphysema. Overexpression of cathepsin E resulted in increased E3 ubiquitin ligase parkin, mitochondrial fission protein dynamin-related protein 1, caspase activation/apoptosis, and ultimately loss of lung parenchyma resembling emphysema. Inhibiting dynamin-related protein 1, using a small molecule inhibitor in vitro or in vivo, inhibited cathepsin E-induced apoptosis and emphysema. To the best of our knowledge, our study is the first to identify links between cathepsin E, mitochondrial fission, and caspase activation/apoptosis in the pathogenesis of pulmonary emphysema. Our data expand the current understanding of molecular mechanisms of emphysema development and may provide new therapeutic targets. PMID:25239563

  16. YiXin-Shu, a ShengMai-San-based traditional Chinese medicine formula, attenuates myocardial ischemia/reperfusion injury by suppressing mitochondrial mediated apoptosis and upregulating liver-X-receptor α.

    PubMed

    Zhao, Yichao; Xu, Longwei; Qiao, Zhiqing; Gao, Lingchen; Ding, Song; Ying, Xiaoying; Su, Yuanyuan; Lin, Nan; He, Ben; Pu, Jun

    2016-03-11

    Positive evidence from clinical trials has fueled growing acceptance of traditional Chinese medicine (TCM) for the treatment of cardiac diseases; however, little is known about the underlying mechanisms. Here, we investigated the nature and underlying mechanisms of the effects of YiXin-Shu (YXS), an antioxidant-enriched TCM formula, on myocardial ischemia/reperfusion (MI/R) injury. YXS pretreatment significantly reduced infarct size and improved viable myocardium metabolism and cardiac function in hypercholesterolemic mice. Mechanistically, YXS attenuated myocardial apoptosis by inhibiting the mitochondrial mediated apoptosis pathway (as reflected by inhibition of mitochondrial swelling, cytochrome c release and caspase-9 activity, and normalization of Bcl-2 and Bax levels) without altering the death receptor and endoplasmic reticulum-stress death pathways. Moreover, YXS reduced oxidative/nitrative stress (as reflected by decreased superoxide and nitrotyrosine content and normalized pro- and anti-oxidant enzyme levels). Interestingly, YXS upregulated endogenous nuclear receptors including LXRα, PPARα, PPARβ and ERα, and in-vivo knockdown of cardiac-specific LXRα significantly blunted the cardio-protective effects of YXS. Collectively, these data show that YXS is effective in mitigating MI/R injury by suppressing mitochondrial mediated apoptosis and oxidative stress and by upregulating LXRα, thereby providing a rationale for future clinical trials and clinical applications.

  17. Increased Ventricular Cerebrospinal Fluid Lactate in Depressed Adolescents

    PubMed Central

    Bradley, Kailyn A. L.; Mao, Xiangling; Case, Julia A. C.; Kang, Guoxin; Shungu, Dikoma C.; Gabbay, Vilma

    2016-01-01

    Background Mitochondrial dysfunction has been increasingly examined as a potential pathogenic event in psychiatric disorders, although its role early in the course of major depressive disorder (MDD) is unclear. Therefore, the purpose of this study was to investigate mitochondrial dysfunction in medication-free adolescents with MDD through in vivo measurements of neurometabolites using high-spatial resolution multislice/multivoxel proton magnetic resonance spectroscopy. Methods Twenty-three adolescents with MDD and 29 healthy controls, ages 12–20, were scanned at 3T and concentrations of ventricular cerebrospinal fluid lactate, as well as N-acetyl-aspartate (NAA), total creatine (tCr), and total choline (tCho) in the bilateral caudate, putamen, and thalamus were reported. Results Adolescents with MDD exhibited increased ventricular lactate compared to healthy controls [F(1, 41) = 6.98, p = .01]. However, there were no group differences in the other neurometabolites. Dimensional analyses in the depressed group showed no relation between any of the neurometabolites and symptomatology, including anhedonia and fatigue. Conclusions Increased ventricular lactate in depressed adolescents suggests mitochondrial dysfunction may be present early in the course of MDD; however it is still not known whether the presence of mitochondrial dysfunction is a trait vulnerability of individuals predisposed to psychopathology or a state feature of the disorder. Therefore, there is a need for larger multimodal studies to clarify these chemical findings in the context of network function. PMID:26802978

  18. Metformin inhibits Branched Chain Amino Acid (BCAA) derived ketoacidosis and promotes metabolic homeostasis in MSUD.

    PubMed

    S Sonnet, Davis; N O'Leary, Monique; A Gutierrez, Mark; M Nguyen, Steven; Mateen, Samiha; Hsu, Yuehmei; P Mitchell, Kylie; J Lopez, Antonio; Vockley, Jerry; K Kennedy, Brian; Ramanathan, Arvind

    2016-07-04

    Maple Syrup Urine Disease (MSUD) is an inherited disorder caused by the dysfunction in the branched chain keto-acid dehydrogenase (BCKDH) enzyme. This leads to buildup of branched-chain keto-acids (BCKA) and branched-chain amino acids (BCAA) in body fluids (e.g. keto-isocaproic acid from the BCAA leucine), leading to numerous clinical features including a less understood skeletal muscle dysfunction in patients. KIC is an inhibitor of mitochondrial function at disease relevant concentrations. A murine model of intermediate MSUD (iMSUD) shows significant skeletal muscle dysfunction as by judged decreased muscle fiber diameter. MSUD is an orphan disease with a need for novel drug interventions. Here using a 96-well plate (liquid chromatography- mass spectrometry (LC-MS) based drug-screening platform we show that Metformin, a widely used anti-diabetic drug, reduces levels of KIC in patient-derived fibroblasts by 20-50%. This Metformin-mediated effect was conserved in vivo; Metformin-treatment significantly reduced levels of KIC in the muscle (by 69%) and serum (by 56%) isolated from iMSUD mice, and restored levels of mitochondrial metabolites (e.g. AMP and other TCA). The drug also decreased the expression of mitochondrial branched chain amino transferase (BCAT) which produces KIC in skeletal muscle. This suggests that Metformin can restore skeletal muscle homeostasis in MSUD by decreasing mitochondrial KIC production.

  19. In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction

    PubMed Central

    Rudolf, Rüdiger; Mongillo, Marco; Magalhães, Paulo J.; Pozzan, Tullio

    2004-01-01

    Although the importance of mitochondria in patho-physiology has become increasingly evident, it remains unclear whether these organelles play a role in Ca2+ handling by skeletal muscle. This undefined situation is mainly due to technical limitations in measuring Ca2+ transients reliably during the contraction–relaxation cycle. Using two-photon microscopy and genetically expressed “cameleon” Ca2+ sensors, we developed a robust system that enables the measurement of both cytoplasmic and mitochondrial Ca2+ transients in vivo. We show here for the first time that, in vivo and under highly physiological conditions, mitochondria in mammalian skeletal muscle take up Ca2+ during contraction induced by motor nerve stimulation and rapidly release it during relaxation. The mitochondrial Ca2+ increase is delayed by a few milliseconds compared with the cytosolic Ca2+ rise and occurs both during a single twitch and upon tetanic contraction. PMID:15314066

  20. Defining a Model for Mitochondrial Function in mESC Differentiation

    EPA Science Inventory

    Defining a Model for Mitochondrial Function in mESC DifferentiationDefining a Model for Mitochondrial Function in mESC Differentiation Differentiating embryonic stem cells (ESCs) undergo mitochondrial maturation leading to a switch from a system dependent upon glycolysis to a re...

  1. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans

    PubMed Central

    Godebo, Tewodros R.; Bhatt, Dhaval P.; Ilkayeva, Olga R.; Maurer, Laura L.; Hirschey, Matthew D.; Meyer, Joel N.

    2016-01-01

    Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace. PMID:27208080

  2. Analysis of the acute response of Galleria mellonella larvae to potassium nitrate.

    PubMed

    Maguire, Ronan; Kunc, Martin; Hyrsl, Pavel; Kavanagh, Kevin

    2017-05-01

    Potassium nitrate (E252) is widely used as a food preservative and has applications in the treatment of high blood pressure however high doses are carcinogenic. Larvae of Galleria mellonella were administered potassium nitrate to establish whether the acute effects in larvae correlated with those evident in mammals. Intra-haemocoel injection of potassium nitrate resulted in a significant increase in the density of circulating haemocytes and a small change in the relative proportions of haemocytes but haemocytes showed a reduced fungicidal ability. Potassium nitrate administration resulted in increased superoxide dismutase activity and in the abundance of a range of proteins associated with mitochondrial function (e.g. mitochondrial aldehyde dehydrogenase, putative mitochondrial Mn superoxide dismutase), metabolism (e.g. triosephosphate isomerase, glyceraldehyde 3 phosphate dehydrogenase) and nitrate metabolism (e.g. aliphatic nitrilase, glutathione S-transferase). A strong correlation exists between the toxicity of a range of food preservatives when tested in G. mellonella larvae and rats. In this work a correlation between the effect of potassium nitrate in larvae and mammals is shown and opens the way to the utilization of insects for studying the in vivo acute and chronic toxicity of xenobiotics. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Formation of electrophilic oxidation products from mitochondrial cardiolipin in vitro and in vivo in the context of apoptosis and atherosclerosis.

    PubMed

    Zhong, Huiqin; Lu, Jianhong; Xia, Lin; Zhu, Mingjiang; Yin, Huiyong

    2014-01-01

    Emerging evidence indicates that mitochondrial cardiolipins (CL) are prone to free radical oxidation and this process appears to be intimately associated with multiple biological functions of mitochondria. Our previous work demonstrated that a significant amount of potent lipid electrophiles including 4-hydroxy-nonenal (4-HNE) was generated from CL oxidation through a novel chemical mechanism. Here we provide further evidence that a characteristic class of CL oxidation products, epoxyalcohol-aldehyde-CL (EAA-CL), is formed through this novel mechanism in isolated mice liver mitochondria when treated with the pro-apoptotic protein t-Bid to induce cyt c release. Generation of these oxidation products are dose-dependently attenuated by a peroxidase inhibitor acetaminophen (ApAP). Using a mouse model of atherosclerosis, we detected significant amount of these CL oxidation products in liver tissue of low density lipoprotein receptor knockout (LDLR -/-) mice after Western diet feeding. Our studies highlight the importance of lipid electrophiles formation from CL oxidation in the settings of apoptosis and atherosclerosis as inhibition of CL oxidation and lipid electrophiles formation may have potential therapeutic value in diseases linked to oxidant stress and mitochondrial dysfunctions.

  4. TMEM14C is required for erythroid mitochondrial heme metabolism

    PubMed Central

    Yien, Yvette Y.; Robledo, Raymond F.; Schultz, Iman J.; Takahashi-Makise, Naoko; Gwynn, Babette; Bauer, Daniel E.; Dass, Abhishek; Yi, Gloria; Li, Liangtao; Hildick-Smith, Gordon J.; Cooney, Jeffrey D.; Pierce, Eric L.; Mohler, Kyla; Dailey, Tamara A.; Miyata, Non; Kingsley, Paul D.; Garone, Caterina; Hattangadi, Shilpa M.; Huang, Hui; Chen, Wen; Keenan, Ellen M.; Shah, Dhvanit I.; Schlaeger, Thorsten M.; DiMauro, Salvatore; Orkin, Stuart H.; Cantor, Alan B.; Palis, James; Koehler, Carla M.; Lodish, Harvey F.; Kaplan, Jerry; Ward, Diane M.; Dailey, Harry A.; Phillips, John D.; Peters, Luanne L.; Paw, Barry H.

    2014-01-01

    The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias. PMID:25157825

  5. Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart

    PubMed Central

    Power, Amelia; Pearson, Nicholas; Pham, Toan; Cheung, Carlos; Phillips, Anthony; Hickey, Anthony

    2014-01-01

    Abstract Heart failure is a common cause of death with hyperthermia, and the exact cause of hyperthermic heart failure appears elusive. We hypothesize that the energy supply (ATP) of the heart may become impaired due to increased inner‐mitochondrial membrane permeability and inefficient oxidative phosphorylation (OXPHOS). Therefore, we assessed isolated working heart and mitochondrial function. Ex vivo working rat hearts were perfused between 37 and 43.5°C and showed break points in all functional parameters at ~40.5°C. Mitochondrial high‐resolution respirometry coupled to fluorometry was employed to determine the effects of hyperthermia on OXPHOS and mitochondrial membrane potential (ΔΨ) in vitro using a comprehensive metabolic substrate complement with isolated mitochondria. Relative to 37 and 40°C, 43°C elevated Leak O2 flux and depressed OXPHOS O2 flux and ∆Ψ. Measurement of steady‐state ATP production from mitochondria revealed decreased ATP synthesis capacity, and a negative steady‐state P:O ratio at 43°C. This approach offers a more powerful analysis of the effects of temperature on OXPHOS that cannot be measured using simple measures such as the traditional respiratory control ratio (RCR) or P:O ratio, which, respectively, can only approach 1 or 0 with inner‐membrane failure. At 40°C there was only a slight enhancement of the Leak O2 flux and this did not significantly affect ATP production rate. Therefore, during mild hyperthermia (40°C) there is no enhancement of ATP supply by mitochondria, to accompany increasing cardiac energy demands, while between this and critical hyperthermia (43°C), mitochondria become net consumers of ATP. This consumption may contribute to cardiac failure or permanent damage during severe hyperthermia. PMID:25263202

  6. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy

    PubMed Central

    Manole, Andreea; Jaunmuktane, Zane; Hargreaves, Iain; Ludtmann, Marthe H R; Salpietro, Vincenzo; Bello, Oscar D; Pope, Simon; Pandraud, Amelie; Horga, Alejandro; Scalco, Renata S; Li, Abi; Ashokkumar, Balasubramaniem; Lourenço, Charles M; Heales, Simon; Horvath, Rita; Chinnery, Patrick F; Toro, Camilo; Singleton, Andrew B; Jacques, Thomas S; Abramov, Andrey Y; Muntoni, Francesco; Hanna, Michael G; Reilly, Mary M; Revesz, Tamas; Kullmann, Dimitri M

    2017-01-01

    Abstract Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column–medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy. PMID:29053833

  7. Clinical, pathological and functional characterization of riboflavin-responsive neuropathy.

    PubMed

    Manole, Andreea; Jaunmuktane, Zane; Hargreaves, Iain; Ludtmann, Marthe H R; Salpietro, Vincenzo; Bello, Oscar D; Pope, Simon; Pandraud, Amelie; Horga, Alejandro; Scalco, Renata S; Li, Abi; Ashokkumar, Balasubramaniem; Lourenço, Charles M; Heales, Simon; Horvath, Rita; Chinnery, Patrick F; Toro, Camilo; Singleton, Andrew B; Jacques, Thomas S; Abramov, Andrey Y; Muntoni, Francesco; Hanna, Michael G; Reilly, Mary M; Revesz, Tamas; Kullmann, Dimitri M; Jepson, James E C; Houlden, Henry

    2017-11-01

    Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  8. Diabetes of the liver: the link between nonalcoholic fatty liver disease and HFCS-55.

    PubMed

    Collison, Kate S; Saleh, Soad M; Bakheet, Razan H; Al-Rabiah, Rana K; Inglis, Angela L; Makhoul, Nadine J; Maqbool, Zakia M; Zaidi, Marya Zia; Al-Johi, Mohammed A; Al-Mohanna, Futwan A

    2009-11-01

    Nonalcoholic fatty liver disease (NAFLD) is associated with obesity and insulin resistance. It is also a predisposing factor for type 2 diabetes. Dietary factors are believed to contribute to all three diseases. NAFLD is characterized by increased intrahepatic fat and mitochondrial dysfunction, and its etiology may be attributed to excessive fructose intake. Consumption of high fructose corn syrup-55 (HFCS-55) stands at up to 15% of the average total daily energy intake in the United States, and is linked to weight gain and obesity. The aim of this study was to establish whether HFCS-55 could contribute to the pathogenesis of NAFLD, by examining the effects of HFCS-55 on hepatocyte lipogenesis, insulin signaling, and cellular function, in vitro and in vivo. Exposure of hepatocytes to HFCS-55 caused a significant increase in hepatocellular triglyceride (TG) and lipogenic proteins. Basal production of reactive oxygen metabolite (ROM) was increased, together with a decreased capacity to respond to an oxidative challenge. HFCS-55 induced a downregulation of the insulin signaling pathway, as indicated by attenuated (ser473)phosphorylation of AKT1. The c-Jun amino-terminal kinase (JNK), which is intimately linked to insulin resistance, was also activated; and this was accompanied by an increase in endoplasmic reticulum (ER) stress and intracellular free calcium perturbation. Hepatocytes exposed to HFCS-55 exhibited mitochondrial dysfunction and released cytochrome C (CytC) into the cytosol. Hepatic steatosis and mitochondrial disruption was induced in vivo by a diet enriched with 20% HFCS 55; accompanied by hypoadiponectinemia and elevated fasting serum insulin and retinol-binding protein-4 (RBP4) levels. Taken together our findings indicate a potential mechanism by which HFCS-55 may contribute to the pathogenesis of NAFLD.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobinoff, A.P.; Pye, V.; Nixon, B.

    Benzo(a)pyrene (BaP) is an ovotoxic constituent of cigarette smoke associated with pre-mature ovarian failure and decreased rates of conception in IVF patients. Although the overall effect of BaP on female fertility has been documented, the exact molecular mechanisms behind its ovotoxicity remain elusive. In this study we examined the effects of BaP exposure on the ovarian transcriptome, and observed the effects of in vivo exposure on oocyte dysfunction. Microarray analysis of BaP cultured neonatal ovaries revealed a complex mechanism of ovotoxicity involving a small cohort of genes associated with follicular growth, cell cycle progression, and cell death. Histomorphological and immunohistochemicalmore » analysis supported these results, with BaP exposure causing increased primordial follicle activation and developing follicle atresia in vitro and in vivo. Functional analysis of oocytes obtained from adult Swiss mice treated neonatally revealed significantly increased levels of mitochondrial ROS/lipid peroxidation, and severely reduced sperm-egg binding and fusion in both low (1.5 mg/kg/daily) and high (3 mg/kg/daily) dose treatments. Our results reveal a complex mechanism of BaP induced ovotoxicity involving developing follicle atresia and accelerated primordial follicle activation, and suggest short term neonatal BaP exposure causes mitochondrial leakage resulting in reduced oolemma fluidity and impaired fertilisation in adulthood. This study highlights BaP as a key compound which may be partially responsible for the documented effects of cigarette smoke on follicular development and sub-fertility. -- Highlights: ► BaP exposure up-regulates canonical pathways linked with follicular growth/atresia. ► BaP causes primordial follicle activation and developing follicle atresia. ► BaP causes oocyte mitochondrial ROS and lipid peroxidation, impairing fertilisation. ► Short term neonatal BaP exposure compromises adult oocyte quality.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gacias, Mar; Perez-Marti, Albert; Pujol-Vidal, Magdalena

    Highlights: Black-Right-Pointing-Pointer The Cact gene is induced in mouse skeletal muscle after 24 h of fasting. Black-Right-Pointing-Pointer The Cact gene contains a functional consensus sequence for ERR. Black-Right-Pointing-Pointer This sequence binds ERR{alpha} both in vivo and in vitro. Black-Right-Pointing-Pointer This ERRE is required for the activation of Cact expression by the PGC-1/ERR axis. Black-Right-Pointing-Pointer Our results add Cact as a genuine gene target of these transcriptional regulators. -- Abstract: Carnitine/acylcarnitine translocase (CACT) is a mitochondrial-membrane carrier proteins that mediates the transport of acylcarnitines into the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. CACT deficiency causes amore » variety of pathological conditions, such as hypoketotic hypoglycemia, cardiac arrest, hepatomegaly, hepatic dysfunction and muscle weakness, and it can be fatal in newborns and infants. Here we report that expression of the Cact gene is induced in mouse skeletal muscle after 24 h of fasting. To gain insight into the control of Cact gene expression, we examine the transcriptional regulation of the mouse Cact gene. We show that the 5 Prime -flanking region of this gene is transcriptionally active and contains a consensus sequence for the estrogen-related receptor (ERR), a member of the nuclear receptor family of transcription factors. This sequence binds ERR{alpha}in vivo and in vitro and is required for the activation of Cact expression by the peroxisome proliferator-activated receptor gamma coactivator (PGC)-1/ERR axis. We also demonstrate that XTC790, the inverse agonist of ERR{alpha}, specifically blocks Cact activation by PGC-1{beta} in C2C12 cells.« less

  11. Impaired quality of life in growth hormone-deficient adults is independent of the altered skeletal muscle oxidative metabolism found in conditions with peripheral fatigue.

    PubMed

    Sinha, Akash; Hollingsworth, Kieren G; Ball, Steve; Cheetham, Tim

    2014-01-01

    Growth hormone-deficient (GHD) adults often report impaired quality of life (QoL) - with fatigue, a key element. This deficit can improve following GH replacement. The basis of this response is unclear. Perturbations in skeletal muscle metabolism have been demonstrated in several conditions in which fatigue is a prominent symptom. We wished to define the role of skeletal muscle metabolism in the impaired QoL observed in patients with GHD. To compare in vivo skeletal muscle mitochondrial oxidative phosphorylation using phosphorus-31 magnetic resonance spectroscopy in matched untreated GHD adults, treated GHD adults and healthy volunteers. Twenty-two untreated GHD adults, 23 treated GHD adults and 20 healthy volunteers were recruited at a regional centre. All patients underwent assessment of muscle mitochondrial function (τ₁/₂ PCr) and proton handling using spectroscopy. Fasting biochemical analyses and anthropometric measurement were obtained. All patients completed the QoL-AGHDA and physical activity assessment (IPAQ) questionnaires. Untreated and treated GHD adults complained of significantly increased fatigue and an impaired QoL (P = 0·002) when compared to healthy controls. There was no difference in maximal mitochondrial function (P = 0·53) nor pH recovery (P = 0·38) of skeletal muscle between the three groups. Untreated GHD patients had significantly lower IGF-1 than both treated GHD and healthy volunteers (P < 0·001), but there was no association between τ₁/₂ PCr and serum IGF-1 (r = -0·13, P = 0·32). The impaired QoL seen in GHD adults is not associated with the skeletal muscle spectroscopic 'footprint' of altered mitochondrial oxidative function, anaerobic glycolysis or proton clearance that are a feature of several conditions in which fatigue is a prominent feature. These data suggest that the pathophysiology of fatigue and impaired QoL in GHD may have a significant central rather than peripheral (skeletal muscle) component. © 2013 John Wiley & Sons Ltd.

  12. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

    PubMed Central

    Khacho, Mireille; Tarabay, Michelle; Patten, David; Khacho, Pamela; MacLaurin, Jason G.; Guadagno, Jennifer; Bergeron, Richard; Cregan, Sean P.; Harper, Mary-Ellen; Park, David S.; Slack, Ruth S.

    2014-01-01

    Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. PMID:24686499

  13. Ischemic preconditioning improves mitochondrial tolerance to experimental calcium overload.

    PubMed

    Crestanello, Juan A; Doliba, Nicolai M; Babsky, Andriy M; Doliba, Natalia M; Niibori, Koki; Whitman, Glenn J R; Osbakken, Mary D

    2002-04-01

    Ca(2+) overload leads to mitochondrial uncoupling, decreased ATP synthesis, and myocardial dysfunction. Pharmacologically opening of mitochondrial K(ATP) channels decreases mitochondrial Ca(2+) uptake, improving mitochondrial function during Ca(2+) overload. Ischemic preconditioning (IPC), by activating mitochondrial K(ATP) channels, may attenuate mitochondrial Ca(2+) overload and improve mitochondrial function during reperfusion. The purpose of these experiments was to study the effect of IPC (1) on mitochondrial function and (2) on mitochondrial tolerance to experimental Ca(2+) overload. Rat hearts (n = 6/group) were subjected to (a) 30 min of equilibration, 25 min of ischemia, and 30 min of reperfusion (Control) or (b) two 5-min episodes of ischemic preconditioning, 25 min of ischemia, and 30 min of reperfusion (IPC). Developed pressure (DP) was measured. Heart mitochondria were isolated at end-Equilibration (end-EQ) and at end-Reperfusion (end-RP). Mitochondrial respiratory function (state 2, oxygen consumption with substrate only; state 3, oxygen consumption stimulated by ADP; state 4, oxygen consumption after cessation of ADP phosphorylation; respiratory control index (RCI, state 3/state 4); rate of oxidative phosphorylation (ADP/Deltat), and ADP:O ratio) was measured with polarography using alpha-ketoglutarate as a substrate in the presence of different Ca(2+) concentrations (0 to 5 x 10(-7) M) to simulate Ca(2+) overload. IPC improved DP at end-RP. IPC did not improve preischemic mitochondrial respiratory function or preischemic mitochondrial response to Ca(2+) loading. IPC improved state 3, ADP/Deltat, and RCI during RP. Low Ca(2+) levels (0.5 and 1 x 10(-7) M) stimulated mitochondrial function in both groups predominantly in IPC. The Control group showed evidence of mitochondrial uncoupling at lower Ca(2+) concentrations (1 x 10(-7) M). IPC preserved state 3 at high Ca(2+) concentrations. The cardioprotective effect of IPC results, in part, from preserving mitochondrial function during reperfusion and increasing mitochondrial tolerance to Ca(2+) loading at end-RP. Activation of mitochondrial K(ATP) channels by IPC and their improvement in Ca(2+) homeostasis during RP may be the mechanism underlying this protection.

  14. Mitochondrial bioenergetics and drug-induced toxicity in a panel of mouse embryonic fibroblasts with mitochondrial DNA single nucleotide polymorphisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pereira, Claudia V.; Oliveira, Paulo J.; Will, Yvonne

    2012-10-15

    Mitochondrial DNA (mtDNA) variations including single nucleotide polymorphisms (SNPs) have been proposed to be involved in idiosyncratic drug reactions. However, current in vitro and in vivo models lack the genetic diversity seen in the human population. Our hypothesis is that different cell strains with distinct mtDNA SNPs may have different mitochondrial bioenergetic profiles and may therefore vary in their response to drug-induced toxicity. Therefore, we used an in vitro system composed of four strains of mouse embryonic fibroblasts (MEFs) with mtDNA polymorphisms. We sequenced mtDNA from embryonic fibroblasts isolated from four mouse strains, C57BL/6J, MOLF/EiJ, CZECHII/EiJ and PERA/EiJ, with themore » latter two being sequenced for the first time. The bioenergetic profile of the four strains of MEFs was investigated at both passages 3 and 10. Our results showed that there were clear differences among the four strains of MEFs at both passages, with CZECHII/EiJ having a lower mitochondrial robustness when compared to C57BL/6J, followed by MOLF/EiJ and PERA/EiJ. Seven drugs known to impair mitochondrial function were tested for their effect on the ATP content of the four strains of MEFs in both glucose- and galactose-containing media. Our results showed that there were strain-dependent differences in the response to some of the drugs. We propose that this model is a useful starting point to study compounds that may cause mitochondrial off-target toxicity in early stages of drug development, thus decreasing the number of experimental animals used. -- Highlights: ► mtDNA SNPs may be linked to individual predisposition to drug-induced toxicity. ► CZECHII/EiJ and PERA/EiJ mtDNA was sequenced for the first time in this study. ► Strain-dependent mitochondrial capacity differences were measured. ► Strain-dependent differences in response to mitochondrial toxicants were observed.« less

  15. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  17. Targeting Endoplasmic Reticulum and/or Mitochondrial Ca2+ Fluxes as Therapeutic Strategy for HCV Infection.

    PubMed

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-01-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca 2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  18. Targeting endoplasmic reticulum and/or mitochondrial Ca2+ fluxes as therapeutic strategy for HCV infection

    NASA Astrophysics Data System (ADS)

    Scrima, Rosella; Piccoli, Claudia; Moradpour, Darius; Capitanio, Nazzareno

    2018-03-01

    Chronic hepatitis C is characterized by metabolic disorders and by a microenvironment in the liver dominated by oxidative stress, inflammation and regeneration processes that can in the long term lead to liver cirrhosis and hepatocellular carcinoma. Several lines of evidence suggest that mitochondrial dysfunctions play a central role in these processes. However, how these dysfunctions are induced by the virus and whether they play a role in disease progression and neoplastic transformation remains to be determined. Most in vitro studies performed so far have shown that several of the hepatitis C virus (HCV) proteins also localize to mitochondria, but the consequences of these interactions on mitochondrial functions remain contradictory and need to be confirmed in the context of productively replicating virus and physiologically relevant in vitro and in vivo model systems. In the past decade we have been proposing a temporal sequence of events in the HCV-infected cell whereby the primary alteration is localized at the mitochondria-associated ER membranes and causes release of Ca2+ from the ER, followed by uptake into mitochondria. This ensues successive mitochondrial dysfunction leading to the generation of reactive oxygen and nitrogen species and a progressive metabolic adaptive response consisting in decreased oxidative phosphorylation and enhanced aerobic glycolysis and lipogenesis. Here we resume the major results provided by our group in the context of HCV-mediated alterations of the cellular inter-compartmental calcium flux homeostasis and present new evidence suggesting targeting of ER and/or mitochondrial calcium transporters as a novel therapeutic strategy.

  19. ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo.

    PubMed

    Beilschmidt, Lena Kristina; Ollagnier de Choudens, Sandrine; Fournier, Marjorie; Sanakis, Ioannis; Hograindleur, Marc-André; Clémancey, Martin; Blondin, Geneviève; Schmucker, Stéphane; Eisenmann, Aurélie; Weiss, Amélie; Koebel, Pascale; Messaddeq, Nadia; Puccio, Hélène; Martelli, Alain

    2017-05-11

    Mammalian A-type proteins, ISCA1 and ISCA2, are evolutionarily conserved proteins involved in iron-sulfur cluster (Fe-S) biogenesis. Recently, it was shown that ISCA1 and ISCA2 form a heterocomplex that is implicated in the maturation of mitochondrial Fe 4 S 4 proteins. Here we report that mouse ISCA1 and ISCA2 are Fe 2 S 2 -containing proteins that combine all features of Fe-S carrier proteins. We use biochemical, spectroscopic and in vivo approaches to demonstrate that despite forming a complex, ISCA1 and ISCA2 establish discrete interactions with components of the late Fe-S machinery. Surprisingly, knockdown experiments in mouse skeletal muscle and in primary cultures of neurons suggest that ISCA1, but not ISCA2, is required for mitochondrial Fe 4 S 4 proteins biogenesis. Collectively, our data suggest that cellular processes with different requirements for ISCA1, ISCA2 and ISCA1-ISCA2 complex seem to exist.

  20. ISCA1 is essential for mitochondrial Fe4S4 biogenesis in vivo

    PubMed Central

    Beilschmidt, Lena Kristina; Ollagnier de Choudens, Sandrine; Fournier, Marjorie; Sanakis, Ioannis; Hograindleur, Marc-André; Clémancey, Martin; Blondin, Geneviève; Schmucker, Stéphane; Eisenmann, Aurélie; Weiss, Amélie; Koebel, Pascale; Messaddeq, Nadia; Puccio, Hélène; Martelli, Alain

    2017-01-01

    Mammalian A-type proteins, ISCA1 and ISCA2, are evolutionarily conserved proteins involved in iron–sulfur cluster (Fe–S) biogenesis. Recently, it was shown that ISCA1 and ISCA2 form a heterocomplex that is implicated in the maturation of mitochondrial Fe4S4 proteins. Here we report that mouse ISCA1 and ISCA2 are Fe2S2-containing proteins that combine all features of Fe–S carrier proteins. We use biochemical, spectroscopic and in vivo approaches to demonstrate that despite forming a complex, ISCA1 and ISCA2 establish discrete interactions with components of the late Fe–S machinery. Surprisingly, knockdown experiments in mouse skeletal muscle and in primary cultures of neurons suggest that ISCA1, but not ISCA2, is required for mitochondrial Fe4S4 proteins biogenesis. Collectively, our data suggest that cellular processes with different requirements for ISCA1, ISCA2 and ISCA1–ISCA2 complex seem to exist. PMID:28492233

  1. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  2. Mitochondrial optic neuropathies – Disease mechanisms and therapeutic strategies

    PubMed Central

    Yu-Wai-Man, Patrick; Griffiths, Philip G.; Chinnery, Patrick F.

    2011-01-01

    Leber hereditary optic neuropathy (LHON) and autosomal-dominant optic atrophy (DOA) are the two most common inherited optic neuropathies in the general population. Both disorders share striking pathological similarities, marked by the selective loss of retinal ganglion cells (RGCs) and the early involvement of the papillomacular bundle. Three mitochondrial DNA (mtDNA) point mutations; m.3460G>A, m.11778G>A, and m.14484T>C account for over 90% of LHON cases, and in DOA, the majority of affected families harbour mutations in the OPA1 gene, which codes for a mitochondrial inner membrane protein. Optic nerve degeneration in LHON and DOA is therefore due to disturbed mitochondrial function and a predominantly complex I respiratory chain defect has been identified using both in vitro and in vivo biochemical assays. However, the trigger for RGC loss is much more complex than a simple bioenergetic crisis and other important disease mechanisms have emerged relating to mitochondrial network dynamics, mtDNA maintenance, axonal transport, and the involvement of the cytoskeleton in maintaining a differential mitochondrial gradient at sites such as the lamina cribosa. The downstream consequences of these mitochondrial disturbances are likely to be influenced by the local cellular milieu. The vulnerability of RGCs in LHON and DOA could derive not only from tissue-specific, genetically-determined biological factors, but also from an increased susceptibility to exogenous influences such as light exposure, smoking, and pharmacological agents with putative mitochondrial toxic effects. Our concept of inherited mitochondrial optic neuropathies has evolved over the past decade, with the observation that patients with LHON and DOA can manifest a much broader phenotypic spectrum than pure optic nerve involvement. Interestingly, these phenotypes are sometimes clinically indistinguishable from other neurodegenerative disorders such as Charcot-Marie-Tooth disease, hereditary spastic paraplegia, and multiple sclerosis, where mitochondrial dysfunction is also thought to be an important pathophysiological player. A number of vertebrate and invertebrate disease models has recently been established to circumvent the lack of human tissues, and these have already provided considerable insight by allowing direct RGC experimentation. The ultimate goal is to translate these research advances into clinical practice and new treatment strategies are currently being investigated to improve the visual prognosis for patients with mitochondrial optic neuropathies. PMID:21112411

  3. Do mitochondria play a role in remodelling lace plant leaves during programmed cell death?

    PubMed Central

    2011-01-01

    Background Programmed cell death (PCD) is the regulated death of cells within an organism. The lace plant (Aponogeton madagascariensis) produces perforations in its leaves through PCD. The leaves of the plant consist of a latticework of longitudinal and transverse veins enclosing areoles. PCD occurs in the cells at the center of these areoles and progresses outwards, stopping approximately five cells from the vasculature. The role of mitochondria during PCD has been recognized in animals; however, it has been less studied during PCD in plants. Results The following paper elucidates the role of mitochondrial dynamics during developmentally regulated PCD in vivo in A. madagascariensis. A single areole within a window stage leaf (PCD is occurring) was divided into three areas based on the progression of PCD; cells that will not undergo PCD (NPCD), cells in early stages of PCD (EPCD), and cells in late stages of PCD (LPCD). Window stage leaves were stained with the mitochondrial dye MitoTracker Red CMXRos and examined. Mitochondrial dynamics were delineated into four categories (M1-M4) based on characteristics including distribution, motility, and membrane potential (ΔΨm). A TUNEL assay showed fragmented nDNA in a gradient over these mitochondrial stages. Chloroplasts and transvacuolar strands were also examined using live cell imaging. The possible importance of mitochondrial permeability transition pore (PTP) formation during PCD was indirectly examined via in vivo cyclosporine A (CsA) treatment. This treatment resulted in lace plant leaves with a significantly lower number of perforations compared to controls, and that displayed mitochondrial dynamics similar to that of non-PCD cells. Conclusions Results depicted mitochondrial dynamics in vivo as PCD progresses within the lace plant, and highlight the correlation of this organelle with other organelles during developmental PCD. To the best of our knowledge, this is the first report of mitochondria and chloroplasts moving on transvacuolar strands to form a ring structure surrounding the nucleus during developmental PCD. Also, for the first time, we have shown the feasibility for the use of CsA in a whole plant system. Overall, our findings implicate the mitochondria as playing a critical and early role in developmentally regulated PCD in the lace plant. PMID:21645374

  4. A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae

    PubMed Central

    Pernice, Wolfgang M.; Vevea, Jason D.; Pon, Liza A.

    2016-01-01

    Previous studies indicate that replicative lifespan in daughter cells of Sacchraromyces cerevisiae depends on the preferential inheritance of young, high-functioning mitochondria. We report here that mitochondria are functionally segregated even within single mother cells in S. cerevisiae. A high-functioning population of mitochondria accumulates at the tip of the mother cell distal to the bud. We find that the mitochondrial F-box protein (Mfb1p) localizes to mitochondria in the mother tip and is required for mitochondrial anchorage at that site, independent of the previously identified anchorage protein Num1p. Deletion of MFB1 results in loss of the mother-tip-localized mitochondrial population, defects in mitochondrial function and premature replicative ageing. Inhibiting mitochondrial inheritance to buds, by deletion of MMR1, in mfb1Δ cells restores mitochondrial distribution, promotes mitochondrial function and extends replicative lifespan. Our results identify a mechanism that retains a reservoir of high-functioning mitochondria in mother cells and thereby preserves maternal reproductive capacity. PMID:26839174

  5. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, TongFa; Gao, DaQuan; Fang, Zheng-yu, E-mail: fangzhengyu158@sina.com

    In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrinmore » A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. - Highlights: • PF-543 is anti-proliferative and cytotoxic to established and primary CRC cells. • PF-543 induces programmed necrosis, but not apoptosis, in CRC cells. • Modulation of mitochondrial protein cyclophilin-D alters PF-543's sensitivity. • PF-543 inhibits HCT-116 xenograft growth in SCID mice, improving mice survival. • Co-administration of cyclophilin-D inhibitor CsA inhibits PF-543's activity in vivo.« less

  6. JNK Activation of BIM Promotes Hepatic Oxidative Stress, Steatosis, and Insulin Resistance in Obesity.

    PubMed

    Litwak, Sara A; Pang, Lokman; Galic, Sandra; Igoillo-Esteve, Mariana; Stanley, William J; Turatsinze, Jean-Valery; Loh, Kim; Thomas, Helen E; Sharma, Arpeeta; Trepo, Eric; Moreno, Christophe; Gough, Daniel J; Eizirik, Decio L; de Haan, Judy B; Gurzov, Esteban N

    2017-12-01

    The members of the BCL-2 family are crucial regulators of the mitochondrial pathway of apoptosis in normal physiology and disease. Besides their role in cell death, BCL-2 proteins have been implicated in the regulation of mitochondrial oxidative phosphorylation and cellular metabolism. It remains unclear, however, whether these proteins have a physiological role in glucose homeostasis and metabolism in vivo. In this study, we report that fat accumulation in the liver increases c-Jun N-terminal kinase-dependent BCL-2 interacting mediator of cell death (BIM) expression in hepatocytes. To determine the consequences of hepatic BIM deficiency in diet-induced obesity, we generated liver-specific BIM-knockout (BLKO) mice. BLKO mice had lower hepatic lipid content, increased insulin signaling, and improved global glucose metabolism. Consistent with these findings, lipogenic and lipid uptake genes were downregulated and lipid oxidation enhanced in obese BLKO mice. Mechanistically, BIM deficiency improved mitochondrial function and decreased oxidative stress and oxidation of protein tyrosine phosphatases, and ameliorated activation of peroxisome proliferator-activated receptor γ/sterol regulatory element-binding protein 1/CD36 in hepatocytes from high fat-fed mice. Importantly, short-term knockdown of BIM rescued obese mice from insulin resistance, evidenced by reduced fat accumulation and improved insulin sensitivity. Our data indicate that BIM is an important regulator of liver dysfunction in obesity and a novel therapeutic target for restoring hepatocyte function. © 2017 by the American Diabetes Association.

  7. Understanding the Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 1 (MMDS1)-Impact of a Disease-Causing Gly208Cys Substitution on Structure and Activity of NFU1 in the Fe/S Cluster Biosynthetic Pathway.

    PubMed

    Wachnowsky, Christine; Wesley, Nathaniel A; Fidai, Insiya; Cowan, J A

    2017-03-24

    Iron-sulfur (Fe/S)-cluster-containing proteins constitute one of the largest protein classes, with varied functions that include electron transport, regulation of gene expression, substrate binding and activation, and radical generation. Consequently, the biosynthetic machinery for Fe/S clusters is evolutionarily conserved, and mutations in a variety of putative intermediate Fe/S cluster scaffold proteins can cause disease states, including multiple mitochondrial dysfunctions syndrome (MMDS), sideroblastic anemia, and mitochondrial encephalomyopathy. Herein, we have characterized the impact of defects occurring in the MMDS1 disease state that result from a point mutation (Gly208Cys) near the active site of NFU1, an Fe/S scaffold protein, via an in vitro investigation into the structural and functional consequences. Analysis of protein stability and oligomeric state demonstrates that the mutant increases the propensity to dimerize and perturbs the secondary structure composition. These changes appear to underlie the severely decreased ability of mutant NFU1 to accept an Fe/S cluster from physiologically relevant sources. Therefore, the point mutation on NFU1 impairs downstream cluster trafficking and results in the disease phenotype, because there does not appear to be an alternative in vivo reconstitution path, most likely due to greater protein oligomerization from a minor structural change. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. In Vitro and In Vivo Activities of 2,3-Diarylsubstituted Quinoxaline Derivatives against Leishmania amazonensis

    PubMed Central

    Kaplum, Vanessa; Cogo, Juliana; Sangi, Diego Pereira; Ueda-Nakamura, Tânia; Corrêa, Arlene Gonçalves

    2016-01-01

    Leishmaniasis is endemic in 98 countries and territories worldwide. The therapies available for leishmaniasis have serious side effects, thus prompting the search for new therapies. The present study investigated the antileishmanial activities of 2,3-diarylsubstituted quinoxaline derivatives against Leishmania amazonensis. The antiproliferative activities of 6,7-dichloro-2,3-diphenylquinoxaline (LSPN329) and 2,3-di-(4-methoxyphenyl)-quinoxaline (LSPN331) against promastigotes and intracellular amastigotes were assessed, and the cytotoxicities of LSPN329 and LSPN331 were determined. Morphological and ultrastructural alterations were examined by electron microscopy, and biochemical alterations, reflected by the mitochondrial membrane potential (ΔΨm), mitochondrial superoxide anion (O2·−) concentration, the intracellular ATP concentration, cell volume, the level of phosphatidylserine exposure on the cell membrane, cell membrane integrity, and lipid inclusions, were evaluated. In vivo antileishmanial activity was evaluated in a murine cutaneous leishmaniasis model. Compounds LSPN329 and LSPN331 showed significant selectivity for promastigotes and intracellular amastigotes and low cytotoxicity. In promastigotes, ultrastructural alterations were observed, including an increase in lipid inclusions, concentric membranes, and intense mitochondrial swelling, which were associated with hyperpolarization of ΔΨm, an increase in the O2·− concentration, decreased intracellular ATP levels, and a decrease in cell volume. Phosphatidylserine exposure and DNA fragmentation were not observed. The cellular membrane remained intact after treatment. Thus, the multifactorial response that was responsible for the cellular collapse of promastigotes was based on intense mitochondrial alterations. BALB/c mice treated with LSPN329 or LSPN331 showed a significant decrease in lesion thickness in the infected footpad. Therefore, the antileishmanial activity and mitochondrial mechanism of action of LSPN329 and LSPN331 and the decrease in lesion thickness in vivo brought about by LSPN329 and LSPN331 make them potential candidates for new drug development for the treatment of leishmaniasis. PMID:27001812

  9. Mitochondria-targeted antioxidant mitotempo protects mitochondrial function against amyloid beta toxicity in primary cultured mouse neurons.

    PubMed

    Hu, Hongtao; Li, Mo

    2016-09-09

    Mitochondrial defects including excess reactive oxygen species (ROS) production and compromised ATP generation are featured pathology in Alzheimer's disease (AD). Amyloid beta (Aβ)-mediated mitochondrial ROS overproduction disrupts intra-neuronal Redox balance, in turn exacerbating mitochondrial dysfunction leading to neuronal injury. Previous studies have found the beneficial effects of mitochondria-targeted antioxidants in preventing mitochondrial dysfunction and neuronal injury in AD animal and cell models, suggesting that mitochondrial ROS scavengers hold promise for the treatment of this neurological disorder. In this study, we have determined that mitotempo, a novel mitochondria-targeted antioxidant protects mitochondrial function from the toxicity of Aβ in primary cultured neurons. Our results showed that Aβ-promoted mitochondrial superoxide production and neuronal lipid oxidation were significantly suppressed by the application of mitotempo. Moreover, mitotempo also demonstrated protective effects on mitochondrial bioenergetics evidenced by preserved mitochondrial membrane potential, cytochrome c oxidase activity as well as ATP production. In addition, the Aβ-induced mitochondrial DNA (mtDNA) depletion and decreased expression levels of mtDNA replication-related DNA polymerase gamma (DNA pol γ) and Twinkle were substantially mitigated by mitotempo. Therefore, our study suggests that elimination of excess mitochondrial ROS rescues mitochondrial function in Aβ-insulted neruons; and mitotempo has the potential to be a promising therapeutic agent to protect mitochondrial and neuronal function in AD. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Mitochondrial functionality in female reproduction.

    PubMed

    Gąsior, Łukasz; Daszkiewicz, Regina; Ogórek, Mateusz; Polański, Zbigniew

    2017-01-04

    In most animal species female germ cells are the source of mitochondrial genome for the whole body of individuals. As a source of mitochondrial DNA for future generations the mitochondria in the female germ line undergo dynamic quantitative and qualitative changes. In addition to maintaining the intact template of mitochondrial genome from one generation to another, mitochondrial role in oocytes is much more complex and pleiotropic. The quality of mitochondria determines the ability of meiotic divisions, fertilization ability, and activation after fertilization or sustaining development of a new embryo. The presence of normal number of functional mitochondria is also crucial for proper implantation and pregnancy maintaining. This article addresses issues of mitochondrial role and function in mammalian oocyte and presents new approaches in studies of mitochondrial function in female germ cells.

  11. Mitochondrial morphology transitions and functions: implications for retrograde signaling?

    PubMed Central

    Picard, Martin; Shirihai, Orian S.; Gentil, Benoit J.

    2013-01-01

    In response to cellular and environmental stresses, mitochondria undergo morphology transitions regulated by dynamic processes of membrane fusion and fission. These events of mitochondrial dynamics are central regulators of cellular activity, but the mechanisms linking mitochondrial shape to cell function remain unclear. One possibility evaluated in this review is that mitochondrial morphological transitions (from elongated to fragmented, and vice-versa) directly modify canonical aspects of the organelle's function, including susceptibility to mitochondrial permeability transition, respiratory properties of the electron transport chain, and reactive oxygen species production. Because outputs derived from mitochondrial metabolism are linked to defined cellular signaling pathways, fusion/fission morphology transitions could regulate mitochondrial function and retrograde signaling. This is hypothesized to provide a dynamic interface between the cell, its genome, and the fluctuating metabolic environment. PMID:23364527

  12. Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration

    PubMed Central

    Wang, ER; Jarrah, AA; Benard, L; Chen, J; Schwarzkopf, M; Hadri, L; Tarzami, ST

    2014-01-01

    Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo. PMID:24646609

  13. Targeting mitochondrial respiration as a therapeutic strategy for cervical cancer.

    PubMed

    Tian, Shenglan; Chen, Heng; Tan, Wei

    2018-05-23

    Targeting mitochondrial respiration has been documented as an effective therapeutic strategy in cancer. However, the impact of mitochondrial respiration inhibition on cervical cancer cells are not well elucidated. Using a panel of cervical cancer cell lines, we show that an existing drug atovaquone is active against the cervical cancer cells with high profiling of mitochondrial biogenesis. Atovaquone inhibited proliferation and induced apoptosis with varying efficacy among cervical cancer cell lines regardless of HPV infection, cellular origin and their sensitivity to paclitaxel. We further demonstrated that atovaquone acts on cervical cancer cells via inhibiting mitochondrial respiration. In particular, atovaquone specifically inhibited mitochondrial complex III but not I, II or IV activity, leading to respiration inhibition and energy crisis. Importantly, we found that the different sensitivity of cervical cancer cell lines to atovaquone were due to their differential level of mitochondrial biogenesis and dependency to mitochondrial respiration. In addition, we demonstrated that the in vitro observations were translatable to in vivo cervical cancer xenograft mouse model. Our findings suggest that the mitochondrial biogenesis varies among patients with cervical cancer. Our work also suggests that atovaquone is a useful addition to cervical cancer treatment, particularly to those with high dependency on mitochondrial respiration. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Arsenic trioxide promotes mitochondrial DNA mutation and cell apoptosis in primary APL cells and NB4 cell line.

    PubMed

    Meng, Ran; Zhou, Jin; Sui, Meng; Li, ZhiYong; Feng, GuoSheng; Yang, BaoFeng

    2010-01-01

    This study aimed to investigate the effects of arsenic trioxide (As(2)O(3)) on the mitochondrial DNA (mtDNA) of acute promyelocytic leukemia (APL) cells. The NB4 cell line was treated with 2.0 micromol/L As(2)O(3) in vitro, and the primary APL cells were treated with 2.0 micromol/L As(2)O(3) in vitro and 0.16 mg kg(-1) d(-1) As(2)O(3) in vivo. The mitochondrial DNA of all the cells above was amplified by PCR, directly sequenced and analyzed by Sequence Navigatore and Factura software. The apoptosis rates were assayed by flow cytometry. Mitochondrial DNA mutation in the D-loop region was found in NB4 and APL cells before As(2)O(3) use, but the mutation spots were remarkably increased after As(2)O(3) treatment, which was positively correlated to the rates of cellular apoptosis, the correlation coefficient: r (NB4-As2O3)=0.973818, and r (APL-As2O3)=0.934703. The mutation types include transition, transversion, codon insertion or deletion, and the mutation spots in all samples were not constant and regular. It is revealed that As(2)O(3) aggravates mtDNA mutation in the D-loop region of acute promyelocytic leukemia cells both in vitro and in vivo. Mitochondrial DNA might be one of the targets of As(2)O(3) in APL treatment.

  15. Estrogen receptor-β in mitochondria: implications for mitochondrial bioenergetics and tumorigenesis.

    PubMed

    Liao, Tien-Ling; Tzeng, Chii-Ruey; Yu, Chao-Lan; Wang, Yi-Pei; Kao, Shu-Huei

    2015-09-01

    Estrogen enhances mitochondrial function by enhancing mitochondrial biogenesis and sustaining mitochondrial energy-transducing capacity. Shifts in mitochondrial bioenergetic pathways from oxidative phosphorylation to glycolysis have been hypothesized to be involved in estrogen-induced tumorigenesis. Studies have shown that mitochondria are an important target of estrogen. Estrogen receptor-β (ERβ) has been shown to localize to mitochondria in a ligand-dependent or -independent manner and can affect mitochondrial bioenergetics and anti-apoptotic signaling. However, the functional role of mitochondrial ERβ in tumorigenesis remains unclear. Clinical studies of ERβ-related tumorigenesis have shown that ERβ stimulates mitochondrial metabolism to meet the high energy demands of processes such as cell proliferation, cell survival, and transformation. Thus, in elucidating the precise role of mitochondrial ERβ in cell transformation and tumorigenesis, it will be particularly valuable to explore new approaches for the development of medical treatments targeting mitochondrial ERβ-mediated mitochondrial function and preventing apoptosis. © 2015 New York Academy of Sciences.

  16. Inhibitory Effects of Amorphigenin on the Mitochondrial Complex I of Culex pipiens pallens Coquillett (Diptera: Culicidae)

    PubMed Central

    Ji, Mingshan; Liang, Yaping; Gu, Zumin; Li, Xiuwei

    2015-01-01

    Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively. PMID:26307964

  17. Loss of Mitochondrial Function Impairs Lysosomes.

    PubMed

    Demers-Lamarche, Julie; Guillebaud, Gérald; Tlili, Mouna; Todkar, Kiran; Bélanger, Noémie; Grondin, Martine; Nguyen, Angela P; Michel, Jennifer; Germain, Marc

    2016-05-06

    Alterations in mitochondrial function, as observed in neurodegenerative diseases, lead to disrupted energy metabolism and production of damaging reactive oxygen species. Here, we demonstrate that mitochondrial dysfunction also disrupts the structure and function of lysosomes, the main degradation and recycling organelle. Specifically, inhibition of mitochondrial function, following deletion of the mitochondrial protein AIF, OPA1, or PINK1, as well as chemical inhibition of the electron transport chain, impaired lysosomal activity and caused the appearance of large lysosomal vacuoles. Importantly, our results show that lysosomal impairment is dependent on reactive oxygen species. Given that alterations in both mitochondrial function and lysosomal activity are key features of neurodegenerative diseases, this work provides important insights into the etiology of neurodegenerative diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Cancer cells recovering from damage exhibit mitochondrial restructuring and increased aerobic glycolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akakura, Shin; Ostrakhovitch, Elena; Sanokawa-Akakura, Reiko

    2014-06-13

    Highlights: • Some cancer cells recover from severe damage that causes cell death in majority of cells. • Damage-Recovered (DR) cancer cells show reduced mitochondria, mDNA and mitochondrial enzymes. • DR cells show increased aerobic glycolysis, ATP, cell proliferation, and resistance to damage. • DR cells recovered from in vivo damage also show increased glycolysis and proliferation rate. - Abstract: Instead of relying on mitochondrial oxidative phosphorylation, most cancer cells rely heavily on aerobic glycolysis, a phenomenon termed as “the Warburg effect”. We considered that this effect is a direct consequence of damage which persists in cancer cells that recovermore » from damage. To this end, we studied glycolysis and rate of cell proliferation in cancer cells that recovered from severe damage. We show that in vitro Damage-Recovered (DR) cells exhibit mitochondrial structural remodeling, display Warburg effect, and show increased in vitro and in vivo proliferation and tolerance to damage. To test whether cancer cells derived from tumor microenvironment can show similar properties, we isolated Damage-Recovered (T{sup DR}) cells from tumors. We demonstrate that T{sup DR} cells also show increased aerobic glycolysis and a high proliferation rate. These findings show that Warburg effect and its consequences are induced in cancer cells that survive severe damage.« less

  19. Metabolic Dysfunctions in Amyotrophic Lateral Sclerosis Pathogenesis and Potential Metabolic Treatments

    PubMed Central

    Tefera, Tesfaye W.; Borges, Karin

    2017-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease primarily characterized by loss of motor neurons in brain and spinal cord. The death of motor neurons leads to denervation of muscle which in turn causes muscle weakness and paralysis, decreased respiratory function and eventually death. Growing evidence indicates disturbances in energy metabolism in patients with ALS and animal models of ALS, which are likely to contribute to disease progression. Particularly, defects in glucose metabolism and mitochondrial dysfunction limit the availability of ATP to CNS tissues and muscle. Several metabolic approaches improving mitochondrial function have been investigated in vitro and in vivo and showed varying effects in ALS. The effects of metabolic approaches in ALS models encompass delays in onset of motor symptoms, protection of motor neurons and extension of survival, which signifies an important role of metabolism in the pathogenesis of the disease. There is now an urgent need to test metabolic approaches in controlled clinical trials. In addition, more detailed studies to better characterize the abnormalities in energy metabolism in patients with ALS and ALS models are necessary to develop metabolically targeted effective therapies that can slow the progression of the disease and prolong life for patients with ALS. PMID:28119559

  20. Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco.

    PubMed

    Vidal, Guillaume; Ribas-Carbo, Miquel; Garmier, Marie; Dubertret, Guy; Rasmusson, Allan G; Mathieu, Chantal; Foyer, Christine H; De Paepe, Rosine

    2007-02-01

    Alternative oxidase (AOX) functions in stress resistance by preventing accumulation of reactive oxygen species (ROS), but little is known about in vivo partitioning of electron flow between AOX and the cytochrome pathway. We investigated the relationships between AOX expression and in vivo activity in Nicotiana sylvestris and the complex I-deficient CMSII mutant in response to a cell death elicitor. While a specific AOX1 isoform in the active reduced state was constitutively overexpressed in CMSII, partitioning through the alternative pathway was similar to the wild type. Lack of correlation between AOX content and activity indicates severe metabolic constraints in nonstressed mutant leaves. The bacterial elicitor harpin N(Ea) induced similar timing and extent of cell death and a twofold respiratory burst in both genotypes with little change in AOX amounts. However, partitioning to AOX was increased twofold in the wild type but remained unchanged in CMSII. Oxidative phosphorylation modeling indicated a twofold ATP increase in both genotypes. By contrast, mitochondrial superoxide dismutase activity and reduced forms of ascorbate and glutathione were higher in CMSII than in the wild type. These results demonstrate genetically programmed flexibility of plant respiratory routes and antioxidants in response to elicitors and suggest that sustained ATP production, rather than AOX activity by itself or mitochondrial ROS, might be important for in planta cell death.

  1. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo.

    PubMed

    MacAlpine, D M; Perlman, P S; Butow, R A

    1998-06-09

    Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.

  2. Role of Mitochondria in Methamphetamine-Induced Dopaminergic Neurotoxicity: Involvement in Oxidative Stress, Neuroinflammation, and Pro-apoptosis-A Review.

    PubMed

    Shin, Eun-Joo; Tran, Hai-Quyen; Nguyen, Phuong-Tram; Jeong, Ji Hoon; Nah, Seung-Yeol; Jang, Choon-Gon; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2018-01-01

    Methamphetamine (MA), an amphetamine-type psychostimulant, is associated with dopaminergic toxicity and has a high abuse potential. Numerous in vivo and in vitro studies have suggested that impaired mitochondria are critical in dopaminergic toxicity induced by MA. Mitochondria are important energy-producing organelles with dynamic nature. Evidence indicated that exposure to MA can disturb mitochondrial energetic metabolism by inhibiting the Krebs cycle and electron transport chain. Alterations in mitochondrial dynamic processes, including mitochondrial biogenesis, mitophagy, and fusion/fission, have recently been shown to contribute to dopaminergic toxicity induced by MA. Furthermore, it was demonstrated that MA-induced mitochondrial impairment enhances susceptibility to oxidative stress, pro-apoptosis, and neuroinflammation in a positive feedback loop. Protein kinase Cδ has emerged as a potential mediator between mitochondrial impairment and oxidative stress, pro-apoptosis, or neuroinflammation in MA neurotoxicity. Understanding the role and underlying mechanism of mitochondrial impairment could provide a molecular target to prevent or alleviate dopaminergic toxicity induced by MA.

  3. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease

    PubMed Central

    Lood, Christian; Blanco, Luz P.; Purmalek, Monica M.; Carmona-Rivera, Carmelo; De Ravin, Suk S.; Smith, Carolyne K.; Malech, Harry L.; Ledbetter, Jeffrey A.; Elkon, Keith B.; Kaplan, Mariana J.

    2015-01-01

    Neutrophil extracellular traps (NETs) are implicated in autoimmunity but how they are generated and their roles in sterile inflammation remain unclear. Ribonucleoprotein immune complexes, inducers of NETosis, require mitochondrial ROS for maximal NET stimulation. During this process, mitochondria become hypopolarized and translocate to the cell surface. Extracellular release of oxidized mitochondrial DNA is proinflammatory in vitro and, when injected into mice, stimulates type-I interferon (IFN) signaling through a pathway dependent on the DNA sensor, STING. Mitochondrial ROS is also necessary for spontaneous NETosis of low-density granulocytes from individuals with systemic lupus erythematosus (SLE). This was also observed in individuals with chronic granulomatous disease (CGD), which lack NADPH-oxidase activity, but still develop autoimmunity and type I-IFN signatures. Mitochondrial ROS inhibition in vivo reduces disease severity and type-I IFN responses in a mouse model of lupus. These findings highlight a role for mitochondria in the generation not only of NETs but also of pro-inflammatory oxidized mitochondrial DNA in autoimmune diseases. PMID:26779811

  4. Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein α-Synuclein*♦

    PubMed Central

    Nakamura, Ken; Nemani, Venu M.; Azarbal, Farnaz; Skibinski, Gaia; Levy, Jon M.; Egami, Kiyoshi; Munishkina, Larissa; Zhang, Jue; Gardner, Brooke; Wakabayashi, Junko; Sesaki, Hiromi; Cheng, Yifan; Finkbeiner, Steven; Nussbaum, Robert L.; Masliah, Eliezer; Edwards, Robert H.

    2011-01-01

    The protein α-synuclein has a central role in Parkinson disease, but the mechanism by which it contributes to neural degeneration remains unknown. We now show that the expression of α-synuclein in mammalian cells, including neurons in vitro and in vivo, causes the fragmentation of mitochondria. The effect is specific for synuclein, with more fragmentation by α- than β- or γ-isoforms, and it is not accompanied by changes in the morphology of other organelles or in mitochondrial membrane potential. However, mitochondrial fragmentation is eventually followed by a decline in respiration and neuronal death. The fragmentation does not require the mitochondrial fission protein Drp1 and involves a direct interaction of synuclein with mitochondrial membranes. In vitro, synuclein fragments artificial membranes containing the mitochondrial lipid cardiolipin, and this effect is specific for the small oligomeric forms of synuclein. α-Synuclein thus exerts a primary and direct effect on the morphology of an organelle long implicated in the pathogenesis of Parkinson disease. PMID:21489994

  5. Excessive Hepatic Mitochondrial TCA Cycle and Gluconeogenesis in Humans with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Sunny, Nishanth E.; Parks, Elizabeth J.; Browning, Jeffrey D.; Burgess, Shawn C.

    2013-01-01

    Summary Approximately one-third of the U.S. population has nonalcoholic fatty liver disease (NAFLD), a condition closely associated with insulin resistance and increased risk of liver injury. Dysregulated mitochondrial metabolism is central in these disorders, but the manner and degree of dysregulation are disputed. This study tested whether humans with NAFLD have abnormal in vivo hepatic mitochondrial metabolism. Subjects with low (3.0%) and high (17%) intrahepatic triglyceride (IHTG) were studied using 2H and 13C tracers to evaluate systemic lipolysis, hepatic glucose production, and mitochondrial pathways (TCA cycle, anaplerosis, and ketogenesis). Individuals with NAFLD had 50% higher rates of lipolysis and 30% higher rates of gluconeogenesis. There was a positive correlation between IHTG content and both mitochondrial oxidative and anaplerotic fluxes. These data indicate that mitochondrial oxidative metabolism is ∼2-fold greater in those with NAFLD, providing a potential link between IHTG content, oxidative stress, and liver damage. PMID:22152305

  6. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation.

    PubMed

    Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V

    2010-12-01

    Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.

  7. Eicosapentaenoic acid but not docosahexaenoic acid restores skeletal muscle mitochondrial oxidative capacity in old mice

    PubMed Central

    Johnson, Matthew L; Lalia, Antigoni Z; Dasari, Surendra; Pallauf, Maximilian; Fitch, Mark; Hellerstein, Marc K; Lanza, Ian R

    2015-01-01

    Mitochondrial dysfunction is often observed in aging skeletal muscle and is implicated in age-related declines in physical function. Early evidence suggests that dietary omega-3 polyunsaturated fatty acids (n-3 PUFAs) improve mitochondrial function. Here, we show that 10 weeks of dietary eicosapentaenoic acid (EPA) supplementation partially attenuated the age-related decline in mitochondrial function in mice, but this effect was not observed with docosahexaenoic acid (DHA). The improvement in mitochondrial function with EPA occurred in the absence of any changes in mitochondrial abundance or biogenesis, which was evaluated from RNA sequencing, large-scale proteomics, and direct measurements of muscle mitochondrial protein synthesis rates. We find that EPA improves muscle protein quality, specifically by decreasing mitochondrial protein carbamylation, a post-translational modification that is driven by inflammation. These results demonstrate that EPA attenuated the age-related loss of mitochondrial function and improved mitochondrial protein quality through a mechanism that is likely linked with anti-inflammatory properties of n-3 PUFAs. Furthermore, we demonstrate that EPA and DHA exert some common biological effects (anticoagulation, anti-inflammatory, reduced FXR/RXR activation), but also exhibit many distinct biological effects, a finding that underscores the importance of evaluating the therapeutic potential of individual n-3 PUFAs. PMID:26010060

  8. Mitochondrial impairments contribute to spatial learning and memory dysfunction induced by chronic tramadol administration in rat: Protective effect of physical exercise.

    PubMed

    Mehdizadeh, Hajar; Pourahmad, Jalal; Taghizadeh, Ghorban; Vousooghi, Nasim; Yoonessi, Ali; Naserzadeh, Parvaneh; Behzadfar, Ladan; Rouini, Mohammad Reza; Sharifzadeh, Mohammad

    2017-10-03

    Despite the worldwide use of tramadol, few studies have been conducted about its effects on memory and mitochondrial function, and controversial results have been reported. Recently, there has been an increasing interest in physical exercise as a protective approach to neuronal and cognitive impairments. Therefore, the aim of this study was to investigate the effects of physical exercise on spatial learning and memory and brain mitochondrial function in tramadol-treated rats. After completion of 2-week (short-term) and 4-week (long-term) treadmill exercise regimens, male Wistar rats received tramadol (20, 40, 80mg/kg/day) intraperitoneally for 30days. Then spatial learning and memory was assessed by Morris water maze test (MWM). Moreover, brain mitochondrial function was evaluated by determination of mitochondrial reactive oxygen species (ROS) level, mitochondrial membrane potential (MMP), mitochondrial swelling and cytochrome c release from mitochondria. Chronic administration of tramadol impaired spatial learning and memory as well as brain mitochondrial function as indicated by increased ROS level, MMP collapse, increased mitochondrial swelling and cytochrome c release from mitochondria. Conversely, treadmill exercise significantly attenuated the impairments of spatial learning and memory and brain mitochondrial dysfunction induced by tramadol. The results revealed that chronic tramadol treatment caused memory impairments through induction of brain mitochondrial dysfunction. Furthermore, pre-exposure to physical exercise markedly mitigated these impairments through its positive effects on brain mitochondrial function. Copyright © 2017. Published by Elsevier Inc.

  9. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  10. Increased mtDNA mutations with aging promotes amyloid accumulation and brain atrophy in the APP/Ld transgenic mouse model of Alzheimer’s disease

    PubMed Central

    2014-01-01

    Background The role of mitochondrial dysfunction has long been implicated in age-related brain pathology, including Alzheimer’s disease (AD). However, the mechanism by which mitochondrial dysfunction may cause neurodegeneration in AD is unclear. To model mitochondrial dysfunction in vivo, we utilized mice that harbor a knockin mutation that inactivates the proofreading function of mitochondrial DNA polymerase γ (PolgA D257A), so that these mice accumulate mitochondrial DNA mutations with age. PolgA D257A mice develop a myriad of mitochondrial bioenergetic defects and physical phenotypes that mimic premature ageing, with subsequent death around one year of age. Results We crossed the D257A mice with a well-established transgenic AD mouse model (APP/Ld) that develops amyloid plaques. We hypothesized that mitochondrial dysfunction would affect Aβ synthesis and/or clearance, thus contributing to amyloidogenesis and triggering neurodegeneration. Initially, we discovered that Aβ42 levels along with Aβ42 plaque density were increased in D257A; APP/Ld bigenic mice compared to APP/Ld monogenic mice. Elevated Aβ production was not responsible for increased amyloid pathology, as levels of BACE1, PS1, C99, and C83 were unchanged in D257A; APP/Ld compared to APP/Ld mice. However, the levels of a major Aβ clearance enzyme, insulin degrading enzyme (IDE), were reduced in mice with the D257A mutation, suggesting this as mechanism for increased amyloid load. In the presence of the APP transgene, D257A mice also exhibited significant brain atrophy with apparent cortical thinning but no frank neuron loss. D257A; APP/Ld mice had increased levels of 17 kDa cleaved caspase-3 and p25, both indicative of neurodegeneration. Moreover, D257A; APP/Ld neurons appeared morphologically disrupted, with swollen and vacuolated nuclei. Conclusions Overall, our results implicate synergism between the effects of the PolgA D257A mutation and Aβ in causing neurodegeneration. These findings provide insight into mechanisms of mitochondrial dysfunction that may contribute to the pathogenesis of AD via decreased clearance of Aβ. PMID:24885175

  11. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    PubMed

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  12. Comparative developmental toxicity of environmentally relevant oxygenated PAHs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knecht, Andrea L., E-mail: andrea.knecht@tanguaylab.com; Goodale, Britton C., E-mail: goodaleb@onid.orst.edu; Truong, Lisa, E-mail: lisa.truong.888@gmail.com

    2013-09-01

    Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are byproducts of combustion and photo-oxidation of parent PAHs. OPAHs are widely present in the environment and pose an unknown hazard to human health. The developing zebrafish was used to evaluate a structurally diverse set of 38 OPAHs for malformation induction, gene expression changes and mitochondrial function. Zebrafish embryos were exposed from 6 to 120 h post fertilization (hpf) to a dilution series of 38 different OPAHs and evaluated for 22 developmental endpoints. AHR activation was determined via CYP1A immunohistochemistry. Phenanthrenequinone (9,10-PHEQ), 1,9-benz-10-anthrone (BEZO), xanthone (XAN), benz(a)anthracene-7,12-dione (7,12-B[a]AQ), and 9,10-anthraquinone (9,10-ANTQ) were evaluated for transcriptionalmore » responses at 48 hpf, prior to the onset of malformations. qRT-PCR was conducted for a number of oxidative stress genes, including the glutathione transferase(gst), glutathione peroxidase(gpx), and superoxide dismutase(sod) families. Bioenergetics was assayed to measure in vivo oxidative stress and mitochondrial function in 26 hpf embryos exposed to OPAHs. Hierarchical clustering of the structure-activity outcomes indicated that the most toxic of the OPAHs contained adjacent diones on 6-carbon moieties or terminal, para-diones on multi-ring structures. 5-carbon moieties with adjacent diones were among the least toxic OPAHs while the toxicity of multi-ring structures with more centralized para-diones varied considerably. 9,10-PHEQ, BEZO, 7,12-B[a]AQ, and XAN exposures increased expression of several oxidative stress related genes and decreased oxygen consumption rate (OCR), a measurement of mitochondrial respiration. Comprehensive in vivo characterization of 38 structurally diverse OPAHs indicated differential AHR dependency and a prominent role for oxidative stress in the toxicity mechanisms. - Highlights: • OPAHs are byproducts of combustion present in the environment. • OPAHs pose a largely unknown hazard to human health. • We assayed the developmental toxicology of 39 different OPAHs in zebrafish. • The most toxic OPAHs contained adjacent diones or terminal, para-diones. • AHR dependency varied among OPAHs, and oxidative stress influenced their toxicology.« less

  13. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity

    PubMed Central

    Meyer, Joel N.; Chan, Sherine S. L.

    2017-01-01

    Mitochondrial function is critical for health, as demonstrated by the effects of mitochondrial toxicity, mutations in genes encoding mitochondrial proteins, and the role of mitochondrial dysfunction in many chronic diseases. However, much basic mitochondrial biology is still being discovered. Furthermore, the details of how different environmental exposures affect mitochondria, how mitochondria respond to stressors, and how genetic variation affecting mitochondrial function alters response to exposures are areas of rapid research growth. This Special Issue was created to highlight and review cutting-edge areas of research into chemical effects on mitochondrial function. We anticipate that it will stimulate additional research into the mechanisms by which chemical exposures impact mitochondria, the biological processes that protect mitochondria from such impacts, and the health consequences that result when defense and homeostatic mechanisms are overcome. PMID:28627407

  14. Effects of Insecticides on the Fluidity of Mitochondrial Membranes of the Diamondback Moth, Plutella xylostella, Resistant and Susceptible to Avermectin

    PubMed Central

    Hu, J.; Liang, P.; Shi, X.; Gao, X.

    2008-01-01

    The effects of various insecticides on the fluidity of mitochondrial membranes and cross-resistance were investigated in the diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) using strains that were both resistant and susceptible to avermectin. The resistant strain of P. xylostella, AV-R, developed 1078-fold resistance to avermetins with a high level of cross-resistance to the analogs of avermectins, ivermectin and emamectin benzoate. It had more than 1000 times greater resistance when compared with the avermectin-susceptible strain, XH-S. Mitochondrial membrane fluidity was measured by detecting fluorescence polarization using DPH (1,6-Diphenyl -1,3,5-hexatriene) as the fluorescence probe. Abamectin, emamectin benzoate, ivermectin, cypermethrin and fenvalerate decreased the fluidity of mitochondrial membranes in the XH-S strain at 25°C. However, fipronil and acephate did not change the fluidity of mitochondrial membrane when the concentration of these insecticides was 1×10-4 mol/L. Membrane fluidity increased as the temperature increased. The thermotropic effect on the polarization value of DPH increased as the insecticide concentration was increased. There was a significant difference of mitochondrial membrane fluidity between both XH-S and AV-R when temperature was less than 25°C and no difference was observed when the temperature was more than 25°C. The low-dose abamectin (0.11 mg/L) in vivo treatment caused a significant change of membrane fluidity in the XH-S strain and no change in the AV-R strain. However, a high-dose abamectin (11.86 mg/L) resulted in 100% mortality of the XH-S strain. In vivo treatment may cause a significant change of membrane fluidity in the AV-R strain PMID:20345311

  15. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria

    PubMed Central

    Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand

    2015-01-01

    Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773

  16. Anthelmintic drug ivermectin inhibits angiogenesis, growth and survival of glioblastoma through inducing mitochondrial dysfunction and oxidative stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yingying; Fang, Shanshan; Sun, Qiushi

    Glioblastoma is one of the most vascular brain tumour and highly resistant to current therapy. Targeting both glioblastoma cells and angiogenesis may present an effective therapeutic strategy for glioblastoma. In our work, we show that an anthelmintic drug, ivermectin, is active against glioblastoma cells in vitro and in vivo, and also targets angiogenesis. Ivermectin significantly inhibits growth and anchorage-independent colony formation in U87 and T98G glioblastoma cells. It induces apoptosis in these cells through a caspase-dependent manner. Ivermectin significantly suppresses the growth of two independent glioblastoma xenograft mouse models. In addition, ivermectin effectively targets angiogenesis through inhibiting capillary network formation, proliferation andmore » survival in human brain microvascular endothelial cell (HBMEC). Mechanistically, ivermectin decreases mitochondrial respiration, membrane potential, ATP levels and increases mitochondrial superoxide in U87, T98G and HBMEC cells exposed to ivermectin. The inhibitory effects of ivermectin are significantly reversed in mitochondria-deficient cells or cells treated with antioxidants, further confirming that ivermectin acts through mitochondrial respiration inhibition and induction of oxidative stress. Importantly, we show that ivermectin suppresses phosphorylation of Akt, mTOR and ribosomal S6 in glioblastoma and HBMEC cells, suggesting its inhibitory role in deactivating Akt/mTOR pathway. Altogether, our work demonstrates that ivermectin is a useful addition to the treatment armamentarium for glioblastoma. Our work also highlights the therapeutic value of targeting mitochondrial metabolism in glioblastoma. - Highlights: • Ivermectin is effective in glioblastoma cells in vitro and in vivo. • Ivermectin inhibits angiogenesis. • Ivermectin induces mitochondrial dysfunction and oxidative stress. • Ivermectin deactivates Akt/mTOR signaling pathway.« less

  17. Bcl-xL mediates RIPK3-dependent necrosis in M. tuberculosis-infected macrophages

    PubMed Central

    Zhao, Xiaomin; Khan, Nargis; Gan, Huixian; Tzelepis, Fanny; Nishimura, Tomoyasu; Park, Seung-Yeol; Divangahi, Maziar; Remold, Heinz G.

    2017-01-01

    Virulent Mycobacterium tuberculosis (Mtb) triggers necrosis in host Mφ, which is essential for successful pathogenesis. Here we demonstrate that necrosis of Mtb-infected Mφ is dependent on the action of the cytosolic kinase Receptor Interacting Protein 3 (RIPK3) and the mitochondrial Bcl-2 family member protein B-cell lymphoma - extra large (Bcl-xL). RIPK3-deficient Mφ are able to better control bacterial growth in vitro and in vivo. Cytosolic RIPK3 translocates to the mitochondria where it promotes necrosis and blocks caspase 8-activation and apoptosis via Bcl-xL. Furthermore, necrosis is associated with stabilization of hexokinase II on the mitochondria as well as cyclophilin D-dependent mitochondrial permeability transition (MPT). These events up-regulate the level of reactive oxygen species (ROS) to induce necrosis. Thus, in Mtb-infected Mφ mitochondria are an essential platform for induction of necrosis by activating RIPK3 function and preventing caspase 8 - activation. PMID:28401933

  18. A set of GFP-based organelle marker lines combined with DsRed-based gateway vectors for subcellular localization study in rice (Oryza sativa L.).

    PubMed

    Wu, Tsung-Meng; Lin, Ke-Chun; Liau, Wei-Shiang; Chao, Yun-Yang; Yang, Ling-Hung; Chen, Szu-Yun; Lu, Chung-An; Hong, Chwan-Yang

    2016-01-01

    In the post-genomic era, many useful tools have been developed to accelerate the investigation of gene functions. Fluorescent proteins have been widely used as protein tags for studying the subcellular localization of proteins in plants. Several fluorescent organelle marker lines have been generated in dicot plants; however, useful and reliable fluorescent organelle marker lines are lacking in the monocot model rice. Here, we developed eight different GFP-based organelle markers in transgenic rice and created a set of DsRed-based gateway vectors for combining with the marker lines. Two mitochondrial-localized rice ascorbate peroxidase genes fused to DsRed and successfully co-localized with mitochondrial-targeted marker lines verified the practical use of this system. The co-localization of GFP-fusion marker lines and DsRed-fusion proteins provide a convenient platform for in vivo or in vitro analysis of subcellular localization of rice proteins.

  19. Successful Treatment of Intracranial Glioblastoma Xenografts With a Monoamine Oxidase B-Activated Pro-Drug.

    PubMed

    Sharpe, Martyn A; Livingston, Andrew D; Gist, Taylor L; Ghosh, Pardip; Han, Junyan; Baskin, David S

    2015-09-01

    The last major advance in the treatment of glioblastoma multiforme (GBM) was the introduction of temozolomide in 1999. Treatment with temozolomide following surgical debulking extends survival rate compared to radiotherapy and debulking alone. However, virtually all glioblastoma patients experience disease progression within 7 to 10 months. Although many salvage treatments, including bevacizumab, rechallenge with temozolomide, and other alkylating agents, have been evaluated, none of these clearly improves survival. Monoamine oxidase B (MAOB) is highly expressed in glioblastoma cell mitochondria, and mitochondrial function is intimately tied to treatment-resistant glioblastoma progression. These glioblastoma properties provide a strong rationale for pursuing a MAOB-selective pro-drug treatment approach that, upon drug activation, targets glioblastoma mitochondria, especially mitochondrial DNA. MP-MUS is the lead compound in a family of pro-drugs designed to treat GBM that is converted into the mature, mitochondria-targeting drug, P(+)-MUS, by MAOB. We show that MP-MUS can successfully kill primary gliomas in vitro and in vivo mouse xenograft models.

  20. Successful Treatment of Intracranial Glioblastoma Xenografts With a Monoamine Oxidase B-Activated Pro-Drug

    PubMed Central

    Sharpe, Martyn A.; Livingston, Andrew D.; Gist, Taylor L.; Ghosh, Pardip; Han, Junyan; Baskin, David S.

    2015-01-01

    The last major advance in the treatment of glioblastoma multiforme (GBM) was the introduction of temozolomide in 1999. Treatment with temozolomide following surgical debulking extends survival rate compared to radiotherapy and debulking alone. However, virtually all glioblastoma patients experience disease progression within 7 to 10 months. Although many salvage treatments, including bevacizumab, rechallenge with temozolomide, and other alkylating agents, have been evaluated, none of these clearly improves survival. Monoamine oxidase B (MAOB) is highly expressed in glioblastoma cell mitochondria, and mitochondrial function is intimately tied to treatment-resistant glioblastoma progression. These glioblastoma properties provide a strong rationale for pursuing a MAOB-selective pro-drug treatment approach that, upon drug activation, targets glioblastoma mitochondria, especially mitochondrial DNA. MP-MUS is the lead compound in a family of pro-drugs designed to treat GBM that is converted into the mature, mitochondria-targeting drug, P+-MUS, by MAOB. We show that MP-MUS can successfully kill primary gliomas in vitro and in vivo mouse xenograft models. PMID:26501110

Top